

Copyright © 2012 SST, Inc. All rights reserved. ShotSpotter Flex™, ShotSpotter OnSite™, ShotSpotter SpecialOps™, ShotSpotter®, ShotSpotter Gunshot Location System® and the ShotSpotter logo are trademarks of SST, Inc™.
SST and ShotSpotter technology is protected by one or more issued U.S. and foreign patents, with other domestic and foreign patents pending. Notification API Reference^ShotSpotter Notification API Version 2.6.docx

Notification API
TM

Reference

ShotSpotter®
Notification
Engine
version 2.6

1

Notification API Reference
ShotSpotter Notification Engine v2.6

Table of Contents
1 Technical Background .. 3

1.1 Wide-Area Acoustic Surveillance ... 3

1.2 Incident Review and Alert ... 4

1.3 Reviewed versus Unreviewed (“Raw”) Alerts ... 4

1.4 ShotSpotter Notification API ... 5

1.5 About Notification Engine ... 6

1.6 Accessing Historical ShotSpotter Data .. 7

2 Packet Formats: Two Generations ... 7

2.1 Important: Use Generation II Packets for All New Projects 7

2.2 Inventory of Packet Types ... 8
2.2.1 Notification & Response ... 8
2.2.2 Telemetry .. 8

3 Generation II (Fully-Supported) Packet Formats 8

3.1 IALRT01 Packet ... 9

3.2 IALRT02 Packet ... 10

3.3 IUPDT02 Packet ... 13

3.4 IALRT03 Packet ... 13
3.4.1 Variable-Length Packet .. 14
3.4.2 Availability of Audio Files .. 14
3.4.3 IALRT03 Packet Format Specification .. 15

3.5 IUPDT03 Packet ... 16

3.6 Incident Type Codes ... 17

3.7 Incident Review Workflow Status ... 18

4 Generation I (Legacy) Packet Formats [Deprecated] 19

4.1 Important: Use Generation II Packets for All New Projects; Transition Away from
Generation I on Existing Projects in Your Next Rebuild ... 19

4.2 INCAUPD Packet [Deprecated] .. 19

4.3 INCAUPE Packet [Deprecated] .. 20

4.4 INCIUPD Packet [Deprecated] .. 20

4.5 WGSAUPD Packet [Deprecated] .. 21

4.6 WGSIUPD packet [Deprecated] .. 22

4.7 WGSPAIR packet [Deprecated] .. 23

4.8 Response packet: INCARSP [Deprecated] ... 23

5 Delivery Channels and Formats .. 23

5.1 HTTP POST (XML payload) Channel .. 24

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 2

Notification API Reference
ShotSpotter Notification Engine v2.6

5.2 HTTP GET (query string) Channel ... 24

5.3 Socket (TCP) Channel ... 24

5.4 Google Earth ... 25

5.5 Plug-In Channel .. 25

5.6 Custom formats ... 25
5.6.1 Sample of default XSLT – HTTP format ... 26
5.6.2 Composing Your Own XSLT ... 27
5.6.3 An extended example .. 28

5.7 Additional Pre-Defined Formats ... 29
5.7.1 RMS_INCAUPE .. 29
5.7.2 SONY_INCAUPE .. 29
5.7.3 PDA_INCIUPD .. 29

6 Subscription parameters for different packets ... 29

6.1 Subscription Properties - Common .. 30

6.2 Subscription Properties – INCAUPE, INCAUPD, IALRT01, and IALRT02 30

6.3 Subscription Properties – INCAUPE and IALRT02 only 31

6.4 Subscription Properties – IALRT03 only .. 31

6.5 Subscription Properties – INDAUPE (in addition to INCAUPE) 31

Appendix I: Glossary .. 33

Appendix II: Checksum Calculation Algorithm ... 38

Appendix III: Plug-In Architecture ... 39

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 3

Notification API Reference
ShotSpotter Notification Engine v2.6

1 Technical Background

1.1 Wide-Area Acoustic Surveillance
In 1995, SST, Inc. (previously ShotSpotter, Inc.) pioneered the concept of Wide-Area Acoustic
surveillance for gunfire alert and analysis and today has deployed its technologies in over 70
cities worldwide, including cities such as Washington, D.C.; San Francisco, CA; Boston, MA;
Chicago, IL; Rio de Janeiro, Brazil; Panama City, Panama; and many others.

Wide-area acoustic surveillance for gunshot detection involves the deployment of multiple,
collaborative acoustic sensors throughout a coverage area to create a robust, redundant coverage
array stretching from a single square mile up to 20 or more square miles. The sensors are paired
with analysis software which identifies the unique signature of gunshots and other loud explosive
sounds in real time.

When a gun is fired, the sound it makes (the muzzle blast) radiates outward at a known velocity
(the speed of sound), and arrives at different ShotSpotter sensors at slightly different times, based
on each sensor’s distance from the origin of the sound. Using these slight differences in the time
of arrival of the sound, the sensors trigger on each impulsive noise they hear, mark the precise
time, and forward that information to the ShotSpotter server software. The server software
pinpoints the precise location of each round fired by algorithms primarily relying on a
combination of multilateration and triangulation. In contrast to point-protection gunshot
detection systems, which rely on individual sensors to operate within a small radius (generally
100-200 meters around a single sensor) and which must have a clear line-of-sight the moment a
gun is fired in order to provide useful information, SST’s wide-area acoustic surveillance
technology detects and precisely locates incidents that occur anywhere within a large outdoor
coverage area extending many square miles in size, regardless of visibility and at distances as far as
a mile or more distant from individual sensors. Thus a single gunfire incident is often heard by
many sensors, some of them at the “right” time based on direct path transit of the sound and
some of them at “wrong” times due to echoes, multipath, or other delays.

Subsequent to sound detection by the sensors, the technical superiority of the ShotSpotter
approach becomes evident as the server software disambiguates the location from the many “true”
(and some “not true,” or echo/multipath) data points provided by the sensor network. Among
many possible mathematical solutions, it finds the optimal one, eliminates errors, calculates the
total number of rounds fired even when one or more rounds cannot be heard on several sensors
(and the speed and direction of travel of a moving source, if applicable) and reports these data.
Single-sensor, point solutions do not benefit either from the wide area, multi-sensor redundancy
or from the opportunity to compare data on multiple sensors to filter out echoes, delays, or
multipath. After the ShotSpotter server performs the initial location calculation, it turns to the
individual pulses (shots) within the sequence of shots and optimizes its location to produce a final
location result. Then it uses certain acoustic pulse characteristics (metadata) to make an initial
machine classification of the incident, and optionally requests one or more sensors to begin to
download an audio recording of the few seconds containing the incident back to the server.
Note that, prior to this download request, the entire sequence of events (detection, location,
optimization, and alert) is performed without access to the underlying raw audio stream at the
sensor.

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 4

Notification API Reference
ShotSpotter Notification Engine v2.6

These initial alert data have not yet been reviewed and are therefore referred to as raw alerts or
sometimes more technically as unreviewed alerts. Such alerts commonly include some cases of
gunfire as well as cases of fireworks and other loud impulsive noises such as explosions.
Generally speaking, these raw alerts are useful in the sense that they indicate that something loud
and impulsive in acoustic nature or character originated at a particular geographic location at a
particular time. In cases where targeting other sensors has relatively low cost, as for example
nearby, pan-tilt-zoom- (PTZ-) controllable video cameras, it is often desirable to trigger or notify
external systems on the basis of these raw alerts in order to get “eyes on target” immediately and thus further
the investigation. Such notifications can be (but do not have to be) performed immediately and
before gunfire is confirmed. Thereafter (or in parallel) a process of incident review begins in
order to establish whether the incident in question is, indeed, gunfire.

1.2 Incident Review and Alert
The next step is thus incident review. For customers of SST’s ShotSpotter FlexSM subscription
based service, raw incident data are reported directly to the SST Incident Review CenterTM
(IRC) where our Reviewed Alerts ServiceSM provides immediate assessment and qualification
of gunshot alerts by a highly trained team of SST gunfire and acoustics experts, 24x7x365. For
customers of SST’s ShotSpotter OnSite (capital equipment) products, the Reviewed Alert
Service is available as an option, or customers can choose to review all the raw incidents
themselves. Over time, most SST customers have chosen to avoid the expense and effort of
training their own 24x7x365 staff and now rely on SST’s Reviewed Alerts Service. SST incident
reviewers have quite literally heard more gunfire incidents, from a wider variety of distances and
acoustic environments, than anyone else in the world. When their work is complete, the incident
may or may not have been reclassified—i.e., determined to be of a different type (gunfire,
fireworks, etc.) than the initial machine classification; this final state is referred to as the final
classification or less commonly the reviewed classification.

Once incidents have been reviewed, the data—now called reviewed gunfire alert data—are
ready for presentation to end-users either by SST’s own ShotSpotter user interface software or by
third-party software products which are notified. Our own user interface software which
displays these data exists in several generations including the PSCTM (“Public Safety Console”)
generation for ShotSpotter OnSite systems and the cloud-based ShotSpotter Alert ConsoleTM
and Incident & Reports PortalTM software for subscription-based ShotSpotter Flex customers.
Gunfire incidents are also permanently archived, along with forensic data and actual incident
audio recordings, for subsequent analysis, review during investigation, presentation during
criminal legal proceedings, and long-term crime trend analysis.

