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Project goals 

The goals of this NWACC grant are to develop an 802.11 b/g wireless interface for the 
Montana State University mobile robot, to install the complementary wireless infrastructure in our 
teaching labs, and to provide a platform that can be used to enhance the curriculum of our 
microcomputer software engineering course, EE371— Microprocessor Hardware and Software 
Systems—by incorporating robot-centered instruction. This will enable the students to program and 
control the mobile robot in real time over the wireless network and to measure outcomes in real time. 
These additions will be leveraged by other courses in communications and control systems in the 
future.  

The mobile robot is currently used in our basic first year introductory engineering course, 
EE101, where students learn engineering skills by constructing and testing the roving robots.   Our 
intention is to actively engage promising young engineering students in the fields of electronics, 
robotics and embedded computer systems—areas of ever-increasing importance to this nation's goals 
in communications, transportation, and space exploration.  Because each of our students will now have 
a mobile and programmable robot, we can capitalize on their experience by utilizing the robots as a 
teaching platform in subsequent courses.  Specifically, we are incorporating wireless communication 
technology between the robots and laptop or tablet computers to support student learning in 
communications, embedded systems, and control. Our academic leadership effort is producing 
mechanical drawings, schematics, laboratory experiments, and supplementary materials sufficient to 
allow other universities to adapt the course to their own needs. Further details on the EE101 robot 
project including lab manuals, class assignments and assembly guides are posted on our Web site 
http://www.coe.montana.edu/ee/rmaher/ee101/ecebot/. 

 
Summary of accomplishments 

!" Senior design team organized and project initiated: Three Electrical and Computer Engineering 
students (Brad Benjamin, Carson Drew, Chris Stephani) participated in this project and 
developed the prototype robot wireless interface as an assignment in their senior design 
capstone project course, EE391/EE492. (April – December 2005) 

 
!" Summer internship: One student (Brad Benjamin) participated in a summer internship 

assignment under the direction of the PI to determine project requirements, develop a initial 
design, select components and develop the project web site. (June-August 2005 

 
!" Initial hardware design: The initial functional design for the robot wireless interface was 

completed and was successfully implemented using a commercially available development 
board that provided the required functionality. This design was used as the basis for the detailed 
hardware prototype. (November 2005). 
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!" Initial software design. The initial software to program the wireless board and control the robot 
over the wireless network was successfully completed and tested. (November 2005). 

 
!" Demonstration using campus wireless network: The robot equipped with the development 

board implementation of the wireless board was successfully demonstrated using the MSU 
campus wireless network at the Engineering Senior Design Fair. (December 2005) 

 
!" Prototype hardware design: The first hardware prototype of the wireless board that meets the 

robot form factor was completed in December 2005 by the first senior design team (Benjamin, 
Drew and Stephani).  A second EE391/EE492 student team (Ivan VanDessel, Tim O’Neil, 
Conrad Donavan) began work in Fall 2005 and tested the  prototype board. (January 2006). 

 
!" Final hardware design: The final hardware design was completed and validated by the second 

senior design project team (VanDessel, O’Neil, Donavan). (April 2006). 
 

!" Final software design: The final robot control software and GUI were completed and 
demonstrated by the second senior design team (VanDessel, O’Neil, Donavan). April 2006). 

 
!" First instructional use of wireless robot: The wireless robot is being used by a third 

EE391/EE492 senior design team (Daniel Colson, Andrew Edwards, Loo Chee Yang, Ali 
Alniemi) to program and test the robot running a maze conforming the IEEE MicroMouse 
robotic navigation competition. (February 2006 - December 2006). 

 
!" Operational wireless robots: Components were acquired to provide twelve wireless robots for 

instructional use in Fall 2006. 
 

!" Project schedule: The project was completed on schedule. 
 

!" Project budget: The project was completed with the allocated budget. 
 

!" Project web site: The web site for the project was developed and made available August12, 
2005. The link is  http://www.coe.montana.edu/ee/seniordesign/archive/fl05/robot_radio/ 
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Senior design teams 
     This project was performed largely by Electrical and Computer Engineering (ECE) undergraduate 
students as assignments for the capstone engineering design course EE391/EE492. Three project 
teams, consisting of a total of nine students, participated in the project. Additional, one undergraduate 
worked on the project in the summer 2005 as an undergraduate research assistant. 
     Three Electrical and Computer Engineering students (Brad Benjamin, Carson Drew, Chris Stefani) 
were selected to participate in the initial phase of this project to develop the robot wireless interface as 
an assignment in their senior design capstone project course, EE391/EE492. The team was formed in 
spring 2005 and completed a preliminary assessment of the functional components for the project. 
These were presented as a deliverable for EE391. The basic concept of using a Wi-Fi wireless link was 
explored and the feasibility of interconnecting the 68HC912C32 microcontroller on the robot with a 
second processor controlling a radio interface was demonstrated. Figure 1shows the project display 
used at the ECE department design fair held in Spring 2005. 
 

Figure 1. Senior design project 

                  
Figure 1. Spring 2005 Wireless Robot Project Engineering Design Fair 

 
One member of this team, Brad Benjamin, worked on the project over the summer as a research 
assistant, funded by the NWACC grant. Brad developed CAN bus software, as well as the initial 
website design, described below, The team continued work on the project in Fall 2005 and completed a 
working prototype of the wireless system, using a commercially available development board, and 
successfully integrated it with the robot. .Figure 2 shows a proof of concept example of the robot with 
the prototype wireless module added as a daughter board. This initial effort demonstrated the 
feasibility of adding a wireless interface to the robot and also identified several design issues that 
needed to be addressed to assure that the additional functionality could be incorporated without 
disturbing the basic robot operation and control circuits.  
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Figure 2. Robot with radio control module 

                                                             
 

 The second senior design team, consisting of Ivan VanDessel, Tim O’Neil, Conrad Donavan 
continued the project beginning in Fall 2005. Their primary task was to develop a test a printed circuit 
board implementation of the wireless system and integrate it to the robot. This team began with a 
design proposed by the first team, implemented and tested it, and used the results to design and build a 
second generation wireless printed circuit board. The first board completed is shown in figure 3. 
 

 
Figure 3. First generation wireless printed circuit board, which attaches to the robot as a daughter board. 

 
 The third senior design team, consisting of Daniel Colson, Andrew Edwards, Loo Chee Yang, 
Ali Alniemi, has begun work with the wireless robot to develop navigation and maze-solving 
capability, using the wireless communications functionality and programmability of the CSM12C32. 
The team began work in January 2006. This will be the first operational application of the wireless 
robot. 
 
