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Abstract
Device drivers commonly execute in the kernel to achieve high per-
formance and easy access to kernel services. However, this comes
at the price of decreased reliability and increased programming dif-
ficulty. Driver programmers are unable to use user-mode develop-
ment tools and must instead use cumbersome kernel tools. Faults in
kernel drivers can cause the entire operating system to crash. User-
mode drivers have long been seen as a solution to this problem, but
suffer from either poor performance or new interfaces that require
a rewrite of existing drivers.

This paper introduces the Microdrivers architecture that achieves
high performance and compatibility by leaving critical path code
in the kernel and moving the rest of the driver code to a user-mode
process. This allows data-handling operations critical to I/O per-
formance to run at full speed, while management operations such
as initialization and configuration run at reduced speed in user-
level. To achieve compatibility, we present DriverSlicer, a tool that
splits existing kernel drivers into a kernel-level component and a
user-level component using a small number of programmer anno-
tations. Experiments show that as much as 65% of driver code can
be removed from the kernel without affecting common-case perfor-
mance, and that only 1-6 percent of the code requires annotations.

Categories and Subject Descriptors. D.4.5 [Operating Systems]:
Reliability; D.4.7 [Operating Systems]: Organization and Design

General Terms. Management, Reliability

Keywords. Device Drivers, Reliability, Program Partitioning

1. Introduction
Recent systems such as Nooks [36], SafeDrive [43], and Xen [15]
aim to improve operating system reliability by isolating the kernel
from buggy device drivers. However, these systems do not address
a key aspect of the driver reliability problem: writing kernel code
is harder than writing user-mode code. Most advanced software
engineering tools available today apply only to user-mode code,
and debugging kernel code often requires remote debugging on a
second machine. A large step toward addressing this problem is to
move drivers out of the kernel [8, 11, 20, 25, 37].

Executing drivers in user mode provides several important bene-
fits. First, driver developers can take advantage of user-mode tools
such as profilers, libraries, scripting languages and advanced de-
buggers. While such tools are available aplenty for user-mode pro-
gramming, kernel programming represents a smaller and a more
challenging target; consequently, fewer and less polished tools are
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available. Second, the user/kernel boundary isolates the kernel from
driver failures. For example, a null-pointer dereference or a dead-
lock in a user-mode driver will kill or hang its process but leave the
kernel unaffected.

However, existing user-mode drivers frameworks suffer from
one of two problems. First, previous attempts to execute unmod-
ified drivers in user mode performed poorly [38]. The existing
driver/kernel interface significantly limits the performance achiev-
able in user mode. Moving the driver to user mode may require
frequent domain transitions that move large data structures. The
interface was written expecting local procedure calls, so commu-
nication is frequent and inefficient. For example, the networking
stack calls into a driver separately to send each packet rather than
batching a group of related packets. Similarly, it may pass in large
data structures from which the driver only needs a single field.

Second, user-mode driver frameworks that achieve high perfor-
mance require complete rewrites of the driver [18, 20, 25]. Each
of these systems has a different interface than kernel drivers on the
corresponding platforms. As a result, they provide little or no ben-
efit to the tens of thousands of existing drivers and require driver
writers to learn completely new programming models. Further-
more, even high-performance driver frameworks incur additional
costs when entering user mode; consequently, drivers with demand-
ing performance requirements, such as software modems, will re-
main in the kernel to avoid that overhead.

The path to user-mode drivers that perform well and are com-
patible with existing code comes from a better understanding of
drivers. Conventional wisdom is that most driver code moves data
between memory and an external device. In reality, data handling
is a small fraction of the code in a driver. For example, in the e1000
gigabit Ethernet driver, only 10% of the code directly relates to
sending and receiving packets [16]. Most of the driver code is de-
vice initialization and cleanup, management, and error handling.
This code controls the driver and the device but is not on the criti-
cal path when moving data between memory and the device.

Thus, rather than consider drivers monolithically, we can parti-
tion them as a high-performance component that handles the data
path and a low-performance component that handles the control
path. Only the performance critical data-path code need run in the
kernel. The remaining code may be moved into a separate user-level
protection domain to aid development and improve fault isolation
without significantly impacting performance.

The result is a new architecture for device drivers that we call
Microdrivers. A microdriver is a device driver that is split into a
kernel-level k-driver and a user-level u-driver. Critical path code,
such as I/O, and high-priority functions, such as interrupt handling,
are implemented in the k-driver. This code enjoys the full speed
of a purely kernel driver. The remaining code, which is invoked
infrequently, is implemented in the u-driver and executes outside
the kernel in a user-mode process. When necessary, the k-driver
may invoke the u-driver. This architecture yields four concrete
benefits over traditional kernel drivers:
(1) User-level programming. The u-driver can be compiled and
debugged with standard user-mode tools. We show that the u-driver



can be debugged with standard source debuggers and memory
profilers.
(2) Good common-case performance. Microdrivers have common-
case performance comparable to traditional device drivers and bet-
ter than kernel driver code executing fully in user mode. We show
that performance of a network microdriver with 65% of the driver
code in the u-driver has indistinguishable network performance
from a monolithic kernel driver.
(3) Fault isolation. Microdrivers isolate faults better than tradi-
tional device drivers, because a buggy u-driver will not crash the
entire system. For example, we show that the kernel survives a null-
pointer dereference in a u-driver.
(4) Compatibility. Microdrivers are compatible with commodity
operating systems. They expose the same interface to the kernel as
traditional device drivers and can be created from existing drivers.

Thus, microdrivers achieve much of the programmability and
isolation properties of user-mode drivers for a large fraction of code
in a driver, yet provide the performance of kernel-mode drivers.

While we can apply this architecture to build new drivers, we
would also like to allow existing drivers to benefit from the Micro-
drivers architecture. To this end, we present a tool called Driver-
Slicer for mostly automatic conversion of existing drivers to micro-
drivers. DriverSlicer has two parts, a splitter and a code generator.
(1) DriverSlicer’s splitter partitions driver code such that perfor-
mance critical functions remain in the kernel. The split aims to min-
imize the cost of moving data and control along the performance-
critical path. Rarely-used functions, such as those for startup, shut-
down and device configuration are relegated to the u-driver.
(2) DriverSlicer’s code generator emits marshaling code to pass
data between the microdriver components. Unlike traditional mar-
shaling code for RPC, this tool employs static analysis to reduce
the amount of data copied. When a complex structure crosses the
user/kernel boundary, the analysis allows only the fields actually
accessed on the other side to be copied. In addition, the analysis
allows global variables to be automatically shared through copy-
ing. During code generation, this tool may prompt a programmer
for annotations when it cannot automatically determine pointer se-
mantics, such as the length of an array.

We evaluate the Microdrivers architecture and DriverSlicer
on drivers from the Linux 2.6.18.1 kernel. We demonstrate with
common benchmarks that (1) U-Drivers can be written and de-
bugged with common user-level programming tools, (2) Micro-
drivers achieve common-case performance similar to native kernel
drivers, (3) Microdrivers isolate failures in the u-driver from the
kernel, and (4) Microdrivers reduce the amount of driver code run-
ning in the kernel.

In the next section we present background on device drivers.
Following in Section 3 we present the Microdrivers architecture.
Section 4 discusses the implementation of microdrivers, and Sec-
tion 5 presents DriverSlicer. We evaluate Microdrivers in Section 6,
present related work in Section 7 and finally conclude.