1.3 Reviewed versus Unreviewed (“Raw”) Alerts

After review and subsequent customer alert, many customers seek to have ShotSpotter data
automatically transmitted (notified) to external systems which had not been previously notified of
the raw (unreviewed) alert. Thus there are two types of notifications:

1) Instantaneous notification of raw (unreviewed) alerts is appropriate for “low cost to
respond” assets, such as PTZ cameras, for which the cost of turning in the direction of a
sound is negligible.

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 5

Notification API Reference
ShotSpotter Notification Engine v2.6

2) By contrast, “high cost to respond” assets, such as police officers, or the creation of a CAD

(Computer-Aided Dispatch) record, or the triggering of a Common Operating Picture
(COP) system, are typically notified only of reviewed alerts.

There are several other differences between the two classes of notifications:

 Unreviewed (“Raw”) Reviewed

Classification Machine only Machine + Reviewer
Other Situational Context None Provided when available

Timing < 1 second after location SLA 90% within 60 seconds of
receipt of data; average < 20
seconds

Notification Appropriate for Relatively low cost to respond,
fast response (< 10 seconds)
actions:
 PTZ Cameras
 DVR timestamp/tagging
 UAV look-at-target (camera

slew)
 Other Sensor triggering

Relatively high cost to
respond, slower response (> 10
seconds) actions:
 Officer or first responder

dispatch
 CAD record creation
 Air (helicopter) asset mission
 UAV fly-to-target

Typical Daily Volumes Hundreds Tens
Peak Volumes (holidays) Thousands Hundreds

Updates Sent by ShotSpotter Review None
Supported in Notification Engine

version
2.0+ 2.6+

Recipients of unreviewed alerts can optionally also subscribe to update notifications which
provide information about the subsequent review of an incident previously notified in its
unreviewed state.

1.4 ShotSpotter Notification API
For the purposes of notification to external systems, it is important to remember that the wide
area, distributed nature of a ShotSpotter gunfire alert and analysis solution means that more than
one sensor will hear a given gunfire incident, but none of the sensors has sufficient information on
its own to locate the incident. For a notification to be useful, therefore, it must come from the
analysis of multiple sensors’ data by the ShotSpotter server, not from an individual sensor.
Accordingly, the ShotSpotter Notification API is designed to notify external systems when the
server reports a new incident. This is consistent with the way SST’s own ShotSpotter user
interface software works, but it can cause some confusion for those familiar with other sensor-
based surveillance systems which send signals from the edges of the network.

The ShotSpotter Notification APITM can report new incidents or updated information about
incidents previously reported. As its name suggests, the design of the Notification API focuses
heavily on notification of new (or recently updated) incidents and not on making historical data
available for analysis (see Historical Data below for more information about how to access historical
ShotSpotter incident data).

Reviewed and unreviewed (raw) alerts follow slightly different notification workflows, as depicted
in the following diagram.

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 6

Notification API Reference
ShotSpotter Notification Engine v2.6

1.5 About Notification Engine

The Notification Engine is fully documented in the Notification Engine User’s Manual, a
companion document to this Reference. Please refer to the User’s Manual for detailed information.

Incident-by-incident notification is performed by a software component called the
ShotSpotter Notification Engine. The Notification Engine runs on most modern Microsoft
Windows operating systems and:

1. polls for new ShotSpotter incidents
2. filters new incidents by type (gunfire, firework, etc.) and workflow stage (unreviewed,

reviewed)
3. notifies multiple subscribers of multiple types by sending one or more message packets
4. receives confirmation of receipt if desired and retries if configured to do so

The current version of the Notification Engine is 2.6. It delivers substantial upgrades over
previous versions. In the table below, capabilities new since prior versions are highlighted in
blue:

Incident Workflow Status Unreviewed Alerts, Reviewed Alerts,
Reviewed Updates to Unreviewed Alerts

Incident Types Single Gunfire, Multiple Gunfire, Possible
Gunfire, Firecracker/Fireworks, Backfires,
Others

Packet Types 9 Generation I Packets
5 Generation II (Advanced) Packets

Geospatial Boundary Awareness
(“geofences”)

Two-levels of customizable geographic
boundaries reported for each incident

Street Address Lookup (Reverse Geocoding) Parcel map, address point, or Bing maps web
service

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 7

Notification API Reference
ShotSpotter Notification Engine v2.6

Operating System Support 32-bit Windows XP, Windows 7, Windows

Server 2003, 2008
64-bit Windows 7, Windows Server 2008,
Windows Server 2008 R2, Windows Server
2012 (beta)

ShotSpotter Product Support ShotSpotter OnSite
ShotSpotter Flex
ShotSpotter SpecialOps
ShotSpotter CIKR

Transport Channels HTTP POST (XML payload)
HTTP GET (query string)
Socket
Google Earth .KML
Plugin (.dll)

Payload Encoding ASCII stream
HTTP query string (key=value)
XML

1.6 Accessing Historical ShotSpotter Data
The ShotSpotter Notification API, and its implementation in the ShotSpotter Notification
Engine, provides real-time incident alerts to multiple endpoints. They specifically are not designed
to provide access to long-term (aggregated) data or statistics. Although the endpoints are free to
keep their own historical records of incidents (e.g. as a CAD or COP system might), SST, Inc.
also offers access to its historical data to customers via both its user interface software and via
database APIs. The ShotSpotter Flex Incident & Reports Portal, for example, can export data
meeting any of various search criteria to Microsoft Excel® or .CSV format. For additional
information, please refer to Application Note 101: Accessing ShotSpotter Data, available from
SST, Inc.

2 Packet Formats: Two Generations
With Version 2.6 of the ShotSpotter Notification API and Notification Engine, SST has
introduced a new family of message packets designed for both the ShotSpotter OnSite (capital
equipment) and ShotSpotter Flex (subscription) products and business models. We refer to this
new family of message packets as Generation II message packets. Message packets supported
by earlier API versions are referred to as Generation I message packets.

2.1 Important: Use Generation II Packets for All New Projects
Although Version 2.6 of the Notification API continues to support the Generation I packets
originally supported by earlier versions (to the extent technically possible), changes to both the
core ShotSpotter product and improvements to the depth and content of the API will not be
mirrored in the Generation I packets, and future support for Generation I packets is not
guaranteed. All new development should therefore be performed exclusively with the new,
Generation II packets. The Generation II packets have intentionally been designed to be
backwards-compatible with the Generation I packets, and thus any revisions to existing projects

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 8

Notification API Reference
ShotSpotter Notification Engine v2.6

should make the effort to switch from Generation I to Generation II. The change should require
minimal effort, because other than the content of packet prefix opcode itself, there exists a
Generation II packet with all the same fields as (and sometimes more than) their Generation I
counterparts. Properly designed interfaces should have minimal difficulty changing from one to
the other after making a simple prefix opcode change.

2.2 Inventory of Packet Types

2.2.1 Notification & Response

 Generation II
(Fully Supported)

Generation I
(Deprecated)

Simple Alert IALRT01 INCAUPD

Extended Alert IALRT02 INCAUPE
INDAUPE

Extended Alert with Multimedia
(audio) URLs

IALRT03 n/a

Incident Update IUPDT02
IUPDT03

INCIUPD

Response Packet scheduled for future release INCARSP

2.2.2 Telemetry
Telemetry functionality has not been updated for Generation II. Due to the 24x7x365
monitoring and support capabilities provided by SST to its customers, API-based export of sensor
telemetry is no longer a requirement and is not scheduled for support or maintenance in the
future.

 Generation II
(Fully Supported)

Generation I
(Deprecated)

Sensor Status

no longer supported

WGSIUPD

Sensor Update WGSAUPD

Sensor Pair WGSPAIR

3 Generation II (Fully-Supported) Packet Formats
The Generation II packet formats provide incident notification (alert) via the IALRT0x group
of packets, three of which are introduced with API Version 2.6. To accommodate Incident
Review Center (or customer-premises) incident review workflow, a new IUPDT0x group of
packets is introduced to permit subsequent update to incident information after initial (raw) alert.
Developers have often asked for API-level access to ShotSpotter sensor audio (e.g. an .mp3
recording of the gunfire incident as heard at each sensor, plus one to two seconds of audio before
and after). The new Generation II packet IALRT03 and IUPDT03 provide audio URLs to all
available sensor audio and are structured to provide support in the future for other multimedia

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 9

Notification API Reference
ShotSpotter Notification Engine v2.6

types, including for example aerial imagery of the incident location showing a “dot on the map.”
The packet types available are:

Purpose Message
Packet Prefix
(Opcode)

Generation I
Equivalent

Purpose

Simple Alert IALRT01 INCAUPD “Basic” alert with minimal information to pan-tilt-
zoom devices, can accept a geo-referenced
endpoint and will calculate relative
range/bearing/elevation.

Extended Alert IALRT02 INCAUPE
INDAUPE

“Detailed” alert packet with detailed information
regarding the incident, can accept a geo-
referenced endpoint and will calculate relative
range/bearing/elevation.

Extended Alert
with

Multimedia
(audio) URLs

IALRT03 n/a Extended “detailed” alert packet with detailed
information regarding the incident and provides a
variable number of associated URLs for incident
audio, etc.

Incident
Update

IUPDT02 INCIUPD Update packet supporting Reviewed Alerts and
other after-detection updates (classification change,
etc.). Issued to subscribers of IALRT02 messages.