Two processor design  

 Selection of a separate processor to handle communications functions was a key design 
decision in the early phase of the project. It was more effective to run the robot control code, resident 
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in the primary processor, as a separate program, and to put all the communications and data 
management functions in a second program running on a separate processor. This enabled the primary 
robot motor control functions to be implemented without interruption. Decoupling these functions 
assured that further development of the robot motor drive control program, planned for the coming 
year, could proceed independently. 

 
Figure 4 Motorola CSM12C32 

                                              
A second key design decision involved the selection of the second processor. Plans were 

already underway to use the Motorola CSM12C32 module in the curriculum of our microcomputer 
software engineering course, EE371 Microprocessor Hardware and Software Systems to incorporate 
robot-centered instruction. This module has extensive input/output and processing capability and the 
team, after careful evaluation and prototyping, elected to use it for the wireless communications and 
data management functions.  The CSM board, shown in figure 3, provides serial RS232 and Controller 
Area Network (CAN) interfaces as well as 32K Byte Flash EEPROM, 2K Bytes RAM,  31 I/O lines 
and a rich variety of other features listed below: 
! Timer/PWM 
! SCI and SPI Communications Ports 
! Key Wake-up Port 
! BDM DEBUG Port 
! CAN 2.0 Module 
! Analog Comparator 
! 8 Mhz Internal Bus Operation Default 
! 25 MHz Bus Operation using internal PLL 
! +3.3VDC to +5VDC operation 
! 40 pin connector provides access to most MCU I/O signals 
! Power Input Selection Jumper 
! On-board, regulated +5V power supply 
! Optional power input from Connector J1 
! Optional power output through Connector J1 
! 16 MHz Ceramic Resonator 
! RS-232 Serial Port w/ DB9 Connector 
! 8-Ch, 10-bit, Analog Comparator with full rail-to-rail operation and external trigger capability 
! 8-Channel, 16-bit Timer with Input Capture, Output Compare, and PWM capabilities 
! 40-pin MCU I/O Connector 
! 2.0mm Barrel Connector Power Input 
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! DEBUG BDM Connector 
! DB9 Communications Connector 
 

Physical and electrical interfaces enabling the CSM module to inter-work with the robot were 
identified after consultation with Dr. Fred Cady, instructor for EE371, and Dr. Rob Maher, responsible 
for the ECE robot development project. To avoid major modifications to the basic robot, the best 
approach was to develop a daughter board incorporating the CSM and additional components, which 
mounts on the robot, sharing power from the primary batteries.  
 
Inter-processor communication 

A third key design issue was the selection of the communication path between the robot 
processor and the CSM module. While the CSM offers a rich set of input/output options, the 
68HC912C32 microcontroller on the robot has a limited set of I/O pins (forty), must of which are 
already dedicated to primary robot operations functions. Several options were explored resulting in the 
decision to use the CAN bus as the communication path between the CSM and robot 68HC912C32 
microcontroller. The advantages of this approach are that the basic I/O architecture of the robot is not 
disturbed, as the CAN interface is not used for the robot control, and that implementation of the CAN 
functionality offers the potential for adding other features to the robot in the future, such as additional 
sensors, a GPS receiver, and actuators, with minimal redesign or programming.  

The CAN bus is a well established technology, developed initially to automotive and other 
control applications is well supported by microcontroller manufacturers and component vendors.  The 
bus provides a high degree of reliability and flexibility, Key features include 

!" High-integrity serial data communications bus for real-time control applications  
!" Data rates of up to 1 Mega bits per second  
!" Excellent error detection and confinement capabilities  
!" Being used in many other industrial automation and control applications  
!" OSI session layer known as Time Triggered CAN (TTCAN)  
!" Documented in ISO 11898 (for applications up to 1 Mega bits per second) and ISO 

11519 (for applications up to 125 K bits per second)  

Data messages transmitted from any node on a CAN bus do not contain addresses of either the 
transmitting node, or of any intended receiving node. Instead, the content of the message (e.g. wheel 
revolutions per second, location, bumper actuated, robot stopped, etc.) is labeled by an identifier that is 
unique throughout the network. All other nodes on the network receive the message and each performs 
an acceptance test on the identifier to determine if the message, and thus its content, is relevant to that 
particular node. If the message is relevant, it will be processed; otherwise it is ignored. The unique 
identifier also determines the priority of the message. The lower the numerical value of the identifier, 
the higher the priority. In situations where two or more nodes attempt to transmit at the same time, a 
non-destructive arbitration technique guarantees that messages are sent in order of priority and that no 
messages are lost. CAN uses Non Return to Zero (NRZ) encoding (with bit-stuffing) for data 
communication on a differential two wire bus. The use of NRZ encoding ensures compact messages 
with a minimum number of transitions and high resilience to external disturbance. The two-wire bus is 
usually a twisted pair (shielded or unshielded). CAN will operate in extremely harsh environments and 
the extensive error checking mechanisms ensure that any transmission errors are detected. By using the 
CAN bus the robot microcontroller can potentially connect to 10 or more devices while only requiring 
1 input line, assuring future growth without additional I/O pins. 

The content-oriented nature of the CAN messaging scheme delivers a high degree of flexibility 
for system configuration. New nodes that are purely receivers, and which need only existing 
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transmitted data, can be added to the network without the need to make any changes to existing 
hardware or software. Measurements needed by several controllers can be transmitted via the bus, 
thereby removing the need for each controller to have its own individual sensor. To determine the 
priority of messages, CAN uses the established method known as Carrier Sense, Multiple Access with 
Collision Detect (CSMA/CD) but with the enhanced capability of non-destructive bitwise arbitration to 
provide collision resolution, and to deliver maximum use of the available capacity of the bus. Non-
destructive bitwise arbitration provides bus allocation on the basis of need, and delivers efficiency 
benefits that can not be gained from either fixed time schedule allocation (e.g. Token ring) or 
destructive bus allocation (e.g. Ethernet.) With only the maximum capacity of the bus as a speed 
limiting factor, the CAN bus will not collapse or lock up. Outstanding transmission requests are dealt 
with in their order of priority, with minimum delay, and with maximum possible utilization of the 
available capacity of the bus. 

