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Design By Contract (DBC from now on) is a design technique for Object Oriented software, first
introduced with Eiffel. The aim of DBC is to ensure a higher quality for the software, a higher
reliability and a greater reuse.

The key concept is that of designing a class starting from its interface and giving conditions that
have to be satisfied before and after we perform each action over any object of that class. Those
conditions  are  referred  to  as  preconditions  and  postconditions.  Furthermore  we  can  provide
invariant properties for the class, namely always true along the  public life of any object of that
class.

Those conditions, together with a well designed interface, should warrant that any instance of the
class behaves always like we expect.

In this article we will see the support that Eiffel gives to the DBC and we will  try to replicate
that support in C++, as long as it is possible.

DESIGN BY CONTRACT IN EIFFEL
DBC was first implemented in Eiffel, a strongly typed OO language (www.eiffel.com), or better

still Eiffel was born just as an implementation tool for DBC. This language provides constructs to
make

• preconditions
• postconditions
• class-invariants

A precondition is a boolean expression evaluated before the code of a method. This condition
must evaluate always to true, otherwise an error is thrown.

A postcondition is a boolean expression evaluated after the end of the code of a method. This
condition must evaluate always to true, otherwise an error is thrown.

A class-invariant is a condition that, each time is evaluated, it must evaluate to true, otherwise an
error is thrown. The class invariant is evaluated immediately after the creation of each instance of
the class and after each call to a public method of any instance of the class.

In Eiffel the key word  require is to define preconditions. A precondition can be composed of
many boolean expressions separated by semicolons ‘;’. The key word ensure, instead, is to define
postconditions and invariant is to define class-invariants.

Here is a simple Eiffel class which shows those constructs at work:

class SquareRootable feature

value: Real;

sqrt is
require
value >= 0;

do
value := ....;



ensure
value >= 0;
((value <= old value) and (value>=1)) or 
((value >= old value) and (value<1));

end;

invariant
value >= 0;

end; - class SquareRootable

The  key  word  old in  the  postcondition  indicates  that  we  are  referencing  the  values  of  the
attribute value as it was before evaluating the precondition. That line of code tells us that the square
root of a number is always less or equal the same number if greater of equal to 1 and viceversa if
smaller. In case it was not true, then one of two cases should apply: either we have found a bug, or
we have proved a new theorem :))

The  class-invariant  of  this  class  is  a  property  that  expresses  the  necessary  and  sufficient
condition for a number to be square-rooted without  going into the complex field,  that of being
greater or equal to zero.

By means of a utility it  is  possible to  extract  the  short  form of  that  class,  that  is  a sort  of
interface  that  omits  the  implementation  of  the  methods  and  even  private  features  (in  the  C++
terminology  we  would  say  private  member  data  and  functions),  but  including  preconditions,
postconditions and class-invariant.

The short form of the above seen class is the following:

class interface SquareRootable feature

value: Real;

sqrt is
require
value >= 0;

ensure
value >= 0;
((value <= old value) and (value>=1)) or 
((value >= old value) and (value<1));

invariant
value >= 0;

end; - class SquareRootable

It  is  evident  that  most  of  the  information  that  we  need  to  know  to  use  an  instance  of
SquareRootable is contained in the name of the methods (and in their public comments), in their
preconditions and postconditions and in the class-invariant. These public warranties, make for us
more reliable and simpler to use objects of the class SquareRootable, because being all explicit, we
can always ensure that any request of any object is satisfied. All will go well until we respect this
contract. This is why this technique is called Design By Contract.

The aim of this technique is not to catch all the cases where a object is used without respecting
some conditions,  assertions  would  suffice  for  that,  but  to  make  it  clear  a  priori which  is  the
agreement between the object and its client. If the designer who has developed the class has made it
explicit all the constraints and the user-developer of any object of that class has respected them,
then no run-time messages will be thrown saying: “warning, you would haven’t done that to me!”.
Those  messages  are  intended  for  the  developer  and  only  for  helping  him during the  phase  of
development and debugging in catching problem and finding solutions to them (this requires the
ipothesis that pre and post and class-invariants are self-explanatory). It is like documenting very
well every method of the class, but unlike paper documentation, it helps us even in finding bugs,
saying us where the contract has not been respected.