IUPDT03 n/a Update packet supporting Reviewed Alerts and
other after-detection updates (classification change,
etc.). Issued to subscribers of IALRT03 messages.

In the sections that follow, each packet, its opcode, and its fields and values are provided in detail.
In most cases, the Generation II packet is designed as a superset of a Generation I packet. For
convenience, sections which are new or modified from Generation I to Generation II are
highlighted in blue. Note that incident IDs have been standardized in Generation II to 7
characters permitting 10 million incident IDs per system; they were previously variable length. (It
is not uncommon to see 500,000 or more incidents on busy systems.) Distances in meters and
headings in degrees are now standardized as 5 places before the decimal place and 2 places after.

3.1 IALRT01 Packet

The IALRT01 packet is intended for simple endpoints which cannot manage much data. It
supports the same field types as the Generation I INCAUPD packet but now provides Incident
Type explicitly as well as Incident Review Workflow Status.

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 10

Notification API Reference
ShotSpotter Notification Engine v2.6

IALRT01 Packet Format

Field HTML/XML
Field Name

Sample Length/Notes

Packet Prefix1 root node <IALRT01> $IALRT01 see note 1 below
Incident ID id 0001234 7 characters

Incident Distance2, 3 distance 00120.00 8 characters, meters
Incident Heading2, 3 heading 00315.68 8 characters, decimal degrees

Incident Type incident-type 01 see §3.6 Incident Type Codes
Incident Worflow

Status
incident-workflow-

status

UNR see §3.7 Incident Review
Workflow Status

Checksum
indicator4

n/a
*

Checksum checksum 0E see Error! Not a valid result for
table.

Message ending n/a \r\n

Notes:

1. The packet prefix begins with a $ character in ASCII stream format (the default for the
socket channel). In other channels, there is no $ character and the prefix is simply the 7-
character prefix.

2. These fields contain values relative to the latitude and longitude properties (i.e., the
position of the endpoint) assigned to individual end-points using subscription properties in
Notification Engine user interface provided for the camera or endpoint, as described in
§6.2 Subscription Properties – INCAUPE, INCAUPD, IALRT01, and IALRT02.
If no such position is provided, then the values of these fields are undefined.

3. Incident distance and heading are calculated based on the position of the endpoint as
described above using two-dimensional trigonometric calculations. If a 3D (pan/azimuth
angle, range, heading/elevation angle) solution is required, use the IALRT02 packet.

4. The checksum indicator will appear only in the ASCII stream format (the default for the
socket channel). See Appendix II: Checksum Calculation Algorithm.

3.2 IALRT02 Packet

The IALRT02 packet is intended for more capable endpoints which want full incident data but
do not intend to reference multimedia resources available by URL request. It supports the same
field types as the Generation I INCAUPE and INDAUPE packet, but now provides Incident Type
explicitly, Incident Review Workflow Status, and information regarding the location of the event
with regard to geographic boundary(ies) specified for the two different geographic boundary
(geofence) layers on the ShotSpotter server, commonly referred to as “beat” layer and
“jurisdiction” layer (but which can be used for any similar geofencing purpose).

Like the Generation I packets INCAUPE and INDAUPE, the IALRT02 packet supports a heading
“offset” and an elevation “offset.” These offsets are useful when cameras are not installed with
their internal zero-degree direction pointing precisely North, or when they are not positioned
such that zero-degree elevation is precisely parallel to the ground. These and other settings are
configured in the subscription-specific settings for a given end-point (see §6.2 Subscription
Properties – INCAUPE, INCAUPD, IALRT01, and IALRT02 and §6.3Subscription Properties –
INCAUPE and IALRT02 only).

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 11

Notification API Reference
ShotSpotter Notification Engine v2.6

IALRT02 Packet Format

Field HTML/XML
Field Name

Sample Length/Notes

Packet Prefix1 root node <IALRT02> $IALRT02 see note 1 below
Incident ID id 0001234 7 characters

Latitude latitude +01.123456
see note 2 below

Longitude longitude +012.123456

Incident [Street]
Address

address 303 Second

Street

reverse geocoded
address3

Additional
Description

description 7 rounds,

shooter moving

SE at 5mph

see note 4 below

Fine-grained
geofence

beat 111AAA

see note 5 below
Coarse-grained

geofence
district 222BBB

Source Name source ABCity the name of the
ShotSpotter Database
which corresponds to the
coverage area

Incident Distance6,7 distance 00120.00 8 characters, meters
Incident Heading6,7 heading 00315.68 8 characters, decimal

degrees
Heading Adjusted6,7 heading-adjusted 00300.68 8 characters, decimal

degrees
Elevation6,7 elevation 015.0 5 characters, decimal

degrees
Elevation Adjusted6,7 elevation-adjusted 010.0 5 characters, decimal

degrees
Zoom zoom 01.00 4 characters, reserved

for future use
Incident Time time 2012-10-16

00:00:27
Local database time (NOT

UTC)
GMT (UTC) Offset gmt-offset -08 3 characters, time zone

offset from GMT
Incident Type incident-type 01 see §3.6 Incident Type

Codes
Incident Worflow

Status
incident-workflow-

status

UNR see §3.7 Incident Review
Workflow Status

Checksum indicator n/a *
Checksum checksum 0E see Error! Not a valid

result for table.
Message ending n/a \r\n

Notes:

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 12

Notification API Reference
ShotSpotter Notification Engine v2.6

1. The packet prefix begins with a $ character in ASCII stream format (the default for the

socket channel). In other channels, there is no $ character and the field contains just the
7-character prefix.

2. Please remember that the latitude/longitude (and other geographic coordinates) provided
represent the location of the incident itself, and explicitly not the coordinates of the sensors
reporting the incident. This has been the source of confusion for some integrators more
accustomed to sensor-focused surveillance mechanisms.

3. For ShotSpotter OnSite systems, reverse geocoding is performed against a customer-
provided parcel map or address point map. For ShotSpotter Flex systems, reverse
geocoding is attempted first against the customer-provided parcel map or address point
map, if it exists and provides a valid answer, and then subsequently as a fallback
mechanism against the Microsoft Bing Maps reverse geocoding web service. If the
customer parcel or address point map exists but a suitable value is not found during the
lookup, the Flex server will attempt to reverse geocode the coordinates using Microsoft
Bing Maps.

4. For ShotSpotter Flex customers, the Additional Description field may contain additional
information and situational context provided by the SST Incident Review Center. Such
additional information commonly includes number of rounds fired (in cases of multiple
gunfire) and the speed and direction of travel, if the server was able to detect movement
among multiple gunshots.

5. Fine-grained and coarse-grained geofences, often used for “beats” and “districts”
respectively, can be set up on the ShotSpotter server to permit customers to resolve
incidents within fine-grained or coarse-grained geographic boundaries within their
coverage area. The terms “beat” and “district” are arbitrary, but provide some insight into
the uses to which these two levels of boundaries (geofences) are commonly put.

6. These fields contain values relative to the latitude, longitude and height properties (i.e.,
the position of the endpoint) assigned to individual end-points using subscription properties
in Notification Engine user interface provided for the camera or endpoint, as described in
§6.2 Subscription Properties – INCAUPE, INCAUPD, IALRT01, and IALRT02 and in
§6.3 Subscription Properties – INCAUPE and IALRT02 only.
If no such position is provided, then the values of these fields are undefined.

7. Incident distance, heading, and elevation angle are calculated using three-dimensional
trigonometric calculations and based on the physical position of the endpoint. If your
application requires only a 2D (pan/azimuth angle, range, without elevation angle)
solution, you should subscribe to the IALRT01 packet instead.

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 13

Notification API Reference
ShotSpotter Notification Engine v2.6

3.3 IUPDT02 Packet

The IUPDT02 packet exists to provide incident review workflow updates for subscribers of
IALRT02 packets. It duplicates most of the fields in the IALRT02 packet and introduces a new
Final Incident Type field, identifying the final classification of an incident (i.e., the classification
after the SST Incident Review Center or customer has reviewed the incident audio). It also
provides an updated workflow status.

IUPDT02 Packet Format

Field HTML/XML
Field
Name

Sample Length/Notes

Packet Prefix root node
<IUPDT02>

$IUPDT02 see note 1 for IALRT02 above

Incident ID

see IALRT02 above

Latitude
Longitude

Incident [Street] Address
Additional Description

Fine-grained geofence
Coarse-grained geofence

Source Name
Incident Distance
Incident Heading

Heading Adjusted
Elevation

Elevation Adjusted
Zoom

Original Incident Type original-

incident-

type

01

see §3.6 Incident Type Codes
Final [Reviewed] Incident Type final-

incident-

type

03

Incident Worflow Status incident-

workflow-

status

REV
see §3.7 Incident Review
Workflow Status

Checksum indicator
see IALRT02 above Checksum

Message ending

3.4 IALRT03 Packet

The IALRT03 packet marks a departure from Generation I packets and from their IALRT01 and
IALRT02 Generation II counterparts. The IALRT03 packet delivers nearly all the incident data
available for a given ShotSpotter incident and would be appropriate for use in Common
Operating Picture (COP) or Command and Control (C2) systems which seek to aggregate
sensor data from multiple platforms. In addition to the data provided within the packet, it will

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 14

Notification API Reference
ShotSpotter Notification Engine v2.6

contain one or more URIs (uniform resource identifiers1) pointing to additional multimedia
content available relating to the incident. In version 2.6 of the Notification Engine, URLs for all
sensor audio automatically downloaded are provided. Future versions of the ShotSpotter platform
may provide additional resources and add additional URIs. Each URI includes metadata
describing the media available at the URI (for example, Sensor 10, 130 meters) and the
MIME content type (for example, audio/mpeg).

