Michigan State University

ECE 480
Design Team 3

Power-over-Ethernet for Wireless Home Automation
Sponsored by Texas Instruments

David DelLuca
Sasang Balachandran
Hassan Abdullahi
Karthik Hemmanur

Dr. Jian Ren - Facilitator

Wednesday, December 9", 2009

I3 TEXAS
INSTRUMENTS

Executive Summary

Given the growing concern for power savings and also the fact that power outlets may not be
available at remote locations, engineers are now looking to tackle the situation with Power over
Ethernet. Texas Instruments has approached ECE 480 Design Team 3 at MSU to design a PoE
gateway to monitor low power devices. The device built can interact with ZigBee-ready wireless
sensors within range of the host node. These sensors can be used for building control, homeland
security, medical, agriculture, and several other applications. The team designed a prototype
which can accomplish these specifications using several hardware components manufactured by
Texas Instruments. The final design promises an effective means of real-time monitoring, as well

as cost and power savings.

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

Acknowledgements

ECE 480 Design Team 3 would like to extend their sincere gratitude to the following
people for their assistance throughout the semester:

= Texas Instruments: Michael Owens, Reed Hinkel, Paul Kimelman, and Jim Reinhart for
providing the motivation as well as several hardware components for the project.

= Michigan State’s ECE Faculty: Dr. Jian Ren, Dr. Erik Goodman, Brian Wright, Gregg
Mulder, and Roxanne Peacock for donating their time and hard work throughout the
semester.

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

TABLE OF CONTENTS

1. INTRODUCTION AND BACKGROUNDuuiiiiiiiiiiiiiieisisisisissssssss s sssassssssssnsssnsssnsnsnnns 5
1.1 INTRODUCTION L.uuttttieeeeeeeiiiiittineeeeseeessssisssrseeessssssasssssssesesssssssmssssrsssessessssinsssssssseseessans 5
1.2. BACKGROUNDuutttiiiiiiieiiiiittbteersse e et s sssbbbbeesesssssssssbbbbaeeesaessssasabbbbeesesessssssbbbbbeessaeessins 6

2. SOLUTION SPACE AND APPROACH ...tvvetiteeeiiiiititreieeeee e s s ssibtrseeessesssssnsbseseesessssssssssssessseessnns 8
2.1. DESIGN OBJIECTIVES ..ttttiiiiieiiiiiiittieeiieeessssistbbsesssassssssssstbasssssessssssssbssssssessssssssssssssnsss 8
2.2. HOUSE OF QUALITY DIAGRAM ...uuttiiiiieeeeiiiiiiirrieeeeesssisissrsesesssssssisssssssssssssssnnssssssssess 9
2.3, FAST DIAGRAMcoicttttiiiie e e ettt et e s e s s e e e e e s s s s s s b bbb e e e e s e e s s s sab bbb e e e e e sesssssbbbbrenesas 10
2.4, FEASIBILITY MATRIX 1tttttieieiiiiiitireeeeeeeessisitssrseeeesessssssssssesssssssssssssssssssssssssnsnsssssssess 11
2.5. DESIGN SOLUTION L.uuttttiiiiiiiiiiiittireisesesesssssstrersssesssssssssbssesssesssssasbsbesssessssssssssssssness 12
2.8, GANTT CHART ..ottt ittt e et e e e e e s st e e e e e e e s s s s b bbb r e e e e e e e st s abbbbreeeeeeessassbbbaeeeeas 16
2.7. PROPOSED BUDGET ..uuttttiiiiiiiiiiiittirtiteiesssssssbtressssssssssssstbssssssesssssssssssessssssssssssssssssness 20

3. TECHNICAL DESCRIPTION 11etitieeiiiiitttreeeeeeesssiiistssseeeseessssasssssssessessssimsssssssessessssnmssssssseeses 21
N o VN 0 N = =l) =] [T N SR 21

3.1.1. POWER SOURCING ...uutttiiieeeeeiiiittrreeeeeeesssistssssesessssssasssssssessssssssssssssssssssssssannssens 21
3.1.2. POWER OVER ETHERNET ...cciiiiittttiiitieeessiitsbbteesseesssssabbbasesssesssssssssssssssessssssssssnns 22
3.1.3. MICROCONTROLLER .11 tttttteetiiiitttrreeeeeeesssstsbrrreeeesssssssbbbseseeseesssssssssssseesssssanssens 25
T I BT N L0 = L 28
3.2. HARDWARE IMPLEMENTATION ..uttttietteeeiiiitrtrreeeeeessssissssseeessessssssssssssesessssssnnssssseeses 33
3.3. SOFTWARE DESIGN REQUIREMENTSciiiiitttriiiieeessssistbrreessesssssssssssesssessssssssssssssnesas 34
3.4. SOFTWARE IMPLEMENTATION L.uutttiieiieeeiiiiititreeeeeeessssiissssseessessssssssssssesessssssnnssssssess 35

4, FUNCTIONAL DESIGN TESTING .tivtttttttereereerrerereseereressesssessessssssssssssssssssssssssssssssssss.. 38
QL RESULTS ciitttttittiee e et i et r et e e e e e ettt sb bbb a e e e e e e e s s e sbb b b e e e e e aeesssaab b baeeeeeesssssabbbbbaeeeeeesssannrres 38

B CONCLUSIONS. ... 40
5.1 SUMMARY 1rieiiieeeiiiiitireeeee e e s s s sttt bb et e s e e e st sa bbb b e e e e e eeessasb b bbb aeesaeesssaabbbreeeeeesssassbbbreeeeas 40
IV = 1 - I =10 5 T = T 41
5.3. FUTURE IMPROVEMENTSceitiiitttttieeeeeessiststrseeeeessssssssbsseesssessssssssssssssssssssnsnsssssssess 42

(Ol =1 N TSR 43
5.1, TECHNICAL ROLES...uuttttiiieieiiiiiitireeeeeeeessisisssraeeeesesssssssssssesssesssssassssssssesssssnssssssseeses 43

B.1.1. DAVID DELUCA.ttt ettt eabr s 43
6.1.2. SASANG BALACHANDRANcccttttiietieeetiiiitrrreeeeeessssittrseeeeeeessssssrrsseseesessssnnsnns 44
6.1.3. HASSAN ABDULLAHI w1vviiiiiciiictttttie e e e e s s siibbbtae s s s e e s s s sibbbaees s s s s s s s ssasbbbaessesssssssnenns 45
6.1.4. RAGHAVA HEMMANURcooiiiitiitiiitie ettt e e e e stbbre e e e e e e e s s snaanraneeeee e s s s ennnens 46
A = = == o = N0 =TSP 48
6.3 TECHNICAL ATTACHMENTS ... ictttteiieieeees ittt eeree e e s s ssssbbbrresssaesssssssbbbeeesesssssssbsbasenesas 49
6.3.1. DC-DC BUCK CONVERTER SCHEMATIC ...cictvtiiiiieeeeiiiiriineeesse e s s s ssinrseesseessssssnnsnns 49
6.3.2. TPS2375 AND TPS2384 SCHEMATIC.....ccccvvteeiiiee e e eerirteeee e e e e siarrreee e e e e s eanees 50
6.3.3. PRESSURE SENSOR SCHEMATIC .uvtviiiiieeiiiiiiiiiireeeeeesssiisisssessssesssssssssssssssssssssssnns 51
6.3.4. TEMPERATURE SENSOR SCHEMATIC ...ccoiiiitttteeiiiee e e s sertbaeees e e s e s s sssssrssnsseessssssnsnns 52
5.4 C SOURCE CODE.......ccuttttitieieiiiiiitbreiee s e e e st isabbbar e e e e e s s s s sbb b b r e e e s e e e st sabbbbreaeeeesssasbbbbraeeeas 53

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

1. Introduction and Background

1.1. Introduction

Power over Ethernet (PoE) is an efficient concept for low power applications. The
technology utilizes Ethernet protocols to power devices as well as transmit data on one CAT5
cable. The technology is similar to Universal Serial Bus (USB) in which phones can be both
charged and synchronized to a computer simultaneously. An effective implementation of this
technology would be for using wireless transmission to monitor sensor information on a periodic
basis. The advantage of this system is having the convenience of low-cost implementation and
not requiring an AC power source.

In the modern world of wireless data transmission there is a growing demand for the use of
sensors in many applications ranging from industrial to commercial markets. Wireless sensors
are commonly used to monitor various environmental conditions. Using low-cost routing
protocols such as Berkeley IP (BLIP) and Lightweight TCP/IP Stack (IwlIP), the team integrated
sensors with an embedded gateway. The team developed a web server running on the LM-
358962 microcontroller to periodically monitor and control all connected sensors within the
network. The gateway can be remotely accessed if the appropriate networking connections are
made by the user.

The team designed and developed a wireless sensor network using the IEEE 802.15.4 ZigBee
standard. Using ZigBee over other wireless protocols allows for efficient, low-power
communication within the network. This design approach provided extendibility both in

hardware and software aspects. Also, the ad-hoc wireless setup will allow detection of additional

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

sensors with minimal network reconfiguration. This project demonstrates multiple features of

Texas Instruments' analog, RF, and software technologies in an area of high industry demand.

1.2. Background

In the fall of 2009 Texas Instruments made a unique opportunity available to our ECE 480
design team. The task would be designing and developing a low-cost Ethernet-to-wireless
gateway that can be deployed wherever an Ethernet port can be located. The project is new to
MSU and the team has the opportunity to be creative with the project and design it from top to
bottom. Although the customer had some constraints to the project including time, cost, power
and performance (rate and range, inter protocol bridging efficiency and size), the project was
open-ended and was designed to exceed customer expectations. The customer had mentioned
that upon completion of the project it could be integrated with other analog, RF and computing
technologies from TI.

Although, the design specification was up to the team, Tl management originally suggested
that we take advantage of existing Texas Instruments’ hardware parts like the ARM Cortex-M3
based microcontroller. Software was developed using IAR Embedded Workbench for both the
microcontroller and the wireless transceivers. The customer had also requested that the gateway
built have its own web server in order for easy management from the LAN. Using JavaScript
and basic HTML, the team was able to run a web server directly through the LM-358962
microcontroller, avoiding extra external hardware.

The system is used as a platform to organize and utilize information that is gathered between

different sub-systems (i.e. sensors and web server). In order to gather all this information and

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

integrate them all with no interference, a challenging design was required and in the end

developed by the team.

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

2. Solution Space and Approach

2.1. Design Objectives

In the early stages of the design process, the team decided to identify key objectives that
needed to be met for a successful prototype. After extensive thought, the team was able to
determine the following objectives to be most critical to the project:

e Performance: Superior wireless communication with special emphasis in packet loss
avoidance

e Cost: Keeping the price as low as possible without drastically degrading performance or
features

e Expandability: The ability to add other wireless protocols such as Bluetooth to the
system to target a larger spectrum of devices and improvement in wireless range

e Power: Low-power components were hand-picked by the team specifically to meet this
objective

e Robustness: Develop a system that will work continuously in various environments

e Size: Toaccommodate typical residential settings, small enough that it is not an eye sore
and large enough to fulfill robustness objective

e Safety: End-user should not run into any hazards while operating the device, including

proper shielding from the power supply and any electrical wires

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

2.2. House of Quality Diagram

++

++ Strong Positive
+ Positive

- Negative -

- Strong Negative

O
>
¢
>
O

® =9 High
O = 3 Moderate
D =1 Weak

Direction of Improvement T A
Design

Requirements
(How)

Customer
Requirements
(What)

Expandability

v fimportance (1-5)
[JRobustness
[> Safety

Power-over-Ethernet

® | ® |Performance

OO fost
@ | O JPower
L= 1O Bize

w
¢

ZigBee Sensors

(g

Web Server

Future Product Expansion 4

Safety at Wall Qutlet 3

Ease of Use 3

Small Overall Device 31 A

Slole|O]O
o

Absolute Total 93 81|67 |34]|54]|35

Figure 2.2.1 House of Quality Diagram

The House of Quality diagram for the team’s prototype is shown in Figure 2.2.1. The House of
Quality is a graphic tool that demonstrates the relationship between customer and design
requirements. House of Quality is a part of Quality Function Deployment (QFD) and it uses a
planning matrix to relate what the customer wants and how it can meet those goals. Performance
and cost were two of the largest design requirements the team considered when creating the

prototype, as shown in the diagram.

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

2.3. FAST Diagram

Use Web
Browser

.

Use IEEE
802.15.4
Stack

RN
= B
— =

Figure 2.3.1 FAST Diagram: Design Team 3

Our teams FAST (Function Analysis System Technique) diagram can be seen in Figure
2.3.1 above. The purpose of the diagram is to prioritize the objectives or functions of the
product. The diagrams logic is read left to right, with the leftmost object being the basic function
and the rest being secondary. There are three main secondary functions involved in the
completion of the design task: managing all data from the microcontroller; polling the sensors so
that status information and communication can be performed; and finally implementing Power
over Ethernet to power our devices. As the reader moves further right in the diagram, the reason

as to how and why these functions are being performed will become clearer.

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

10

2.4. Feasibility Matrix

Design Criteria |Weight I;(:r\:\éerrnce);/er Egg:?nunication Web Server
Performance 5 4 5 5
Cost 5 5 5 4
Expandability 4 2 5 4
Power 4 5 5 3
Robustness 3 4 4 2
Size 3 3 4 1
Total 94 114 82

Table 2.4.1 Feasibility Matrix for Prototype

Texas Instruments had addressed that in designing the project, a few constraints should
be met. These included but are not limited to time, cost, performance, power, expandability,
size, and robustness as shown in Table 2.4.1. To deal with time constraint, the team created a
schedule of deadlines in which certain aspects of the project had to be completed. This allowed
the team to satisfy all desired requirements by design day and allowed buffer time to
accommaodate for unexpected failures throughout the design process. Along with time comes
cost. Cost was a chief concern for designing this prototype due to the $500 budget constraint per
team. However, many of the parts for our project were distributed directly from Texas
Instruments or its subsidiary Luminary Micro at no cost. (see Table 5.2.1.1). Nonetheless, the
team wanted to keep production cost down so that the design can be realizable in the market.

Performance is by far the most vital design criteria that the team wanted to exceed. Chief
performance concerns include range and efficiency of the wireless signal and inter-protocol

bridging efficiency. Without an efficient wireless and wired signal, both communication

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

11

between web server to circuit and sensor to circuit would be poor or non-existent and the final
design will be useless.

Power consumption was also critical to the teams design. All of the parts utilized in the
design work under the Power over Ethernet IEEE 802.3af hardware power rating standard. The
TPS2384 consumes roughly 480mW in powered mode when all four ports are used and 432mwW
in standby with all ports off. The TPS2375 consumers a bit more power roughly in the range of
1-2W due to its requirement to generate ~15.4W on the CAT5 cable.

Size and robustness are fairly obvious constraints as the team wanted the design to both
be stable and compact. The team’s final design includes a 10” x 14” enclosure that contains all

of the hardware.

2.5. Design Solution

Wireless Sensors

(E)(B)

Main Board
+48V Mcu
| Cortex-M3
i
i
| 1
Power Sourcing Equipment ! Power over Ethernet L3V
RI-45with | | | ®eePD) e
Power | | Web
i Server
Data 1

Wireless SoC
3.1V

Figure 2.5.1 Block Diagram for Prototype

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

12

The teams design solution is centered on four main components provided by Texas Instruments.

The first component is the TPS2384, which is the Power Sourcing Equipment (PSE) chip. This

module is critical to the team’s design as it takes a 48V input supply and injects the voltage and

roughly 15.4W of power over the CAT5 Ethernet cable. Since there are four unused wires on

every Ethernet cable, the voltage will be applied to those lines rather than the four wires used for

data transmission. The PSE along with the Power over Ethernet Power Device (POE PD) must

be in constant interaction with each other to be fully operational. The PSE will continuously

probe and detect if a POE PD is present. In this detection phase of the PD, 2.7-10.1V is applied

to the power interface to determine whether it can accept the power using incremental resistance

of 25 kQ signals. If not, the PSE will terminate supplying voltage. The PSE will also shutdown

power to the Ethernet cable if the PD ever becomes disconnected from the network. The PD has

an additional three stages of operation that is determined by the voltage received from the power

interface, as shown in Figure 2.5.2.

I

> s L

o .0 8 =

5. 5. 55 LE g2 $
c E c E EE EE e f ES ci;:j £
S d 85 £ & - =3 30 5o S o
- E= L™ ™ = o o
8 g 88 82 48 38 28 g8 58
@ 0 o 9 =0 = 2 20 o= =] © 5
(= | o> ©O4 (S = => a0 => =>
Shut - | R
Detect Classify T Normal Operation
2.7 101 145 20.5 30 36 42 57
Pl Voltage (V)

Figure 2.5.2 IEEE 802.3af PD Limits

The next important pieces of hardware which are the DC-DC buck converters. The

converters are used to step down voltage from the Ethernet cable coming from the PD. In the

Power-over-Ethernet For Wireless Home Automation

Texas Instruments

13

team’s design, only one converter is required as both the microcontroller and wireless
transceivers supply voltages can be satisfied with 3.1V.

The wireless system on chip (SoC) consists of the CC2430/F128 module shown in Figure
2.5.3. The module broadcasts a wireless ZigBee signal to interact with any sensors in the
network. The SoC also will constantly interact with the microcontroller through UART
transmissions so that any data collected from the sensors can be logged and managed internally
by the microcontroller. This data can subsequently be accessed through the team’s web server
hosted on the microcontroller, allowing an easy way to manage the system and check on the

status of the sensors locally or remotely.

Figure 2.5.3 CC2430/F128 Wireless SoC Transceivers

Finally, one of the most vital pieces of hardware to our design, the LM3S8962 microcontroller, is
produced by TI’s subsidiary Luminary Micro. This is the heart of the team’s design and will do
most of the processing and data management. As mentioned above, it will also be in constant
communication with the wireless SoC sending data one byte at a time through UART. Due to

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

14

the processing tasks the microcontroller has in the design, it was programmed intensively for
both UART communication and the hosted web server. In order for the web server to be
accessed, the microcontroller required additional coding to allow for Ethernet connections. This
includes Dynamic Host Configuration Protocol (DHCP) to assign an IP address, and lightweight

TCP/IP stack (IwlIP) to control various peripherals on the board via a web browser.