As CAN interfaces are included in the CSM module and the robot 68HC912C32 
microcontroller, these features make CAN an excellent design choice. A transceiver is needed to 
interface a CAN enabled device to the bus. The Freescale MCP2551 high-speed transceiver was 
selected, as its small size and low power consumption make it ideal for the robot application. Other 
key features of this chip include 
Supports 1 Mb/s operation 
• Implements ISO-11898 standard physical layer requirements 
• Suitable for 12V and 24V systems 
• Externally-controlled slope for reduced RFI emissions 
• Detection of ground fault (permanent dominant) on TXD input 
• Power-on reset and voltage brown-out protection 
• An un-powered node or brown-out event will not disturb the CAN bus 
• Low current standby operation 
• Protection against damage due to short-circuit conditions (positive or negative battery voltage) 
• Protection against high-voltage transients 
• Automatic thermal shutdown protection 
• Up to 112 nodes can be connected 
• High noise immunity due to differential bus implementation 
 

 
Further information on the architecture and use of the CAN bus in provided in Appendix 1, 

written by Brad Benjamin to acquaint  students in EE371 and other courses with the key features in the 
bus implementation. 

 
Wireless interface 
 The goal of the project is to enable communication with the robot using an 802.11 (W-Fi) 
wireless link. The initial phase of the project explored the availability of Wi-Fi chip sets, embeddable 
modules and packaged, self-contained transceivers. The first feasibility demonstration was 
accomplished using an embeddable module mounted on a development board. This approach 
facilitated interfacing to the CSM as an RS-232 port was available on both modules.  However, the 
cost of the embeddable wireless module, in the range of $200, made this approach unattractive. 
Furthermore, the size of the unit, with its RS232 interface, was not acceptable. 
 Alternative wireless products were examined and a more standard, and widely available 
wireless network interface card (NIC) in a PCMCIA configuration was selected. This approach offers 
several advantages. First, WiFi PCMCIA NICs are widely available at extremely attractive prices – as 
low as $10. Second, the modularity affords the option of plugging the wireless NIC in as needed, rather 
than having it permanently attached to the robot or daughterboard. A PCMCIA compatible wireless 
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interface module with a serial TTL interface that could easily be interfaced to the CSM was chosen, as 
the module uses  TTL rather than RS232 lowers the cost and power consumption.  The Sollae EZL-80, 
shown in figure 5 was selected. This device runs on 3.3V and draws 10 mA of current.  The serial level 
is TTL and it supports a wide range of data transfer protocols, including UDP, TCP, and IP. Having a 
built in IP protocol stack on the EZL-80 is a major advantage as it obviates the need to develop this 
data handling capability on the CSM module. Hence the CSM puts data into IP packets and transfers 
the packets transparently to the EZL-80, as though it were communicating with an external node. This 
makes the wireless link “invisible” to the robot.  
                                 

Figure 5 EZL-80 wireless adapter 

                                          
 
 
 

A further advantage of the EZL-80 is that the PCMCIA card socket is separate from the circuit 
board. This allows a physical layout where the wireless PCMCIA NIC can be located more 
conveniently on the daughter board. Figure 6 shows the overall relationship between these 
components. 

 

 
Figure 6 EZL 80 and related components 

 
Figure 6 also shows an 802.11 enabled laptop, which connects to the robot using the MSU campus 
wireless network, as described in more detail below. The campus wireless network is interconnected to 
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the campus LAN, enabling students to use PCs or laptops on the campus network to communicate over 
the wireless link to the robot. 
 
Wireless system implementation 
 The wireless interface was first implemented as a functional prototype of the selected design 
using a commercially available EZL-80 development board and other selected components. This 
approach enabled a full end-to-end demonstration of control of the robot over a wireless network 
without requiring the development of a custom printed circuit board. This facilitated rapid and low-
cost debugging. Figure 7 shows the robot with the first prototype wireless daughter board installed. 
 

 
Figure 7. Robot with initial functional prototype wireless board installed. 

 
This configuration was used to debug the hardware and software and led to the initial wireless interface 
printed circuit board design.   
 A printed circuit board (PCB) was then designed consisting of the EZL-80, PCMCIA socket, 
CSM module and CAN transceiver shown functionally in figure 6, to interface to the robot as a 
daughter board. The board also has a power regulator to convert 5 volts obtained from the robot power 
regulator to 3.3V needed for the EZL-80. A CAN transceiver was added to the robot board to enable 
the use of the CAN bus for inter-processor communication. This board design was completed in 
December 2005 and tested by the second senior project design team. The daughter board layout is 
shown if figure 8. 
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Figure 8. Mechanical layout of first wireless daughter board 
 
 Figure 9 shows the first PCB implementation with the PCMCIA card, EZL-80 and CSM modules 
installed. This board was successfully tested with the robot and several deficiencies were identified, 
leading to a more compact design for the final board. 
 

 
Figure 9. First generation wireless daughter board with PCMCIA card, EZL-80 and CSM modules installed. 

 
 The final version of the wireless daughter board was designed to fit the robot more compactly 
and included several wiring changes to support an on/off switch and LEDs to indicate data flow and 
other functions. The mechanical layout is shown in figure 10. Further electrical details including the 
circuit design are given in Appendix 2. 
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Figure 10. Mechanical layout of final wireless daughter board. 

 
Figure 11 shows the electrical layout for the final version of the wireless daughter board The 
components to assemble twelve daughter boards for use in EE371 in Fall 2006 have been purchased 
and will be installed on the boards during summer 2006. 

 
 

Figure 11. Electrical layout of final wireless daughter board 
 
Software design 
There were software requirements for the PC, the CSM-12C32, and the robot microcontroller.  A 
modular approach was used to develop each piece of software, enabling effective debugging. Figure 12 
shows the software modules and data flow. 
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Figure 12. Functional description of data flow and software design. 

 
The existing code on the ECE Robot was not changed in any way.  For this project, a ‘Mode 8’ 

was added to enable use of the CAN bus..  This mode is basically interrupt-driven from the CAN 
transmission system.  If the robot receives a command, it will execute motor control changes by calling 
subroutines.  If an unrecognized message is received, the robot will stop.  It also transmits a signal 
when a bumper is pressed. 

The software module for the CSM and EZL-80 serial link was constructed to use the SCI 
interface on the CSM to communicate with the built-in serial capability of the EZL-80.  The CSM is 
also driven entirely by interrupts.  A CAN interrupt will trigger a serial transmission to the EZL-80, 
effectively forwarding anything it receives from the robot.  A serial transmission triggers the CSM to 
decode the motor control messages and send the correct values to the robot on the CAN bus.   

