
Performance Guide
for Informix
Extended Parallel Server
Version 8.3
December 1999
Part No. 000-6543

ii Performance Guide fo
Published by Informix Press Informix Corporation
4100 Bohannon Drive
Menlo Park, CA 94025-1032

© 1999 Informix Corporation. All rights reserved. The following are trademarks of Informix Corporation
or its affiliates, one or more of which may be registered in the United States or other jurisdictions:

Answers OnLineTM; C-ISAM; Client SDKTM; DataBlade; Data DirectorTM; Decision FrontierTM;
Dynamic Scalable ArchitectureTM; Dynamic ServerTM; Dynamic ServerTM, Developer EditionTM;
Dynamic ServerTM with Advanced Decision Support OptionTM; Dynamic ServerTM with Extended
Parallel OptionTM; Dynamic ServerTM with MetaCube; Dynamic ServerTM with Universal Data OptionTM;
Dynamic ServerTM with Web Integration OptionTM; Dynamic ServerTM, Workgroup EditionTM;
Dynamic Virtual MachineTM; Extended Parallel ServerTM; FormationTM; Formation ArchitectTM;
Formation Flow EngineTM; Gold Mine Data Access; IIF.2000TM; i.ReachTM; i.SellTM; Illustra; Informix;
Informix 4GL; Informix InquireSM; Informix Internet Foundation.2000TM; InformixLink;
Informix Red Brick Decision ServerTM; Informix Session ProxyTM; Informix VistaTM; InfoShelfTM;
InterforumTM; I-SpyTM; MediazationTM; MetaCube; NewEraTM; ON-BarTM; OnLine Dynamic ServerTM;
OnLine/Secure Dynamic ServerTM; OpenCase; OrcaTM; PaVERTM; Red Brick and Design;
Red Brick Data MineTM; Red Brick Mine BuilderTM; Red Brick DecisionscapeTM; Red Brick ReadyTM;
Red Brick Systems; Regency Support; Rely on Red BrickSM; RISQL; Solution DesignSM; STARindexTM;
STARjoinTM; SuperView; TARGETindexTM; TARGETjoinTM; The Data Warehouse Company;
The one with the smartest data wins.TM; The world is being digitized. We’re indexing it.SM;
Universal Data Warehouse BlueprintTM; Universal Database ComponentsTM; Universal Web ConnectTM;
ViewPoint; VisionaryTM; Web Integration SuiteTM. The Informix logo is registered with the United States
Patent and Trademark Office. The DataBlade logo is registered with the United States Patent and
Trademark Office.

Documentation Team: Diana Chase, Mary Kraemer, Hanna Metzger, Virginia Panlasigui

GOVERNMENT LICENSE RIGHTS

Software and documentation acquired by or for the US Government are provided with rights as follows:
(1) if for civilian agency use, with rights as restricted by vendor’s standard license, as prescribed in FAR 12.212;
(2) if for Dept. of Defense use, with rights as restricted by vendor’s standard license, unless superseded by a
negotiated vendor license, as prescribed in DFARS 227.7202. Any whole or partial reproduction of software or
documentation marked with this legend must reproduce this legend.
r Informix Extended Parallel Server

Table of Contents

Table of
Contents
Introduction
In This Introduction 3
About This Manual 3

Types of Users 3
Software Dependencies 4
Assumptions About Your Locale. 4
Demonstration Databases 5

New Features . 5
Data-Migration Enhancements 6
Configuration Enhancements 6
Table-Fragmentation Enhancements 6
Performance Enhancements 6
New SQL Functionality 7
Utility Features 7
Version 8.3 Features from Version 7.30 7

Documentation Conventions 8
Typographical Conventions 8
Icon Conventions 9
Sample-Code Conventions 10

Additional Documentation 11
On-Line Manuals 11
Printed Manuals 12
Error Message Documentation 12
Documentation Notes, Release Notes, Machine Notes 12
Related Reading 13

Compliance with Industry Standards 13
Informix Welcomes Your Comments 14

iv Perfor
Chapter 1 Performance Basics
In This Chapter 1-3
Parallel Processing 1-4

Parallel-Processing Architecture 1-4
Performance Advantages 1-5

Decision Support 1-9
Decision-Support Applications 1-9
Decision-Support Environments 1-10
Schemas for DSS Queries 1-11

Dedicated Test Systems 1-12
Basic Approach to Performance Measurement and Tuning 1-14
Performance Goals 1-16
Performance Measurements 1-17

Resource Utilization. 1-17
Throughput 1-18
Response Time 1-20
Financial Cost of a Transaction 1-25

Resource Utilization and Performance 1-25
Resource Utilization. 1-26
Factors That Affect Resource Use 1-32

Maintenance of Good Performance 1-35
Topics Beyond the Scope of This Manual 1-36

Chapter 2 Performance Monitoring
In This Chapter 2-3
Evaluating Your Current Configuration 2-3
Creating a Performance History 2-4

Importance of a Performance History. 2-4
Tools That Create a Performance History 2-5

Monitoring Database Server Resources 2-9
Monitoring Sessions. 2-11
Monitoring Memory Use 2-12
Monitoring Data Distribution and Table Fragmentation Use . . 2-13
Monitoring Data Flow Between Coservers 2-15

Monitoring Sessions and Queries 2-16
Monitoring Sessions. 2-16
Monitoring Queries 2-16

Performance Problems Not Related to the Database Server 2-18
mance Guide for Informix Extended Parallel Server

Chapter 3 Effect of Configuration on CPU Use
In This Chapter 3-3
UNIX Parameters That Affect CPU Use 3-3

UNIX Semaphore Parameters 3-4
UNIX File-Descriptor Parameters 3-6
UNIX Memory-Configuration Parameters 3-6

Configuration Parameters and Environment Variables That
Affect CPU Use 3-7

NUMCPUVPS, MULTIPROCESSOR, and SINGLE_CPU_VP . 3-8
NOAGE 3-10
AFF_NPROCS and AFF_SPROC 3-10
NUMAIOVPS 3-12
NUMFIFOVPS 3-13
PSORT_NPROCS 3-14
NETTYPE. 3-14

Virtual Processors and CPU Use 3-17

Chapter 4 Effect of Configuration on Memory Use
In This Chapter 4-3
Allocating Shared Memory for the Database Server 4-3

Resident Portion 4-4
Virtual Portion 4-5
Message Portion 4-7

Configuring Shared Memory 4-8
Freeing Shared Memory 4-9
Configuration Parameters That Affect Memory Use 4-10

BUFFERS 4-12
DS_ADM_POLICY 4-14
DS_MAX_QUERIES 4-14
DS_TOTAL_MEMORY 4-15
LOCKS. 4-19
LOGBUFF. 4-20
MAX_PDQPRIORITY 4-21
PAGESIZE 4-21
PDQPRIORITY 4-22
PHYSBUFF 4-23
RESIDENT 4-23
SHMADD. 4-24
SHMBASE 4-26
Table of Contents v

vi Perfor
SHMTOTAL 4-26
SHMVIRTSIZE 4-27
STACKSIZE 4-27

Chapter 5 Effect of Configuration on I/O
In This Chapter 5-3
Chunk and Dbspace Configuration 5-3

Associate Disk Partitions with Chunks 5-4
Associate Dbspaces with Chunks 5-5

Management of Critical Data 5-5
Separate Disks for Critical Data 5-6
Mirroring for Critical Data 5-7
Configuration Parameters That Affect Critical Data 5-9

Dbspaces for Temporary Tables and Sort Files 5-10
DBSPACETEMP Configuration Parameter 5-12
DBSPACETEMP Environment Variable 5-13
Temporary Space Estimates 5-14

I/O for Tables and Indexes 5-14
Sequential Scans 5-15
Light Scans 5-15
Light Appends 5-17
Unavailable Data 5-17
Configuration Parameters That Affect I/O for Tables

and Indexes 5-18
Background I/O Activities 5-21

Configuration Parameters That Affect Checkpoints 5-22
Configuration Parameters That Affect Logging 5-26
Configuration Parameters That Affect Page Cleaning 5-27
Configuration Parameters That Affect Fast Recovery 5-28

Chapter 6 Table Performance
In This Chapter 6-3
Choosing Table Types 6-4

Using STANDARD Tables. 6-5
Using RAW Tables 6-5
Using STATIC Tables 6-6
Using OPERATIONAL Tables 6-7
Using Temporary Tables 6-7
Specifying a Table Lock Mode 6-9
Monitoring Table Use 6-10
mance Guide for Informix Extended Parallel Server

Specifying Table Placement 6-12
Assigning Tables to Dbspaces 6-13
Moving Tables and Table Fragments to Other Dbspaces . . . 6-13
Managing High-Use Tables 6-14

Improving Table Performance 6-15
Estimating Table Size 6-15
Managing Extents 6-21

Changing Tables 6-30
Loading and Unloading Tables 6-31
Attaching or Detaching Fragments 6-33
Altering a Table Definition 6-34

Denormalizing the Data Model to Improve Performance 6-41
Creating Companion Tables 6-42
Building a Symbol Table 6-44
Splitting Wide Tables 6-45
Adding Redundant Data 6-46
Keeping Small Tables in Memory. 6-47

Chapter 7 Index Performance
In This Chapter 7-3
Choosing Index Types 7-3

Generalized Key Indexes 7-4
Structure of a B-Tree Index 7-4

Estimating Index Page Size 7-6
Estimating Conventional Index Page Size 7-6
Estimating Bitmap Index Size 7-8

Managing Indexes 7-11
Evaluating Index Costs 7-12
Choosing an Attached or Detached Index 7-14
Setting the Lock Mode for Indexes 7-15
Choosing Columns for Indexes 7-16
Clustering Indexes. 7-18
Dropping Indexes 7-19
Maintaining Index Space Efficiency 7-21
Increasing Concurrency During Index Checks 7-21

Improving Performance for Index Builds 7-22
Estimating Sort Memory. 7-23
Estimating Temporary Space for Index Builds 7-24
Table of Contents vii

viii Perf
Chapter 8 Locking
In This Chapter 8-3
Locking Granularity 8-3

Row and Key Locking 8-4
Page Locking 8-4
Table Locking 8-5
Database Locking 8-7
Setting COARSE Locking for Indexes 8-8
Waiting for Locks. 8-8

Locking with the SELECT Statement 8-9
Setting the Isolation Level. 8-9
Locking and Update Cursors. 8-12

Placing Locks with INSERT, UPDATE, and DELETE 8-14
Key-Value Locking 8-14
Monitoring and Administering Locks 8-15

Monitoring Locks 8-16
Configuring and Monitoring the Number of Locks 8-17
Monitoring Lock Waits and Lock Errors 8-18
Monitoring Deadlocks 8-19

Chapter 9 Fragmentation Guidelines
In This Chapter 9-5
Planning a Fragmentation Strategy 9-6

Identifying Fragmentation Goals 9-7
Evaluating Fragmentation Factors for Performance 9-11
Examining Your Data and Queries 9-14
Planning Storage Spaces for Fragmented Tables and Indexes. . 9-15

Creating Cogroups and Dbslices for Fragmentation 9-17
Creating Cogroups and Dbslices 9-17
Increasing Parallelism by Fragmenting Tables

Across Coservers 9-19
Using Dbslices for Performance and Ease of Maintenance. . . 9-19

Designing a Distribution Scheme 9-23
Choosing a Distribution Scheme 9-24
Creating a System-Defined Hash Distribution Scheme 9-29
Creating an Expression-Based Distribution Scheme 9-32
Creating a Hybrid Distribution Scheme 9-34
Creating a Range Distribution Scheme 9-36
Altering a Fragmentation Scheme 9-39
General Fragmentation Notes and Suggestions 9-39
ormance Guide for Informix Extended Parallel Server

Designing Distribution for Fragment Elimination 9-41
Queries for Fragment Elimination 9-42
Types of Fragment Elimination 9-45
Query and Distribution Scheme Combinations for

Fragment Elimination 9-48
Fragmenting Indexes 9-52

Attached Indexes 9-52
Detached Indexes 9-54
Constraints on Indexes for Fragmented Tables 9-56
Indexing Strategies for DSS and OLTP Applications 9-57

Fragmenting Temporary Tables 9-58
Letting the Database Server Determine the Fragmentation . . 9-59
Specifying a Fragmentation Strategy 9-60
Creating and Specifying Dbspaces for Temporary Tables

and Sort Files 9-60
Attaching and Detaching Table Fragments 9-62

Improving ALTER FRAGMENT ATTACH Performance . . . 9-62
Improving ALTER FRAGMENT DETACH Performance. . . 9-64

Monitoring Fragmentation 9-65
Monitoring Fragmentation Across Coservers 9-66
Monitoring Fragmentation on a Specific Coserver 9-70

Chapter 10 Queries and the Query Optimizer
In This Chapter 10-3
Query Plan . 10-4

Access Plan 10-4
Join Plan 10-5
Join Order. 10-9
Display and Interpretation of the Query Plan 10-14
Query Plans for Subqueries. 10-16

Query-Plan Evaluation 10-20
Statistics Used to Calculate Costs. 10-21
Query Evaluation 10-22

Time Costs of a Query 10-25
Memory-Activity Costs 10-25
Sort-Time Costs 10-26
Row-Reading Costs 10-27
Sequential-Access Costs 10-28
Nonsequential-Access Costs 10-29
Index-Lookup Costs 10-29
Table of Contents ix

x Perform
In-Place ALTER TABLE Costs 10-30
View Costs 10-30
Small-Table Costs 10-31
Data-Mismatch Costs 10-32
GLS Functionality Costs 10-33
Fragmentation Costs 10-33

SQL in SPL Routines 10-33
Optimization of SQL 10-34
Execution of SPL Routines 10-34

Chapter 11 Parallel Database Query Guidelines
In This Chapter 11-3
Parallel Database Queries 11-4

High Degree of Parallelism 11-5
Structure of Query Execution 11-5
Balanced Workload 11-13

Optimizer Use of Parallel Processing 11-15
Decision-Support Query Processing 11-16
Parallel Data Manipulation Statements 11-17
Parallel Index Builds 11-19
Parallel Processing and SPL Routines 11-20
Parallel Sorts 11-21
Parallel Execution of UPDATE STATISTICS 11-24
Parallel Execution of onutil Commands 11-25
Correlated and Uncorrelated Subqueries 11-25

SQL Operations That Are Not Processed in Parallel 11-27
Processing OLTP Queries 11-27

Chapter 12 Resource Grant Manager
In This Chapter 12-3
Coordinating Use of Resources 12-3

How the RGM Grants Memory 12-5
Scheduling Queries 12-7

Setting Scheduling Levels 12-7
Using the Admission Policy 12-8
Processing Local Queries 12-10
Managing Must-Execute Queries 12-11

Managing Resources for DSS and OLTP Applications 12-11
Controlling Parallel-Processing Resources 12-12
Changing Resource Limits Temporarily 12-17
ance Guide for Informix Extended Parallel Server

Monitoring Query Resource Use 12-18
Monitoring Queries That Access Data Across

Multiple Coservers 12-19
Monitoring RGM Resources on a Single Coserver 12-24
Using SET EXPLAIN to Analyze Query Execution. 12-24
Using Command-Line Utilities to Monitor Queries 12-30

Chapter 13 Improving Query and Transaction Performance
In This Chapter 13-3
Evaluating Query Performance 13-4
Monitoring Query Execution 13-4
Improving Query and Transaction Performance 13-6

Maintaining Statistics for Data Distribution and Table Size . . 13-8
Using Indexes 13-13
Improving Filter Selectivity. 13-27
Using SQL Extensions for Increased Efficiency 13-30
Reducing the Effect of Join and Sort Operations 13-34
Reviewing the Optimization Level 13-36
Reviewing the Isolation Level 13-36

Index
Table of Contents xi

xii Perfo
rmance Guide for Informix Extended Parallel Server

Introductio
Introduction
In This Introduction 3

About This Manual 3
Types of Users 3
Software Dependencies 4
Assumptions About Your Locale 4
Demonstration Databases 5

New Features . 5
Data-Migration Enhancements 6
Configuration Enhancements 6
Table-Fragmentation Enhancements 6
Performance Enhancements 6
New SQL Functionality 7
Utility Features 7
Version 8.3 Features from Version 7.30 7

Documentation Conventions 8
Typographical Conventions 8
Icon Conventions 9

Feature, Product, and Platform Icons 10
Sample-Code Conventions 10

Additional Documentation 11
On-Line Manuals 11
Printed Manuals 12
Error Message Documentation 12
Documentation Notes, Release Notes, Machine Notes 12
Related Reading 13

2 Perform
Compliance with Industry Standards. 13

Informix Welcomes Your Comments 14
ance Guide for Informix Extended Parallel Server

In This Introduction
This Introduction provides an overview of the information in this manual
and describes the conventions it uses.

About This Manual
This manual provides information about how to configure and operate
Informix Extended Parallel Server to improve overall system throughput and
how to improve the performance of SQL queries.

Types of Users
This manual is for the following users:

■ Database administrators

■ Database server administrators

■ Database application programmers

■ Performance engineers

This manual assumes that you have the following background:

■ A working knowledge of your computer, your operating system,
and the utilities that your operating system provides

■ Some experience working with relational databases or exposure to
database concepts

■ Some experience with computer programming

■ Some experience with database server administration, operating-
system administration, or network administration
Introduction 3

Software Dependencies
If you have limited experience with relational databases, SQL, or your
operating system, refer to your Getting Started manual for a list of supple-
mentary titles.

Software Dependencies
This manual assumes that you are using Informix Extended Parallel Server,
Version 8.3, as your database server.

Assumptions About Your Locale
Informix products can support many languages, cultures, and code sets. All
culture-specific information is brought together in a single environment,
called a Global Language Support (GLS) locale.

The examples in this manual are written with the assumption that you are
using the default locale, en_us.8859-1. This locale supports U.S. English
format conventions for dates, times, and currency. In addition, this locale
supports the ISO 8859-1 code set, which includes the ASCII code set plus
many 8-bit characters such as é, è, and ñ.

If you plan to use nondefault characters in your data or your SQL identifiers,
or if you want to conform to the nondefault collation rules of character data,
you need to specify the appropriate nondefault locale.

For instructions on how to specify a nondefault locale, additional syntax, and
other considerations related to GLS locales, see the Informix Guide to GLS
Functionality.
4 Performance Guide for Informix Extended Parallel Server

Demonstration Databases
Demonstration Databases
The DB-Access utility, which is provided with your Informix database server
products, includes one or more of the following demonstration databases:

■ The stores_demo database illustrates a relational schema with infor-
mation about a fictitious wholesale sporting-goods distributor.
Many examples in Informix manuals are based on the stores_demo
database.

■ The sales_demo database illustrates a dimensional schema for data
warehousing applications. For conceptual information about dimen-
sional data modeling, see the Informix Guide to Database Design and
Implementation.

For information about how to create and populate the demonstration
databases, see the DB-Access User’s Manual. For descriptions of the databases
and their contents, see the Informix Guide to SQL: Reference.

The scripts that you use to install the demonstration databases reside in the
$INFORMIXDIR/bin directory.

New Features
For a comprehensive list of new database server features, see the release
notes. This section lists new features relevant to this manual.

The Version 8.3 features that this manual describes fall into the following
areas:

■ Data-migration enhancements

■ Configuration enhancements

■ Table-fragmentation enhancements

■ Performance enhancements

■ New SQL functionality

■ Utility features

■ Version 8.3 features from Informix Dynamic Server, Version 7.30
Introduction 5

Data-Migration Enhancements
Data-Migration Enhancements
This manual describes the following data-migration enhancements to
Version 8.3 of Extended Parallel Server:

■ Version 8.3 to Version 8.21 reversion

■ Data movement from Version 7.2 or Version 7.3 database servers to
Version 8.3

Configuration Enhancements
This manual describes the following configuration enhancements to
Version 8.3 of Extended Parallel Server:

■ Increased maximum number of chunks, dbspaces, and dbslices

■ Configurable page size

■ 64-bit very large memory (VLM)

■ Increased maximum chunk size

Table-Fragmentation Enhancements
This manual describes the following table-fragmentation enhancements to
Version 8.3 of Extended Parallel Server:

■ ALTER FRAGMENT attach with remainders

■ ALTER TABLE to add, drop, or modify a column

■ Range fragmentation

Performance Enhancements
This manual describes the following performance enhancements to
Version 8.3 of Extended Parallel Server:

■ Coarse-grain index locks

■ Fuzzy checkpoints
6 Performance Guide for Informix Extended Parallel Server

New SQL Functionality
New SQL Functionality
This manual describes the following new SQL functionality in Version 8.3 of
Extended Parallel Server:

■ CASE statement in Stored Procedure Language (SPL)

■ DELETE ... USING statement to delete rows based on a table join

■ Globally detached indexes

■ Load and unload simple large objects to external tables

■ MIDDLE function

■ Referential integrity for globally detached indexes

■ TRUNCATE statement

Utility Features
This manual describes the following new options for the onutil utility in
Version 8.3 of Extended Parallel Server.

■ onutil CHECK, without locks

■ onutil CHECK, repair improvements

■ onutil ALTER DBSLICE

■ onutil ALTER LOGSLICE

Version 8.3 Features from Version 7.30
This manual describes the following features from Version 7.30 of Dynamic
Server in Version 8.3 of Extended Parallel Server:

■ Ability to retain update locks

■ ALTER TABLE to add or drop a foreign-key constraint

■ Constraints on columns other than the fragmentation column

■ Slow ALTER TABLE

■ Triggers

■ Memory-resident tables
Introduction 7

Documentation Conventions
Documentation Conventions
This section describes the conventions that this manual uses. These
conventions make it easier to gather information from this and other volumes
in the documentation set.

The following conventions are discussed:

■ Typographical conventions

■ Icon conventions

■ Sample-code conventions

Typographical Conventions
This manual uses the following conventions to introduce new terms,
illustrate screen displays, describe command syntax, and so forth.