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

15

2.6. Gantt Chart

Task Name Duration Start Finish Predecessors | Resource Names
1 = Introduction to the Project I 13 days Fri 9/4/09 | Tue 922/09
2 Receive Information on Project Assignment 1 day Fri 8/4/059 Fri /409 Team
3 Meet with team members 4 days Fri 9/4/09 Wed S/909 Team
4 Start Werking on Gantt Chart 3 days WNon 81409 Wed 5/M18/09 Karthik
5 Work on WVOC 2 days Thu SM7/09 Fri 8/13/09 Saszang/Hagsan
53 First Conference Call with T.I 1 day Fri S18/09 Fri 8/M13/09 Team
T First Meeting With the Facilitator 1 day Tue 922409 Tue S/22/09 & Team
8
9 - Pre-Propo=sal and Design ldeas 6 days Wed 9/23/09 | Wed 930/09
10 Plan on student Technical Lecture 1 day| Wed 2309 Wed S/23/09 Team
11 WOC Due 1 day Fri S/25/09 Fri S/25/09 Sasang/Hassan
12 Pre-proposal Due(team) 1 day Fri /2509 Fri /2509 |8,7 Team
13 Do Research for Parts(team) Jdays WNon S28/09 Wed S/30505 12 Dave/Karthik
14
15 | =/ Proposal and Design Specifications Fdays Thuo 1081/09 Fri 10:/9/09
16 Work on FAST Diagram 4 days Thu 10/1/09 Tue 10/5/09 Dave
A Email Jim About the Parts 1day| Thu10/1/09) Thu 10/1408|13 Karthik
18 Work on Software for the board S days Fri 1042409 Thu 1043/09 17 Sasang/Dave
19 Practice Oral Presentation 4 days Thu 10109 Tue 10/8/08 12 Team
20 Oral Prezentation 1 day Wed 10/7/09 Wed 10/7/059 19 Team
21 Final Propo=al 2 days Thu 10/2/09 Fri 100909 | 12,20 Haszan/Dave
22 Submit Brochure Description 1 day Fri 1045409 Fri 104905 Dave/Sasang
23 Submit Gantt Chart 1 day Fri 1049405 Fri 104905 Karthik
24
25 Specification Milestone 0 days Fri 10/9/09 Fri 1009409 | 15
25
27 | = Prototyping and Technical Lecture 15 days Mon 10/12/09 | Fri 10/30:09 | 25
28 Receive parts from TI 3 days Mon 10120059 Wed 1001405 17 Team
28 Begin Coding Web Server and Micro-Controller 4 days| Mon 10/M2/05 Thu 1011505 18 Sasang/Dave
30 Start Building the Evaluation Modules 2 days Thu 101505 Fri 10/18/08 28 Karthik
31 Continue Work on ENVM= Sdays Mon 1019059 Fri 104223409 | 30 Karthik/Dave
32 Begin Preparation for First Demo 3 days| MNon 10/268/059 Wed 10/28/059 31 Team
33 Begin Preparation for Progress Report 1 3 days| Mon 10/26/059 Wed 10/28/09 31 Team
34 Work on Technical Lecture on PoE 2 days Thu 10/25/09 Fri 10430609 10,33 Team
35 Submit Demo | and Progress Report | 1 day Fri 10430409 Fri 10430409 Team
35
3F Specification Milestone 0 days Fri 10d30008 Fri 10430409 | 27
38
39 |-/ Prototyping (Contd.) and Feedback 11 days Mon 11/2/09 Mon 1116/09 | 37
40 Student Technical Lecture on 11/02 1day WNeon 112109 Mon 11/2/05 34 Team
41 Troubeshooting EVNs and Build the PSE/PD Sdays Won 11/2/08| Thu 1112608 2535 Hassan/Dave
42 Order Analog Sensors for Demo Z2days Mon 11/2/05 Tue 11/3/09 Dave
43 Meet With Tl for Feedback 1 day Fri 11/8/05 Fri 11/8/08 | 35 Team

Figure 2.6.1 Design Team 3 Gantt Chart Tasks Page One

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

45

47

48
30
31
52
53

535

a7

39
60
61
62
63

65

67

69
T
71

73
74
75
75

Task Name

Application Notes Due
Discuse Any Major lesues with T

- Design lssues and Demo Il
lzolate lssues in Design
Continue work on Webserver and WSOC Integr:
Order Partzs for DC-DC Converters
Waork on DC-DC Converters
Submit Progress Report 2
Submit Demao 2

Specification Milestone

- Feedback and Rapidized Final Design
Submit De=ign l=sue Paper by 11/25
Work on Final Report
Start Work on Final Beards
Meet With Tl for Feedback
Build the Final Boards

- Documentation and Comments from Sponso
Professional Self-Assesment Report
Work on Poster for Design Day
Finalize Report
Meet With T for Final Feedback
Submit Final Report

-/ Design Day Activities
Design Day

- Post-Design Day Wrap-up
Submit Engg Motebooks
Clean up lockers and check-out
End of Project

Figure 2.6.2 Design Team 3 Gantt Chart Tasks Page Two

Duration

1 day
2 days

5 days
4 days
5 days
1 day
1 day
1 day
1 day

0 days

T days
1 day
4 days
5 days
1 day
4 days

& days?
1 day
4 days?
4 days
1 day
1 day

1 day
1 day

Jdays
1 day
1 day

Start

Fri 11/13/08
Fri 11113/08

Tue 1117109
Tue 11417/05
Tue 11/17/09
Tue 11417/09
Mon 11/23/09

Fri 11720408
Fri 11/20/08

Mon 11/23/09

Mon 11/23/09
Wed 11/25/09
Tue 1172409
Mon 11/23/09
Fri 11427/08
Thu 11/28/09

Mon 11/30/09
Wed 12/2/08
Wed 12/2/09
WMon 11/30/09
Fri 12/4/08

Fri 12/4/09

Tue 12/8/09
Tue 12/8/09

Finish

Fri 11/13/09
WMon 11/16/09

Mon 11/23/09
Fri 11/20/09
Mon 11/23/09
Tue 11417/09
Mon 11/23/09
Fri 11720009
Fri 11/20/08

Mon 11/23/09

Tue 121109
Wed 11/25/09
Fri 11427/09
Fri 11/27/09
Fri 11427/09
Tue 12/1/09

Mon 12/7/09
Wed 12/2/09
Mon 127/09
Thu 12/3/09
Fri 1244/09
Fri 1244/09

Tue 12/8/09
Tue 12/8/09

Mon 1214/09 Wed 12/16/09

Mon 121409
Wed 12116/08

Mon 12M14/08
Wed 1216/09

Predecessors | Resource Names

47

55
52,53

£noen
[FER %

[N
L=l

62
67

&9
62,66

72

0 days Wed 12M6/09 | Wed 1216/09 | 74

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

Team
Team

Saszang/Hasszan
Sasang

Dave

Dave

Team

Hassan

Team
Dave/Karthik
Sasang
Team

Hassan/Dave

Team
Has=san/Karthik
Karthik/Dave
Team

Team

Team

Team

Team

17

September 2009 October 2009 | November 2003 | December 2009 |
1|47 [10]13]16]18]22|25]28| 1 [4 | 7 [10]13]16]19]22|25]28|31] 3 | 6 | & [12]15]18]21|24]27|30] 3 | 6 | & [12]15]18]21 24|27t

Py 0%

@ 0%
(%
=4
= 0%
E%
pE— 0%
B 0%
1Fm{.
o o

o o oo
FF

- 1019

Fi

2 F

Figure 2.6.3 Design Team 3 Gantt Chart Critical Path Page One

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

September 2009

October 2008 | Hovember 2009 | December 2008

1 [4]7 [1e[13[16[19[22]25]28

1[4]7[10[13[16[19]22]25]28]31] 3 [6 [8 [12[15]18]21[24[27[30][3 [6 [@ [12[15[1&]21[24[27 [t
o 0%

0%

0%
@ ||
0%
e ey
i o
0%

Figure 2.6.4 Design Team 3 Gantt Chart Critical Path Page Two

Power-over-Ethernet For Wireless Home Automation

Texas Instruments

& 0%
1216

19

Figures 2.6.1 — 2.6.4 are images of Design Team 3’s Gantt chart. The Gantt chart was created
using Microsoft Project 2003. It was a useful tool for monitoring the team’s progress on the
project throughout the semester. It illustrates start and finish dates of important aspects of the
project, including identifying elements that are dependent on other tasks being completed first.
The Gantt chart was updated throughout the semester to accurately determine team progress and

identify problem areas or time concerns.

2.7. Proposed Budget

Quantity Item Cost
2 PSE Module Provided by Sponsor
2 PoE PD Module Provided by Sponsor
2 ZigBee Radio Transceivers Provided by Sponsor
2 LM-3S-8962 microcontroller | Provided by Sponsor
1 48V Power Supply $53.12
1 Wireless Sensors $138.00
Resistors, Capacitors, Diodes | Provided by MSU
Total Cost $192.12

Table 2.7.1 Expected Budget for Design Team 3

Shown in Table 2.7.1 is the team’s initial budget estimates halfway through the semester.
Several components needed for the team’s design were provided by project sponsor Texas
Instruments. Many other components including electrical components such as resistors,
capacitors, and diodes were assumed to be in stock at the MSU ECE Shop free of charge

therefore not affecting the team’s $500 budget.

Power-over-Ethernet For Wireless Home Automation
Texas Instruments 20

3. Technical Description

3.1. Hardware Design

In creating our prototype, our hardware design was broken down into three main components:
power sourcing, Power over Ethernet (PoE), and wireless sensors. The following sections will
discuss in more detail their purpose to the team’s prototype and how they were implemented in

the final design.

3.1.1. Power Sourcing

The power sourcing component is composed of a 48VDC/0.5A linear power supply and the
TPS2384 Power Sourcing Equipment (PSE) module. The connections between these two
components are shown in Figure 3.1.1.1. The power supply requires 100/120/220/230/240 VAC
which can be supplied from any standard wall outlet. Since no AC adapter comes with the
power supply, simply cutting one end of a standard computer power cable off and stripping the
opposite end to expose the hot, neutral, and ground connections will work well. Before using
this supply, soldering the appropriate jumper connections at the AC input is required. To make
the connections between the power supply and the PSE, wires with higher voltage ratings were
used to accommodate for the 48VDC. Using these wires, connection between the supplies
positive and negative output should then be connected to the V44 (power) and ground input on the

PSE’s supply block.

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

21

Figure 3.1.1.1 48V Linear Power Supply and TPS2384 PSE

With the appropriate connections made between the supply and the PSE, configuration of
the PSE is necessary to supply the correct voltage on the CAT5 cable. As the TPS2384 is a
quad-port PSE, each port has its own set of jumpers. These jumpers are used to determine which
pins the user wants to apply the 48V on. As mentioned previously, a standard CAT5 cable has
four unused pins. The team decided to apply the voltage on these spare pins, rather than
applying it to the pins that data travels on. By placing the jumper to its corresponding position,
pins four and five will harness the positive voltage while pins seven and eight will contain the
negative voltage. In addition to these jumpers, the TPS2384 has an additional ten jumpers that
must be properly connected in order for correct operation. At this point, the team was able to

successfully read a voltage of approximately 48.1 on the line using a digital multimeter.
3.1.2. Power-over-Ethernet (PoE)

The next component of the project is the hardware required to implement the PoE. With
the power supply and PSE connected appropriately as discussed in the previous section, the team

was able to add the TPS2375EVM PoE powered device shown in Figure 3.1.2.1.

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

22

Figure 3.1.2.1 Power-over-Ethernet Powered Device TPS2375EVM

The TPS2375 can be configured for various classifications by changing the value of an external
resistor connected between the CLASS and power pins. The team used default class 0, which

allows for 0.44 — 12.95W of power and 0 — 4mA of current. The value of R ass was 4.420 kQ

+1%. All five classes that can be chosen are shown in Table 3.1.2.2.

Class | PD Power (W) | Rcpass(2) | 802.3af Limits (mA)
0 0.44-12.95 | 4420+ 1% 0-4
1 0.44 -3.84 953+ 1% 9-12
2 3.84-6.49 | 549+1% 17-20
3 6.49-12.95 | 357 +1% 26 -30
4 - 255+ 1% 36 - 44

The team utilized the TPS2375EVM’s output supply block that allows for the connection of an

external DC-DC converter to step down the 48V to more appropriate voltages. By doing so, the

Table 3.1.2.2 Classification of TPS2375

Power-over-Ethernet For Wireless Home Automation

Texas Instruments

23

team avoided requiring additional electrical power sources for the microcontroller or the wireless
transceivers. While researching their respective datasheets, the team discovered that the input

voltage range for the LM-3S8962 to be 3-5V and the wireless transceivers to be 2-3.2V.

To limit the hardware required for the prototype, a DC-DC buck converter that would take the
48VDC and output 3.1V was designed (see Appendix 6.3.1). Later testing of the buck converter
yielded a voltage of 3.077V, adequate for both input voltage requirements. With the initial
testing of the converter proving to be a success, the team moved the circuit off the bread board

and soldered the components to a project board as shown in Figure 3.1.2.3.

Figure 3.1.2.3 DC-DC Buck Converter

The team decided to make sure that the datasheets input voltage requirements were in fact
correct. Testing proved that the output voltage from the DC-DC converter was in fact sufficient

to power both components.

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

24

3.1.3. Microcontroller

The LM-358962 microcontroller forms the core of the team’s design. The microcontroller
essentially mediates between the user interface and the wireless sensors which collect the data as
desired by the user. Below is the pin diagram of the LM-3S8962 according to the datasheet
provided by Luminary Micro. The team was required to become familiar with all pins
throughout the design process in order to determine which pins needed to be connected for

successful communication to and from the CC2430’s.

§E
=8 2
e m w w
=] [=] B S -~
» 2 1 | o + (@ MU H O
o m [#] o o oK Mo M o E [= =}
H o [o O U oUlE N oD@ m 3 H B o
-~ g = ~ B > | BB B B B = |
CRbERiEoABRPMOREREOCBE8000 8
AREEEREGERENEREGEEGEEEGEREREA
D99 @ 0k ©uw=omc T O 00 oW ™ OO ~o
(=== T - R RS S s = SR S F s IR S I R e
apco[T]1 ™ 75 [1] PE3/PhAl
apci[T |2 74T]PE2/PhB1
vopa [T 3 73 [T PE1/PWMS
GNDA [T |4 72 [T] PEO/PWM4
ancz2[1]5 7111 PB3/I2COSDA
ADC3I[T |6 70T]epB2/12C0SCL
Loo[1]7 69 [T 1GND
vop[] |8 68 [T]voD
GNp []9 67 [11 PB1/PWM3
PDO/CANOR= [T |10 66 [| | PBO/PWM2
PD1/CANOTx [1|11 65 [T]cmopo
PD2/UlRx [|12 64 [T]RST
PD3/UlTx[1 |13 LM3S8962 63 []GND
vDp25[] |14 62 []vpD25
GeNp[1]15 6111 PF1/IDX1
XTALPPHY [|16 60 []®»F2/LED1
XTALNPHY [|17 59 [T PF3/LEDOD
pPG1/PWML[] |18 58 [T ImMpIO
pGo[{19 57 [T enp
VDD [|20 56 []vDD
Gnp [T 21 55 [T]veaT
pc7[22 54 T]GND
PC6/PhBO[|23 53 [T1xosc1
pes[|24 52 [T]xosco
pC4/PhA0[1] 25 51[T]u1s
W 00 O NS N WM 03O NS WD W~ 3O
S I I R R L R T R I I e e T - N SR S S T
L ® O o~ oe =N [P TS - PR = | A==
BEgEALCBERERSBEAEEEEEER T
b bo S HH o [3] g a g B RO QE
e W H H oWowWm ~ [%] =
o~ U W un a =S =] (=)
I o [
AR~ “':; : E (] ~
ﬁ = O R
(I

Figure 3.1.3.1 LM-3S8962 microcontroller Pins

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

The LM-358962 is a Cortex M3 based-100 pin, 32 bit-computing microcontroller that is cost
effective and aims to deliver 32-bit computing at the cost of 8-bit and 16-bit controllers. Several
reasons went into the decision of selecting LM-3S8962 microcontroller for the design over the
other popular microcontrollers available in the market. Some of the reasons are, small footprint,
extreme power conservation when demanded, Ethernet compatibility, large on-chip memory, a
memory protection unit, flexible timers, ARM’s wide user base-means easy troubleshooting, and
so on. For easier programming and debugging purposes, LM-3S8962 Evaluation Module was
used in the design. The design however was proposed keeping the actual chip in mind. Hence, a
move-over to the actual chip is not seen as a problem. Figure 3.1.3.2 illustrates the block

diagram of the microcontroller.

&8)

ARM 256 KB Flash
Cortex™-M3

50 MHz = 64 KB SRAM

m | Clocks, Reset
3 1 System Control
Y — e
W
10/100 Ethernet w
MAC +PHY 4 TimerPWM/CCP
|EEE 1588 Each 32-bit or 2x16-bit
=
-
=
o
w
w

c Hibernate
2 Quadrature
Encoder Inputs

& PWM Cutputs

LDO Voltage
Regulator

Timer

0 il

D0TVYNY

3 Analog
Comparators
Comparators
10-bit ADC
8 channel

1 Msps

PWM WM
Generator Interrupt

MOTION CONTROL

Dead-Band
Generator

Temp Sensor

Figure 3.1.3.2 LM-3S8962 Block Diagram

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

As it can be seen from the block diagram, the microcontroller gives the users a lot of options in

terms of serial interfaces. The team decided to use the Universal Asynchronous

Receiver/Transmitter (UART) port for communication between CC2430 and the microcontroller.

This decision was made based upon the availability of UART interface on the WSoC and also
previous UART experience by the team. The Ethernet port was used to access the website.
Hence, this report will further focus on the UART and 10/100 Ethernet interfaces on the
microcontroller. Some of the UART features of the microcontroller include- two programmable
16C550 UARTSs with IrDA support, separate lines for FIFO TX and RX, fully programmable
data bits, and so on. The team used the UORX, UOTX, and GND pins on the Evaluation Board
to connect to the WSOC. The memory on the microcontroller was used to host the web server.
Hence, the data received by the microcontroller from the WSoC is processed and organized in
the microcontroller and stored in the 128KB memory. Details on how this data is accessed are
described in the user interface section of this report. The Ethernet port allows the microcontroller
to be connected to a live network and obtain an IP address. This allows the web server to be
accessible on the web from anywhere in the world. Figure 3.1.3.3 is a picture of the LM-358962

Evaluation Module used in the design.