The software for the PC used to control and communicate with the wireless robot was 
developed using Visual Basic 6.0 (VB6). VB6 allows for pre-built controls to be implemented easily 
and graphical user interface is extremely simple as well.  The Winsock control was used to create a 
TCP Client that can connect to the EZL-80.  The PC software can connect to the EZL-80 if the EZL-80 
is in T2S mode.  It can also accept a connection when it is requested by the EZL-80 in COD mode. A 
GUI was developed for the PC to allow the user to send commands to the robot and send and transmit 
data. The GUI is shown in figure 13. More information about the EZL-80 modes can be found in the 
PC software documentation in appendix 3. 

 
Figure 13. GUI used to control robot, send and receive data over wireless network. 
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Wireless robot demonstrations and use 
The first full demonstration of the wireless robot was carried out using this prototype at the 

MSU volley ball game in October 2005, where the ECE robots were featured as part of the halftime 
activities. The Initial phase of the project was completed in December 2005 and demonstrated at the 
Engineering Design Fair, shown in figure 14. 

 

 
 

Figure 14. Wireless project featured at the Engineering Design Fair, December 2005. 
 
 

 A user manual, providing step-by-step instructions on configuring and using the robot with the 
wireless interface was written for use by students in EE371 and other courses. The instructions are 
attached as appendix 4. 

The first operational use of the wireless robot began in Spring 2006, with the initiation of a new 
senior design project to add position location sensors and navigation software to the robot. This project 
will use the wireless interface to send data from the robot to a PC where the robot location, trajectory 
and maze pattern will be plotted. The navigation and maze solving functionality is being designed to 
enable students to enter the IEEE MicroMouse robot contest. The Montana section of the IEEE has 
purchased a maze for student use. 

Plans to use the wireless robots in the EE371 curriculum are under way. The robot was 
designed with the CSM module already in use in EE371, enabling a common microcontroller hardware 
and software environment. Twelve robot wireless daughter boards will be ready for use in the EE371 
microcontroller programming lab in Fall 2006.  

 
Interface to the MSU campus wireless network 

In summer 2005 a Wi-Fi network was installed throughout the College of Engineering 
buildings complex for instructional use. The network coverage includes all classrooms and student labs 
and is interfaced, through a gateway, to the campus wired LAN. Authentication, using a web interface 
and entry of a login and password is usually required for wireless devices to access the campus 
network. The student team worked with the campus Information Technology Center to develop a 
procedure for registering the wireless robots to the campus network without using the normal login 
method. This enables students to control their robots using any computer on the campus network using 
the wireless infrastructure. 
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Project budget 
 $10,000 has been expended on this project. Principle expenditures have been 

!" Summer internship: $3152 
!" Faculty supervision: $2400 
!" Benefits: $600.39 
!" Materials: $3847.61 
A detailed financial report is provided in appendix 5. 
 

Project web site 
 The project web site was established in August 2005 and has bee updated as the project 
proceeded. Figure 15 shows a screen shot of the web page, which can be found at 
http://www.coe.montana.edu/ee/seniordesign/archive/fl05/robot_radio/. The web page contains an 
overall project description, as well as technical details and links to pertinent material include 
specifications, data sheets, and background information. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15. Home page of project web page 
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Appendix 1. 
 
CAN (Controller Area Network) Documentation 

for groups using CAN with the ECE robot with the Motorola HCS12 processor 
 
Why is CAN important to future groups dealing with the robot? 
 
Connecting the ECE processor to a single device would be simple.  A simple serial communication 
standard would suffice.  However, with many ECE senior design projects dealing with the robot, many 
devices need to interface with the processor.  These projects will build on previous technology to add 
features and improve older features.  However, the processor cannot simply perform serial 
communication with multiple devices as it has limited I/O pins available.  CAN is a standard that 
offers a solution to this problem.  CAN only uses two pins (TX and RX) to connect a device to the 
CAN bus.  The features of CAN allow multiple devices to connect to that CAN bus without worry for 
loss of data.  This makes it an ideal choice for the ECE robot projects. 
 
General CAN description 
 
Data messages transmitted from any node on a CAN bus do not contain addresses of either the 
transmitting node, or of any intended receiving node. Instead, the content of the message (e.g. wheel 
revolutions per second, location, bumper actuated, robot stopped, etc.) is labeled by an identifier that is 
unique throughout the network. All other nodes on the network receive the message and each performs 
an acceptance test on the identifier to determine if the message, and thus its content, is relevant to that 
particular node. If the message is relevant, it will be processed; otherwise it is ignored. The unique 
identifier also determines the priority of the message. The lower the numerical value of the identifier, 
the higher the priority. In situations where two or more nodes attempt to transmit at the same time, a 
non-destructive arbitration technique guarantees that messages are sent in order of priority and that no 
messages are lost.  Identifiers for small systems are usually 11 bits.  If there were enough messages to 
require a greater number, messages can be sent in 29-bit identifier mode. 
 
CAN works because each transceiver can be put into dominant or recessive state by the hardware it is 
connected to.  If three devices wanted to send a message simultaneously, they couldn’t all put the 
message on the data bus at the same time – it would be destroyed.  There is a type of acknowledge 
system where it reads the state of the bus to determine if another processor has control of it.  A 
dominant state is characterized by a certain difference in voltage between the bus lines.  A recessive 
state means that that voltage difference is low, and when the transceiver sees that, the processor is 
allowed to put its message onto the bus.  When multiple processors see a recessive bus state, it uses the 
priority of each message to determine which is allowed to send the bus into a dominant state.  Because 
the bus line in the robot system is so short, there is not much propagation delay so this is not an issue 
to worry about. 
 
Connecting multiple devices using CAN (hardware) 
 
When connecting multiple devices using CAN, each device must have a CAN transceiver.  We used a 
common one, the MCP2551.  It is an 8-pin DIP that offers basic functionality.  The following is a 
MCP2551 pinout description.   
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In our case, we connected RS to VSS to select high speed mode.  It is possible to control the slope of 
the signal by connecting a resistor proportional to the current from RS to GND.  We found that there is 
minimal electromagnetic interference or residual capacitance at 250 kHz (the frequency we used for 
testing) so it wasn’t necessary to use a slope-control mode.  If electromagnetic interference becomes an 
issue because of higher speeds, a current-controlling resistor must be inserted between RS and 
VSS/GND.  VREF is simply a test for the entire chip.  If its voltage is ½ of VDD, the device is 
working properly. 
 