2. Background
A device driver is a module of code that translates requests from
the kernel or an application into I/O requests to a specific device.
The kernel or application may provide a standard interface that
multiple drivers implement, or the driver interface may be unique.
In addition, combinations are possible: a mix of common interfaces
plus device-specific functionality, often hidden behind an ioctl

function.
While device drivers have been an established part of operating

systems since their origin, they have emerged as one of the greatest
sources of system problems. Device drivers are one of the largest

causes of system downtime. Microsoft reports that 89% of crashes
of Windows XP are caused by device drivers [27], and a study
of the Linux kernel showed that driver code has 2 to 7 times
the bug density of other kernel code [7]. This may be due to the
difficulty of writing and debugging kernel code, the unavailability
of advanced software engineering tools for kernel programming,
as well as the comparative lack of experience of driver writers as
compared to core kernel developers. Driver programmability and
system reliability can therefore be improved by removing driver
code from the kernel.

Consider for instance the e1000 gigabit Ethernet driver, with
274 functions and 15,100 lines of code. For this driver, we iden-
tified (using DriverSlicer) that just 25 functions with 1,550 lines
of code (10%) must execute in the kernel: these include functions
that must execute at high priority, such as the interrupt handler, and
major data handling routines, such as functions related to send-
ing networking packets. The remaining functions are called only
occasionally (e.g., during device startup/shutdown, device config-
uration, and for diagnostics) and can be removed from the kernel
without affecting common-case performance.

We also studied the revision history of this driver to evaluate
whether the benefits of moving code out of the kernel are illu-
sory, in that the effort in writing drivers remains in the k-driver.
For each revision to the driver, we determined which portion of
the driver changed. We found that of 703 patches, 125 were in
the k-driver and 578, or 82%, were in the u-driver. We were not
able to distinguish bug fixes from feature or performance enhance-
ments. Nonetheless, these results indicate that splitting drivers has
the potential to dramatically improve fault isolation and improve
programmability. The following sections describe the Microdrivers
architecture for achieving this goal.

3. Architecture of a microdriver
The Microdrivers architecture seeks, above all, a practical approach
to improve system reliability. We identify four major goals for the
architecture:
(1) User-mode programming tools. Microdrivers should allow
programmers to use common tools such as source-level debuggers
on drivers.
(2) Good common-case performance. Microdrivers should have
common-case performance comparable to traditional device drivers,
for example similar throughput, latency, and CPU overhead.
(3) Fault isolation. Microdrivers should isolate faults better than
traditional device drivers. A fault in the user-level component
should not trigger a system-wide failure.
(4) Compatibility. Microdrivers should be compatible with com-
modity operating systems. That is, they must expose the same in-
terface to the operating system kernel as traditional device drivers.

These goals are at times contradictory, in that performance,
user-level programming, and 100% compatibilty cannot all be
achieved simultaneously. Instead, the Microdrivers architecture
is a compromise that leaves some driver code in the kernel to
achieve performance and compatibility. Previous systems, such as
Nooks [36] and SafeDrive [43] achieve the latter three goals but do
not support user-mode tools. User-mode driver frameworks, such
as Fuse [11] and Microsoft’s UMDF [25], achieve fault isolation
and user-mode programming, but sacrifice some performance and
all compatibility.

3.1 Splitting drivers
The approach we take is to factor device drivers into a user-mode
component, called a u-driver and a kernel-mode portion, called a k-
driver. The u-driver executes in a separate process from the caller,
which may be shared between multiple drivers for efficiency. The
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Figure 1. The Microdrivers architecture. The path for
performance-critical functions is a solid line, and for non-
critical functions is dashed.

kernel always invokes the k-driver, which may in turn invoke the
u-driver for selected functions. These calls appear as local calls to
the k-driver but are implemented with an RPC-like mechanism that
calls up into the u-driver. The u-driver may also call down into the
k-driver to invoke its functions. Figure 1 illustrates the architecture
of a microdriver. The most important decision when applying this
architecture is where to split the code between the k-driver and
the u-driver. Ideally, the boundary should have few functions, be
crossed infrequently, and pass little data.

The Microdrivers architecture splits drivers along performance
and priority boundaries. Several operating systems already factor
driver code into device-dependent code and device-independent
code, such as miniport drivers in Windows [26] and families in the
MacOS I/O Kit [1]. However, this separation does not account for
the performance requirements of a driver. The components of these
drivers communicate frequently and move large amounts of data.
As a result, existing interfaces are not suitable for splitting drivers
between kernel and user mode.

Code required for performance-critical operations, such as
transmitting and receiving data, are left in the kernel portion. This
code is often the data path of a driver. Non-critical operations, such
as initializing the device, configuring the device, and handling er-
rors, are placed in a user-mode process. This is often the control
path. Other performance-critical functions may be left in the kernel
as well to improve performance. Both components may access the
physical device to avoid the need for frequent calls between the
two components.

In the Microdrivers architecture, the kernel interface to a driver
remains unchanged. This preserves compatibility with existing op-
erating systems. Within the driver, individual functions may reside
in the kernel or in user-mode. We take an RPC approach, in that
client stubs in one portion invoke a runtime library to communicate
with the other portion. This library is additionally responsible for
synchronizing data structures.

This architecture can be realized by writing new drivers to
fit this model if the programmer explicitly selects the code for
the u-driver and k-driver. However, to preserve the investment in
existing drivers, tools can assist this process. In Section 5, we
describe DriverSlicer, a tool that largely automates the conversion
of monolithic kernel drivers into microdrivers.

3.2 Runtime
When a driver is factored into a k-driver and a u-driver, the two
portions must communicate and share data. In the Microdrivers
architecture, runtime layers in the kernel and in user-mode provide
these services. This runtime provides three key functions:

• Communication. Provide control and data transfer to allow each
portion of the driver to invoke functions in the other. For example,
upcalls enable the k-driver to invoke the u-driver.
• Object tracking. Synchronize kernel- and user-mode versions of
driver data structures. For example, changes made in user mode
must be propagated to kernel mode.
• Recovery. Restore system operation following a u-driver failure.
For example, unload the k-driver when the u-driver crashes.

The runtime provides a mechanism for the k-driver to invoke
the u-driver. This involves both signaling the u-driver to execute a
particular function as well as providing any necessary data, includ-
ing both arguments to that function as well as shared data accessed
by that function. This need to synchronize shared variables dis-
tinguishes Microdrivers from existing communication mechanisms
such as LRPC [4]. A similar downcall mechanism allows the u-
driver to invoke the k-driver.

The communication mechanism copies data between the k-
driver and the u-driver on an upcall. When the call returns, the
runtime propagates any changes made to an object in user mode
back to the kernel.

The object tracker manages and synchronizes the contents of
data shared between a k-driver and a u-driver. Similar to the object
tracker in Nooks [36], the object tracker records all objects shared
between the k-driver and the u-driver in a table. When the k-driver
invokes a function in the u-driver, the runtime locates the user-
mode objects corresponding to parameters from the k-driver and
updates their contents. On return to the kernel, the runtime looks up
the kernel object associated with parameters to propagate changes
made by the u-driver back to the kernel. To perform this task,
the object tracker must track allocation and deallocation events, to
know when to add or delete an object from the tracking table.

The object tracker must also manage kernel objects that are
not pure data, such as locks, and I/O resources, such as ports or
memory-mapped device registers. For these objects, synchronizing
access is not simply copying data; rather, the behavior of the object
in kernel mode must be preserved. Our approach is to make the
u-driver and k-driver operate on a single object. In the case of I/O
ports and memory-mapped device registers, we map the ports and
physical addresses to the u-driver. For locks, we do all locking
in the kernel and synchronize the user and kernel copies of data
structures when locks are acquired or released.

