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Chapter 12:  IO, IO, It’s Off To Work We Go On The LCD 

You should be noticing that the course development board is becoming more and more useful as each 

chapter is completed.  Hopefully as the driver set is completed, you can start to imagine some 

applications for the board or at least some embedded applications that you could build with different 

hardware and a similar driver set.  We continue adding functionality by getting the LCD up and running 

in this chapter which presents a few new challenges since we must interface to a system external to our 

own microcontroller. 

Even though a UART debugging port can provide all the access an engineer requires to check on system 

status or get information in or out of the system, it is not very helpful to the average user.  Very simple 

user interfaces can get by with a few LEDs since many people can understand that a green LED is 

probably good and a red LED is probably bad.  You might be tempted to add a few more colors of LEDs 

for status, and then start blinking those LEDs or turning on different combinations of them to mean 

various things.  For engineers and maybe even product support people whom you can train, that 

approach is okay and understandable.  However, if you think that a regular consumer will have any hope 

of understanding what a 1Hz blinking LED vs. a 4Hz blinking LED looks like, you are in for a surprise! 

A liquid crystal display (LCD) offers a HUGE advantage for a user interface since it can communicate 

graphically or in plain text.  Gray scale text or dot matrix displays are relatively inexpensive and quite 

easy to implement.  If you want really high resolution, TFTs (thin film transistor) can be used but at a 

cost of complexity, power consumption and dollars (the screen in the iPhone 4S, for example, is said to 

cost around $23 + $14 for the capacitive touch screen – but that is in volumes of tens of millions of 

units).  On the downside, LCDs are fragile since they are pieces of glass with ultra tiny wires, and they do 

not do well in cold temperatures since the liquid actually freezes or at least gets very thick and slow.   

LCDs come in many shapes and forms, but all rely on the same basic technology to make them work.  

This chapter starts by looking at the physical characteristics of an LCD display, discusses the various 

configurations you will come across, and then looks specifically at the part used on the development 

board. 

12.1 LCD Hardware 
There is nothing magical about the way an LCD works.  Every pixel has a positive and return connection 

through which that pixel can be told to be on or off.  If you look at an LCD, you might not think that can 

be physically possible, but if you look under high magnification, you will see tiny wires embedded in the 

glass and tiny vias connecting different layers in the glass.  For LCDs with very small and dense pixels, 

there will be multiple signal layers and multiple ground layers / backplanes.  As resolution increases 

further, the displays use a different technology called “TFT” (thin film transistor) where every pixel has a 

transistor switch.  This allows row and column addressing of each pixel.  You might think that is a lot of 
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transistors, especially on a big 2500 x 1600 pixel display – 4 million!  But considering how physically big a 

display like that is, a few million transistors is nothing compared to the billions of transistors that are in 

microprocessors these days.  It is still impressive technology, though, and there are only a few factories 

in the world that produce these displays that various vendors use in the LCD monitors and TVs. 

12.1.1 LCD Pixels Characteristics 
In the context of this course, the LCD is an “FSTN” type, filtered super-twisted nematic display.  A pixel is 

lit by biasing it with a positive voltage, which aligns the particles in the liquid crystal solution.  The pixel 

does not actually light up, in fact a pixel that is “on” and visible is actually just blocking light from 

reflecting off the back surface of the glass.  The front side of the glass is polarized as well, so when the 

crystals are aligned 90° different than the glass, all the reflected light is blocked.  The exact same effect 

can be observed with a pair of polarization filters for a camera or two pairs of polarized sun glasses.  

Stack the lenses on top of each other and look through them in different orientations - suddenly LCDs 

will make more sense.   

LCDs draw very little current though the circuit does need to remain energized and refreshes 

continuously to keep the crystal solution polarized.  New LCDs are emerging that do not even need to be 

refreshed, making static images with nearly zero current draw possible (check out “E ink” and zero-

power (bi-stable) LCDs).  An analogy is dynamic RAM where each memory cell is like a pixel and has 

capacitance that must be charged and refreshed periodically to stay energized.  Eventually the charge 

will drain if it is not refreshed.  To improve the look of LCDs, a backlight is often added which will make 

the overall power draw considerably higher since the light must always be on.   

Dot-matrix LCDs are common and allow the programmer to draw any character or image they want (as 

long as they can make it out of the dots).  Though this provides some freedom, it also comes with more 

overhead as more care must be taken to draw shapes and you can only get detail in resolution of the 

smallest size of you square pixels.  However, pixels do not have to be small squares in a grid.  LCDs can 

be created with “pixels” that are whole images or symbols.  For example, an 

alarm icon showing a small ringing clock can be done as a single pixel, even if 

the icon is not entirely continuous.  A 7-segment-like display can be made 

with 7 “pixels,” and thus numerical characters can be shown with 7 pixels per 

character just like an alarm clock that uses 7-segment LED displays. 

Custom LCDs are also relatively inexpensive though they include some tooling 

costs at the beginning where the vendor creates the design you want.  You 

can choose how the pixels are hooked up, what kind of controller (if any) is on 

the LCD device, and how it will connect to your product.  Once the design is 

complete, the custom LCD can be produced in mass quantity for only a few 

dollars each.  The instrument shown here has a custom LCD with predefined 

symbols as well as dot-matrix areas for writing numbers and letters.  The Key 

symbol is a single segment, as are the tiny gas names under each reading. 
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12.1.2 LCD Controllers 
Making pixels light up is easy in theory and it is barely different than turning on a discrete LED.  The hard 

part comes more from the physical side of things since, as you have learned, every pixel needs to be 

addressed which can result in a lot of hardware to manage.  Stand-alone LCDs have a controller chip that 

takes care of most of the hard parts about setting and clearing LCD segments.  All your host micro has to 

do is tell the LCD controller which pixel(s) you want on or off, and it will take care of any addressing, 

backplane management or voltage waveform generation to make it happen. 

There are a few microcontrollers that have built-in LCD drivers in them.  These are peripherals built to 

work with LCDs (either custom or standard) and connect directly to the LCD pixel and backplane wires.  

The programmer is responsible for all the mapping, though the peripheral provides some help with 

backplane management and generates a somewhat complex waveform to make sure all the pixels work 

together with their backplanes.  The downside of built-in controllers is that they are usually limited 

The micro requires connections to GPIO for all the pixel lines, so there will usually be a specification for 

the maximum number of pixels that the controller can support (say, for example 16 lines).  Since 16 

pixels is barely enough to make two characters, the controller will probably support two or more back 

planes, each of which require an additional output signal line that is capable of producing a “backplane 

waveform.”  This brings the total number of pixels that can be supported to (pixel lines) x (backplanes).  

So the 16 pixel device that can run 4 backplanes can actually support 64 pixels, and that starts to look a 

lot better.  For example, you could run six 7-segment characters and still have 22 other symbols 

available.  However, you still are using 20 pins of the microcontroller which will occupy a lot of the 

processor GPIO just for the LCD. 

If you need more pixels, then you probably have no choice but to go to an external LCD controller.  

There is added cost to this, but also many advantages.  Many LCDs are “chip on glass” (COG) which 

means you buy the whole LCD and controller as one piece.  If it is not a custom design, these can 

actually be quite reasonably priced even in low quantity.  This is exactly what the MPG LCD is.  Other 

LCDs might have the glass on a small PCB and have an LCD controller chip on that PCB.  Communication 

to tell the controller what pixels to light up now takes place with a digital interface like SPI, I²C, parallel, 

or others.   

12.1.3 LCD Interface 
Ultimately, wiring up an LCD system requires three parts as shown in Figure 12.1.3.1. 

 

Figure 12.1.3.1: Three main components in an LCD system 
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The Host Microcontroller is what triggers the LCD controller to drive pixels on or off on the LCD.  The 

LCD controller takes commands and data from the Host and configures its display RAM that maps to the 

LCD pixels.  Then the controller updates its output lines that cause the pixels to update on the LCD itself.  

The work required to generate the data and organize it into display RAM is pretty much the same in any 

LCD system, but the share of the work between the host and the LCD controller can vary significantly.  

For most of the basic character display LCDs that you work with, the LCD controller takes care of most of 

the work. 

The MPG LCD is a very common type of alpha-numeric display.  Though this particular display is a two-

line by 20-character display, the controller chip will support LCDs down to one-line, 8-characters all the 

way up to four-line, 20-characters.  The controller chip itself runs a basic application that allows other 

devices to send commands and ASCII characters that the controller will interpret.  This particular 

controller uses an I²C interface which was very important for the development board due to limited 

GPIO lines available on the processor.  Character LCDs often have a parallel data interface (8 lines) along 

with 3 control lines, thus requires 11 processor lines to communicate with.  Though that makes them 

slightly easier to use since the communication is very intuitive, the hardware overhead can be 

impractical.   

Correctly attaching the LCD into the development board PCB involves carefully looking at the LCD data 

sheet to put the right parts on the board.  With I²C, there are only two communication lines, but the LCD 

requires additional hardware for the controller to work properly as well as an external interface to the 

three LEDs that make up the backlight.   

Figure 12.1.3.2 shows the hardware connections as described by the LCD data sheet and the 

corresponding hardware connections implemented for the course development board.  Note that the 

5V rail is used for the LEDs with relatively small resistors so they are quite bright.  Since we need to 

switch 5V lines, transistor switches are used to help reduce the overall current that the processor will 

have to sink when an LED is on.  The red backlight LED happens to be connected to an open-drain driver 

pin on the processor which cannot drive a transistor switch, so we let that current sink through the 

processor. 
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Figure 12.1.3.2: Hardware connections from LCD data sheet (left) and in development board schematic (right)

12.1.4 Character and Control Data
When communicating to an LCD, two modes are used: character and control. 

LCD controller will interpret the binary data it receives from the host.  

work with will use this strategy or something very similar

the first few bytes of communication sequence.  