Because of its intended use primarily as a system-to-system connector packet, and to save room,
the IALRT03 packet does not include the relative positioning information (heading, range,
elevation) which is provided in IALRT02. Relative position makes semantic sense in the context
of individual end-points, such as cameras, but makes no sense in the context of other systems (e.g.:
what is the “distance” from a CAD system to a gunshot?). You are not restricted, however, from
subscribing to both packet types, but we can imagine few circumstances under which doing so
would be appropriate.

3.4.1 Variable-Length Packet

Unlike other packets, the IALRT03 packet has a variable number of fields. If there are n URIs
included in the packet, there will be (14+3n) fields not including the checksum indicator or the
checksum itself. For example, if a given incident has four (4) sensor audio files available, then the
total number of fields in the IALRT03 packet reporting it will be (14+3×4) = 26. Similarly, an
incident with 10 sensor audio files available will have (14+3×10) = 44 fields.

3.4.2 Availability of Audio Files
The process of downloading audio files from the ShotSpotter sensor network is handled by the
ShotSpotter server software entirely after the incident has been located. In order to ensure that alerts
are published as quickly as possible, an unreviewed alert will be published as soon as the location
has been calculated but very often before the audio is available. Accordingly, your application must
make allowances for additional audio download time after the incident has taken place. By the
time a reviewed alert is published, it is nearly always the case that at least one audio file is available
(on which the SST Incident Review Center has, in part, based its acoustic analysis). However, in
general, external applications should assume that URLs will be valid at some time after an incident
is alerted, but 1) almost certainly will not be available immediately for unreviewed alerts, and
2) may not all be available immediately for reviewed alerts. As SST configures the web servers
providing audio, they will return HTTP standard response code 404 before audio is available, and
200 (along with the audio data) when it is available. Thus a simple HTTP polling loop will
suffice to deliver audio when it becomes available. We recommend you stop polling at some
point after alert, as it is sometimes the case that audio is expected to be available but, for network
connectivity or congestion reasons, cannot be downloaded.

1 “URI” is the term describing a superset which includes the more familiar URL (uniform resource locator) as
well as URN (uniform resource name).

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 15

Notification API Reference
ShotSpotter Notification Engine v2.6

3.4.3 IALRT03 Packet Format Specification

IALRT03 Packet Format

Field HTML/XML
Field Name

Sample Length/Notes

Packet Prefix1 root node <IALRT03> $IALRT03 see note 1 below
Incident ID id 0001234 7 characters

Latitude latitude +01.123456
see note 2 below

Longitude longitude +012.123456
Incident [Street]

Address
address 303 Second Street reverse geocoded address3

Additional
Description

description 7 rounds, shooter
moving SE at 5mph

see note 4 below

Fine-grained
geofence

beat 111AAA

see note 5 below
Coarse-grained

geofence
district 222BBB

Source Name source ABCity the name of the ShotSpotter Database
which corresponds to the coverage area

Incident Time time 2012-10-16 00:00:27 Local database time (NOT UTC)
GMT (UTC)

Offset
gmt-offset -08 3 characters, time zone offset from GMT

Incident Type incident-type 01 see §3.6 Incident Type Codes
Incident

Worflow Status
incident-
workflow-status

UNR see §3.7 Incident Review Workflow Status

URI Count uri-count 05 2 digits, total number of URIs (URLs)
following

 <uris>
 <uri-detail>

URI #1 MIME
Content-Type

 mime audio/mpeg the IANA MIME media type available at
this URI

URL #1 url https://us1.shotspo
tter.net/City/CityAudio
/2012-08/2012-08-05
/City0312_5_(2540
-City___5).mp3

see note 5 below

URI #1
Metadata

 description Sensor 5, 50 meters

… … …
URI #n MIME
Content-Type

 mime audio/mpeg

URL #n url https://us1.shotspo
tter.net/City/CityAudio
/2012-08/2012-08-05
/City0312_7_(2540
-City___7).mp3

see note 6 below

URI #n
Metadata

 description Sensor 27, 250 meters

 </uri-detail>
</uris>

Checksum
indicator

n/a *

Checksum checksum 0E see Error! Not a valid result for table.
Message

ending
n/a \r\n

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 16

Notification API Reference
ShotSpotter Notification Engine v2.6

Notes:

1. The packet prefix begins with a $ character in ASCII stream format (the default for the
socket channel). In other channels, there is no $ character and the field contains just the
7-character prefix.

2. Please remember that the latitude/longitude (and other geographic coordinates) provided
represent the location of the incident itself, and explicitly not the coordinates of the sensors
reporting the incident. This has been the source of confusion for some integrators more
accustomed to sensor-focused surveillance mechanisms.

3. For ShotSpotter OnSite systems, reverse geocoding is performed against a customer-
provided parcel map or address point map. For ShotSpotter Flex systems, reverse
geocoding is performed first against the customer-provided parcel map or address point
map, if it exists and provides a valid answer, and then subsequently as a fallback
mechanism against the Microsoft Bing Maps reverse geocoding web service. If the
customer parcel or address point map exists but a suitable value is not found during the
lookup, the Flex server will attempt to reverse geocode the coordinates using Microsoft
Bing Maps.

4. For ShotSpotter Flex customers, the Additional Description field may contain additional
information and situational context provided by the SST Incident Review Center. Such
additional information commonly includes number of rounds fired (in cases of multiple
gunfire) and the speed and direction of travel, if the server was able to detect movement
among multiple gunshots.

5. Fine-grained and coarse-grained geofences, often used for “beats” and “districts”
respectively, can be set up on the ShotSpotter server to permit customers to resolve
incidents within fine-grained or coarse-grained geographic boundaries within their
coverage area. The terms “beat” and “district” are arbitrary, but provide some insight into
the uses to which these two levels of boundaries (geofences) are commonly put.

6. Internally, the audio URL is constructed from a base URL component (which includes
the protocol indicator, FQDN, and root path) and a variable URL component which
changes on an incident-by-incident basis. The variable URL component contains a date
hierarchy as well as a sensor and incident-specific name. The fixed and variable
components of the URL examples above are shown here:

Base URL component Variable component

https://us1.shotspotter.net/City/CityAudio/

2012-08/2012-08-05/City0312_5_(2540-
City___5).mp3
2012-08/2012-08-05/City0312_27_(2540-
City___27).mp3

For flexibility, the Notification Engine allows you to configure a different base URL than
is used internally by ShotSpotter software. The base URL is configured as a subscription-
specific property. See Subscription Properties – IALRT03 only.

3.5 IUPDT03 Packet

Like IALRT02, IALRT03 has a companion update packet, IUPDT03, which exists to provide
incident review workflow updates for subscribers of IALRT03 packets. It duplicates the fields in
the IALRT03 packet and introduces a new Final Incident Type field, identifying the final

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 17

Notification API Reference
ShotSpotter Notification Engine v2.6

classification of an incident (i.e., the classification after the SST Incident Review Center or
customer has reviewed the incident audio). It also provides an updated workflow status.

IUPDT03 Packet Format

Field HTML/XML
Field Name

Sample Length/Notes

Packet Prefix root node
<IUPDT03>

$IUPDT03

Incident ID

see IALRT03 Packet above

Latitude

Longitude

Incident [Street]

Address

Additional

Description

Fine-grained

geofence

Coarse-grained

geofence

Source Name

Incident Time

GMT (UTC) Offset

 Original Incident

Type

original-

incident-type

01

see §3.6 Incident Type Codes
Final [Reviewed]

Incident Type

final-incident-

type

03

Incident Workflow

Status

incident-

workflow-status

REV see §3.7 Incident Review Workflow

Status

URI Count

see IALRT03 Packet above

URI #1 MIME

Content-Type

URI #1

URI #1 Metadata

…

URI #n MIME

Content-Type

URI #n

URI #n Metadata

Checksum indicator

Checksum

Message ending

3.6 Incident Type Codes
Two-digit incident type codes are now provided for all Generation II packets. Incidents may be
gunfire, fireworks (firecrackers), or other loud, impulsive noise. Depending on the workflow
status, incidents type may be a result of machine classification or human review. The following
list of incident types defines the entire “type space” of incidents, but it is important to note that

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 18

Notification API Reference
ShotSpotter Notification Engine v2.6

neither automatic machine classification nor human review will necessarily produce all of these
incident types, nor does SST offer its product for the detection and classification of acoustic events
other than gunfire. The incident types are provided for data analysis and ease of traceability only.
Do not rely on incident types other than gunfire being consistently produced.