Convention Meaning

KEYWORD All primary elements in a programming language statement
(keywords) appear in uppercase letters in a serif font.

italics
italics
italics

Within text, new terms and emphasized words appear in italics.
Within syntax and code examples, variable values that you are
to specify appear in italics.

boldface
boldface

Names of program entities (such as classes, events, and tables),
environment variables, file and pathnames, and interface
elements (such as icons, menu items, and buttons) appear in
boldface.

monospace
monospace

Information that the product displays and information that you
enter appear in a monospace typeface.

 (1 of 2)
8 Performance Guide for Informix Extended Parallel Server

Icon Conventions
Tip: When you are instructed to “enter” characters or to “execute” a command,
immediately press RETURN after the entry. When you are instructed to “type” the
text or to “press” other keys, no RETURN is required.

Icon Conventions
Throughout the documentation, you will find text that is identified by several
different types of icons.

Comment icons identify three types of information, as the following table
describes. This information always appears in italics.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans
serif font.

♦ This symbol indicates the end of one or more product- or
platform-specific paragraphs.

➞ This symbol indicates a menu item. For example, “Choose
Tools➞Options” means choose the Options item from the
Tools menu.

Icon Label Description

Warning: Identifies paragraphs that contain vital instructions,
cautions, or critical information

Important: Identifies paragraphs that contain significant
information about the feature or operation that is
being described

Tip: Identifies paragraphs that offer additional details or
shortcuts for the functionality that is being described

Convention Meaning

 (2 of 2)
Introduction 9

Sample-Code Conventions
Feature, Product, and Platform Icons

Feature, product, and platform icons identify paragraphs that contain
feature-specific, product-specific, or platform-specific information.

These icons can apply to an entire section or to one or more paragraphs
within a section. If an icon appears next to a section heading, the information
that applies to the indicated feature, product, or platform ends at the next
heading at the same or higher level. A ♦ symbol indicates the end of feature-,
product-, or platform-specific information that appears within one or more
paragraphs within a section.

Sample-Code Conventions
Examples of SQL code occur throughout this manual. Except where noted,
the code is not specific to any single Informix application development tool.
If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:

CONNECT TO stores_demo
...

DELETE FROM customer
WHERE customer_num = 121

...

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules
for that product. For example, if you are using DB-Access, you must delimit
multiple statements with semicolons. If you are using an SQL API, you must
use EXEC SQL at the start of each statement and a semicolon (or other appro-
priate delimiter) at the end of the statement.

Icon Description

Identifies information that relates to the Informix Global
Language Support (GLS) feature.

GLS
10 Performance Guide for Informix Extended Parallel Server

Additional Documentation
Tip: Ellipsis points in a code example indicate that more code would be added in a
full application, but it is not necessary to show it to describe the concept being
discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the manual for your product.

Additional Documentation
For additional information, you might want to refer to the following types of
documentation:

■ On-line manuals

■ Printed manuals

■ Error message documentation

■ Documentation notes, release notes, and machine notes

■ Related reading

On-Line Manuals
An Answers OnLine CD that contains Informix manuals in electronic format
is provided with your Informix products. You can install the documentation
or access it directly from the CD. For information about how to install, read,
and print on-line manuals, see the installation insert that accompanies
Answers OnLine.

Informix on-line manuals are also available on the following Web site:

www.informix.com/answers
Introduction 11

Printed Manuals
Printed Manuals
To order printed manuals, call 1-800-331-1763 or send email to
moreinfo@informix.com. Please provide the following information when
you place your order:

■ The documentation that you need

■ The quantity that you need

■ Your name, address, and telephone number

Error Message Documentation
Informix software products provide ASCII files that contain all of the
Informix error messages and their corrective actions.

To read error messages and corrective actions, use one of the following
utilities.

Instructions for using the preceding utilities are available in Answers
OnLine. Answers OnLine also provides a listing of error messages and
corrective actions in HTML format.

Documentation Notes, Release Notes, Machine Notes
In addition to printed documentation, the following sections describe the on-
line files that supplement the information in this manual. Please examine
these files before you begin using your database server. They contain vital
information about application and performance issues.

Utility Description

finderr Displays error messages on line

rofferr Formats error messages for printing
12 Performance Guide for Informix Extended Parallel Server

Related Reading
The following on-line files appear in the $INFORMIXDIR/release/en_us/0333
directory.

Related Reading
The following publications provide additional information about the topics
that this manual discusses. For a list of publications that provide an intro-
duction to database servers and operating-system platforms, refer to your
Getting Started manual.

■ Measurement and Tuning of Computer Systems by Domenico Ferrari,
Giuseppe Serazzi, and Alessandro Zeigner (Prentice-Hall, Inc., 1983)

■ High Performance Computing by Kevin Dowd (O’Reilly & Associates,
Inc., 1993)

Compliance with Industry Standards
The American National Standards Institute (ANSI) has established a set of
industry standards for SQL. Informix SQL-based products are fully compliant
with SQL-92 Entry Level (published as ANSI X3.135-1992), which is identical
to ISO 9075:1992. In addition, many features of Informix database servers
comply with the SQL-92 Intermediate and Full Level and X/Open SQL CAE
(common applications environment) standards.

On-Line File Purpose

PERFDOC_8.3 The documentation notes file for your version of this manual
describes topics that are not covered in the manual or that were
modified since publication.

SERVERS_8.3 The release notes file describes feature differences from earlier
versions of Informix products and how these differences might
affect current products. This file also contains information about
any known problems and their workarounds.

XPS_x.y The machine notes file describes any special actions that you
must take to configure and use Informix products on your
computer. Machine notes are named for the product described.
Introduction 13

Informix Welcomes Your Comments
Informix Welcomes Your Comments
Let us know what you like or dislike about our manuals. To help us with
future versions of our manuals, we want to know about any corrections or
clarifications that you would find useful. Include the following information:

■ The name and version of the manual that you are using

■ Any comments that you have about the manual

■ Your name, address, and phone number

Write to us at the following address:

Informix Software, Inc.
SCT Technical Publications Department
4100 Bohannon Drive
Menlo Park, CA 94025

If you prefer to send electronic mail, our address is:

doc@informix.com

The doc alias is reserved exclusively for reporting errors and omissions in our
documentation.

We appreciate your suggestions.
14 Performance Guide for Informix Extended Parallel Server

1
Chapter
Performance Basics
In This Chapter . 1-3

Parallel Processing 1-4
Parallel-Processing Architecture 1-4
Performance Advantages 1-5

Enhanced Parallel Access 1-6
Enhanced Parallel Execution 1-6
Scalability 1-8

Decision Support 1-9
Decision-Support Applications 1-9
Decision-Support Environments 1-10
Schemas for DSS Queries 1-11

Dedicated Test Systems 1-12

Basic Approach to Performance Measurement and Tuning 1-14

Performance Goals 1-16

Performance Measurements 1-17
Resource Utilization 1-17
Throughput . 1-18

Industry-Standard Throughput Benchmarks 1-18
Throughput Measurement 1-19

Response Time 1-20
Response Time and Throughput 1-22
Response-Time Measurement 1-23

Financial Cost of a Transaction 1-25

1-2 Perf
Resource Utilization and Performance 1-25
Resource Utilization 1-26

CPU Utilization 1-28
Memory Utilization 1-29
Disk Utilization 1-30

Factors That Affect Resource Use 1-32

Maintenance of Good Performance 1-35

Topics Beyond the Scope of This Manual 1-36
ormance Guide for Informix Extended Parallel Server

In This Chapter
This chapter provides an overview of performance measurement and tuning
for Informix Extended Parallel Server. Performance measurement and tuning
encompass a broad area of research and practice.

This manual discusses only performance tuning issues and methods that are
relevant to daily database server administration and query execution. For an
introduction to basic database design, refer to the Informix Guide to Database
Design and Implementation. For a general introduction to performance tuning,
refer to the texts listed in “Related Reading” on page 13.

Information in this manual can help you perform the following tasks:

■ Monitor system resources that are critical to performance

■ Identify database activities that affect these critical resources

■ Identify and monitor queries that are critical to performance

■ Use the database server utilities for performance monitoring and
tuning

■ Eliminate performance bottlenecks in the following ways:

❑ Balancing the load on system resources

❑ Adjusting the configuration of your database server

❑ Adjusting the arrangement of your data

❑ Allocating resources for decision-support queries

❑ Creating indexes to speed up retrieval of your data

This chapter provides information about the following topics:

■ Parallel processing

■ Decision support applications

■ Performance goals
Performance Basics 1-3

Parallel Processing
■ Performance measurements and resource utilization

■ Maintenance of good performance

■ Topics that are not covered in this manual

Parallel Processing
One of the most important factors in performance tuning for Extended
Parallel Server is balancing resource use and parallel processing within and
across coservers.

This brief description of the parallel-processing architecture and perfor-
mance advantages of Extended Parallel Server provides helpful background
information for understanding parallel processing features.

Parallel-Processing Architecture
The parallel-processing architecture of Extended Parallel Server provides
high performance for database operations on computing platforms that
range from a single computer to parallel-processing platforms composed of
dozens of computers. A parallel-processing platform is a set of independent
computers that operate in parallel and communicate over a high-speed
network, bus, or interconnect.

Each computer within a parallel-processing platform is referred to as a node.
A node can be a uniprocessor or a symmetric multiprocessing (SMP)
computer. Each computer manages its own disks, memory, and processors.

You configure Extended Parallel Server on a single computer or a parallel-
processing platform as a set of one or more coservers. A coserver is the
functional equivalent of a database server that operates on a single node.
Each coserver performs database operations in parallel with the other
coservers that make up a database server.

Each coserver independently manages its own resources and activities such
as logging, recovery, locking, and buffers. This independent management of
resources by each coserver is referred to as a shared-nothing architecture.
1-4 Performance Guide for Informix Extended Parallel Server

Performance Advantages
Figure 1-1 on page 1-5 illustrates the parallel-processing architecture of
Extended Parallel Server. For information about the database server archi-
tecture, refer to your Administrator’s Guide.

Performance Advantages
Extended Parallel Server provides the following performance advantages for
decision-support system (DSS) and data-warehouse applications that access
very large databases (VLDBs):

■ Enhanced parallel execution

■ Scalability

■ Enhanced parallel access to VLDBs

Figure 1-1
Database Server in a Shared-Nothing Environment

High-speed-
communication
interface
or User Datagram
Protocol (UDP) on
a standard network

Shared
memory

Database data

Node

Co
se

rv
er CPU

CPUCPU

Shared
memory

Database data

Node

Co
se

rv
er CPU

CPUCPU

Shared
memory

Database data

Node

Co
se

rv
er CPU

CPUCPU
Performance Basics 1-5

Performance Advantages
Enhanced Parallel Access

You can partition a VLDB across multiple coservers with another feature,
table fragmentation. Extended Parallel Server delivers maximum perfor-
mance benefits when the data being queried is contained in fragmented
tables that are distributed across disks that belong to many different
coservers.

For a description of fragmented tables and how to use fragmentation for
maximum performance, refer to Chapter 9, “Fragmentation Guidelines.”

Enhanced Parallel Execution

Parallel execution is extremely useful for decision support queries, in which
large volumes of data are scanned, joined, and sorted across multiple
coservers.

A connection coserver is the coserver that manages a client connection to the
database server. When a client database request requires access to data that
resides in table fragments on other coservers, the other coservers are called
participating coservers.

When the connection coserver determines that a query requires access to data
that is fragmented across coservers, the database server divides the query
plan into subplans for each of the participating coservers. This division is
based on the fragmentation scheme of the tables and the availability of
resources on the connection coserver and the participating coservers.

The database server distributes each query subplan to the pertinent coservers
and executes the subplans in parallel. Each subplan is processed simulta-
neously with the others. Because each subplan represents a smaller amount
of work than the original query plan, parallel execution across multiple
coservers can drastically reduce the time that is required to process the query.

For example, consider the following SQL request:

SELECT geo_id, sum(dollars)
FROM customer a, cash b
WHERE a.cust_id=b.cust_id
GROUP BY geo_id
ORDER BY SUM(dollars)
1-6 Performance Guide for Informix Extended Parallel Server

Performance Advantages
In this example, the connection and participating coservers perform the
following tasks:

1. Each coserver scans relevant fragments of the customer table and the
cash table in parallel.

2. Each coserver joins local rows from both the customer table and cash
table by customer ID. Joins between rows that reside on different
coservers can be performed by any of the participating coservers.

3. As coservers become free, they each perform some of the steps
involved in selecting the geographic areas and dollar amounts that
belong to particular customers and performing the group-by and
order-by operations needed to complete the query. Each coserver
sends its results to the connection coserver.

4. When the query is complete, the connection coserver returns the
results to the client.

Figure 1-2 shows a client that is accessing a very large database that is
fragmented across many coservers. Coserver 1 is the connection coserver.
Coservers 1 through N are all participating coservers.

Figure 1-2
Client Query That Coservers Service

CustDbspN CashDbspN. . .

. . .

Client

CustDbsp1 CashDbsp1 CustDbsp2 CashDbsp2

. . .

Coserver 2 Coserver N

CPUCPUCPUCPUCPU CPU

CashFrag NCustFrag NCashFrag 2CustFrag 2CashFrag 1CustFrag 1

Coserver 1

SELECT geo_id, sum(
FROM customer
WHERE a.cust _i

Connection coserver Participating coservers 2 to N

Extended Parallel Server
Performance Basics 1-7

Performance Advantages
Scalability

Extended Parallel Server takes advantage of the underlying hardware paral-
lelism to execute SQL operations and utilities in parallel. This ability to
execute tasks in parallel provides a high degree of scalability for growing
workloads.

Scalability has two aspects:

■ Speed-up

Speed-up is the ability to add computing hardware to achieve corre-
spondingly faster performance for a DSS query or OLTP operation of
a given volume.

The ability to execute tasks in parallel promotes speed-up. For exam-
ple, the database server on a parallel-processing platform with
10 CPUs can execute a complex query in approximately one-tenth the
time of a single CPU system.

■ Scale-up

Scale-up is the ability to process a larger workload with a corre-
spondingly larger amount of computing resources in a similar
amount of time.

If you fragment the data across multiple coservers, the database
server uses the disk space, memory, and CPUs of these multiple cos-
ervers to process each fragment of data in parallel. The processing
gains are directly proportional to the number of CPUs. For example,
the database server on a parallel-processing platform with 10 CPUs
can execute a complex query and access approximately 10 times the
amount of data in the same time as a single CPU system.

As your workload grows, you can add coservers to complete your
DSS queries on the larger amount of data in about the same amount
of time.

Extended Parallel Server provides highly linear scalability across a wide
variety of computing platforms and workloads.
1-8 Performance Guide for Informix Extended Parallel Server

Decision Support
Decision Support
Two types of applications access data that is stored in a relational database:

■ Decision-support system (DSS) applications and ad hoc queries

■ On-line transaction processing (OLTP) applications

Figure 1-3 illustrates the difference between OLTP and DSS applications.

The built-in parallel processing capabilities and extended fragmentation
schemes make Extended Parallel Server efficient for decision-support appli-
cations of all kinds.

Decision-Support Applications
Decision-support applications provide information that is used for strategic
planning, decision making, and report preparation. These applications are
frequently executed either at regular intervals in a batch environment or
intermittently as ad hoc queries. Typical applications include payroll,
inventory reporting, and end-of-period accounting reports.

Users can initiate ad hoc queries directly to get information such as:

■ how many of the salesmen in the Western Region have already met
their sales quota for this year, and who they are.

■ how often telephone customers with billing addresses in the postal
code beginning with 95 have used long-distance services to area
codes 714, 805, 562, or 408.

Figure 1-3
OLTP Versus DSS

Operations
OLTP
activity

Simple,
repeated
transactions

Decision
support

Large, complex or
ad hoc queries

Database server
Performance Basics 1-9

Decision-Support Environments
You can run DSS queries directly against real-time OLTP data (also referred to
as operational data) through gateways or middleware or by extracting,
downloading, and reorganizing operational data to run large, memory-
intensive queries against it. You can also retrieve decision-support infor-
mation by downloading operational data to a personal computer for use with
spreadsheets and end-user data-analysis tools.

Decision-Support Environments
For DSS queries, corporate data is often consolidated into a separately
designed environment, commonly called a data warehouse. A data warehouse
stores business data for a company in a single, integrated relational database
that can provide a historical perspective on information for DSS applications
and ad-hoc queries.

Another approach to DSS operations, called a data mart, draws selected data
from OLTP operations or a data warehouse to answer specific types of
questions or to support a specific department or initiative within an
organization.

DSS queries perform more complex and memory-intensive tasks than OLTP,
often including scans of entire tables, manipulation of large amounts of data,
multiple joins, and the creation of temporary tables. Such operations require
large amounts of memory. Because of their complexity, DSS queries might not
execute quickly.

Decision-support queries consume large quantities of non-CPU resources,
particularly memory. The database server typically allocates large quantities
of memory for the following SQL operators:

■ Hash join

■ Sort

■ Group
1-10 Performance Guide for Informix Extended Parallel Server

Schemas for DSS Queries
Other factors also influence how the database server allocates resources to a
query. Consider the following SELECT statement:

SELECT col1, col2 FROM table1 ORDER BY col1

If no indexes exist on table1, a sort is required, and the database server must
allocate memory and temporary disk space to sort the query. However, if
column col1 is indexed, the database server can sometimes avoid performing
the sort by scanning the table using the index and can automatically provide
the ordering that the user requested, without consuming non-CPU resources.

Decision-support applications have the following characteristics:

■ Complex queries that involve large amounts of data

■ Large memory requirements

■ Few users

■ Periodic or ad-hoc requests

■ Relatively long response times

Schemas for DSS Queries
Although DSS queries can use data accumulated through OLTP applications,
that data can be queried most efficiently if it is loaded into a database with a
schema created explicitly for queries instead of transaction processing.

A huge data warehouse might be further divided into data marts that are
optimized for a particular kind of query, such as those that evaluate financial
or marketing data. The process can also go in the other direction: existing
data marts can be used to create data warehouses. Many users find that tests
of DSS queries in smaller data marts gives them a better idea of how they
might use a larger data warehouse.
Performance Basics 1-11

Dedicated Test Systems
Consider the following major customizable features of Extended Parallel
Server when you create the schema for a data mart or data warehouse:

■ Indexing techniques described in “Using Indexes” on page 13-13

Bitmap indexes on columns with many duplicate values and Gener-
alized-Key (GK) indexes on static tables can improve query
processing speed. The database server can use more than one index
on a table in processing a query.

■ Fragmentation schemes, as described in Chapter 9, “Fragmentation
Guidelines”

Several table fragmentation schemes are available to increase data
granularity for better fragment elimination in query processing and
to improve the efficiency of parallel query processing.

■ Memory-management and query-priority features for DSS queries,
described in Chapter 12, “Resource Grant Manager”

You can set configuration parameters and environment variables to
specify how much shared memory is allotted to DSS queries and
how much of that memory any single query can use.

You can also assign a scheduling level for queries to help determine
the order in which they are processed.

Dedicated Test Systems
You might decide to test queries or application designs on a system that does
not interfere with production database servers. Even if your database server
is used as a data warehouse, you might sometimes test queries on a separate
system until you understand the tuning issues that are relevant to the query.
However, testing queries on a separate system might distort your tuning
decisions in several ways.
1-12 Performance Guide for Informix Extended Parallel Server

Dedicated Test Systems
If you are trying to improve performance of a large query, one that might take
several minutes or hours to complete, you can prepare a scaled-down
database in which your tests can complete more quickly. However, be aware
of these potential problems:

■ The optimizer might make different choices in a small database than
in a large one, even when the relative sizes of tables are the same.
Verify that the query plan is the same in the real and the model
databases.

■ Execution time is rarely a linear function of table size. For example,
sort time increases faster than table size, as does the cost of indexed
access when an index goes from two to three levels. What appears to
be a big improvement in the scaled-down environment can be insig-
nificant when applied to the full database.

Therefore, any conclusions that you reach as a result of tests in the model
database must be tentative until you verify them in the production database.

You can often improve performance by adjusting your query or data model.
If you are using a multiuser system or a network, where system load varies
widely from hour to hour, you might need to perform your experiments at
the same time each day to obtain repeatable results. Start tests when the
system load is consistently light so that you are truly measuring the impact
of your query only.
Performance Basics 1-13

Basic Approach to Performance Measurement and Tuning
Basic Approach to Performance Measurement and
Tuning
Performance measurement and tuning involves consideration of two issues:

■ Data management

Managing data requires many constantly reevaluated decisions,
such as where to store the data, how to access it, and how to protect
it. These decisions affect performance.

■ System workload

The workload mix on your system also affects performance. For
example, the optimal configuration for an database server used by
1,000 users who execute frequent short transactions is quite different
from a configuration in which a few users make long and compli-
cated decision-support queries. A database server that combines
both kinds of use requires even more careful tuning of the configura-
tion as well as transaction and query scheduling. Tuning your
system for its best daily performance means striking a balance in the
utilization of all system resources for all applications.

Early indications of a performance problem are often vague. Users might
report these problems:

■ The system seems sluggish.

■ They cannot get all their work done.

■ Response times for transactions are long or queries take longer than
usual.

■ The application slows down at certain times during the day.

■ Transaction throughput is insufficient to complete the required
workload.

■ Transaction throughput decreases over a period of time.

To determine the nature of the problem, measure the actual use of system
resources and evaluate the results.
1-14 Performance Guide for Informix Extended Parallel Server

Basic Approach to Performance Measurement and Tuning
To maintain optimum performance for your database applications, develop
a plan for the following tasks:

■ Making specific and regular measurements of system performance

■ Making appropriate adjustments to maintain good performance

■ Taking corrective measures whenever performance starts to degrade

Regular measurements can help you anticipate and correct performance
problems. If you recognize problems early, you can prevent them from
affecting your users significantly.