If you have not done so already, now would be a good time to open up the LCD data sheet and take a 

quick read through to set up the rest of this discussion.  A copy of the data sheet is stored on the 

Engenuics web site.  It is a very good idea to keep a copy of LCD data sheets in particular, because they 

tend to disappear from the web on occasion.

http://www.engenuics.com/mpg/hardware/LCD_Character_Newhaven_NHD

In character mode, an ASCII LCD will take the 

data and light up the correct pixels based.   In other words, y

magically the pixels required to make an 

is happening here?  The controller sees that you want to write the letter A

character using the defined protocol
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connections from LCD data sheet (left) and in development board schematic (right)

and Control Data 
When communicating to an LCD, two modes are used: character and control.  This determines how the 

LCD controller will interpret the binary data it receives from the host.  It is likely that every LCD that you 

or something very similar.  For the course LCD, the mode is selected in 

the first few bytes of communication sequence.    

ow would be a good time to open up the LCD data sheet and take a 

the rest of this discussion.  A copy of the data sheet is stored on the 

Engenuics web site.  It is a very good idea to keep a copy of LCD data sheets in particular, because they 

tend to disappear from the web on occasion. 

http://www.engenuics.com/mpg/hardware/LCD_Character_Newhaven_NHD-C0220BiZ-FSRGB-

In character mode, an ASCII LCD will take the bytes you send it with the assumption it is AS

data and light up the correct pixels based.   In other words, you send the character ‘A’ (0x60) and 

magically the pixels required to make an ‘A’ will light up (at the current cursor location)

er sees that you want to write the letter A because you have sent the 

character using the defined protocol.  To know what an ‘A’ looks like, the LCD controller
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(at the current cursor location).  But what really 

because you have sent the 

looks like, the LCD controller has to look up 
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the bitmap for the character that it has stored in its memory that tells it what pixels need to be on to 

make an ‘A’ appear.  The block of pixels for each character bitmap in this LCD is 5 columns by 8 rows as 

shown on the right.  Each character can exist at any of the 20x2 character positions 

on the display screen.  Though each pixel on the screen has an address accessible to 

the LCD controller, only full character addresses are used by the host MCU to 

indicate where on the screen the character should be placed.  Once the bitmap is 

determined, the controller can activate the corresponding pixels.  While most 

character LCDs have built-in bitmaps for at least one font, custom LCDs and many 

graphical / dot matrix LCDs do not have any data, so it is up to you provide all the bitmaps.  Check out 

MPG Level 2 if you want to see an example of a fully customized dot matrix LCD! 

In addition to having a font stored in ROM for you to use, there are other features that may be available 

to you.  For example, the controller allows you to set the cursor position or blank the display.  This LCD 

even supports a blinking cursor.  When characters are being sent to the display, the controller can be set 

to automatically change addresses after each character so that it is ready in the correct position when 

the next character request comes in on the interface.  Instructions to move the cursor to a different 

location, erase characters, hide the cursor, erase the whole screen, etc. are also available.  These 

commands are accessed when the controller is in command mode. 

All that functionality is included in the price of the LCD and makes integrating an alphanumeric LCD 

relatively easy.  The data sheet lists the commands available, the font set available, and the memory 

organization of the LCD.  The main information is looked at further on in the chapter.  We need some of 

the data sheet information now because we have to write the first part of the driver to communicate to 

the LCD which will handle communication using the I²C peripheral.  Though we will make the I²C driver 

itself fairly generic, it is important to look for anything specific in the target device’s data sheet to ensure 

your driver is going to provide the services needed. 

12.2 Inter-Integrated Circuit (I²C) Communication 
I²C is a synchronous protocol where the clock is provided by the master in a master-slave relationship.  It 

uses only a single data wire and can therefore only be half duplex unlike some other standard full duplex 

protocols like RS-232.  I²C supports multi-master and multi-slave configurations, however we will talk 

only about single master (but multi-slave) set ups which are most common in an embedded system. 

12.2.1 Legal Stuff 
Up until October 2006, any device that used I²C was subject to royalties since the official 

standard invented by Phillips (now NXP who makes the MPG LPC processor) was licensed 

intellectual property.  Designers wishing to build an I²C device and use the I²C logo paid a 

fee which was usually incorporated in the device cost so you were not really even aware 

of it (though you may wonder why a device with I²C seems a bit expensive).   
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The I²C standard also regulated device addresses.  Multi-slave configurations work by using unique 

addresses with all the slaves connected on the bus.  When a master initiates communication, the first 

byte sent is the address of the slave on the bus it wants to talk to.  All devices on the bus hear this 

address, but if the address is not theirs then they ignore the remaining data until a “Stop condition” 

appears on the bus, at which time they start listening for the address of the next transaction.  The 

protocol started with 7-bit addresses but allows 10-bit addresses these days.  Still, that is only 1023 

unique addresses, and certainly there are more than that many I²C devices.  In fact, some vendors might 

have that many parts themselves! 

 

Device addresses are supposed to be grouped depending on their function.  As an arbitrary example, 

memory devices might be allowed addresses from 0x01 to 0x0F, and accelerometers are allowed 0x10 

to 0x1F.  The whole concept makes sense until you start trying to manage an exponentially increasing 

number of device types and devices within those types.  Plus, every other manufacturer was coming up 

with their own implementation of I²C that dodged the patent but still allowed compatibility.  Lawyers 

eventually got involved and decided to find a way around the licensing requirements because it did not 

really make sense anymore, and people did not want to pay royalties.  In the end, the fee was relaxed in 

2006 though a few rules remain.   

 

Nowadays, instead of offering “I²C” communications, a simple “2-wire interface” is offered and the 

addressing specification is quite relaxed (though if you want, you can still pay NXP and get an officially 

registered address and then probably win in court if anyone’s non-registered device conflicts with 

yours).  Most companies are careful to never say “I²C” in their documentation, but even that seems to 

be a non-issue these days since the legal hoopla around the whole thing has run its course and there are 

probably enough court case examples to cite to avoid any litigation.  All that being said, if you happen to 

build (or integrate) a device with two-wire serial communication and you have not paid to use the name 

I²C, then you should probably avoid saying it! 

12.2.2 I²C Hardware 
Now that we have handled the legal aspects, we can discuss the technical side of I²C.  In the hardware 

realm, the I²C bus (or two-wire bus) has a serial clock line (SCL) and a serial data line (SDA).  The one 

data line is used for both transmit and receive data (thus the half-duplex restriction) and device 

selection is entirely address-based.  That means that regardless of the number of devices on the bus, I²C 

only requires two IO lines to hook everything together, making it one of the lowest hardware overhead 

protocols available.  Both lines require a pull-up resistor to drive the high state, and all devices use open-

drain GPIOs to drive the low state.  Figure 12.2.2.1 shows an example of a single master – multi-slave I²C 

configuration (the slaves have random addresses that must be unique on the bus).   
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Figure 12.2.2.1: Single-master, multi-slave I²C connections 

 

If you look at the development board schematics for this course, you will see another example of a 

single master, multi-slave system.  The LPC214x is the master device on I²C0, and the LCD and Blade 

daughter board are slaves on the bus.  Though you probably do not have a daughter board connected 

right now, there are many possible devices that you could tie-in to the development board very easily.  

Memories, sensors, input devices, etc.  Even things like Arduino shields could be attached and used with 

this system.  Of course, any custom device you want to build could also be attached as long as you give it 

I²C connectivity.  No matter how many daughter boards with I²C devices you attached (up to the limit of 

the addresses available, anyway), the same two wires from the MCU will be used to talk to them all. 

 

When no communication is occurring we call this the idle state, during which the master and all the 

slaves keep their respective SCL and SDA GPIOs in a high-impedance state.  Low signals are driven by the 

device that has control of the bus lines, but high states are always achieved by resetting the line to a hi-z 

state and letting the pull-up do the work.  Because of this, the designer must consider the speed of the 

bus and the capacitance that each device on the bus adds.  There is a tradeoff to select the correct pull-

up resistor size to get a good low signal level voltage and to minimize current draw during 

communication (since in the low state, the resistor is between Vcc and Vss).  It also impacts the signal 

response time due to the bus capacitance.  If there is one master and one slave on the bus, then 10k 

pull-ups are usually selected.  As you add more devices (or longer bus lengths), the resistor size is 

reduced perhaps to 4.7k but may be as low as 1k or less to provide a stronger pull-up.  At some point in 

the design phase, you should put an oscilloscope probe on SCL and observe the clock signal to 

determine if the edges are fast enough.  Figure 12.2.2.2 shows a rough example of what the SCL signal 

might look like with and without proper pull-ups.  System capacitance also plays a role, as does clock 

speed.  While you will never achieve an absolutely perfect square wave, you should have a reasonably 

good quality signal. 
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Figure 12.2.2.2: Signal examples for I²C clock lines 

 

I²C communication speed is typically 100 kHz, but there is a 400 kHz hi-speed version that some devices 

support and even faster speeds on newer devices.  Since the protocol is synchronous and the clock is 

always provided by the master, the clock does not have to be perfect and can start and stop as needed.  