That leaves the most important pins – TX, RX, CANH, and CANL.  TX and RX must go to the 
corresponding lines on the processor.  CANH and CANL must be connected to the bus.  The bus must 
be physically created with two long wires.  CANH and CANL should be terminated with a 120-ohm 
resistor at each end of those wires.  The CANH and CANL connections from various transceivers 
should connect in between those two resistors.  The following diagram shows the connectivity: 
 

 
The diagram is a general description.  The processors in the picture could be the robot microcontroller, 
the CSM Module, or any other processor that can produce valid CAN signals. 
 
CAN Software 
 
Source code is attached at the end of the document.  Important documents to have in hand while 
programming using CAN include: 

!" MSCAN Block Guide 2.0 
!" Detailed Register Addresses by Motorola 

In the MSCAN Block Guide description, information is given for each bit of each register.  Within this 
guide, there is information about bits that require writing a ‘1’ to them to clear them.  It is important to 
reference this guide when debugging code.  Stepping through each command in the simulator and 
looking at the addresses where the CAN registers are located is the best way to make sure commands 
are doing what is expected.  However, some register values do not always stay set.  For example, when 
the CAN Transmit is scheduled to run, it may actually send the message and clear the register.  That 
can make things confusing while looking at the simulator, so it’s something to be aware of.  Also, 
certain registers cannot be written to while Initialization mode is activated, and others cannot be 
written to while Initialization is disabled. 
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There are two additional things about writing code that I would like to discuss in more detail.  The first 
is the timing of CAN messages and how to change them using the registers provided. The second 
discussion involves the ID and data registers and what these mean for the development of the overall 
project. 
 
CAN Timing 
 
The two registers used for controlling CAN timing are CANBTR0 ($0142) and CANBTR1 ($0143).  
These registers are separated into components of various length to give the programmer control over 
the CAN timing.  The following is an example calculation of 125 kHz. 
 

 
There is a great amount of detail involved in explaining how the processor uses the values, but the 
main purpose is to maintain synchronization.  Even when a dominant-to-recessive state occurs early or 
late, the processor can eliminate Syncseg if necessary and either P1Seg or P2Seg can be shortened or 
lengthened.  The following is a description of each component of CAN synchronization. 
 
Propseg - the propagation time caused by physical delays such as very long wires.  Our system is 
small, so is not considered in programming.   
Syncseg – the synchronization segments the processor is allowed to insert to match the timing of the 
system clock.  A typical value for this is 1. 
Prescalar (also referred to as BRP or Baud Rate Prescalar) – defines the length of the Time quanta Tq.  
The values of Syncseg, p1seg, and p2seg are multipliers of Tq.   
P1seg & P2Seg – These are phase segments.  Typically Phase 1 is longer than Phase 2 and the HCS12 
devotes one extra bit to Phase 1 for that reason.  Usually these registers and Syncseg add to form a 
common multiplier (such as 16) 
SJW – Syncronization Jump Width – this sets the number of Tq that the phase segments can be altered 
by to achieve synchronization. 
 
For the 125kHz case, with a 16 MHz crystal oscillator frequency, p1seg and p2seg need to add to 15, 
so p1seg=8 and p2seg=7 are used.  This is arbitrary, 9 and 6 could also be used with similar results.  
The limitation involved is that both phase segments must be greater than the SJW.  The prescalar is 
then 3 to complete the equation: 

 
After obtaining the values needed, then it is important to get them into the registers properly. 

 
It is helpful to create the exact binary string and then convert it into a hex digit for programming.  
CANBTR0 is comprised of SJW and BRP.  Keep in mind that the hex values start at 1, so $00 is the 
decimal number 1.  If we use 2 (%01) for SJW and 3 (%10) for BRP, then CANBTR0 = %01000010 in 
binary.  That corresponds to $42 hex.  CANBTR1 is comprised of P1Seg and P2Seg as well as a 
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variable called SAMP that differentiates between 1 sample taken and 3 samples taken every bit.  We 
found 1 sample to be sufficient.  The necessary information to create CANBTR1 is SAMP = 0, TSEG2 
= 7 (%110) and TSEG1 = 8 (%0111).  CANBTR = %01100111.  That corresponds to $67 hex.  In the 
sample code at the end of this document, different values are used, but this is a description of how to 
write to the timing registers and manipulate the CAN timing frequency. 
 
CAN ID’s and message table 
 
Theoretically, each message is sent with an ID that identifies what type of message is contained.  With 
a small system, CAN ID’s can simply be ignored.  In testing, we set them before we transmit a 
message, but currently in the CANRX interrupt these values are not checked.  In the robot system, 
there are a limited number of possible messages, so the message itself can contain the necessary 
information.  At this point, the robot only receives commands that were processed by the CSM 
module.  Therefore, any data message received can be put through a case-statement to operate a robot 
command.  However, if multiple devices were connected to the robot by CAN, it may be useful to have 
a table with ID’s describing which device produced which message.  A sample table is given below: 

Identifier 
Identifier 
Source Type of Data Notes Who uses it? 

$00 Robot 
Critical Robot 

status 
Robot error - feedback 
to other systems all other nodes 

$03 CSM Module 
Commands for 
Robot wireless steering Robot 

$0F Robot 
Bumper 
information 

for wireless bumper 
logging CSM Module 

$3F GPS 
Position 
coordinates 

When $02 is seen, 
read DLR to know how 
many bytes to receive 

CSM Module 
and Robot 

 
The identifier itself is a priority.  In the CANRX interrupt handling routine, the programmer would 
check for the highest priority (lowest hex ID) items and handle them first. 
 
Masking or filtering is also possible with the CAN IDs.  For instance, if the CSM module was not 
programmed to be able to use any GPS coordinates, one could set the filtering registers so that the 
CSM module did not even receive messages with an ID of $03F.  In this way, CAN IDs can be used to 
improve the efficiency of the entire system by reducing the demands on individual CAN systems.  
When devices receive fewer messages, they have less processing to do. 
 
Masking CAN IDs 
 
There are three register sets to deal with when setting the masks up: 
A)  CIDAC – determines the configuration of the mask and acceptance banks into filter sizes and the 
number of filters.  The available options are: 

- 2 x 32-bit filters 
- 1 x 32-bit filter, 2 x 16-bit filters 
- 1 x 32-bit filter, 4 x 8-bit filters 
- 2 x 16-bit filters, 4 x 8-bit filters 
- 4 x 16-bit filters 
- 8 x 8-bit filters 
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The MSCAN 2.0 block guide should be referred to when deciding how to achieve each possible 
configuration. 
 