To achieve fault resilience, the runtime must detect and recover
when a u-driver fails. Detection occurs at the interface between the
k-driver and the u-driver with timeouts and bad parameters checks.
In addition, exit of the u-driver process signals a failure. Rather
than adding a new recovery mechanism, the Microdrivers architec-
ture is compatible with shadow drivers [35] or the SafeDrive [43]
mechanism of logging kernel resource allocations.

4. Implementation of a microdriver in Linux
We implemented the Microdrivers architecture in the Linux 2.6.18.1
kernel to demonstrate its viability and performance.

Our implementation of a microdriver consists of six parts (as il-
lustrated in Figure 1): a k-driver, a kernel runtime, a user runtime, a
u-driver, user stubs, and kernel stubs. The k-driver is implemented
as a loadable kernel module, much like traditional device drivers
in Linux, while the u-driver is implemented as a user-level pro-
gram. The kernel runtime, which interfaces with the k-driver and
communicates with the user runtime, is implemented as a separate
loadable kernel module. This module, kr-mod, registers as a device
driver that implements the character device interface for communi-
cation with the user runtime. The kernel runtime implements func-
tions for user/kernel communication, object tracking and recovery.
The user runtime, ur-lib, is implemented as a multithreaded library



that links to the u-driver code. The interface that it exports to the
u-driver is similar to the interface that the kernel runtime exports
to the k-driver. Section 5 describes user and kernel stub generation.
Figure 2 summarizes the mechanisms implemented in each of these
components. Overall, the kernel runtime is 4,791 lines of C code
and the user runtime is 1,959 lines.

Component Mechanisms implemented in the component
k-driver Driver code that executes in kernel mode.
u-driver Driver code that executes in user mode.
kr-mod (1) Object tracker (OT); (2) OT query interface

for the k-driver; (3) Wrappers for kernel-mode
deallocators; and (4) Wrappers for kernel-mode
locking/unlocking.

ur-lib (1) OT query interface for the u-driver;
(2) Wrappers for user-mode alloca-
tors/deallocators; and (3) Wrappers for
user-mode locking/unlocking.

User & ker-
nel stubs

RPC stubs for user/kernel communication; de-
scribed in Section 5.

Figure 2. Mechanisms implemented in various components in
the Linux implementation of a microdriver.

4.1 Communication
We use existing system call mechanisms to communicate between
u-drivers and k-drivers because communication performance is of
less concern than in previous user-mode driver systems. At startup,
the ur-lib library calls an ioctl in the kr-mod module and waits for
a request. When the k-driver makes an upcall, the ioctl returns and
passes the request to user level.

A microdriver starts operation by first loading the k-driver and
kr-mod modules, and starting ur-lib and the u-driver. The ur-lib li-
brary is implemented as a multithreaded program using a thread
pool architecture. A master thread in ur-lib registers u-driver func-
tions with kr-mod by invoking the ioctl system call. This call
blocks in kr-mod until either the k-driver is uninstalled, in which
case it returns with an error, or the k-driver invokes a function in
the u-driver.

The k-driver invokes a function in the u-driver by calling the
client stub. This stub marshals any data structures that may be read
by the u-driver as it services the request, and invokes kr-mod to
transmit the request to the u-driver. The u-driver pre-allocates a
buffer to receive marshaled data; the size of this buffer is set to
the upper bound of the number of bytes transmitted between the u-
driver and the k-driver. In turn, kr-mod unblocks the master thread
waiting in the kernel, copies the marshaled data into the marshaling
buffer in the u-driver’s address space, and signals ur-lib to invoke
the appropriate function in the u-driver.

Upon receiving a request from the k-driver, the master thread of
ur-lib dispatches the request to a worker thread, and returns to the
kernel to await further requests. It is important to implement ur-lib
as a multithreaded program because a request to execute a u-driver
function may result in multiple control transfers between the user
and the kernel. For example, the u-driver function may invoke a
function that is implemented in the kernel, which in turn may call
back into a second function in the u-driver.

The ur-lib library invokes a u-driver function by first updating
the u-driver’s data structures (via the user stub of the u-driver func-
tion) using data sent in the marshaling buffer. This buffer contains
global variables, formal parameters, and structures accessed indi-
rectly through pointers that are read by the u-driver function and
its callees. The ur-lib library unmarshals this buffer using the ob-
ject tracker to locate and update the user-mode objects correspond-
ing to the kernel objects transmitted in the buffer. At this point, all

U-driver

ur-lib

userfn(ptr) {
  ...
}

User Stubs
ustub_userfn(buf) {
  ptr = unmarshal(buf);
  userfn(ptr);
}

kr-mod

Object 
Tracker

Kernel Stubs
kstub_userfn(buf) {
  buf = marshal(ptr);
  rpccall(ustub_fn,buf);
}

K-driver
call kstub_userfn(ptr);

Marshaling
Buffer
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Marshaling
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Figure 3. Data movement from the k-driver to the u-driver:
(1) a call to the client stub of a u-driver function marshals the
data structure; (2) kr-mod invokes the user thread and copies
the marshaled data into user space; (3) ur-lib consults the ob-
ject tracker and unmarshals the data structure; (4) ur-lib in-
vokes the u-driver function on the unmarshaled data structure.

the u-driver objects that will be affected by the request are syn-
chronized with their k-driver counterparts, and ur-lib invokes the
u-driver function with appropriate parameters. On return from this
function, ur-lib marshals any data structures modified by the call
into a buffer, and passes this back to kr-mod. The data structures
modified by the call are determined by statically analyzing driver
code, as described in Section 5. Much like ur-lib, kr-mod then un-
marshals the data received, updates kernel data structures using the
object tracker, and returns control to the k-driver.

The u-driver may also invoke the k-driver as it services a re-
quest, either to call a k-driver function, or to execute a function that
is implemented in the kernel. A symmetric downcall mechanism in
ur-lib and kr-mod handles this. The downcall mechanism invokes a
kernel function via the ioctl system call. An ioctl handler in kr-
mod receives this request and calls the appropriate kernel function.
Downcalls execute on the thread that initially made the upcall, to
ensure that references to user-mode addresses and per-thread struc-
tures are correct.

This mechanism is functionally similar to the LPC (lightweight
procedure call) mechanism in Windows NT [33]. However, it does
not incorporate scheduling support to ensure that the user-mode
thread is awoken as soon as the kernel thread blocks on a request.

4.2 Object tracking
The main responsibility of the object tracker is to maintain and
update the correspondence between kernel- and user-mode versions
of shared data structures. In addition to in-memory objects, it is also
responsible for tracking objects with additional semantics, such as
I/O resources and locks.

The heart of the object tracker is a bi-directional table that stores
the correspondence between kernel- and user-mode pointers. With
each table entry, it also stores the size of the object referenced by
the pointers. The object tracker exports an interface that supports
the following classes of queries.
(1) Translation. Given a kernel pointer, return the corresponding
user pointer (or vice-versa). Return “failed” if a corresponding
pointer is not found.
(2) Creation. Enter a new pair of pointers, denoting a new corre-
spondence, into the object tracker table.



(3) Deletion. Delete the table entry corresponding to a user-mode
pointer or a kernel-mode pointer.

In our implementation, the object tracker resides in kr-mod; ur-
lib queries the object tracker using ioctl system calls.

When ur-lib unmarshals the contents of the marshaling buffer
upon receiving a request from the kernel, it queries the object
tracker to translate each kernel pointer that it encounters in the
buffer. The object tracker either returns the corresponding user
pointer, which ur-lib uses to locate and update the u-driver data
structure, or returns “failed.” If no valid user pointer is found for a
kernel pointer, ur-lib allocates a new memory object of the appro-
priate type and size (both type and size information are conveyed
by the marshaling protocol) and creates a new entry in the object
tracker.