Incident
Type
Code

Description Gunfire? Canonical “Dot”
Color in ShotSpotter
User Interface Software

0 Unclassified blue
1 Single Gunshot Yes red
2 Multiple Gunshots Yes red
3 Firecracker yellow or white
4 Bottle Rocket yellow or white
5 Aircraft purple
6 Other lime
7 System Test pale green
8 Backfire orange
9 Helicopter purple

10 Motorcycle purple
11 Construction blue
12 Sonic Boom blue
13 Transformer lime
14 Explosion lime
15 Thunder fuchsia
16 Rain fuchsia
17 Firing Test Yes pale green
18 Simulation pale green
19 Possible Gunshot Yes half red/half yellow or

half red/half white
20 Anticipated Gunshot Yes orange
21 Friendly Force Gunshot Yes blue

3.7 Incident Review Workflow Status
Incident alerts and incident updates now provide status information regarding the stage (progress
along) the review workflow. Referring back to the figure in §1.5 ShotSpotter Notification API, the
status codes are three letter values defining whether an incident is UNReview, REViewed, or has
been Published automatically due to a Time-Out. Additional values are reserved for future use in
the API but are not currently output by the Notification Engine.

Review
Workflow

Status

Description

UNR Unreviewed
REV Reviewed
PTO Published due to timeout (rare)
SPT

reserved for future use CHT
CMT

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 19

Notification API Reference
ShotSpotter Notification Engine v2.6

REP
RCL
RLT
FRP
OTH

4 Generation I (Legacy) Packet Formats [Deprecated]
Version 2.6 of the ShotSpotter Notification API continues support for the Generation I (Legacy)
packet formats introduced in the API versions which shipped with Notification Engine 1.0 and
2.x versions prior to 2.6.

4.1 Important: Use Generation II Packets for All New Projects; Transition Away
from Generation I on Existing Projects in Your Next Rebuild

Although Version 2.6 of the Notification API continues to support the Generation I packets
originally supported by earlier versions (to the extent technically possible), changes to both the
core ShotSpotter product and improvements to the depth and content of the API will not be
mirrored in the Generation I packets, and future support for Generation I packets is not
guaranteed. For new projects, use only Generation II. For existing projects, you
should switch to Generation II packets as soon as possible—ideally in your next
project rebuild. Several Generation II packets have intentionally been designed to be
backwards-compatible with the Generation I packets, and thus any revisions to existing projects
should make the minimal effort to switch from Generation I to Generation II.

4.2 INCAUPD Packet [Deprecated]

This is a legacy Generation I packet type. Its use is supported but deprecated in Notification API
versions 2.6 and later. The Generation II packet IALRT01 can be used as a replacement for this
packet with minimal required code changes.

Component HTML/XML
Field Name

Sample

Packet Prefix prefix $INCAUPD
Incident ID id 1234

Incident Distance (in meters) distance 120.00
Incident Heading (in degrees) heading 315.68

Checksum indicator *
Checksum checksum 0E

Message ending \r\n

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 20

Notification API Reference
ShotSpotter Notification Engine v2.6

4.3 INCAUPE Packet [Deprecated]

This is a legacy Generation I packet type. Its use is supported but deprecated in

Notification API versions 2.6 and later. The Generation II packet IALRT02 can be used as a
replacement for this packet with minimal required code changes.

Component HTML/XML
Field Name

Sample

Packet Prefix prefix $INCAUPE
Incident ID id 1234

Incident Distance (in meters) distance 120.00
Incident Heading (in degrees) heading 315.68

Heading Adjusted heading-adjusted 300.68
Elevation (in degrees) elevation 15.0

Elevation Adjusted elevation-
adjusted

10.0

Zoom(1) zoom 1
Incident Time time 2012-10-16

12:00:27
Checksum indicator *

Checksum checksum 0E
Message ending \r\n

Notes:
1. Zoom is reserved for future use

4.4 INCIUPD Packet [Deprecated]

This is a legacy Generation I packet type. Its use is supported but deprecated in

Notification API versions 2.6 and later. The Generation II packet IUPDT02 can be used as a
replacement for this packet with minimal required code changes.

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 21

Notification API Reference
ShotSpotter Notification Engine v2.6

Component HTML/XML

Field Name
Sample

Packet Prefix prefix $INCIUPD
Incident ID id 1234

Incident Latitude latitude 37.1234
Incident Longitude longitude 120.1234

Incident Type(1) type 1
Incident Address address 303 Second Street

Incident Location X(2) location-x 2234556
Incident Location Y(2) location-y 4559696

Incident Time time 2012-10-16
12:00:27

Checksum indicator *
Checksum checksum 0E

Message ending \r\n

Notes:
1. see §3.6 Incident Type Codes
2. (X, Y) coordinates represents the incident location in the local UTM geographic coordinate
system. UTM zone must be inferred from system location. A convenient UTM lookup tool is
provided by APSalin at www.apsalin.com/utm-zone-finder.aspx.

4.5 WGSAUPD Packet [Deprecated]

This is a legacy Generation I packet type. Its use is supported but deprecated in

Notification API versions 2.6 and later. See §2.2.2 Telemetry for information regarding future
support of telemetry information.

Component HTML/XML

Field Name
Sample

Packet Prefix prefix $WGSAUPD
Sensor ID id 1234

Sensor Distance (in meters) distance 120.00
Sensor Heading (in degrees) heading 315.68

Heading Adjusted heading-adjusted 300.68
Elevation (in degrees) elevation 15.0

Elevation Adjusted elevation-adjusted 10.0
Checksum indicator *

Checksum checksum 0E
Message ending \r\n

Notes:
1. Zoom is reserved for future use

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 22

Notification API Reference
ShotSpotter Notification Engine v2.6

4.6 WGSIUPD packet [Deprecated]

This is a legacy Generation I packet type. Its use is supported but deprecated in

Notification API versions 2.6 and later. See §2.2.2 Telemetry for information regarding future
support of telemetry information.

Component HTML/XML
Field Name

Sample

Packet Prefix prefix $WGSIUPD
Sensor ID id 1234

Sensor Friendly Number friendly-number 1234
Sensor Friendly Name friendly-name Sensor A

Sensor Type type 1
Sensor Latitude latitude 33.7890

Sensor Longitude longitude 120.2424
Sensor Status(1) snr 1

Checksum indicator *
Checksum checksum 0E

Message ending \r\n

Notes:
1. Values for the Status field:
 0 OK
 1 Offline
 2 Down
 3 Unknown

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 23

Notification API Reference
ShotSpotter Notification Engine v2.6

4.7 WGSPAIR packet [Deprecated]

This is a legacy Generation I packet type. Its use is supported but deprecated in

Notification API versions 2.6 and later. See §2.2.2 Telemetry for information regarding future
support of telemetry information.

Component HTML/XML
Field Name

Sample

Packet Prefix prefix $WGSPAIR
Sensor ID id 1234

Sensor Latitude latitude 33.7890
Sensor Longitude longitude 120.2424

Sensor Battery Level battery 20.123
Sensor PDOP pdop 0.123
Sensor Bearing bearing 20.123
Sensor SNR(1) snr 0

Checksum indicator checksum *
Checksum prefix 0E

Message ending id \r\n

Notes:
1. Values for the SNR field will be reported as zero (0) in this version.

4.8 Response packet: INCARSP [Deprecated]

In response to INCAUPD and INCAUPE packets, you may issue an INCARSP packet, described below,
back to the server. (For details on configuring inbound receipt of packets, please see the Users Manual.)

Component HTML/XML
Field Name

Sample

Packet Prefix prefix $INCARSP
Incident ID id 1234

Acceptance flag (A – Accepted, R –
Rejected)

flag A

Checksum indicator n/a *
Checksum checksum 45

Message ending n/a \r\n

5 Delivery Channels and Formats
The Notification Engine supports various channels through which packets can be transmitted.
The packet contents do not change, but the formatting and delimiting of the packet fields does
change slightly.

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 24

Notification API Reference
ShotSpotter Notification Engine v2.6

5.1 HTTP POST (XML payload) Channel
The preferred delivery format for sending packets is XML, as it permits full fidelity and is easy to
inspect visually. XML is the default payload format for the HTTP POST channel, which
transmits the data packet in the format of a regular HTTP POST request method. Here is a
sample of an INCIUPD packet formatted as an XML payload:

<INCIUPD>
 <id>1053</id>
 <latitude>38.85962</latitude>
 <longitude>-76.98861</longitude>
 <type>1</type>
 <address>303 Second Street </address>
 <location-x>0</location-x>
 <location-y>0</location-y>
 <time>2012-10-18 14:00:36</time>

</INCIUPD>

Note that, unlike the ASCII stream formatting for socket channel packets, there are no start and
checksum delimiting characters ($ and *, respectively).

5.2 HTTP GET (query string) Channel
In the HTTP GET (query string) channel, the data packet is in the format of a regular HTTP
request (GET) string, with the field values provided as query string parameters. All field names are
in lowercases. Here is a sample of an INCAUPD packet formatted as a query string:

?prefix=INCAUPD&id=1234&distance=120.00&checksum=0E

The above packet might be sent to a listening URL as a standard HTTP request, for example:

http://192.168.0.1/somepage.jsp?prefix=INCAUPD&id=1234&dista
nc=120.00&heading=315.68&checksum=0E

Note that, unlike the ASCII stream formatting for socket channel packets, there are no start and
checksum delimiting characters ($ and *, respectively). Instead, the commonly-used key=value
query string format is relied upon to delimit contents.