B) CIDMR[0-3] – This is a mask on the acceptance filter.  Its function is to basically determine which 
bits to look at for the actual filter itself.  A ‘0’ written to a bit means the processor will check an 
incoming message to see that it matches that bit of the filter.  A ‘1’ here is like a “don’t care” in that it 
doesn’t matter whether the incoming message is a ‘0’ or ‘1’ because the processor doesn’t filter that 
bit. 
 
C) CIDAR[0-3] – This is the filter that bits of incoming messages are compared to.  When a message is 
rejected because of a filter, it simply allows the next message to overwrite it in the input buffer. 
 
An example would be helpful here.  If the desired filter is 0001x1001x0, then CIDMR[0-3] would be 
configured as 00001000010, making bits 1 and 6 don’t-cares.  In CIDAR[0-3], bits are ignored if the 
corresponding bits in CIDMR[0-3] are ‘1’.  CIDAR[0-3] would then be set to 00010100100 or 
00011100110.  Either value is correct since bits 1 and 6 are ignored. 
 
Transceiver Type 
 
It should not be a problem to use a different transceiver than the MCP2515.  As always when 
connecting hardware, care needs to be taken to ensure TX, RX, CANH, and CANL are connected 
properly as well as the connections to select the transceiver mode and supply the correct voltage and 
current. 
 
Processor Type 
 
Without knowledge of the processors that may be used in the future, it is important to reduce the 
problem down to the main considerations: 

!" Timing – With some CAN devices, it will simply not be possible to obtain certain CAN 
frequencies.  This should dictate the choice of hardware and/or any group exploring a different 
processor must be certain that it can change the current processor software to match. 

!" Registers – A set of registers to manage CAN and store data and ID values is very helpful in 
the programming of CAN.  If a register setup similar to that of the Motorola HCS12 is used, it 
may even be possible to just find corresponding assembly instructions that do the same thing as 
the Motorola code included in this document. 

 
Other useful discussion 
 
There is not a specific section to put these in, but the information here may prove helpful in fixing 
problems along the way. 

!" Debugging CAN timing – One of the best ways is to put the TX and/or RX pins on the 
oscilloscope and check the timing of the device.  First, visually identify a single bit within the 
message.  Multiple high bits or low bits could throw your measurement off, so it is important to 
try to find a single bit in the oscilloscope readout.  The CAN frequency is the inverse of the 
period, which can be measured on the oscilloscope.  Then use the CAN timing registers to 
modify the timing and retest and check on the oscilloscope.  The CAN timing section above 
should prove helpful in this part. 
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CAN4USB PC device – This adapter enables a CAN bus to be connected to a computer with a USB 
port.  It enables debugging using application software that allows the capture and visualization of CAN 
messages.  This software is provided with the adapter and must be installed on the computer.  The 
CAN4USB adapter is provided by Zanthic.
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CAN Software Source Code 
(Applies to Motorola HCS12 Processor) 

 
//****************** 
//*CANTx – This function takes in a character from a main loop, 
// performs all of the message setup, and then transmits the 
// message (simply the one character) onto the CAN bus. 
// Inputs:  Two characters, at the moment only the first is used. 
// Returns:  None 
//******************** 
void CANTx(char var1, char var2) { 
  CANCTL0 = (CANCTL0 | 0x01);  // Enter Initialization Mode 
  CANCTL1 = (CANCTL1 & 0xEF);  // Exit Listen-only Mode 
  CANCTL0 = (CANCTL0 & 0xFE);  // Leave Initialization Mode 
   
  CANTBSEL = (CANTBSEL | 0x01); // Choose Message Buffer 0 
   
  CANTXIDR0 = 0x00;  // Write to Identifier Register 0 
  CANTXIDR1 = 0x00;  // Write to Identifer Register 1 
  CANTXDSR0 = var1; // Write to Data Byte 0 
  CANTXDSR1 = var2; // Write to Data Byte 1 
  CANTXDLR = 0x01;  // Write to Data Length Register   
   
  //CANTIER = (CANTIER | 0x01); 
  CANTFLG = 0x01;    
  _asm("nop");            
      
  _asm("nop"); 
  CANRFLG = 0x03;   // write a 1 to clear the overrun and receive flags 
  CANRIER = (CANRIER | 0x01); // Enable CAN Receive Interrupt 
} 
 
//****************** 
//*CANInit() – This function should be called just before  
// the main loop to initialize all of the CAN registers so that they 
// work with a processor-to-processor system. 
// Inputs:  None   Returns:  None 
//******************** 
void CANInit(){ 
 // MSCAN Initialization 
  CANCTL0 = (CANCTL0 | 0x01); // Go into Initialization Mode 
  CANCTL1 = (CANCTL1 | 0x80); // Assert CANE 
  CANBTR0 = 0x82; // Timing registers 
  CANBTR1 = 0x44; // Set for 250k CAN Bus clock 
   
  CANIDAC = 0x10;  // Enable ID registers 
  CANIDAR0 = 0x00;       // Set up Identifiers 
  CANIDAR1 = 0x00;             // Accept everything 
  CANIDAR2 = 0x00; 
  CANIDAR3 = 0x00; 
  CANIDMR0 = 0xFF;          // Ignore CAN Acceptance Registers 
  CANIDMR1 = 0xFF; 
  CANIDMR2 = 0xFF; 
  CANIDMR3 = 0xFF; 
 
  CANCTL1 = (CANCTL1 & 0xEF);  // Exit Listen-only Mode 
  CANCTL0 = (CANCTL0 & 0xFE); // Leave Initialization Mode  
  CANRFLG = 0x03;         
  CANRIER = (CANRIER | 0x01); // Enable CAN Receive Interrupt 
 
} 
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//  This can be used as a check to see if a message was correctly  
// sent 
interrupt 39 void CANTxEmptyInterrupt() { 
   //FFB0 is the vector 
   _asm("nop"); 
} 
 