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

27

Figure 3.1.3.3 LM-358962 ARM Microcontroller

3.1.4. Sensors

For testing and demonstration purposes, the team used two sensors (temperature and pressure).
The sensors were in-turn connected to the WSOC to perform ADC and transmission of data to
the WSOC on the microcontroller side as per the design. This segment of the report summarizes
the WSOC, the SmartRF04 EB used to flash the WSOC, and the two sensors used in the design.
The WSOC is the CC2430/F-128 chip. The CC2430EMs with ZigBee capabilities were used in
the design. Every sensor is assigned an associated WSOC, and there is a WSOC on the
microcontroller side. The T1 Z-Stack comes built in the CC2430EM. This Z-Stack enables the

CC2430 to transmit, receive, and operate according to the ZigBee protocol.

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

28

e WATCHDOG R Rl —<] ¥DD (20 -36V)
TIMER REGULATOR 157 DEOURL
s
32 MHz HIGH SPEED RC- POWER ON RESET
CRYSTAL 0SC 0SC BROWN OUT
RESET_M [3<] 32.768 kiiz
TR e 32 kHz RC-0SC SLEEP TIMER

DIGITAL
B AnALOG
@ MIKED

xosc_at [¥] DEBUG CLOCK MUX &
= INTERFACE CALIBRATION CLL A S TS
P2_4 [X]
P2_3 [X]
P22 [X] 32i64128 KB
r21 5 FLASH
-1 X o 8051 CPU MEMORY
Pz_0 [5) CORE ARBITRATOR
8 KB
P17 [X] SRAM
P1_6 [X] I
P15 [X] IRQ FLASH
P1_ PJERS CTRL WRITE
P13 [¥] AES
P1_2 [X] AUDIO E"m:rw" RADIO REGISTERS
Pt K] a8 DECRYPTION
P1_0 [X] CSMAICA STROBE
PROCESSOR
PO_T]
Po_6 [x] USART 1 RADIO DATA INTERFACE =]
Fo_5 [X] E
PO_4 [5] =
P03 5 USART 2 o
- DEMODULATOR AGC MODULATOR =
Po_2 [X] &
POt [TIMER 1 (16-bit} a
FO_D }:q 2
TIMER 2 g
(IEEE 802.15.4 MAC TIMER) T
TIMER 3 (8-bit)

SYNTHESIZEFR

TIMER 4 (8-bit)

Figure 3.1.4.1 Block Diagram of CC2430

Figure 3.1.4.1 shows the block diagram of the CC2430. The CC2430 is a low power, low cost
wireless solution in the ZigBee (802.15.4) 2.4GHz range. The chip has an enhanced 8051 core
processor with 128 KB flash memory and 8KB RAM. As one of the essential challenges of the
project was to integrate POE with low power wireless devices, the CC2430 was chosen. The
CC2430 operates at extremely low powers, Rx and Tx at 27mA, and 0.3 micro Amp at stand-by.
The chip operates at a wide range of supply voltage of 2.0 V to 3.6 V. The chip has a total of 48
pins of which three are 1/0 ports of 8, 8, and 5 pins (21 total I/O pins) and an additional standard
die ground. The chip operates at 32MHz crystal clock, and can also accept other clock inputs on
the XOSC_q2 (pin 43). The chip also possesses two USART lines, and an AES

encryption/decryption capability. The USART on the chip is used to communicate with the

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

microcontroller. The details of communication are given in Section 3.2, hardware

implementation.

To program, debug, and flash the CC2430 SmartRFO4EB board was used. Figure 3.1.4.2 depicts

the SmartRFO4EB, and Figure 2.1.5.2 depicts the CC2430.

Figure 3.1.4.2 SmartRF04 Evaluation Board

The SmartRFO4EB is connected to a computer via the USB cable, and is powered at 4.0V. The
working voltage range of the WSOC is 3.0-3.6 V- the board supplies the desired to the WSOC.
The board can also be powered via a battery source (which cannot be seen in the picture as it is
in the bottom of the board). The board also has 40 1/0 pins which are directly associated with the
WSOC. Hence, the SmartRFO4EB gives an easy solution to program, the board and supply

external inputs simultaneously. Once programmed, the WSOC can work stand alone.

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

30

Figure 3.1.4.3 Temperature Sensor Circuit

Shown in Fig 3.1.4.3 is the project board containing the temperature sensor IC; TMPO1FPZ. The
chip is an analog temperature sensor designed by Analog Devices Inc. For the demonstration and
testing purposes, this chip was used to measure the temperature of the room, and display the
result in Fahrenheit (F) degrees. The chip by itself gives voltage proportional in the Kelvin scale
at 5mV/K; the conversion from Kelvin to Fahrenheit was done in the code. The operating voltage
for the sensor is between 4.5 - 13.2V. As the WSoC associated with the sensor only needs 3.3 V,
the batteries were connected in such a way to provide appropriate voltage to both chips. The chip
gives out two output lines, one being the VVoltage Proportional to Absolute Temperature
(VPTAT) and the other being a reference line of 2.5V. Hence, the measured temperature is
calculated based on the VPTAT and the reference. The chip also has upper and lower limit
alarms which go high when the temperature sensor measures a temperature higher or lower than
the user set limit. These pins of the chip were left unused in the testing process. This temperature
was implemented successfully and incorporated in the demonstration of the final project.

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

31

Figure 3.1.4.4 MPX200AP Analog Pressure Sensor

The second sensor used for demonstration and testing purposes was the Motorola’s MPX200AP
pressure sensor. The sensor is silicon piezo-resistance based analog measurement of the pressure.
The device outputs a voltage value proportional to the pressure detected. Figure 3.1.4.4 shows
the pressure sensor’s back view. The front view has a pressure side P1. This pressure side P1
measures the pressure applied with respect to the vacuum inside the sensor kept at constant
pressure P2. As the applied pressure deviate more from vacuum pressure P2, the output voltage
deviates from reference offset voltage of 20mV. The sensitivity of the sensor is 0.3mV/kPa, and
the operating voltage is 3.0 V to 6.0 V. The burst pressure of the sensor is 2000 kPa, and the
overpressure (P1>P2) is at 400 kPa. Pin 1 is ground and pin 3 is VVdd, and pin 2 supplies the
positive output voltage and pin 4 supplies negative output voltage. The positive voltage was fed
into the WSoC and was converted to digital value using the ADC on the WSoC. This digital
value was transmitted to the WSoC on the microcontroller side for web server purposes. Thus,

the pressure sensor was successfully implemented.

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

32

3.2 Hardware Implementation

This section describes the hardware setup and connections of the final prototype that are housed
ina 10” x 14” enclosure. The final prototype can essentially be broken down into three segments.
The prototype has a power supply that is connected to the wall outlet and provides a 48VDC
input to the PSE. Placed next to the power supply is the PSE which injects 48V into the unused
lines of the CAT-5 cable. The other end of the cable is connected to the Powered Device which
outputs 48V from a set of pins, and the data can be collected on the other Ethernet port on the
PD. The output from the PD is then connected to the DC-DC converter which steps down the
voltage to 3.1V as needed by the microcontroller and the WSoC. The website is hosted on the
microcontroller, and the WSoC on the board is connected to the microcontroller through UART
transmission. The sensors, with associated WSoC can be placed anywhere within range so as to

facilitate communication with the WSoC on the board.

On the final product based on the prototype, the power supply and the PSE are put in the back-
end of the board. This means that the only connection to the board from the external environment
is the CAT-5 cable going to the PSE. Hence, Power over Ethernet for the board is achieved.
Shown in Figure 3.2.1 is the enclosure used to accommodate the main hardware components for

the design.

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

33

Figure 3.2.1 Final Design Enclosure

3.3. Software Design Requirements

ECE 480 Design Team 3 separated the software design into four parts: analog to digital
conversion on the CC2430, the wireless transmission from several CC2430 chips to the central
gateway node, UART communication between the receiving CC2430 and the microcontroller,
and finally the coding for the web server to display information from the wireless sensors. The
project required that the design have the ability to communicate with wireless sensors. To

accommaodate for this, the team utilized analog temperature and pressure sensors whose values

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

34

would be converted into digital signals that could be transferred over the CC2430 to the central
node which was also a CC2430 chip programmed to accept several connections. Using the IAR
Embedded Workbench for the 8051 microcontroller, the team was able to utilize both ADC and
RF capabilities by sending/receiving this data using the ZigBee wireless protocol. Distinctions
were made between the several nodes sending data by observing the send and receive address of
each transmitted packet. After the digital signal containing the sensors output values is received,
the team needed to program the receiving CC2430 to communicate with the LM-358962
microcontroller through UART. By doing this, the data is stored in FIFO buffers and then
transferred one byte at a time. Subsequently, the microcontroller receives this transmission one
byte at a time and restores it to its original file size. Once the CC2430 was programmed to
transmit through UART, the microcontroller had to be programmed to receive values on the
UART only when the unique signature the CC2430 sends is received. This allows for power
savings and the ability to determine what sensor is transmitting information at any given time.

This is a critical step in creating a wireless sensor network that contains several nodes.

Finally, the microcontroller was programmed further to host a web server for remote
management of any sensors in the network. This was done by creating temporary buffers to

store the received UART communications from the sensors and reading the values in.

For the implementation of the ADC, wirelesses transmission and UART communication,
the coding was done the C language by two different compilers and development environments.
For the CC2430 programming, all code was done with the IAR 7.51 Workbench, with the help of

Hardware Abstraction Layer (HAL) libraries provided by TI1. The MCU programming was done

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

in a similar environment, the IAR 5.4 Embedded Workbench, with separate libraries for the

StellerisWare 8962 MCU.

3.4. Software Implementation

ECE 480 Design Team 3 was able to create a web server which has the ability to communicate
with any wireless sensors in the network. For the team’s design, this involves the temperature
sensor and pressure sensor. By logging in to the web server, the consumer can easily read the
values of sensors. For instance, using a temperature sensor to continuously monitor the
environment of a temperature-dependant space can be used in several situations such as server

rooms. Shown in Figure 3.4.1 is a screen capture of the web server created by the team running

in Mozilla Firefox.

S angEL Lesning [} £CE 330 Home Page /% Dual Eoot Innstation _.

FCF 480 Demisjen Team 3 Wiels Sevues

, Wireless Monitoring ZONE
¢ TEXAS

INSTRUMENTS
Sensor Data

Current Pressure:

Get Pressur i

Current Temperature:

Gal [emparatura

A2,

Figure 3.4.1 ECE 480 Design Team 3’s Web Server

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

36

When the proper network connections are made, the web server can be accessed anywhere an
Internet connection is available. As the server utilizes JavaScript, the web server can also be
accessed on any modern Smartphone including BlackBerry’s and the iPhone. Of course in order
for this web server to handle any useful information, the proper coding documented in Section
3.3 must already be in place. The team was able to do all the necessary coding for a fully
functional web server. By pressing the ‘Get Pressure’ button on the server, a JavaScript
‘onclick’ call is made to the microcontroller. This will send a request to the associated CC2430
to send its current value. After the receiving CC2430 node obtains this value, it will then send to
the microcontroller through UART. This value will then be sent to the appropriate location
depending on which function is called. This same procedure is used for the ‘Get Temperature’
button as well due to its similar operational mode. Depending on which function is called, the
appropriate formulas will be applied to convert a voltage in to either a Fahrenheit temperature or

a Pascal pressure.

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

37

4. Functional Design Testing

4.1. Results

The 48V power supply when connected to the wall outlet gave an output of 48.192 VDC. This
voltage was then transferred to the PSE using 300V rated wires, where jumpers were set to inject
the power on the empty lines of the CAT-5 cable. The PSE comes in three modes of operation:
auto mode, semi-auto mode, and power management mode. The power management mode
combined with a low cost, low power microcontroller like the MSP 430 gives an effective
solution for power management. The power management mode (PMM) has 13 functions which
give various options to the user like, supplying only 4.4V to the PD, supplying only 8.8V to the
PD, a disable function and several others. This project uses the PSE in its auto mode- self
sufficient and intelligent mode. The advantage of power management mode is the access to the
addresses microcontroller via 12C, management of power on the back end of the circuit when

PSE is positioned away from the PD and the microcontroller.

When measured in the laboratory, the PD outputs a voltage of 46.329 V. The amount of
power on the CAT-5 was calculated to be around 12.94W, slightly less than theoretical max of
15.W dictated by the IEEE 802.3af standard as expected. The power was sufficient in testing of
the PoE IP camera the team purchased for demonstration purposes. The TPS2375 used as the
powered device in the design is another intelligent power management circuit which operates in
three modes, namely detection, classification, and operation. The PSE does not supply voltage to

the power unless it detects a PD on the other end. Hence, the PD should respond the detection

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

38

query of the PSE. The PD also have four classification of resistors placed around the TPS2375

which control how much power goes to the Vgq and RTN pins.

Initial testing of the CC2430’s wireless capability yielded an indirect range of 124 feet between
sending and receiving nodes. The two nodes were not in direct sight of each other and heavy
concrete in the Engineering Building can account for this limited range. However, the nodes
were easily able to communicate with each other while on different levels of the building. They
were also able to transfer further than 300 feet while in direct view of each other. The CC2430 is
also a low power wireless solution despite these optimistic results. The chip has two clocks for
basic operation, which can be chosen by the designer for faster speed or lower power
applications. One of these clocks is a 16 MHz RC oscillator, while the other is a 32 MHz crystal
oscillator. The chip can also take an external clock input, which can be useful for less typical

environments.

The chip only consumes 0.5uA of current in sleep mode, and 0.3pA in stand-by-mode with
wake-up time of 50ms. The microcontroller ran with roughly 9.5mA of current and low load, and
never exceeded 12.3 mA in the team’s testing. While transmitting, the CC2430 used ~26.7mA
of current and 26.9mA when receiving. The radio takes a typical wake-up time of 192ms and
with a Tx/Rx turnaround time of 192ms as well. Hence, the team’s choice of using the
CC4230EM for wireless transmission was a good one. The design specification of low-power

was easily met using the CC2430 in the design.

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

39

5. Conclusions

5.1. Summary

ECE 480 Design Team 3 was given an opportunity to design a multi-faceted system for Texas
Instruments. The first task was to implement Power-over-Ethernet (PoE) in the design. The
team successfully created a prototype in which both PoE enabled devices and non-PoE enabled
devices could be used in the network. This was shown by powering the LM-35892
microcontroller, the CC2430 wireless transceiver, and the POE powered device using a CAT-5
powered by the Power Sourcing Equipment (PSE). Utilizing the PoE PD’s external DC-DC
connection block, the team was able to create a DC-DC Buck converter that could provide

voltage internally to devices that are not PoE ready.

The second task was to create a gateway that would allow wireless sensor networks to be
connected into a LAN or the internet for building/nome control. The team was able to
demonstrate the potential for this technology by utilizing temperature and pressure sensors.
However, due to limited budget and time constraints, the team was slightly inhibited as to how
many sensor nodes the team could place in the network.

The team was able to meet the main design specifications asked by the sponsor, including
providing a low-power, safe, and effective prototype. The final design communicates wirelessly
between two sensors as expected, while third party devices were tested and confirmed to have
the ability to be powered over Ethernet. The project has great potential that can be worked on

with further funding and time, including adding different wireless protocols and expanding the

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

wireless sensor network to accommodate for more nodes. Further discussion on the team’s

thoughts on what could be improved and possible implementations is shown in Section 5.3.

5.2. Final Budget

Item Supplier Quantity | Cost/ea. Total
PSE Module (TPS2384) Texas Instruments 2 -- --
PoE PD Module (TPS2375) Texas Instruments 2 -- --
ZigBee Transceiver (CC2430) Texas Instruments 2 -- --
microcontroller (LM-3S8962) Texas Instruments 2 - -
48V Linear Power Supply MSU ECE Shop 1 $53.12 $53.12
CC2430 Debugger (SmartRFO4EB) | Texas Instruments 2 - -
DC-DC Regular (LM2594HV) MSU ECE Shop 6 $4.28 $25.68
PoE-Capable IP Security Camera MSU ECE Shop 1 $108.24 $108.24
Digital Temperature IC (DS1621) MSU ECE Shop 3 $4.61 $13.83
3V AA Lithium Battery MSU ECE Shop 4 $5.00 $20.00
Schottky Diode (MBR150) MSU ECE Shop 4 $0.43 $1.72
180 uH Inductor MSU ECE Shop 4 $2.99 $11.96
12000 pF Capacitor MSU ECE Shop 4 $0.36 $1.44
0.22 uF Capacitor MSU ECE Shop 4 $0.91 $3.64
10000 pF Capacitor MSU ECE Shop 4 $0.42 $1.68
Analog Temperature IC (TMP01FP) | MSU ECE Shop 4 $5.76 $17.28
Total Cost $258.59

Table 5.2.1.Final Budget Design Team 3

Table 5.2.1 shows all required parts to produce the team’s final prototype. Several key

components were supplied through the projects sponsor Texas Instruments, which allowed the

team to stay under budget. Many parts were bought in larger quantities to account for any

problems with electrostatic discharge or burnout. Throughout the design process, only one part

had to be replaced due to its incompatibility with the final prototype.

5.3 Future Improvements

Power-over-Ethernet For Wireless Home Automation

Texas Instruments

Throughout the design process, the team has continuously thought of ways to further improve the

overall prototype but could not due to time, budget, and software constraints. The following are

key features that could be added without these limitations:

Bluetooth wireless transmission: The prototype consists of ZigBee transmission
currently, and while ZigBee is a great low-power protocol, it doesn’t have a large
wireless range. Adding Bluetooth accessibility would not only allow for sensors to be
further away from the main board, it would also allow for a greater range of products to
be added to the network.

IEEE 802.3at: Power-over-Ethernet Plus: The teams design consists of systems
conforming to the IEEE 802.af standard, which allows for 15.W theoretical max power to
each powered device. The developing IEEE 802.3at standard will allow for 30W per PD,
which could power components such as videophones, dual-band access points, and
several other electronic devices.

Expandability: Currently, the prototype only has the ability to interact with two
wireless sensors due to budget and code size limitations with the compiler the team used.
Since each sensor requires two CC2430 modules, more hardware would be required. The
team had hoped to add more nodes to the network, thus expanding the projects

capabilities is one of the largest areas that could be improved on.