USING THE DESIGN BY CONTRACT IN C++
C/C++ programmers know the macro  assert() which pretends the passed expression to be true

each time it is evaluated. Someone could be tempted to think that an extensive and clever use of
assert() could help the C++ developer in using the DBC in his projects. Unfortunately this is false
and for several reasons:

• Every developer of your team could use his/her own style to place assertions into the code,
hence many assertions could not be steadily identifiable as preconditions or postconditions:
those would simply be expressions that must be true every time the CPU passes over them. The
consequence is the impossibility to get the short form of a class in an automated way.

• In general it is difficult to simulate the service offered by the Eiffel key-word old, in the sense
that we would always store a copy, at the beginning of each method, of every thing we would
like compare its initial value with its final value.

• The evaluation of the class-invariant is one thing that should be hard coded by the developer of
the class and this leads to write more lines of code for each class... Furthermore it is complex,
in such “free” context, to ensure that an automated process for the generation of the short forms
could extract pre, post and class-invariants from the code: we should force every developer of
our team in following very strong constraints (often they not even follow those that seem to be
elementary, let’s figure these others out....)

All these points show that the only use of assert() cannot take us toward the same results as the
Eiffel constructs permit us to reach using the DBC. To reach comparable results we should provide
some  coding  conventions  and  a  object  which  automate  many  things,  like  the  class-invariant
evaluation every time it is needed and the retrieval of the old-values of every attribute of the object.

TECHNIQUES FOR IMPLEMENTING THE DBC IN C++
The first obvious way to provide C++ programmers a easy way to follow the DBC is that of

extending the C++ language with those constructs that Eiffel has introduced for that aim. This could
be done via a preprocessor which maps this enriched C++ to the standard C++.  Following this way
there are some drawbacks,  like the huge time required to implement  such a preprocessor  (it  is
substantially  a  compiler  for  a  new  language),  the  fact  that  his  enriched  C++  would  not  be
recognized by our smart IDEs (hence thing like the syntax highlighting would not function any
more) and least  but not last  the loosing of portability (we should “port” even the preprocessor,
otherwise we should develop and preprocess on a platform and compile and debug on another, the
dream of every C++ programmer.... someone is already tired of long compiling times, figure out of
what he/she could say of such a work scheme).

Another possibility is that of putting in  a class the needed code to automate the definition and
the  evaluation  of  preconditions,  postconditions  and class-invariants,  with  the  semantics  that  we
have already seen. This last approach is simpler, accomplishable by a single programmer and it is
the one that we are going to see in the next paragraphs. An advantage of this approach is that of
being “compatible” with the integrated development environments that we all love (me for first).
This last observation stands for both aesthetical and functional aspects, for example, in the case of
the precompiler-approach what about the debug at the code-level? We would like to debug looking
at the enriched C++ source, while we are forced to debug the precompiled code....

THE VERIFY CLASS
All we need to use the DBC in C++ is the class template Verify<T>. An instance of that class,

that by convention we call verify (along this paper names of  instances always begin by lower case,
while those of classes begin by capitol letters), is created in the private section of every object of the
class T and it is initialized in the constructor of T, like in the following class definition:

class A {



public:
A() {
verify.init(this,”A”);

}
private:
Verify<A> verify;

}//class A

In the constructor of the class A, we have first to initialize the object verify, passing him a pointer
to the host-object and the class-name of the host-object: the first it is used to call the method that
evaluates the class-invariant (see later) and to make copies for the retrieval of the old-values (see
later), the second is used to make each error message which verify throws more readable. 

This is all we need to add to our classes to get the services needed for the definition and the
evaluation of preconditions, postconditions and class-invariants. Later we will see how to get those
services and how Verify<T> implements them.

