

Wireless Mobile Robots: A Tool for Undergraduate Electrical
Engineering Instruction

PI: Dr. Richard S. Wolff
Montana State University

Department of Electrical and Computer Engineering
rwolff@montana.edu

(406) 994-7172

Final Report
April 10, 2006

Page 1

mailto:rwolff@montana.edu

Wireless Mobile Robots: A Tool for Undergraduate Electrical Engineering Instruction

PI: Dr. Richard S. Wolff
Montana State University

Department of Electrical and Computer Engineering
rwolff@montana.edu

(406) 994-7172

Final Report
April 10, 2006

Project goals

The goals of this NWACC grant are to develop an 802.11 b/g wireless interface for the
Montana State University mobile robot, to install the complementary wireless infrastructure in our
teaching labs, and to provide a platform that can be used to enhance the curriculum of our
microcomputer software engineering course, EE371— Microprocessor Hardware and Software
Systems—by incorporating robot-centered instruction. This will enable the students to program and
control the mobile robot in real time over the wireless network and to measure outcomes in real time.
These additions will be leveraged by other courses in communications and control systems in the
future.

The mobile robot is currently used in our basic first year introductory engineering course,
EE101, where students learn engineering skills by constructing and testing the roving robots. Our
intention is to actively engage promising young engineering students in the fields of electronics,
robotics and embedded computer systems—areas of ever-increasing importance to this nation's goals
in communications, transportation, and space exploration. Because each of our students will now have
a mobile and programmable robot, we can capitalize on their experience by utilizing the robots as a
teaching platform in subsequent courses. Specifically, we are incorporating wireless communication
technology between the robots and laptop or tablet computers to support student learning in
communications, embedded systems, and control. Our academic leadership effort is producing
mechanical drawings, schematics, laboratory experiments, and supplementary materials sufficient to
allow other universities to adapt the course to their own needs. Further details on the EE101 robot
project including lab manuals, class assignments and assembly guides are posted on our Web site
http://www.coe.montana.edu/ee/rmaher/ee101/ecebot/.

Summary of accomplishments

!" Senior design team organized and project initiated: Three Electrical and Computer Engineering
students (Brad Benjamin, Carson Drew, Chris Stephani) participated in this project and
developed the prototype robot wireless interface as an assignment in their senior design
capstone project course, EE391/EE492. (April – December 2005)

!" Summer internship: One student (Brad Benjamin) participated in a summer internship

assignment under the direction of the PI to determine project requirements, develop a initial
design, select components and develop the project web site. (June-August 2005

!" Initial hardware design: The initial functional design for the robot wireless interface was

completed and was successfully implemented using a commercially available development
board that provided the required functionality. This design was used as the basis for the detailed
hardware prototype. (November 2005).

Page 2

mailto:rwolff@montana.edu
http://www.coe.montana.edu/ee/rmaher/ee101/ecebot/

!" Initial software design. The initial software to program the wireless board and control the robot
over the wireless network was successfully completed and tested. (November 2005).

!" Demonstration using campus wireless network: The robot equipped with the development

board implementation of the wireless board was successfully demonstrated using the MSU
campus wireless network at the Engineering Senior Design Fair. (December 2005)

!" Prototype hardware design: The first hardware prototype of the wireless board that meets the

robot form factor was completed in December 2005 by the first senior design team (Benjamin,
Drew and Stephani). A second EE391/EE492 student team (Ivan VanDessel, Tim O’Neil,
Conrad Donavan) began work in Fall 2005 and tested the prototype board. (January 2006).

!" Final hardware design: The final hardware design was completed and validated by the second

senior design project team (VanDessel, O’Neil, Donavan). (April 2006).

!" Final software design: The final robot control software and GUI were completed and
demonstrated by the second senior design team (VanDessel, O’Neil, Donavan). April 2006).

!" First instructional use of wireless robot: The wireless robot is being used by a third

EE391/EE492 senior design team (Daniel Colson, Andrew Edwards, Loo Chee Yang, Ali
Alniemi) to program and test the robot running a maze conforming the IEEE MicroMouse
robotic navigation competition. (February 2006 - December 2006).

!" Operational wireless robots: Components were acquired to provide twelve wireless robots for

instructional use in Fall 2006.

!" Project schedule: The project was completed on schedule.

!" Project budget: The project was completed with the allocated budget.

!" Project web site: The web site for the project was developed and made available August12,
2005. The link is http://www.coe.montana.edu/ee/seniordesign/archive/fl05/robot_radio/

Page 3

Senior design teams
 This project was performed largely by Electrical and Computer Engineering (ECE) undergraduate
students as assignments for the capstone engineering design course EE391/EE492. Three project
teams, consisting of a total of nine students, participated in the project. Additional, one undergraduate
worked on the project in the summer 2005 as an undergraduate research assistant.
 Three Electrical and Computer Engineering students (Brad Benjamin, Carson Drew, Chris Stefani)
were selected to participate in the initial phase of this project to develop the robot wireless interface as
an assignment in their senior design capstone project course, EE391/EE492. The team was formed in
spring 2005 and completed a preliminary assessment of the functional components for the project.
These were presented as a deliverable for EE391. The basic concept of using a Wi-Fi wireless link was
explored and the feasibility of interconnecting the 68HC912C32 microcontroller on the robot with a
second processor controlling a radio interface was demonstrated. Figure 1shows the project display
used at the ECE department design fair held in Spring 2005.

Figure 1. Senior design project

Figure 1. Spring 2005 Wireless Robot Project Engineering Design Fair

One member of this team, Brad Benjamin, worked on the project over the summer as a research
assistant, funded by the NWACC grant. Brad developed CAN bus software, as well as the initial
website design, described below, The team continued work on the project in Fall 2005 and completed a
working prototype of the wireless system, using a commercially available development board, and
successfully integrated it with the robot. .Figure 2 shows a proof of concept example of the robot with
the prototype wireless module added as a daughter board. This initial effort demonstrated the
feasibility of adding a wireless interface to the robot and also identified several design issues that
needed to be addressed to assure that the additional functionality could be incorporated without
disturbing the basic robot operation and control circuits.