6. Appendix

6.1. Technical Roles

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

42

6.1.1. David DelL.uca

David DelLuca was responsible for designing the power sourcing hardware
and assisting in coding of the microcontroller. This included working

extensively with the power supply and the power sourcing equpiment.

-:;_ 4 Tasks included wiring, soldering, configuration of jumpers, and testing to
see if ‘the PgE was delivering the expected 48V on the CAT5 cable. After David verified that the
CATS5 cable had 48V on the line using a digital multimeter, he then wired all necessary
connections from the PSE to the PoE PD. Verifying that the POE PD was succesfully being
powered over Ethernet, David then set out to design the DC-DC buck converters required to step
down the voltage from 48V to roughly 3.1V. David realized that 3.1V would be a sufficient
supply voltage for both the LM-3S8962 and the CC2430. After calculating and determing all the
parts needed to achieve the design, David and Hassan built the converters and tested the output

via a digital multimeter. David also built the temperature sensor circuit powered by a series

connection of two-AA batteries and soldered all components to a project board.

David also worked with Sasang to program the LM-3S8962 to receive data from the CC2430
using UART. The data sent and received in the UART was sent from the CC2430’s analog to
digital converter, as both the pressure sensor and temperature sensor have analog outputs.
Without this communication between the two devices, the web server aspect of the project could
not be realized. All coding was done using IAR Embedded Workbench compiler for the ARM

microcontroller.

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

43

David was also responsible for the setup of the POE camera and all networking aspects involved.

David tested two different networking scenarios to view the camera remotely. The first was
using a traditional router with DHCP, in which three Ethernet patch cables were required.
However, David decided to try a new scenario in which the extra hardware the router creates
could be removed by using two crossover CAT5 cables instead. Static IP addresses on the
computer network card and the IP camera were necessary for the two devices to communicate
with each other using this method. Both systems worked as planned and the team collectively

decided to use the second method on design day to demonstrate functionality.

6.1.2. Sasang Balachandran

Sasang’s main responsibilities were with the software development for the
project. From the programming and integration of the outer sensor nodes to
the coding and initialization of the central gateway node, the communication

with all components within the entire network was completed by Sasang. His

first focus was on the outer sensor nodes, the connection of the analog
pressure and temperature sensors to the wireless CC2430 device was done through the ADC
interface. The chips had to be programmed though the Hardware Abstraction Layer (HAL)

libraries provided by TI. All embedded programming was done in the C language.

The secondary focus was on the communication between other transmitting wireless
nodes and the central receiving gateway node. The functions and operations needed for RF
transmit and receive were done though the help of the HAL libraries. Sasangs next focus was on

the communication between the central receiving node and the LM3S8962 MCU. The data

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

44

transfer was done through the use of UART protocols, where the two different IAR compilers
were used to programming each chip and incorporate efficient UART communication between

the wireless receiver and the MCU.

Sasangs final focus was on the transfer of data to and from the MCU to the embedded
web server, Sasang programmed the MCU to parse and handle messages left by a JavaScript
enabled website, he also developed the main website with JavaScript to display sensor data in a

user friendly environment.

6.1.3. Hassan Abdullahi

Since Hassan is the only electrical engineering student in the group, he was
responsible for all the electrical hardware components in the system
including but not limited to designing circuits for the pressure and

temperature sensors, DC-DC converters. Almost, of the PCB design and

implementation was completed by Hassan. Much of Hassan’s work was to
design and implement circuits that will work with the DC-DC converter LM2594HYV chip so we
can step down the 48VVDC from the power supply to use for the wireless SoC and for the

pressure and temperature sensors.

Hassan has made a significant contribution to achieving the team’s goal and objective; therefore,
he was heavily involved in the development and testing stages. He worked with the other team

members to fully integrate all the sub-systems that he had helped develop into one whole system
that perform product requirements. Throughout, the project design process, Hassan was involved

with getting answers and outside help for technical questions that the team could not come up

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

45

answers with. Hassan made outside calls to Xbee, Digi-Key and TrendNet to get technical
understanding of their product so the team could fully utilize and integrate their products to our

design.

On all the different aspects of the project that Hassan has helped, he has tremendously identified
and learned new design issues, constraints and implemented strategic and agreeable solutions in
which he has shared with all the team members. His excessive involvement of the team project

has helped him to fully integrate his learning and hands-on experience in his future endeavor.

6.1.4. Karthik Hemmanur

Karthik’s focus was relatively on integration and troubleshooting of various
aspects of the project. Karthik identified the operating conditions and

characteristics of TPS 2375 and TPS 2384. Karthik was also responsible for

isolating the pins to be used on TPS 2375, TPS 2384, and WSOC CC2430 as
needed for the project. Karthik successfully integrated the PSE-PD part of the design and
obtained Power over Ethernet on the PD. Karthik was responsible for the identification and
installation of essential software for programming the microcontroller and the WSOC. Karthik
was also involved in identifying the components on WSOC and their working constraints. For
the final design, Karthik was responsible for powering the WSOC stand alone, and also be able
to transmit/ receive the WSOC without the SmartRFO4EB board. For the same, Karthik
contacted the technical support of Texas Instruments, as well as an RF engineer with TI to
identify the connections on the WSOC. Karthik was also involved in taking the measurements
for results and analysis of the project. Karthik obtained power consumption values for the

CC2430, TPS 2375, TPS 2384, and also isolated the modes of operation for TPS 2385/2375.

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

46

Karthik obtained values from the WSOC datasheet such as wake-up time, current consumption in
low power ranges and so on. These values are of great significance to the project, as the primary
focus of the design was to obtain a low power system. Karthik also assisted in the DC-DC

converter issues the team faced.

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

47

6.2. References

[1] StellarisWare, Firmware Development Package. [Online]. Austin, TX. Luminary Micro,
2009.

[2] “BLIP Tutorial,” rev. Sep. 19, 2009. [Online]. Available:
http://smote.cs.berkeley.edu:8000/tracenv/wiki/blip. [Accessed: Sep. 20, 2009].

[3] "The IwlIP TCP/IP Stack."” May 05, 2004. [Online]. Available:
http://www.sics.se/~adam/lwip/. [Accessed: Sep. 02, 2009].

[4] Luminary Micro Technical Staff, LM3S8962 Evaluation Board, User's Manual, Texas
Instruments, 2009. Available
at: http://www.luminarymicro.com/index.php?option=com remository&func=download&id=52

3&chk=222579d07d3el13fde74ae411749ae30e& Itemid=591

[5] TPS2375 Power-over-Ethernet Powered Device
http://focus.ti.com/lit/ug/slvul26c/slvul26c¢.pdf

[6] TPS2384 Power Sourcing Equipment
http://focus.ti.com/lit/ds/symlink/tps2384.pdf

[7] LM2954HV Step Down Voltage Regulator
http://cache.national.com/ds/LM/LM2594HV .pdf

[8] DS1621 Digital Thermometer
http://datasheets.maxim-ic.com/en/ds/DS1621.pdf

[9] TMPO1FPZ Low Power Programmable Temperature Controller
http://www.analog.com/static/imported-files/data sheets/TMPO1.pdf

[10] CC2430 Wireless System on Chip
http://focus.ti.com/lit/ds/symlink/cc2430.pdf

[11] MBR150 Schottky Diode
http://www.onsemi.com/pub link/Collateral/MBR150-D.PDF

[12] HB48-0.5-AG 48V 0.5A Linear Power Supply
http://www.power-one.com/resources/products/datasheet/lin.pdf

[13] TV-IP501P PoE IP Camera
http://downloads.trendnet.com/tv-ip501p/datasheet/en spec tv-ip501p(v1.0r)-091009.pdf

[14] MPX200AP Uncompensated Silicon Pressure Sensor
http://www.datasheetcatalog.org/datasheet/motorola/ MPX200GVSX.pdf

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

48

http://www.luminarymicro.com/index.php?option=com_remository&func=download&id=523&chk=222579d07d3e13fde74ae411749ae30e&Itemid=591�
http://www.luminarymicro.com/index.php?option=com_remository&func=download&id=523&chk=222579d07d3e13fde74ae411749ae30e&Itemid=591�
http://focus.ti.com/lit/ug/slvu126c/slvu126c.pdf�
http://focus.ti.com/lit/ds/symlink/tps2384.pdf�
http://cache.national.com/ds/LM/LM2594HV.pdf�
http://datasheets.maxim-ic.com/en/ds/DS1621.pdf�
http://www.analog.com/static/imported-files/data_sheets/TMP01.pdf�
http://focus.ti.com/lit/ds/symlink/cc2430.pdf�
http://www.onsemi.com/pub_link/Collateral/MBR150-D.PDF�
http://www.power-one.com/resources/products/datasheet/lin.pdf�
http://downloads.trendnet.com/tv-ip501p/datasheet/en_spec_tv-ip501p(v1.0r)-091009.pdf�
http://www.datasheetcatalog.org/datasheet/motorola/MPX200GVSX.pdf�

6.3. Technical Attachments

6.3.1. DC-DC Buck Converter Schematic

1000 Ohm 0.012 uF
W\
1.50 KOhm
FEEDBACK Vout=31V
VinMax =48 V VIN lout=05A
LM2594HV
OUTPUT FYYYX\
180 uH
ON/OFF GND
I
A o750V
+ +
p—y 0.220 uF T 220 uF

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

49

6.3.2 TPS2375 (PoE PD) and TPS2384 (PSE) Schematic

RJ45

PSE _[
]
+48 V
R
1
2
TPS2384
Optional _ w
MSP430 SCL \1
Wi (= SDA -1
cro= [—]
Controller SDA-0 3
E 6
-t
+48 V
Return

Up ta 100 m
of CATS

Spare Pair

Singnal Pair

Singnal Pair

Spare Pair

RJ45

-

I

&
e
}___J

Power-over-Ethernet For Wireless Home Automation

Texas Instruments

PD
L1
l vDD <§ ——
= TPS2375
T lper Pa
LM
2,; [CLASS DC/DC
> Converter
vee TN

[Y
'—A\-AVA

e

50

6.3.3 Pressure Sensor Schematic

PIN3 @ +Vg
PIN 2
O +Vout
X—ducer
AN PIN 4
O —Vout

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

51

6.3.4. Temperature Sensor Schematic

6V

8 7 6 3)
TMPO1FPZ

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

52

6.4 C Source Code

/**

E = =

This code is used to take analog input from the sensors, convert to digital
values,

then format the data to bytes for wireless transmission. The data is
transmitted

from the CC2430 to a specific address that is the central node with a
receiving CC2430.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

******/

#include <hal _lcd.h>
#include <hal _led.h>
#include <hal_joystick.h>
#include <hal_assert._h>
#include <hal_board.h>
#include <hal _adc.h>
#include <hal _int.h>
#include "hal_mcu.h"
#include "hal _button.h"
#include "hal_rf.h"
#include "util_lcd.h"
#include "basic rf.h"

/**
Rk e =

* CONSTANTS

*/

// Application parameters

#define RF_CHANNEL 25 // 2.4 GHz RF channel
// BasicRF address definitions

#define PAN_ID 0x2007

#define APP_PAYLOAD LENGTH 1

#define LIGHT_TOGGLE_CMD 0

// Application states
#define IDLE
#define SEND_CMD

= O

// Application role
#define NONE
#define SWITCH
#define LIGHT
#define APP_MODES

NN O

static basicRfCfg_t basicRfConfig;

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

void main(void)

{
basicRfConfig.panld = 0x2007;
basicRfConfig.channel = 25;
basicRfConfig.ackRequest = TRUE;

// Initalise board peripherals
halBoardInit();
halJoystickInit();

// Initalise hal _rf

if(halRFInit()==FAILED) {
HAL_ASSERT(FALSE);

}

// Indicate that device is powered
halLedSet(1);

// Initialize BasicRF

basicRfConfig.myAddr = 0x3330;

if(basicRfInit(&basicRfConfig)==FAILED) {
HAL_ASSERT (FALSE) ;

}

// Keep Receiver off when not needed to save power
basicRfReceiveOn();

// Main loop

int tmp = 111;
intl6 r;
int8 a,b,c;
halLcdWriteLine(HAL_LCD_LINE_1, 'Receiving...");
while (TRUE) {
while(!basicRfPacketlsReady());
char *pRxData;
iT(basicRfReceive(pRxData, 3, NULL)>0) {
a = pRxData[0];
b = pRxData[1l];
c pRxData[2];
tmp = (iInt) ((int)(@*1000) + (int)(b*100) + (int)(c));
utilLcdDisplayValue(HAL_LCD_LINE_2, "Vval: ", tmp,'"");

EaE e e

This code receives the digital transmission of the ADC conversion and
wireless transmission
from the sending sensor nodes. After receiving the data, the CC2430 will
send
the formatted values over to the LM3S8962 MCU over UART portocols with a
particualar
signature that indicates which sensor te data is from

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

54

nnnnnnnnnnnnnnnnnnnnnn

******/

/**

EE = o

* INCLUDES

*/

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<hal lcd.h>
<hal_led.h>
<hal _joystick.h>
<hal _assert.h>
<hal board.h>
<hal adc.h>
<hal_int._h>
"hal_mcu.h"
"hal _button.h™
“"hal_rf_h"
“"util_lcd.h"
"basic_rf.h"

/**

E = =

* CONSTANTS

*/

// Application parameters
#define RF_CHANNEL 25 // 2.4 GHz RF channel

// BasicRF address definitions

#define PAN_ID

0x2007

#define APP_PAYLOAD_LENGTH 1
#define LIGHT_TOGGLE_CMD 0

// Application states
#define IDLE

#define SEND_CMD

= O

// Application role
#define NONE

#define SWITCH

#define LIGHT

#define APP_MODES

/

E o o

* LOCAL VARIABLES

*/

static basicRfCfg_t basicRfConfig;

// Define and allocate a setup structure for the UART protocol:
typedef struct {

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

char
char
char
char
char
char

uartNum : 1; // UART peripheral number (0 or 1)
START : 1; // Start bit level (low/high)

STOP : 1; // Stop bit level (low/high)

SPB : 1; // Stop bits (0 => 1, 1 => 2)

PARITY = 1; // Parity control (enable/disable)
BIT9 : 1; // 9 bit enable (8bit / 9bit)

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

55

unsigned char D9 : 1; // 9th bit level or Parity type
unsigned char FLOW : 1; // HW Flow Control (enable/disable)
unsigned char ORDER : 1; // Data bit order(LSB/MSB first)

} UART_PROT_CONFIG;

UART_|

PROT_CONFIG _ xdata uartProtConfig;

// Define size of allocated UART RX/TX buffer (Just an example)
#define SIZE_OF_UART_RX_BUFFER 50

#define SIZE_OF _UART_TX_BUFFER SIZE_OF UART_RX_ BUFFER

// Allocate buffer+index for UART RX/TX

unsigned short _ xdata uartRxBuffer[SIZE_OF_UART_RX_BUFFER];
unsigned short _ xdata uartTxBuffer[SIZE OF UART_TX BUFFER];
unsigned short _ xdata uartRxlndex, uartTxlndex;

void
void
void
void
void
void
void

uartMapPort(unsigned char uartPortAlt, unsigned char uartNum);
uartinitBitrate(unsigned char uartBaudM, unsigned char uartBaudE);
uartinitProtocol (UART_PROT_CONFIG* uartProtConfig);

uartOSend(unsigned short* uartTxBuf, unsigned short uartTxBufLength);
uartlSend(unsigned short* uartTxBuf, unsigned short uartTxBufLength);
uartOReceive(unsigned short* uartRxBuf, unsigned short uartRxBuflLength);
uartlReceive(unsigned short* uartRxBuf, unsigned short uartRxBufLength);

// C language code:

// This function maps/connects the UART to the desired SoC 1/0 port.

// The application should call this function with "uartPortAlt"™ = 1 or 2,
// and "uartNum™ = O or 1.

void uartMapPort(unsigned char uartPortAlt, unsigned char uartNum) {

// 1T UART Port Alternative 1 desired

if(uartPortAlt == 1) {

// 1T UARTO desired

if (uartNum == 0) {

// Configure UARTO for Alternative 1 => Port PO (PERCFG.UOCFG = 0)
PERCFG &= ~0x01;

// Configure relevant Port PO pins for peripheral function:

// POSEL.SELPO_2/3/4/5 = 1 => RX = PO_2, TX = PO_3, CT = PO_4, RT = PO_5
POSEL |= 0x3C;

// Configure relevant Port P1 pins back to GPIO function

P1SEL &= ~0x3C;

// Else (UART1 desired)

} else {

// Configure UART1 for Alternative 1 => Port PO (PERCFG.U1CFG = 0)
PERCFG &= ~0x02;

// Configure relevant Port PO pins for peripheral function:

// POSEL.SELPO 2/3/4/5 = 1 => CT = PO_2, RT = PO_3, TX = PO_4, RX = PO_5
POSEL |= 0Ox3C;

// Configure relevant Port P1 pins back to GPIO function

P1SEL &= ~OxFO;

}

// Else (UART Port Alternative 2 desired)

} else {

// 1T UARTO desired

if (uartNhum == 0) {

// Configure UARTO for Alternative 2 => Port P1 (PERCFG.UOCFG = 1)
PERCFG |= 0x01;

// P1SEL.SELP1_2/3/4/5 = 1 => CT = P1_ 2, RT = P13, RX = P1 4, TX = P15
P1SEL |= Ox3C;

// Configure relevant Port PO pins back to GPIO function

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

POSEL &= ~0x3C;

// Else (UART1 desired)

} else {

// Configure UART1 for Alternative 2 => Port P1 (PERCFG.U1CFG = 1)
PERCFG |= 0x02;

// P1SEL.SELP1 4/5/6/7 = 1 => CT = P1_4, RT = P15, TX = P16, RX = P1 7
P1SEL |= OxFO;

// Configure relevant Port PO pins back to GPIO function

POSEL &= ~0x3C;

}

}

// This function initializes the UART bit rate.

void uartlnitBitrate(unsigned char uartBaudM, unsigned char uartBaudE) {
L1177 77777777777777777777777777777/7777777/777/777/777/777/77777

// This initial code section ensures that the SoC system clock is driven
// by the HS XOSC:

// Clear CLKCON.OSC to make the SoC operate on the HS XOSC.