Let us note that it could have been possible to provide Verify<T> of a constructor that took the
same two parameters of init(), so to make it possible to create and initialize the object in one shot.
The drawback of this way of doing is that the verify object cannot be created in a static way into the
class A (a constructor without parameters is needed for such a creation), we are forced to allocate it
in the heap and even to deallocate it manually in the destructor of A. Together with the increase of
encoding work for  us and a  new source of  possible bugs,  this  technique  leads to  slower code,
because allocating in the heap is slower than allocating in the stack. Furthermore in this way we
force the operating system to allocate to areas of memory, one for the instance of A and the other for
verify.  If  verify is  created  statically,  instead,  the  operating  system allocates  only  one  block  of
memory for the instance of A, which also contains verify and the whole process is much faster.

THE DEFINITION OF A CLASS-INVARIANT 
A class invariant is a piece of code that must have access to all the members of the object, both

public and private, whose aim is to compute a boolean function of the attributes of the object. We
expect this function always returning the logical value true in normal conditions.

The best place for such a piece of code is a public method, that by convention we could name
classInvariant(). The signature of this method shall be

bool classInvariant() const {...}

Let us note that by this definition of class-invariant follows that a class-invariant is a boolean
functions, not a boolean expression, hence it goes beyond the first order logic and this observation
will be useful for some considerations at the end of this paper.

The  const qualifier  is  used  to  stress  and ensure  the  fact  that  the  computation  of  the  class-
invariant has no side effects on the instance on which we compute it.

To let verify use this class-invariant, we have to pass a pointer to this member function e we do it
by the method useClassInvariant(), used as follows:

verify.useClassInvariant(&A::classInvariant);

This action may be accomplished in any moment after the initialization of verify, even if the best
choice is doing it  immediately after the initialization of  verify.  We need to initialize  verify first
because at this stage we pass him the pointer to the host object and this pointer is needed to call the
class-invariant on the host object.

The computation of the class-invariant is made after the evaluation of every precondition and
postcondition in each method declared as public. verify does it for us silently and later we will see
how to say him when a method is public.

The automatic evaluation of the class-invariant is not made for methods declared as protected or
private, because we allow an instance to temporarily violate the class-invariant after the call to a
private  or protected method:  what  matters  is  that  this  does  not  happen for  the public methods.



Anyway it is always possible to request explicitly the computation of the class-invariant in any
moment, by the method evaluateClassInvariant().

The class-invariant should be called even immediately after the creation of any object and we do
it by calling evaluateClassInvariant() explicitly at the end of the constructor of the host object.

For what we have see until now, here is a template for the constructor of the class A:

A() {
verify.init(this,”A”);
verify.useClassInvariant(&A::classInvariant);
...
...
verify.evaluateClassInvariant();

}

LET’S USE PRECONDITIONS AND POSTCONDITIONS NOW 
Here is the hot part of the paper, in which we are going to see how to define preconditions and

postconditions in our code.
Preconditions and postconditions are implemented via calls to the methods  preCondition() and

postCondition() of the object verify. These methods take the following parameters

1. The boolean expression to be evaluated
2. A string message to be shown on the screen in case the condition evaluates to false
3. The name of the method from which we are calling the precondition
4. An indicator of the type of the method (mtPublic, mtProtected or mtPrivate)

The parameters 1 e 2 are always mandatory, the third is mandatory for preconditions only, while
the forth is intended for preconditions only and is optional (the default value is mtPublic). In sum
we can omit to communicate to postconditions the name of the method whose postcondition is
going to be evaluated  and the class  of this  method (public,  protected or private),  in that  those
information have already been given by the previous call to preCondition(). Obviously we make the
assumption that a precondition has been defined and this is the normal situation, even if, as we are
going to see later,  Verify<T> gives the chance to release this and others constraints, in favour of
above all performance. Anyway this chance has to be used carefully.