Arrays require special treatment; in this case, even if a valid
user pointer to the head of an array is found, the size of the array
is checked. If its size has changed, the array is reallocated, the old
array is freed, the correspondence between the kernel pointer and
the old user pointer is deleted from the object tracker, and a new
correspondence is added. To efficiently translate pointers into the
middle of an array, the object tracker supports range queries that
allow the head of an array to be found from the address of any of
its elements.

4.2.1 Memory allocation and deallocation
Allocations and deallocations create and destroy objects in kernel
and user memory. Each such event must update the object tracker
appropriately. We handle these events by creating wrappers for
allocators and deallocators.

Allocator wrappers forward each request by the u-driver to kr-
mod which in turn allocates memory in kernel address space and re-
turns the corresponding kernel pointer. The wrappers also allocate
memory in user-mode and create a new entry in the object tracker.
This approach ensures that each object in user memory will have a
corresponding copy in kernel memory. It also has the advantage that
memory allocation requests with special flags (e.g., GFP ATOMIC
or GFP DMA) are forwarded to the kernel, where memory can be
allocated with these flags. Memory allocation requests in the kernel
are unmodified, and do not create new entries in the object tracker.
If a kernel object is shared with the u-driver, then it is allocated and
initialized during unmarshaling, as discussed earlier. Thus, an ob-
ject in kernel memory will have a copy in user memory only if it is
accessed by the u-driver.

Deallocator wrappers in the u-driver intercept deallocation re-
quests and free the object in user memory. This request is also
forwarded to kr-mod, which looks up the corresponding kernel
pointer, and deallocates the object in kernel memory. Deallocator
wrappers in the k-driver are symmetric, but forward the dealloca-
tion request to the u-driver on the next upcall (or downcall return)
when a copy of the freed object also exists in user memory.

4.2.2 Locking
The Microdrivers runtime must ensure that the u-driver and k-driver
can never simultaneously acquire a lock on the object. It must also
ensure that when a lock is released, the user and kernel copies of the
object guarded by the lock are synchronized. We handle requests to
acquire/release a lock using the protocol described below.

Requests by the u-driver to acquire a lock on an object are
forwarded to the kr-mod module. In turn, kr-mod acquires a lock on
the kernel version of the object and synchronizes the user version
of the object with the kernel version, or blocks the locking request
until the lock has been released. This approach ensures that the
u-driver and k-driver can never simultaneously lock the object.
A request by the u-driver to unlock an object that it has locked
is similarly forwarded to kr-mod. Before releasing the lock, kr-

mod first synchronizes the k-driver’s copy of the object with the
u-driver’s version. This ensures that any changes to the object
made by the u-driver are reflected in the k-driver’s version. Code
for object synchronization is generated using static analysis, as
described in Section 5. Unlock requests by the k-driver are handled
locally as the u-driver will synchronize its copy of the object when
it next requests a lock.

While this approach works for several synchronization prim-
itives offered by the Linux kernel (e.g., semaphores), it fails to
work for spinlocks. Spinlocks provide a lightweight synchroniza-
tion mechanism, and are typically used by the kernel for short crit-
ical sections. Threads busy-wait on a spinlock until it is released.
The above protocol is problematic for spinlocks for two reasons.
First, it can lead to deadlocks. If a u-driver process acquires a spin-
lock on a kernel object and is descheduled, then kernel threads will
busy wait until the u-driver is scheduled for execution again. Sec-
ond, it offers poor fault isolation and hampers recovery. Several
functions that acquire spinlocks disable interrupts. If a u-driver ac-
quires a spinlock on a kernel object, disables interrupts, and crashes
(e.g., because of a memory error), then the kernel will be unable to
initiate recovery mechanisms.

These reasons motivate a new locking primitive, the combolock,
for driver objects guarded by spinlocks. We have also designed a
protocol to acquire/release combolocks that offers the benefits of
spinlocks without the disadvantages described above.

Acquire c Release c

K-Driver

acquire(c.splock);
if (c.sem required 6= 0) {

c.sem required++;
release(c.splock);
acquire(c.sem);

}

if (c.sem required 6= 0) {
acquire(c.splock);
c.sem required–;
release(c.sem);

}
release(c.splock);

U-Driver

acquire(c.splock);
c.sem required++;
release(c.splock);
acquire(c.sem);

acquire(c.splock);
c.sem required–;
release(c.sem);
release(c.splock);

Figure 4. Acquiring and releasing combolocks.

Combolocks are similar to classical reader-writer locks, in
which two locks protect the data, one for each class of access.
A combolock consists of a semaphore sem, a spinlock splock, and
an integer sem required. The protocol that the k-driver and the
u-driver use to acquire/release combolocks is shown in Figure 4.
To acquire a combolock c, the k-driver first acquires the spinlock
c.splock. If it determines that a u-driver thread has already aquired
the combolock (as indicated by c.sem required being non-zero), it
releases c.splock and attempts to acquire c.sem. In contrast, u-driver
requests to acquire a combolock c are forwarded to kr-mod, which
tries to acquire c.sem after setting c.sem required to a non-zero
value. Releasing a combolock is symmetric, and is not explained
for brevity.

As described earlier, several functions that acquire spinlocks
also disable all interrupts. We handle such cases by augmenting the
protocol in Figure 4 to disable interrupts just for the driver’s device
when the u-driver acquires the lock. Bottom half requests and timer
interrupts that arrive when the the k-driver holds a combolock are
deferred for later execution.

This protocol ensures lightweight locking in the k-driver if
an active u-driver thread has not acquired a lock on the corre-
sponding object. It also ensures that the u-driver and k-driver can
never simultaneously lock the object guarded by the combolock. Fi-
nally, because the u-driver acquires a combolock c by acquiring the
semaphore c.sem, the kernel will not busy wait if the u-driver has
acquired the combolock, thus preventing deadlocks and allowing
the kernel to initiate recovery mechanisms if the u-driver crashes.
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Figure 5. Architecture of DriverSlicer. The splitter infers a
partition of the device driver, while the code generator pro-
duces the k-driver, the u-driver, and RPC code for data struc-
tures that cross the user/kernel boundary.

4.2.3 I/O resources
Functions implemented in the u-driver may access I/O resources
such as ports and I/O memory. To prevent each such access from
generating a request to the kernel, we allow the u-driver to access
these resources directly.

We grant the u-driver permission to access all I/O ports using
the iopl system call. Thus, the u-driver can access I/O ports directly
with in and out instructions; it is not necessary to request the kernel
to perform these operations instead.

To handle u-driver requests to access I/O memory, we map the
device’s I/O memory region into the u-driver’s address space. We
also create an entry in the object tracker to map this region of
the u-driver’s address space to the corresponding I/O memory ad-
dresses. We alter the marshaling protocol to avoid accessing ob-
jects in I/O memory. Fortunately, pointers to I/O memory objects
in device drivers are often already annotated with the iomem at-
tribute. The marshaling code generator, described in the next sec-
tion, avoids generating code to marshal/unmarshal objects refer-
enced by IOMEM pointers. This ensures that the marshaling proto-
col will not alter the state of the device.

5. Refactoring device drivers with DriverSlicer
To preserve investment in existing drivers, we designed and im-
plemented DriverSlicer, a tool to automate the creation of micro-
drivers from traditional device drivers. DriverSlicer is implemented
as a source-to-source transformation using the CIL toolkit [29], and
consists of about 10,000 lines of Objective Caml code. It interposes
upon the build process, and analyzes preprocessed code. Driver-
Slicer is composed of two parts: a splitter, and a code generator.