Page 4

Figure 2. Robot with radio control module

 The second senior design team, consisting of Ivan VanDessel, Tim O’Neil, Conrad Donavan
continued the project beginning in Fall 2005. Their primary task was to develop a test a printed circuit
board implementation of the wireless system and integrate it to the robot. This team began with a
design proposed by the first team, implemented and tested it, and used the results to design and build a
second generation wireless printed circuit board. The first board completed is shown in figure 3.

Figure 3. First generation wireless printed circuit board, which attaches to the robot as a daughter board.

 The third senior design team, consisting of Daniel Colson, Andrew Edwards, Loo Chee Yang,
Ali Alniemi, has begun work with the wireless robot to develop navigation and maze-solving
capability, using the wireless communications functionality and programmability of the CSM12C32.
The team began work in January 2006. This will be the first operational application of the wireless
robot.

Two processor design

 Selection of a separate processor to handle communications functions was a key design
decision in the early phase of the project. It was more effective to run the robot control code, resident

Page 5

in the primary processor, as a separate program, and to put all the communications and data
management functions in a second program running on a separate processor. This enabled the primary
robot motor control functions to be implemented without interruption. Decoupling these functions
assured that further development of the robot motor drive control program, planned for the coming
year, could proceed independently.

Figure 4 Motorola CSM12C32

A second key design decision involved the selection of the second processor. Plans were

already underway to use the Motorola CSM12C32 module in the curriculum of our microcomputer
software engineering course, EE371 Microprocessor Hardware and Software Systems to incorporate
robot-centered instruction. This module has extensive input/output and processing capability and the
team, after careful evaluation and prototyping, elected to use it for the wireless communications and
data management functions. The CSM board, shown in figure 3, provides serial RS232 and Controller
Area Network (CAN) interfaces as well as 32K Byte Flash EEPROM, 2K Bytes RAM, 31 I/O lines
and a rich variety of other features listed below:
! Timer/PWM
! SCI and SPI Communications Ports
! Key Wake-up Port
! BDM DEBUG Port
! CAN 2.0 Module
! Analog Comparator
! 8 Mhz Internal Bus Operation Default
! 25 MHz Bus Operation using internal PLL
! +3.3VDC to +5VDC operation
! 40 pin connector provides access to most MCU I/O signals
! Power Input Selection Jumper
! On-board, regulated +5V power supply
! Optional power input from Connector J1
! Optional power output through Connector J1
! 16 MHz Ceramic Resonator
! RS-232 Serial Port w/ DB9 Connector
! 8-Ch, 10-bit, Analog Comparator with full rail-to-rail operation and external trigger capability
! 8-Channel, 16-bit Timer with Input Capture, Output Compare, and PWM capabilities
! 40-pin MCU I/O Connector
! 2.0mm Barrel Connector Power Input

Page 6

! DEBUG BDM Connector
! DB9 Communications Connector

Physical and electrical interfaces enabling the CSM module to inter-work with the robot were
identified after consultation with Dr. Fred Cady, instructor for EE371, and Dr. Rob Maher, responsible
for the ECE robot development project. To avoid major modifications to the basic robot, the best
approach was to develop a daughter board incorporating the CSM and additional components, which
mounts on the robot, sharing power from the primary batteries.

Inter-processor communication

A third key design issue was the selection of the communication path between the robot
processor and the CSM module. While the CSM offers a rich set of input/output options, the
68HC912C32 microcontroller on the robot has a limited set of I/O pins (forty), must of which are
already dedicated to primary robot operations functions. Several options were explored resulting in the
decision to use the CAN bus as the communication path between the CSM and robot 68HC912C32
microcontroller. The advantages of this approach are that the basic I/O architecture of the robot is not
disturbed, as the CAN interface is not used for the robot control, and that implementation of the CAN
functionality offers the potential for adding other features to the robot in the future, such as additional
sensors, a GPS receiver, and actuators, with minimal redesign or programming.

The CAN bus is a well established technology, developed initially to automotive and other
control applications is well supported by microcontroller manufacturers and component vendors. The
bus provides a high degree of reliability and flexibility, Key features include

!" High-integrity serial data communications bus for real-time control applications
!" Data rates of up to 1 Mega bits per second
!" Excellent error detection and confinement capabilities
!" Being used in many other industrial automation and control applications
!" OSI session layer known as Time Triggered CAN (TTCAN)
!" Documented in ISO 11898 (for applications up to 1 Mega bits per second) and ISO

11519 (for applications up to 125 K bits per second)

Data messages transmitted from any node on a CAN bus do not contain addresses of either the
transmitting node, or of any intended receiving node. Instead, the content of the message (e.g. wheel
revolutions per second, location, bumper actuated, robot stopped, etc.) is labeled by an identifier that is
unique throughout the network. All other nodes on the network receive the message and each performs
an acceptance test on the identifier to determine if the message, and thus its content, is relevant to that
particular node. If the message is relevant, it will be processed; otherwise it is ignored. The unique
identifier also determines the priority of the message. The lower the numerical value of the identifier,
the higher the priority. In situations where two or more nodes attempt to transmit at the same time, a
non-destructive arbitration technique guarantees that messages are sent in order of priority and that no
messages are lost. CAN uses Non Return to Zero (NRZ) encoding (with bit-stuffing) for data
communication on a differential two wire bus. The use of NRZ encoding ensures compact messages
with a minimum number of transitions and high resilience to external disturbance. The two-wire bus is
usually a twisted pair (shielded or unshielded). CAN will operate in extremely harsh environments and
the extensive error checking mechanisms ensure that any transmission errors are detected. By using the
CAN bus the robot microcontroller can potentially connect to 10 or more devices while only requiring
1 input line, assuring future growth without additional I/O pins.

The content-oriented nature of the CAN messaging scheme delivers a high degree of flexibility
for system configuration. New nodes that are purely receivers, and which need only existing

Page 7

transmitted data, can be added to the network without the need to make any changes to existing
hardware or software. Measurements needed by several controllers can be transmitted via the bus,
thereby removing the need for each controller to have its own individual sensor. To determine the
priority of messages, CAN uses the established method known as Carrier Sense, Multiple Access with
Collision Detect (CSMA/CD) but with the enhanced capability of non-destructive bitwise arbitration to
provide collision resolution, and to deliver maximum use of the available capacity of the bus. Non-
destructive bitwise arbitration provides bus allocation on the basis of need, and delivers efficiency
benefits that can not be gained from either fixed time schedule allocation (e.g. Token ring) or
destructive bus allocation (e.g. Ethernet.) With only the maximum capacity of the bus as a speed
limiting factor, the CAN bus will not collapse or lock up. Outstanding transmission requests are dealt
with in their order of priority, with minimum delay, and with maximum possible utilization of the
available capacity of the bus.