Informix recommends an iterative approach to performance tuning. If
repeating the steps found in the following list does not produce the desired
performance improvement, consider other causes of the problem. For
example, insufficient hardware resources or problems within or between
client applications, as mentioned in “Topics Beyond the Scope of This
Manual” on page 1-36, also cause performance problems.

To tune performance

1. Establish performance objectives.

2. Measure resource utilization and database activity at regular
intervals.

3. Identify symptoms of performance problems: disproportionate
utilization of CPU, memory management, or disks.

4. Tune the operating-system configuration.

5. Tune the database server configuration.

6. Optimize chunk and dbspace configuration, including placement of
logs, sort space, and disk space for temporary tables and sort files.

7. Optimize table placement, extent sizing, and fragmentation.

8. Improve index and disk space utilization.

9. Optimize background I/O activities, including logging, checkpoints,
and page cleaning.

10. Schedule backup and batch operations for off-peak hours.

11. Consider optimizing the implementation of your database
application.

12. Repeat steps 2 through 11.
Performance Basics 1-15

Performance Goals
Performance Goals
Many considerations go into establishing performance goals for the database
server and the applications that it supports. For this reason, you need to state
your performance goals and priorities clearly and consistently. Only then
you can provide realistic and consistent expectations for the performance of
applications.

The more precisely you define your performance goals, the easier it is to take
steps to accomplish them.

Consider the following questions when you establish your performance
goals:

■ What is your top priority? Is it to maximize on-line transaction
processing (OLTP) throughput, to minimize response time for
specific decision-support queries, or to achieve the best overall mix?

■ What kind of workload do you expect the database to support? What
is the mix between simple transactions, extended decision-support
queries, and other types of requests that the database server usually
handles?

■ At what point are you willing to trade transaction-processing speed
against availability or the risk of data loss for a particular
transaction?

■ Is this database server instance used in a client/server configuration?
If so, what are the networking characteristics that affect its
performance?

■ What is the maximum number of users that you expect to use the
database server?

■ What are your configuration resource limitations for memory, disk
space, and CPU?

■ Is this database server made up of multiple coservers? If so, what are
the performance characteristics of the communication interface
between coservers?

The answers to these questions can help you determine some realistic
performance goals for your resources and your mix of applications.
1-16 Performance Guide for Informix Extended Parallel Server

Performance Measurements
Performance Measurements
The following measures describe the performance of a transaction-
processing system:

■ Resource utilization

■ Throughput

■ Response time

■ Financial cost of a transaction

The following sections describe these measures.

Resource Utilization
The term resource utilization can have one of two meanings, depending on the
context in which it is used. Resource utilization can refer to either:

■ the amount of a certain resource that a particular operation requires
or uses.

The term is used in this first sense when you compare different
approaches to perform a given task. For instance, if a sort operation
requires 10 megabytes of disk space, its resource utilization is greater
than another sort operation that requires only 5 megabytes of disk
space.

■ the current load on a particular system component.

The term is used in this second sense when it refers, for instance, to
the number of CPU cycles devoted to a particular query during a spe-
cific time interval.

For additional information about the ways that different load levels affect
various system components, see “Resource Utilization and Performance” on
page 1-25.
Performance Basics 1-17

Throughput
Throughput
Throughput is a measure of the amount of data that is processed in a given
time period. For on-line transaction processing (OLTP) systems, throughput
is typically measured in transactions per second (TPS) or transactions per minute
(TPM). In any given installation, throughput depends on the following
factors, among many:

■ The specifications of the host computer

■ The processing overhead in the software

■ The layout of data on disk

■ The degree of parallelism that both hardware and software support

■ The types of transactions being processed

■ The type of data being processed

Industry-Standard Throughput Benchmarks

Industrywide organizations such as the Transaction Processing Performance
Council (TPC) provide standard benchmarks that allow reasonable
throughput comparisons across hardware configurations and database
servers. Informix is an active member in good standing of the TPC.

The TPC provides the following standardized benchmarks for measuring
throughput:

■ TPC-A

This benchmark is used to compare simple on-line transaction-pro-
cessing (OLTP) systems. It characterizes the performance of a simple
transaction-processing system, emphasizing update-intensive ser-
vices. TPC-A simulates a workload that consists of multiple user
sessions connected over a network that involves significant disk I/O
activity.

■ TPC-B

This benchmark is used to stress test peak database throughput. It
uses the same transaction load as TPC-A but removes any network-
ing and interactive operations to provide a best-case throughput
measurement.
1-18 Performance Guide for Informix Extended Parallel Server

Throughput
■ TPC-C

This benchmark is used for complex OLTP applications. It is derived
from TPC-A and uses a mix of updates, read-only transactions, batch
operations, transaction-rollback requests, resource contentions, and
other types of operations on a complex database to provide a better
representation of typical workloads.

■ TPC-D

This benchmark measures query-processing power in terms of com-
pletion times for very large queries. TPC-D is a decision-support
benchmark built around a set of typical business questions phrased
as SQL queries against large databases in the gigabyte or terabyte
range.

Because every database application has its own particular workload, you
cannot use TPC benchmarks to predict the throughput for your application.
The actual throughput that you achieve depends largely on your application.

Throughput Measurement

The best way to measure throughput for an application is to include code in
the application that logs the time stamps of transactions as they are
committed.

If your application does not provide support for measuring throughput
directly, you can obtain an estimate by tracking the number of COMMIT
WORK statements that the database server logs during a given time interval.
To obtain a listing of logical-log records written to log files, use the onlog
utility, as described in the Administrator’s Reference. Logged information also
includes insert, delete, and update operations. However, you cannot obtain
this information until it is written to a log file.

If you need more immediate feedback, you can use onstat -p, described in
“The onstat Utility” on page 2-7, to gather an estimate. Before you run
onstat -p, use the SET LOG statement to set the logging mode to unbuffered
for the databases that contain tables of interest.
Performance Basics 1-19

Response Time
Response Time
Response time is specific to an individual transaction or query. Response
time is typically the elapsed time from the moment that a user enters a
command or activates a function until the application indicates that the
command or function is complete. The response time for a typical database
server application includes the following sequence of actions. Each action
requires a certain amount of time to complete. The response time does not
include the time that it takes for the user to think of and enter a query or
request:

1. The application forwards a query to the database server.

Then the database server performs the following tasks:

a. Performs query optimization and determines if a query requires
access to data that is fragmented across coservers

b. Retrieves, adds, or updates the appropriate records and
performs disk I/O operations directly related to the query on
each participating coserver

c. Performs any background I/O operations, such as logging, page
cleaning, and so forth, that occur during the period in which the
query or transaction is still pending

d. Returns a result to the application

2. The application displays the information or issues a confirmation
and then issues a new prompt to the user.
1-20 Performance Guide for Informix Extended Parallel Server

Response Time
Figure 1-4 shows how these various intervals contribute to the overall
response time when a transaction executes on a single coserver.

Figure 1-4
Components of the Response Time for a Single Transaction Executing on a Single Coserver

DB-Access

User enters
request (not
included in
response time).

Application
forwards
request to
database
server.

Database server
optimizes query
and retrieves SPL
routines.

Database server
retrieves or adds
selected records.

SELECT * in custno
WHERE custid =

custname = X

custno custname

1234 XYZ LTD
1235 XSPORTS

Database server
modifies data
values and
sends results to
client.

Database server
performs
background I/O
(sometimes
affects response
time).

Client application
receives, processes,
and displays results
from database server.

Background

Overall response time

Database

Database server
Performance Basics 1-21

Response Time
Figure 1-5 shows how these various intervals contribute to the overall
response time on multiple coservers.

Response Time and Throughput

Response time and throughput are related. The response time for an average
transaction tends to decrease as you increase overall throughput. However,
you can decrease the response time for a specific query, at the expense of
overall throughput, by allocating a disproportionate amount of resources to
that query. Conversely, you can maintain overall throughput by restricting
the resources allocated to a large query.

Figure 1-5
Components of the Response Time for a Single Transaction Executing on Multiple Coservers

Extended Parallel Server

Client

User enters
request (not
included in
response time).

Application
forwards
request to
database
server.

Database server
optimizes query
and determines
participating
coservers.

Coservers
retrieve or add
selected records.

SELECT custname
FROM customer
WHERE custid =

custno custname

1234 XYZ LTD
1235 XSPORTS

Coservers
modify data
values and send
results to client
on connection.
coserver.

Database server
performs
background I/O
(sometimes
affects response
time).

Client application
receives, processes,
and displays results
from database server.

Overall response time

. . .Coserver 1 Coserver N

Database Database. . .Background Background
1-22 Performance Guide for Informix Extended Parallel Server

Response Time
The trade-off between throughput and response time becomes evident when
you attempt to balance the ongoing need for high transaction throughput
with an immediate need to perform a large decision-support query. The more
resources you apply to the query, the fewer you have available to process
transactions, and the larger the effect your query might have on transaction
throughput. Conversely, the fewer resources you allow the query, the longer
the query takes.

For suggestions about how to balance OLTP and DSS workloads in the
database server, refer to “Managing Resources for DSS and OLTP Applica-
tions” on page 12-11.

Response-Time Measurement

You can use one of the following methods to measure response time for a
query or application:

■ Operating-system timing commands

■ Operating-system performance monitor

■ Timing functions within your application

Operating-System Timing Commands

Operating systems usually have a utility that you can use to time a command.
You can often use this timing utility to measure the response times to SQL
statements issued by a DB-Access command file.

If you have a command file that performs a standard set of SQL statements,
you can use the time command on many systems to obtain an accurate time
for those commands. For more information about command files, refer to the
DB-Access User’s Manual. The following example shows the output of the
UNIX time command:

time commands.dba
...

4.3 real 1.5 user 1.3 sys
Performance Basics 1-23

Response Time
The time output lists the amount of elapsed time (real), the amount of time
spent performing user routines, and the amount of time spent executing
system calls. If you use the C shell, the first three columns of output from the
C shell time command show the user, system, and elapsed times, respec-
tively. In general, an application often performs poorly when the proportion
of time spent on system calls exceeds one-third to one-half of the total elapsed
time.

The time command gathers timing information about your application. You
can use this command to invoke an instance of your application, perform a
database operation, and then exit to obtain timing figures, as the following
example illustrates:

time sqlapp
(enter SQL command through sqlapp, then exit)

10.1 real 6.4 user 3.7 sys

When the application accesses data that resides on multiple coservers, use
the time command on the connection coserver. Because all coservers work
together to process a query and pass the result to the connection coserver, the
amount of elapsed time can be measured on the connection coserver.

You can use a script to run the same test repeatedly, which allows you to
obtain comparable results under different conditions. You can also obtain
estimates of average response time by dividing the elapsed time for the script
by the number of database operations that the script performs.

Operating-System Performance Monitor

Operating systems usually provide a performance monitor that you can use
to measure response time for a query or process.

Timing Functions Within the Application

Most programming languages have a library function for the time of day. If
you have access to the source code, you can insert pairs of calls to this
function to measure the elapsed time between specific actions. For example,
if the application is written in Informix ESQL/C, you can use the dtcurrent()
function to obtain the current time. You can measure response time by calling
dtcurrent() to report the time at the start of a transaction and again to report
the time when the transaction commits.
1-24 Performance Guide for Informix Extended Parallel Server

Financial Cost of a Transaction
In a system in which resources are shared among multiple processes, elapsed
time does not always correspond to execution time. Most operating systems
and C libraries contain functions that return the CPU time of a program.

Financial Cost of a Transaction
The financial cost per transaction is a measure that is usually used to compare
overall operating costs among applications, database servers, or hardware
platforms.

To measure the average financial cost per transaction

1. Calculate all the costs associated with operating an application.
These costs can include the installed price of the hardware and
software, operating costs (including salaries), and other expenses.

2. Project the total number of transactions and queries for the effective
life of an application

3. Divide the total cost by the total number of transactions.

Although this measure is useful for management planning and evaluation, it
is rarely relevant to achieving optimum database performance.

Resource Utilization and Performance
A typical OLTP application undergoes different demands throughout its
various operating cycles. Peak loads during the day, week, month, and year,
as well as the additional loads imposed by DSS queries or backup operations,
can have a significant effect on a system that is running near capacity. You see
these effects most clearly when you evaluate historical data from your own
system.

To build up a profile of historical data, make regular measurements of the
workload and performance of your system. Then you can predict peak loads
and make appropriate comparisons between performance measurements at
different points in your use cycle. This profile is important when you plan
and evaluate performance improvements.
Performance Basics 1-25

Resource Utilization
The database server provides several measurement tools, which are listed in
Chapter 2, “Performance Monitoring.” Your operating system also provides
you with tools that measure the effect of performance on system and
hardware resources, as noted under “Operating-System Timing Commands”
on page 1-23.

Utilization is the percentage of time that a component is occupied, as
compared with the percentage of time that the component is available for
use. For instance, if a CPU processes transactions for a total of 40 seconds
during a single minute, its utilization during that interval is 67 percent.

A critical resource is an overused resource or a resource whose utilization is
disproportionate in comparison with that of other similar resources. For
instance, you might consider a disk to be critical or overused when it has a
utilization of 70 percent and all other disks on the system have 30 percent.
Although 70 percent does not indicate that the disk is severely overused, you
can improve performance if you balance I/O requests better across the
coservers or the set of individual coserver disks.

How you measure resource utilization depends on the tools that your
operating system provides to report system activity and resource utilization.
When you identify a resource that seems overused, you can use database
server performance-monitoring utilities to gather data and make inferences
about the database activities that might account for the load on that
component. You can adjust your database server configuration or your
operating system to reduce those database activities or spread them among
other components. In some cases, you might need additional hardware
resources to resolve a performance bottleneck.

Resource Utilization
Whenever a system resource, such as a CPU or a particular disk, is occupied
by a transaction or query, it is unavailable for processing other requests.
Other pending requests must wait for the resources to become available
before they can complete. When a resource is too busy to keep up with all
requests, it becomes a bottleneck in the flow of activity through the system.
The higher the percentage of time that the resource is occupied, the longer
each operation must wait.
1-26 Performance Guide for Informix Extended Parallel Server

Resource Utilization
The major concern in performance tuning for a query is balance of processing
across coservers and balanced resource use. Therefore, estimate resource use
on every coserver.

You can use the following formula to estimate the service time for a specific
request based on the overall utilization of the component that services the
request. The expected service time includes the time spent both waiting for
and using the resource in question. You can think of service time as that
portion of the response time accounted for by a single component within
your computer, as the following formula shows:

S ≈ P/(1- U)

As Figure 1-6 shows, the service time for a single component increases
dramatically as the utilization increases beyond the 70 percent threshold. For
instance, if a transaction requires one second of processing by a given
component, you can expect it to take 2 seconds on a component at 50 percent
utilization and 5 seconds on a component at 80 percent utilization. When
demand for the resource reaches 90 percent, you can expect a transaction to
take 10 seconds to make its way through that component.

If the average response time for a typical transaction soars from about 2 or
3 seconds to 10 seconds or more, users are certain to notice and complain.

S is the expected service time.

P is the processing time that the operation requires once it obtains the
resource.

U is the utilization for the resource.

Figure 1-6
Service Time for a
Single Component

as a Function of
Resource Utilization

12
10
8
6
4
2
0

10 20 30 40 50 60 70 80 90 1000
Resource utilization (%)

Elapsed
time (as a
multiple of
processing
time) in
 minutes
Performance Basics 1-27

Resource Utilization
It is important to monitor any system resource that shows a utilization of
over 70 percent or any resource that exhibits the symptoms of overuse
described in the following sections.

CPU Utilization

You can use the resource utilization formula given in the previous section to
estimate the response time for a heavily loaded CPU on a coserver. However,
high CPU utilization does not necessarily mean that there is a performance
problem. The CPU performs all calculations needed to process transactions.
The more transaction-related calculations it performs within a given period,
the higher the throughput will be for that period. If throughput is high and
seems to remain proportional to CPU utilization, high CPU utilization
indicates that the computer is being used to fullest advantage.

On the other hand, if CPU utilization is high but transaction throughput does
not keep pace, the CPU is either processing transactions inefficiently, or it is
engaged in activity not directly related to transaction processing. If possible,
eliminate the following extraneous activities:

■ Large queries that might be scheduled at an off-peak time

■ Unrelated application programs that might be performed on another
computer

If the response time for transactions increases to such an extent that delays
become unacceptable, the processor might be swamped; the transaction load
might be too high for it to manage. Slow response time can also indicate that
the CPU is processing transactions inefficiently or that CPU cycles are being
diverted to internal housekeeping tasks, such as memory management or
other activities.

When CPU utilization is high, a detailed analysis of the database server activ-
ities can reveal any sources of transaction processing inefficiency that might
result from improper configuration. For information about how to analyze
database server activity, refer to “Monitoring Database Server Resources” on
page 2-9.
1-28 Performance Guide for Informix Extended Parallel Server

Resource Utilization
Memory Utilization

The formula to estimate memory utilization on performance is different from
the formula for other system resources because the database server does not
manage memory as a single resource component such as a CPU or disk.

Memory is managed as a collection of small components called pages. The
size of a typical page in memory can range from 1 to 8 kilobytes, depending
on your operating system. A computer with 64 megabytes of memory and a
page size of 2 kilobytes contains approximately 32,000 pages.

For basic information about memory-management issues and the memory-
management utility for your operating system, refer to the operating-system
manuals.

The memory-management utility of the operating system allocates memory
to a process in page-sized units. Many operating systems provide infor-
mation about paging activity that includes the number of page scans
performed, the number of pages removed from memory and written to the
swap space on disk (paged out), and the number of pages brought in from the
swap space (paged in). Paging out is the critical factor because it occurs only
when the memory manager cannot find free pages. A high rate of page scans
is an early indication that memory utilization is becoming a bottleneck.

As demand for memory and the resulting paging activity increases, this
activity increases until the CPU is almost completely occupied with paging
calculations. A system in this condition is said to be thrashing. When a
computer is thrashing, all useful work stops.

Paging-in activity does not accurately reflect the load on memory because
pages for terminated processes are freed in place and reused. A high rate of
paging in can result from a high rate of process turnover without significant
performance effect.
Performance Basics 1-29

Resource Utilization
Use the following formula to calculate the expected paging delay for a given
CPU utilization level and paging rate:

P ≈ (C/(1- U)) * R * T

Paging and CPU utilization are related. As paging increases, CPU utilization
also increases, and these increases are compounded. If a paging rate of 10 per
second accounts for 5 percent of CPU utilization, increasing the paging rate to
20 per second might increase CPU utilization by an additional 5 percent.
Further increases in paging lead to even sharper increases in CPU utilization,
until the expected service time for CPU requests becomes completely
unacceptable.

Disk Utilization

Because each disk acts as a single resource, you can use the basic formula to
estimate the service time:

S ≈ P/(1- U)

However, because transfer rates vary among disks, most operating systems
do not report disk utilization directly. Instead, they report the number of data
transfers per second (in operating-system memory-page-size units.) To
compare the load on disks with similar access times, simply compare the
average number of transfers per second.

If you know the manufacturer-provided access time for a given disk, you can
calculate utilization for the disk by multiplying the average number of
transfers per second by the access time. Depending on how the data is
positioned on the disk, access times might vary from the manufacturer’s
rating. To account for this variability, Informix recommends that you add 20
percent to the access-time specification of the manufacturer.

P is the paging delay.

C is the CPU service time for a transaction.

U is the CPU utilization (expressed as a decimal).

R is the paging-out rate.

T is the service time for the swap device.
1-30 Performance Guide for Informix Extended Parallel Server

Resource Utilization
The following example shows how to calculate the utilization for a disk with
a 30-millisecond access time and an average of 10 transfer requests per
second:

U =(A * 1.2) * X
=(.03 * 1.2) * 10
=.36

Use the utilization to estimate the processing time at the disk for a transaction
that requires a given number of disk transfers. To calculate the processing
time at the disk, multiply the number of disk transfers by the average access
time. Include an extra 20 percent to account for access-time variability:

P = D (A * 1.2)

For example, you can calculate the processing time for a transaction that
requires 20 disk transfers from a 30-millisecond disk as follows:

P = 20 (.03 * 1.2)
= 20 * .036
= .72

Use the processing time and utilization values that you calculated to estimate
the expected service time for I/O at the particular disk, as the following
example shows:

S ≈ P/(1- U)
= .72 / (1 - .36)
= .72 / .64
= 1.13

U is the resource utilization (in this case, a disk).

A is the access time that the manufacturer lists.

X is the number of transfers per second that your operating system
reports.

P is the processing time at the disk.

D is the number of disk transfers.

A is the access time that the manufacturer lists.
Performance Basics 1-31

Factors That Affect Resource Use
Factors That Affect Resource Use
Many factors affect how resources are used. This manual discusses some of
these factors, but others are beyond its scope. Consider factors in these lists
as you identify performance problems and adjust your system.

This manual discusses the following resource-use factors:

■ Hardware resources

Hardware resources include the CPU, physical memory, and disk I/O
subsystems, as well as the hardware interconnects between
coservers.

Refer to “Resource Utilization and Performance,” which begins on
page 1-25.

For additional information, refer to your operating-system and
hardware-configuration manuals.

■ The database server configuration

Characteristics of your database server instance (such as number of
coservers, size of resident and virtual shared-memory portions on
each coserver, number of CPU VPs on each coserver, and so forth)
play an important role in determining the capacity and performance
of your applications.

For more information on how database server configuration param-
eters affect performance, refer to Chapter 3, “Effect of Configuration
on CPU Use,” Chapter 4, “Effect of Configuration on Memory Use,”
and Chapter 5, “Effect of Configuration on I/O.”

■ Table types, table placement, and temporary dbspaces

The table types that you use and the amount of space you allocate for
temporary tables and sort space can affect the query processing time.