//****************** 
//*CANRxInterrupt – This is entered when the processor receives 
// a CAN message.  In this example, the message is checked; 
// against 3 values that mean something in a sort of look-up table 
// for processor-to-processor communication 
// Inputs:  CAN Message stored in Receive buffer 
// Returns:  None 
//******************** 
interrupt 38 void CANRxInterrupt() { 
  if (CANRXDSR0 == 0x66) { 
    _asm("nop"); 
    //PORTB_BIT4 = 0; 
    //PORTA_BIT0 = 0;  
    PTAD_PTAD7 = 0; 
    PTAD_PTAD6 = 0; 
  } 
  else if (CANRXDSR0 == 0x64) { 
      //PORTB_BIT4 = 0; 
      //PORTA_BIT0 = 1; 
    PTAD_PTAD7 = 0; 
    PTAD_PTAD6 = 1; 
  } 
  else if (CANRXDSR0 == 0x46) { 
      //PORTB_BIT4 = 1; 
      //PORTA_BIT0 = 0; 
    PTAD_PTAD7 = 1; 
    PTAD_PTAD6 = 0; 
  } 
  else { 
    //PORTB_BIT4 = 1; 
    //PORTA_BIT0 = 1;  
    PTAD_PTAD7 = 1; 
    PTAD_PTAD6 = 1; 
  } 
 
  //CANCTL0 = 0x80;  
  _asm("nop"); 
  CANRFLG = 0x03; 
  _asm("nop"); 
  _asm("nop"); 
  _asm("nop"); 
} 
 
interrupt 37 void CANOverrunInterrupt() { 
   // This needs to be an exact copy of CANRxInterrupt. 
   // We’ve never received this interrupt, but if so, I believe this is 
   // what should be here. 
} 

Page 23 



Appendix 2. Final daughter board circuit design 
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Robot CAN Transmit - pin 17 on robot to pin 1 of Transceiver 1 
Robot CAN Receive - pin 18 on robot to pin 4 of Transceiver 1 
CSM CAN Transmit - pin 26 on CSM to pin 1 of Transceiver 2 
CSM CAN Receive - pin 28 on CSM to pin 4 of Transceiver 2 
CAN Bus  - CANH of all transceivers connected to one line 
   - CANL of all transceivers connected to another line 
   - 120-ohm resistors at each end connecting the two 
 
CSM SCI Transmit - pin 5 on CSM connected to Pin 3 on JP1 on EZL-80 
CSM SCI Receive - pin 7 on CSM connected to Pin 4 on JP1 on EZL-80 

 
When using TTL level SCI signals, the traces CT-4 and CT-5 must be cut.  This disables 
the UART on the CSM and allows it to output the correct voltage levels on pins 5 and 7.  
When using RS232 communication, these traces must be intact. 
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Appendix 3. Software 
 

PC Program Description 
 
 This is a description of the program from the point that a connection has been 
established onward.  That means the Status Bar shows ‘Socket has connected to remote 
computer’. 
 
Receiving data from EZL-80 
 
 When the EZL-80 sends any information, it will show up in the text received 
textbox with a timestamp associated with it.  This is currently there just to show that we 
successfully received.  Other things can be done with this information by getting into the 
tcpClient_DataArrival function and using the data differently. 
 
Sending data to the EZL-80 
 
 There are many different ways to do this.  Currently, most of them are associated 
with button presses for purposes of remote control.  The following is a quick description 
of the button presses: 
Forward – Sends 0x01 to EZL-80 
Reverse – Sends 0x02 to EZL-80 
Spin Right – Sends 0x03 to EZL-80 
Spin Left – Sends 0x04 to EZL-80 
Stop – Sends 0x05 to EZL-80 
Degree Turns – Sends 0x03 or 0x04 for turning, waits a programmed amount of time, and 
then sends 0x05 to stop it.   
 

The time length corresponds to an integer value stored in a textbox underneath the 
Spin Left and Spin Right buttons.  That value is the timer interval that corresponds to a 
90 degree turn.  For a 30 degree turn, the timer interval is set to 1/3 of the value in that 
textbox. 
 
 There is also the option to send data in binary and ASCII decimal format.  These 
are not really an integral part of the program, just trying to prove that it can be done.  The 
hex option does not work, because I need a good VB function for converting hex values 
to ASCII characters.  The important part of the function is within the button press 
handling subroutine where it uses the command ‘tcpClient.SendData chr(127)’. 
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PC and EZL-80 Mode Description 
 
There are two modes of operation that we were able to use to successfully 

communicate between the EZL-80 and the PC Software that is named 
‘RobotCommandCenter’.  This document will describe how to connect in both modes 
from the PC side. 
 
Connect on Demand (COD) Mode / TCP Client Mode 
 
 This mode is used when you want the Robot and EZL-80 to initialize the 
connection to the computer.  This method was preferred by us, because the Robot sends a 
one-byte initialization string on startup.  The ‘Conn. Byte’ variable is set to 1 in the 
ezConfig program.  That requires the EZL-80 to send one byte of information to request 
the connection to the computer. 
 
 In RobotCommandCenter, the user must select Listen Mode, as shown below: 

 
When Listen Mode is selected, the status will read “Socket is listening for 

requests”.  As soon as the EZL-80 receives a byte of information and transmits it, the 
status will change to show that the PC and EZL-80 are connected. 

 
To Disconnect the EZL-80 and the PC, you simply press the ‘Disconnect All 

Modes’ button.  This can be done not only after a connection has been established, but 
also when it is currently listening for requests. 

 
It is important to note that you do not need to set the IP address and port number 

of the EZL-80 in COD mode.  For the EZL-80 to connect in COD mode, it needs to have 
the IP address of the PC running RobotCommandCenter hard-coded into it, but there is 
nothing extra within RobotCommandCenter.  Any computer can use ezConfig to change 
the IP address that the EZL-80 will try to connect to.  Therefore, another computer could 
take over control.  There is an option to add a password to the EZL-80 you are connecting 
to, so it would be a good idea to do that if you are worried about control. 

 
 

TCP to Serial (T2S) Mode / TCP Server 
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This mode is used when you want RobotCommandCenter to initialize the 

connection between PC and EZL-80.  To use this mode, you have to know the IP address 
and the port of the EZL-80 and update this with the ‘Update IP Address and Port 
Information’ button.  Once this is done, you must press the ‘Connect in T2S Mode 
button.   
 The important areas of connecting in T2S mode are shown below: 

 
  

When Listen Mode is selected, the status will read “Socket is listening for 
requests”.  As soon as the EZL-80 receives a byte of information and transmits it, the 
status will change to show that the PC and EZL-80 are connected. 

 
To Disconnect the EZL-80 and the PC, you simply press the ‘Disconnect All 

Modes’ button.  This can be done not only after a connection has been established, but 
also when it is currently waiting for the EZL-80 to accept the connection request. 
 