5.3 Socket (TCP) Channel
In the socket channel, packet data is sent as ASCII streams. Each data packet starts with a $ (dollar
sign) character and the 7-character packet prefix, and ends with two characters \r\n (carriage
return followed by line feed, ASCII values 13 and 10 respectively). A packet body will usually
contain multiple fields, separated by comma (,). The last three characters of a packet body is an
asterisk (*) sign and a two-character checksum. The following is a sample of a Generation I
INCAUPD packet as it would be transmitted via the socket channel:

$INCAUPD,1234,120.00,315.68*0E\r\n

and here is a sample Generation II IALRT02 packet:

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 25

Notification API Reference
ShotSpotter Notification Engine v2.6

$IALRT01,0001234, +37.538867,-122.064656,303 Second Street,7
rounds shooter moving SE at 5mph,111AAA,222BBB,ABCity,
00120.00, 315.68,300.68,015.0,010.0,01.00,2012-10-16
12:00:27,-08,01,UNR*0E\r\n

5.4 Google Earth

Using the Google Earth device type and “GoogleEarth” protocol permits users to generate (and
update) a Google Earth overlay file (.kml) so that incidents can be displayed in Google Earth
environment when they are available. A specific GoogleEarth_INCIUPD pre-defined format
has been created for this purpose. For additional information see the Google Earth predefined
section below and the Notification Engine User’s Manual.

5.5 Plug-In Channel
The packets are kept in their original XML format when the plug-in channel is used. Each
packet has its packet type as its root element and support fields as direct children of the root. For
example, INCIUPD, in its original format, looks like:

<INCIUPD>
 <id>1053</id>
 <latitude>38.85962</latitude>
 <longitude>-76.98861</longitude>
 <type>1</type>
 <address>303 Second Street </address>
 <location-x>0</location-x>
 <location-y>0</location-y>
 <time>2012-10-18 14:00:36</time>

</INCIUPD>

For information regarding how to develop Notification Engine plug-in .DLLs, see Appendix III:
Plug-In Architecture.

5.6 Custom formats
Notification Engine provides a default format for each of the message types and channels it
supports. However, you can override the default format by authoring a custom XSLT style sheet.
The original incident data from Notification Engine is in XML format. Notification use pre-
defined XSLT style sheets to translate the XML document to specific format for the delivery
channel. If a custom XSLT style sheet is defined, Notification Engine will use customized style
sheet instead of the default style sheet.

The following XML is an example of default packet format. Each packet is an XML segment with
the packet prefix opcode as root node, and all supported fields as direct children of the root node.

Default INCAUPE message - in original XML format

<INCAUPE>

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 26

Notification API Reference
ShotSpotter Notification Engine v2.6

<id>Incident Id (integer)</id>

 <distance>Incident distance from device (number)</distance>
 <heading>Calcuated device heading (degrees from North)</heading>

<heading-adjusted>Adjusted device heading (heading - device default heading)</heading-adjusted>
<elevation>Calcuated device elevation (degrees from Horizon)</elevation>
<elevation-adjusted>Adjusted device elevation (elevation - device default elevation)</elevation-

adjusted>
<zoom>NOT SUPPORTED</zoom>
<time>Incident time (yyyy-MM-dd HH:mm:ss)</time>

</INCAUPE>

The following XML shows how the packet looks like after XSLT transformation. The
transformed message is also an XML segment with <notifications> as root element and two
children <Packet> and <Check>. During delivery, only the text (or XML chunk) under
<Packet> is delivered to destination devices. The <Check> element is required by system for
checksum calculation.

So, when authoring your own custom XSLT, you should ensure the transformed message is in
the same format as shown below.

Default INCAUPE message - in default HTTP format

<notifications>

 <Packet>?prefix=INCAUPE&id=Incident Id (integer)&distance=Incident distance from device
(number)&heading=Calcuated device heading (degrees from North)&heading-adjusted=Adjusted device heading
(heading - device default heading)&elevation=Calcuated device elevation (degrees from Horizon)&elevation-
adjusted=Adjusted device elevation (elevation - device default elevation)&zoom=NOT SUPPORTED&time=Incident
time (yyyy-MM-dd HH:mm:ss)&checksum=check sum of the message</Packet>

<Check>all fields values concated as one single string</Check>
</notifications>

5.6.1 Sample of default XSLT – HTTP format
As you can see in above sections, Notification Engine requires that the default INCAUPE message
be transformed into following format:

<notifications>

<Packet>message text to be sent to devices.</Packet>
<Check>string used to calculate checksum. The string should be composed by concating all values of all

fields (without names, equal signs, and delimiters)</Check>
</notifications>

To achieve this transformation, Notification uses the following style sheet (for its HTTP channel):

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">
<notifications>

<Packet>
<xsl:call-template name="Packet" />

</Packet>
<Check>

<xsl:call-template name="Check" />
</Check>

</notifications>
</xsl:template>
<xsl:template match="INCAUPE" name="Packet">

 ?prefix=INCAUPE&id=
 <xsl:apply-templates select="INCAUPE/id" />

 &distance=

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 27

Notification API Reference
ShotSpotter Notification Engine v2.6

 <xsl:apply-templates select="INCAUPE/distance" />

&heading=
<xsl:apply-templates select="INCAUPE/heading" />
&heading-adjusted=
<xsl:apply-templates select="INCAUPE/heading-adjusted" /> &elevation=
<xsl:apply-templates select="INCAUPE/elevation" />
&elevation-adjusted=
<xsl:apply-templates select="INCAUPE/elevation-adjusted" />
&zoom=
<xsl:apply-templates select="INCAUPE/zoom" />
&time=

 <xsl:apply-templates select="INCAUPE/time" />
&checksum=[CHK]

</xsl:template>
<xsl:template match="INCAUPE" name="Check">

<xsl:apply-templates />
</xsl:template>

 </xsl:stylesheet>

Note that 1) the "Check" template is used to compose the checksum string. This template can be
copied to your style sheet without any change. 2) The string[CHK] is a place holder for check
sum. When the message is delivered, [CHK] will be replaced with the properly-calculated
checksum.

5.6.2 Composing Your Own XSLT
You can use the above example as template to compose your own style sheet. If you only want to
eliminate some fields to trim down the message, you can simply modify the "Packet" template
and remove unwanted fields. However, in some other cases, advanced XSLT authoring skills are
required. For instance, some devices only accept integer values, while some others only accept
hex number formats. The following is an example of a custom XSLT style sheet. It translates the
INCAUPE message to a 6-letter-long string, with the first 3 digits representing heading, a space,
and the last 2 digits representing elevation. (This happens to be the XSLT used to generate the
pre-defined RMS_INCAUPE format)

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">
<notifications>

<Packet>
<xsl:call-template name="Packet" />

</Packet>
<Check />

</notifications>
</xsl:template>
<xsl:template match="INCAUPE" name="Packet">

<xsl:apply-templates select="INCAUPE/heading" />

<xsl:apply-templates select="INCAUPE/elevation" /> </xsl:template>

<xsl:template match="INCAUPE/heading">
<xsl:value-of select="format-number(.,"000")" />

</xsl:template>
<xsl:template match="INCAUPE/elevation">

<xsl:value-of select="format-number(.,"00")" />
</xsl:template>

 </xsl:stylesheet>

Note that is the other (the other one is [CHK]) special token in Notification Engine.
Notification Engine will ensure it gets converted to a valid space (ASCII 32) when the messages
are sent.

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 28

Notification API Reference
ShotSpotter Notification Engine v2.6

5.6.3 An extended example
XSLT style sheets may get very complex and may require serious debugging. Try your style sheet
outside Notification Engine first before you plug it into Notification Engine. The following
example is the style sheet used to generate SONY_INCAUPE format:

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">
<notifications>

<Packet>
<xsl:call-template name="Packet" />

</Packet>
<Check>

<xsl:call-template name="Check" />
</Check>

</notifications>
</xsl:template>
<xsl:template match="INCAUPE" name="Packet">

 ptzf.cgi?AbsolutePanTilt=
<xsl:call-template name="sony_from_360">

<xsl:with-param name="sony_value" select="INCAUPE/pan" />
</xsl:call-template>

 ,
<xsl:call-template name="sony_from_360">

<xsl:with-param name="sony_value" select="360-INCAUPE/tilt" />
</xsl:call-template>
,24

</xsl:template>
<xsl:template match="INCAUPE" name="Check">

<xsl:apply-templates />
</xsl:template>
<xsl:variable name="hex_digits" select="'0123456789ABCDEFX'" />
<xsl:template name="sony_from_360">

<xsl:param name="sony_value" />
<xsl:choose>

<xsl:when test="$sony_value >=0 and $sony_value <=170">
<xsl:call-template name="dec_to_hex">

<xsl:with-param name="value" select="floor($sony_value *
2267 div 170)" />
</xsl:call-template>

</xsl:when>
<xsl:when test="$sony_value >=170 and $sony_value <=180">

<xsl:call-template name="dec_to_hex">
<xsl:with-param name="value" select="2267" />

</xsl:call-template>
</xsl:when>
<xsl:when test="$sony_value >180 and $sony_value <=190">

<xsl:call-template name="dec_to_hex">
<xsl:with-param name="value" select="63269" />

</xsl:call-template>
</xsl:when>
<xsl:when test="$sony_value >190 and $sony_value <=360">

<xsl:call-template name="dec_to_hex">
<xsl:with-param name="value" select="floor(($sony_value -

190) * 2267 div 170) + 63270" />
</xsl:call-template>

</xsl:when>
<xsl:otherwise>

<xsl:call-template name="dec_to_hex">
<xsl:with-param name="value" select="0" />

</xsl:call-template>
</xsl:otherwise>

</xsl:choose>
</xsl:template>
<xsl:template name="dec_to_hex">

<xsl:param name="value" />
<xsl:if test="$value > 15">

<xsl:call-template name="dec_to_hex">

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 29

Notification API Reference
ShotSpotter Notification Engine v2.6

<xsl:with-param name="value" select="floor($value div 16)"

/>
</xsl:call-template>

</xsl:if>
<xsl:value-of select="substring($hex_digits, ($value mod 16)+1, 1)" />

</xsl:template>
</xsl:stylesheet>

5.7 Additional Pre-Defined Formats
In additional to the default formats, some additional formats are predefined in Notification Engine
2.6. To use these formats, enter the corresponding Format Key into the Custom Format
XSLT field of your subscription. (Note: make sure subscribed packets match the selected pre-defined
format! For instance, the RMS_INCAUPE format only applies to INCAUPE packet, as the format
key makes clear.)