For more information on table placement and disk space, refer to
Chapter 6, “Table Performance.”

■ Table fragmentation

Fragmenting tables across dbspaces and coservers can affect the
speed at which the database server can locate data pages and transfer
them to memory.

For more information about fragmentation, refer to Chapter 9,
“Fragmentation Guidelines.”
1-32 Performance Guide for Informix Extended Parallel Server

Factors That Affect Resource Use
■ Space organization and extent sizing

Fragmentation strategy and the size and placement of extents can
affect the ability of the database server to scan a table rapidly. Avoid
interleaved extents and allocate extents appropriately to accommo-
date growth of a table and prevent performance problems.

Extent-related problems occur primarily with OLTP applications that
insert and delete table rows.

For more information, refer to “Managing Extents” on page 6-21 and
Chapter 9, “Fragmentation Guidelines.”

■ Query efficiency

Proper query construction and index use can decrease the load that
any one application or user imposes. Large decision-support queries
can take advantage of parallel execution to reduce the response time.

For more information on the factors that affect query execution, refer
to Chapter 10, “Queries and the Query Optimizer.” For more infor-
mation on how to improve query performance, refer to Chapter 13,
“Improving Query and Transaction Performance.” For more infor-
mation on parallel execution of queries, refer to Chapter 11, “Parallel
Database Query Guidelines.”

■ Scheduling background I/O activities

Logging, checkpoints, page cleaning, and other operations (such as
backups) can impose constant overhead and large temporary loads
on the system. Schedule archive and batch operations for off-peak
times whenever possible.

For more information about the effect of background I/O activities,
refer to Chapter 5, “Effect of Configuration on I/O.”
Performance Basics 1-33

Factors That Affect Resource Use
This manual does not discuss the following resource-use factors:

■ Operating-system configuration

The database server depends on the operating system to provide
low-level access to devices, process scheduling, interprocess com-
munication, and other vital services.

Your operating-system configuration directly affects how well the
database server performs. The operating-system kernel takes up a
significant amount of physical memory that the database server or
other applications cannot use. However, you must reserve adequate
kernel resources for use by the database server.

■ Network configuration and traffic

Applications that depend on a network for communication with the
database server and systems that rely on data replication to maintain
high availability are subject to the performance effects and con-
straints that the network imposes. Data transfers over a network are
usually slower than data transfers from disk. Network delays can
have a significant effect on the performance of the database server
and application programs that run on the host computer.

■ Application-code efficiency

Application programs introduce their own load on the operating sys-
tem, the network, and the database server. These programs can
introduce performance problems if they make poor use of system
resources, generate undue network traffic, or create unnecessary
contention in the database server. Application developers must
make proper use of cursors and locking levels to ensure good data-
base server performance.
1-34 Performance Guide for Informix Extended Parallel Server

Maintenance of Good Performance
Maintenance of Good Performance
Performance is affected in some way by all system users: the database server
administrator, the database administrator, the application designers, and the
client application users.

The database server administrator usually coordinates the activities of all
users to ensure that system performance meets overall expectations. For
example, the operating-system administrator might need to reconfigure the
operating system to increase the amount of shared memory. Bringing down
the operating system to install the new configuration requires bringing the
database server down. The database server administrator must schedule this
downtime and notify all affected users when the system will be unavailable.

The database server administrator should:

■ be aware of all performance-related activities that occur.

■ educate users about the importance of performance, how perfor-
mance-related activities affect them, and how they can assist in
achieving and maintaining optimal performance.

The database administrator should pay attention to:

■ how tables and queries affect the overall performance of the database
server.

■ how the distribution of data across coservers and disks affects
performance.

Application developers should:

■ design applications carefully to use the concurrency and sorting
facilities that the database server provides, rather than attempt to
implement similar facilities in the application.

■ keep the scope and duration of locks to the minimum to avoid
contention for database resources.

■ include routines within applications that, when temporarily enabled
at runtime, allow the database server administrator to monitor
response times and transaction throughput.
Performance Basics 1-35

Topics Beyond the Scope of This Manual
Database users should:

■ pay attention to performance and report problems to the database
server administrator promptly.

■ be courteous when they schedule large, decision-support queries
and request as few resources as possible to get the work done.

Topics Beyond the Scope of This Manual
Important: Although broad performance considerations also include reliability and
data availability as well as improved response time and efficient use of system
resources, this manual discusses only response time and system resource use. For
discussions of improved database server reliability and data availability, see infor-
mation about failover, mirroring, high availability, and backup and restore in the
“Administrator’s Guide” and the “Backup and Restore Guide.”

Attempts to balance the workload often produce a succession of moderate
performance improvements. Sometimes the improvements are dramatic;
however, in some situations a load-balancing approach is not enough. The
following types of situations might require measures beyond the scope of this
manual:

■ Application programs that require modification to make better use of
database server or operating-system resources

■ Applications that interact in ways that impair performance

■ A host computer that might be subject to conflicting uses

■ A host computer with inadequate capacity for the evolving
workload

■ Network performance problems that affect client/server or other
applications

No amount of database tuning can correct these situations. Nevertheless,
they are easier to identify and resolve when the database server is configured
properly.
1-36 Performance Guide for Informix Extended Parallel Server

2
Chapter
Performance Monitoring
In This Chapter . 2-3

Evaluating Your Current Configuration. 2-3

Creating a Performance History 2-4
Importance of a Performance History 2-4
Tools That Create a Performance History 2-5

Operating-System Tools 2-5
Command-Line Utilities 2-6

Monitoring Database Server Resources 2-9
Monitoring Sessions 2-11
Monitoring Memory Use 2-12
Monitoring Data Distribution and Table Fragmentation Use . . . 2-13

Monitoring Data Distribution over Fragments 2-13
Balancing I/O Requests over Fragments 2-13
Querying System Catalog Tables for Table-Fragment

Information 2-14
Monitoring Chunks 2-14

Monitoring Data Flow Between Coservers 2-15

Monitoring Sessions and Queries 2-16
Monitoring Sessions 2-16
Monitoring Queries 2-16

Using SET EXPLAIN 2-17
Using onstat -g Options 2-17

Performance Problems Not Related to the Database Server 2-18

2-2 Perf
ormance Guide for Informix Extended Parallel Server

In This Chapter
This chapter explains the performance monitoring tools that you can use and
how to interpret the results of performance monitoring. The descriptions of
the tools can help you decide which tools to use for the following purposes:

■ To create a performance history

■ To monitor database server resources

■ To monitor sessions and queries

The kinds of data that you need to collect depend on the kinds of applications
you run on your system. The causes of performance problems on systems
used for on-line transaction processing applications (OLTP) are different from
the causes of problems on systems that are used primarily for DSS query
applications. Systems with mixed use present a performance-tuning
challenge and require a sophisticated analysis of performance problems.

Evaluating Your Current Configuration
Before you adjust your database server configuration, you should evaluate
the performance of its current configuration.

If database applications perform well enough to satisfy user expectations, do
not make frequent adjustments, even if those adjustments might produce a
theoretical improvement in performance. Changing the database server
configuration might interrupt users’ work. Altering some features requires
you to bring down the database server. Making configuration adjustments
might degrade performance or cause other negative side effects.
Performance Monitoring 2-3

Creating a Performance History
As long as users are reasonably satisfied, take a gradual approach when you
reconfigure the database server. If possible, evaluate configuration changes
in a test instance of the database server before you change the configuration
of your production system.

The utilities and methods that are described in this chapter can help you
create a performance history of your current database server configuration.
Use the information in the performance history to identify the performance
bottlenecks in your system.

Creating a Performance History
Begin scheduled monitoring of resource use as soon as you set up your
database server and begin to run applications on it. To accumulate data for
performance analysis, use operating-system and command-line utilities in
scripts or batch files and write the output to log files. For information about
using command-line utilities, see “Command-Line Utilities” on page 2-6 and
“Operating-System Tools” on page 2-5.

Importance of a Performance History
To build up a performance history and profile of your system, take frequent
regular snapshots of resource-utilization information:

■ Chart the CPU utilization and paging-out rate for each coserver, and
the I/O transfer rates for the disks on your system to identify peak-
use levels, peak-use intervals, and heavily loaded coserver
components.

■ Monitor fragment use to determine whether your fragmentation
scheme is correct.

■ Monitor other resource use as appropriate for your database server
configuration and the applications that run on it.
2-4 Performance Guide for Informix Extended Parallel Server

Tools That Create a Performance History
If you have history information on hand, you can begin to track down the
cause of problems as soon as users report slow response or inadequate
throughput. If history information is not available, you must start tracking
performance after a problem arises, and you cannot tell when and how the
problem began. Trying to identify problems after the fact significantly delays
resolution of a performance problem.

Choose tools from those described in the following sections, and create jobs
that build up a history of disk, memory, I/O, and other database server
resource use. To help you decide which tools to use to create a performance
history, the output of each tool is described briefly.

Tools That Create a Performance History
When you monitor database server performance, you use tools from the host
operating system and run command-line utilities at regular intervals from
scripts or batch files. You can also use graphical interface tools to monitor
critical aspects of performance as queries and transactions are performed.

Operating-System Tools

The database server relies on the operating system of the host computer to
provide access to system resources such as the CPU, memory, and various
unbuffered disk I/O interfaces and files. Each operating system has its own
set of utilities for reporting how system resources are used. Different imple-
mentations of some operating systems have monitoring utilities with the
same name but different options and informational outputs.
Performance Monitoring 2-5

Tools That Create a Performance History
You might be able to use some of the following typical UNIX operating-
system utilities to monitor resources.

For details on how to monitor your operating-system resources, consult the
reference manual or your system administration guide.

To capture the status of system resources at regular intervals, use scheduling
tools that are available with your host operating system (for example, cron)
as part of your performance monitoring system.

Your operating system might also provide graphical monitoring tools that
you can use to monitor resources dynamically across coservers. For example,
3dmon displays a variety of resource statistics in a three-dimensional graph.

Command-Line Utilities

Informix database servers provide command-line utility programs to
monitor performance. In Extended Parallel Server, you can use these utility
programs as arguments to the xctl utility to collect performance data from all
coservers in the database server, or from specified coservers, and display it
in a single output report. You can also run the command-line utilities on
an individual coserver to retrieve performance information for that
coserver only.

UNIX Utility Description

vmstat Displays virtual-memory statistics.

iostat Displays I/O utilization statistics. This utility is useful for
measuring and comparing disk activity. All disks should be
equally used.

sar Displays a variety of resource statistics.

ps Displays active process information, including memory
assigned to each process. This utility is useful for finding
runaway or problem processes that have accumulated a large
amount of CPU time or a large amount of memory.
2-6 Performance Guide for Informix Extended Parallel Server

Tools That Create a Performance History
To capture information about configuration and performance across all
coservers, use the xctl utility with the onstat options described in
“Monitoring Database Server Resources” on page 2-9. You can also use xctl
with onlog to examine the logical logs, as the Administrator’s Reference
describes.

You can also use SQL SELECT statements to query the system-monitoring
interface (SMI) from within your application.

The SMI tables are a collection of tables and pseudo-tables in the sysmaster
database that contain dynamically updated information about the operation
of the database server. The tables are constructed in memory but are not
recorded on disk. To query SMI tables at regular intervals, use cron jobs and
SQL scripts with DB-Access. For information about SQL scripts, refer to the
DB-Access User’s Manual.

Tip: The SMI tables are different from the system catalog tables. System catalog
tables contain permanently stored and updated information about each database and
its tables. For information about SMI tables, refer to the “Administrator’s Reference.”
For information about system catalog tables, refer to the “Informix Guide to SQL:
Reference.”

The xctl Utility

Use xctl (execute utilities across coservers) to capture performance-related
information for all coservers in your database server.

Use xctl with onstat and its arguments to display information about the
current status and activities of the database server on all or specified
coservers. To display a complete list of the onstat options, use onstat - -. Use
xctl with onlog to display all or part of the logical log or to check the status
of the logical logs.

The onstat Utility

You can run onstat either as an argument to xctl or alone from the command
line on the coserver where you are logged in. When you run onstat without
xctl, you see information about the local coserver only.

Enter xctl onstat without any arguments to see the current status of the
database server, how long it has been running, a list of user threads, and a
summary of current activity.
Performance Monitoring 2-7

Tools That Create a Performance History
Tip: Profile information displayed by onstat commands, such as onstat -p,
accumulates from the time the database server was initialized. To clear performance
profile statistics so that you can create a new profile, run xctl onstat -z. If you use
xctl onstat -z to reset statistics for a performance history or appraisal, make sure
that other users do not also enter the command at different intervals.

Use the following xctl onstat options to display general performance-related
information.

For more information about options that provide performance-related
information, see “Monitoring Database Server Resources” on page 2-9.
For detailed information about these command-line utilities, refer to the
Administrator’s Reference.

Option Description

xctl onstat -p Displays a performance profile that includes the number
of reads and writes, the number of different ISAM calls of
all categories, the number of times that a resource was
requested but was not available, and other miscellaneous
information.

xctl onstat -x Displays information about transactions, including the
thread identifier of the user who owns the transaction.

xctl onstat -u Displays a user activity profile that provides information
about user threads, including the thread owner’s session
ID and login name.

xctl onstat -R Displays each LRU queue number and type and the total
number of queued and dirty buffers.

For the performance implications of LRU queue statistics,
see “LRUS, LRU_MAX_DIRTY, and LRU_MIN_DIRTY”
on page 5-28.

xctl onstat -F Displays page-cleaning statistics that include the number
of writes of each type that flushes pages to disk.

xctl onstat -g Requires an additional argument that specifies the infor-
mation to be displayed, such as xctl onstat -g mem to
monitor memory on all coservers.
2-8 Performance Guide for Informix Extended Parallel Server

Monitoring Database Server Resources
The onlog Utility

In addition to the performance history that you build up, you can use the
onlog utility to display contents of logical-log files. Use xctl with onlog to
display logical-log contents on all coservers.

Logical-log records might help you identify a problem transaction or assess
transaction activity that corresponds to a period of high utilization, as
indicated by your performance history. Records in the logical log might help
you identify performance problems that are associated with specific users,
tables, or transactions.

The onlog utility displays all or selected portions of the logical log. This
command can display information from selected log files, the entire logical
log, or an archive tape of previous log files. The onlog utility displays all or
selected portions of the logical log. This command can display information
from selected log files, the entire logical log, or an archive tape of previous log
files.

To check the status of logical-log files, use onstat -l.

Warning: Use onlog to read logical-log files from backup tapes only. While you use
onlog to read logical-log files on disk before they have been backed up, the database
server locks the log files and stops database activity for all sessions.

Monitoring Database Server Resources
Monitor specific database server resources to identify performance bottle-
necks and potential trouble spots, and improve resource use and response
time. You can monitor threads, the network, and virtual processors.

One of the most useful commands for monitoring system resources is
onstat -g and its many options. You can run onstat -g on individual coservers
or add it as an argument to the xctl command to display information about
all coservers. “Using Command-Line Utilities to Monitor Queries” on
page 12-30 and “Monitoring Fragmentation” on page 9-65 contain many
onstat -g examples.
Performance Monitoring 2-9

Monitoring Database Server Resources
Use the following xctl onstat -g options to monitor threads.

Use the following xctl onstat -g options to monitor the network.

onstat -g Option Description

xctl onstat -g act Lists active threads.

xctl onstat -g ath Lists all threads.

The sqlexec threads represent portions of client sessions; the
rstcb value corresponds to the user field that the onstat -u
command displays.

For more information and sample output, see “Monitoring
User Threads and Transactions” on page 12-43.

xctl onstat -g rea Lists ready threads.

xctl onstat -g sle Lists all sleeping threads.

xctl onstat -g sts Lists maximum and current stack use per thread.

xctl onstat -g tpf
tid

Displays a thread profile for tid.

If you enter a tid of 0, this argument displays profiles for all
threads.

onstat -g Option Description

xctl onstat -g ntd Lists network statistics by service.

xctl onstat -g ntt Lists network user times.

xctl onstat -g ntu Lists network user statistics.

xctl onstat -g qst Lists queue statistics.
2-10 Performance Guide for Informix Extended Parallel Server

Monitoring Sessions
Use the following xctl onstat -g options to monitor virtual processors.

Monitoring Sessions
Use the following xctl onstat -g options to monitor sessions.

For examples and discussions of session-monitoring command-line utilities,
see “Using Command-Line Utilities to Monitor Queries” on page 12-30.

onstat -g Option Description

xctl onstat -g sch Lists the number of semaphore operations, spins, and busy
waits for each VP.

xctl onstat -g spi Lists longspins, which are spin locks that virtual processors
have spun more than 10,000 times in order to acquire a lock.

To reduce longspins, reduce the number of virtual processors
or reduce the load on the computer. On some platforms, you
can use the no-age or processor affinity features.

xctl onstat -g wst Displays wait statistics.

xctl onstat -g glo Lists global multithreading information.

This listing includes CPU-use information about virtual
processors, the total number of sessions, and other
multithreading global counters.

onstat -g Option Description

xctl onstat -g ses Lists summaries of all sessions.

xctl onstat -g ses
session id

Lists session information by session ID.

If you omit session id, this option displays one-line summaries
of all active sessions.

xctl onstat -g sql
session id

Lists SQL information by session.

If you omit session id, this option displays summaries of all
sessions.

xctl onstat -g stk
thid

Lists stack information by thread.

The thid variable is the value in the tid field that appears in the
output of the onstat -g ses commands.
Performance Monitoring 2-11

Monitoring Memory Use
Monitoring Memory Use
Use the following arguments to xctl onstat -g to display memory-utilization
information. For overall memory information on coservers, omit table name,
pool name, or session id from the commands that permit those optional
parameters.

onstat -g Option Description

xctl onstat -g ffr
pool name | session
id

Lists free fragments for a pool of shared memory.

xctl onstat -g dic
table name

Displays one line of information for each table that is cached
in the shared-memory dictionary.

If you enter a specific table name as a parameter, this option
displays internal SQL information about that table, including
constraints and index descriptors and fragments.

xctl onstat -g iob Displays large private buffer use by I/O virtual-processor
class.

xctl onstat -g mem
pool name |
session id

Displays memory statistics for the pools associated with a
session.

If you do not provide an argument, this option displays pool
information for all sessions.

xctl onstat -g nsc
client id

Displays shared-memory status by client ID.

If you omit client id, this option displays all client status areas.

xctl onstat -g nsd Displays network shared-memory data for poll threads.

xctl onstat -g nss
session id

Displays network shared-memory status by session ID.

If you omit session id, this option displays all session status
areas.

xctl onstat -g seg Displays shared-memory segment statistics.

This option shows the number and size of all attached
segments.

xctl onstat -g ufr
pool name |
session id

Displays allocated pool fragments by user or session.
2-12 Performance Guide for Informix Extended Parallel Server

Monitoring Data Distribution and Table Fragmentation Use
Monitoring Data Distribution and Table Fragmentation Use
Extended Parallel Server uses fragmentation of data across coservers to
achieve full parallel processing. You can monitor the following aspects of
fragmentation:

■ Data distribution over fragments

■ I/O request balancing over fragments

■ Status of chunks that contain fragments

Monitoring Data Distribution over Fragments

The database server administrator can monitor data distribution over table
fragments. Because the unit of disk storage for a fragment is a tblspace, you
monitor tblspaces to monitor fragmentation disk use.

If the goal of fragmentation is improved OLTP response time, data should
be distributed evenly over the fragments. To determine an appropriate
fragmentation method and scheme, examine the SQL statements that
applications use to access the data.

Balancing I/O Requests over Fragments

The database server administrator must monitor I/O request queues for data
in table fragments. When I/O queues are unbalanced and some fragments are
used more than others, the database server administrator should work with
the database administrator to tune the fragmentation strategy.

Use the onutil CHECK SPACE command to monitor chunks and extents. The
onutil CHECK SPACE command provides the following information:

■ Chunk size

■ Number of free pages

■ Tables within the chunk

This information allows you to monitor chunk I/O activity and track the disk
space that chunks use.
Performance Monitoring 2-13

Monitoring Data Distribution and Table Fragmentation Use
Querying System Catalog Tables for Table-Fragment Information

Query the sysfragments and systables system catalog tables to get infor-
mation about all tblspaces that hold a fragment and the table to which each
fragment belongs.

After you obtain the names of tables that have fragments stored in specific
chunks, keep the information for later reference. If you alter tables, add
tables, or otherwise change the physical layout of the database, retrieve the
table information again.

For more information, refer to “Monitoring Fragmentation” on page 9-65.

Monitoring Chunks

Use the following command-line options to monitor chunks. For any of these
commands, you can use the xctl -c n option to monitor chunks on a single
specified coserver displays.

onstat -g Option Description

xctl onstat -d Displays the address of the chunk, its number and
associated dbspace number, offset, size in pages, number of
free pages, number of blobpages, and the pathname of the
physical device.

xctl onstat -D Displays the same information as xctl onstat -d but
replaces the free page information with columns that list
the number of pages read from and written to the chunk.

xctl onstat -g iof Displays the number of reads from and writes to each
chunk.

xctl -c n onstat -g ppf Displays the number of read and write calls for each
fragment on the coserver that is specified after the -c
option.
2-14 Performance Guide for Informix Extended Parallel Server

Monitoring Data Flow Between Coservers
Monitoring Data Flow Between Coservers
To make sure that the database sever is properly balanced across coservers,
you can monitor statistics that indicate how packets are transmitted across
the high-speed interconnect and how often the database server checks the
interconnect but has no work to transmit.