As CAN interfaces are included in the CSM module and the robot 68HC912C32
microcontroller, these features make CAN an excellent design choice. A transceiver is needed to
interface a CAN enabled device to the bus. The Freescale MCP2551 high-speed transceiver was
selected, as its small size and low power consumption make it ideal for the robot application. Other
key features of this chip include
Supports 1 Mb/s operation
• Implements ISO-11898 standard physical layer requirements
• Suitable for 12V and 24V systems
• Externally-controlled slope for reduced RFI emissions
• Detection of ground fault (permanent dominant) on TXD input
• Power-on reset and voltage brown-out protection
• An un-powered node or brown-out event will not disturb the CAN bus
• Low current standby operation
• Protection against damage due to short-circuit conditions (positive or negative battery voltage)
• Protection against high-voltage transients
• Automatic thermal shutdown protection
• Up to 112 nodes can be connected
• High noise immunity due to differential bus implementation

Further information on the architecture and use of the CAN bus in provided in Appendix 1,

written by Brad Benjamin to acquaint students in EE371 and other courses with the key features in the
bus implementation.

Wireless interface
 The goal of the project is to enable communication with the robot using an 802.11 (W-Fi)
wireless link. The initial phase of the project explored the availability of Wi-Fi chip sets, embeddable
modules and packaged, self-contained transceivers. The first feasibility demonstration was
accomplished using an embeddable module mounted on a development board. This approach
facilitated interfacing to the CSM as an RS-232 port was available on both modules. However, the
cost of the embeddable wireless module, in the range of $200, made this approach unattractive.
Furthermore, the size of the unit, with its RS232 interface, was not acceptable.
 Alternative wireless products were examined and a more standard, and widely available
wireless network interface card (NIC) in a PCMCIA configuration was selected. This approach offers
several advantages. First, WiFi PCMCIA NICs are widely available at extremely attractive prices – as
low as $10. Second, the modularity affords the option of plugging the wireless NIC in as needed, rather
than having it permanently attached to the robot or daughterboard. A PCMCIA compatible wireless

Page 8

interface module with a serial TTL interface that could easily be interfaced to the CSM was chosen, as
the module uses TTL rather than RS232 lowers the cost and power consumption. The Sollae EZL-80,
shown in figure 5 was selected. This device runs on 3.3V and draws 10 mA of current. The serial level
is TTL and it supports a wide range of data transfer protocols, including UDP, TCP, and IP. Having a
built in IP protocol stack on the EZL-80 is a major advantage as it obviates the need to develop this
data handling capability on the CSM module. Hence the CSM puts data into IP packets and transfers
the packets transparently to the EZL-80, as though it were communicating with an external node. This
makes the wireless link “invisible” to the robot.

Figure 5 EZL-80 wireless adapter

A further advantage of the EZL-80 is that the PCMCIA card socket is separate from the circuit
board. This allows a physical layout where the wireless PCMCIA NIC can be located more
conveniently on the daughter board. Figure 6 shows the overall relationship between these
components.

Figure 6 EZL 80 and related components

Figure 6 also shows an 802.11 enabled laptop, which connects to the robot using the MSU campus
wireless network, as described in more detail below. The campus wireless network is interconnected to

Page 9

the campus LAN, enabling students to use PCs or laptops on the campus network to communicate over
the wireless link to the robot.

Wireless system implementation
 The wireless interface was first implemented as a functional prototype of the selected design
using a commercially available EZL-80 development board and other selected components. This
approach enabled a full end-to-end demonstration of control of the robot over a wireless network
without requiring the development of a custom printed circuit board. This facilitated rapid and low-
cost debugging. Figure 7 shows the robot with the first prototype wireless daughter board installed.

Figure 7. Robot with initial functional prototype wireless board installed.

This configuration was used to debug the hardware and software and led to the initial wireless interface
printed circuit board design.
 A printed circuit board (PCB) was then designed consisting of the EZL-80, PCMCIA socket,
CSM module and CAN transceiver shown functionally in figure 6, to interface to the robot as a
daughter board. The board also has a power regulator to convert 5 volts obtained from the robot power
regulator to 3.3V needed for the EZL-80. A CAN transceiver was added to the robot board to enable
the use of the CAN bus for inter-processor communication. This board design was completed in
December 2005 and tested by the second senior project design team. The daughter board layout is
shown if figure 8.

Page 10

Figure 8. Mechanical layout of first wireless daughter board

 Figure 9 shows the first PCB implementation with the PCMCIA card, EZL-80 and CSM modules
installed. This board was successfully tested with the robot and several deficiencies were identified,
leading to a more compact design for the final board.

Figure 9. First generation wireless daughter board with PCMCIA card, EZL-80 and CSM modules installed.

 The final version of the wireless daughter board was designed to fit the robot more compactly
and included several wiring changes to support an on/off switch and LEDs to indicate data flow and
other functions. The mechanical layout is shown in figure 10. Further electrical details including the
circuit design are given in Appendix 2.

Page 11

Figure 10. Mechanical layout of final wireless daughter board.

Figure 11 shows the electrical layout for the final version of the wireless daughter board The
components to assemble twelve daughter boards for use in EE371 in Fall 2006 have been purchased
and will be installed on the boards during summer 2006.

Figure 11. Electrical layout of final wireless daughter board

Software design
There were software requirements for the PC, the CSM-12C32, and the robot microcontroller. A
modular approach was used to develop each piece of software, enabling effective debugging. Figure 12
shows the software modules and data flow.

Page 12

Figure 12. Functional description of data flow and software design.

The existing code on the ECE Robot was not changed in any way. For this project, a ‘Mode 8’

was added to enable use of the CAN bus.. This mode is basically interrupt-driven from the CAN
transmission system. If the robot receives a command, it will execute motor control changes by calling
subroutines. If an unrecognized message is received, the robot will stop. It also transmits a signal
when a bumper is pressed.