// Set CLKCON.TICKSPD/CLKSPD = 000 => system clock speed = HS RCOSC speed.
CLKCON &= 0x80;

// Monitor CLKCON.OSC to ensure that the HS XOSC is stable and actually
// applied as system clock source before continuing code execution
while(CLKCON & 0x40);

// Set SLEEP.OSC _PD to power down the HS RCOSC.

SLEEP |= 0x04;

L1177 777777777/777/777/77777777777/777/777/777/777/77/7/77/7/7777/7

// Initialize bitrate (UOBAUD.BAUD M, UOGCR.BAUD_E)

UOBAUD = uartBaudM;

UOGCR = (UOGCR&~0x1F) | uartBaudE;

}

// This function initializes the UART protocol (start/stop bit, data bits,
// parity, etc.). The application must call this function with an initialized
// data structure according to the code in Figure 12.

void uartlnitProtocol (UART_PROT_CONFIG* uartProtConfig) {
// Initialize UART protocol for desired UART (0 or 1)

iT (uartProtConfig->uartNum == 0) {

// USART mode = UART (UOCSR.MODE = 1)

UOCSR |= 0x80;

// Start bit level = low => Idle level = high (UOUCR.START
// Start bit level = high => Idle level = low (UOUCR.START
UOUCR = (UOUCR&~0x01) | uartProtConfig->START;

// Stop bit level = high (UOUCR.STOP = 1)

// Stop bit level = low (UOUCR.STOP = 0)

UOUCR = (UOUCR&~0x02) | (uartProtConfig->STOP << 1);

// Number of stop bits = 1 (UOUCR.SPB = 0)

// Number of stop bits = 2 (UOUCR.SPB = 1)

UOUCR = (UOUCR&~0x04) | (uartProtConfig->SPB << 2);

// Parity = disabled (UOUCR.PARITY = 0)

// Parity = enabled (UOUCR.PARITY = 1)

UOUCR = (UOUCR&~0x08) | (uartProtConfig->PARITY << 3);

// 9-bit data disable = 8 bits transfer (UOUCR.BIT9 = 0)
// 9-bit data enable = 9 bits transfer (UOUCR.BIT9 = 1)
UOUCR = (UOUCR&~0x10) | (uartProtConfig->BIT9 << 4);

// Level of bit 9 = 0 (UOUCR.D9 = 0), used when UOUCR.BIT9
// Level of bit 9 = 1 (UOUCR.D9 = 1), used when UOUCR.BIT9
// Parity = Even (UOUCR.D9 = 0), used when UOUCR.PARITY = 1

0)
D

Power-over-Ethernet For Wireless Home Automation
Texas Instruments 57

// Parity = 0dd (UOUCR.D9 = 1), used when UOUCR.PARITY = 1

UOUCR = (UOUCR&~0x20) | (uartProtConfig->D9 << 5);

// Flow control = disabled (UOUCR.FLOW = 0)

// Flow control = enabled (UOUCR.FLOW = 1)

UOUCR = (UOUCR&~0x40) | (uartProtConfig->FLOW << 6);

// Bit order = MSB first (UOGCR.ORDER = 1)

// Bit order = LSB first (UOGCR.ORDER = 0) => For PC/Hyperterminal
UOGCR = (UOGCR&~0x20) | (uartProtConfig->ORDER << 5);

3} else {

// USART mode = UART (U1CSR.MODE = 1)

U1CSR |= 0x80;

// Start bit level low => Idle level = high (U1UCR.START
// Start bit level high => Idle level = low (U1UCR.START
ULUCR = (U1UCR&~0x01) | uartProtConfig->START;

// Stop bit level = high (U1UCR.STOP = 1)

// Stop bit level = low (ULUCR.STOP = 0)

ULUCR = (U1UCR&~0x02) | (uartProtConfig->STOP << 1);

// Number of stop bits 1 (U1UCR.SPB = 0)

// Number of stop bits = 2 (ULUCR.SPB 1)

ULUCR = (U1UCR&~0x04) | (uartProtConfig->SPB << 2);

// Parity = disabled (ULUCR.PARITY = 0)

// Parity = enabled (U1UCR.PARITY = 1)

ULUCR = (U1UCR&~0x08) | (uartProtConfig->PARITY << 3);

// 9-bit data enable = 8 bits transfer (U1UCR.BIT9 = 0)

// 9-bit data enable = 8 bits transfer (ULUCR.BIT9 = 1)
ULUCR = (U1UCR&~0x10) | (uartProtConfig->BIT9 << 4);

// Level of bit 9 = 0 (ULUCR.D9 = 0), used when U1UCR.BIT9
// Level of bit 9 = 1 (UIUCR.D9 = 1), used when U1UCR.BIT9
// Parity = Even (U1UCR.D9 = 0), used when ULUCR.PARITY =1
// Parity = 0dd (U1UCR.D9 = 1), used when ULUCR.PARITY =1
ULUCR = (U1UCR&~0x20) | (uartProtConfig->D9 << 5);

// Flow control = disabled (ULUCR.FLOW = 0)

// Flow control = enabled (UL1UCR.FLOW = 1)

ULUCR = (U1UCR&~0x40) | (uartProtConfig->FLOW << 6);

// Bit order = MSB first (U1GCR.ORDER = 1)

// Bit order = LSB first (ULGCR.ORDER = 0) => For PC/Hyperterminal
U1GCR = (U1GCR&~0x20) | (uartProtConfig->0ORDER << 5);

}
}

// The two functions below send a range of bytes on the UARTx TX line. Note
// that, before the relevant function is called the application must execute
// the initialization code in Figure 3, Figure 11, Figure 12, and Figure 13.
// The code implements the following steps:

// 1. Clear TX interrupt request (UTXxIF = 0).

// 2. Loop: send each UARTx source byte on the UARTx TX line.

// 2a. Read byte from the allocated UART TX source buffer and write to
UxDBUF.

// 2b. Wait until UART byte has been sent (UTXxIF = 1).

// 2c. Clear UTXXIF.

void uartOSend(unsigned short* uartTxBuf, unsigned short uartTxBufLength) {
unsigned short uartTxlndex;

UTXOIF = O;

for (uartTxlndex = 0; uartTxlndex < uartTxBufLength; uartTxIndex++) {
UODBUF = uartTxBuf[uartTxIndex];

while(TUTXOIF);

UTXOIF = 0;

0)
D

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

58

}

}
void uartlSend(unsigned short* uartTxBuf, unsigned short uartTxBufLength) {

unsigned short uartTxlndex;

UTX1IF = 0;

for (uartTxIndex = 0; uartTxlndex < uartTxBufLength; uartTxlndex++) {
U1DBUF = uartTxBuf[uartTxIndex];

while(TWWTX1IF);

UTX1IF = O;

}

}

// The two functions below receive a range of bytes on the UARTx RX line.
// Note that, before this function is called the application must execute
// the UART initialization code in Figure 3, Figure 11, Figure 12, and

// Figure 13.

// The code implements the following steps:

// 1. Enable UARTx RX (UXCSR.RE = 1)

// 2. Clear RX interrupt request (set URXxIF = 0)

// 3. Loop: receive each UARTx sample from the UARTx RX line.

// 3a. Wait until data received (URXXIF = 1).

// 3b. Read UxDBUF and store the value in the allocated UART RX target
buffer.

void uartOReceive(unsigned short* uartRxBuf, unsigned short uartRxBuflLength)
{

unsigned short uartRxIndex;

UOCSR |= 0x40; URXOIF = 0;

for (uartRxIndex = 0; uartRxIndex < uartRxBufLength; uartRxIndex++) {
while(TURXOIF);

uartRxBufJuartRxIndex] = UODBUF;

URXOIF = 0;

}

}

void uartlReceive(unsigned short* uartRxBuf, unsigned short uartRxBuflLength)
{

unsigned short uartRxlndex;

U1CSR |= 0x40; URX1IF = O;

for (uartRxIndex = 0; uartRxIndex < uartRxBufLength; uartRxIndex++) {
while(TURX1IF);

uartRxBuf[uartRxIndex] = U1DBUF;

URX1IF = 0;

}

}

void main(void)
{

basicRfConfig.panld = 0x2007;
basicRfConfig.channel = 25;
basicRfConfig.ackRequest = TRUE;

// Initalise board peripherals
halBoardInit();
halJoysticklnit();

// Initalise hal _rf
if(halRfInit()==FAILED) {
HAL_ASSERT(FALSE) ;

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

}

// Indicate that device is powered
halLedSet(1);

// Initialize BasicRF

basicRfConfig.myAddr = 0x3330;

iT(basicRfInit(&basicRfConfig)==FAILED) {
HAL_ASSERT(FALSE) ;

}

// Keep Receiver off when not needed to save power
basicRfReceiveOn();

// Main loop

//UART initialization---—-- Added new
uartProtConfig.uartNum=0x00;
uartProtConfig.START=0x00;
uartProtConfig.STOP=0x01;
uartProtConfig.SPB=0x00;
uartProtConfig.PARITY=0x00;//PARITY DISABLED
uartProtConfig.BI1T9=0x00;
uartProtConfig.D9=0x01;//as that of STOP bit
uartProtConfig.FLOW=0x01;//flow control enabled
uartProtConfig.ORDER=0x00;//LSB first

uartMapPort(1,0); //Mapping UART to SoC i/0

uartinitBitrate(216,11); //Initializing the UART Baud Rate Generator----
115,200 BPS

vartinitProtocol (&uartProtConfig); //Initializing the UART Protocol

short tmp =
intl6 r;
int8 a,b,c;
halLcdWriteLine(HAL_LCD LINE_1, *"Receiving...");
while (TRUE) {
while(!basicRfPacketlsReady());
char pRxData[3] = {10,5,2};
if(basicRfReceive(pRxData, 3, NULL)>0) {

a = pRxData[O0];
b = pRxData[1];
c = pRxData[2];

tmp = (int) ((int)(a*1000) + (|nt)(b*100) + (int)(©));
utilLcdDisplayValue(HAL_LCD LINE 2, "Vval: ", tmp,"");
short *uTx;

//uartOReceive(uTx, 2);

//if(uTx[0] == "h")
/7/7{

short uRx[1] = {"T"};
uart0Send(uRx,1);
URX[0] = (char)a;
uart0Send(uRx, 1);
URX[0] = (char)b;
uart0Send(uRx, 1);
URX[0] = (char)c;

Power-over-Ethernet For Wireless Home Automation
Texas Instruments 60

uart0Send(uRx, 1);
//halMcuWaitMs(1000);
//}

}

/**

E = =

The FOllowing are some functions used to achieve the proper fucntionality of
our chips

EAEAEEIAEEAAKEAXAKAAXAEA AKX A AKX AAXAAAXAEAAXAAAXAAAXAAXAXAAXT A AKX A AKX A AXAAAXAAAXAAXAXAAXAXAAXAXAAXA A AL A AXAAAX)X

******/

EE e e

Filename: basic rf.c

Description: Basic RF library

EAEAEEIAEAEAIAEAAXAEAAXAEAAXAEAAAEAAXAEAIAXAEAIAAEAXAXAEAXATEAAXTXAAXATXAAXAXAAXAAAXAAIAXAAIAXAAXTXAAXAXAAXA XA AXA XA XA XXX AhAddXx

******/

/ nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

B =

* INCLUDES

*/

#include "hal_int.h"

#include "hal_mcu.h" // Using halMcuWaitUs(Q)

#include "hal_rf._h"

#ifdef SECURITY_CCM
#include "hal_rf_security.h"
#endif

#include "basic_rf.h"
#ifdef SECURITY_CCM
#include "basic rf security.h"

#endif

#include ""util._.h" // Using min(Q)
#include "'string.h"

/ nnnnnnnnnnnnnnnnnnn

B = =

*/

// The receive struct

typedef struct {
uint8 segNumber;
uintl6é srcAddr;
uintl6é srcPanld;
int8 length;
uint8* pPayload;
uint8 ackRequest;
int8 rssi;

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

volatile uint8 isReady;
uint8 status;
} basicRfRxInfo_t;

// Tx state
typedef struct {
uint8 txSegNumber;
volatile uint8 ackReceived;
uint8 receiveOn;
uint32 frameCounter;
} basicRfTxState_t;

// Basic RF packet header (IEEE 802.15.4)
typedef struct {
uints packetlLength;
uint8 TcfO; // Frame control field LSB
uints fcfl; // Frame control field MSB
uints segNumber ;
uintlé panld;
uintlé destAddr;
uintlé srcAddr;
#ifdef SECURITY_CCM
uints securityControl;
uint8 frameCounter[4];
#endif
} basicRfPktHdr_t;

/ nnnnnnnnnnnnnnn

E

* @fn basicRfBui ldHeader

* @brief Builds packet header according to IEEE 802.15.4 frame format
* @param buffer - Pointer to buffer to write the header

* destAddr - destination short address

* payloadLength - length of higher layer payload

* @return uint8 - length of header

*/

static uint8 basicRfBuildHeader(uint8* buffer, uintl6é destAddr, uint8
payloadLength)

{

basicRfPktHdr_t *pHdr;
uintl6é fcf;

pHdr= (basicRfPktHdr_t*)buffer;

// Populate packet header
pHdr->packetlLength = payloadLength + BASIC_RF_PACKET_OVERHEAD_SIZE;

//pHdr->frameControlField = pConfig->ackRequest ? BASIC RF_FCF_ACK :

BASIC_RF_FCF_NOACK;
fcf= pConfig->ackRequest ? BASIC_RF_FCF_ACK : BASIC_RF_FCF_NOACK;
pHdr->fcf0 = LO_UINT16(fcf);
pHdr->fcfl = HI_UINT16(fcfF);
pHdr->segNumber= txState.txSeqNumber;

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

62

}

pHdr->panld= pConfig->panld;
pHdr->destAddr= destAddr;
pHdr->srcAddr= pConfig->myAddr;

#ifdef SECURITY_CCM

// Add security to FCF, length and security header
pHdr->fcf0 |= BASIC_RF_SEC_ENABLED_FCF_BM_L;
pHdr->packetLength += PKT_LEN_MIC;
pHdr->packetlLength += BASIC_RF AUX HDR LENGTH;

pHdr->securityControl= SECURITY_CONTROL;

pHdr->frameCounter[0]= LO_UINT16(LO_UINT32(txState.frameCounter));
pHdr->frameCounter[1]= HI_UINT16(LO_UINT32(txState.frameCounter));
pHdr->frameCounter[2]= LO_UINT16(HI_UINT32(txState. frameCounter));
pHdr->frameCounter[3]= HI_UINT16(HI_UINT32(txState.frameCounter));

#endif

// Nake sure bytefields are network byte order
UINT16_HTON(pHdr->panlid);
UINT16_HTON(pHdr->destAddr);
UINT16_HTON(pHdr->srcAddr);

return BASIC_RF_HDR_SIZE;

/**

E = =

* @fn basicRfInit
*

* @brief Initialise basic RF datastructures. Sets channel, short
address and

*

PAN id in the chip and configures interrupt on packet

reception

*

* @param pRfConfig - pointer to BASIC_RF _CONFIG struct.

* This struct must be allocated by higher layer
* txState - file scope variable that keeps tx state info
* rxi - File scope variable info extracted from the last
incoming

* frame

*

* @return none

*/

uint8 basicRFfInit(basicRfCfg_t* pRfConfig)

{

it (halRFInit()==FAILED)
return FAILED;

hal IntOff();

// Set the protocol configuration
pConfig = pRfConfig;

rxi .pPayload = NULL;

txState.receiveOn = TRUE;

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

63

txState.frameCounter = 0;

// Set channel
halRfSetChannel (pConfig->channel);

// Write the short address and the PAN ID to the CC2520 RAM
halRfSetShortAddr(pConfig->myAddr) ;
halRfSetPanld(pConfig->panld);

// if security is enabled, write key and nonce
#ifdef SECURITY_CCM
basicRfSecuritylnit(pConfig);

#endif

// Set up receive interrupt (received data or acknowlegment)
halRfRxInterruptConfig(basicRfRxFrmDonelsr);

halIntOn();

return SUCCESS;

/**

EE =

* @fn basicRfSendPacket

*

* @brief Send packet

* @param destAddr - destination short address

* pPayload - pointer to payload buffer. This buffer must be
* allocated by higher layer.