Use the following command-line options to monitor the high-speed inter-
connect. For sample output and detailed information about these data-flow
monitoring commands, see “Monitoring Data Flow Between Coservers” on
page 12-46.

onstat -g Option Description

xctl onstat -g dfm Displays data-flow manager information, such as sender,
receiver, and global-packet information

xctl onstat -g xmf Displays messaging information, such as poll, memory
information, end-point, and overall cycle statistics
Performance Monitoring 2-15

Monitoring Sessions and Queries
Monitoring Sessions and Queries
One of the most important overall factors in efficient application planning is
avoiding database server imbalance, or skew.

To analyze database server efficiency, use the database server utility
programs that are listed in the following sections. You can also use UNIX
operating-system utility programs such as sar and 3dmon to monitor disk
I/O wait times, service times, and queue lengths. The operating-system
utilities available depend on your platform.

Monitoring Sessions
Some xctl onstat commands are particularly useful for monitoring sessions.

Use the xctl onstat -t option to display the following information about active
tblspaces:

■ The number of open tblspaces

■ Each active tblspace

■ The number of user threads currently accessing the tblspace

■ Whether the tblspace is busy or dirty

■ The number of allocated and used pages in the tblspace

■ The number of noncontiguous extents allocated

For information about how to associate the tblspace information with the
table name, refer to the instructions in “xctl -c n onstat -g ppf” on page 9-70.

Monitoring Queries
You can monitor DSS queries with the following tools:

■ The SQL statement SET EXPLAIN

■ onstat -g options
2-16 Performance Guide for Informix Extended Parallel Server

Monitoring Queries
Using SET EXPLAIN

Use SET EXPLAIN to produce the query plan that the optimizer creates for an
individual query. For more information, refer to “Using SET EXPLAIN to
Analyze Query Execution” on page 12-24.

Using onstat -g Options

Use the following onstat-g options to monitor DSS application sessions
and queries.

For more information about these monitoring commands, including output
samples, see “Using Command-Line Utilities to Monitor Queries” on
page 12-30.

In addition, xctl onstat -t, described on page 2-16, and xctl onstat -d,
described on page 2-14, can provide information about DSS query sessions.
Interconnect and related statistics appear in the output of xctl onstat -g dfm
and xctl onstat -g xmf, which are listed in “Monitoring Data Flow Between
Coservers” on page 2-15.

onstat -g Option Description

xctl onstat -g xmp Displays active query segments and SQL operators.

onstat -g rgm Displays RGM information.

Do not use the xctl utility with the onstat -g rgm option.
You can execute onstat -g rgm only on coserver 1.

xctl onstat -g xqp
qryid

Displays query plans about a specified query.

xctl onstat -g xqs
qryid

Displays statistics for SQL operators.

xctl onstat -u Displays user threads and transactions on all coservers.

xctl onstat -g
session id

Displays the resources allocated for and used by a session.

xctl onstat -g sql Displays SQL information by session.
Performance Monitoring 2-17

Performance Problems Not Related to the Database Server
Performance Problems Not Related to the Database
Server
Not all performance problems are database server problems. This section
describes some performance problems related to other factors in your
system:

■ When performance problems are associated with backup operations,
examine the transfer rates for tape drives. You might decide to
change table layout or fragmentation to reduce the effect of backup
operations. For information about disk layout and table fragmen-
tation, refer to Chapter 6, “Table Performance,” and Chapter 9,
“Fragmentation Guidelines.”

■ For client/server configurations, consider network performance and
availability. Evaluating network performance is beyond the scope of
this manual. For information on how to monitor network activity
and improve network availability, see your network administrator or
refer to the documentation for your network system.

■ The coservers that make up the database server communicate
through a high-speed interconnect in massively parallel processor
(MPP) or loosely clustered systems. The interconnect is a potential
source of performance problems. For information on how to monitor
communication between the coservers, refer to “Monitoring Data
Flow Between Coservers” on page 2-15.

Routine system-maintenance jobs might conflict with database server use of
the system. If system maintenance jobs are scheduled at regular times and
database server performance declines at those times, you might suspect such
a conflict.
2-18 Performance Guide for Informix Extended Parallel Server

3
Chapter
Effect of Configuration on CPU
Use
In This Chapter . 3-3

UNIX Parameters That Affect CPU Use 3-3
UNIX Semaphore Parameters 3-4
UNIX File-Descriptor Parameters 3-6
UNIX Memory-Configuration Parameters 3-6

Configuration Parameters and Environment Variables That Affect
CPU Use . 3-7
NUMCPUVPS, MULTIPROCESSOR, and SINGLE_CPU_VP . . . 3-8

NUMCPUVPS 3-9
MULTIPROCESSOR. 3-9
SINGLE_CPU_VP 3-10

NOAGE . 3-10
AFF_NPROCS and AFF_SPROC 3-10
NUMAIOVPS 3-12
NUMFIFOVPS 3-13
PSORT_NPROCS 3-14
NETTYPE. 3-14

Virtual Processors and CPU Use 3-17

3-2 Perf
ormance Guide for Informix Extended Parallel Server

In This Chapter
This chapter contains a summary of the operating-system and database
server configuration parameters and environment variables that affect CPU
use.

It describes the parameters that most directly affect CPU use and explains
how to set them. Where possible, this chapter also provides suggested
settings or considerations for different types of workloads.

For details about the syntax of the database configuration parameters, refer
to the Administrator’s Reference.

UNIX Parameters That Affect CPU Use
As described in “Documentation Notes, Release Notes, Machine Notes” on
page 12, your database server distribution includes a computer-specific file
that contains recommended values for UNIX configuration parameters.
Compare the values in the machine notes file with your current operating-
system configuration.

The following UNIX parameters affect CPU use:

■ Semaphore parameters

■ Parameters that set the maximum number of open file descriptors

■ Memory configuration parameters
Effect of Configuration on CPU Use 3-3

UNIX Semaphore Parameters
UNIX Semaphore Parameters
Semaphores are kernel resources with a typical size of 1 byte each. Allocate
semaphores for the database server in addition to any that you allocate for
other software packages.

On each coserver, allocate 1 UNIX semaphore for each virtual processor (VP),
1 for each user who connects to the database server through shared memory,
6 for database server utilities, and 16 for other purposes.

Tip: For best performance, Informix recommends that you allocate enough
semaphores for twice as many ipcshm connections as you expect. Informix also
recommends that you use the NETTYPE parameter to configure the database server
poll threads for this doubled number of connections. For information on configuring
poll threads, refer to “NETTYPE” on page 3-14. For a description of poll threads,
refer to the “Administrator’s Guide.”

Because some database server utilities use shared-memory connections, you
configure a minimum of two semaphore sets for each coserver: one for the
initial set of VPs and one for the shared-memory connections that database
server utilities use. The SEMMNI operating-system configuration parameter
usually specifies the number of semaphore sets that are allocated in the
operating system. For information on how to set semaphore-related param-
eters, refer to the configuration instructions for your operating system.

The SEMMSL operating-system configuration parameter usually specifies the
maximum number of semaphores per set. Set this parameter to at least 100 .
3-4 Performance Guide for Informix Extended Parallel Server

UNIX Semaphore Parameters
Some operating systems require that you configure a maximum total number
of semaphores across all sets, which the SEMMNS operating-system configu-
ration parameter typically provides. Use the following formula to calculate
the total semaphores required for each instance of the database server:

SEMMNS = init_vps + added_vps + (2 * shmem_users) + concurrent_utils

If you use software packages that require semaphores in addition to those
that the database server needs, add these semaphores to the total calculated
by the previous formula when you set the SEMMNI configuration parameter.
Set the SEMMSL configuration parameter for the largest number of
semaphores per set that any of your software packages require. For systems
that require the SEMMNS configuration parameter, multiply SEMMNI by the
value of SEMMSL to calculate an acceptable value.

init_vps is the number of VPs that are initialized with the database
server. This number includes CPU, PIO, LIO, AIO, FIF, SHM,
TLI, SOC, and ADM VPs. (For a description of these VPs,
see the Administrator’s Guide.) The minimum value for this
term is 15 .

added_vps is the number of VPs that you intend to add dynamically.

shmem_users is the number of shared-memory connections that you
allow for this instance of the database server.

concurrent_utils is the number of concurrent database server utilities that
can connect to this instance. Informix suggests that you
allow for a minimum of six utility connections: two for
onbar and four for other utilities such as onstat and
onutil.
Effect of Configuration on CPU Use 3-5

UNIX File-Descriptor Parameters
UNIX File-Descriptor Parameters
Some operating systems require you to specify a limit on the number of file
descriptors that a process can have open at any one time. You specify this
limit with an operating-system configuration parameter, usually NOFILE,
NOFILES, NFILE, or NFILES. The number of open-file descriptors that each
instance of the database server needs is determined by the number of chunks
in the database, the number of VPs that the database server runs, and the
number of network connections that the database server instance must
support. Network connections include all except those specified as the
ipcshm connection type in either the sqlhosts file or a NETTYPE database
server configuration entry.

Use the following formula to calculate the number of file descriptors that
your instance of the database server requires:

NFILES = (chunks * NUMAIOVPS) + NUMCPUVPS + net_connections

Each open file descriptor is about the same length as an integer within the
kernel. Allocating extra file descriptors is an inexpensive way to allow for
growth in the number of chunks or connections on your system.

UNIX Memory-Configuration Parameters
The configuration of memory in the operating system can affect other
resources, including CPU and I/O. Insufficient physical memory for the
overall system load can lead to thrashing, which is described in Chapter 4,
“Effect of Configuration on Memory Use.” Insufficient memory for the
database server can result in excessive buffer-management activity. For more
information on configuring memory, refer to “Configuring Shared Memory”
on page 4-8.

chunks is the number of chunks to be configured.

net_connections is the number of network connections (other than ipcshm)
that your instance of the database server supports.
3-6 Performance Guide for Informix Extended Parallel Server

Configuration Parameters and Environment Variables That Affect CPU Use
Configuration Parameters and Environment
Variables That Affect CPU Use
Several database server configuration parameters and environment variables
affect CPU use. Your hardware configuration determines some parameter
settings; others depend on the work load of your database server. The
following sections discuss each parameter and environment variable that
affects CPU use.

Some configuration parameters are set differently for uniprocessor and
multiprocessor nodes. For uniprocessor coserver nodes, set the following
configuration parameters.

For symmetric multiprocessor (SMP) coserver nodes, refer to your machine
notes for appropriate settings for these parameters as well as for the NOAGE
parameter. In some SMP systems, you can also set the following configuration
parameters to bind processes to specific CPUs:

■ AFF_NPROCS

■ AFF_SPROC

Parameter Value

MULTIPROCESSOR 0

NUMAIOVPS 2

NUMCPUVPS 1

SINGLE_CPU_VP 1
Effect of Configuration on CPU Use 3-7

NUMCPUVPS, MULTIPROCESSOR, and SINGLE_CPU_VP
The following environment variable and configuration parameters also affect
CPU use. You can adjust them for performance tuning on any hardware
configuration:

■ DS_MAX_QUERIES

■ MAX_PDQPRIORITY

■ NETTYPE

■ PDQPRIORITY

■ PSORT_NPROCS

The following sections describe the performance effects and considerations
that are associated with these parameters. For more information about
database server configuration parameters, refer to your Administrator’s
Reference.

NUMCPUVPS, MULTIPROCESSOR, and SINGLE_CPU_VP
These configuration parameters specify the number of CPU VPs that can run
on each coserver and how locking is performed if you are running more than
one CPU VP.

The number of CPU VPs is an important factor in determining the number of
scan threads for a query. Queries perform best when the number of scan
threads is a multiple or factor of the number of CPU VPs so that each VP can
be assigned the same amount of work.

Adding or removing a CPU VP can improve performance for a large query
because it produces an equal distribution of scan threads among CPU VPs.
For instance, if you have 6 CPU VPs and scan 10 table fragments, you might
see a faster response time if you reduce the number of CPU VPs to 5, which
divides evenly into 10. You can use xctl onstat -g ath to monitor the number
of scan threads per CPU VP across coservers or use xctl onstat -g ses to focus
on a particular session.

Use xctl onstat -g rea to monitor ready queues across coservers. To make sure
that you are using the system CPU resources fully, note the size of the thread
ready queues and the number of CPU VP threads in the onstat -g rea output.
You might improve performance by adding a CPU VP if the CPU VP thread
queue is a consistent length and CPU idle time or I/O wait time is available.
3-8 Performance Guide for Informix Extended Parallel Server

NUMCPUVPS, MULTIPROCESSOR, and SINGLE_CPU_VP
NUMCPUVPS

The NUMCPUVPS configuration parameter specifies the number of CPU VPs
that the database server brings up initially on each coserver.

Do not allocate more CPU VPs than the number of CPUs available to service
them:

■ For uniprocessor coserver nodes, Informix recommends that you use
one CPU VP.

■ For multiprocessor coserver nodes with four or more CPUs that are
primarily used as database servers, Informix recommends that you
set NUMCPUVPS to the total number of processors.

■ For multiprocessor systems that are not primarily used to support
database servers, you can start with somewhat fewer CPU VPs to
allow for other activities on the system and then gradually add more
if necessary.

For dual-processor systems, you might improve performance by running
with two CPU VPs.

The number of CPU VPs on each coserver should be equal to or less than the
number of physical CPUs. The database server ensures optimal use of
available CPU resources by each CPU VP. If there is enough work to be done,
each CPU VP uses all of the resources provided by one physical CPU. Speci-
fying more CPU VPs than physical processors can result in significant
contention for CPU resources.

If you specify more CPU VPs than CPUs, you probably will not notice any
performance degradation if the system is not heavily loaded and one or more
of the CPU VPs is idle most of the time. Nevertheless, as activity on the system
increases, performance will degrade noticeably at some point.

MULTIPROCESSOR

If you are running multiple CPU VPs, set the MULTIPROCESSOR configuration
parameter to 1. When you set MULTIPROCESSOR to 1, the database server
performs locking appropriately for a multiprocessor. If you are not running
multiple CPU VPs, set this parameter to 0.
Effect of Configuration on CPU Use 3-9

NOAGE
SINGLE_CPU_VP

If you are running only one CPU VP, set the SINGLE_CPU_VP configuration
parameter to 1. Otherwise, set this parameter to 0.

Important: If you set the SINGLE_CPU_VP parameter to 1, the value of the
NUMCPUVPS parameter must also be 1. If NUMCPUVPS is greater than 1, the
database server fails to initialize and displays the following error message:

Cannot have 'SINGLE_CPU_VP' non-zero and 'NUMCPUVPS' greater than 1

When the SINGLE_CPU_VP parameter is set to 1, you cannot add CPU VPs while the
database server is in on-line mode.

NOAGE
To disable process priority aging for the database server CPU VPs on
operating systems that support this feature, set NOAGE to 1. When process
priority aging is disabled, critical database server processes can continue to
run at high priority.

For information on whether your operating system supports this feature,
refer to the machine notes file. If your operating system does not support this
feature, consider using the renice command or another UNIX operating
system utility to increase the priority level for the database server.

AFF_NPROCS and AFF_SPROC
On multiprocessor host computers that support processor affinity, the
database server supports automatic binding of CPU VPs to processors. For
information on whether your version of the database server supports
processor affinity, refer to the machine notes file.

For information about using AFF_NPROCS and AFF_SPROC to bind CPU VPs
to processors, see “Setting AFF_NPROCS and AFF_SPROC” on page 3-11.
3-10 Performance Guide for Informix Extended Parallel Server

AFF_NPROCS and AFF_SPROC
Using Processor Affinity

Processor affinity can distribute the computation effect of CPU VPs and other
processes. On coserver nodes that are dedicated to the database server,
assigning CPU VPs to all but one of the CPUs achieves maximum CPU use. On
coserver nodes that support both database server and client applications, you
can use the operating system to bind applications to certain CPUs. You can
bind the remaining CPUs with the AFF_NPROCS and AFF_SPROC configu-
ration parameters.

For coserver nodes that run both DSS and OLTP client applications, you might
bind asynchronous I/O (AIO) VPs to the same CPUs to which you bind other
application processes through the operating system. In this way, you isolate
client applications and database I/O operations from the CPU VPs. This
isolation can be especially helpful when client processes are used for data
entry or other operations that wait for user input. Because AIO VP activity
usually comes in quick bursts followed by idle periods of waiting for the
disk, client and I/O operations can often be interleaved without unduly
affecting each other.

To prevent all coservers from using the same CPUs on nodes where you run
more than one coserver, you might set AFF_SPROC in the coserver-specific
sections of the ONCONFIG file. Processor affinity also makes it easier to use
operating-system tools such as mpstat to monitor the coserver load balance.

Binding a CPU VP to a processor does not prevent other processes from
running on that processor. Processes that you do not bind to a CPU are free to
run on any available processor. On a computer that is dedicated to the
database server, you can leave AIO VPs free to run on any processor, which
reduces delays on database operations that are waiting for I/O. Increasing the
priority of AIO VPs can further improve performance by ensuring that data is
processed quickly as soon as it arrives from disk.

Setting AFF_NPROCS and AFF_SPROC

The AFF_NPROCS and AFF_SPROC parameters specify the number of CPU VPs
to bind with processor affinity and the processors to which those VPs are
bound. When you assign a CPU VP to a specific CPU, the VP runs only on that
CPU, but other processes can also run on that CPU.
Effect of Configuration on CPU Use 3-11

NUMAIOVPS
Set the AFF_NPROCS parameter to the number of CPU VPs. (See
“NUMCPUVPS, MULTIPROCESSOR, and SINGLE_CPU_VP” on page 3-8.)
Do not set AFF_NPROCS to a number that is greater than the number of CPU
VPs.

You can set the AFF_SPROC parameter to the number of the first CPU on
which to bind a CPU VP. The database server assigns CPU VPs to CPUs serially,
starting with that CPU. To avoid assigning a certain CPU, set AFF_SPROC to 1

plus the number of that CPU.

You usually alter the value of this parameter only when you know that a
certain CPU has a specialized hardware or operating-system function (such
as interrupt handling), and you want to avoid assigning CPU VPs to that
processor.

NUMAIOVPS
The NUMAIOVPS configuration parameter specifies the number of AIO VPs
that the database server brings up initially on a coserver node. If your
operating system does not support kernel asynchronous I/O (KAIO), the
database server uses AIO VPs to manage all database I/O requests.

The recommended number of AIO VPs depends on how many disks your
configuration supports. If KAIO is not implemented on your platform,
Informix recommends that you allocate one AIO VP for each disk that
contains database tables, and add an additional AIO VP for each chunk that
the database server accesses frequently.

The machine-notes file for your version of the database server specifies
whether the operating system supports KAIO. IF the operating system
supports KAIO, the machine notes describe how to enable KAIO on your
specific operating system.

If your operating system supports KAIO, the CPU VPs make unbuffered I/O
requests directly to the operating system. In this case, configure only one AIO
VP, plus two additional AIO VPs for every buffered operating-system file
chunk.
3-12 Performance Guide for Informix Extended Parallel Server

NUMFIFOVPS
The goal is to provide enough AIO VPs to keep the I/O request queues short;
that is, the queues should have as few I/O requests in them as possible. When
the I/O request queues remain consistently short, I/O requests are processed
as fast as they occur. Use the onstat -g ioq command to monitor the length of
the I/O queues for the AIO VPs. In the following sample output, gfd 5
displays the read queue for a pipe, and gfdwq 5 displays its write queue:

AIO I/O queues:
q name/id len maxlen totalops dskread dskwrite dskcopy
 fifo 0 0 0 0 0 0 0
 adt 0 0 0 0 0 0 0
 msc 0 0 1 10 0 0 0
 aio 0 0 1 12939 8 12907 0
 pio 0 0 0 0 0 0 0
 lio 0 0 1 2 0 2 0
 gfd 3 0 4 496 117 379 0
 gfd 4 0 5 171228 171228 0 0
 gfd 5 0 0 0 0 0 0

gfdwq 5 2 4 15 0 15 0

Monitor the len and maxlen fields of the I/O request queue. If len is usually
greater than 10 or if maxlen is usually greater than 25, requests are not being
serviced fast enough. If the disks or controllers are not already saturated, add
more AIO VPs to improve request servicing.

Allocate enough AIO VPs to accommodate the peak number of I/O requests.
Generally, it is not detrimental to allocate a few extra AIO VPs. You can use
onmode -p to start additional AIO VPs while the database server is in on-line
mode. You cannot drop AIO VPs in on-line mode.

NUMFIFOVPS
The NUMFIFOVPS configuration parameter specifies the number of FIF (first
in, first out) VPs that the database server brings up initially on a coserver
node. The database server uses two FIF virtual processors to process high-
performance loads and unloads through named pipes. If you usually load
and unload data through named pipes, add more FIF virtual processors. For
more information on using named pipes to load and unload tables, refer to
the Administrator’s Guide.

To increase parallel execution of loads and unloads through named pipes,
add FIF VPs. Use onmode -p to start additional FIF VPs while the database
server is in on-line mode. You cannot drop FIF VPs in on-line mode.
Effect of Configuration on CPU Use 3-13

PSORT_NPROCS
PSORT_NPROCS
The database server almost always starts an appropriate number of sort
threads for an PDQ queries. If CPU processing does not keep up with disk I/O
for some queries, you might consider setting the PSORT_NPROCS
environment variable for a client application that runs the queries. Generally,
however, you should let the database server determine the number of sort
threads required. The database server imposes an upper limit of 10 sort
threads per query on each coserver.

For more information on parallel sorts and the PSORT_NPROCS environment
variable, refer to “Parallel Sorts” on page 11-21.

NETTYPE
The NETTYPE configuration parameter configures poll threads for each
network connection type that your instance of the database server supports.
You must specify a separate NETTYPE parameter for each connection type if
your database server instance supports connections over more than one
network interface or protocol.