Now let us see how is the class SquareRootable in C++

class SquareRootable {
public:
float value;

SquareRootable() {
verify.init(
this,
“SquareRootable”

);
verify.useClassInvariant(&A::classInvariant);
verify.evaluateClassInvariant();

 }//SquareRootable

void sqrt() {
verify.enableOld();
verify.preCondition(
value>=0,
“NOT value>=0”
“sqrt()”

);

value = ....;

verify.postCondition(
value>=0 &&
(value>=1)?(value<=verify.old->value): (value>verify.old->value),
“NOT value>=0 or NOT value>=1?value<=old.value: value>old.value”



);
}//sqrt

bool classInvariant() const {
return value >= 0;

}//classInvariant

private:
Verify<A> verify;

};//* class SquareRootable

We can see in the call of method verify.postCondition() that the old-values are retrieved by the
old pointer, which points to a copy of the host object, as it was at the moment of the call to the
method  verify.enableOld(). This last method has made a copy of the host object and that copy is
going to be destroyed at the end of the postcondition evaluation.

THE SHORT FORM OF A CLASS
As it happens in Eiffel, we can implement a program that parses our class and automatically

retains only the signatures of public methods,  their  preconditions and postconditions,  the class-
invariant,  public attributes and published comments,  that is comments that begins,  for example,
with a sequence like ‘//*’. The output of such a program for the C++ version of  SquareRootable
should look like the following:

class interface SquareRootable {
float value;

SquareRootable();

void sqrt() 
verify.enableOld();
verify.preCondition(
value>=0,
“NOT value>=0”
“sqrt()”

);

verify.postCondition(
value>=0 &&
(value>=1)?(value<=verify.old->value): (value>verify.old->value),
“NOT value>=0 or NOT value>=1?value<=old.value: value>old.value”

);

bool classInvariant() const {
return value >= 0;

}

};//* class SquareRootable

INHERIT CLASS-INVARIANTS, PRECONDITIONS AND POSTCONDITIONS 
The class-invariant of an ancestor can be inherited simply recalling it in the class-invariant of the

derived class. This should always be done, in that a derived class is a specialization, hence it should
satisfy all the conditions of the ancestor class, plus perhaps another set of additional conditions. An
example of inherited class-invariant is in the following code:

class Base {
public:
...
bool classInvariant() const {return ...;}
...

};//class Base

class Derived: public Base {



bool classInvariant() const {
return Base::classInvariant();

}//classInvariant

};//class Derived

As  regard  preconditions  and  postconditions,  inherited  methods  continue  to  be  covered  by
preconditions  and  postconditions  defined  by  the  ancestor,  but  it  is  not  possible  to  derive
preconditions and postconditions in virtual methods: such conditions should entirely be rewritten in
the methods of the derived classes, which overwrite the corresponding methods in the ancestor
class.  Alternatively,  we  can  provide  protected  member  functions  to  evaluate  preconditions  and
postconditions of each virtual method and recall those functions both in the ancestor class and in the
derived class. Let’s have a look at an example of this technique:

class Base {
public:
virtual void dummy() {
verify.preCondition(
dummyPre(),
“dummy message for precondition”,
“dummy()”

);
...
...
verify.postCondition(
dummyPost(),
“dummy message for postcondition”,
“dummy()”

);
}//dummy

protected:
bool dummyPre() {...}
bool dummyPost() {...}

};//class Base

class Derived: public Base {
void dummy() {
verify.preCondition(
Base::dummyPre() && dummyPre(),
“dummy message for precondition”,
“dummy()”

);
...
...
verify.postCondition(
Base::dummyPost() && dummyPost(),
“dummy message for postcondition”,
“dummy()”

);
}//dummy

protected:
bool dummyPre() {...}
bool dummyPost() {...}

};//class Derived

THE RETRIEVAL OF THE OLD-VALUES
Unfortunately the retrieval of the old-values in this framework is not as efficient as it could be in

a Eiffel implementation. In fact, to be able to retrieve the old value of each attribute, we must do a
copy of the entire instance, even when we need of only the value of a couple of integer attributes...
This is clearly inefficient, but it is the only simple and general way to accomplish the job and it is
there, available for all those cases in which our instances are not so big and the price paid in terms
of memory consumption and CPU-time is acceptable over the diminished cost of the trace activity



for  bugs  introduced  by  our  hard-coded  retrieval  of  old-values.  In  all  other  cases  we  have  to
implement the storing and the retrieval of the old-values by hand, managing even the allocation and
deallocation of memory, if needed.