5.1 The splitter
The splitter analyzes a device driver and identifies code on the data
path and code that is executed at high priority levels. This code
must be included in the k-driver to ensure good performance; the
remaining code is relegated to the u-driver. Our current implemen-
tation infers such a split at the granularity of functions.

Given a device driver, the splitter begins by using programmer-
supplied interface specifications to identify a set of critical root
functions for the driver. Critical root functions are driver entry-
points that must execute in the kernel and include high priority
functions or functions called along the data path. Because these
functions typically have a standard prototype, the programmer sup-
plies interface specifications as type signatures. The splitter auto-
matically marks functions that match these type signatures as crit-
ical root functions. For example, interrupt handlers in Linux are
identified by their return type irqreturn t and the types of their
formal parameters. The programmer may also use domain knowl-
edge specific to a driver family to provide interface specifications.

For example, the type signature of the hard start xmit interface
for network drivers identifies functions that send packets.

In addition to the above functions, we also include as criti-
cal roots driver functions that are called while the kernel holds
a spinlock. The reason is because a user mode function cannot
be executed within a spinlock critical section. Note, however, that
if the kernel is modified to use other synchronization primitives
(e.g., semaphores or mutexes) for such critical sections, these func-
tions need no longer be classified as critical roots. In the interest
of compatibility with existing kernels, our current implementation
works with an unmodified kernel.

The splitter then constructs the static call graph of the driver. It
resolves calls via function pointers using a simple pointer analysis
that is conservative in the absence of type casts: each function
pointer resolves to any function whose address is taken, and has the
same type signature as the pointer. It marks all functions that are
called transitively from a critical root function as those that must
be included in the k-driver. Functions implemented in the kernel
are also constrained to execute in the kernel.

The splitter can optionally factor other constraints into the split.
For example, functions that are called both by the k-driver and u-
driver can be replicated if they can safely execute in user-mode.
This replication avoids a request into the kernel each time such
a function is invoked in the u-driver. Similarly, all functions that
appear inside a critical section can be constrained to execute on the
same side of the split.

Thus, the output of the splitter is a call graph, where each node
is marked kern or user, based upon whether the corresponding
function must execute in the k-driver or the u-driver.

5.2 The code generator
The code generator uses the results of the splitter and emits the
k-driver, the u-driver, and RPC code for control and data transfer
across protection domains. It uses static analysis, aided by user-
supplied marshaling annotations, to identify data structures that
cross the user/kernel boundary. This analysis also aims to minimize
the amount of data transfered between the u-driver and the k-driver.
The code generator also replaces calls to allocator/deallocator func-
tions and lock/unlock functions both in the u-driver and the k-driver
with their wrappers.

5.2.1 Generating code for interface functions
Given a call graph with nodes marked kern or user, the code gen-
erator identifies interface functions and generates code to transfer
control. An interface function is a function marked user that can po-
tentially be called by a function marked kern, or vice-versa. Non-
interface functions are never called by functions implemented on
the other side of the split, and thus do not need stubs for control or
data transfer.

5.2.2 Generating code for data transfer
The code generator also produces code to marshal/unmarshal data
structures accessed by the function. These data structures include
all objects reachable via the formal parameters and the return value
of the function and global variables accessed by the function.

Marshaling complex data structures for RPC is a well-studied
topic, and several commercial tools are available for this pur-
pose [28, 34, 41]. However, these tools are impractical for direct
use because it is common practice in the Linux kernel to pass a
complex data structure to a function that only accesses a few of its
fields. In such cases, if the entire data structure is marshaled, then
large amounts of data will cross the user/kernel boundary. This is
especially the case with recursive data structures, which are all too
common in the kernel. Our solution is to identify and marshal only
the fields that are accessed by the function.



This is achieved by the code generator’s field access analysis,
described in Algorithm 1. It is a flow-insensitive, interprocedural
analysis that identifies, for each driver function, the fields of com-
plex data types accessed by that function. It traverses the static call
graph of the driver bottom-up and computes for each function f,
a set FieldAccess(f ), denoting the set of fields accessed by f. Be-
cause device drivers typically do not make recursive function calls,
Algorithm 1 does not consider cyclic call graphs. However, the
algorithm can be extended to handle recursion by processing to-
gether all functions in each strongly connected component of the
call graph. Algorithm 1 is conservative in the absence of pointer
arithmetic to access fields of data structures, i.e., it identifies all
fields of data structures that are accessed by a function. To ensure
completeness in the presence of pointer arithmetic, it relies on user-
supplied marshaling annotations (specifically, the STOREFIELD an-
notation) described in Section 5.2.3. For each interface function,
the code generator then produces marshaling/unmarshaling code
using the results of the field access analysis.

Input : Source code of device driver.
Output : FieldAccess(f ) denoting the set of fields of each complex

data structure accessed by function f and its callees.
G := Static call graph of the driver;1
L := List of nodes in G, reverse topologically sorted;2
foreach (f ∈ L) do3

FieldAccess(f ) := φ;4
foreach (instruction s ∈ f ) do5

switch Instruction-kind(s) do6
case Read/Write structure.field:7

FieldAccess(f ) ∪= {Type-of(structure).field};8

case Call g:9
FieldAccess(f ) ∪= FieldAccess(g);10

Return FieldAccess(f );11

Algorithm 1: Field access analysis.

In our experiments, we found that DriverSlicer’s field access
analysis is critical for achieving good performance by reducing the
amount of data that crosses the user/kernel boundary. For example,
consider the 8139cp network driver. In the microdriver produced
without field access analysis (i.e., entire data structures are mar-
shaled), 2,931,212 bytes cross the user/kernel boundary during de-
vice initialization; in contrast, just 1,729 bytes cross the user/kernel
boundary when Algorithm 1 is applied during code generation.

In addition to field access analysis, the code generator also
employs an analysis that resolves opaque (void *) pointers; it does
so by examining how opaque pointers are cast before they are used
in the driver. It uses the results of this analysis to resolve and
marshal any objects referenced via opaque pointers. Occasionally,
the analysis may report that an opaque pointer resolves to more
than one type. In such cases, DriverSlicer expects the programmer
to use an OPAQUE annotation, described below, to determine the
target type of the pointer.

5.2.3 Marshaling annotations
When the code generator encounters a pointer, it may need annota-
tions to clarify the semantics of the pointer to generate code appro-
priately. For example, it may need to determine whether a pointer
refers to an array of objects, or a single instance of the base type.
Such semantics cannot always be determined statically, and must be
supplied by the programmer in the form of marshaling annotations.
These annotations are applied to fields of structures, global vari-
ables, and formal parameters of interface functions. DriverSlicer
implements annotations using the gcc type attributes framework. It
currently supports seven kinds of annotations, described below.

(1) NULLTERM. This annotation is applied to variables that de-
note null-terminated character buffers. Figure 6 shows an example
from the device driver for the AMD pcnet32 network card, and il-
lustrates the use of the NULLTERM annotation on the name field of
the pcnet32 private structure. NULLTERM annotations can also
be applied to null-terminated global buffers and formal parameters
of functions. A NULLTERM annotation instructs the code generator
to compute the length of the buffer and marshal/unmarshal it using
standard library routines (e.g., strlen, and strlcpy).

struct pcnet32 private {
const char * Nullterm name;
int rx ring size;
struct pcnet32 rx head * Array(rx ring size) rx ring;

spinlock t Combolock lock; ...
}
struct net device {

void * Opaque(struct pcnet32 private) priv;

struct net device * Sentinel(next 6=0) next; ...

}

Figure 6. Structure definition from the pcnet32 driver, illus-
trating the NULLTERM, ARRAY, COMBOLOCK, OPAQUE and
SENTINEL annotations.