The software module for the CSM and EZL-80 serial link was constructed to use the SCI
interface on the CSM to communicate with the built-in serial capability of the EZL-80. The CSM is
also driven entirely by interrupts. A CAN interrupt will trigger a serial transmission to the EZL-80,
effectively forwarding anything it receives from the robot. A serial transmission triggers the CSM to
decode the motor control messages and send the correct values to the robot on the CAN bus.

The software for the PC used to control and communicate with the wireless robot was
developed using Visual Basic 6.0 (VB6). VB6 allows for pre-built controls to be implemented easily
and graphical user interface is extremely simple as well. The Winsock control was used to create a
TCP Client that can connect to the EZL-80. The PC software can connect to the EZL-80 if the EZL-80
is in T2S mode. It can also accept a connection when it is requested by the EZL-80 in COD mode. A
GUI was developed for the PC to allow the user to send commands to the robot and send and transmit
data. The GUI is shown in figure 13. More information about the EZL-80 modes can be found in the
PC software documentation in appendix 3.

Figure 13. GUI used to control robot, send and receive data over wireless network.

Page 13

Wireless robot demonstrations and use
The first full demonstration of the wireless robot was carried out using this prototype at the

MSU volley ball game in October 2005, where the ECE robots were featured as part of the halftime
activities. The Initial phase of the project was completed in December 2005 and demonstrated at the
Engineering Design Fair, shown in figure 14.

Figure 14. Wireless project featured at the Engineering Design Fair, December 2005.

 A user manual, providing step-by-step instructions on configuring and using the robot with the
wireless interface was written for use by students in EE371 and other courses. The instructions are
attached as appendix 4.

The first operational use of the wireless robot began in Spring 2006, with the initiation of a new
senior design project to add position location sensors and navigation software to the robot. This project
will use the wireless interface to send data from the robot to a PC where the robot location, trajectory
and maze pattern will be plotted. The navigation and maze solving functionality is being designed to
enable students to enter the IEEE MicroMouse robot contest. The Montana section of the IEEE has
purchased a maze for student use.

Plans to use the wireless robots in the EE371 curriculum are under way. The robot was
designed with the CSM module already in use in EE371, enabling a common microcontroller hardware
and software environment. Twelve robot wireless daughter boards will be ready for use in the EE371
microcontroller programming lab in Fall 2006.

Interface to the MSU campus wireless network

In summer 2005 a Wi-Fi network was installed throughout the College of Engineering
buildings complex for instructional use. The network coverage includes all classrooms and student labs
and is interfaced, through a gateway, to the campus wired LAN. Authentication, using a web interface
and entry of a login and password is usually required for wireless devices to access the campus
network. The student team worked with the campus Information Technology Center to develop a
procedure for registering the wireless robots to the campus network without using the normal login
method. This enables students to control their robots using any computer on the campus network using
the wireless infrastructure.

Page 14

Project budget
 $10,000 has been expended on this project. Principle expenditures have been

!" Summer internship: $3152
!" Faculty supervision: $2400
!" Benefits: $600.39
!" Materials: $3847.61
A detailed financial report is provided in appendix 5.

Project web site
 The project web site was established in August 2005 and has bee updated as the project
proceeded. Figure 15 shows a screen shot of the web page, which can be found at
http://www.coe.montana.edu/ee/seniordesign/archive/fl05/robot_radio/. The web page contains an
overall project description, as well as technical details and links to pertinent material include
specifications, data sheets, and background information.

Figure 15. Home page of project web page

Page 15

http://www.coe.montana.edu/ee/seniordesign/archive/fl05/robot_radio/

Appendix 1.

CAN (Controller Area Network) Documentation

for groups using CAN with the ECE robot with the Motorola HCS12 processor

Why is CAN important to future groups dealing with the robot?

Connecting the ECE processor to a single device would be simple. A simple serial communication
standard would suffice. However, with many ECE senior design projects dealing with the robot, many
devices need to interface with the processor. These projects will build on previous technology to add
features and improve older features. However, the processor cannot simply perform serial
communication with multiple devices as it has limited I/O pins available. CAN is a standard that
offers a solution to this problem. CAN only uses two pins (TX and RX) to connect a device to the
CAN bus. The features of CAN allow multiple devices to connect to that CAN bus without worry for
loss of data. This makes it an ideal choice for the ECE robot projects.

General CAN description

Data messages transmitted from any node on a CAN bus do not contain addresses of either the
transmitting node, or of any intended receiving node. Instead, the content of the message (e.g. wheel
revolutions per second, location, bumper actuated, robot stopped, etc.) is labeled by an identifier that is
unique throughout the network. All other nodes on the network receive the message and each performs
an acceptance test on the identifier to determine if the message, and thus its content, is relevant to that
particular node. If the message is relevant, it will be processed; otherwise it is ignored. The unique
identifier also determines the priority of the message. The lower the numerical value of the identifier,
the higher the priority. In situations where two or more nodes attempt to transmit at the same time, a
non-destructive arbitration technique guarantees that messages are sent in order of priority and that no
messages are lost. Identifiers for small systems are usually 11 bits. If there were enough messages to
require a greater number, messages can be sent in 29-bit identifier mode.

CAN works because each transceiver can be put into dominant or recessive state by the hardware it is
connected to. If three devices wanted to send a message simultaneously, they couldn’t all put the
message on the data bus at the same time – it would be destroyed. There is a type of acknowledge
system where it reads the state of the bus to determine if another processor has control of it. A
dominant state is characterized by a certain difference in voltage between the bus lines. A recessive
state means that that voltage difference is low, and when the transceiver sees that, the processor is
allowed to put its message onto the bus. When multiple processors see a recessive bus state, it uses the
priority of each message to determine which is allowed to send the bus into a dominant state. Because
the bus line in the robot system is so short, there is not much propagation delay so this is not an issue
to worry about.

Connecting multiple devices using CAN (hardware)

When connecting multiple devices using CAN, each device must have a CAN transceiver. We used a
common one, the MCP2551. It is an 8-pin DIP that offers basic functionality. The following is a
MCP2551 pinout description.