In fact, there is a special mode called “clock stretching” that allows communications to pause.  This is 

allowed by both the slave and master, though on single-master systems only one master has exclusive 

control of the clock so clock stretching does not apply.  However, it is a valuable option to have for the 

slaves.  Allowing the slave to hold the clock line low is a great feature of the protocol that lets the slave 

do basic flow control without adding any additional hardware lines.  Remember that the SCL and SDA 

lines are only driven low by devices and it is up to the pull-up resistors to pull the lines back high.  When 

the master is driving the clock, it releases the line (changes to high-impedance) and expects the line to 

return to Vcc.  An edge detector allows the master to know when this happens.  The slave can take extra 

time to process the received information whenever it needs between bytes or groups of bytes by 

activating its SCL driver to keep the line low until it is ready for the next byte.  Because of the output low 

/ high impedance signaling, there is no risk of hardware problems like shorting high signals to ground.  

Depending on the master, there may be a certain maximum time that the slave can hold the clock line 

low before the master decides that the communication has failed and tries to reset the bus (and perhaps 

reset the external device). 

 

12.2.3 I²C Logical 
Signaling for I²C is quite neat as there is a fair bit of control and handshaking information communicated 

between devices on the bus even though there are only two physical lines.  For discussion in MPG (and 

probably for most of the systems you will work with), 7-bit addresses will be used which makes it easier 

to look at since the complete address is contained in a single byte.  If 10-bit address are required, be 

sure to set up the I²C peripheral accordingly on both the master and slave(s) on the bus.  Some devices 

may not support 10-bit addressing, so be careful when specifying parts that will share the same bus. 
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When no communication is taking place, SDA and SCL are high and the bus is idle.  To begin 

communication, the master initiates a “start condition” on the bus, which is the act of bringing SDA low 

while SCL remains high.  This transition order is a known special case per the protocol and never occurs 

during data transmission so it can be identified by all devices on the bus.  As a rule of the system, all 

slaves on the bus are normally idle and looking for the start condition to occur.  The master then 

broadcasts the 7-bit address in the top 7 MSbs of the first byte and adds a read (1) or write (0) bit for the 

8th bit (the LSb).  The master toggles the clock line for each bit in the address byte, and always adds an 

additional clock cycle for a ninth bit.  When the slave sees its 7-bit address on the bus plus a read/write 

bit, it will acknowledge the address by holding the data line low on the 9th clock provided by the master.   

As long as one of the slaves on the bus sees its address, the master will get an ACK and know that the 

slave it addressed is ready.  This is illustrated in Figure 12.2.3.1. 

 

Figure 12.2.3.1: Start condition and address byte 

 

If the master has sent an address that does not match any of the devices on the bus, then nothing will 

hold the data line low and therefore no ACK will be seen by the master.  At this time, the master would 

set a Stop condition on the bus and then try to figure out why a device that should have responded did 

not.  There is no provision to handle two devices on the bus with the same address – that is a problem 

that is up to you has a designer to avoid.  It is also assumed that the master knows what device it 

expects to talk to for every given address it uses to communicate.  Though there are ways to “discover” 

devices on the bus, the most typical applications have known devices at known addresses that the 

master uses. 

 

Assuming a device ACKs the address byte, data transfer will begin on the next transmitted byte.  All 

other devices that did not see their address will ignore subsequent communication for the current 

session.  If the master is transmitting data to the slave (LSB in the address byte was 0), the slave is 

expecting that the next byte on the bus is the first data byte in the transfer from the master.  The slave 

ACKs every byte sent by holding SDA low at the end of each byte just like it did when it ACKed its 

address.  The master can continue transmitting bytes for as long as it wants and as long as the slave can 
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handle all the data and keeps ACKing.  Once the last byte is sent, the master puts the stop condition on 

the bus (SDA goes high while SCL is high) which terminates that communication session. 

 

To receive data from a slave, the master puts a start condition on the bus and sends the slave’s address 

with a “1” bit as the LSB.  Once the address byte is sent and acknowledged by the slave, the master 

assumes the slave is ready to send data and activates SCL to clock in bytes which the slave should be 

sending.  The master will ACK every byte from the slave during transmission, which indicates to the slave 

that it should keep sending data, though it is still up to the master to provide the clock to enable the 

slave to send.  When the master has had enough data, it NAKs the last byte and then puts a stop 

condition on the bus.  The master has full control over how many bytes the slave sends. 

 

The question you might be thinking about is how does the slave know what data to send?  The situation 

depends on what the slave is, as it will have data available in different ways.  One of the most common 

schemes is setting an address pointer in the slave by writing a register address prior to reading data, and 

then clocking out a known number of bytes.   Both the master and slave know how many bytes will be 

sent for any given transaction.  The master might also tell the slave how many bytes it is looking for, 

which requires the master to first address the slave with a write to send it a command or other 

information to setup the data transfer.  The master would terminate the write frame, and then 

immediately start another frame but this time in read mode.  The slave, having just been told what the 

master is looking for, can then expect to provide the data to the master.   

 

A complete I²C read transaction might proceed like this: 

1. Master issues start condition and sends slave’s address with write bit 

2. Slave acknowledges the write address 

3. Master transmits the start address that it wants to read data and the number of bytes it wants 

to read 

4. Slave acknowledges each data byte and knows what the purpose of each byte is based on a 

predefined protocol 

5. Master issues a repeated start condition (which is essentially a stop condition and then a start 

condition) 

6. Master transmits the slave’s address with the read bit 

7. Slave acknowledges the read address 

8. Master clocks in the number of bytes it wants, ACKing each one as it is received 

9. Master NAKs the final byte to confirm it is done and puts the stop condition on the bus. 

 

Typically the slave is set up to read the register address the master sends and set a pointer to that 

location in memory.  The slave will then automatically increment its internal pointer after every byte it 

sends.  In a simpler case, a slave may only have a single register to output so the same data is sent each 

time (like an 8-bit temperature sensor).  In this case, the master would only ever have to read data and 
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not worry about specifying an address

then it might just keep getting the same information over and over again.

that you can come up with that may need to be handled depending on the system you are worki

Regardless of what you are trying to communicate with, t

what it can do and how to do it.  You may then write a specific driver set to run with your system to 

access the slave, or it might fit in with a more generic I²C driver you can write.  At the very least, you can 

write generic I2CStart(), I2CStop() and I2CData(

within an application state machine th
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Hopefully the implementation of I²C does not sound too complicated.  Though there is certainly more 
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bashing a driver if you are working with some legacy product or if you run out of 

peripherals on your microcontroller.  That becomes a bit challenging and you would need to do some 

vestigation to understand and implement the full I²C protocol.  As far as writing the driver for 

the course, we will make use of the I²C peripheral on board the LPC214x and write a nice little driver for 

Download the Chapter 12 start code now if you have not yet already done so.

We will focus on master mode only and consider just transmit functions.  Because of the way that this 
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12.3.1 I²C Peripheral Registers and Configuration 
This peripheral is a bit more complicated than the peripherals we have worked with so far, but that is 

because it has a lot more to do.  The peripheral itself operates as a state machine and is quite strict in 

how it implements the I²C protocol.  It is definitely different than some other microcontrollers where the 

I²C peripherals are much more manual in their operation.  Remember that the microcontroller vendor, 

NXP, is responsible for adding all the peripherals to make up this microcontroller, so this I²C peripheral 

hardware is specific to NXP.   If you work with an ARM7 core on a different vendor’s microcontroller, all 

of the peripherals will be different – some substantially so – than this one.  The good news is that if you 

stay with NXP, then you will see very similar peripherals on other processors in their ARM family (ARM7, 

ARM9, Cortex-M3, etc.) and may be able to easily port over your code. 

The I²C chapter in the processor reference guide is quite lengthy, but there is a lot of information that 

does not apply to the case we want to design for.  You can ignore anything that talks about slave mode 

since we will use master mode exclusively.  You can also skip all of the details on how the bus works 

since that information has already been covered in these notes (though if you want a second 

explanation, take a read from NXP!).  As we have done many times before, reading through the register 

description is essential to correctly set up the peripheral registers.  Lastly, there are four pages that are 

worth printing for developing the algorithm that works with the peripheral’s state machine – the Master 

Transmit and Master Receive mode transmit flowcharts on pages 224 and 225, and the corresponding 

status code tables on page 228 and 229 of the Rev. 3 October 2010 guide.  If you print them 4-up on a 

single page you will have all the information you need to reference at hand. 

As it turns out, there are not that many registers involved with the I²C peripheral.  Most of the available 

registers are used while the application is running, so very little setup is required.   

I2CxCON: Control register accessed through I2CxCONSET and I2CxCONCLR.  Only the interface enable bit 

(bit 6) needs to be set by writing 0x40 to the set register.   Other bits are used to initiate I²C actions like 

Start and Stop conditions, and some bits provide status information. 

I2CxSCLH and I2CxSCLL: Duty cycle configuration registers.  These hold the number of processor 

peripheral cycles that the serial clock signal will spend high and low.  Remember from the UART baud 

calculation that the peripheral clock, PCLK, is set the same as the main clock of 12MHz.  If we target a 

100 kHz I²C clock, a full period is 1/100 kHz = 10us.  With 50% duty cycle, the high and low times are 

both the same duration and equal to half the total period, 10us / 2 = 5us.  To pass 5us with a system 

clock period of 1/12MHz = 83.3ns, we need 5us / 83.3ns = 60 = 0x3c.  Note that for higher speed 

communication, the I²C specification requires a non-50% duty cycle, so these registers will not always 

necessarily match. 