You usually include a separate NETTYPE parameter for each network
connection type that is associated with a connection coserver. A coserver has
a name of the following form:

dbservername.coserver-number

The sqlhosts file associates connection types with the names of the
connection coservers or the name of a dbserver group. For more information
and an example of an sqlhosts file that specifies dbserver groups, refer to the
Administrator’s Guide.

dbservername is the value that you specify in the DBSERVERNAME or
DBSERVERALIASES configuration parameter.

coserver-number is the integer that you specify in each COSERVER con-
figuration parameter.
3-14 Performance Guide for Informix Extended Parallel Server

NETTYPE
The first NETTYPE entry for a given connection type in the ONCONFIG file
applies to all coserver names that are associated with that type. Subsequent
NETTYPE entries for that connection type are ignored. Even if connection
types are not listed in the sqlhosts file, NETTYPE entries are required for
connection types that are used for outgoing communication.

Each poll thread that a NETTYPE entry configures or adds dynamically runs
in a separate VP. The two VP classes in which a poll thread can run are NET
and CPU. Do not specify more poll threads than you need to support user
connections. A poll thread run by a NET VP can handle at least 100 connec-
tions. Poll threads run by CPU VPs are faster than poll threads run by NET
VPs, but they can handle only about 50 connections.

For best performance, Informix recommends that you assign only one poll
thread to the CPU VP class with a NETTYPE entry and that you assign all
additional poll threads to NET VPs.The maximum number of poll threads that
you assign to any one connection type must not exceed NUMCPUVPS.

For best performance specify between 50 and 200 connections per poll
thread, although in some environments a poll thread might be able to
support as many as 400 connections.

Each NETTYPE entry configures the number of poll threads for a specific
connection type, the number of connections per poll thread, and the virtual-
processor class in which those poll threads run. The fields are separated by
commas. No white space can exist within or between these fields:

NETTYPE connection_type,poll_threads,c_per_t,vp_class

connection_type identifies the protocol-interface combination to which the
poll threads are assigned. You usually set this field to
match the connection_type field of a coserver-name entry in
the sqlhosts file.

poll_threads is the number of poll threads assigned to the connection
type. Set this value to no more than NUMCPUVPS for any
connection type. One poll thread can usually handle com-
munications for up to 100 users.
Effect of Configuration on CPU Use 3-15

NETTYPE
If c_per_t exceeds 350 and the number of poll threads for the current
connection type is less than NUMCPUVPS, you can improve performance by
specifying the NET CPU class, adding poll threads (do not exceed
NUMCPUVPS), and recalculating c_per_t. The default value for c_per_t is 50 .

Important: Each ipcshm connection requires a semaphore. Some operating systems
require that you configure a maximum number of semaphores that can be requested
by all software packages that run on the computer. For best performance, double the
number of actual ipcshm connections when you allocate semaphores for shared-
memory communications. Refer to “UNIX Semaphore Parameters” on page 3-3.

If your computer is a uniprocessor and your database server instance is
configured for only one connection type, you can omit the NETTYPE
parameter. The database server uses the information provided in the
sqlhosts file to establish client/server connections.

c_per_t is the number of connections per poll thread. Use the
following formula to calculate this number:

c_per_t = connections / poll_threads

connections is the maximum number of connections
that you expect the indicated connection
type to support. For shared-memory
connections (ipcshm), double the number
of connections for best performance.

vp_class is the class of VP that can run the poll threads. Specify CPU
if you have a single poll thread that runs on a CPU VP. For
best performance, specify NET if you require more than
one poll thread. The default value for this field depends on
the following conditions:

■ If the connection type is associated with the
coserver name that is listed in the
DBSERVERNAME parameter, and no previous
NETTYPE parameter specifies CPU explicitly, the
default VP class is CPU. If the CPU class is already
taken, the default is NET.

■ If the connection type is associated with a coserver
name that the DBSERVERALIASES parameter
provides, the default VP class is NET.
3-16 Performance Guide for Informix Extended Parallel Server

Virtual Processors and CPU Use
If your computer is a uniprocessor and your database server instance is
configured for more than one connection type, include a separate NETTYPE
entry for each connection type. If the number of connections of any one type
significantly exceeds 300 , assign two or more poll threads, up to a maximum
of NUMCPUVPS, and specify the NET VP class, as the following example
shows:

NETTYPE ipcshm,1,200,CPU
NETTYPE tlitcp,2,200,NET # supports 400 connections

If your computer is a multiprocessor, your database server instance is
configured for only one connection type, and the number of connections does
not exceed 350 , you can use NETTYPE to specify a single poll thread on either
the CPU or the NET VP class. If the number of connections exceeds 350 , set the
VP class to NET, increase the number of poll threads, and recalculate c_per_t.

Virtual Processors and CPU Use
You can add virtual processors (VPs) to increase parallel execution. While the
database server is on-line, it allows you to start and stop VPs that belong to
certain classes. While the database server is on-line, you can use onmode -p
to start additional VPs for the following classes: CPU, AIO, FIF, PIO, LIO, SHM,
TLI, and SOC.

Whenever you add a network connection of the SOC or TLI class, you also
add a poll thread. Every poll thread runs in a separate VP, which can be either
a CPU VP or a network VP of the appropriate network type. Adding more VPs
can increase the load on CPU resources, so if the NETTYPE value specifies that
an available CPU VP can handle the poll thread, the database server assigns
the poll thread to that CPU VP. If all the CPU VPs have poll threads assigned
to them, the database server adds a second network VP to handle the poll
thread.
Effect of Configuration on CPU Use 3-17

4
Chapter
Effect of Configuration on
Memory Use
In This Chapter . 4-3

Allocating Shared Memory for the Database Server 4-3
Resident Portion 4-4
Virtual Portion 4-5
Message Portion 4-7

Configuring Shared Memory 4-8

Freeing Shared Memory 4-9

Configuration Parameters That Affect Memory Use 4-10
BUFFERS . 4-12
DS_ADM_POLICY 4-14
DS_MAX_QUERIES 4-14
DS_TOTAL_MEMORY 4-15
LOCKS . 4-19
LOGBUFF . 4-20
MAX_PDQPRIORITY 4-21
PAGESIZE . 4-21
PDQPRIORITY 4-22
PHYSBUFF . 4-23
RESIDENT . 4-23
SHMADD . 4-24
SHMBASE . 4-26
SHMTOTAL . 4-26
SHMVIRTSIZE 4-27
STACKSIZE . 4-27

4-2 Perf
ormance Guide for Informix Extended Parallel Server

In This Chapter
This chapter discusses how the combination of operating system and
database server configuration parameters can affect memory use. It describes
the parameters that most directly affect memory use and explains how to set
them. It also suggests settings or considerations for different work loads.

When you allocate shared memory for the database server, consider the
amount of physical memory that is available on each coserver host and the
amount of memory that other applications require.

As a general rule, if you increase shared memory for the database server, you
improve its performance.

Allocating Shared Memory for the Database Server
Shared memory is managed locally on each coserver. However, on the
assumption that all coservers have the same amount of physical memory and
to balance resources for parallel processing across coservers, the shared
memory configuration parameters are set for all coservers in the global
section of the ONCONFIG file.

Make sure that the shared-memory setting is adequate for the projected work
load on each coserver. Configuring insufficient shared memory can adversely
affect performance.

When the operating system allocates a block of shared memory, that block is
called a segment. When the database server attaches all or part of a shared-
memory segment, it is called a portion.
Effect of Configuration on Memory Use 4-3

Resident Portion
The database server uses the following shared-memory portions, each of
which makes a separate contribution to the total amount of shared memory
that the database server requires:

■ Resident portion

■ Virtual portion

■ Message portion

The size of the resident and message portions of shared memory does not
change after the database server is brought on line. You must allocate suffi-
cient operating-system shared memory for these portions before you bring
the database server into on-line mode. To reconfigure shared memory, you
usually must reboot the operating system.

Although the size of the virtual portion of shared memory for the database
server grows dynamically, you must still include an adequate initial amount
for this portion in your allocation of operating-system shared memory.

The following sections provide guidelines for estimating the size of each
shared-memory portion for the database server so that you can allocate
adequate space. The amount of space required is the total that all three
portions need initially.

For detailed information about shared memory, see the Administrator’s Guide.

Resident Portion
The resident portion includes the coserver shared memory that records the
state of the coserver, including buffers, locks, log files, and the locations of
dbspaces, chunks, and tblspaces. Use the settings of the following global
configuration parameters to estimate the size of this portion for each
coserver:

■ BUFFERS

■ LOCKS

■ LOGBUFF

■ PHYSBUFF
4-4 Performance Guide for Informix Extended Parallel Server

Virtual Portion
In addition to these parameters, which affect the size of the resident portion
of shared memory, the RESIDENT parameter can affect memory use. When
RESIDENT is set to 1 in the ONCONFIG file of a computer that supports forced
residency, the resident portion is never paged out. The machine-notes file for
the database server specifies whether your operating system supports forced
residency.

To estimate the size, in kilobytes, of shared memory required for the resident
portion, follow the steps listed below. The resulting estimate slightly exceeds
the actual memory used for the resident portion.

To estimate the size of the resident portion

1. Use the following formula to estimate the size of the data buffer:
buffer_value = (BUFFERS * pagesize) + (BUFFERS * 254)

In the formula, pagesize is the shared-memory page size. If you have
specified a page size in the PAGESIZE configuration parameter, use
this setting.

2. Use these formulas to calculate the following values:
locks_value = LOCKS * 44
logbuff_value = LOGBUFF * 1024 * 3
physbuff_value = PHYSBUFF * 1024 * 2

3. Use the following formula to calculate the estimated size of the
resident portion in kilobytes:

rsegsize = (buffer_value + locks_value + logbuff_value
 + physbuff_value + 51,200) / 1024

For information about setting the BUFFERS, LOCKS, LOGBUFF, and PHYSBUFF
configuration parameters, see “Configuration Parameters That Affect
Memory Use” on page 4-10.

Virtual Portion
The virtual portion of shared memory for the database server includes the
following components:

■ Large private buffers, which are used for large read and write
operations

■ Query operations, such as sorts, hash joins, light scans, and groups

■ Active thread-control blocks, stacks, and heaps
Effect of Configuration on Memory Use 4-5

Virtual Portion
■ User-session data

■ Caches for data-dictionary information and SPL routines

■ A global pool for network-interface message buffers and other
information

The SHMVIRTSIZE configuration parameter in the database server configu-
ration file specifies the initial size of the virtual portion. When the database
server needs additional space in the virtual portion, it adds shared memory
in increments as specified by the SHMADD configuration parameter, until it
reaches the limit on the total shared memory that is specified by the
SHMTOTAL parameter and allocated to the database server.

The optimal size of the virtual portion depends primarily on the types of
applications and queries that run. Depending on your applications, an initial
estimate for the virtual portion might be as low as 100 kilobytes per user, or
as high as 500 kilobytes per user, plus an additional 4096 kilobytes (4
megabytes) for data distributions created by UPDATE STATISTICS, as
described in “Creating Data-Distribution Statistics” on page 13-9.

Decision-support queries use large amounts of the virtual portion of shared
memory to perform joins and sort operations.

In addition, if the communication interface between nodes in your system
requires configurable buffers, you also need to consider the amount of space
that these message buffers take up in the virtual portion of memory. For more
details on these configurable buffers, refer to your machine-notes file.

For DSS applications, try to maximize the size of the virtual portion of shared
memory relative to the resident portion. A common practice is to estimate the
initial size of the virtual portion of shared memory as follows:

shmvirtsize = p_mem - os_mem - rsdnt_mem - (128K * users)
- other_mem

The variables in the formula are defined as follows.

Variable Description

p_mem Total physical memory available on host

os_mem Size of operating system, including buffer cache

 (1 of 2)
4-6 Performance Guide for Informix Extended Parallel Server

Message Portion
For more information on how to estimate the amount of the virtual portion
of shared memory that the database server might need for sorting, refer to
“Parallel Sorts” on page 11-21.

Tip: When the database server is running with a stable work load, you can use
onstat -g mem to obtain a precise value for the actual size of the virtual portion. You
can then use the value for shared memory that this command reports to reconfigure
SHMVIRTSIZE.

Setting SHMVIRTSIZE to an appropriate size improves performance by reducing the
CPU overhead that occurs when additional memory must be allocated dynamically
for the virtual portion.

Message Portion
The message portion contains the message buffers that the shared-memory
communication interface uses. The amount of space required for these
buffers depends on the number of user connections that use a given network
interface. If a particular interface is not used, you do not need to include
space for it when you allocate shared memory in the operating system. You
can use the following formula to estimate the size of the message portion in
kilobytes:

msegsize = (10,531 * ipcshm_conn + 50,000)/1024

resdnt_mem Size of resident shared memory for the database server

users Number of expected users (connections) specified by the
third argument of the NETTYPE configuration parameter

other_mem Size of memory used for applications other than the
database server applications

ipcshm_conn is the number of connections that can be made with the
shared-memory interface, as determined by the NETTYPE
parameter for the ipcshm protocol.

Variable Description

 (2 of 2)
Effect of Configuration on Memory Use 4-7

Configuring Shared Memory
Configuring Shared Memory
After you calculated the shared memory required for the database server,
perform the following steps to configure the shared-memory segments that
your database server configuration needs. For information on how to set
parameters related to shared memory, refer to the configuration instructions
for your operating system.

To configure shared-memory segments

1. If your operating system does not have a limit for shared-memory
segment size, take the following actions:

a. Set the operating-system configuration parameter for maximum
segment size, typically SHMMAX or SHMSIZE, to the total size
that your database server configuration requires. This size
includes the amount of memory that is required to initialize your
database server instance and the amount of shared memory that
you allocate for dynamic growth of the virtual portion.

b. Set the operating-system configuration parameter for the
maximum number of segments, typically SHMMNI, to at least 1

per instance of the database server.

2. If your operating system has a segment-size limit for shared memory,
take the following actions:

a. Set the operating-system configuration parameter for the
maximum segment size, typically SHMMAX or SHMSIZE, to the
largest value that your system allows.

b. Use the following formula to calculate the number of segments
for your instance of the database server. If there is a remainder,
round up to the nearest integer.
SHMMNI = total_shmem_size / SHMMAX

In the formula, total_shmem_size is the total amount of shared mem-
ory that you allocate for database server use.
4-8 Performance Guide for Informix Extended Parallel Server

Freeing Shared Memory
3. Set the operating-system configuration parameter for the maximum
number of segments (typically SHMMNI) to a value that, when multi-
plied by SHMMAX or SHMSIZE, yields the total amount of shared
memory for the database server, as estimated by using the formulas
in “Allocating Shared Memory for the Database Server” on page 4-3.

If nodes in your database server system are dedicated database
server coservers, the total for each coserver can be up to 90 percent
of the size of virtual memory (physical memory plus swap space).

4. If your operating system uses the SHMSEG configuration parameter
to specify the maximum number of shared-memory segments that a
process can attach, set this parameter to a value that is equal to or
greater than the largest number of segments that you allocate for any
instance of the database server.

For additional tips on configuring shared memory in the operating system,
refer to the machine notes file for the database server.

Freeing Shared Memory
The database server does not automatically free the shared-memory
segments that it adds during its operations. Once memory has been allocated
to the database server virtual portion, the memory is not available to other
processes that are running on the host computer. When the database server
runs a large decision-support query, it might acquire a large amount of
shared memory. After the query is complete, that shared memory is no longer
required. However, the shared memory that was allocated to the query
remains assigned to the virtual portion of shared memory for the database
server even though it might no longer be needed.

The onmode -F command locates and returns unused 8-kilobyte blocks of
shared memory that the database server still holds. Although this command
runs only briefly (one or two seconds), onmode -F dramatically inhibits user
activity while it runs. Systems with multiple CPUs and CPU VPs usually
experience less performance degradation while this utility runs.
Effect of Configuration on Memory Use 4-9

Configuration Parameters That Affect Memory Use
Informix recommends that you run onmode -F on each coserver during slack
periods with an operating-system or other scheduling facility, such as cron
on UNIX database servers. In addition, consider running this utility after you
perform any task that substantially increases the size of database server
shared memory, such as large decision-support queries, index builds, sorts,
or backup operations. For additional information on the onmode utility, refer
to the Administrator’s Reference.

Configuration Parameters That Affect Memory Use
The following configuration parameters have a significant effect on memory
use:

■ BUFFERS

■ DS_ADM_POLICY

■ DS_MAX_QUERIES

■ DS_TOTAL_MEMORY

■ LOCKS

■ LOGBUFF

■ MAX_PDQPRIORITY

■ PAGESIZE

■ PDQPRIORITY

■ PHYSBUFF

■ SHMADD

■ SHMBASE

■ SHMTOTAL

■ SHMVIRTSIZE

■ STACKSIZE

■ RESIDENT

The following sections describe the performance considerations associated
with these parameters. For information about the database server ONCONFIG
file, refer to the Administrator’s Guide. For additional information about each
configuration parameter, refer to the Administrator’s Reference.
4-10 Performance Guide for Informix Extended Parallel Server

Configuration Parameters That Affect Memory Use
The guidelines for setting the following memory configuration parameters
might be different for different kinds of application programs.

Parameter OLTP DSS

BUFFERS Set to 20 to 25 percent of the
number of megabytes in
physical memory. If the
levels of paging activity
rises, reduce the value of
BUFFERS.

Set a small buffer value and
increase the
DS_TOTAL_MEMORY
value for queries and sorts.
For operations such as
index builds that read data
through the buffer pool,
configure a larger number
of buffers.

DS_TOTAL_MEMORY Set to 20 to 50 percent of the
value of SHM_TOTAL, in
kilobytes.

Set to 50 to 90 percent of
SHM_TOTAL.

LOGBUFF If you are using unbuffered
or ANSI logging, use the
pages/io value in the
logical-log section of the
onstat -l output for the
LOGBUFF value. If you are
using buffered logging,
keep the pages/io value
low.

The recommended
LOGBUFF value is 16 to 32
kilobytes or 64 kilobytes for
heavy workloads.

Because database or table
logging is usually turned
off for DSS applications, set
LOGBUFF to 32 kilobytes.

PHYSBUFF If applications are using
physical logging, check the
pages/io value in the
physical-log section of the
onstat -l output to make
sure the I/O activity is not
too high. Set PHYSBUFF to
a value that is divisible by
the page size. The recom-
mended PHYSBUFF value
is 16 pages.

Because most DSS applica-
tions do not physically log,
set PHYSBUFF to 32
kilobytes.

PAGESIZE 2048 kilobytes 8192 kilobytes
Effect of Configuration on Memory Use 4-11

BUFFERS
For information about how the Resource Grant Manager (RGM) uses the
settings of these configuration parameters, see “Scheduling Queries” on
page 12-7.

BUFFERS
The BUFFERS configuration parameter specifies the number of data buffers
available to the database server. These buffers reside in the resident portion
of shared memory and are used to cache database data pages. Because the
BUFFERS parameter can be set to 231-1, it has no theoretical limit.

For OLTP applications, if more buffers are available, a required data page is
more likely to be in memory as the result of a previous request. For example,
if client applications access 15 percent of the data 90 percent of the time, set
the BUFFERS parameter large enough to hold that 15 percent. Such a setting
improves database I/O and transaction throughput. However, allocating too
many buffers can affect the memory-management system and lead to excess
paging activity.

To optimize some operations such as index builds that read data through the
buffer pool, configure a larger number of buffers.

Informix suggests that you set BUFFERS to provide a buffer-space value
between 20 and 25 percent of the number of megabytes in physical memory.
Informix recommends that you calculate all other shared-memory param-
eters after you set buffer space (BUFFERS multiplied by the system page size)
to 20 percent of physical memory. Then, after you specify all shared memory
parameters, increase the size of BUFFERS to the full 25 percent if you have
enough shared memory. If you set the page size in the PAGESIZE configu-
ration parameter, described in “PAGESIZE” on page 4-21, make sure that you
use the specified page size in your calculation.
4-12 Performance Guide for Informix Extended Parallel Server

BUFFERS
Important: The sizes of buffers for TCP/IP connections, which are specified in the
sqlhosts file, affect memory and CPU use. Adjusting the size of these buffers to
accommodate a typical request can improve CPU use by eliminating the need to break
requests into multiple messages. However, because the database server dynamically
allocates buffers of the specified sizes for active connections, buffers can consume
large amounts of memory unnecessarily if you do not size them carefully.

Tuning BUFFERS

Consider the example of a system with a page size of 4 kilobytes and
100 megabytes of physical memory. You can first set BUFFERS between
10,000 and 12,500 (40 to 50 megabytes). Then use onstat -p to monitor the
read-cache rate, which is the percentage of database pages that are already
present in a shared-memory buffer when a query requests them. A high read-
cache rate is desirable for good performance because the database server
copies pages into memory from disk if they are not already present.

If the read-cache rate is low, you can repeatedly increase BUFFERS and restart
the database server. As you increase the value of BUFFERS, you reach a point
at which increasing the value no longer produces significant gains in the
read-cache rate, or you reach the upper limit of your operating-system
shared-memory allocation. Use an operating-system utility that monitors
memory, such as vmstat or sar, to monitor the level of page scans and paging-
out activity. If these levels suddenly rise, or rise to unacceptable levels during
peak database activity, reduce the value of BUFFERS.

For SMP coserver systems, such as those that have four CPUs on each node
and as few as eight nodes, UPDATE STATISTICS can execute much faster if you
set BUFFERS as high as 25,000 (100 megabytes) on each node. For
uniprocessor coserver systems, you can set BUFFERS lower if there are more
coserver nodes to do the work.
Effect of Configuration on Memory Use 4-13

DS_ADM_POLICY
DS_ADM_POLICY
The DS_ADM_POLICY configuration parameter specifies how the RGM
should schedule queries:

■ If DS_ADM_POLICY is set to STRICT, the RGM processes queries in the
order determined by the SET SCHEDULE LEVEL value that is
specified in the query and the order in which queries are submitted.
The RGM processes the oldest query with the highest scheduling
level before other queries, which means that a more recent query
with a lower scheduling level might never run or might not run for
a long time.