* length - length of payload

* txState - file scope variable that keeps tx state info

* mpdu - File scope variable. Buffer for the frame to send
*

* @return basicRFStatus_t - SUCCESS or FAILED

*/

uint8 basicRfSendPacket(uintl6é destAddr, uint8* pPayload, uint8 length)

{
uint8 mpdulLength;

uint8 status;

// Turn on receiver if its not on

if(1txState.receiveOn) {
halRfReceiveOn();

}

// Check packet length
length = min(length, BASIC_RF_MAX_PAYLOAD_SIZE);

// Wait until the transceiver is idle
halRfWaitTransceiverReady();

// Turn off RX frame done interrupt to avoid interference on the SPI
interface
halRfDisableRxInterrupt();

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

64

mpduLength = basicRfBuildMpdu(destAddr, pPayload, length);

#ifdeft SECURITY_CCM

halRfWriteTxBufSecure(txMpdu, mpduLength, length, BASIC RF LEN AUTH,
BASIC_RF_SECURITY_M);

txState.frameCounter++; // Increment frame counter field
#else

halRfWriteTxBuf(txMpdu, mpdulLength);

#endif

// Turn on RX frame done interrupt for ACK reception
halRfEnableRxInterrupt();

// Send frame with CCA. return FAILED if not successful
if(halRfTransmit() !'= SUCCESS) {

status = FAILED;
b

// Wait for the acknowledge to be received, if any
ifT (pConfig->ackRequest) {
txState._ackReceived = FALSE;

// We"ll enter RX automatically, so just wait until we can be sure
that the ack reception should have finished

// The timeout consists of a 12-symbol turnaround time, the ack
packet duration, and a small margin

halMcuWaitUs((12 * BASIC_RF_SYMBOL_DURATION) +
(BASIC_RF_ACK_DURATION) + (2 * BASIC_RF_SYMBOL_DURATION) + 10);

// 1Tt an acknowledgment has been received (by RxFrmDonelsr), the
ackReceived flag should be set

status = txState.ackReceived ? SUCCESS : FAILED;

} else {
status = SUCCESS;
}

// Turn off the receiver if it should not continue to be enabled
if (1txState.receiveOn) {

halRfReceiveOff();
3

if(status == SUCCESS) {
txState.txSeqNumber++;
}

#ifdef SECURITY_CCM

halRfIncNonceTx(); // Increment nonce value
#endif

return status;

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

65

R R R e R R e S R R e R e R R R e e

EaE e

@fn basicRfPacketlsReady
@brief Check if a new packet is ready to be read by next higher layer

@param none

X R X ok X X XN\

@return uint8 - TRUE if a packet is ready to be read by higher layer
*/

uint8 basicRfPacketlsReady(void)

{

return rxi.isReady;

* @Fn basicRfReceive
@brief Copies the payload of the last incoming packet into a buffer

@param pRxData - pointer to data buffer to fill. This buffer must be
allocated by higher layer.
len - Number of bytes to read in to buffer
rxi - File scope variable holding the information of the last
incoming packet

X o X X X % X

* @return uint8 - number of bytes actually copied into buffer
*/

uint8 basicRfReceive(uint8* pRxData, uint8 len, Intl6* pRssi)

{

// Accessing shared variables -> this is a critical region
// Critical region start
hal IntOff();
memcpy(pRxData, rxi.pPayload, min(rxi.length, len));
iT(pRssi != NULL) {

if(rxi.rssi < 128){

*pRssi = rxi.rssi - halRfGetRssiOffset();
}

else{
*pRssi = (rxi.rssi - 256) - halRfGetRssiOffset();
}
}
rxi.isReady = FALSE;
halIntOn();

// Critical region end

return min(rxi.length, len);

Power-over-Ethernet For Wireless Home Automation
Texas Instruments 66

e R R e R R e R e R R e R e R

e o

@fn basicRfGetRssi

@brief Copies the payload of the last incoming packet into a buffer

o o X ok XN\

@param none

* @return int8 - RSSI value
*/

int8 basicRfGetRssi(void)

{

if(rxi.rssi < 128){
return rxi.rssi - halRfGetRssiOffset();

else{
return (rxi.rssi - 256) - halRfGetRssiOffset();

* @Fn basicRfReceiveOn

* @brief Turns on receiver on radio

*

* @param txState - file scope variable
*

*

@return none
*/
void basicRfReceiveOn(void)
{
txState.receiveOn = TRUE;
halRfReceiveOn();

/**

EE =

: @fn basicRfReceiveOfT

* @brief Turns off receiver on radio

: @param txState - file scope variable
* @return none

zgid basicRfReceiveOff(void)

txState.receiveOn = FALSE;
halRTReceiveOTff();

}

void HalUARTInit(void)

{
#if HAL_UART_DMA
halDMADesc_t *ch;

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

#endi

// Set P2 priority - USARTO over USART1 if both are defined.
P2DIR &= ~P2DIR_PRIPO;
P2DIR |= HAL_UART_PRIPO;

#i1Ff HAL UART_O ENABLE
// Set UARTO 1/0 location to PO.
PERCFG &= ~HAL UART_O_PERCFG_BIT;

/* Enable Tx and Rx on PO */
POSEL |= HAL_UART_O_PO_RX_TX;

/* Make sure ADC doesnt use this */
ADCCFG &= ~HAL_UART_0 PO RX TX;

/* Mode i1s UART Mode */
UOCSR = CSR_MODE;

/* Flush it */
UOUCR = UCR_FLUSH;
#endi

#if HAL _UART_1 ENABLE
// Set UART1 1/0 location to P1.
PERCFG |= HAL_UART_1 PERCFG_BIT;

/* Enable Tx and Rx on P1 */
P1SEL |= HAL_UART_1 P1_RX_TX;

/* Make sure ADC doesnt use this */
ADCCFG &= ~HAL UART_ 1 P1 RX TX;

/* Mode is UART Mode */
U1CSR = CSR_MODE;

/* Flush it */
ULUCR = UCR_FLUSH;
#endif

#if HAL_UART_DMA
// Setup Tx by DMA.
ch = HAL_DMA_GET_DESC1234(HAL_DMA_CH_TX);

// The start address of the destination.
HAL_DMA_SET_DEST(ch, DMA_UDBUF);

// Using the length field to determine how many bytes to transfer.
HAL_DMA_SET_VLEN(ch, HAL_DMA_VLEN_USE_LEN);

// One byte is transferred each time.
HAL_DMA_SET_WORD_SIZE(ch, HAL_DMA_WORDSIZE_BYTE);

// The bytes are transferred 1-by-1 on Tx Complete trigger.
HAL_DMA_SET_TRIG_MODE(ch, HAL_DMA TMODE_SINGLE);
HAL_DMA_SET _TRIG_SRC(ch, DMATRIG_TX);

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

// The source address is decremented by 1 byte after each transfer.
HAL_DMA_SET_SRC_INC(ch, HAL_DMA_SRCINC_1);

// The destination address is constant - the Tx Data Buffer.
HAL_DMA_SET DST_INC(ch, HAL_DMA DSTINC O);

// The DMA is to be polled and shall not issue an IRQ upon completion.
HAL_DMA_SET_IRQ(ch, HAL_DMA_IRQMASK_DISABLE);

// Xfer all 8 bits of a byte xfer.
HAL_DMA_SET_M8(ch, HAL_DMA_M8_USE_8_BITS);

// DMA Tx has shared priority for memory access - every other one.
HAL_DMA_SET_PRIORITY(ch, HAL_DMA_PRI_HIGH);

// Setup Rx by DMA.
ch = HAL_DMA_GET_DESC1234(HAL_DMA CH_RX);

// The start address of the source.
HAL_DMA_SET_SOURCE(ch, DMA_UDBUF);

// Using the length field to determine how many bytes to transfer.
HAL_DMA_SET_VLEN(ch, HAL_DMA VLEN_USE_LEN);

/* The trick is to cfg DMA to xfer 2 bytes for every 1 byte of Rx.
* The byte after the Rx Data Buffer is the Baud Cfg Register,
* which always has a known value. So init Rx buffer to inverse of that

* known value. DMA word xfer will flip the bytes, so every valid Rx byte

* in the Rx buffer will be preceded by a DMA PAD char equal to the
* Baud Cfg Register value.

*/

HAL_DMA_SET_WORD_SIZE(ch, HAL_DMA WORDSIZE_WORD);

// The bytes are transferred 1-by-1 on Rx Complete trigger.
HAL_DMA_SET_TRIG_MODE(ch, HAL_DMA_ TMODE_SINGLE);
HAL_DMA_SET_TRIG_SRC(ch, DMATRIG_RX);

// The source address is constant - the Rx Data Buffer.
HAL_DMA_SET_SRC_INC(ch, HAL_DMA SRCINC_ 0);

// The destination address is incremented by 1 word after each transfer.

HAL_DMA_SET DST_INC(ch, HAL_DMA_DSTINC_ 1);

// The DMA is to be polled and shall not issue an IRQ upon completion.
HAL_DMA_SET_IRQ(ch, HAL_DMA_IRQMASK_DISABLE);

// Xfer all 8 bits of a byte xfer.
HAL_DMA_SET_M8(ch, HAL_DMA_M8_USE_8_BITS);

// DMA has highest priority for memory access.
HAL_DMA_SET_PRIORITY(ch, HAL_DMA PRI_HIGH);

#endif

}

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

69

/**

*x

* @fn HalUARTOpen
*

* @brief Open a port according tp the configuration specified by
parameter .
*

* @param port - UART port
* config - contains configuration information

*

* @return Status of the function call

EAEAEEAEEAAEAAKA AKX A AKX KA AKX EAAXAAAXAAAXAAAXAAXAA AKX XA AXA A AKX A AKX A AXAAAXAAAXAAXAXAAXAXAAXAXAAXAXAAXA XA AXAAAX)KX

/
uint8 HalUARTOpen(uint8 port, halUARTCfg_t *config)
{

uartCfg_t **cfgPP = NULL;

uartCfg_t *cfg;

#if HAL_UART O_ENABLE
if (port == HAL_UART_PORT 0)

cfgPP = &cfgo;

b
#endi

#if HAL_UART 1_ENABLE
if (port == HAL_UART_PORT_1)

cfgPP = &cfgl;
}
#endif
HAL_UART_ASSERT(cfgPP);

#1T HAL_UART_CLOSE
// Protect against user re-opening port before closing it.
HalUARTClose(port);

#else
HAL_UART_ASSERT(*cfgPP == NULL);

#endif

HAL_UART_ASSERT((config->baudRate == HAL_UART_BR_38400) ||
(config->baudRate == HAL_UART_BR_115200));

/* Whereas runtime heap alloc can be expected to fail - one-shot system
* initialization must succeed, so no check for alloc fail.
*
/

*cfgPP = (uartCfg_t *)osal_mem_alloc(sizeof(uartCfg t));

cfg = *cfgPP;

HAL_UART_ASSERT(cfg);

cfg->rxMax = config->rx.maxBufSize;
#if YHAL_UART_BIG_TX_ BUF

HAL_UART_ASSERT((config->tx.maxBufSize < 256));
#endif

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

cfg->txMax = config->tx.maxBufSize;

cfg->txBuf = osal_mem_alloc(cfg->txMax+1);
cfg->rxHead = cfg->rxTail = 0O;
cfg->txHead = cfg->txTail = O;

cfg->rxHigh config->rx.maxBufSize - config->flowControlThreshold;
cfg->rxCB = config->callBackFunc;

#i1Ff HAL_UART_O_ ENABLE
if (port == HAL_UART_PORT 0)
{
// Only supporting 38400 or 115200 for code size - other is possible.
UOBAUD = (config->baudRate == HAL_UART_BR_38400) ? 59 : 216;
UOGCR = (config->baudRate == HAL_UART_BR 38400) ? 10 : 11;

UOCSR |= CSR_RE;

#iT HAL_UART_DMA ==
cfg->flag = UART_CFG_DMA;
HAL_UART_ASSERT((config->rx.maxBufSize <= 128));
HAL_UART_ASSERT((config->rx.maxBufSize > SAFE_RX_MIN));
cfg->rxBuf = osal_mem_alloc(cfg->rxMax*2);
osal_memset(cfg->rxBuf, ~DMA_PAD, cfg->rxMax*2);
DMA_RX(cfg);

#else
cfg->flag = 0;
HAL_UART_ASSERT((config->rx.maxBufSize < 256));
cfg->rxBuf = osal_mem_alloc(cfg->rxMax+1);

URXOIE = 1;
IEN2 |= UTXOIE;
#endi

// 8 bits/char; no parity; 1 stop bit; stop bit hi.
if (config->FlowControl)

cfg->flag |= UART_CFG_FLW;
UOUCR = UCR_FLOW] UCR_STOP;
// Must rely on H/W for RTS (i.e. Tx stops when receiver negates CTS.)
POSEL |= HAL_UART_O_PO_RTS;
// Cannot use H/W for CTS as DMA does not clear the Rx bytes properly.
PODIR |= HAL_UART_O_PO_CTS;
RXO_FLOW_ON;
}

else

UOUCR = UCR_STOP;

}

b
#endi

#iT HAL_UART 1_ENABLE
if (port == HAL_UART _PORT_ 1)

// Only supporting 38400 or 115200 for code size - other is possible.
U1BAUD = (config->baudRate == HAL_UART_BR_38400) ? 59 : 216;
U1GCR = (config->baudRate == HAL_UART_BR 38400) ? 10 : 11;

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

71

#if

ULCSR |= CSR_RE;

HAL_UART_DMA ==

cfg->flag = (UART_CFG_U1F | UART_CFG_DMA);
HAL_UART_ASSERT((config->rx.maxBufSize <= 128));
HAL_UART_ASSERT((config->rx.maxBufSize > SAFE_RX MIN));
cfg->rxBuf = osal_mem_alloc(cfg->rxMax*2);

osal_memset(cfg->rxBuf, ~DMA_PAD, cfg->rxMax*2);
DMA_RX(cfg);

#else

#en

#en

r

}
/**

**

X o X ok X

cfg->flag = UART_CFG_U1F;
HAL_UART_ASSERT((config->rx.maxBufSize < 256));
cfg->rxBuf = osal_mem_alloc(cfg->rxMax+1);

URX1IE = 1;
IEN2 |= UTX1IE;
dif

// 8 bits/char; no parity; 1 stop bit; stop bit hi.
if (config->FlowControl)

cfg->flag |= UART_CFG_FLW;
ULUCR = UCR_FLOW] UCR_STOP;
// Must rely on H/W for RTS (i.e. Tx stops when receiver negates CTS.)
P1SEL |= HAL_UART_1 P1 RTS;
// Cannot use H/W for CTS as DMA does not clear the Rx bytes properly.
P1DIR |= HAL_UART_1_P1_CTS;
RX1_FLOW_ON;
}

else

ULUCR = UCR_STOP;
}

dif

eturn HAL_UART_SUCCESS;

KA A A A A A A A A AA A AA A A AAA AR AL AKX AX

@fn HalUARTClose
@brief Close the UART
@param port - UART port

@return none

*x Xk

Vol

LR R e S e e

d HalUARTClose(uint8 port)

{
#if HAL_UART_CLOSE

u

artCfg_t *cfg;

#if HAL_UART O _ENABLE

f (port == HAL_UART_PORT 0)

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

72

{
UOCSR &= ~CSR_RE;

#if HAL_UART DMA ==
HAL_DMA_ABORT_CH(HAL_DMA_CH_RX);
HAL_DMA_ABORT_CH(HAL_DMA_CH_TX);

#else

URXOIE = 0;
#endi

cfg = cfgo;

cfg0 = NULL;

¥
#endi
#iT HAL UART_1 ENABLE
if (port == HAL_UART_PORT_1)

UICSR &= ~CSR_RE;
#if HAL_UART DMA ==

HAL_DMA_ABORT_CH(HAL_DMA CH_RX):

HAL_DMA_ABORT_CH(HAL_DMA CH_TX):

#else
URX1IE = 0;
#endif
cfg = cfgl;
cfgl = NULL;
s
#endif
if (cfg)
{
if (cfg->rxBuf)
{

osal_mem_free(cfg->rxBuf);

b
if (cfg->txBuf)

osal_mem_free(cfg->txBuf);

}

osal_mem_free(cfg);

b
#endi

}

/**

*x

* @fn HalUARTPol

*

* @brief Poll the UART.
*

* @param none

*

* @return none

/

void HalUARTPoll(void)
{
#iT (HAL_UART_O_ENABLE | HAL_UART_1_ENABLE)

Power-over-Ethernet For Wireless Home Automation
Texas Instruments 73

static uint8 tickShdw;
uartCfg_t *cfg;
uint8 tick;

#if HAL_UART_O_ENABLE

if (cfgo)
{
cfg = cfgo;
#endif
#iT HAL_UART_1 ENABLE
it (cfgl)
{
cfg = cfgl;
}
#endif

// Use the LSB of the sleep timer (STO must be read First anyway).
tick = STO - tickShdw;
tickShdw = STO;

do
{
if (cfg->txTick > tick)
{
cfg—>txTick -= tick;
}
else
{
cfg->txTick = 0;
}

if (cfg->rxTick > tick)

cfg->rxTick -= tick;
}

else

cfg->rxTick = 0;
}

#if HAL_UART_ISR
HAL_UART_DMA
if (cfg->Flag & UART_CFG_DMA)

:;

pol IDMA(cfg);

else
#endif

{
pollISR(cfg);
3
#elif HAL_UART_DMA
pol IDMA(cfg);
#endi

/* The following logic makes continuous callbacks on any eligible flag

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

74

* until the condition corresponding to the flag is rectified.

:/So even 1T new data Is not received, continuous callbacks are made.
ifT (cfg->rxHead != cfg->rxTail)
uint8 evt;
ifT (cfg->rxHead >= (cfg->rxMax - SAFE_RX_MIN))

evt = HAL_UART_RX_FULL;

}
else it (cfg->rxHigh && (cfg->rxHead >= cfg->rxHigh))
{
evt = HAL_UART_RX_ABOUT_FULL;
}
else if (cfg->rxTick == 0)
{
evt = HAL_UART_RX_TIMEOUT;
}
else
{
evt = 0O;
}
if (evt && cfg->rxCB)
{
cfg->rxCB(((cfg->flag & UART_CFG_Ul1F)!=0), evt);
}
}

#if HAL_UART_O_ENABLE
if (cfg == cfg0)

{
#if HAL_UART_1 ENABLE
if (cfgl)
{

cfg = cfgl;
b
else
#endi
break;
b

else
#endi
break;

} while (TRUE);
#else

return;
#endi

R o o e R R R R R R

* @fn Hal _UART_RxBufLen()
*

* @brief Calculate Rx Buffer length - the number of bytes in the buffer.

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

75

@param port - UART port

*ox ok X

@return length of current Rx Buffer

EE R R e R e e R R e R e e R

*********************/
uintl6é Hal_UART_RxBufLen(uint8 port)

{
uartCfg t *cfg = NULL;

#if HAL _UART_O ENABLE
it (port == HAL_UART_PORT O)
{
cfg = cfgo;

#endif
#if HAL _UART_1 ENABLE
if (port == HAL_UART PORT_1)
cfg = cfgl;
}
#endif
HAL_UART_ASSERT(cfg);

return UART_RX_AVAIL(cfg);

}
/ nnnnnnnnnnnnnnnnnnnn

*

* @fn HalUARTRead

*

* @brief Read a buffer from the UART

*

* @param port - USART module designation

* buf - valid data buffer at least "len” bytes in size
* len - max length number of bytes to copy to "buf-
*

* @return length of buffer that was read

AEAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAXAAAAAAAAAAAXAAXAAXAAAAXAXAAAAXAAXAAXAAXAAXAAAAIAXAIAXAAXAAXKAXX
/
uintlé HalUARTRead(uint8 port, uint8 *buf, uintl6é len)

{
uartCfg_t *cfg = NULL;
uint8 cnt = 0;

#if HAL_UART_O_ENABLE
if (port == HAL_UART_PORT_ 0)

cfg = cfgo;

¥

#endi

#i1Ff HAL UART_1 ENABLE
if (port == HAL_UART_PORT_1)
{

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

cfg = cfgl;
}
#endif
HAL_UART_ASSERT(cfg);

while ((cfg->rxTail !'= cfg->rxHead) && (cnt < len))

{
*pbuf++ = cfg->rxBuf[cfg->rxTail];
if (cfg->rxTail == cfg->rxMax)

{
}

else

cfg->rxTail = 0;

cfg->rxTail++;
}
cnt++;

}

#i1F HAL UART_DMA
#i1Ff HAL UART ISR
if (cfg->Flag & UART_CFG_DMA)
#endif

/* 1T there i1s no flow control on a DMA-driven UART, the Rx Head & Tail
* pointers must be reset to zero after every read in order to preserve

* full length of the Rx buffer. This implies that every Read must read
all

* of the Rx bytes available, or the pointers will not be reset and the

* next incoming packet may not fit in the Rx buffer space remaining -
thus

* the end portion of the incoming packet that does not fit would be
lost.