I2CxSTAT: Status register.  Bits 3-7 hold a status code that will guide your application through the I²C 

state machine.  More on this later. 
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I2CxDAT: Transmitted or received data register.  Since I²C is half

data.  Just make sure you do not forget to read this register before writing to it

the bit order for transmission is not selectable

target system is sending and receiving the same else you will have to fl

or flip bits on received data. 

I2CxADR: Address register that sets the microcontroller’s I²C address if it is a slave.

for master mode since a master in a single

The peripheral registers are loaded in I2C0Setup() which is called from main() during initialization.  The 

setup function power cycles the peripheral with the PCONP bit and the peripheral enable bit to try to 

ensure a full reset in case something has gone 

This should, technically, never happen

to start it correctly is worthwhile.   

If you interrupt an I²C transaction with the debug

have the bus stuck in a strange state that you cannot seem to get out of without power cycling the whole 

board. 

12.3.2 Interrupts 
It is virtually impossible to use the NXP I²C peripheral without int

receive speed, so we will set up the required interrupt driver

need to enable transmit and receive interrupts just like in the UART, the I²C peripheral happens to have 

just a single interrupt signal and enabling a single bit

The peripheral relies on firmware to read a status code that tells the firmware what just happened

cause the interrupt.  Based on the status c

through the peripheral’s state machine as we will see shortly.

First, do the easy task of setting up 

data and the data rate is quiet fast, make its interrupt priority the highest under IRQ.  T

tasks are left for you:  

1. Activate the I²C0 interrupt by setting the bit in 

2. Declare the I2C0ISR function (interrupts.h)

3. Set VIC_I2C0 as the first priority in IRQ and shift the others down

4. Add/adjust appropriate initializations for the updated VICVectCntlx registers (interrupts.c)

5. Add/adjust appropriate initializations for the VICVectAddrx registers (interrupts.c)

After some playing around with this I²C peripheral, 

determined which involves doing quite a bit in the interrupt handler.  T

long and integrated into the I²C functionality

short, non-integrated ISRs.  However, the 
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: Transmitted or received data register.  Since I²C is half-duplex, only one register is needed for 

you do not forget to read this register before writing to it if data has arrived

the bit order for transmission is not selectable for MSb or LSb first, so you have to make sure that the 

target system is sending and receiving the same else you will have to flip bits prior to writing the register 

: Address register that sets the microcontroller’s I²C address if it is a slave.  This is not required 

since a master in a single-master system is never addressed. 

The peripheral registers are loaded in I2C0Setup() which is called from main() during initialization.  The 

power cycles the peripheral with the PCONP bit and the peripheral enable bit to try to 

case something has gone horribly gone and setup is called when the bus is not idle.  

This should, technically, never happen, but a stuck bus is never a good thing so doing everything possible 

 

If you interrupt an I²C transaction with the debugger and then do a software reset, it is quite possible to 

have the bus stuck in a strange state that you cannot seem to get out of without power cycling the whole 

It is virtually impossible to use the NXP I²C peripheral without interrupts and get any decent transmit or 

set up the required interrupt driver now.  While you might be thinking you will 

need to enable transmit and receive interrupts just like in the UART, the I²C peripheral happens to have 

and enabling a single bit in the VIC is all it takes to make the interrupt 

The peripheral relies on firmware to read a status code that tells the firmware what just happened

.  Based on the status code, our firmware will take the necessary action to progress 

state machine as we will see shortly. 

 the interrupt source in the VIC.  Since I²C is handling fairly important 

te is quiet fast, make its interrupt priority the highest under IRQ.  T

Activate the I²C0 interrupt by setting the bit in VICIntEnable_INIT (interrupts.h)

Declare the I2C0ISR function (interrupts.h) 

first priority in IRQ and shift the others down (interrupts.h)

Add/adjust appropriate initializations for the updated VICVectCntlx registers (interrupts.c)

Add/adjust appropriate initializations for the VICVectAddrx registers (interrupts.c)

ing around with this I²C peripheral, the best strategy for implementing the driver was 

determined which involves doing quite a bit in the interrupt handler.  The ISR code ends up looking

long and integrated into the I²C functionality, which goes against the preferred guidelines of writing 

integrated ISRs.  However, the nature of the communication protocol practically demands it
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and even though there is quite a bit of code, only a few lines get executed for any given interrupt.  The 

first version of this driver relied on disabling and enabling interrupts all over the place to avoid having a 

lot of code in the ISR, though there was still a fair amount in there.  You might say it was resisting the 

way that the peripheral intended for it to be used and was rather ugly and almost impossible to describe 

in notes.  So a second version was written for the course and follows the intended flow dictated by the 

I²C peripheral.   You might want to take a few moments to think about how you might design it a 

different (a possibly better) way!  Note also that we are writing the ISR very specifically for I2C0 and only 

worrying about the transmit case since the development board LCD cannot send back data that we 

would have to receive.  So it is really only half done and not very generic, but could be easily completed 

and applied to other I²C peripherals when required. 

Look at the I2C0ISR handler in interrupts.c, which is partially finished in the “start” code.  At the same 

time, look at the I²C peripheral state machine flowchart on pg. 224 of the reference guide.  Figure 

12.3.2.1 below shows the relevant portion of the flowchart that the ISR will handle.   

 
Figure 12.3.2.1: I²C peripheral flow chart: Master Transmitter 

Source: LPC214x User manual Rev. 3 – 4 October 2010, pg. 224, NXP Semiconductors, UM10139.pdf 
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Each of the red circles is the status code that will be present in I2C0STAT after the I²C interrupt occurs.  

I2C0ISR() parses the status code with a switch statement to determine the next action.  While the 

interrupt flag bit remains set (it was set to trigger the ISR), the I²C peripheral is waiting to continue and 

will not carry on until the interrupt flag is cleared.  The peripheral proceeds immediately once the flag is 

clear, which brings about the trickiest part about writing code for this peripheral and thus necessitates 

taking action inside the ISR.   

What has to happen in firmware ends up breaking down quite easily once you have spent some time 

trying to figure out what exactly is going on and how it all works.  Debugging skills are important for 

something like this to be able to step through code in the main application and interrupt service routine 

while ensuring you observe the right peripheral registers.  An oscilloscope is nice to have, too, but not 

entirely necessary.  The difficult part is understanding what triggers advancement to the next state in 

the I²C peripheral state machine.  To sum it up simply, you must always do things in this order: 

1. Interrupt occurs 

2. Write the I²C data register with either the external address or the data byte you want to send 

3. Clear the interrupt flag 

4. Exit the interrupt service routine 

You MUST write the data byte before clearing the interrupt flag, because as soon as the flag is cleared 

the I²C peripheral advances states and will send whatever is in I2C0DAT even if the program counter is 

still stepping through I2C0ISR.  Since you have to clear the flag to get out of the interrupt service routine 

and back to your main program, you have (almost) no choice but to update I2C0DAT within the ISR.  If 

you are sending a long message, that means you have to manage the transmit buffer in the ISR, too.   

For the record, you could disable the I²C interrupt inside the ISR and then avoid clearing the interrupt 

flag until you have loaded I2C0DAT inside your I²C application.  This would let your main program 

control the peripheral writes and avoid doing it in the ISR.  It does not end up working very nicely though 

and requires considerable effort to work around what the I²C peripheral really wants to do. 

During the main program, the I2C0ISRs take care of the entire message transmission.  The I²C application 

is responsible for setting up the message to be sent and initiating the Start condition that gets the I²C 

peripheral going to transmit the message.  Once that has stared, the application simply waits for all the 

bytes in the message to be sent while watching for an error or timeout.  The only exception is during 

LCD initialization where special timing requirements of the LCD controller during initialization make the 

interrupt-driven approach unfeasible.  So this will be handled as a special case with interrupts off.  Once 

you see the I²C application in the next section this will make sense, and then you will be able to add the 

necessary code to the ISR. 

Some oscilloscopes and logic analyzers have software I²C serial decoders for those times when you need 

to do some serious debugging.  These would be most likely be used to find data errors or problems 

between two devices communicating back and forth with hundreds or thousands of transmissions. 
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12.3.3 I²C application initialization and operation
The I²C application occupies i2c_lpc214x.c/h and holds the specific functions to run the peripheral and 

handle messaging.  On its own, it does not really do anything and there is not really any test fun

that can be written just for testing the I²C peripheral.  If you really wanted to test the driver, it would be 

a great idea to hook up I²C0 to I²C1 and run a few billion bytes between the two peripherals over a 

weekend.  However, our development boa

The set of functions you would find in an I²C driver file will most likely include 

Start(), Stop(), Write() and Read() functions that interface directly to the peripheral

staples of any I²C peripheral regardless of processor.  By building a standard interface to those functions 

and using them in the rest of your code, you get good abstraction from the hardware and thus good 

portability for the higher level part of the driver.  

you need to complete I2C0Stop().  All of these functions are considered protected.  They are not private 

because some low-level access will be required from the LCD application and possibl

device applications that use the same bus.

Three other functions are specific to this driver implementation, so we will take a quick look here

with a look at the state machine that monitors data transmission

12.3.3.1 void I2CForceSend(void)

As you have seen with other applications, a “manual mode” for the state machine is necessary so the 

application can be used during initialization when the regular main program loop is not running.