■ If DS_ADM_POLICY is set to FAIR, the RGM takes scheduling level,
PDQ priority, and wait time into account when it decides which
query to process. In general, the query with the highest scheduling
level runs first, but a query with a lower scheduling level runs if it
has been waiting a long time.

For more information about how the RGM uses DS_ADM_POLICY to manage
queries, refer to “Using the Admission Policy” on page 12-8.

DS_MAX_QUERIES
The DS_MAX_QUERIES configuration parameter specifies the maximum
number of memory-consuming queries that can run at any one time. A
memory-consuming query is usually a DSS query that performs complex
tasks that might include scans of entire tables, manipulation of large amounts
of data, multiple joins, and the creation of temporary tables. The RGM
manages memory-consuming queries.

PDQPRIORITY specifies the amount of memory that a query requests. Queries
with a low PDQPRIORITY setting request proportionally smaller amounts of
memory, so more of those queries can run simultaneously.

You can use the DS_MAX_QUERIES parameter to limit the performance
impact of memory-consuming queries. The RGM enforces this limit. For more
information, refer to “Limiting the Maximum Number of Queries” on
page 12-17.
4-14 Performance Guide for Informix Extended Parallel Server

DS_TOTAL_MEMORY
The RGM reserves memory for a query based on the following formula:

memory_reserved =(DS_TOTAL_MEMORY * (PDQPRIORITY / 100 *
(MAX_PDQPRIORITY / 100)

To allow for a larger number of simultaneous queries with less memory each,
increase DS_MAX_QUERIES. The maximum memory allowed is 8 megabytes.

For more information on how memory is allocated to queries, refer to
“DS_TOTAL_MEMORY” on page 4-15.

DS_TOTAL_MEMORY
The DS_TOTAL_MEMORY configuration parameter places a ceiling on the
amount of shared memory that queries can obtain on each coserver. You can
use this parameter to control the effect that large, memory-intensive queries
have on other queries and transactions. The higher you set this parameter, the
more memory a memory-intensive query can use, and the less memory is
available to process other queries and transactions. The maximum you can
specify is 2 gigabytes, or half of the maximum of 4 gigabytes for
SHMVIRTSIZE.

To allow for a larger number of simultaneous queries that require a relatively
small amount of memory, increase DS_MAX_QUERIES. For more information,
refer to “DS_MAX_QUERIES” on page 4-14.

The RGM uses the value that you specify in DS_TOTAL_MEMORY to allocate
memory to queries. For a figure that shows the relation of the memory-
configuration parameters for DSS queries and provides more information
about how the RGM uses the DS_TOTAL_MEMORY setting, refer to “How the
RGM Grants Memory” on page 12-5.

Initial Value Estimate for DS_TOTAL_MEMORY

Use the following formula as a starting point for estimating the amount of
shared memory to allocate to decision-support queries:

DS_TOTAL_MEMORY =p_mem - nondecision_support_memory

The value of p_mem is the total physical memory available on the computer.
Effect of Configuration on Memory Use 4-15

DS_TOTAL_MEMORY
Use the following formula to estimate the amount of memory required for
other queries and other applications:

nondecision_support_memory = os_mem - rsdnt_mem -
(128 kilobytes * users) - other_mem

For OLTP applications, set DS_TOTAL_MEMORY to between 20 and 50 percent
of the value of SHMTOTAL, in kilobytes. For DSS applications, set the value of
DS_TOTAL_MEMORY to between 50 and 80 percent of SHMTOTAL. If your
database server system is used exclusively for DSS queries, set this parameter
to 90 percent of SHMTOTAL.

Algorithm to Determine DS_TOTAL_MEMORY

If you do not set DS_TOTAL_MEMORY, or if you set it to an inappropriate
value, the database server derives an appropriate value. If the database
server changes the value that you assigned to DS_TOTAL_MEMORY, it sends
the following message to the location specified by the MSGPATH configu-
ration parameter:

DS_TOTAL_MEMORY recalculated and changed from old_value kilobytes
to new_value kilobytes

If this message appears, use the algorithm that the following sections
describe to investigate the values that the database server considers
inappropriate. You can then make adjustments based on your investigation.

Variable Description

os_mem Size of operating system, including buffer cache

rsdnt_mem Size of Informix resident shared memory

users Number of expected users (connections) that the third
argument of the NETTYPE configuration parameter
specifies

other_mem Size of memory used for other (non-Informix) applications
4-16 Performance Guide for Informix Extended Parallel Server

DS_TOTAL_MEMORY
Derive a Minimum for Decision-Support Memory

In the first part of the algorithm, the database server establishes a minimum
for decision-support memory. The database server uses the following
formula to set the minimum amount of decision-support memory:

min_ds_total_memory = NUMCPUVPS * 4 * 128 kilobytes

Derive a Working Value for Decision-Support Memory

In the second part of the algorithm, the database server establishes a working
value for the amount of decision-support memory. The database server
verifies this amount in the third and final part of the algorithm, as follows:

■ When DS_TOTAL_MEMORY is set, the database server first checks the
SHMTOTAL setting. If SHMTOTAL is set, the database server uses the
following formula to calculate the amount of decision-support
memory:

IF DS_TOTAL_MEMORY <= SHMTOTAL -
nondecision_support_memory THEN

decision_support_memory = DS_TOTAL_MEMORY
ELSE

decision_support_memory = SHMTOTAL -
nondecision_support_memory

This algorithm prevents you from setting DS_TOTAL_MEMORY to
values that the database server cannot allocate to decision-support
memory.

For information about estimating an appropriate amount of memory
for OLTP applications, see “Initial Value Estimate for
DS_TOTAL_MEMORY” on page 4-15.

If SHMTOTAL is not set, the database server sets decision-support
memory to the value that you specified in DS_TOTAL_MEMORY.
Effect of Configuration on Memory Use 4-17

DS_TOTAL_MEMORY
■ When DS_TOTAL_MEMORY is not set, the database server proceeds
differently. First, the database server checks the setting of
SHMTOTAL. If SHMTOTAL is set, the database server uses the
following formula to calculate the amount of decision-support
memory:

decision_support_memory = SHMTOTAL -
nondecision_support_memory

If SHMTOTAL is not set, the database server sets decision-support
memory as the following example shows:

decision_support_memory = min_ds_total_memory

For information about setting the variable min_ds_total_memory,
see “Derive a Minimum for Decision-Support Memory” on
page 4-17.

Check Derived Value for Decision-Support Memory

The final part of the algorithm verifies that the amount of shared memory is
greater than min_ds_total_memory and less than the maximum possible
amount of memory for the computer. When the database server finds that the
derived value for decision-support memory is less than
min_ds_total_memory, it sets decision-support memory equal to
min_ds_total_memory.

When the database server finds that the derived value for decision-support
memory is greater than the maximum possible amount of memory for the
computer, it sets decision-support memory equal to the maximum possible
memory.

Inform User When Derived Value Is Different from User Value

At any point during the processing of this algorithm, if the database server
changes the value that you set for DS_TOTAL_MEMORY, it sends a message to
your console in the following format:

DS_TOTAL_MEMORY recalculated and changed from old_value kilobytes
to new_value kilobytes

In the message, old_value represents the value that you assigned to
DS_TOTAL_MEMORY in your configuration file, and new_value represents the
value that the database server derived.
4-18 Performance Guide for Informix Extended Parallel Server

LOCKS
LOCKS
The LOCKS parameter sets the initial number of locks that can be used at any
one time. Each lock requires 44 bytes in the resident segment. You must
provide for this amount of memory when you configure shared memory.

If the database server needs more locks, 100,000 additional locks are added
and a message is written to the event log, indicating that this has happened.
Locks can be increased as many as 32 times before the database server reports
that it is out of locks. If you frequently see the dynamic-lock- allocation
message, increase the value of the LOCKS parameter. The maximum you can
specify is 16,000,000 locks.

Set LOCKS to the number of locks that queries usually need, multiplied by the
number of concurrent users. To estimate the number of locks that a query
needs, use the guidelines in the following table.

Locks per
SQL
statement Isolation Level Table Row Key

Simple
Large
Object

SELECT Dirty Read 0 0 0 0

Committed
Read

1 0 0 0

Cursor
Stability

1 or value specified in
ISOLATION_LOCKS

1 or value specified in
ISOLATION_LOCKS

0 0

Indexed
Repeatable
Read

1 Number of rows
satisfying conditions

Number of
rows satisfying
conditions

0

Sequential
Repeatable
Read

1 0 0 0

 (1 of 2)
Effect of Configuration on Memory Use 4-19

LOGBUFF
Important: During a DROP DATABASE operation, the database server acquires and
holds a lock on each table in the database until the entire DROP operation is complete.
If the value of LOCKS is large enough to accommodate the largest number of tables in
a database, dynamic lock allocation is not required.

LOGBUFF
The LOGBUFF parameter specifies the amount of shared memory that is
reserved for each of the three buffers that hold the logical-log records until
they are flushed to the logical-log file on disk. The size of a buffer determines
how often it fills and therefore how often it must be flushed to the logical-log
file on disk.

Important: The value of LOGBUFF depends in part on the page size that you specify
for your database server. If you used the PAGESIZE configuration parameter,
described in “PAGESIZE” on page 4-21, to set the page size, make sure that you use
the specified page size in your estimate of an appropriate LOGBUFF value.

INSERT For locks,
relevant only
for SELECT
statements.

1 1 Number of
indexes

Number
of pages
in simple
large
objects

DELETE For locks,
relevant only
for SELECT
statements.

1 1 Number of
indexes

Number
of pages
in simple
large
objects

UPDATE For locks,
relevant only
for SELECT
statements.

1 1 2 per changed
key value

Number
of pages
in old
plus new
simple
large
objects

Locks per
SQL
statement Isolation Level Table Row Key

Simple
Large
Object

 (2 of 2)
4-20 Performance Guide for Informix Extended Parallel Server

MAX_PDQPRIORITY
MAX_PDQPRIORITY
The MAX_PDQPRIORITY configuration parameter specifies the percentage of
memory that a single query can use and thus limits the effect of large CPU-
and memory-intensive queries on transaction throughput and makes it
possible for more queries to run during the same time period.

Users who issue queries can set the PDQPRIORITY environment variable or
use the SET PDQPRIORITY statement in SQL to override the PDQPRIORITY
configuration parameter setting. The setting of the MAX_PDQPRIORITY
configuration parameter limits the amount of memory that is actually
granted.

Setting MAX_PDQPRIORITY helps to balance a system that runs both OLTP
clients and DSS queries. To allocate more resources to OLTP processing,
reduce the value of MAX_PDQPRIORITY. To allocate more resources to
decision-support processing, increase the value of MAX_PDQPRIORITY. For
more information on how to control PDQ resource use, refer to “Managing
Resources for DSS and OLTP Applications” on page 12-11.

For more information about PDQ memory and an illustration of the way in
which the PDQ configuration parameters are related, refer to “How the RGM
Grants Memory” on page 12-5. For more information about the environment
variable and the SQL statement, refer to the Informix Guide to SQL: Reference
and the Informix Guide to SQL: Syntax, respectively.

PAGESIZE
Use the PAGESIZE configuration parameter to specify the page size that the
the database server uses. You can specify one of three sizes: 2048 bytes, 4096
bytes, or 8192 bytes. If you do not set the PAGESIZE parameter, the database
server uses a default size of 4096 bytes.

A page size as small as 2048 bytes might improve performance on a database
server that is used for applications that access tables randomly, such as OLTP
applications. A larger page size might improve performance on a database
server that is used for applications that access tables sequentially, such as
certain DSS applications.
Effect of Configuration on Memory Use 4-21

PDQPRIORITY
If you set the PAGESIZE configuration parameter, use the setting in the
formulas for which the page size is required to estimate other configuration
parameter settings. Some of the affected parameters are PHYSBUFF, LOGBUFF,
and BUFFERS.

For more information about the PAGESIZE parameter, refer to the
Administrator’s Reference.

PDQPRIORITY
THE PDQPRIORITY configuration parameter provides a minimum and
optional maximum value for the percentage of shared memory that an
individual query can use. The Resource Grant Manager (RGM) does not run
a memory-consuming query until the minimum requested amount of
memory is available.

If you specify only a single percentage for PDQPRIORIY, the RGM can run a
query only when the specified amount of memory is available. If you set a
range of resources from the minimum required for a query to an optimal
maximum, the RGM can run a query when available memory falls in the
specified range.

You can set PDQPRIORITY in the following ways:

■ With the PDQPRIORITY configuration parameter

The syntax is as follows:
PDQPRIORITY lowval [, highval]

Set the PDQPRIORITY configuration parameter to provide a database-
server-wide default. To modify this default, users can set the envi-
ronment variable or use the SQL statement. The setting of
MAX_PDQPRIORITY scales the amount of memory actually granted.

■ With the PDQPRIORITY environment variable

The UNIX syntax for the PDQPRIORITY environment variable is as
follows:

export PDQPRIORITY="l owval [, highval]"

When PDQPRIORITY is set in the environment of a client application,
it specifies the percentage of shared memory that can be allocated to
any query that client starts.
4-22 Performance Guide for Informix Extended Parallel Server

PHYSBUFF
■ From a client program that uses the SET PDQPRIORITY statement

The syntax of the SET PDQPRIORITY statement is as follows:
SET PDQPRIORITY LOW lowval HIGH highval ;

If a client application uses the SET PDQPRIORITY statement in SQL to
set a value for PDQPRIORITY, that value overrides the configuration
parameter and environment variable settings. The setting of
MAX_PDQPRIORITY limits the actual percentage of resources
granted.

If PDQPRIORITY is not set or is set to 0, each SQL operator instance required
by a query is granted 128 kilobytes of memory. For example, on a single
coserver system with one CPU VP, a query with two hash joins is granted 2 *

128 , or 256 kilobytes of memory. On a single coserver system with two CPU
VPs, each hash join SQL operator has two instances, so the query is granted 2

* 2 * 128 , or 512 kilobytes of memory.

For more information on limiting resources that can be allocated to queries,
see “DS_TOTAL_MEMORY” on page 4-15 and “MAX_PDQPRIORITY” on
page 4-21. For information about how the RGM uses PDQPRIORITY and
related parameters, see Chapter 12, “Resource Grant Manager.”

PHYSBUFF
The PHYSBUFF configuration parameter specifies the amount of shared
memory that is reserved for each of the two buffers that serve as temporary
storage space for data pages that are about to be modified. The size of a buffer
determines how often it fills and therefore how often it must be flushed to the
physical log on disk.

The value of PHYSBUFF depends in part on the page size specified for your
database server by the PAGESIZE configuration parameter, described in
“PAGESIZE” on page 4-21.

RESIDENT
The RESIDENT configuration parameter specifies whether shared-memory
residency is enforced for the resident portion of database server shared
memory. You can use this parameter only on computers that support forced
residency.
Effect of Configuration on Memory Use 4-23

SHMADD
The resident portion in the database server contains the least-recently used
(LRU) queues for database read and write activity. Performance improves
when these buffers remain in physical memory. Informix recommends that
you set the RESIDENT parameter to 1. If forced residency is not an option on
your computer, the database server issues an error message and ignores this
parameter.

You can turn residency on or off for the resident portion of shared memory in
the following ways:

■ Use the onmode utility to reverse the state of shared-memory
residency while the database server is on-line.

■ Change the RESIDENT parameter to turn shared-memory residency
on or off the next time that you initialize database server shared
memory.

SHMADD
The SHMADD CONFIGURATION parameter specifies the size of each
increment of shared memory that the database server dynamically adds to
the virtual portion on each coserver. The maximum allowable size of a
memory increment is 4 gigabytes.

When the database server adds shared memory, it consumes CPU cycles.
Consider the trade-offs when you determine the size for SHMADD:

■ Large increments are generally preferable to reduce the number of
times that the database server adds shared memory. However, less
memory is available for other processes.

■ If memory is heavily loaded, as indicated by a high scan or paging-
out rate, smaller increments allow better sharing of memory
resources among competing programs.

Specify the same size for the SHMADD parameter on all coservers. The
database server tries to balance the workload dynamically across all
coservers to use the resources on each coserver equally.
4-24 Performance Guide for Informix Extended Parallel Server

SHMADD
Informix suggests that you set SHMADD according to the size of physical
memory, as the following table indicates.

The size of segments that you add should match the size of segments
allocated in the operating system. For more information about configuring
shared-memory segments, refer to “Configuring Shared Memory” on
page 4-8. Some operating systems place a lower limit on the size of a shared-
memory segment; your setting for SHMADD should be more than this
minimum.

To find out how many shared-memory segments the database server is
currently using, use the onstat -g seg command on a specific coserver or use
xctl onstat -g seg to display shared memory information for all coservers. The
following example shows onstat-g seg output.

In Figure 4-1, size displays the number of bytes in the segment, blkused
displays the number of blocks in the segment in page units, and blkfree
displays the number of free blocks in the segment page units. To calculate the
number of bytes in a segment, multiply the number of blocks by the page size
that you specified in the PAGESIZE configuration parameter. The default is 4
kilobytes.

Physical Memory Size on Each Coserver SHMADD Value for Each Coserver

256 megabytes or less 8192 kilobytes (the default)

Between 257 and 512 megabytes 16,384 kilobytes

More than 512 megabytes Up to 65,536 kilobytes

Segment Summary:
id key addr size ovhd class blkused blkfree
13406 1382029314 c0b74000 155648 616 M 6 32
13805 1382029313 c1777000 130662409512 R* 3160 30
(shared) 1382029313 c23ed000 2684477448804 V 10656 54883
Total: - 281669632 13822 54945

Figure 4-1
onstat -g seg Output
Effect of Configuration on Memory Use 4-25

SHMBASE
SHMBASE
The SHMBASE parameter specifies the starting address for the database
server shared memory. When you set this parameter according to the instruc-
tions in your machine notes, it does not affect performance.

SHMTOTAL
The SHMTOTAL configuration parameter sets an upper limit on the amount
of shared memory that each coserver can use. If SHMTOTAL is set to 0 or left
unassigned, the database server continues to attach additional memory as
needed until no more shared memory is available on the system. For infor-
mation about setting an appropriate value for SHMTOTAL on your system,
refer to your machine notes.

If your operating system runs out of swap space and performs abnormally,
set SHMTOTAL to a value that is a few megabytes less than the total swap
space that is available on each coserver. If SHMTOTAL is set to 0, memory
might be exhausted on the database server, and the database server will
hang.
4-26 Performance Guide for Informix Extended Parallel Server

SHMVIRTSIZE
If SHMTOTAL is set to 0 and you have an exceptionally heavy workload,
configure swap space that is from one and a half to two times the size of
physical memory.

SHMVIRTSIZE
The SHMVIRTSIZE configuration parameter specifies the size of the virtual
portion of shared memory that is initially allocated to the database server.
The virtual portion of shared memory holds session- and request-specific
data as well as other information, as described in “Virtual Portion” on
page 4-5. The maximum amount of a virtual shared-memory partition is 4
gigabytes.

Although the database server adds increments of shared memory to the
virtual portion as needed to process large queries or handle peak loads, the
necessity of allocating additional shared memory increases time for trans-
action processing. For this reason, Informix recommends that you set
SHMVIRTSIZE large enough to cover most normal daily operating require-
ments. For an initial setting for database servers that run OLTP applications,
Informix suggests that you use the larger of the following values:

■ 8000 kilobytes

■ connections * 350

In the formula, connections is the number of connections for all net-
work types that are specified in the sqlhosts file by one or more
NETTYPE parameters. (The database server uses connections * 200

by default.)

When system use reaches a stable workload, you can reconfigure a new value
for SHMVIRTSIZE. “Freeing Shared Memory” on page 4-9 explains how you
can release shared-memory segments that are no longer in use after a peak
workload period or large query.

STACKSIZE
The STACKSIZE configuration parameter specifies the initial stack size for
each thread. The database server assigns this amount of space to each active
thread. The database server allocates space for thread stacks from the virtual
portion of shared memory.
Effect of Configuration on Memory Use 4-27

STACKSIZE
To reduce the amount of shared memory that the database server adds
dynamically, estimate the amount of stack space required for the average
number of threads that your system runs. Then include that amount in the
value you set for SHMVIRTSIZE. To estimate the amount of stack space that
you require, use the following formula:

stacktotal = STACKSIZE * avg_no_of_threads

avg_no_of_threads is the average number of threads.

Monitor the number of active threads at regular
intervals to determine this amount. Use onstat -g sts to
check the stack use of threads. A general estimate is
between 60 and 70 percent of the total number of
connections (specified in the sqlhosts file or with
NETTYPE parameters), depending on your workload.
4-28 Performance Guide for Informix Extended Parallel Server

5
Chapter
Effect of Configuration on I/O
In This Chapter . 5-3

Chunk and Dbspace Configuration 5-3
Associate Disk Partitions with Chunks. 5-4
Associate Dbspaces with Chunks 5-5

Management of Critical Data 5-5
Separate Disks for Critical Data 5-6
Mirroring for Critical Data 5-7

Mirroring the Root Dbspace 5-7
Mirroring the Logical Log 5-7
Mirroring the Physical Log 5-8

Configuration Parameters That Affect Critical Data 5-9

Dbspaces for Temporary Tables and Sort Files 5-10
DBSPACETEMP Configuration Parameter 5-12
DBSPACETEMP Environment Variable 5-13
Temporary Space Estimates 5-14

I/O for Tables and Indexes 5-14
Sequential Scans 5-15
Light Scans . 5-15
Light Appends 5-17
Unavailable Data 5-17
Configuration Parameters That Affect I/O for Tables

and Indexes. 5-18
ISOLATION_LOCKS 5-18
RA_PAGES, IDX_RA_PAGES, RA_THRESHOLD,

and IDX_RA_THRESHOLD 5-19
DATASKIP 5-20

5-2 Perf
Background I/O Activities 5-21
Configuration Parameters That Affect Checkpoints 5-22

CKPINTVL 5-23
LOGFILES, LOGSIZE, LOGSMAX, and PHYSFILE 5-24
ONDBSPDOWN 5-25
USEOSTIME 5-25

Configuration Parameters That Affect Logging 5-26
LOGBUFF and PHYSBUFF 5-26
LTXHWM and LTXEHWM 5-27

Configuration Parameters That Affect Page Cleaning 5-27
CLEANERS 5-27
LRUS, LRU_MAX_DIRTY, and LRU_MIN_DIRTY 5-28

Configuration Parameters That Affect Fast Recovery 5-28
ormance Guide for Informix Extended Parallel Server

In This Chapter
This chapter describes how your database server configuration affects I/O
activity. It covers the following topics:

■ Configuring chunks and dbspaces

■ Managing critical data

■ Managing temporary space

■ Managing I/O for tables

■ Managing background I/O activities

Chunk and Dbspace Configuration
All of the data in a database is stored on disk. How fast the database server
can copy required data pages to and from disk is important in improving
performance.