Page 16

In our case, we connected RS to VSS to select high speed mode. It is possible to control the slope of
the signal by connecting a resistor proportional to the current from RS to GND. We found that there is
minimal electromagnetic interference or residual capacitance at 250 kHz (the frequency we used for
testing) so it wasn’t necessary to use a slope-control mode. If electromagnetic interference becomes an
issue because of higher speeds, a current-controlling resistor must be inserted between RS and
VSS/GND. VREF is simply a test for the entire chip. If its voltage is ½ of VDD, the device is
working properly.

That leaves the most important pins – TX, RX, CANH, and CANL. TX and RX must go to the
corresponding lines on the processor. CANH and CANL must be connected to the bus. The bus must
be physically created with two long wires. CANH and CANL should be terminated with a 120-ohm
resistor at each end of those wires. The CANH and CANL connections from various transceivers
should connect in between those two resistors. The following diagram shows the connectivity:

The diagram is a general description. The processors in the picture could be the robot microcontroller,
the CSM Module, or any other processor that can produce valid CAN signals.

CAN Software

Source code is attached at the end of the document. Important documents to have in hand while
programming using CAN include:

!" MSCAN Block Guide 2.0
!" Detailed Register Addresses by Motorola

In the MSCAN Block Guide description, information is given for each bit of each register. Within this
guide, there is information about bits that require writing a ‘1’ to them to clear them. It is important to
reference this guide when debugging code. Stepping through each command in the simulator and
looking at the addresses where the CAN registers are located is the best way to make sure commands
are doing what is expected. However, some register values do not always stay set. For example, when
the CAN Transmit is scheduled to run, it may actually send the message and clear the register. That
can make things confusing while looking at the simulator, so it’s something to be aware of. Also,
certain registers cannot be written to while Initialization mode is activated, and others cannot be
written to while Initialization is disabled.

Page 17

There are two additional things about writing code that I would like to discuss in more detail. The first
is the timing of CAN messages and how to change them using the registers provided. The second
discussion involves the ID and data registers and what these mean for the development of the overall
project.

CAN Timing

The two registers used for controlling CAN timing are CANBTR0 ($0142) and CANBTR1 ($0143).
These registers are separated into components of various length to give the programmer control over
the CAN timing. The following is an example calculation of 125 kHz.

There is a great amount of detail involved in explaining how the processor uses the values, but the
main purpose is to maintain synchronization. Even when a dominant-to-recessive state occurs early or
late, the processor can eliminate Syncseg if necessary and either P1Seg or P2Seg can be shortened or
lengthened. The following is a description of each component of CAN synchronization.

Propseg - the propagation time caused by physical delays such as very long wires. Our system is
small, so is not considered in programming.
Syncseg – the synchronization segments the processor is allowed to insert to match the timing of the
system clock. A typical value for this is 1.
Prescalar (also referred to as BRP or Baud Rate Prescalar) – defines the length of the Time quanta Tq.
The values of Syncseg, p1seg, and p2seg are multipliers of Tq.
P1seg & P2Seg – These are phase segments. Typically Phase 1 is longer than Phase 2 and the HCS12
devotes one extra bit to Phase 1 for that reason. Usually these registers and Syncseg add to form a
common multiplier (such as 16)
SJW – Syncronization Jump Width – this sets the number of Tq that the phase segments can be altered
by to achieve synchronization.

For the 125kHz case, with a 16 MHz crystal oscillator frequency, p1seg and p2seg need to add to 15,
so p1seg=8 and p2seg=7 are used. This is arbitrary, 9 and 6 could also be used with similar results.
The limitation involved is that both phase segments must be greater than the SJW. The prescalar is
then 3 to complete the equation:

After obtaining the values needed, then it is important to get them into the registers properly.

It is helpful to create the exact binary string and then convert it into a hex digit for programming.
CANBTR0 is comprised of SJW and BRP. Keep in mind that the hex values start at 1, so $00 is the
decimal number 1. If we use 2 (%01) for SJW and 3 (%10) for BRP, then CANBTR0 = %01000010 in
binary. That corresponds to $42 hex. CANBTR1 is comprised of P1Seg and P2Seg as well as a

Page 18

variable called SAMP that differentiates between 1 sample taken and 3 samples taken every bit. We
found 1 sample to be sufficient. The necessary information to create CANBTR1 is SAMP = 0, TSEG2
= 7 (%110) and TSEG1 = 8 (%0111). CANBTR = %01100111. That corresponds to $67 hex. In the
sample code at the end of this document, different values are used, but this is a description of how to
write to the timing registers and manipulate the CAN timing frequency.

CAN ID’s and message table

Theoretically, each message is sent with an ID that identifies what type of message is contained. With
a small system, CAN ID’s can simply be ignored. In testing, we set them before we transmit a
message, but currently in the CANRX interrupt these values are not checked. In the robot system,
there are a limited number of possible messages, so the message itself can contain the necessary
information. At this point, the robot only receives commands that were processed by the CSM
module. Therefore, any data message received can be put through a case-statement to operate a robot
command. However, if multiple devices were connected to the robot by CAN, it may be useful to have
a table with ID’s describing which device produced which message. A sample table is given below:

Identifier
Identifier
Source Type of Data Notes Who uses it?

$00 Robot
Critical Robot

status
Robot error - feedback
to other systems all other nodes

$03 CSM Module
Commands for
Robot wireless steering Robot

$0F Robot
Bumper
information

for wireless bumper
logging CSM Module

$3F GPS
Position
coordinates

When $02 is seen,
read DLR to know how
many bytes to receive

CSM Module
and Robot

The identifier itself is a priority. In the CANRX interrupt handling routine, the programmer would
check for the highest priority (lowest hex ID) items and handle them first.

Masking or filtering is also possible with the CAN IDs. For instance, if the CSM module was not
programmed to be able to use any GPS coordinates, one could set the filtering registers so that the
CSM module did not even receive messages with an ID of $03F. In this way, CAN IDs can be used to
improve the efficiency of the entire system by reducing the demands on individual CAN systems.
When devices receive fewer messages, they have less processing to do.