5.7.1 RMS_INCAUPE

This is a very short format with only 6 characters. The first 3 characters represent the heading
angle (in whole degrees, from 000 to 359). The fourth character is a space (ASCII code 32). The
last two characters represent elevation angle (in whole degrees, from 00 to 90).

Example: 312 46

5.7.2 SONY_INCAUPE

This format is designed specifically for SONY SNC-RZ25N/P cameras. It generates a
Pan/Tilt/Zoom/Focus command according to SONY’s specification and sends it to the
designated CGI program. The three values passed in the command are pan, tilt, and speed (24
being the maximum speed).

Example: ptzf.cgi?AbsolutePanTilt=0,0,24

Thus, the address of your subscription should be the URL where the ptzf.cgi is located (with
trailing \).

5.7.3 PDA_INCIUPD

This is a simplified INCAUPD format with only incident id, incident type, incident latitude and

incident longitude included. It doesn’t include a checksum.

Example: $INCIUPD,1027,1,38.85962,-76.98861

6 Subscription parameters for different packets
Different packets require different sets of parameters. These parameters need to be set correctly in your
subscriptions in order for Notification Engine to populate the fields of the output packets correctly. Some
protocols may support only one or several of all possible packets, and some specific hardware/software only
works with specific device type/subscription combinations.

You can change parameters of subscriptions at any time. A subscription can be individually enabled or
disabled as well. However, if the device is disabled, all its subscriptions are automatically disabled as well.

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 30

Notification API Reference
ShotSpotter Notification Engine v2.6

6.1 Subscription Properties - Common

Property Name Comment
Enabled Indicates if the subscription is enabled. If a subscription (or its

associated device) is disabled, no message is sent.
Channel Delivery protocol used for this delivery. HTTP channel means the

messages will be sent as HTTP GET request string, Telnet channel
means the message will be send as ASCII stream over a socket
connection.

Address Delivery address. For HTTP channels, this address should be the
web page that accepts the request string. The final request string
generated by Notification Engine will be of the format
[Address]?[Message string]. The message string consists a series of
name-value pairs, in the format of [Name]=[Value], separated by
&. For example, in the case of INCAUPE, assuming the subscription
is http://192.168.0.2/index.htm, the final request string
looks like: http://192.168.0.2/index.htm?prefix
=INCAUPE&id=701&distance=3747239.58885&heading
=73.39422&heading-adjusted=73.39422&elevation=
0.00005&elevation-adjusted=0.00005&zoom=1&
time=2012-09-13 14:27:43&checksum=06. For telnet, this
address should be [IP address]:[Port number].

Max Retry This value decides how many times the Notification Engine tries
to re-deliver the message upon previous falure. Also, you can set
up the "Max Delay" property, which decides the maximum time
length Notification Engine keeps re-delivering. The message will
be discarded upon expiration of either value

Retry Interval The time delay (in seconds) between delivery attempts
Max Delay The maximum time length Notification Engine should try to re-

deliver the message. See "Max Retry"
Require Response Indicate whether the Notification Engine should expect a response

from the device. The response message has to be in the format of
INCARSP, which is prefix=INCARSP&id=[Incident
ID]&flat=[Response Flag]. The [Incident ID] is the incident id
contained in the delivered message, and [Response Flag] can be A,
I, or R. If the response flag is "A" (accepted) or "I" (Ignored),
Notification Engine will consider the message delivered. If the
response flag is "R" (rejected), Notification Engine will try to re-
deliver the message till either Max Retry or Max Delay expires.

Custom Format XSLT File name of the custom XSLT style sheet. The path of custom
XSLT style sheets is defined in "Custom XSLT Location" field in
the "Settings" tab. The complete path Notification uses to access
the file is [Custom XSLT Location]\[Custom Format XSLT].

6.2 Subscription Properties – INCAUPE, INCAUPD, IALRT01, and IALRT02
Property Name Comment
Device Latitude Decimal Latitude of device. 6 digits after decimal point are

required for accurate results.

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 31

Notification API Reference
ShotSpotter Notification Engine v2.6

Device Longitude Decimal Longitude of device. 6 digits after decimal point are

required for accurate results.
Device Working Range Effective range of device. If the incident is detected out of

specified range (in meters), the device won't get notified. Enter -1
for infinite range.

Flip Heading Angle Indicates whether heading angle should be flipped (0=No, 1=yes).
Flip Elevation Angle Indicates whether elevation angle should be flipped (0=No,

1=yes).

6.3 Subscription Properties – INCAUPE and IALRT02 only
Property Name Comment

Device Default Heading The angle, in degrees, from North that the device faces at its
initial idle state.

Device Default Elevation The angle, in degrees, from horizon below that the device faces
at its initial ideal state.

Device Minimum Zoom Minimum zoom factor allowed by the device. This setting is
NOT supported in current version.

Device Maximum Zoom Maximum zoom factor allowed by the device. This setting is
NOT supported in current version.

Device Mounted Height The height of the device. In current version all incidents are
considered to happen at ground level. This value is used to
calculate the elevation angle of the device.

6.4 Subscription Properties – IALRT03 only
Property Name Comment

URL Root The root URI to be prepended to all URIs in the packet. The
URL is constructed from a base URL component (which
includes the protocol indicator, fully qualified domain name
(FQDN) of the host, and root path) and a variable URL
component which changes on an incident-by-incident basis.
This property sets the protocol base URL component and must
provide the protocol indicator (http:// or https://), FQDN
of the host, and whatever root (invariant) path is required. For
example, a base URL might be:

https://us1.shotspotter.net/City/CityAudio/

6.5 Subscription Properties – INDAUPE (in addition to INCAUPE)
Property Name Comment

Device Location Feed This property replaces “Device Default Heading”, “Device
Latitude” and “Device Longitude” properties in INCAUPE.
Instead of static values, device location and heading will be read
from designated sensor specified in this property.

Send Only When Online When this property is set to Yes (1), the packet is only sent
when the sensor status is Online.

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 32

Notification API Reference
ShotSpotter Notification Engine v2.6

Send Only When Not Down When this property is set to Yes (1), the packet is only sent

when the sensor status is not Down.

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 33

Notification API Reference
ShotSpotter Notification Engine v2.6

Appendix I: Glossary

Alert Console Software used by ShotSpotter Flex customers to learn about
new incidents in near real-time. The Alert Console is
delivered as an out-of-browser (OOB) Silverlight
application.

API Application Programming Interface, a protocol intended to
be used as an interface by software components to
communicate with each other.

C2 Command and Control

Channel The delivery mechanism of a notification packet.
Notification Engine 2.6 supports HTTP GET (query
string), HTTP POST (XML payload), Socket, Google
Earth, and customer plug-in channels.

Classification The determination of the causative nature of an acoustic
event, e.g. Multiple Gunshots, Fireworks, or Transformer
Explosion.

Client Software SST’s own user interface software, available in two forms:
the PSC (Public Safety Console) and the cloud-based Flex
Alert Console for real-time notifications and Incident &
Reports Portal for investigation, analysis and reporting.

COP Common Operating Picture, a system designed to
integrated data from disparate sensor, surveillance, or
tracking systems and represent them in a unified view,
commonly graphically displayed on a map.

Database The historical archive of ShotSpotter incidents maintained
by the ShotSpotter Server.

Device An endpoint which receives one or more packet types to
which it is subscribed. Device information is stored in the
ShotSpotter data, along with subscription details. Devices
can represent real-world recipients such as surveillance
cameras or computers, or virtual entities such as server
software endpoints, aggregators, etc.

Device Type Device Types are pre-defined groups that into which you
can put one or more Devices. Device Type does not affect
how the notifications are delivered; it is an organization aid
only. The pre-defined Device Types are Surveillance
Camera, Computer, Google Earth, and PDA.

Final Classification The classification (type) of an incident selected after a
Reviewer has reviewed an incident

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 34

Notification API Reference
ShotSpotter Notification Engine v2.6

Final Location The optimized incident location calculated in real-time by

the ShotSpotter server software

Formats The data presentation used by a given subscription. Certain
channels are limited to certain formats. For example,
HTTP GET will only provide data in the ASCII stream
format. Formats available are Query String (key=value),
XML, and ASCII stream.

Generation I The first generation of Notification API packet types,
introduced in 2006, and now formally deprecated.