Another problem with this “easy way” to the retrieval of the old-values is the assumption that the
copy constructor of the host object make a recursive deep-copy of the object, meaning that each
pointer or reference into the host object is in turn deep-copied and so forth. If this would not be true,
then we could have pointers and references copied into other pointers and references, at a certain
level of the containment hierarchy, but the object the point to are always the same and when we
change one of them, even the corresponding object in the copy get changed. The result is that we
cannot keep track of some old-values.

To ensure that a class has a recursive deep-copy constructor, we must require that it makes a
deep-copy of the object and that in turn all its sub-objects have a copy constructor which makes a
recursive deep-copy.  This  is  a recursive  definition,  that  when unrolled  simply means  that  each
object contained into a host object, at every level of the containment hierarchy, must have a copy
constructor which performs a deep-copy.

Even if it does not appear, the above assumption is very strong, in sense that are not rare the
classes that do not satisfy that condition, in that they does not have a recursive copy-constructor. An
example is given by the class  Tform of the Borland’s VCL, provided with the C++ Builder 1.0,
compiler on which the code of this paper has been tested (it has been successfully tested even with
the g++ version b18 for Win32 by Cygnus).

NOTES ON EFFICIENCY
As we have seen, the automation of the retrieval of the old-values can be very expensive in terms

of time-space resources needed. Sometime this cost might be unacceptable, leading us to hard-code
the storing and the retrieval of the old-values we need.

Other inefficiency are dued to the fact that this framework operates at a language level and for
that reason no optimization can be done to decrease the computational cost of class-invariants and
conditions evaluations. For example, in the C++ version of the class  SquareRootable, the class-
invariant is a factor of the conjunctive forms of the boolean expression of both the precondition and
the postcondition. Being the class-invariant evaluated after the evaluation of the precondition, it is
obvious that if the precondition evaluates to  true, then even the class-invariant evaluates to  true,
hence the evaluation of the class-invariant in this case is useless, a waste of resources. The same
happens  for  the  postcondition.  Unfortunately  verify does  not  know  this  all,  because  it  cannot
analyze both the class-invariant and the pre-post conditions, it simply receives their values, true or
false. Not to count the fact that the class-invariant could, in this framework, even be a boolean
function of the class members, much more than a boolean expression of them, for example, it can
have loops and jumps.

The optimization of the evaluation  of boolean expressions is instead possible in Eiffel, because
in  its  case  it  can  operate  at  a  compilation  level,  where  it  is  possible  to  analyze  the  boolean
expressions in both the pre-post conditions and the class-invariant (in Eiffel the class-invariant is a
boolean expression).

Other considerations are to be made as regard the overhead dued to the use of  Verify<T> and
these have to be all investigated, above all because one of the characteristic of the C++ is that it
makes never loose the control over the resources to the programmer, at contrary it helps him in
controlling them at the highest degree, for the aim of the maximum efficiency.

Looking at the List 1, which is the source code of the file verify.h, a first consideration regards
the  switch  Verify_RELAX_PRE_POST_CLOSURE,  that  when  defined  relax  the  constraint  of
defining  a  postcondition  in  a  method  every  time  that  a  precondition  as  been  defined  in  it.
Furthermore it prevents us from defining a postcondition in a method without having previously
defined  a  precondition  in  the  same  method.  The  pre-post  closure  is  just  a  constraint  of  the
framework which may be relaxed when needed, for efficiency reasons, but to the detriment of the



strict adherence to the DBC paradigm (there are cases in which this could be desirable, even if they
are not so many as one could think).