Masking CAN IDs

There are three register sets to deal with when setting the masks up:
A) CIDAC – determines the configuration of the mask and acceptance banks into filter sizes and the
number of filters. The available options are:

- 2 x 32-bit filters
- 1 x 32-bit filter, 2 x 16-bit filters
- 1 x 32-bit filter, 4 x 8-bit filters
- 2 x 16-bit filters, 4 x 8-bit filters
- 4 x 16-bit filters
- 8 x 8-bit filters

Page 19

The MSCAN 2.0 block guide should be referred to when deciding how to achieve each possible
configuration.

B) CIDMR[0-3] – This is a mask on the acceptance filter. Its function is to basically determine which
bits to look at for the actual filter itself. A ‘0’ written to a bit means the processor will check an
incoming message to see that it matches that bit of the filter. A ‘1’ here is like a “don’t care” in that it
doesn’t matter whether the incoming message is a ‘0’ or ‘1’ because the processor doesn’t filter that
bit.

C) CIDAR[0-3] – This is the filter that bits of incoming messages are compared to. When a message is
rejected because of a filter, it simply allows the next message to overwrite it in the input buffer.

An example would be helpful here. If the desired filter is 0001x1001x0, then CIDMR[0-3] would be
configured as 00001000010, making bits 1 and 6 don’t-cares. In CIDAR[0-3], bits are ignored if the
corresponding bits in CIDMR[0-3] are ‘1’. CIDAR[0-3] would then be set to 00010100100 or
00011100110. Either value is correct since bits 1 and 6 are ignored.

Transceiver Type

It should not be a problem to use a different transceiver than the MCP2515. As always when
connecting hardware, care needs to be taken to ensure TX, RX, CANH, and CANL are connected
properly as well as the connections to select the transceiver mode and supply the correct voltage and
current.

Processor Type

Without knowledge of the processors that may be used in the future, it is important to reduce the
problem down to the main considerations:

!" Timing – With some CAN devices, it will simply not be possible to obtain certain CAN
frequencies. This should dictate the choice of hardware and/or any group exploring a different
processor must be certain that it can change the current processor software to match.

!" Registers – A set of registers to manage CAN and store data and ID values is very helpful in
the programming of CAN. If a register setup similar to that of the Motorola HCS12 is used, it
may even be possible to just find corresponding assembly instructions that do the same thing as
the Motorola code included in this document.

Other useful discussion

There is not a specific section to put these in, but the information here may prove helpful in fixing
problems along the way.

!" Debugging CAN timing – One of the best ways is to put the TX and/or RX pins on the
oscilloscope and check the timing of the device. First, visually identify a single bit within the
message. Multiple high bits or low bits could throw your measurement off, so it is important to
try to find a single bit in the oscilloscope readout. The CAN frequency is the inverse of the
period, which can be measured on the oscilloscope. Then use the CAN timing registers to
modify the timing and retest and check on the oscilloscope. The CAN timing section above
should prove helpful in this part.

Page 20

CAN4USB PC device – This adapter enables a CAN bus to be connected to a computer with a USB
port. It enables debugging using application software that allows the capture and visualization of CAN
messages. This software is provided with the adapter and must be installed on the computer. The
CAN4USB adapter is provided by Zanthic.

Page 21

CAN Software Source Code
(Applies to Motorola HCS12 Processor)

//******************
//*CANTx – This function takes in a character from a main loop,
// performs all of the message setup, and then transmits the
// message (simply the one character) onto the CAN bus.
// Inputs: Two characters, at the moment only the first is used.
// Returns: None
//********************
void CANTx(char var1, char var2) {
 CANCTL0 = (CANCTL0 | 0x01); // Enter Initialization Mode
 CANCTL1 = (CANCTL1 & 0xEF); // Exit Listen-only Mode
 CANCTL0 = (CANCTL0 & 0xFE); // Leave Initialization Mode

 CANTBSEL = (CANTBSEL | 0x01); // Choose Message Buffer 0

 CANTXIDR0 = 0x00; // Write to Identifier Register 0
 CANTXIDR1 = 0x00; // Write to Identifer Register 1
 CANTXDSR0 = var1; // Write to Data Byte 0
 CANTXDSR1 = var2; // Write to Data Byte 1
 CANTXDLR = 0x01; // Write to Data Length Register

 //CANTIER = (CANTIER | 0x01);
 CANTFLG = 0x01;
 _asm("nop");

 _asm("nop");
 CANRFLG = 0x03; // write a 1 to clear the overrun and receive flags
 CANRIER = (CANRIER | 0x01); // Enable CAN Receive Interrupt
}

//******************
//*CANInit() – This function should be called just before
// the main loop to initialize all of the CAN registers so that they
// work with a processor-to-processor system.
// Inputs: None Returns: None
//********************
void CANInit(){
 // MSCAN Initialization
 CANCTL0 = (CANCTL0 | 0x01); // Go into Initialization Mode
 CANCTL1 = (CANCTL1 | 0x80); // Assert CANE
 CANBTR0 = 0x82; // Timing registers
 CANBTR1 = 0x44; // Set for 250k CAN Bus clock

 CANIDAC = 0x10; // Enable ID registers
 CANIDAR0 = 0x00; // Set up Identifiers
 CANIDAR1 = 0x00; // Accept everything
 CANIDAR2 = 0x00;
 CANIDAR3 = 0x00;
 CANIDMR0 = 0xFF; // Ignore CAN Acceptance Registers
 CANIDMR1 = 0xFF;
 CANIDMR2 = 0xFF;
 CANIDMR3 = 0xFF;

 CANCTL1 = (CANCTL1 & 0xEF); // Exit Listen-only Mode
 CANCTL0 = (CANCTL0 & 0xFE); // Leave Initialization Mode
 CANRFLG = 0x03;
 CANRIER = (CANRIER | 0x01); // Enable CAN Receive Interrupt

}

Page 22

// This can be used as a check to see if a message was correctly
// sent
interrupt 39 void CANTxEmptyInterrupt() {
 //FFB0 is the vector
 _asm("nop");
}