(2) ARRAY. This annotation identifies pointers that point to more
than one instance of the base type. Each ARRAY annotation is
parameterized by the length of the array. For example, in Fig-
ure 6, the field rx ring of pcnet32 private points to an array of
pcnet32 rx head structures; the length of this array is stored in
the rx ring size field. In the current implementation of Driver-
Slicer, array lengths can be specified as constants, other fields of
the same C struct, or using any variable that is in scope at that
program point. The code generator uses the ARRAY annotation to
marshal/unmarshal the entire array.
(3) COMBOLOCK. This annotation denotes spinlocks that must
be converted to combolocks (see Figure 6). Spinlocks must be con-
verted to combolocks only if they are used to lock a data structure
that is shared by the u-driver and the k-driver. The code generator
uses the COMBOLOCK annotation to replace the declaration of the
spinlock with a combolock and to replace calls to functions that
acquire/release spinlocks with wrappers that acquire/release com-
bolocks instead.
(4) OPAQUE. While DriverSlicer can resolve many void * point-
ers, it requires help when one may point at more than one type. It
is common practice in the Linux kernel to include a void * pointer
in a kernel data structure that resolves to driver-specific data struc-
tures. For example, the priv field of the struct net device data
structure is a void * pointer, as shown in Figure 6. It resolves to
a data structure of type struct pcnet32 private in the pcnet32
driver. The priv field of struct net device is thus annotated us-
ing OPAQUE(struct pcnet32 private), which informs the code
generator that priv points to an object of this type. The code gener-
ator uses this information when it encounters the priv field during
marshaling/unmarshaling, and interprets the referenced object as a
struct pcnet32 private. The OPAQUE annotation can similarly
be used to identify integers that are used as pointers.
(5) SENTINEL. This annotation identifies fields of data structures
that can be used to access the structure recursively. When the mar-
shaler encounters such a field, it uses the SENTINEL annotation to
guide the traversal of this data structure. For instance, the next field
of a net device object points to another net device object. In this
case, the code generator uses a user-supplied predicate provided
with the SENTINEL annotation to guide linked list traversal. In Fig-
ure 6, the next 6=0 predicate allows traversal of the linked list until
a null pointer is encountered.



(6) STOREFIELD. As discussed earlier, Algorithm 1 may miss a
field that is accessed only via pointer arithmetic. The STOREFIELD
annotation is used to identify fields that are accessed via pointer
arithmetic. The code generator always marshals/unmarshals fields
with this annotation. For example, in the ne2000 network driver,
the priv field of the struct net device is accessed via a pointer
arithmetic expression. We thus annotate priv with STOREFIELD.
(7) CONTAINER. Given a pointer to a field of a data structure,
it is common practice in the Linux kernel to extract a pointer
to the parent data structure using the container of utility. For
instance, consider the following code snippet, from the universal
host controller interface driver for USB:

static void start rh (struct uhci hcd *
Container(struct usb hcd, hcd priv) uhci) {
struct usb hcd *tmp;
tmp = container of(uhci, struct usb hcd, hcd priv);
...

}

In this example, uhci is a pointer to an object of type struct

uhci hcd, which is contained in an object of type struct usb hcd

(and is accessed via the field hcd priv). The function start rh ob-
tains a pointer to the usb hcd object via container of. Because
the container data structure is accessed, in this case, we anno-
tate the formal parameter uhci using the CONTAINER annotation,
as shown above. The code generator uses this annotation to mar-
shal/unmarshal the container data structure as well.

Like other tools that depend on user-supplied annotations,
DriverSlicer is sensitive to the correctness and completeness of
annotations. An incorrect or a missed annotation can potentially
result in an incorrectly marshaled data structure, which can crash
the microdriver. While all the annotations discussed above are
user-supplied, DriverSlicer employs several heuristics to prompt
the programmer on where annotations may be needed. For exam-
ple, if a variable is used in a pointer arithmetic expression, it is
likely that the variable is being used to access an array, and must
therefore have an ARRAY annotation. Similarly, opaque pointers
are typically type cast before use; such type casts can be used
to suggest possible resolutions for OPAQUE annotations. As dis-
cussed in Section 6.2.1, the current DriverSlicer prototype does
not impose a significant manual overhead in terms of providing
annotations. However, improvements to DriverSlicer’s inference
heuristics could further reduce the number of annotations required.

Some of the annotations described above (e.g., NULLTERM
and ARRAY) are closely related to the annotations proposed in
SafeDrive [43]. However, the annotations used by DriverSlicer
differ from those used by SafeDrive in two ways. First, DriverSlicer
uses the annotations to guide the generation of marshaling code,
while SafeDrive uses them to synthesize memory safety checks.
Second, DriverSlicer only requires annotations on data structures
that cross the user/kernel boundary. Specifically, in contrast to
SafeDrive, this implies that local variables of functions need not
be annotated.

Though we have not attempted to rigorously prove correctness
of the transformations employed by DriverSlicer, we note that the
code generator performs a sequence of simple transformations.
Therefore, we believe that its correctness can either be proved
or bugs fixed as it is widely applied. Note however that convert-
ing a device driver into a microdriver can often expose bugs in
the driver’s implementation. For instance, a latent race condition
present in the original driver may manifest itself in a microdriver
because of increased latencies.

6. Experimental results
In this section, we present the results of running DriverSlicer on
four device drivers. We address two concerns:

Driver Device
8139too RealTek RTL-8139 Ethernet card
forcedeth NVIDIA nForce Ethernet card
ens1371 Ensoniq sound card
uhci-hcd Universal host controller interface

Figure 7. The Linux drivers evaluated.

(1) Benefits. What are the benefits of the Microdrivers architecture
and the DriverSlicer tool, in terms of programmability, kernel-
mode code reduction, and increased fault tolerance?
(2) Costs. What are the costs of Microdrivers, in terms of human
effort to split drivers and performance?

To evaluate these questions and verify that DriverSlicer is ap-
plicable to different kinds of drivers, we considered drivers drawn
from three major classes with widely differing interfaces to the
kernel (Figure 7). We believe that these drivers are largely repre-
sentative of the other drivers in their corresponding classes. The
8139too, ens1371, and uhci-hcd drivers were tested using a Pen-
tium D 3.0GHz with 1024MB RAM running CentOS 4.2, while
forcedeth was tested on an AMD Opteron 2.2GHz with 1024MB
RAM running CentOS 4.4. All experiments were conducted using
an unmodified Linux 2.6.18.1 kernel. In addition, we also created
microdrivers for the pcnet32, ne2000 and 8139cp network drivers
and ran them in a virtual machine testbed. The results were similar
to the other drivers; we do not report them here.

6.1 Benefits
The Microdrivers architecture offers three benefits: (1) the ability to
develop driver code at user level, with sophisticated programming
tools; (2) reduction in the quantity of hand-written code in the ker-
nel, which may have reliability or security bugs; and (3) improved
reliability by isolating the kernel from bugs in user-level code.

6.1.1 User-level programming
Moving code from the kernel to a standard user-level process al-
lows the use of user-level debugging and instrumentation aids such
as GDB, Valgrind [30], and others. These tools are often more ro-
bust than their kernel-mode counterparts because of their larger
user base. Consequently, when using the microdriver framework,
developer productivity increases because these tools simplify de-
bugging and performance analysis when the code under scrutiny is
implemented in the u-driver.

During development, we used Valgrind and user-level GDB to
eliminate bugs in the code generated by DriverSlicer. For example,
one of the bugs that we discovered using Valgrind was a memory
corruption error that manifested because insufficient memory was
allocated for the marshaling buffer. This error, which resulted in a
buffer overflow, did not immediately result in a crash, and would
have been difficult to detect when the crash happened. Valgrind’s
memcheck tool immediately flagged this as a memory corruption
error, which we then fixed.