12.3.3.2 bool QueueI2C0Message(u16 u16DataSize_, u8 *pu8Data_)

This is the one and only public API function that other applications will use to queue messages to the I²C 

peripheral for transmission.  It takes an array of bytes along with the size of the array so exactly the right 

amount of memory can be allocated and

It is up to the calling application to correctly format the message, including getting the 

address with read/write bits as the first byte

makes sense to whatever will receive it.

Messages are kept in dynamic memory in a linked list.  There is no error checking beyond some while(1) 

traps to ensure that there is enough space on the heap to accommodate all the messages that m

queued.  However, it is not expected that any problems would occur in this system given the 

amount of messaging taking place to the LCD.  That might not hold true for other systems, so be sure to 

code accordingly! 

Dynamic memory is often “outlawed” by companies because of the potential chaos that could result 

from heap overflow and/or memory leakage.  Be sure you know the acceptable practice when you write 

code for someone. 
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On its own, it does not really do anything and there is not really any test fun

that can be written just for testing the I²C peripheral.  If you really wanted to test the driver, it would be 

a great idea to hook up I²C0 to I²C1 and run a few billion bytes between the two peripherals over a 
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This is the one and only public API function that other applications will use to queue messages to the I²C 

It takes an array of bytes along with the size of the array so exactly the right 

amount of memory can be allocated and we do not have to worry about parsing termination characters.  

It is up to the calling application to correctly format the message, including getting the 

with read/write bits as the first byte and all the other bytes in the right place so the message 

makes sense to whatever will receive it.   

Messages are kept in dynamic memory in a linked list.  There is no error checking beyond some while(1) 

traps to ensure that there is enough space on the heap to accommodate all the messages that m

queued.  However, it is not expected that any problems would occur in this system given the 

messaging taking place to the LCD.  That might not hold true for other systems, so be sure to 

tlawed” by companies because of the potential chaos that could result 

from heap overflow and/or memory leakage.  Be sure you know the acceptable practice when you write 
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12.3.3.3 void DeQueueI2C0Message(void)

As you can guess, this function takes care of cleaning up the transmit linked list for the message that was 

just sent.  The I²C state machine takes care of calling this function, so it is considered private.  Removing 

the responsibility of managing dynamic memory correctly from the use

ensuring no heap-related errors will start appearing in the system.  Since you probably love managing 

linked lists correctly, the implementation of this function is left for you to do in the code, though the 

completed function is shown below.

void DeQueueI2C0Message(void) 

{ 

  MessageStructType *psNextMessage = NULL;

   

  if(GGsI2C0CurrentMessageToSend != NULL)

  { 

    /* Point to the list node after the doomed node */

    psNextMessage = GGsI2C0CurrentMessageToSend

     

    /* Kill the doomed node's data and the doomed node itself */

    free(GGsI2C0CurrentMessageToSend

    free(GGsI2C0CurrentMessageToSend);

  } 

   

  /* Update the list pointer to the new first element */

  GGsI2C0CurrentMessageToSend = psNextMessage;

  if(GGsI2C0CurrentMessageToSend == NULL)

  { 

    LGsMsgLastMessage = NULL; 

  } 

     

} /* end DeQueueI2C0Message() */

   

12.3.3.4 I²C0 State Machine 

Since most of the work of sending data is taken care of by interrupt

is fairly simple.  The state diagram for the system is shown in Figure 12.3.3.4.1.

The Idle() state monitors the transmit buffer pointer and does nothing unless a message has been 

queued.  When a message is ready, it in

peripheral into action.  As soon as that is done, I2C0ISR() will take care of sending the message out.  
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void DeQueueI2C0Message(void) 

n takes care of cleaning up the transmit linked list for the message that was 

just sent.  The I²C state machine takes care of calling this function, so it is considered private.  Removing 

the responsibility of managing dynamic memory correctly from the user of the class is a great way of 

related errors will start appearing in the system.  Since you probably love managing 

linked lists correctly, the implementation of this function is left for you to do in the code, though the 

ion is shown below. 

 

MessageStructType *psNextMessage = NULL; 

if(GGsI2C0CurrentMessageToSend != NULL) 

/* Point to the list node after the doomed node */ 

psNextMessage = GGsI2C0CurrentMessageToSend->psNextMessage; 

/* Kill the doomed node's data and the doomed node itself */ 

free(GGsI2C0CurrentMessageToSend->pu8MessageData); 

free(GGsI2C0CurrentMessageToSend); 

/* Update the list pointer to the new first element */ 

entMessageToSend = psNextMessage; 

if(GGsI2C0CurrentMessageToSend == NULL) 

 

} /* end DeQueueI2C0Message() */ 

Since most of the work of sending data is taken care of by interrupts, the state machine for the I²C driver 

is fairly simple.  The state diagram for the system is shown in Figure 12.3.3.4.1. 

The Idle() state monitors the transmit buffer pointer and does nothing unless a message has been 

queued.  When a message is ready, it initializes a timeout counter and uses I2C0Start() to kick the 

peripheral into action.  As soon as that is done, I2C0ISR() will take care of sending the message out.  
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the state machine for the I²C driver 

The Idle() state monitors the transmit buffer pointer and does nothing unless a message has been 

itializes a timeout counter and uses I2C0Start() to kick the 

peripheral into action.  As soon as that is done, I2C0ISR() will take care of sending the message out.   
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Figure 12.3.3.4.1: I²C application state diagram 

The I²C application waits in the SendingData() state looking for either an error, timeout, or the current 

message size counter reaching 0.  Given how short a typical LCD message is, the message is probably 

finished transmitting by the time the next 1ms period expires and SendingData() is called the first time.  

This is in sharp contrast to the UART driver we built where transmitted bytes were sent once per 1ms 

iteration since the baud rate was just 9600bps with two bits of overhead per byte.  At 100,000bps and 

only 1 overhead bit per byte, the I²C driver is way faster! 

If an error has occurred, the application goes to the SendingError() state which does not do too much 

right now beyond stopping the bus and getting things ready for the next message.  In the current 

implementation, the message that was being sent would be lost if an error occurred.  You could add 

some additional code to feed back information to any application that queued the message so that it 
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could decide whether or not to resend the message.  One co

should or should not guarantee that it delivers a message it was given to send.  Once again, the 

programmer is faced with choosing

After the error state, or if a message has been transmitted successfully, the SendDone

SendDone() exists as its own state to give a common conclusion to a cycle through the state machine.  It 

takes care of freeing the memory for the current message a

never run for more than one consecutive cycle as it does not wait on any event.  Like SendingError(), 

SendDone() could be used to provide more insight back to other applications on the status of the 

transmission. 

12.4 Using the LCD Controller
Now that we have the mechanism for communication to the LCD, it is time to program an interface to 

the controller to allow access to configuration and message display on the screen.  Fortunately, 

numeric displays with an ASCII interface 

the somewhat complex pixel driving tasks

and write some functions to send character updates.  

yet, you pretty much cannot go forward without doing so.  What you need to note from the data sheet 

now are five things: 

1. LCD I²C address 

2. Control byte 

3. Character RAM addresses 

4. LCD command set 

5. LCD initialization sequence 

Note that the data sheet linked on the course website 

Display, and describes the complete LCD and not just the controller.   That being said, much of the 

information is a subset of the full LCD controller data sheet 

sheet.  The controller’s data sheet is 70 pages long and contains a lot of information that you do not 

really need to use the LCD, though you 

captures the most useful information from the controller information along with the relevant hardware 

references, electrical specifications and example code for initialization.  There are a few details that did 

not make it over that might be nice to know, such as how

Write mode (see page 14 of the controller data sheet)

Figure 12.4.1 that we will reference several times in the following sections.

 

Release 1.0 

could decide whether or not to resend the message.  One could argue both ways that the I²C application 

should or should not guarantee that it delivers a message it was given to send.  Once again, the 

choosing trade-offs in designing for the needs of any particular system.  

r state, or if a message has been transmitted successfully, the SendDone()

exists as its own state to give a common conclusion to a cycle through the state machine.  It 

takes care of freeing the memory for the current message and returns the application to Idle.  

never run for more than one consecutive cycle as it does not wait on any event.  Like SendingError(), 

SendDone() could be used to provide more insight back to other applications on the status of the 

LCD Controller 
Now that we have the mechanism for communication to the LCD, it is time to program an interface to 

the controller to allow access to configuration and message display on the screen.  Fortunately, 

ASCII interface are pretty easy to use since the built-in controller will handle 

the somewhat complex pixel driving tasks.  All we need is to program the interface to meet the protocol 

and write some functions to send character updates.  If you have not read the data sheet for the LCD 

yet, you pretty much cannot go forward without doing so.  What you need to note from the data sheet 

 

 

linked on the course website is prepared by the LCD vendor, New

Display, and describes the complete LCD and not just the controller.   That being said, much of the 

is a subset of the full LCD controller data sheet that you can find via a link in the 

sheet.  The controller’s data sheet is 70 pages long and contains a lot of information that you do not 

you may want to browse to learn more.  Newhaven’s data sheet 

e most useful information from the controller information along with the relevant hardware 

references, electrical specifications and example code for initialization.  There are a few details that did 

not make it over that might be nice to know, such as how the I²C version of the controller only supports 

(see page 14 of the controller data sheet).  Both documents have the drawing shown in 

Figure 12.4.1 that we will reference several times in the following sections. 
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uld argue both ways that the I²C application 

should or should not guarantee that it delivers a message it was given to send.  Once again, the 

offs in designing for the needs of any particular system.   