*/

it ('(cfg->Flag & UART_CFG_FLW))

// This is a trick to trigger the DMA abort and restart logic in
pol IDMA.
cfg->flag |= UART_CFG_RXF;
}
}
#endif
#if HAL_UART_ISR
#if HAL_UART_DMA
if ('(cfg->flag & UART_CFG_DMA))
#endif
cfg->rxCnt = UART_RX_AVAIL(cfg);
if (cfg->flag & UART_CFG_RXF)
iT (cfg->rxCnt < (cfg->rxMax - SAFE_RX_MIN))
RX_STRT_FLOW(cfg);

Power-over-Ethernet For Wireless Home Automation
Texas Instruments 77

}
}

b
#endif

return cnt;

}

/**

**

* @fn HalUARTWrite
*
* @brief Write a buffer to the UART.
*
* @param port - UART port
* pBuffer - pointer to the buffer that will be written, not freed
* length - length of
*
* @return length of the buffer that was sent
/
uintl6é HalUARTWrite(uint8 port, uint8 *buf, uintlé len)
{
uartCfg_t *cfg = NULL;
uint8 cnt;

#if HAL_UART_O_ENABLE
if (port == HAL_UART_PORT 0)

{
cfg = cfgo;

#endif
#iFf HAL _UART 1 ENABLE
if (port == HAL_UART _PORT_1)

{
cfg = cfgl;

}
#endif
HAL_UART_ASSERT(cfg);
if (cfg->txHead == cfg->txTail)

{

#i1T HAL_UART_DMA
// When pointers are equal, reset to zero to get max len w/out wrapping.
cfg->txHead = cfg->txTail = O;

#endif

#i1T HAL_UART_ISR

#i1T HAL_UART_DMA
it (!'(cfg->flag & UART_CFG_DMA))

#endif

cfg->flag &= ~UART_CFG_TXF;
¥
#endif
b

Power-over-Ethernet For Wireless Home Automation
Texas Instruments 78

// Accept "all-or-none™ on write request.
it (TX_AVAIL(cfg) < len)
{

return O;

}

for (cnt = len; cnt; cnt--)

{
cfg—>txBuf[cfg->txHead] = *buf++;

it (cfg—->txHead == cfg->txMax)

cfg->txHead = 0;
}

else

{

}
}

#if HAL UART ISR
#if HAL_UART_DMA

if ('(cfg->flag & UART_CFG_DMA))
#endi

cfg->txHead++;

it ('(cfg->flag & UART_CFG_TXF) && len)

cfg->flag |= UART_CFG_TXF;
if ('(cfg->Flag & UART_CFG_U1F))

UODBUF
}

else

{
U1DBUF

}

cfg->txBuf[cfg->txTail];

cfg—>txBuf[cfg->txTail];

}

b
#endi

return len;

3
#if HAL_UART_ISR

FEhAAAXAAAAAAAAAAAAAAXAik

* @fn halUartORxIsr
@brief UARTO Receive Interrupt

@param None

o F % % X

@return None

EAEAEEIAEEAAEAAXA KA AKX KA AXA KA AKX EAAXAAAXEAAAAIAXAAXAXAAXAXAAXAA AKX A AKX A AKX AAXAAAXAAXAXAAXAXAAXAXAAXAAAXAXA AKX A AX)X

**********************/

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

#if HAL_UART O_ENABLE
HAL_ISR_FUNCTION(halUartORxlIsr, URXO_VECTOR)

{
cfg0->rxBuf[cfg0->rxHead] = UODBUF;

if (cfg0->rxHead == cfgO->rxMax)

{
cfgO0->rxHead = 0;
}
else
{
cfg0->rxHead++;
}
X
#endi
/ xxxxxxxxxxxxxxxxxxxxxxxxx
R R R R e R e R R R R R e e e
* @Fn halUartlRxlsr

* @brief UART1 Receive Interrupt
*
* @param None
*
*

@return None

KEEAAAAAAAAAAARAA A A A A A A AARAA AR A A A A AR A AR A A A AARAA AR A A A A AAA AR A A A AAARAA A AAAAAAALALAAAAA XXX
**********************/

#if HAL_UART 1 ENABLE

HAL_ISR_FUNCTION(halUartlRxIsr, URX1_VECTOR)

{

cfgl->rxBuf[cfgl->rxHead] = U1DBUF;
if (cfgl->rxHead == cfgl->rxMax)

cfgl->rxHead = O;

3
else
{
cfgl->rxHead++;
3
X
#endif
/
AAAIAAAAAAAAARAAAXAAAXAAAKXK
* @fn halUartOTxlsr

* @brief UARTO Transmit Interrupt
*
* @param None
*
*

@return None

xxxxxxx

**********************/

#if HAL_UART_O_ENABLE

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

80

HAL_ISR_FUNCTION(halUartOTxlIsr, UTXO_VECTOR)

{
UTXOIF = 0;
if (cfg0o->txTail == cfg0->txMax)
{
cfg0->txTail = O;
}
else
{
cfg0->txTail++;
}

ifT (cfg0->txTail !'= cfg0->txHead)

UODBUF = cfgO0->txBuf[cfgO->txTail];

}
oo
#endif
/
KEAAAAAIAAAAAAAAAAAAXAXX
* @fn halUartlTxlsr
*
* @brief UART1 Transmit Interrupt
*
* @param None
*
*

@return None

xxxxxxxxxxxxx

**********************/

#if HAL_UART 1 _ENABLE
HAL_ISR_FUNCTION(halUartlTxIsr, UTX1_VECTOR)

{
UTX1IF = O;
U1CSR &= ~CSR_TX_BYTE; // Rev-D does not require, older does.

if (cfgl->txTail == cfgl->txMax)
{

}

else

{

}
if (cfgl->txTail = cfgl->txHead)

cfgl->txTail = 0O;

cfgl->txTail++;

U1DBUF = cfgl->txBuf[cfgl->txTail];
}

b
#endi

#endi

/**

*x

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

E T o o o o e S o e o o S o o S e e e e e S S e e e o o
*/
FTEAEEIAEEAIAEIAXAEAAXIXAAXITEAAXAEAAXAEAAXAEAIAXAAITXAAXTXAAXITXAAXATXAAXAAAXAAAXAAIAXAAAXAAXAXAAXAXAAITXAXT XA XA XhAXhAdhxX
Rk =

* @fn halMcuWaitUs

*

* @brief Busy wait function. Waits the specified number of
microseconds. Use

* assumptions about number of clock cycles needed for the
various

* instructions. This function assumes a 32 MHz clock.

*

* NB! This function is highly dependent on architecture and

compiler!
*

* @param uintlé usec - number of microseconds delays
*

* @return none

*/

#pragma optimize=none
void halMcuWaitUs(uintl6é usec)
{

usec>>= 1;

while(usec-->0)
{
NOPQ);
NOPQ);
NOPQ);
NOPQ);
NOP(Q);
NOPQ);
NOPQ);
NOPQ);
NOPQ);
NOP();
NOPQ);
NOPQ);
NOPQ);
NOPQ;
NOPQ);
NOPQ);
NOPQ);
NOPQ);
NOPQ;
NOPQ);
NOPQ);
NOPQ);
NOPQ);
NOPQ);

*hkikkkik

* @fn halMcuWaitMs
*

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

82

* @brief Busy wait function. Waits the specified number of
milliseconds. Use

* assumptions about number of clock cycles needed for the
various

* instructions.

*

* NB! This function is highly dependent on architecture and

compiler!
*

* @param uintl6é millisec - number of milliseconds delay
*

* @return none

*/

#pragma optimize=none
void halMcuWaitMs(uintl6 msec)

while(msec--)

halMcuWaitUs(1000);
}
/ nnnnnnnnnnnnnnnn
B T = =
* @Fn halMcuSetLowPowerMode
*
* @brief Sets the MCU in a low power mode. Will turn global interrupts
on at
* the same time as entering the LPM mode. The MCU must be waken
from
* an interrupt (status register on stack must be modified).
*
* NB! This function is highly dependent on architecture and

compiler!
*

* @param uint8 mode - power mode
* @return none

*/

void halMcuSetLowPowerMode(uint8 mode)
{

// comment: not yet implemented
//HAL_ASSERT(FALSE) ;

}

nnnnnnnnnnnn

@fn halMcuReset

@brief

Resets the MCU. This utilize the watchdog timer as there is no other way
for a software reset. The reset will not occur until ~2 ms.

NB: The function will not return! (hangs until reset)

Parameters:

X R X R X % 2 X % X XN\

@param void

Power-over-Ethernet For Wireless Home Automation
Texas Instruments 83

* @return void

*

EAEAEEIAEXEAIAEAAXAEAAXEAAXAEAAAEAAXAEAAXAEAIAXAAIAXAAXAXAAXAXAAXAXAAXAXAAXAAAXAAAXAAAXAAXAXAAXAXAAXAXAAXA XA XA AKX XA XdX

*/

void halMcuReset(void)

{

const uint8 WDT_INTERVAL_MSEC_2=

WDCTL = ((WDCTL & OXFC) | (WDT_INTERVAL MSEC_2 & 0x03));

// Start watchdog

WDCTL &= ~0x04;
WDCTL |= 0x08;

while(1);

/**

*kx

This code is used for the LM3S8962 to implement a designed websuite and

check
messages to update values as needed. This code uses UART to accept values
from the
central CC2430s received sensor values, then updates the websitre to display
the
values when desired by the user thought button clicks
AAEAAAAAAAAAAAAAAAAAAAAAAXAAAAAXAAXAAAAAAXAAAXAAXAAAAAAXAAAAAXAAXAAXAAAAAAAAIAXAAXAAXAAXXXXX
***/
#include <string.h>
#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "inc/hw_nvic.h"
#include "inc/hw_types.h"
#include “driverlib/ethernet._h"
#include "driverlib/flash.h"
#include “driverlib/gpio.h"
#include “driverlib/interrupt.h"
#include "driverlib/sysctl_h"
#include "driverlib/systick.h"
#include "utils/locator._h"
#include "utils/lwiplib.h"
#include "utils/uvartstdio.h"
#include "utils/ustdlib.h"
#include "httpserver_raw/httpd.h"
#include "drivers/ritl28x96x4.h"
#include "i1o.h"
#include "driverlib/debug.h"
#include "driverlib/gpio.h"
#include "driverlib/uart._h"
#include "cgifuncs.h”
V4 Seisiaiaiaioiaiaiaiaisiaiaiainiaiaiosiaiaiaiaiaiaiaiaiolaialaiaiaiale
**
//

// Display an IwlP type IP Address.

//

Power-over-Ethernet For Wireless Home Automation

Texas Instruments

// after -2 ms

// Select watchdog mode
// Enable timer
// Halt here until reset

V4 faiaiaiaiaiaiaisiaiaiaiaiasisiaiaiaiaiaiaiaisisiaiaiaiaiaiaiaiaiaiaiaiaiaiaisiaiaiaiaiaiaiaiaiaioialelaiaiaiaiaiotatalalel

**

void

DisplaylPAddress(unsigned long ipaddr, unsigned long ulCol,
unsigned long ulRow)

{

char pucBuf[16];

unsigned char *pucTemp = (unsigned char *)&ipaddr;

//

// Convert the IP Address into a string.

//

usprintf(pucBuf, "%d.%d.%d.%d", pucTemp[0], pucTemp[l], pucTemp[2],

pucTemp[3]);

//

// Display the string.

//

RIT128x96x4StringDraw(pucBuf, ulCol, ulRow, 15);
}
//***
//
// The interrupt handler for the SysTick interrupt.
//
//***
void
SysTickIntHandler(void)
{

//

// Indicate that a SysTick interrupt has occurred.

//

HWREGBITW(&g_ulFlags, FLAG_SYSTICK) = 1;

//

// Call the IwlP timer handler.

//

IWIPTimer(SYSTICKMS) ;
3

//***

**x

//

// Required by IwlP library to support any host-related timer functions.
//

V4 faiaiaiaiaiaisisiaiaiaiaiasisiaisiaiaiaiaiaiasiaitiaiaiaiaiaiaiaiaiaiaiaiaialalatotale

*x

void
IwlPHostTimerHandler(void)
{

static unsigned long ulLastlPAddress = O;
unsigned long ullPAddress;

ul IPAddress = IwlPLocal IPAddrGet();

Power-over-Ethernet For Wireless Home Automation
Texas Instruments 85

//
// 1T 1P Address has not yet been assigned, update the display

accordingly

//

if(ullPAddress == 0)

{
static int iColumn = 6;
//
// Update status bar on the display.
//

RI1T128x96x4Enable(1000000) ;
if(iColumn < 12)

RIT128x96x4StringDraw("" >", 114, 24, 15);
RIT128x96x4StringDraw(''< ", 0, 24, 15);
RIT128x96x4StringDraw(""*",iColumn, 24, 7);

}

else

{
}

iColumn += 4;
if(iColumn > 114)
{

R1T128x96x4StringDraw(*" **,iColumn - 6, 24, 7);

iColumn = 6;
RIT128x96x4StringDraw(’" >, 114, 24, 15);

b
RIT128x96x4Disable();

}
//
// Check if IP address has changed, and display if it has.
//
else if(ulLastlPAddress != ullPAddress)
{
ulLastlPAddress = ullPAddress;
RIT128x96x4Enable(1000000);
RIT128x96x4StringDraw("” ", 0, 16, 15);
RIT128x96x4StringDraw(" ", 0, 24, 15);
R1T128x96x4StringDraw(*"IP: ", 0, 16, 15);
RIT128x96x4StringDraw("'"MASK: ", 0, 24, 15);
RIT128x96x4StringDraw("'GW: ", 0, 32, 15);
DisplaylPAddress(ul IPAddress, 36, 16);
ulIPAddress = IwlPLocalNetMaskGet();
DisplaylPAddress(ul IPAddress, 36, 24);
ul IPAddress = IwlPLocalGWAddrGet();
DisplaylPAddress(ul IPAddress, 36, 32);
RIT128x96x4Disable();
}
}
V4 foiaiaiaiaiaiaioiaiaiale
**
//

// This example demonstrates the use of the Ethernet Controller and IwlP

Power-over-Ethernet For Wireless Home Automation
Texas Instruments 86

// TCP/IP stack to control various peripherals on the board via a web
// browser.
//

//***
int
main(void)
{

unsigned long ulUserO, ulUserl;

unsigned char pucMACArray[8];

//

// Set the clocking to run directly from the crystal.

//

SysCtIClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN |

SYSCTL_XTAL_8MHZ);

RIT128x96x41Init(1000000);

RIT128x96x4StringDraw(""UART Echo™, 36, 0, 15);
R1T128x96x4StringDraw(‘'Port: Uart 0", 12, 16, 15);
RIT128x96x4StringDraw(‘'Baud: 115,200 bps'", 12, 24, 15);
R1T128x96x4StringDraw(‘'Data: 8 Bit", 12, 32, 15);
RIT128x96x4StringDraw(*"Parity: None™, 12, 40, 15);
R1T128x96x4StringDraw(*'Stop: 1 Bit", 12, 48, 15);
//

// Enable the peripherals used by this example.

//

SysCtlPeripheralEnable(SYSCTL_PERIPH_UARTO);
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

//

// Enable processor interrupts.

//

IntMasterEnable();

//

// Set GPI0 A0 and Al as UART pins.

//

GPI0PinTypeUART(GPI10_PORTA BASE, GPIO_PIN_ O | GPIO_PIN_1);
//

// Configure the UART for 115,200, 8-N-1 operation.
//

UARTConTigSetExpCIk(UARTO _BASE, SysCtlClockGet(), 115200,
(UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |
UART_CONFIG_PAR_NONE));

//

// Enable the UART interrupt.

//

//IntEnable(INT_UARTO);

//UART IntEnable(UARTO_BASE, UART_INT_RX | UART_INT_RT);

//
// Initialize the OLED display.
//

Power-over-Ethernet For Wireless Home Automation
Texas Instruments 87

RIT128x96x41nit(1000000);
RIT128x96x4StringDraw(""Web-Based 1/0 Control™, 0, 0, 15);
RIT128x96x4StringDraw("'Browser Message:', 0, 53, 15);

//

// Enable and Reset the Ethernet Controller.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_ETH);
SysCtlPeripheralReset(SYSCTL_PERIPH_ETH);

//

// Enable Port F for Ethernet LEDs.
// LEDO Bit 3 Output

// LED1 Bit 2 Output

//

SysCtlPeripheralEnable(SYSCTL_PERIPH _GPIOF);
GPIODirModeSet(GPI10_PORTF BASE, GPIO_PIN_2 | GPIO_PIN_3,

GP10_DIR_MODE_HW);

of

GP10PadConFigSet(GP10_PORTF_BASE, GPIO_PIN_2 | GPIO_PIN_3,
GPI10_STRENGTH_2MA, GPIO_PIN_TYPE_STD);

//

// Configure SysTick for a periodic interrupt.
//

SysTickPeriodSet(SysCtiClockGet() / SYSTICKHZ);
SysTickEnable();

SysTicklntEnable();

//

// Enable processor interrupts.
//

//IntMasterEnable();

//
// Configure the hardware MAC address for Ethernet Controller filtering

// incoming packets.

//

// For the LM3S6965 Evaluation Kit, the MAC address will be stored in the
// non-volatile USERO and USER1 registers. These registers can be read
// using the FlashUserGet function, as illustrated below.

//

FlashUserGet(&ulUser0O, &ulUserl);

iT(ulUser0 == OXFFFFFFFF) || (ulUserl == OxFFFFFffT))

{
//
// We should never get here. This is an error if the MAC address
// has not been programmed into the device. Exit the program.
//
R1T128x96x4StringDraw("'MAC Address', 0, 16, 15);
RIT128x96x4StringDraw('Not Programmed!*, 0, 24, 15);
while(1);
}
//

// Convert the 24/24 split MAC address from NV ram into a 32/16 split
// MAC address needed to program the hardware registers, then program

Power-over-Ethernet For Wireless Home Automation
Texas Instruments 88

// the MAC address into the Ethernet Controller registers.