Since DriverSlicer allows some flexibility in how the driver is
split, an additional application of it may lie in debugging during
driver development. For example, large parts of the driver can be
moved to the u-driver using DriverSlicer, and debugged using user-
level tools. Once the code is stable, performance-critical function-
ality can be moved back into the kernel for deployment.

6.1.2 Kernel-mode code reduction
One of the primary goals of the Microdrivers architecture is to re-
duce the amount of kernel-mode driver code to improve reliability
and simplify debugging. To identify code that can potentially be re-
moved from the kernel, we analyzed 297 device drivers, comprised
of network, SCSI and sound drivers using DriverSlicer. We counted
both the number of performance critical driver functions as well as



Driver Drivers High priority and Lines of code
family analyzed data path functions in these functions

Network 89 33.7% 37.2%
SCSI 33 32.9% 35.5%
Sound 175 26.3% 26.7%

Figure 8. Classification of functions in different families of
Linux device drivers.

K-Driver U-Driver
Driver SLOC # Functions SLOC # Functions
8139too 559 (34.6%) 12 (23.5%) 1056 (65.4%) 39 (76.5%)
forcedeth 1200 (34.7%) 28 (30.4%) 2260 (65.3%) 64 (69.6%)
ens1371 805 (53.8%) 25 (37.5%) 689 (46.1%) 40 (61.5%)
uhci-hcd 2028 (80.6%) 57 (80.3%) 489 (19.4%) 14 (19.7%)

Figure 9. Measurements comparing the amount of code in the
k-driver and u-driver.

the number of lines of code in these functions. We only counted
lines of code present within functions; specifically, we omitted
global variables, preprocessor macros, and declarations that were
not part of any function. As Figure 8 shows, DriverSlicer identified
that fewer than 34% of the functions, comprising nearly 37% of
the code of a driver are performance critical. While Figure 8 shows
the potential for kernel-mode code reduction, Figure 9 presents the
results of splitting the four drivers that we tested. As these results
show, we were able to remove several non-critical functions from
the kernel for each of the four drivers tested.

We also studied the revision history of these four drivers, and
identified which portion of the corresponding microdriver would
have been affected by each change. We found that the fraction of
changes to the u-driver of each microdriver is roughly proportional
to the relative size of the u-driver. Although we could not further
classify changes as bug fixes or performance enhancements, this
result indicates that splitting drivers can improve fault isolation and
driver programmability.

In addition to the k-driver, kernel stubs execute in the kernel as
well. DriverSlicer’s code generator currently emits several thou-
sand lines of kernel stub code: 14,700 for 8139too, 37,900 for
forcedeth, 6,100 for ens1371 and 12,000 for uhci-hcd. While these
constitute a large number of lines, they are highly-stylized and are
automatically generated by DriverSlicer. They do not therefore con-
tribute toward the number of hand-written lines of code in the ker-
nel. Bugs in the stubs can be corrected by fixing the DriverSlicer’s
code generator rather than modifying each driver individually; this
one time cost of verifying/testing the code generator is amortized
over the drivers that it is applied to. In addition, existing techniques,
such as table-driven marshaling, can greatly reduce the amount of
code required [28].

6.1.3 Reliability
Our Microdrivers implementation has only rudimentary code for
detecting and recovering from faults in a u-driver. We therefore
restricted ourselves to injecting faults that would not require a full-
fledged failure detector or recovery module. In particular, we tested
the ability of the system to tolerate failures that would normally
cause a kernel panic by injecting null pointer dereferences in the
user-mode portions of each driver. Such bugs in a device driver
kernel typically necessitate a reboot of the system to restore proper
operation. In all cases, when the buggy code executed, the u-driver
crashed, as expected, but when control returned to the k-driver, the
error was detected. In our current implementation, control returns
to the kernel when the u-driver crashes, but the data sent by the
u-driver is not unmarshaled. Thus, the system behaves as if the
function call that led to the crash never happened.

We injected the null pointer error in the sound driver in a func-
tion related to sound playback. When an application attempted to

Driver Kernel header Driver-specific
8139too 34 8
forcedeth 34 12
ens1371 7 7
uhci-hcd 27 146

Figure 10. Number of annotations.

play a sound, the application hung when the u-driver crashed. When
we terminated the application, control returned to the command
prompt, and there was no other indication of a problem, other than
the lack of sound (because the device was no longer functional).
In the two network drivers, we introduced the null pointer deref-
erences in device initialization functions. In both cases, after the
insmod command returned, the device was in an unusable state, but
the system otherwise operated normally. We introduced a similar
error in the initialization code for uhci-hcd; as with the network
drivers, when the u-driver crashed, the USB device was unusable,
but the system was otherwise functional.

This study demonstrates that our current implementation of Mi-
crodrivers can contain faults that crash the u-driver without affect-
ing the rest of the system. However, because our implementation
does not yet include a failure detection or a recovery subsystem,
a buggy u-driver can still crash the entire system. For example, an
erroneous deallocation request or a data structure corrupted by a
u-driver can potentially crash the k-driver. Microdrivers augmented
with a failure detection and recovery mechanism, such as shadow
drivers [35] or the SafeDrive recovery mechanism [43], can further
improve system reliability and availability.

6.2 Costs
The costs of the Microdrivers architecture are the burden on pro-
grammers to convert existing drivers to microdrivers, in the form
of annotating driver and kernel code, and the performance cost of
switching protection domains while drivers execute.

6.2.1 Manual overhead
To evaluate the manual overhead involved in creating a microdriver,
we counted the number of manual annotations that we had to
supply to DriverSlicer. Figure 10 summarizes these results; for
each driver we counted both the number of annotations to kernel
headers (which must be supplied just once) as well as driver-
specific annotations (which must be supplied on a per-driver basis).
The same set of kernel header annotations sufficed for both network
drivers. Overall, only 1-6% of driver code required annotations.

6.2.2 Performance
To measure the performance impact of splitting device drivers,
we measured common-case performance overheads using data-
intensive benchmarks. The results are summarized in Figure 11.

We measured the performance (both throughput and CPU uti-
lization) of the two network drivers using the netperf utility [10].
We installed each network driver on a test machine, and measured
TCP throughput between the test machine and a client. All netperf
tests used the default TCP receive and send buffer sizes of 87,380
bytes and 16,384 bytes, respectively. Netperf was run using a single
process; all results were averaged over 3 runs. As expected, these
results demonstrate that common-case performance is minimally
impacted in a microdriver (the minor speedups that we observed
with the forcedeth driver are within the margin of experimental er-
ror). For the sound driver, we measured CPU utilization (using the
vmstat utility) while playing a 256-Kbps MP3 file. The CPU uti-
lization with both the microdriver and the original driver was effec-
tively zero. We measured the performance of the uhci-hcd driver by
using it to copy the Linux-2.6.18.1 source tarball (230MB) from a
hard drive to a USB flash drive. As with other drivers, overheads



Original driver Microdriver
Driver Workload CPU (%) Throughput CPU (%) Throughput

8139too TCP-send 8.46% 94.13Mbps 8.43% (-0.39%) 94.10Mbps (-0.04%)
8139too TCP-receive 10.69% 94.07Mbps 10.68% (-0.09%) 94.07Mbps (-0.00%)

forcedeth TCP-send 20.68% 940.19Mbps 21.64% (+4.66%) 940.06Mbps (-0.01%)
forcedeth TCP-receive 65.24% 939.27Mbps 66.44% (+1.84%) 939.75Mbps (+0.05%)
uhci-hcd Copy 0.576% 914.64KBps 0.592% (+2.78%) 913.19KBps (-0.16%)

Figure 11. Measurements comparing the performance of network and uhci-hcd microdrivers with unmodified device drivers.