() state is active.  

exists as its own state to give a common conclusion to a cycle through the state machine.  It 

nd returns the application to Idle.  It will 

never run for more than one consecutive cycle as it does not wait on any event.  Like SendingError(), 

SendDone() could be used to provide more insight back to other applications on the status of the 

Now that we have the mechanism for communication to the LCD, it is time to program an interface to 

the controller to allow access to configuration and message display on the screen.  Fortunately, alpha-

in controller will handle 

All we need is to program the interface to meet the protocol 

not read the data sheet for the LCD 

yet, you pretty much cannot go forward without doing so.  What you need to note from the data sheet 

Newhaven 

Display, and describes the complete LCD and not just the controller.   That being said, much of the 

that you can find via a link in the same data 

sheet.  The controller’s data sheet is 70 pages long and contains a lot of information that you do not 

Newhaven’s data sheet 

e most useful information from the controller information along with the relevant hardware 

references, electrical specifications and example code for initialization.  There are a few details that did 

the I²C version of the controller only supports 

.  Both documents have the drawing shown in 
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Figure 12.4.1: I²C command example from controller specification 

Source:  Sitronix ST7036 Dot Matrix LCD Controller/Driver data sheet, pg. 16 

12.4.1 LCD Address 
The address byte is the first byte sent to an I²C device after the start condition.  Remember that the I²C 

standard dictates that device addresses are 7 bits in length plus the Read (1) or Write (0) bit that is 

always the LSb.  Specifying the device address does not seem to follow a standard form.  For example, if 

the address of a device is given as 0x64, that might mean the full 8-bit address byte you send to Read 

the device is 0x65 once you set the LSb high to indicate Read, or it might mean that the first 7 bits are 

0x64 (b’1100100x’) and you need to add an 8th bit for x=R/W.   We attempt to illustrate this in Figure 

12.4.1.1. but admittedly it is a little hard to explain in text. 

0x64 Specified device address 

  

MSB 6 5 4 3 2 1 LSB Comment 

0 1 1 0 0 1 0 0 Specified address includes the R/W bit - "Write" address is 0x64 

0 1 1 0 0 1 0 1 "Read" address is therefore 0x65 

  

1 1 0 0 1 0 0 0 Address was meant as only upper 7-bits  - "Write" address is 0xC8 

1 1 0 0 1 0 0 1 "Read" address is 0xC9 

Figure 12.4.1.1: Illustration of how a specified I²C address can mean several things 

Fortunately, in the case of the LCD controller, the diagram in 12.4.1 shows the actual bit detail of the 

address byte so you can deduce that the write address is b’01111100’ = 0x7C.  Unfortunately, that is 

NOT what the device address is.  If you dig through the longer controller data sheet, you will find some 

explanation on page 16 that describes four different possible addresses that the controller can be set to.  

The address that Newhaven picked happens to be different than the one the LCD controller vendor 

picked for their example.   



 MPG LEVEL 1 
 

 

notes_mpgl1_chapter12.docx Release 1.0 Page 22 of 29 

Regardless, the Newhaven data sheet says in large bold letters that the address is 0x78 but they fail to 

mention which of the above formats that value is in.  With a quick bit of testing, the complete LCD Write 

address byte was confirmed as 0x78, so this particular specification format matches the first case shown 

in Figure 12.4.1.1.  This address is captured as a constant in the header file, LCD_ADDRESS_WRITE.  This 

test was carried out during driver testing to confirm that it was acknowledged by the LCD.   Fortunately, 

that part of the example code was correct.  Imagine if you were not sure if you had the correct LCD 

address and spent hours (or days) debugging your I²C driver and/or board hardware because the LCD 

refused to respond to its address, only to (finally) try changing the address and discover  that everything 

was working just fine!  It is problems like that which are extremely frustrating, especially with the tight 

deadlines that you will always have in industry.     

12.4.2 Control byte with Co and Rs  
Communicating to the LCD requires following a strict input and output protocol that is very typical of 

any MCU-IC interface.  After LCD controller acknowledges its address, the next byte sent must be a 

control byte that has two important bits called Co and Rs.  Rs is the bit used to tell the LCD if the bytes 

that follow are meant as control codes or simply data that should be written to the screen.  If you read 

the controller data sheet, you will see a truth table that shows that Rs works in conjunction with the 

R/W bit to get four different modes from the LCD controller.  However, as we have mentioned already, 

the I²C version of the LCD controller does not support Read operations, so there is only in fact two 

modes that can be accessed: 

• Rs = 0: Instruction mode 

• Rs = 1: Data mode 

The Rs bit works in conjunction with the Co bit.   

• If the Co bit is set, then the next byte sent will be interpreted as a data mode byte or instruction 

mode byte depending on what Rs was.  The byte after will be interpreted as another control 

byte allowing you to change the Rs bit and thus toggle between data or instruction mode. 

• If the Co bit is clear in the control byte, then the controller assumes that all subsequent bytes in 

the transmission session are of the same Instruction mode or Data mode that is indicated by Rs 

so you can send a series of bytes in the same mode. 

In other words, the Co bit allows you to change modes during a transmission session.  There might be a 

scenario where you wanted to send a command byte, send a data byte, send another command byte, 

send another data byte, etc.  There would be some extra overhead if you had to set a stop condition and 

restart a new frame each time you wanted to change modes.  However, this scenario is unlikely to occur 

so the Co bit tends to be unused.  For all of the communications in the driver we build here, Co is always 

0 so each transaction will only ever be a bunch of commands or a bunch of data.  If we need to switch 

modes, the session will be stopped and a new one started. 
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12.4.3 Character RAM Addresses 
This particular LCD controller supports screens up to 20 columns x 4 rows.  The ASCII character data that 

ends up being displayed on the screen is stored in the controller’s “Display Data RAM” (DDRAM) in 

which there is 80 bytes of space.  Even if you have an LCD screen that is smaller than that, you can still 

write to all the character addresses and the data will be stored but not displayed beyond the addresses 

that are visible on screen.  You can use the non-displayed area as general purpose RAM if you really 

wanted to, or make use of the shifting features to do some message scrolling.  For the 20 x 2 

implementation of the course LCD, the RAM is organized as shown in Figure 12.4.3.1 from the LCD 

controller data sheet.  Note that the Newhaven LCD data sheet shows an address range for a 16 x 2 

display instead of a 20x2 display.  

Figure 12.4.3.1: LCD Character RAM 

Source:  Sitronix ST7036 Dot Matrix LCD Controller/Driver data sheet, pg. 16 

The displayed characters for Line 1 will be at addresses 0x00 thru 0x13 and hidden characters will be at 

0x14 thru 0x27.  Line 2 visible addresses are 0x40 thru 0x53 with hidden characters 0x54 thru 0x67.  The 

second part of Figure 12.4.3.1 shows what happens when you request a shift command (either left or 

right).  For Line 1, a left shift moves the displayed character range to 0x01 – 0x14; a right shift displays 
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0x27, 0x00 – 0x12.  Line 2 has similar behavior

through itself.  What all this means is that you should be able to do a bunch of neat scrolling effects on a 

per-line basis just using control commands to shift the display

single shift command so both lines would have to scroll.

like you might expect.   Try it during the chapter 

what the exercise requests you to do.

Scrolling displays aside, you need to be comfortable with the character addressing since you must use it 

to position the cursor where characters will be displayed.  You can write

first by setting the cursor address, then by loading 

12.4.4 LCD Command Set 
Randomly sending bytes to the LCD will not get you very far 

talk to the device correctly.  The complete s

the Newhaven LCD data sheet.  Any command whe

Most of the commands are pretty obvious for what they do.  Many of the commands have configurabl

bits that need to be set or cleared depending on what you want to accomplish.  For example, the Display 

ON/OFF command is shown as b’00001DCB’

configurable bits (see Figure 12.4.4.1)

Figure 12.4.4.1: Display command example

Source:  Sitronix ST7036 Dot Matrix LCD Controller/Driver data sheet, 

The LCD controller data sheet offers further description of each command and its parameters 

require it.  There are some commands like for setting hardware behavior that, to use correctly, you 

would have to do some reading in the controller data sheet and/or test out some settings.  However, 

Newhaven has done this already and included the i

that is discussed in the next section.  The only one you might want to play with is the Contrast Set 

command if your display contrast needs adjustment.

All of the command literals have already been se

source code file if you have not done so yet

command above, require you to use a base command word and OR in some other flags that you want 

set.  The Display command shown below uses LCD_DISPLAY_CMD as a root 

display on, make the cursor visible, 

by the compiler so there is no code penalty in using this m

I2C0Write(LCD_DISPLAY_CMD | LCD_DISPLAY_ON
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0x12.  Line 2 has similar behavior with the important concept being that each line rotates 

.  What all this means is that you should be able to do a bunch of neat scrolling effects on a 

l commands to shift the display.  The only limitation is that there is just a 

command so both lines would have to scroll.  However, the scrolling behavior

Try it during the chapter exercise, but you will find that it will not really work for 

what the exercise requests you to do.  

Scrolling displays aside, you need to be comfortable with the character addressing since you must use it 

to position the cursor where characters will be displayed.  You can write to any location

first by setting the cursor address, then by loading a message.   