Generation II The current generation of Notification API packet types,
introduced with Version 2.6, and intended for future
support and expansion.

Impulsive noise An impulse noise (adj. "impulsive noise") is one which is
both sharp (goes from quiet to loud almost instantaneously)
and commonly wide band in nature. The general category
includes explosions, clicks, pops, and other such noises.

Incident A sequence of one or more gunfire sounds (or other loud
noises) detected by either a ShotSpotter OnSite or
ShotSpotter Flex sensor network. An incident is
commonly associated with the shots fired from a single
weapon, but occasionally involves multiple weapons fired
near each other within a few seconds. At times, an incident
may involve a sufficient number of rounds or continue for a
long enough period of time that multiple incidents will be
generated, each covering a different portion of the
shooting.

Incident & Reports Portal Software used by ShotSpotter Flex customers to search for
prior incidents, investigate individual incident timelines or
assess trends and patterns. Search results can be exported
for analysis in third-party applications. The Incidents &
Reports Portal is delivered as an out-of-browser (OOB)
Silverlight application.

Incident Review The act of listening to audio from a given incident,
reviewing other situational information (e.g. geography,
other recent incidents, etc.), and appending such
information to the incident record for use by subsequent
users of the alert

Incident Review Center The 24x7x365 monitoring facility maintained by SST, Inc.
which reviews customer incidents for all ShotSpotter Flex
and some ShotSpotter OnSite customers. The facility is
located in Newark, CA.

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 35

Notification API Reference
ShotSpotter Notification Engine v2.6

Initial (Machine) Classification The computer-generated initial classification of an incident,

delivered as part of a raw (unreviewed) alert. The Machine
Classifier implements learning algorithms and subsequent
reclassification may improve its initial classification
accuracy.

Initial Location The first location calculation performed by the ShotSpotter
server, commonly not reported because it is replaced within
1 second by the final location result

Multilateration A term originating in navigation, multilateration is a
technique based on the measurement of the difference in
distance to two or more stations at known locations that
broadcast signals at known times. Unlike measurements of
absolute distance or angle, measuring the difference in
distance results in an infinite number of locations that satisfy
the measurement. When these possible locations are
plotted, they form a hyperbolic curve. To locate the exact
location along that curve, a second measurement is taken to
a different pair of stations to produce a second curve, which
intersects with the first. When the two are compared, a
small number of possible locations are revealed, producing a
“fix.”

Muzzle Blast The expulsion of gas from the end of the barrel of a gun
after it has been fired which creates a high amplitude, wide-
band pressure wave (commonly called the "bang" of the
gun firing)

Notification The act of raising an alert as a result of an incident
detection or subsequent updates to its stats.

Notification API The Application Programming Interface defining the
characteristics of ShotSpotter incident alert notifications.

Notification Engine Client-side software which performs actual notifications
consistent with the Notification API. Notifications take
the form of message packets.

[Message] Packet The actual content of a notification, sent from a
Notification Engine instance to one endpoint.

Parameters Specific characteristics of certain endpoints which define
them specifically. For example, there may be many
endpoints identified as “camera,” but each will have
different latitude and longitude parameters. Parameters are
often used to customize a message packet for a specific
endpoint (for example, to point a camera in the correct
direction relative to that specific camera’s location).

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 36

Notification API Reference
ShotSpotter Notification Engine v2.6

Point Protection The protection of a relatively small area, such as circle of

100 or 200 meters radius around a given point. Contrast
Wide-Area Acoustic surveillance

Raw alert See Reviewed versus Unreviewed ("Raw") Alerts above

Queue For each attached Device, Notification Engine maintains a
message queue to cache packets. The message queue
ensures that 1) packets are delivered in the order of
occurrence and 2) no packets are lost.

Reclassification The act of changing the type of an incident, often
performed by an Incident Reviewer, after listening to the
audio recording or otherwise learning of an incident's true
nature

Reviewed Alert See Reviewed versus Unreviewed ("Raw") Alerts above

Reviewed Alert Service The 24x7x365 monitoring service provided by SST, Inc. to
its Flex customers and certain OnSite customers. The
Reviewed Alert Service is staffed by incident review
specialists who have heard thousands of gunfire and non-
gunfire training incidents.

Sensor The edge device, deployed by SST, Inc., comprising a
microphone and on-board electronics to process sounds
heard by the microphone. When the sensor triggers on an
impulsive noise, it transmits a small datagram to the server
detailing certain characteristics of the noise, including its
sharpness and amplitude. In contrast to other sensor-based
surveillance technologies, ShotSpotter sensors are only part
of the overall solution. The ShotSpotter server coordinates
the data streams from multiple sensors, aggregates the data,
disambiguates and optimizes solutions, and presents a single,
unified view of each individual incident. Such unified
views commonly reflect the input of anywhere from two
(2) to twenty (20) sensors.

Sensor Network A network of collaborative sensors deployed over a wide
area, possibly many square miles, which transmit data to a
ShotSpotter server. No individual sensor “locates” a
gunfire incident, but rather many sensors will often trigger
in response to a single incident. The ShotSpotter server
software is solely responsible for managing these multiple
triggers and transforming multiple input streams into a
single, unified view of the acoustic event, called a gunfire
incident.

Server ShotSpotter server software which aggregates acoustic
impulse data from many sensors, correlates and

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 37

Notification API Reference
ShotSpotter Notification Engine v2.6

disambiguates the signals, and produces a single unified
view of individual gunfire incidents in near realtime.

ShotSpotter Flex The subscription-based offering of ShotSpotter technology
with a cloud-based infrastructure and with no up-front
capital investment required from customers. Compare
ShotSpotter OnSite.

ShotSpotter Onsite A ShotSpotter system sold as capital equipment (not on a
subscription basis). Compare ShotSpotter Flex.

Subscription The binding of a specific Device (endpoint) to a specific
packet (message) type. A Device may subscribe to one or
more packet types, and a given packet type may be
transmitted to one or more devices.

Triangulation the process of determining the location of a point by
measuring angles to it from known points at either end of a
fixed baseline, rather than measuring distances to the point
directly (trilateration). The point can then be fixed as the
third point of a triangle with one known side and two
known angles

Unreviewed (Raw) Alert See Reviewed versus Unreviewed ("Raw") Alerts above

Wide-Area Acoustic surveillance the surveillance of a large area, commonly many square
miles, for specific acoustic events, e.g. gunfire or explosions

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 38

Notification API Reference
ShotSpotter Notification Engine v2.6

Appendix II: Checksum Calculation Algorithm

1. HTTP Protocol

When calculating checksum, field name, equal signs (=), field delimiters (&), and prefix field value
are EXCLUDED in calculation. Following algorithm in C# illustrates how the algorithm works.
The input variable s is the packet body. For example, for packet

prefix=INCAUPD&id=1234&distance=120.00&heading=315.68&checks

um=0E

the string used for checksum calculation equals

1234120.00315.68

2. Socket Protocol

 When calculating checksum, command prefix, command ending, commas, and checksum
indicator (the * sign) are EXCLUDED in calculation. Following algorithm in C# illustrates how
the algorithm works. The input variable s is the packet body. For example, for packet

$INCAUPD,1234,120.00,315.68*0E\r\n

the string used for checksum calculation equals

1234120.00315.68

Exclusion of delimiters and prefixes ensures that the same packet will get same checksum
regardless the protocol used for transportation. However, if customized formats are used, the
packet may have a different checksum due to variance in number formats and presented fields.
The following code (in C#) demonstrates the checksum algorithm. We picked a simple algorithm
so it can be easily implemented by customers when necessary.

byte[] outputData = ASCIIEncoding.ASCII.GetBytes(s);
byte val = outputData [0];

for (int i = 1; i < outputData.Length; i++)
{

 val ^= outputData [i];
}
string ret = commandPrefix + s
 + "*" + String.Format("{0:X}", (val & 0xF0) >> 4)
 + String.Format("{0:X}", val & 0x0F) + "\r\n";

Notification API Reference^ShotSpotter Notification API Version 2.6.docx 39

Notification API Reference
ShotSpotter Notification Engine v2.6

Appendix III: Plug-In Architecture
You’ll need to author a .Net assembly that implements the IProtocolBase interface defined in
NEPluginInterface.dll, which is part of Notification Engine installation. The
IProtocolBase only contains one method: DeliverNotification(). This method will be
called whenever the Notification Engine attempts to send a packet to the device.

The method has 8 parameters, as detailed as following:

 string address

The address contains the path to your assembly. Your assembly is responsible to maintain actual
device address.

 string body

Formatted packet message. This is what you send to the device.

 bool need_response

Indicate if the system requires a response. If this flag is true, you should send back INCARSP
packet once the packet is accepted.

 int max_delay

Maximum delay, in seconds, is allowed. The packet should be discarded if it’s not been sent when
maximum delay expires.

 int max_retry

Maximum number of attempts allowed. Your code shouldn’t try more than specified times to
send the packet.

 int retry_interval

Interval between two delivery attempts.

 ref string message

A string message you’d like to return. This message will be saved to Notification Engine log file
and displayed on Notification Engine log screen.

 ref string exp

Exception stack trace, if there’s an exception.

Compile your assembly and enter the path to this assembly as the device address. This assembly is
dynamically loaded during message dispatch and will be unloaded afterwards.