8139too forcedeth ens1371 uhci-hcd
KBytes sent/received 127 50 7.6 88

Requests to user 42 11 198 61
Requests to kernel 45 50 402 238

Figure 12. Measurements comparing the amount of data
copied between the k-driver and u-driver.

for throughput and CPU utilization were near zero for the uhci-hcd
microdriver.

We also examined the number of user/kernel transitions and
the amount of data transferred between the two domains to form
a more accurate understanding of how frequently such transitions
are necessary. In each case, we counted the number of transitions to
install the driver and run the data-intensive workload. In all drivers,
the user/kernel transitions reported in Figure 12 happened during
startup. In particular, we observed no user/kernel transitions along
the data-intensive path. For the network drivers, this corresponds
to sending/receiving packets, while for the sound driver, it refers to
playing a sound file. Driver startup, which resulted in a number of
user/kernel transitions, took almost thrice as long.

8139too forcedeth ens1371 uhci-hcd
Unmodified driver 9.9 48 29 29
k-driver+kern stubs 184 557 87 142

kr-mod 54 51 54 54
User components 136 48 28 48

Figure 13. Measurements comparing the memory usage (in
Kbytes) of microdrivers with unmodified drivers.

Figure 13 compares the memory usage of unmodified device
drivers and the corresponding microdrivers. We measured the mem-
ory utilization of the unmodified driver, k-driver, kernel stubs, and
kr-mod using the lsmod utility. For each microdriver, we also mea-
sured the steady-state resident set size of user space components
(the u-driver, user stubs and ur-lib). As discussed earlier, Driver-
Slicer emits several thousand lines of stub code, which contribute
toward the memory utilization of microdrivers.

7. Related work
Prior projects on improving system reliability by isolating de-
vice drivers fall under three categories: hardware-based isolation,
language-based isolation, and user-mode driver frameworks. We
compare the Microdrivers architecture against prior work along
four axes, as shown in Figure 14: user-level programming, fault
isolation, common-case performance, and compatibility.
Hardware-based isolation. Several projects use hardware-based
mechanisms to isolate device drivers. For example, Nooks [36]
adds a reliability subsystem to commodity operating systems that
allows each driver to run in its own protection domain, while vir-
tual machine-based techniques (e.g., [13, 15, 21]) run device drivers
within their own virtual machines. Mondrix [40] is a hybrid hard-
ware/software approach that also offers memory protection for ker-
nel extensions, including device drivers. Such schemes offer good
fault isolation, report low performance overheads and are compati-
ble with commodity operating systems. However, they do not offer

Approach ULP Isol. Perf. Comp.
Microdrivers

√ √ √ √

Nooks [36] ×
√ √ √

VM-based [13, 15, 21] ×
√ √ √

Mondrix [40] ×
√ √ √

SafeDrive [43] ×
√ √ √

User f/w [8, 11, 20, 25]
√ √ √

×
User compat. f/w [2, 38]

√ √
×

√

Microkernels [22, 41]
√ √ √

×

ULP = User-level programmability; Isol. = Fault isolation;
Perf. = Good common-case performance; Comp. = Compatibility.

Figure 14. Comparison with related work.

the benefits of user-level programming because drivers execute in
the kernel. In contrast, microdrivers offer many of the benefits of
hardware-based isolation for a large fraction of driver code, while
allowing driver writers to avail of user-level programming tools.
Language-based isolation. SafeDrive [43] uses programmer-
supplied annotations and a type-inference engine to insert mem-
ory safety checks. It also uses a recovery mechanism that is trig-
gered when a safety check fails. While SafeDrive offers low-
performance overhead and compatibility, device drivers protected
with SafeDrive still execute in the kernel. Further, SafeDrive cur-
rently only protects against memory safety violations, such as null
pointer dereferences, and does not protect against synchronization
errors. Microdrivers, in contrast, can offer protection against syn-
chronization errors (e.g., deadlocks) in the u-driver.
User-mode driver frameworks. There have been several attempts
to remove device driver code from the kernel. Examples include
Microkernels [22, 41], and several user-mode driver frameworks [8,
11, 20, 25, 37]. While these frameworks allow user-level program-
ming and good fault isolation, they all suffer from one of two
problems. They either offer poor performance [2, 38] because they
transmit large amounts of data frequently across the user/kernel
boundary, or they are incompatible with commodity operating sys-
tems, often requiring complete rewrites of drivers and modifica-
tions to the kernel [8, 20, 25, 37]. Microdrivers offer poorer fault
isolation than these frameworks because they do not isolate faults
in the k-driver. However, because they are compatible with com-
modity operating systems and offer good performance, they offer a
path to execute existing drivers in user mode.

In addition to the above projects on fault isolation, there has also
been work on user-level network interfaces [39], which take exactly
the opposite approach of Microdrivers and leave control code in
the kernel while moving the data path to user-level. There have
been other approaches at simplifying driver programming beyond
moving code to user level, such as domain-specific languages for
device access [9, 23, 24]. While useful, these approaches do not
allow the use of user-mode programming tools nor do they reduce
the kernel footprint of drivers.
Program partitioning. Program partitioning techniques, much like
those in DriverSlicer, have also been used to improve application
security [5, 42], create secure web applications [6], and to improve
performance of distributed components and data-intensive applica-
tions [17, 31]. However, these techniques have not been applied to



device driver code. Several key components of Microdrivers, such
as object tracking and synchronization, are unique to device drivers
and have not been addressed in prior work.
Static analysis tools. Bug-finding tools, such as SLAM [3] and
MC [12], have been developed to find bugs in device drivers. While
these tools help improve system reliability, they do not make it
easier to write driver code. In contrast, Microdrivers simplify driver
development and improve programmability, e.g., by allowing the
use of memory leak detectors during development. Static analysis
tools complement Microdrivers and would be helpful in improving
the quality of the k-driver and the u-driver.

8. Conclusions and future work
Driver frameworks today offer an all-or-nothing choice between
user mode and the kernel. Past microkernel developers have found
the temptation to move user-mode code into the kernel to improve
performance too strong [19, 14, 32], indicating the need for a hybrid
model that allows some code in the kernel. The Microdrivers archi-
tecture is one such model that offers the benefits of user-level code
development, together with good common-case performance and
fault isolation. Further, because it is compatible with commodity
operating systems, existing drivers can be ported to microdrivers.

Several enhancements to the current implementation of Driver-
Slicer can move even more code out of the kernel. For example,
DriverSlicer could use profile information to identify performance-
critical program paths (rather than functions) and split the driver
at a finer level of granularity. Similarly, with minor modifications
to the kernel, DriverSlicer can potentially move more functions to
user mode. If critical sections in the kernel from which driver func-
tions are invoked can be modified to use locking primitives other
than spinlocks, then DriverSlicer will classify fewer functions as
critical root functions, thus moving more code out of the kernel.
We plan to explore these enhancements in future work.

While this paper has focused on porting existing drivers, the
Microdrivers architecture can be applied to new device drivers as
well. We expect that developing a microdriver as a u-driver and a k-
driver will be akin to programming a distributed application. In this
approach, a driver developer must manually identify performance-
critical functions and program them in the k-driver. The developer
must also identify objects shared by the u-driver and the k-driver
and ensure that they are accessed atomically. An alternative ap-
proach that avoids these challenges is to program the driver mono-
lithically with marshaling annotations, and use DriverSlicer during
the development process to identify performance-critical functions
and partition the code into a microdriver.
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