Randomly sending bytes to the LCD will not get you very far – you must use the defined command set to 

talk to the device correctly.  The complete set of commands that you need is shown on page

the Newhaven LCD data sheet.  Any command where the R/W bit is 1 (Read) is not available 

Most of the commands are pretty obvious for what they do.  Many of the commands have configurabl

bits that need to be set or cleared depending on what you want to accomplish.  For example, the Display 

ON/OFF command is shown as b’00001DCB’ so the actual command is b’00001xxx’ with three 

(see Figure 12.4.4.1).  The command description tells you what the individual bits do.  

Figure 12.4.4.1: Display command example 

Source:  Sitronix ST7036 Dot Matrix LCD Controller/Driver data sheet, pg. 25

The LCD controller data sheet offers further description of each command and its parameters 

require it.  There are some commands like for setting hardware behavior that, to use correctly, you 

would have to do some reading in the controller data sheet and/or test out some settings.  However, 

Newhaven has done this already and included the information in their suggesting initialization sequence 

that is discussed in the next section.  The only one you might want to play with is the Contrast Set 

command if your display contrast needs adjustment. 

All of the command literals have already been set up in lcd_nhd_c0220biz.h – open up this file and the 

source code file if you have not done so yet.  Most can be used directly, but some, like the Display 

command above, require you to use a base command word and OR in some other flags that you want 

The Display command shown below uses LCD_DISPLAY_CMD as a root and adds bits to turn the 

 and blink the cursor.  All those values get packed into a single byte 

by the compiler so there is no code penalty in using this method. 

LCD_DISPLAY_ON | LCD_DISPLAY_CURSOR | LCD_DISPLAY_BLINK
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with the important concept being that each line rotates 

.  What all this means is that you should be able to do a bunch of neat scrolling effects on a 

hat there is just a 

behavior does not work 

but you will find that it will not really work for 

Scrolling displays aside, you need to be comfortable with the character addressing since you must use it 

to any location on the screen 

you must use the defined command set to 

et of commands that you need is shown on pages 7 and 8 of 

re the R/W bit is 1 (Read) is not available in I²C mode. 

Most of the commands are pretty obvious for what they do.  Many of the commands have configurable 

bits that need to be set or cleared depending on what you want to accomplish.  For example, the Display 

command is b’00001xxx’ with three 

on tells you what the individual bits do.   

 

pg. 25 

The LCD controller data sheet offers further description of each command and its parameters if you 

require it.  There are some commands like for setting hardware behavior that, to use correctly, you 

would have to do some reading in the controller data sheet and/or test out some settings.  However, 

nformation in their suggesting initialization sequence 

that is discussed in the next section.  The only one you might want to play with is the Contrast Set 

open up this file and the 

Most can be used directly, but some, like the Display 

command above, require you to use a base command word and OR in some other flags that you want 

bits to turn the 

into a single byte 

LCD_DISPLAY_BLINK); 
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If you are working with a new device, be prepared to spend the time to build a good header file with all 

of the protocol constants written out.  Depending on the type of device you are working with, this might 

take a few minutes or it might take hours.  However, it is worth the time and will save you much 

frustration continuously referencing the data sheet and/or hard-coding values without meaningful 

names.  Check with the vendor to see if they have a header file that you can download. 

12.4.5 LCD Initialization 
Before you can start sending regular commands and data to the LCD, it must be initialized in a very 

specific way (see Figure 12.4.5.1).  If you do not follow this sequence, then the LCD will likely not 

function correctly.   

 
Figure 12.4.5.1: LCD Initialization sequence 

Source:  Sitronix ST7036 Dot Matrix LCD Controller/Driver data sheet, pg. 41 
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The sequence shown in the figure is taken from the LCD controller data sheet.  The LCD module data 

sheet from Newhaven does not show this sequence, but instead shows an example initialization code 

snippet.  Since initialization requires specific time delays and our LCD state machine is not even running 

yet, the function LCDInit() in lcd_nhd_c0220biz.c that implements the in

commands directly.  This is another 

abstracted from others, but working around this would be too cumbersome.  

The suggested initialization sequence 

stuck on the last command 0x06 (LCD_DISPLAY_ON).  

does not turn on, which is why every byte is verified that it is ACKed when it is sent from the MCU to the 

LCD controller.  Upon investigation, the timing delays shown in the example code 

to be 10ms even though that is not made clear 

When the LCD controller initialization process is used,

though still suffers errors on occasion

algorithm instead of the example start

in place because it adds robustness to the system 

for a commercial product where “just press the reset button to try the LCD initialization” is not an 

option for a user.   

All the LCD start-up code is in LCDInit()

interrupt is disabled because of the timing requirements and delays between each command byte sent.  

The LCD’s hardware reset line is managed and the function returns TRUE or FALSE depending on 

whether the LCD is successfully initialized or not.  The

common delays are listed in an array so that they can be index in a loop for code efficiency.  As an 

optional exercise (and since there has not been anything really f

a moment to verify the command list against the specified initialization flowchart and the values in the 

header file.   

Before moving on, test to make sure the LCD on your board starts up correctly.  Put a breakpoint on 

LedInit() in main and run the code.  

12.4.5.2 (cursor is blinking).  Adjust one of the command

not blinking after initialization. 

Figure 12.4.5.2: Successful LCD initialization
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The sequence shown in the figure is taken from the LCD controller data sheet.  The LCD module data 

oes not show this sequence, but instead shows an example initialization code 

Since initialization requires specific time delays and our LCD state machine is not even running 

yet, the function LCDInit() in lcd_nhd_c0220biz.c that implements the initialization uses the I²C 

commands directly.  This is another violation of our general system rules of keeping individual drivers 

abstracted from others, but working around this would be too cumbersome.   

sequence from Newhaven generally works, though the LCD will often get 

t command 0x06 (LCD_DISPLAY_ON).  The command does not get ACKed so the screen 

does not turn on, which is why every byte is verified that it is ACKed when it is sent from the MCU to the 

Upon investigation, the timing delays shown in the example code – which are assumed 

to be 10ms even though that is not made clear -- do not match the specification from the LCD controller.  

When the LCD controller initialization process is used, the LCD appears to start up more 

though still suffers errors on occasion.  Therefore the driver code provided uses the controller’s

algorithm instead of the example start-up shown in the module data sheet.  The byte verification is left 

tness to the system – this is the kind of fail-safe code that you would use 

for a commercial product where “just press the reset button to try the LCD initialization” is not an 

up code is in LCDInit() and it uses a private helper function called LCDWaitSI()

interrupt is disabled because of the timing requirements and delays between each command byte sent.  

The LCD’s hardware reset line is managed and the function returns TRUE or FALSE depending on 

fully initialized or not.  The commands that are sequentially sent with 

common delays are listed in an array so that they can be index in a loop for code efficiency.  As an 

optional exercise (and since there has not been anything really for you do to in this whole section!), take 

a moment to verify the command list against the specified initialization flowchart and the values in the 

Before moving on, test to make sure the LCD on your board starts up correctly.  Put a breakpoint on 

LedInit() in main and run the code.  You should see the display startup message as shown in Figure 

Adjust one of the commands in LCDInit() so that the cursor is hidden and 

   

Figure 12.4.5.2: Successful LCD initialization with blinking cursor 
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The sequence shown in the figure is taken from the LCD controller data sheet.  The LCD module data 

oes not show this sequence, but instead shows an example initialization code 

Since initialization requires specific time delays and our LCD state machine is not even running 

itialization uses the I²C 

violation of our general system rules of keeping individual drivers 

generally works, though the LCD will often get 

The command does not get ACKed so the screen 

does not turn on, which is why every byte is verified that it is ACKed when it is sent from the MCU to the 

which are assumed 

do not match the specification from the LCD controller.  

more consistently 

the controller’s 

he byte verification is left 

safe code that you would use 

for a commercial product where “just press the reset button to try the LCD initialization” is not an 

LCDWaitSI().  The I²C 

interrupt is disabled because of the timing requirements and delays between each command byte sent.  

The LCD’s hardware reset line is managed and the function returns TRUE or FALSE depending on 

commands that are sequentially sent with 

common delays are listed in an array so that they can be index in a loop for code efficiency.  As an 

or you do to in this whole section!), take 

a moment to verify the command list against the specified initialization flowchart and the values in the 

Before moving on, test to make sure the LCD on your board starts up correctly.  Put a breakpoint on 

You should see the display startup message as shown in Figure 

s in LCDInit() so that the cursor is hidden and 
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Generally speaking, the first time you get something to show up on an LCD is very exciting!  If it shows 

what you expect and does so consistently

proved that the I²C driver is functioning, the LCD hardware is hooked up correctly, the LCD

is working and the initialization sequence is correct.  Given 

achievement to get to this point.  Now comes the easy part of using all the low

LCD application.   

12.5 LCD Application 
Even though the lead-up to this point has required a great d

write for the LCD application ends up being very simple.   The LCD functionality

with a set of three API functions that queue appropriate messages to make the LCD perform as required.

The functions provided are described in the next sections.

12.5.1 void LCDCommand(u8 u8Command_)
Sending commands is an essential part of using the LCD, especially since the calling application is 

completely responsible for managing what is on the screen.  

will likely be used most often, but any of the commands might come in handy

parameter takes a literal from the list of LCD 

the last location in the command array, and then queues the array to the I²C application.

up for you, it is up to you to add the two lines of code to update the array and queue the message.

12.5.2 void LCDMessage(u8 u8Address_, u8 *u8Message_)
Loading a character message is the next obvious thing you would want to do.  The function takes the 

LCD address for the first character in the mes

A command is queued to set the cursor to the desired address

the message characters while a character count is kept.  Once all the characters have been loaded in the 

array, the message and its determined size are queued to the I²C app.