//******************
//*CANRxInterrupt – This is entered when the processor receives
// a CAN message. In this example, the message is checked;
// against 3 values that mean something in a sort of look-up table
// for processor-to-processor communication
// Inputs: CAN Message stored in Receive buffer
// Returns: None
//********************
interrupt 38 void CANRxInterrupt() {
 if (CANRXDSR0 == 0x66) {
 _asm("nop");
 //PORTB_BIT4 = 0;
 //PORTA_BIT0 = 0;
 PTAD_PTAD7 = 0;
 PTAD_PTAD6 = 0;
 }
 else if (CANRXDSR0 == 0x64) {
 //PORTB_BIT4 = 0;
 //PORTA_BIT0 = 1;
 PTAD_PTAD7 = 0;
 PTAD_PTAD6 = 1;
 }
 else if (CANRXDSR0 == 0x46) {
 //PORTB_BIT4 = 1;
 //PORTA_BIT0 = 0;
 PTAD_PTAD7 = 1;
 PTAD_PTAD6 = 0;
 }
 else {
 //PORTB_BIT4 = 1;
 //PORTA_BIT0 = 1;
 PTAD_PTAD7 = 1;
 PTAD_PTAD6 = 1;
 }

 //CANCTL0 = 0x80;
 _asm("nop");
 CANRFLG = 0x03;
 _asm("nop");
 _asm("nop");
 _asm("nop");
}

interrupt 37 void CANOverrunInterrupt() {
 // This needs to be an exact copy of CANRxInterrupt.
 // We’ve never received this interrupt, but if so, I believe this is
 // what should be here.
}

Page 23

Appendix 2. Final daughter board circuit design

Page 24

Page 25

Robot CAN Transmit - pin 17 on robot to pin 1 of Transceiver 1
Robot CAN Receive - pin 18 on robot to pin 4 of Transceiver 1
CSM CAN Transmit - pin 26 on CSM to pin 1 of Transceiver 2
CSM CAN Receive - pin 28 on CSM to pin 4 of Transceiver 2
CAN Bus - CANH of all transceivers connected to one line
 - CANL of all transceivers connected to another line
 - 120-ohm resistors at each end connecting the two

CSM SCI Transmit - pin 5 on CSM connected to Pin 3 on JP1 on EZL-80
CSM SCI Receive - pin 7 on CSM connected to Pin 4 on JP1 on EZL-80

When using TTL level SCI signals, the traces CT-4 and CT-5 must be cut. This disables
the UART on the CSM and allows it to output the correct voltage levels on pins 5 and 7.
When using RS232 communication, these traces must be intact.

Page 26

Appendix 3. Software

PC Program Description

 This is a description of the program from the point that a connection has been
established onward. That means the Status Bar shows ‘Socket has connected to remote
computer’.

Receiving data from EZL-80

 When the EZL-80 sends any information, it will show up in the text received
textbox with a timestamp associated with it. This is currently there just to show that we
successfully received. Other things can be done with this information by getting into the
tcpClient_DataArrival function and using the data differently.

Sending data to the EZL-80

 There are many different ways to do this. Currently, most of them are associated
with button presses for purposes of remote control. The following is a quick description
of the button presses:
Forward – Sends 0x01 to EZL-80
Reverse – Sends 0x02 to EZL-80
Spin Right – Sends 0x03 to EZL-80
Spin Left – Sends 0x04 to EZL-80
Stop – Sends 0x05 to EZL-80
Degree Turns – Sends 0x03 or 0x04 for turning, waits a programmed amount of time, and
then sends 0x05 to stop it.

The time length corresponds to an integer value stored in a textbox underneath the
Spin Left and Spin Right buttons. That value is the timer interval that corresponds to a
90 degree turn. For a 30 degree turn, the timer interval is set to 1/3 of the value in that
textbox.

 There is also the option to send data in binary and ASCII decimal format. These
are not really an integral part of the program, just trying to prove that it can be done. The
hex option does not work, because I need a good VB function for converting hex values
to ASCII characters. The important part of the function is within the button press
handling subroutine where it uses the command ‘tcpClient.SendData chr(127)’.

Page 27

PC and EZL-80 Mode Description

There are two modes of operation that we were able to use to successfully

communicate between the EZL-80 and the PC Software that is named
‘RobotCommandCenter’. This document will describe how to connect in both modes
from the PC side.

Connect on Demand (COD) Mode / TCP Client Mode

 This mode is used when you want the Robot and EZL-80 to initialize the
connection to the computer. This method was preferred by us, because the Robot sends a
one-byte initialization string on startup. The ‘Conn. Byte’ variable is set to 1 in the
ezConfig program. That requires the EZL-80 to send one byte of information to request
the connection to the computer.

 In RobotCommandCenter, the user must select Listen Mode, as shown below:

When Listen Mode is selected, the status will read “Socket is listening for

requests”. As soon as the EZL-80 receives a byte of information and transmits it, the
status will change to show that the PC and EZL-80 are connected.

To Disconnect the EZL-80 and the PC, you simply press the ‘Disconnect All

Modes’ button. This can be done not only after a connection has been established, but
also when it is currently listening for requests.

It is important to note that you do not need to set the IP address and port number

of the EZL-80 in COD mode. For the EZL-80 to connect in COD mode, it needs to have
the IP address of the PC running RobotCommandCenter hard-coded into it, but there is
nothing extra within RobotCommandCenter. Any computer can use ezConfig to change
the IP address that the EZL-80 will try to connect to. Therefore, another computer could
take over control. There is an option to add a password to the EZL-80 you are connecting
to, so it would be a good idea to do that if you are worried about control.

TCP to Serial (T2S) Mode / TCP Server

Page 28

This mode is used when you want RobotCommandCenter to initialize the

connection between PC and EZL-80. To use this mode, you have to know the IP address
and the port of the EZL-80 and update this with the ‘Update IP Address and Port
Information’ button. Once this is done, you must press the ‘Connect in T2S Mode
button.
 The important areas of connecting in T2S mode are shown below:

When Listen Mode is selected, the status will read “Socket is listening for
requests”. As soon as the EZL-80 receives a byte of information and transmits it, the
status will change to show that the PC and EZL-80 are connected.

To Disconnect the EZL-80 and the PC, you simply press the ‘Disconnect All

Modes’ button. This can be done not only after a connection has been established, but
also when it is currently waiting for the EZL-80 to accept the connection request.

Other Modes

 We did not do any testing with the other modes. UDP mode for UDP packets
may be interesting, but RobotCommandCenter uses a Winsock control that had example
code dealing with TCP packets. I am not sure what support there is for UDP in Visual
Basic 6.0, but it probably exists and is easily implemented. UDP may be interesting
because it doesn’t have to go through a connection request-and-accept process before
data can be transferred.