//

pucMACArray[0] = ((ulUserO >> 0) & OxffF);
pucMACArray[1] = ((ulUserO >> 8) & Oxff);
pucMACArray[2] = ((ulUser0 >> 16) & OxFF);
pucMACArray[3] = ((ulUserl >> 0) & OxFfF);
pucMACArray[4] = ((ulUserl >> 8) & Oxff);
pucMACArray[5] = ((ulUserl >> 16) & Oxff);
//

// Initialze the IwlP library, using DHCP.
//

IwlPInit(pucMACArray, 0, O, O, IPADDR_USE_DHCP);
//

// Setup the device locator service.

//

LocatoriInit();

LocatorMACAddrSet(pucMACArray);
LocatorAppTitleSet("'EK-LM3S8962 enet _i0");

//

// Initialize a sample httpd server.
//

httpd_init();

//

// Pass our tag information to the HTTP server.

//

http_set_ssi_handler(SSIHandler, g pcConfigSSITags,
NUM_CONFIG_SSI_TAGS);

//

// Pass our CGl handlers to the HTTP server.

//

http_set _cgi_handlers(g_psConfigCGIURIs, NUM_CONFIG_CGI_URIS);

//

// Initialize 10 controls
//

io_init(Q);

//

// Loop forever. All the work is done in interrupt handlers.
//

while(1)

}

/***

MCU UART and Website communication

nnnnnnnnnnnnnnnnnnnnnnnnn /
char* i1toa(int val, int base);

unsigned long

io_get pwmfreq(void)

Power-over-Ethernet For Wireless Home Automation
Texas Instruments 89

//
// Return PWM frequency
//
//return g_ulFrequency;

//
// Prompt for text to be entered.
//

// UARTSend((unsigned char *)"T", 1);
char sig,a,b,c;
// char *t = "test";
//while(l)
/77{

whi le (YUARTCharsAvai | (UARTO_BASE))

//UARTCharPut(UARTO_BASE, "h");
}
int tmp = 0;
do
{
sig = UARTCharGet(UARTO_BASE);
Ywhile(sig = "T7);
//int count =0 ;
//while(UARTCharsAvai | (UARTO_BASE))

//7{
a = UARTCharGet(UARTO_BASE);
b = UARTCharGet(UARTO_BASE);
¢ = UARTCharGet(UARTO_BASE);
tmp = (nt)((int)(@*1000) + (int)(b*100) + (int)(c));

//t = itoa(tmp, 10);
//R1T128x96x4StringDraw('val:", 0, 63, 15);

//R1T128x96x4StringDraw(t, 20, 63, 15);
//}
//
// Loop forever echoing data through the UART.
//
//}

return tmp;

3

//itoa implementation to convert integers to character buffer
char* itoa(int val, int base)

{

static char buf[32] = {0};

int i = 30;

for(; val & 1 ; --i, val /= base)

buf[i] = "0123456789%abcdef"'[val % base];

return &buf[i+1];
}
V4 faisiaiaiaioisiaiaiaiaiaiaioiote ek
**
//

// Open a file and return a handle to the file, if found. Otherwise,
// return NULL. This function also looks for special filenames used to

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

90

// provide specific status information or to control various subsystems.
// These filenames are used by the JavaScript on the 10 Control Demo 1"
// example web page.

//

/ AE A A AA A AAA A AA A A A A A AR A A AA A AR A AAA A AR A AAAAARAAAAAAARAAAAAAAAAAAXAAAAAAAALAAA LA XA X

*x

struct fs_file *
fs_open(char *name)

char *data;

int i;

const struct fsdata_file *ptTree;
struct fs_file *ptFile = NULL;

//

// Allocate memory for the file system structure.
//

ptFile = mem_malloc(sizeof(struct fs file));
ifT(NULL == ptFile)

{
return(NULL);
}
//
// Process request to toggle STATUS LED
//
if(strncmp(name, "/cgi-bin/toggle led™, 19) == 0)
{
//
// Toggle the STATUS LED
//
io_set led(lio_is _led on());
//
// Setup the file structure to return whatever.
//

ptFile->data = NULL;
ptFile->len = 0;
ptFile->index = 0;
ptFile->pextension = NULL;

//
// Return the file system pointer.
//
return(ptFile);
}
//
// Process request to turn PWM ON/OFF
//
if(strncmp(name, "/cgi-bin/pwm_onoff", 18) == 0)
//
// Turn PWM on/off
//

io_set pwm(lio_is _pwm_on());

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

91

//

// Setup the file structure to return whatever.
//

ptFile->data = NULL;

ptFile->len = 0;

ptFile->index = 0;

ptFile->pextension = NULL;

//

// Return the file system pointer.
//

return(ptFile);

}

//

// Process request for PWM freq update

//

if(strncmp(name, "/pwm_freq?value=", 16) == 0)

//

// Get Frequency String
//

data = name;

data += 16;

i =0;

do

switch(data[i])
{
case 0O:
case "&°:
g_cSampleTextBuffer[i]
break;
case "+°":
g_cSampleTextBuffer[i] -
break;
default:
g_cSampleTextBuffer[i]
break;

1
o

data[i];

}
iT(g_cSampleTextBuffer[i] == 0)

break;

3
i++;
Iwhile(i < sizeof(g_cSampleTextBuffer));

//

// Set PWM Frequency

//

1o_pwm_Ffreq(ustrtoul (g_cSampleTextBuffer,NULL,10));

//

// Setup the file structure to return whatever.
//

ptFile->data = NULL;

ptFile->len = 0;

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

ptFile->index = 0;
ptFile->pextension = NULL;

//

// Return the file system pointer.
//

return(ptFile);

}

//

// Process request for PWM Duty Cycle update

//

if(strncmp(name, "/pwm_dutycycle?value=", 21) == 0)

//

// Get Duty Cycle String
//

data = name;

data += 21;

i =0;

do

{
switch(data[i])
{

case O:

case "&":
g_cSampleTextBuffer[i]
break;

case "+":
g_cSampleTextBuffer[i] -
break;

default:
g_cSampleTextBuffer[i] = data[i];
break;

1l
o

}
if(g_cSampleTextBuffer[i] == 0)

break;
3
i++;
Iwhile(i < sizeof(g_cSampleTextBuffer));
//

// Set PWM Duty Cycle
//

io_pwm_dutycycle(ustrtoul (g_cSampleTextBuffer ,NULL,10));

//
// Setup the file structure to return whatever.
//

ptFile->data = NULL;

ptFile->len =
ptFile->index
ptFile->pexten

m Il o

0;
ion = NULL;

//
// Return the file system pointer.

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

93

//
return(ptFile);

}

//

// Request for LED State?

//

if(strncmp(name, "/ledstate?id”, 12) == 0)

static char pcBuf[4];

//

// Get the state of the LED
//

io_get ledstate(pcBuf, 4);

ptFile->data = pcBuf;
ptFile->len = strlen(pcBuf);
ptFile->index = ptFile->len;
ptFile->pextension = NULL;
return(ptFile);

}

//

// Request for PWM State?

//

if(strncmp(name, "/pwmstate?id”, 12) == 0)

static char pcBuf[4];

//

// Get the state of the PWM
//

io_get pwmstate(pcBuf, 4);

ptFile->data = pcBuf;
ptFile->len = strlen(pcBuf);
ptFile->index = ptFile->len;
ptFile->pextension = NULL;
return(ptFile);

}

//

// Request PWM Frequency?

//

if(strncmp(name, "/pwmfreqget?id”, 14) == 0)

static char pcBuf[16];

//

// Get the frequency of the PWM

//
usprintf(pcBuf,"%d", io_get pwmfreq());

ptFile->data = pcBuf;
ptFile->len = strlen(pcBuf);
ptFile->index = ptFile->len;

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

94

ptFile->pextension = NULL;
return(ptFile);
}

}
//

// If we didn"t find the file, ptTee will be NULL.

// return a NULL pointer if this happens.
//
iT(NULL == ptTree)

mem_free(ptFile);
ptFile = NULL;
}

//

// Return the file system pointer.
//

return(ptFile);

Make sure we

/**

E R e o

The final website, JavaScript enabled html code

AAAAAAAAAAAAAAA A A AA A AR A A AR A AR A A AR A AR A AAA A AR A AAA A AAAAAAAAAAAAALAAXAAAAALAAAA AKX AX

*********/

<IDOCTYPE HTML PUBLIC *"-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head>

<I-- Copyright (c) 2008 Luminary Micro,

Inc. All rights reserved. -->

<meta http-equiv=""content-type"™ content="text/html;charset=1S0-8869-
1'"><title>Wireless Sensor Monitoring</title>

<script language="'JavaScript'>

<I--

function toggle led()
{

var req false;

var led = false;
function ledComplete()

if(led.readyState == 4)

{
if(led.status == 200)

{
document.getElementByld(''ledstate™).innerHTML = "<div>" + led.responseText +
</div>";

}

}

}
if(window.XMLHttpRequest)
{

req = new XMLHttpRequest();
led = new XMLHttpRequest();
3

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

95

else if(window.ActiveXObject)

req = new ActiveXObject("’'Microsoft. XMLHTTP™);
d = new ActiveXObject("'Microsoft_ XMLHTTP™);

if(req)
{

reqg.open("'GET", "/cgi-bin/toggle_led?id"” + Math.random(), true);
req.-send(null);

}
if(led)
led.open('GET", "/ledstate?id=" + Math.random(), true);

led.onreadystatechange = ledComplete;
led.send(null);

}

}

function pwm_onoff()
{

var req = false;

var pwm = false;

function pwmComplete()

{
if(pwm.readyState == 4)

{

if(pwm.status == 200)

{
document.getElementByld("'pwmstate'™) . innerHTML = *"<div>" + pwm.responseText +
</div>";

}

}

3

if(window.XMLHttpRequest)

{

req = new XMLHttpRequest();

pwm = new XMLHttpRequest();

3

else if(window.ActiveXObject)

{

req = new ActiveXObject('Microsoft.XMLHTTP'™);
pwm = new ActiveXObject(**Microsoft. XMLHTTP');
s

if(req)

{

req.open("'GET", "/cgi-bin/pwm_onoff?id"” + Math.random(), true);
req.-send(null);
}

if(pwm)
{

pwm._open("'GET", "/pwmstate?id=" + Math.random(), true);
pwm.onreadystatechange = pwmComplete;
pwm._send(null);

}
}

function pwm_freq_set()

{

var req = false;

Power-over-Ethernet For Wireless Home Automation
Texas Instruments 96

var pwmfreq = false;
var FreqText = document.getElementByld("'pwmfreqtxt™);
function pwmfreqComplete()

{
if(pwnfreq.readyState == 4)

iT(pwnfreq.status == 200)
{

document.getElementByld("'pwmfreq™) . innerHTML = “<div>" + pwmfreq.responseText
+ "</div>"";

e

if(window.XMLHttpRequest)

A

req = new XMLHttpRequest();

pwmfreq = new XMLHttpRequest();

}

else if(window.ActiveXObject)

{

req = new ActiveXObject('Microsoft.XMLHTTP™);
pwmfreq = new ActiveXObject(’'Microsoft XMLHTTP™);

}
if(req)

if(FreqText.value 1= """)

{

req.-open('GET", "/pwm_freq?value=" + FreqText.value + "&id=" + Math.random(),
true);

reqg.send(null);

}
}
if(pwmfreq)

pwmfreq.open('GET", "/pwmfreqget?id=" + Math.random(), true);
pwmfreq.onreadystatechange = pwmfreqComplete;
pwmfreq.send(null);

}

3

function pwm_dutycycle _set()

{

var req = false;

var pwmdutycycle = false;

var DutyCycleText = document.getElementByld("'pwmdutycycletxt');
function pwmdutycycleComplete()

{
if(pwndutycycle.readyState == 4)
if(pwmdutycycle.status == 200)

document.getElementBy ld("'pwmdutycycle’™) . innerHTML = "<div>" +
pwmdutycycle.responseText + "'</div>";

}

}

}

if(window.XMLHttpRequest)

{

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

97

req = new XMLHttpRequest();
pwmdutycycle = new XMLHttpRequest();

}
else if(window._ActiveXObject)

{
req = new ActiveXObject('Microsoft.XMLHTTP'™);

pwmdutycycle = new ActiveXObject(’'Microsoft. XMLHTTP™);

}
if(req)
if(DutyCycleText.value 1= ")

req.-open('GET", "'/pwm_dutycycle?value=" + DutyCycleText.value + "&id="" +
Math.random(), true);
req.send(null);

}
if(pwmdutycycle)

pwmdutycycle.open("'"GET", "/pwmdutycycleget?id=" + Math.random(), true);
pwmdutycycle.onreadystatechange = pwmdutycycleComplete;
pwmdutycycle.send(null);

}

}
function ledstateGet()

{

var led = false;
function ledComplete()

{
if(led.readyState == 4)

{
if(led.status == 200)
{

document.getElementByld("'ledstate™).innerHTML = "<div>" + led.responseText +
</div>";

}

}

}

if(window.XMLHttpRequest)

ed = new XMLHttpRequest();
Ise if(window.ActiveXObject)

ed = new ActiveXObject(**Microsoft.XMLHTTP*");

oA (D W

if(led)

.

led.open('GET", "/ledstate?id=" + Math.random(), true);
led.onreadystatechange = ledComplete;

led.send(null);

}

}

function pwmstateGet()

{

var pwm = false;

function pwmComplete()

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

if(pwm.readyState == 4)

{
if(pwm.status == 200)

document.getElementByld("'pwmstate').innerHTML = "'<div>"" + pwm.responseText +
r</div>";

}

}

}

if(window.XMLHttpRequest)

{

pwm = new XMLHttpRequest();

}

else if(window.ActiveXObject)

{

pwm = new ActiveXObject(**Microsoft. XMLHTTP');
}

if(pwm)

{

pwm.open("'GET", "/pwmstate?id=" + Math.random(), true);
pwm.onreadystatechange = pwmComplete;

pwm_send(null);

}

}

function pwmfreqGet()

{

var pwmfreq = false;

function pwmfreqComplete()

if(pwnfreq.readyState == 4)
{

if(pwmfreqg.status == 200)

{
document.getElementByld("'pwmfreq') . innerHTML = "'<div>" + pwmfreq.responseText
+ '</div>";

}

}

}

if(window.XMLHttpRequest)

{

pwmfreq = new XMLHttpRequest();
}

else if(window.ActiveXObject)
{

pwmfreq = new ActiveXObject('Microsoft XMLHTTP™);
}

if(pwmfreq)

{

pwmfreq.open("'GET", "/pwmfreqget?id=" + Math.random(), true);
pwmfreq.onreadystatechange = pwmfreqComplete;
pwmfreq.send(null);

}

}
function pwmdutycycleGet()

{

var pwmdutycycle = false;

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

function pwmdutycycleComplete()
{
if(pwndutycycle.readyState == 4)

{

if(pwnmdutycycle.status == 200)

{

document.getElementByld("'pwmdutycycle’™) . innerHTML = *“<div>" +
pwmdutycycle._responseText + "'</div>";

}
}
if(window.XMLHttpRequest)

{
pwmdutycycle = new XMLHttpRequest();

else if(window.ActiveXObject)

{
pwmdutycycle = new ActiveXObject('Microsoft_ XMLHTTP™);

}
if(pwmdutycycle)
{

pwmdutycycle._.open("'GET", "/pwmdutycycleget?id=" + Math.random(), true);
pwmdutycycle.onreadystatechange = pwmdutycycleComplete;
pwmdutycycle.send(null);

}

3
//-->

</script>
<style type="text/css'>
body

font-family: Arial;
background-color: white;
margin: 10px;

padding: Opx

}

hl

{

color: #7C7369;
font-family: Arial;
font-size: 24pt;
font-style: italic;
}

h2

{

color: #000000;
font-family: Arial;
font-size: 18pt;
font-style: bold;

}
h3

{

color: #7C7369;
font-family: Arial;
font-size: 12pt;
font-style: bold;

}

Power-over-Ethernet For Wireless Home Automation
Texas Instruments 100

</style>
</head>

<body onLoad=""ledstateGet() ;pwmstateGet() ;pwmfreqGet() ;pwmdutycycleGet();"

<table border="0" cellpadding="0" cellspacing=""0" width="100%">
<tbody>
<tr>
<td align="center™ height="66" valign=""bottom"™ width="78"></td>
<td>
<table border="0" cellpadding="0" cellspacing="0" width="100%"">
<tbody>
<tr>
<td align="center" valign=""top">
<hl>Wireless Monitoring ZONE</h1l>
</td>
</tr>
<tr></tr>
</tbody>
</table>
</td>
</tr>
</tbody>
</table>
<table width="100%">
<tbody>
<tr>
<td align="left"” valign="top" width=""25%"><p> </p>
<p> </p>
<p> </p>
<p> </p>

<p>

</p></td>
<td align="left" valign="top" width="75%">
<center>
<h2 align="'center'>Sensor Data</h2>
</center>
<hr size="2" width="100%">
<p>Current Pressure:</p>
<table width="368">
<tbody>
<tr>
<td width="209"><p>

<input id="pwmfregset" value="Get Pressure'" onClick="pwm freq_set()"

type="button'>

</p></td>

<td width=""147">

<div id="pwmfreq"” align="center'> - </div>
</td>

</tr>

<tr>

<td></td>

<td> </td>

</tr>

</tbody>

</table>

<p> </p>

<p>Current Temperature</p>

Power-over-Ethernet For Wireless Home Automation
Texas Instruments

101

<table>

<tbody>
<tr>
<td width="209"><p>

<input id="pwmdutycycleset" value="Get Temperature"
onClick="pwm_dutycycle_set()" type="button'>
</p></td>
<td width=""151">
<div i1d="pwmdutycycle” align="center'>-
</div>
</td>
</tr>
<tr>
<td></td>
<td> </td>
</tr>
</tbody>
</table>
<p></p>
</td>
</tr>
</tbody>
</table>
</body></html>

Power-over-Ethernet For Wireless Home Automation
Texas Instruments 102