To make this function a little more robu

on the address provided would fit the intended message.   At the very least, you could truncate the 

message to the available space.  Perhaps the function could return a value based on the su

message or not.  You could also add arguments to automatically clear the screen or the line on which 

the message will be displayed.   

12.5.3 void LCDClearChars(u8 u8Address_, u8 u8CharactersToClear_)
The last handy function is one that 

using the clear screen command that wipes out all display RAM

certain displays where values are changing but you do not want to refresh the whole sc

parameters are a start address and number of characters to clear.  

LCDMessage(), so it is left as an exercise for you to write.
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Generally speaking, the first time you get something to show up on an LCD is very exciting!  If it shows 

consistently, that is even more exciting.  By getting to this stage, we have 

proved that the I²C driver is functioning, the LCD hardware is hooked up correctly, the LCD

is working and the initialization sequence is correct.  Given all the things that could go wrong, it is a fair 

achievement to get to this point.  Now comes the easy part of using all the low-level drivers to build the 

up to this point has required a great deal of thought and effort, the final code to 

write for the LCD application ends up being very simple.   The LCD functionality that will be provided is 

with a set of three API functions that queue appropriate messages to make the LCD perform as required.

e functions provided are described in the next sections. 

void LCDCommand(u8 u8Command_) 
Sending commands is an essential part of using the LCD, especially since the calling application is 

completely responsible for managing what is on the screen.  Moving the cursor and clearing the screen 

, but any of the commands might come in handy.  The single function 

parameter takes a literal from the list of LCD Commands in the LCD header file, adds the command into 

ion in the command array, and then queues the array to the I²C application.

up for you, it is up to you to add the two lines of code to update the array and queue the message.

void LCDMessage(u8 u8Address_, u8 *u8Message_) 
a character message is the next obvious thing you would want to do.  The function takes the 

LCD address for the first character in the message, and a pointer to a NULL-terminated message string.  

A command is queued to set the cursor to the desired address, then a message array is populated with 

the message characters while a character count is kept.  Once all the characters have been loaded in the 

array, the message and its determined size are queued to the I²C app. 

To make this function a little more robust, you could add checks to see if the characters available based 

ould fit the intended message.   At the very least, you could truncate the 

message to the available space.  Perhaps the function could return a value based on the su

message or not.  You could also add arguments to automatically clear the screen or the line on which 

void LCDClearChars(u8 u8Address_, u8 u8CharactersToClear_)
The last handy function is one that will clear a smaller group of characters from the screen instead of 

that wipes out all display RAM.  This is useful for user interfaces or for 

certain displays where values are changing but you do not want to refresh the whole sc

parameters are a start address and number of characters to clear.  It works almost identically to 

LCDMessage(), so it is left as an exercise for you to write. 
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Generally speaking, the first time you get something to show up on an LCD is very exciting!  If it shows 

, that is even more exciting.  By getting to this stage, we have 

proved that the I²C driver is functioning, the LCD hardware is hooked up correctly, the LCD command set 

go wrong, it is a fair 

level drivers to build the 

eal of thought and effort, the final code to 

that will be provided is 

with a set of three API functions that queue appropriate messages to make the LCD perform as required. 

Sending commands is an essential part of using the LCD, especially since the calling application is 

Moving the cursor and clearing the screen 

.  The single function 

Commands in the LCD header file, adds the command into 

ion in the command array, and then queues the array to the I²C application.  The array is set 

up for you, it is up to you to add the two lines of code to update the array and queue the message. 

a character message is the next obvious thing you would want to do.  The function takes the 

terminated message string.  

, then a message array is populated with 

the message characters while a character count is kept.  Once all the characters have been loaded in the 

st, you could add checks to see if the characters available based 

ould fit the intended message.   At the very least, you could truncate the 

message to the available space.  Perhaps the function could return a value based on the success of the 

message or not.  You could also add arguments to automatically clear the screen or the line on which 

void LCDClearChars(u8 u8Address_, u8 u8CharactersToClear_) 
clear a smaller group of characters from the screen instead of 

for user interfaces or for 

certain displays where values are changing but you do not want to refresh the whole screen.  The 

It works almost identically to 
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As the LCD functional requirements evolve, it will likely make sense to add an LCD sta

handle more complex behavior at which point the three API functions would probably become private 

to the LCD application and a slightly different interface 

the LCD service.   

For example, perhaps you want to provide vertical or scrolling message capability native to the LCD 

driver rather than leaving it up to a client application to take care of that (as you will do in the chapter 

exercise).  An application could send text continuously to the LCD which c

display them systematically on screen (e.g. the first message could be displayed for one second on line 

1, the 2nd message would be displayed on line 2, and then every subsequent message would be added 

on line two and bump up the current line 2 message to line 1).  

functionality would be desired, so for now we will leave the driver in this state with the basic API.

12.6 Chapter Exercises 
This chapter exercise starts out quite similar to Chapter 11 

UART port, characters are printed to the LCD.  

get you going quickly!    

Complete the following exercises in chapter12.c/h

the final code.  In the solution provided, each part modifies some of the previous parts, so the solution is 

not completely sectioned out for each 

solution progressed especially when you start your own version.

1. When BUTTON1 is pressed, output 

on Line 2 as shown in Figure  12.6.1.  Each time the button is pressed, overwrite the value on 

Line 2 with the new counter value

Figure 12.6.1: Exercise 1 solution display

2. Adjust the code so that the first

instances print on Line 2 and bump the previous line up as shown in Figure 12.6.2.

keep a copy of the current Line 2 and rewrite it to Line1 (i.e. you are not allowed to regener

the text on Line 1).   Hint: <string.h> is included in this package. 
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As the LCD functional requirements evolve, it will likely make sense to add an LCD state machine to 

handle more complex behavior at which point the three API functions would probably become private 

to the LCD application and a slightly different interface would be provided to applications that would use 

nt to provide vertical or scrolling message capability native to the LCD 

driver rather than leaving it up to a client application to take care of that (as you will do in the chapter 

exercise).  An application could send text continuously to the LCD which could buffer the strings and 

display them systematically on screen (e.g. the first message could be displayed for one second on line 

message would be displayed on line 2, and then every subsequent message would be added 

e current line 2 message to line 1).  It is hard to know exactly what 

functionality would be desired, so for now we will leave the driver in this state with the basic API.

quite similar to Chapter 11 but instead of printing characters out the 

UART port, characters are printed to the LCD.  Copying the relevant part of the Chapter 11 solution will 

in chapter12.c/h.  All the exercises’ functionality should be present in 

.  In the solution provided, each part modifies some of the previous parts, so the solution is 

each exercise, but you should be able to see how the complete 

solution progressed especially when you start your own version. 

is pressed, output the string “The counter is: “ followed by the 4

as shown in Figure  12.6.1.  Each time the button is pressed, overwrite the value on 

with the new counter value. 

 
Figure 12.6.1: Exercise 1 solution display 

hat the first instance of the counter output prints on Line 2

instances print on Line 2 and bump the previous line up as shown in Figure 12.6.2.

keep a copy of the current Line 2 and rewrite it to Line1 (i.e. you are not allowed to regener

the text on Line 1).   Hint: <string.h> is included in this package.  
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te machine to 

handle more complex behavior at which point the three API functions would probably become private 

provided to applications that would use 

nt to provide vertical or scrolling message capability native to the LCD 

driver rather than leaving it up to a client application to take care of that (as you will do in the chapter 

ould buffer the strings and 

display them systematically on screen (e.g. the first message could be displayed for one second on line 

message would be displayed on line 2, and then every subsequent message would be added 

It is hard to know exactly what 

functionality would be desired, so for now we will leave the driver in this state with the basic API. 

but instead of printing characters out the 

Copying the relevant part of the Chapter 11 solution will 

ity should be present in 

.  In the solution provided, each part modifies some of the previous parts, so the solution is 

, but you should be able to see how the complete 

the 4-digit counter 

as shown in Figure  12.6.1.  Each time the button is pressed, overwrite the value on 

2, and subsequent 

instances print on Line 2 and bump the previous line up as shown in Figure 12.6.2.  You must 

keep a copy of the current Line 2 and rewrite it to Line1 (i.e. you are not allowed to regenerate 
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Figure 12.6.2: Exercise 2 solution display 

 

3. Make BUTTON2 clear the screen and reset the counter.  The counter string should begin printing 

on Line 1 next time you press BUTTON1. 

4. While BUTTON3 is pressed, clear the screen then make the text 

MPGL1 

ROCKS 

 bounce back and forth between the screen edges while the button is held.  The character 

updates should occur at about 4Hz to look good, but make sure you can adjust this easily to 

speed up or slow down the scrolling action.  When the button is released, the screen should 

clear.  While BUTTON3 is pressed, do not respond to any other buttons.  Three frames are 

shown in Figure 12.6.3. 

 

                               

Figure 12.6.3: Three frames in Exercise 3 solution 

 

Bonus: Figure out how to load custom characters to the LCD and create Pac man and ghost characters 

each with three frames of animation.  Then make the ghost chase Pac man across the screen and on 

different lines.  If you have more time, pop up a power pill randomly and if Pac man gets it change the 

chase direction (and invert the ghost of course!) for five seconds or so.  Neither the ghost nor Pac man 

should ever catch each other.  Free MPGL2 development board to whoever does it first and posts the 

source on the Engenuics forum! 