Other Modes 
 
 We did not do any testing with the other modes.  UDP mode for UDP packets 
may be interesting, but RobotCommandCenter uses a Winsock control that had example 
code dealing with TCP packets.  I am not sure what support there is for UDP in Visual 
Basic 6.0, but it probably exists and is easily implemented.  UDP may be interesting 
because it doesn’t have to go through a connection request-and-accept process before 
data can be transferred.  
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Data transfer considerations. 
 
The actual byte data that is transferred is not critical on its own, but when every device in 
the system knows what the value means, it is useful.  We have a table of values defining 
what each command means and what value it corresponds to.  This table should be 
updated as the project gets more complicated.  If more than 255 commands or data 
messages are needed, you can use identifiers in the CAN system or use more than one 
byte.  Our system is so small that one byte was all that was necessary.  The final table is 
as follows: 
 

  Forward Reverse Right Left Stop 

PC Sends/CSM Receives 0x01 0x02 0x03 0x04 
all others (0x05 
usually) 

CSM Sends/Robot Receives 0x66 0x44 0x46 0x64 0x67 
            
  Bumper 1 Bumper 2 Startup CSM Btn1 CSM Btn2 

Robot Sends/CSM Receives 0x01 0x02 0xFF N/A N/A 
CSM Sends/PC Receives 0x01 0x02 0xFF 0x03 0x62 

CSM Sends/Robot Receives N/A N/A N/A 0x64 0x46 
Table 1: Commands and data messages in the entire Wireless ECE Robot data flow 
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Mode 8 (remote
control)

Initialize CAN

Wireless Robot firmware Flow Charts

yes
Input command

and change
motor control

Interrupt
from

RxCAN?

Robot code for a new remote
control mode

Main loop

yes

CSM-12C32 code

Initialize CAN and
SCI

Decode
information

Carson Drew 12/10/05

Bumper
sensor hit?

yes

Stop motors and
back up a little

Send stop signal
to CSM

no

no

Interrupt
from RxSCI?

Transmit to Bot
using CAN

yes

Decode
information

Interrupt
from

RxCAN?

Transmit to EZL
using SCI

no

no
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Appendix 4.  Step-by-step user instructions 
Connecting the Wireless ECE Robot – Start to Finish 

 
Throughout this document, I’ll be under the assumption that the daughterboard that 
combines the CSM-12C32, the EZL-80 and PCMCIA socket, and CAN hardware has 
been completed. 
 
Connecting the Hardware 
 
First, create the connections for the CAN communication between the CSM-12C32 and 
the Robot.  Materials include two CAN Transceivers (MCP2551 from Microchip), the 
current ECE Robot, a CSM-12C32, and two wires connected into a socket on one end.  
The CSM-12C32 plugs into the 40-pin socket on the daughterboard.  There is a built-in 
connection from the CAN pins (26 and 28) on the CSM-12C32 to the first CAN 
Transceiver.  A CAN transceiver (the MCP is an 8-pin DIP) must be inserted into each of 
the 8-pin sockets on the daughterboard.  Then, connect the two wires to the robot 
microcontroller on pins 17 and 18.  It is helpful to use a socket to keep this enclosed. 
 
It should be noted that the CSM-12C32 can be connected through the RS-232 connection 
on the daughterboard, but the design allows for the CSM-12C32 to be connected on the 
40-pin header.  This requires cutting cut traces 4 and 5, but the 40-pin header handles 
power, so this is ideal for the project.  Power must be wired manually to the CSM-12C32 
if it is connected using RS-232. 
 
Second, you must insert the EZL-80 into the two 20-pin headers.  Make sure that the side 
of the EZL-80 that is labeled ‘JP1’ is inserted into the header labeled ‘JP1’.  If not, you 
may have the EZL-80 upside-down.  The serial connections between the EZL-80 and the 
CSM-12C32 are already internally wired.  The connections between the EZL-80 and the 
PCMCIA socket are also internally wired.  At this point, you can move on to the software 
setup steps. 
 
Third, you must use four screws to attach the daughterboard to the robot above or below 
the main robot PC board.  Also, power connections must be made according to 
specifications.  5V and ground must be wired from the 2-pin power header on the robot to 
the 2-pin power header on the daughterboard. 
 
Software Setup 
 
The first thing to do is to use ezSerialConfig to configure the EZL-80.  It is possible to 
connect a serial cable directly from the computer running ezSerialConfig to the serial port 
on the daughterboard.  Once this is done, set the communication port to the one you are 
using on your computer (COM[1-4]).  Then press ‘Read’.  If there is no response, there is 
an error in hardware connections.   
 
The program will display the MAC address of the EZL-80 when a connection is 
established and many textboxes will become available.  By setting these and then writing 
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them to the EZL-80, you are configuring the EZL-80.  Set the EZL-80 to COD mode in 
the drop-down list ezTCP Mode, Set ‘Conn. Byte’ to 1, set the Peer IP and Peer Port to 
your computer’s IP and desired port.  Make sure Parity is set to ‘NONE’ with 8 data bits.  
Baudrate should be set to 9600, and flow control should be disabled.  The last thing to do 
is to set the Target SSID.  This is the name of the network that you want to use for the 
connection.  We used RFconnect, the campus network.  If the EZL-80s are newly 
ordered, the MAC addresses will not be on file with ITC.  They may not work, so you 
should call Bob Underkofler at ITC (x5100) to help with that.  Note that the PC running 
RobotCommandCenter must be on the same network that the EZL-80 is configured to. 
 
Starting the Connection 
 
Once the EZL-80 has been configured, start RobotCommandCenter on the networked PC.  
For COD mode, you simply have to press the ‘Listen Mode (for COD mode)’ button.  
The robot will request a connection when powered up for the first time.  To establish this 
connection, you must power on the systems by flipping the switch on the robot.  The 
robot will go through initialization that lasts around 10 seconds.  This is enough time for 
the EZL-80 to get set up on the network.  This initialization does not do anything for this 
project, it is just remaining code from Dr. Maher’s basic class setup.  It can be removed, 
but it may not allow enough time for setup of the EZL-80.  If a connection is not 
established after 15 seconds or so, you may just press a bumper on the robot and it will 
send a different byte and establish a connection.  Then, send and receive commands using 
RobotCommandCenter. 
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Appendix 5. Financial Report 
 

 
Additional materials purchased (not included in above budget summary): 
Item cost 
4/7/06 BALANCE $1,399.28
DATA FLOW SYSTEMS            $206.80
DIGI-KEY CORP                         $366.63
DIGI-KEY CORP                         $420.99
PCB EXPRESS                          $404.86
FINAL BALANCE $0.00
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