To disable the pre-post closure it is sufficient to define the symbol constant before including
verify.h

#define Verify_RELAX_PRE_POST_CLOSURE
#include “verify.h”

Let us note that when the pre-post closure constraint  is relaxed, being not mandatory to call
verify.postCondition() at the end of the method, it is not warranted the automatic destruction of the
copies of the host object made by verify.enableOld(), for the old-values retrieval. Such destructions
should be hand made in this case, by a call to the method  verify.freeOld(), which may be called
without any problem even if the host object has not been copied.

A second switch,  Verify_ENSURE_INITIALISATION, checks for the initialization of the  verify
object. This check is made before the copy of the host object and before or after the evaluation of
both pre-post conditions and the class-invariant. This check may sense during the development and
the debug phase, this is why the default condition is that it is disabled. It may be enabled simply
putting a #define directive before the inclusion of verify.h

#define Verify_ENSURE_INITIALISATION
#include “verify.h”

Another  useful  switch  is  Verify_INLINE,  that  when defined  let  the  methods  preCondition(),
postCondition() and  evaluateClassInvariant() be in-line expanded. This three methods are rather
long, but when the pre-post closure and the initialization constraint are disabled, the remainder code
reduces to two comparison and two function call, or even one comparison and one function call in
the case of evaluateClassInvariant(), hence in some cases it may sense to remove the function call
overhead  for  these  methods,  suggesting  to  the  compiler  to  expand  them in  line  (yes,  suggest,
because at the end, it is up to Him, the compiler, to establish whether it is convenient to expand
those methods in line). Too many in line expansions may lead to the so-called code-bloat, that it an
explosion of the actual code compiled, dued to the in line expansion of many function calls, each
one very long. At this stage the wisdom of both the programmer and his/her faithful compiler will
evaluate pros and cons of each decision in its context, what that matters is that they have the power
to choice...

The last switch we are going to examine is  Verify_ENSURE_POST_WITH_METHODNAME,
which imposes  the  name of  the  current  method to  postCondition().  This  switch  is  disabled  by
default, because the pre-post closure is active by default and this leads to this information being
passed via a previous call to preCondition(), at the beginning of the method. In case of relaxation of
the pre-post closure, this assumption could not be true any more, and for that some sadistic team
leader could say “ok, I do not force you to use always the preconditions, just because our program
is too slow, but woe betide you if you do not declare the name of the method in the post conditions,
I will prevent you to compile!”. This is the aim of this switch...

The switches we have seen are all enablable independently one from the other, hence we could
have even a situation like the following

#define Verify_INLINE
#define Verify_ENSURE_INITIALISATION
#define Verify_ENSURE_POST_WITH_METHODNAME
#define Verify_RELAX_PRE_POST_CLOSURE
#include “verify.h”

A LOOK TO THE CODE
As you have noted during the paper I have limited myself in showing only the use of the class

template Verify<T> and I have never talked about how things are really implemented, this to stress
the objective more than the implementation of Verify<T>, that is much less interesting. What that
matters is the idea exposed in the paper, more that the class template or its implementation details.



Anyway, the source code of  Verify<T> is given on  List 1 (verify.h),  List 2 (verify.i) and  List 3
(verify.cpp).

The List 1 shows the interface of the class template with all its methods, that we have already
seen at work. At the end of the list, verify.i is included, which is shown in the List 2 and contains
the  implementation  of  the  methods  of  Verify<T>,  together  with  a  simple  smart  pointer  class
VerifySmartPointer<T>, used only to export the  old pointer in a  const way and to prevent that
when  old is referenced before its initialization (made by  enableOld()) a sharp “access violation”
message could arise, but a smarter and more explicative

class: A
method: aMethod
old value evaluation without having previously called the method enableOld()

After all, this framework has been built up to facilitate the bug trace and it would have been
absurd if it could have potentially introduced other meaningful messages like “access violation”.

In  the  last  file,  verify.cpp   in  List  3,  there  is  the  implementation  of  the  function
Verify_throwMessage(), whose only aim is to print out error messages the more explicative as it is
possible, in a portable way and in such a way that follows the conventions of the target platform. To
this aim, the conditional compilation has been used, to print out messages on a dialog error when
the target platform is Windows or on cerr on every other target platform or on the same Windows
for console applications. This is a function and not a private method of the class template, because I
found not correct to force to include iostream.h or windows.h together with verify.h even in code
that has nothing to do with those files.