Page 29

Data transfer considerations.

The actual byte data that is transferred is not critical on its own, but when every device in
the system knows what the value means, it is useful. We have a table of values defining
what each command means and what value it corresponds to. This table should be
updated as the project gets more complicated. If more than 255 commands or data
messages are needed, you can use identifiers in the CAN system or use more than one
byte. Our system is so small that one byte was all that was necessary. The final table is
as follows:

 Forward Reverse Right Left Stop

PC Sends/CSM Receives 0x01 0x02 0x03 0x04
all others (0x05
usually)

CSM Sends/Robot Receives 0x66 0x44 0x46 0x64 0x67

 Bumper 1 Bumper 2 Startup CSM Btn1 CSM Btn2

Robot Sends/CSM Receives 0x01 0x02 0xFF N/A N/A
CSM Sends/PC Receives 0x01 0x02 0xFF 0x03 0x62

CSM Sends/Robot Receives N/A N/A N/A 0x64 0x46
Table 1: Commands and data messages in the entire Wireless ECE Robot data flow

Page 30

Mode 8 (remote
control)

Initialize CAN

Wireless Robot firmware Flow Charts

yes
Input command

and change
motor control

Interrupt
from

RxCAN?

Robot code for a new remote
control mode

Main loop

yes

CSM-12C32 code

Initialize CAN and
SCI

Decode
information

Carson Drew 12/10/05

Bumper
sensor hit?

yes

Stop motors and
back up a little

Send stop signal
to CSM

no

no

Interrupt
from RxSCI?

Transmit to Bot
using CAN

yes

Decode
information

Interrupt
from

RxCAN?

Transmit to EZL
using SCI

no

no

Page 31

Appendix 4. Step-by-step user instructions
Connecting the Wireless ECE Robot – Start to Finish

Throughout this document, I’ll be under the assumption that the daughterboard that
combines the CSM-12C32, the EZL-80 and PCMCIA socket, and CAN hardware has
been completed.

Connecting the Hardware

First, create the connections for the CAN communication between the CSM-12C32 and
the Robot. Materials include two CAN Transceivers (MCP2551 from Microchip), the
current ECE Robot, a CSM-12C32, and two wires connected into a socket on one end.
The CSM-12C32 plugs into the 40-pin socket on the daughterboard. There is a built-in
connection from the CAN pins (26 and 28) on the CSM-12C32 to the first CAN
Transceiver. A CAN transceiver (the MCP is an 8-pin DIP) must be inserted into each of
the 8-pin sockets on the daughterboard. Then, connect the two wires to the robot
microcontroller on pins 17 and 18. It is helpful to use a socket to keep this enclosed.

It should be noted that the CSM-12C32 can be connected through the RS-232 connection
on the daughterboard, but the design allows for the CSM-12C32 to be connected on the
40-pin header. This requires cutting cut traces 4 and 5, but the 40-pin header handles
power, so this is ideal for the project. Power must be wired manually to the CSM-12C32
if it is connected using RS-232.

Second, you must insert the EZL-80 into the two 20-pin headers. Make sure that the side
of the EZL-80 that is labeled ‘JP1’ is inserted into the header labeled ‘JP1’. If not, you
may have the EZL-80 upside-down. The serial connections between the EZL-80 and the
CSM-12C32 are already internally wired. The connections between the EZL-80 and the
PCMCIA socket are also internally wired. At this point, you can move on to the software
setup steps.

Third, you must use four screws to attach the daughterboard to the robot above or below
the main robot PC board. Also, power connections must be made according to
specifications. 5V and ground must be wired from the 2-pin power header on the robot to
the 2-pin power header on the daughterboard.

Software Setup

The first thing to do is to use ezSerialConfig to configure the EZL-80. It is possible to
connect a serial cable directly from the computer running ezSerialConfig to the serial port
on the daughterboard. Once this is done, set the communication port to the one you are
using on your computer (COM[1-4]). Then press ‘Read’. If there is no response, there is
an error in hardware connections.

The program will display the MAC address of the EZL-80 when a connection is
established and many textboxes will become available. By setting these and then writing

Page 32

them to the EZL-80, you are configuring the EZL-80. Set the EZL-80 to COD mode in
the drop-down list ezTCP Mode, Set ‘Conn. Byte’ to 1, set the Peer IP and Peer Port to
your computer’s IP and desired port. Make sure Parity is set to ‘NONE’ with 8 data bits.
Baudrate should be set to 9600, and flow control should be disabled. The last thing to do
is to set the Target SSID. This is the name of the network that you want to use for the
connection. We used RFconnect, the campus network. If the EZL-80s are newly
ordered, the MAC addresses will not be on file with ITC. They may not work, so you
should call Bob Underkofler at ITC (x5100) to help with that. Note that the PC running
RobotCommandCenter must be on the same network that the EZL-80 is configured to.

Starting the Connection

Once the EZL-80 has been configured, start RobotCommandCenter on the networked PC.
For COD mode, you simply have to press the ‘Listen Mode (for COD mode)’ button.
The robot will request a connection when powered up for the first time. To establish this
connection, you must power on the systems by flipping the switch on the robot. The
robot will go through initialization that lasts around 10 seconds. This is enough time for
the EZL-80 to get set up on the network. This initialization does not do anything for this
project, it is just remaining code from Dr. Maher’s basic class setup. It can be removed,
but it may not allow enough time for setup of the EZL-80. If a connection is not
established after 15 seconds or so, you may just press a bumper on the robot and it will
send a different byte and establish a connection. Then, send and receive commands using
RobotCommandCenter.

Page 33

Appendix 5. Financial Report

Additional materials purchased (not included in above budget summary):
Item cost
4/7/06 BALANCE $1,399.28
DATA FLOW SYSTEMS $206.80
DIGI-KEY CORP $366.63
DIGI-KEY CORP $420.99
PCB EXPRESS $404.86
FINAL BALANCE $0.00

Page 34

Item cost
4/7/06 BALANCE $1,399.28
DATA FLOW SYSTEMS $206.80
DIGI-KEY CORP $366.63
DIGI-KEY CORP $420.99
PCB EXPRESS $404.86
FINAL BALANCE $0.00

Page 35