Another particularity of the source code, is the extensive use of c-style strings, that is  char*,
instead of a smarter string class.  The reason for this choice is that  it  does not exist a standard
implementation for a string class in every C++ compiler (both AT&T and ANSI). Looking at the
objective of  Verify<T> and the use it makes of  char* strings, it has not seemed to me right to
introduce portability problems with the choice of a string class.

COPY CONSTRUCTION AND ASSIGNMENT
We have already talked about copy constructors for the host objects during the examination of

the mechanism for the retrieval of the old-values. There are other problems that may arise when the
host  object  does  not  provide  a  custom  copy  constructor,  but  relies  on  that  generated  by  the
compiler. Let us consider the case of a host class A and the following C++ fragment of code

A a;
A b(a);

The copy constructor for A generated by the compiler has constructed b by doing a binary copy
of the object a, hence the pointers to the host object that a.verify and b.verify have, point to the same
object, they point to a. The same happens if we do not define a custom assignment operator for the
host class A, in that a default one is generated by the compiler, which makes a binary copy and in
the fragment of code that follows

A a,b;
a=b;

the results are exactly the same as before. To avoid such a problem we have to provide both a
custom copy constructor and a custom assignment operator, which initialize the object verify during
its construction and assignment

A(const A& a) {
verify.init(this,”A”);
...

}



void operator=(const A& a) {
verify.init(this,”A”);
...

}

As  it  is  not  rare  the  possibility  for  someone  to  forget  this  particular,  to  avoid  unpleasant
consequences, the class  Verify<T> has declared its own copy constructor and its own assignment
operator as private  members  functions,  preventing in this  way the compiler  to generate default
versions for these member functions in  the host classes: at this stage the compiler will require the
explicit implementation of these methods, if they are used in your code.

A LITTLE PHILOSOPHICAL NOTE ON DBC
Along the paper I have stressed that the aim of DBC is not that of filling our code of assertion

ready to go off at every step (the main critic that someone moves against this technique of design
and development), but that of proving as many information it is possible to give to the users of
instances of a class, so make them able to write more reliable applications. A signal of the fact that
often a developer needs of such information is in the widespread belief that the availability of the
source code of a class is a condition to use objects of that class in a safe way... this means that often
developers want to look better to things, the information provided by the interface of the class and a
hasty user’s manual are not sufficient to prevent some problems. It is not said that the addiction of
pre and post conditions to these information is sufficient, all relies on the wisdom of who writes
them, but as a matter of fact, in case they result violated, they lead us in the piece of code where the
problem is, hence the bug-trace problem is half solved, it suffice to execute the application in as
many contexts as it is possible, waiting for dialog errors. The alternative, without this framework, is
that of stopping at each step to evaluate the correctness of the numbers printed out on the screen
before going on to another test and this is much slower to do that saying to a tester program “run”
and see whether, when and why a dialog error comes out. Furthermore, when such a dialog error
comes out, it does not say “access violation at the address 0x012AFE44”, or “abnormal program
termination”, but a who has caused the problem, where and why and this makes a great differences
for that poor programmer who has to debug the code.

CONCLUSIONS
This  little  framework  helps  the  C++  developer  to  adhere  to  the  DBC  still  using  his  own

programming  language  and  in  a  orderly  fashion.  This,  together  with  the  adoption  of  some
conventions, like that of always placing a precondition as first line of code in each public method
and  a  postcondition  as  last  line,  leads  to  clearer  and  more  reliable  code  and  above  all  self-
documenting in terms of pre and postconditions in the class short form. Classes short  form are
generated  by  a  simple  program,  even  because  the  framework  standardize  the  definition  of
preconditions, postconditions and class-invariants and this all facilitate the use of DBC in large C++
developing teams, where it is not simple to impose to many conventions for the coding activity...
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