Disks are usually the slowest component in the I/O path for a transaction or
query that runs entirely on one host computer. Network communication can
also introduce delays in client/server applications, but these delays are
usually outside of the control of the database server administrator.

Disks can become overused or saturated when pages are requested often.
Saturation can also occur when you use a disk for multiple purposes, such as
for both logging and active database tables, when disparate data resides on
the same disk, or when table extents are interleaved.
Effect of Configuration on I/O 5-3

Associate Disk Partitions with Chunks
The various functions that your application performs, as well as the
consistency-control functions that the database server performs, determine
the optimal disk, chunk, and dbspace layout for your database. Chapter 6,
“Table Performance,” discusses these factors. The more coserver nodes you
make available to the database server, the easier it is to balance I/O across
them.

This section outlines important issues for the initial configuration of your
chunks and dbspaces. Consider the following issues when you decide how
to lay out chunks and dbspaces on disks:

■ Placement and mirroring of critical database server data

■ Load balancing

■ Reducing contention

■ Ease of backup and restore

The number of chunks, dbslices, and dbspaces that you can create is
determined by the CONFIGSIZE configuration parameter, and its overriding
parameters, MAX_DBSLICES, MAX_CHUNKS, and MAX_DBSPACES. For
information about these parameters, refer to the Administrator’s Reference.

Associate Disk Partitions with Chunks
Informix recommends that you create chunks that occupy entire disk parti-
tions. When a chunk coincides with a disk partition (or device), you can
easily track disk-space use, and you avoid errors caused by miscalculated
offsets.

On the other hand, if your parallel-processing platform has a high-speed
interconnect, so that disk seek and transfer time is a more significant factor in
query response performance, you might consider creating a chunk in the
middle cylinders of the disk and putting your high-access tables in a dbspace
that is associated with this chunk. In general, seek time is shorter for data in
the middle cylinders of the disk because the read/write heads move a shorter
distance.

For more information about fragmenting tables across coservers, see
“Specifying Table Placement” on page 6-12.
5-4 Performance Guide for Informix Extended Parallel Server

Associate Dbspaces with Chunks
Associate Dbspaces with Chunks
Informix recommends that you associate a single chunk with a dbspace,
especially when you plan to use that dbspace for a table fragment. For more
information on table placement and layout, refer to Chapter 6, “Table
Performance.”

When a disk that contains the system catalog for a particular database fails,
the entire database is inaccessible until the system catalog is restored. For this
reason, Informix recommends that you do not cluster the system catalog
tables for all databases in a single dbspace but instead place the system
catalog tables with the database tables that they describe. System catalog
tables require about 1.5 megabytes of disk space.

To create the database system catalog tables in the table dbspace

1. Create a database in the dbspace in which the table is to reside.

2. Use the SQL statement DATABASE or CONNECT to make that
database the current database.

3. Enter the CREATE TABLE statement to create the table.

Management of Critical Data
The disk or disks that contain the system reserved pages, the physical log,
and the dbspaces that contain the logical-log files are critical to the operation
of the database server. It cannot operate if any of these elements is
unavailable. By default, the database server places all three critical elements
in the root dbspace on each coserver.

The root dbspace for each coserver is specified in the ROOTDBSLICE configu-
ration parameter. By default, the root dbslice is rootdbs. The root dbspaces
on the coservers are rootdbs.1, rootdbs.2, and so on.

To decide on an appropriate placement strategy for critical database server
data, you must balance the necessity of protecting data availability and
allowing maximum logging performance.
Effect of Configuration on I/O 5-5

Separate Disks for Critical Data
To prevent the database server from placing temporary tables and sort files
in critical dbspaces, use the default setting, NOTCRITICAL, for the
DBSPACETEMP configuration parameter in the ONCONFIG file. Even better,
use the onutil utility to create dbspaces or dbslices explicitly for temporary
file use only and assign these spaces to the DBSPACETEMP configuration
parameter. For details, see “Dbspaces for Temporary Tables and Sort Files”
on page 5-10.

Separate Disks for Critical Data
Placing the root dbspace, logical log, and physical log in separate dbspaces
on separate disks has performance benefits. The disks that you use for each
critical database server component should be on separate controllers. The
benefits of this separation are as follows:

■ Logging activity is isolated from database I/O and allows physical-
log I/O requests to be serviced in parallel with logical-log I/O
requests.

■ Time needed to recover from a failure is reduced.

However, if a disk that contains critical data fails, the database server halts
and requires complete restoration of all data from a level-0 backup unless the
dbspaces that contain critical database server data are mirrored.

If you separate the logical and physical logs from the root dbspace, you need
a relatively small root dbspace that contains only reserved pages, the
database partition, and the sysmaster database. In many cases, 10,000
kilobytes is sufficient.

The database server configures different portions of critical data differently:

■ To move the physical log files to a dedicated dbslice, create the
dbslice and set the PHYSSLICE database server configuration
parameter.

■ To assign the logical-log files to a dedicated dbslice, create the dbslice
and use the onutil CREATE LOGICAL LOGSLICE command.

For more information about relocating the logical and physical logs, refer to
your Administrator’s Guide.

“Configuration Parameters That Affect Critical Data” on page 5-9 describes
the configuration parameters that affect each portion of critical data.
5-6 Performance Guide for Informix Extended Parallel Server

Mirroring for Critical Data
Mirroring for Critical Data
Mirroring the dbspaces that contain critical data ensures that the database
server can continue to operate when a single disk fails. However, the mix of
read and write I/O requests for a specific dbspace determines whether I/O
performance suffers if the dbspace is mirrored. A noticeable performance
advantage occurs when you mirror dbspaces that have a read-intensive use
pattern, and a slight performance disadvantage occurs when you mirror
write-intensive dbspaces.

When mirroring is in effect, two disks are available to handle read requests,
and the database server can process a higher volume of those requests.
However, each write request requires two physical write operations and is
not complete until both physical operations are performed. The write opera-
tions are performed in parallel, but the request is not complete until the
slower of the two disks performs the update. Thus, you experience a slight
performance penalty when you mirror write-intensive dbspaces.

Mirroring the Root Dbspace

You can achieve a certain degree of fault tolerance with a minimum
performance penalty if you mirror the root dbspace and restrict its contents
to read-only or seldom-accessed tables. When you place tables that are
updated often in other, nonmirrored dbspaces, use the database server
backup and restore facilities to perform warm restores of those tables if a disk
fails. When the root dbspace is mirrored, the database server remains on-line
to service other transactions while the failed disk is being repaired.

When you mirror the root dbspace, always place the first chunk on a different
device than that of the mirror. The value of the MIRRORPATH configuration
parameter should be different from the value of ROOTPATH.

Mirroring the Logical Log

The logical log is write intensive. If the dbspace that contains the logical-log
files is mirrored, you encounter the slight double-write performance penalty
described in “Mirroring for Critical Data” on page 5-7. However, if you
choose an appropriate log buffer size and logging mode, you can adjust the
rate at which logging generates I/O requests to a certain extent.
Effect of Configuration on I/O 5-7

Mirroring for Critical Data
With unbuffered and ANSI-compliant logging, the database server requests
one flush of the log buffer to disk for every committed transaction and two
when the dbspace is mirrored. Buffered logging generates far fewer I/O
requests than unbuffered or ANSI-compliant logging. With buffered logging,
the log buffer is written to disk only when it fills and all the transactions that
it contains are completed. You can reduce the frequency of logical-log I/O
even more if you increase the size of your logical-log buffers. However, with
buffered logging you might lose transactions in partially filled buffers if the
system fails.

Although database consistency is guaranteed under buffered logging,
specific transactions are not guaranteed against a fault. The larger the logical-
log buffers, the more transactions you might need to reenter when service is
restored after a fault.

You cannot specify an alternative dbspace for logical-log files in your initial
database server configuration as you can for the physical log. To add logical-
log files to a different dbspace and then drop the logical-log files in the root
dbspace, follow these two steps:

1. Use the onutil CREATE LOGICAL LOG command to add logical-log
files to an alternative dbspace.

2. Use the onutil DROP LOGICAL LOG command to drop logical-log
files from the root dbspace.

For more information about onutil, refer to the Administrator’s Reference.

Mirroring the Physical Log

The physical log is write intensive, with activity occurring at checkpoints and
when buffered data pages are flushed to the disk. I/O to the physical log also
occurs when a page-cleaner thread is activated. If the dbspace that contains
the physical log is mirrored, you encounter the slight double-write perfor-
mance penalty noted in “Mirroring for Critical Data” on page 5-7. To keep
I/O to the physical log at a minimum, adjust the checkpoint interval and the
LRU minimum and maximum thresholds. For more information, see
“CKPINTVL” on page 5-23 and “LRUS, LRU_MAX_DIRTY, and
LRU_MIN_DIRTY” on page 5-28.
5-8 Performance Guide for Informix Extended Parallel Server

Configuration Parameters That Affect Critical Data
Configuration Parameters That Affect Critical Data
Use the following configuration parameters to configure the root dbspace
and its mirror components:

■ MIRROR

■ MIRROROFFSET

■ MIRRORPATH

■ ROOTNAME

■ ROOTOFFSET

■ ROOTPATH

■ ROOTSIZE

■ ROOTSLICE

These parameters determine the location and size of the initial chunk of the
root dbspace and configure mirroring, if any, for that chunk. (If the initial
chunk is mirrored, all other chunks in the root dbspace must also be
mirrored). These parameters have no other major impact on performance.

The following configuration parameters affect the logical logs:

■ LOGBUFF

■ LOGFILES

■ LOGSIZE

■ LOGSMAX

LOGBUFF determines the size of the three logical-log buffers that are in
shared memory. For more information on LOGBUFF, refer to “LOGBUFF” on
page 4-20. LOGFILES specifies the number of logical log files on each coserver
when the database server is initialized. LOGSIZE determines the size of each
logical log fix, and LOGSMAX specifies the maximum number of logical-log
files. LOGSMAX must always be larger than LOGFILES.

The following configuration parameters determine the location and size of
the physical log:

■ PHYSDBS

■ PHYSFILE
Effect of Configuration on I/O 5-9

Dbspaces for Temporary Tables and Sort Files
Dbspaces for Temporary Tables and Sort Files
Applications that use temporary tables or large sort operations require a
large amount of temporary space.

You can improve performance with the use of temporary dbspaces or temporary
dbslices that you create exclusively to store temporary tables and sort files.
Specify these specially created dbspaces and dbslices as arguments to the
DBSPACETEMP configuration parameter and the DBSPACETEMP
environment variable to ensure that the database server uses these spaces for
temporary tables and sort files.

The database server uses the value of the DBSPACTEMP configuration
parameter or environment variable for the temporary table and sort files in
the following circumstances:

■ When you create an explicit temporary table with the INTO SCRATCH
or INTO TEMP option of the SELECT statement or with the SCRATCH
TABLE or TEMP TABLE clause of the CREATE TABLE statement, unless
you specify a fragmentation scheme for the temporary table.

The database server uses only dbspaces that are marked temporary
if you specify the TEMP keyword with the DBSPACETEMP configura-
tion parameter. If DBSPACETEMP is set with the default,
NOTCRITICAL, the database server can use any dbspace except the
root dbspace or a dbspace that contains logical or physical logs.

If you specify a list of dbspaces or dbslices as an argument to the
DBSPACETEMP configuration parameter, only the specified spaces
are used for temporary files. If you include ordinary logging
dbspaces or dbslices, these spaces can be used for temporary files
created with the TEMP keyword, which are logged by default and
support rollback.

For information about explicit temporary tables, see “Explicit Tem-
porary Tables” on page 6-8.
5-10 Performance Guide for Informix Extended Parallel Server

Dbspaces for Temporary Tables and Sort Files
■ When the database server writes to disk any overflow that results
from the following database operations:

❑ SELECT statement with GROUP BY clause

❑ SELECT statement with ORDER BY clause

❑ Hash join operation

❑ Outer join operation

❑ Index builds

Warning: If you do not specify a value for the DBSPACETEMP configuration
parameter, the database server uses the root dbspace.

Three general guidelines apply to creating temporary dbspaces for DSS
applications:

■ Configure as much space as possible for temporary dbspace.

Large DSS applications often require as much temporary disk space
as permanent table and index disk space. For calculations of the min-
imum temporary space requirements, use the formulas for
calculating table size in Chapter 6, “Table Performance.”

■ Specify temporary dbspaces for each coserver, and balance the
temporary space across all coservers so that each coserver has the
same amount of temporary space and the same number of
temporary dbspaces.

Threads running on each coserver can use only the temporary space
on that coserver.

■ To optimize I/O throughput, create temporary dbspaces on separate
disks from the permanent dbspaces if possible.

Important: After you create temporary dbspaces and specify them in the
DBSPACETEMP configuration parameter, you must restart the database server to
include the new setting.

To create a dbspace for the exclusive use of temporary tables and sort files,
use one of the following commands:

■ The onutil CREATE TEMP DBSLICE command to create temporary
dbspaces across multiple coservers

■ The onutil CREATE TEMP DBSPACE command to create a temporary
dbspace on one coserver
Effect of Configuration on I/O 5-11

DBSPACETEMP Configuration Parameter
For best performance, use the following guidelines:

■ To balance the I/O impact, place each temporary dbspace on a
separate disk.

■ To maximize parallel processing on each coserver node, the number
of temporary dbspaces should be greater than or equal to the number
of CPU VPs specified on each coserver.

The database server does not perform logical or physical logging of
temporary dbspaces, and temporary dbspaces are never backed up as part
of a full-system backup. You cannot mirror a temporary dbspace.

To simplify management of temporary dbspaces and improve performance,
create temporary dbslices and specify the dbslice names as the setting of
DBSPACETEMP. Make sure that the dbspaces in the dbslices are balanced
across all coservers and all disks on each coserver. The database server
distributes temporary query activity by round-robin through the temporary
dbspaces. If you do not balance the dbspaces across the coservers, the
coserver with more temporary dbspaces uses more of its resources for
temporary file activity and might create a throughput bottleneck or a disk
hot spot.

For information about how to use the onutil utility to create temporary
dbspaces and dbslices, see the Administrator’s Reference.

DBSPACETEMP Configuration Parameter
The DBSPACETEMP configuration parameter can specify a list of dbspaces or
dbslices in which the database server places temporary tables and sort files
by default. The database server fragments temporary tables across all the
listed dbspaces, using a round-robin distribution scheme. (See “Designing a
Distribution Scheme” on page 9-23.)

If you set the DBSPACETEMP configuration parameter to TEMP, the database
server uses only the dbspaces or dbslices created with the TEMP keyword for
temporary files. For detailed information about the settings of DBSPACTEMP,
see the Administrator’s Reference and “Dbspaces for Temporary Tables and
Sort Files” on page 5-10.
5-12 Performance Guide for Informix Extended Parallel Server

DBSPACETEMP Environment Variable
Important: For best performance, use DBSPACETEMP to specify dbspaces on
separate disks across all coservers for temporary tables and sort files. To simplify
creating and managing temporary dbspaces, create them in dbslices that distribute
the dbspaces evenly across all disks and coservers.

DBSPACETEMP Environment Variable
The user can set the DBSPACETEMP environment variable to override the
global DBSPACETEMP parameter. This environment variable specifies a
comma- or colon-separated list of dbspaces or dbslices in which to place
temporary tables for the current session.

Use the DBSPACETEMP configuration parameter with the TEMP keyword or
the DBSPACETEMP environment variable to improve performance of sort
operations and prevent the database server from unexpectedly filling file
systems.

Informix recommends that you use DBSPACETEMP instead of the
PSORT_DBTEMP environment variable to provide sort file space for the
following reasons:

■ DBSPACETEMP usually yields better performance.

When dbspaces reside on character-special devices (also known as
raw disk devices) the database server uses unbuffered disk access.
I/O is faster to raw devices than to regular (buffered) operating-
system files because the database server manages the I/O operation
directly.

■ PSORT_DBTEMP specifies one or more operating-system directories
in which to place sort files.

These operating-system files can unexpectedly fill on your computer
because the database server does not manage them and the database
server utility programs do not provide monitoring for them.
Effect of Configuration on I/O 5-13

Temporary Space Estimates
Temporary Space Estimates
Use the following guidelines to estimate the amount of temporary space to
allocate:

■ For OLTP applications, allocate temporary dbspaces that equal at
least 10 percent of the size of all tables. If the total table size is 100
gigabytes, create at least 10 gigabytes of evenly distributed
temporary dbspaces.

■ DSS applications might require temporary space equal to more than
50 percent of the amount of permanent table space. If you have
enough disk space, it is prudent to create at least as much temporary
dbspace as permanent table space.

DSS applications also often create explicit temporary tables to
improve query processing speed. Allow for such tables in your esti-
mates of the temporary space required.

Although hash joins are performed entirely in shared memory if pos-
sible, hash tables might overflow to temporary space on disk. Use the
following formula to estimate the amount of memory that is required
for the hash table in a hash join:

hash_table_size = (32 bytes + row_size) * num_rows_smalltab

The value for num_rows_smalltab should be the number of rows in the
probe table, which is the table used to probe the hash table.

I/O for Tables and Indexes
One of the most frequent functions that the database server performs is to
bring data and index pages from disk into memory. The database server can
read pages individually for brief transactions and sequentially for some
queries. You can configure the number of pages that the database server
brings into memory and the timing of I/O requests for sequential scans. You
can also indicate how the database server is to respond when a query
requests data from a dbspace that is temporarily unavailable.
5-14 Performance Guide for Informix Extended Parallel Server

Sequential Scans
Sequential Scans
When a query requires a sequential scan of data or index pages, most of the
I/O wait time occurs while the database server seeks the appropriate starting
page. If you bring in a number of contiguous pages with each I/O operation,
performance for sequential scans improves dramatically. Bringing additional
pages in with the first page in a sequential scan is called read-ahead.

The timing of the I/O operations that are required for a sequential scan is also
important. If the scan thread must wait for the next set of pages to be brought
in after it works its way through each batch, a delay results. Timing second
and subsequent read requests to bring in pages before they are needed
provides the greatest efficiency for sequential scans.

The number of pages to bring in and the frequency of read-ahead I/O
requests depend on the availability of space in the memory buffers. Read-
ahead can increase page cleaning to unacceptable levels if too many pages are
brought in with each batch or if batches are brought in too often. For infor-
mation on how to configure read-ahead, refer to “RA_PAGES,
IDX_RA_PAGES, RA_THRESHOLD, and IDX_RA_THRESHOLD” on
page 5-19.

Light Scans
In some circumstances, the database server bypasses the LRU queues and
does not use the buffer pool when it performs a sequential scan. Such a
sequential scan is termed a light scan.

Light scans can occur on STATIC tables at any isolation level or on other table
types in the following isolation levels:

■ In Dirty Read isolation level, light scans can occur for all tables,
including nonlogging tables.

■ In Repeatable Read isolation level, light scans can occur if the table
has a shared or exclusive lock.

■ In Committed Read isolation level, light scans can occur if the table
has a shared or exclusive lock.

■ In Cursor Stability isolation level, light scans can occur only on
STATIC tables.
Effect of Configuration on I/O 5-15

Light Scans
The performance of light scans is based on the following factors:

■ Up-to-date table statistics

■ The value of RA_PAGES and RA_THRESHOLD

■ The size of the virtual shared-memory segment

In the onstat -g scn output, the ScanType column shows whether each thread
is using a light scan or is using the buffer pool. The following onstat - scn
output indicates that the thread is using the buffer pool to scan the table:

RSAM sequential scan info
SesID Thread Partnum Rowid Rows Scan'd Scan Type Lock Mode Notes
16 994 30002 1cc4e 61583 Buffpool SLock+Test

In the Scan Type column the onstat -g scn output might also display Light ,
for a light scan; Keyonly , for an index scan; and Rids , for an index scan that
returns row identifiers. If an index scan is sending row identifiers to a light
scan, Skip scan appears in the Notes column.

Similar information is displayed for the light index scans. Light index scans
can occur if the index meets these requirements:

■ Only one index fragment must be scanned after unnecessary index
fragments are eliminated.

■ The WHERE clause of the query does not contain an IN clause or OR
operator.

■ The query does not contain any subqueries.

■ The index fragment cannot be a Generalized Key (GK) or bitmap
index.
5-16 Performance Guide for Informix Extended Parallel Server

Light Appends
Light Appends
Light appends add table rows quickly. Loading data in Express mode from
RAW tables uses light append. Light appends have the following
characteristics:

■ Space in existing pages is not reused. Rows are inserted in unused
pages after the used pages in each table fragment. Unless you load
less than one page of data, new pages are added after existing pages.
If you load less than one page of data, the database server tries to add
the data to an existing page.

■ Rows to insert pass through large private buffers to bypass the
overhead of the buffer pool.

■ Insertion of these rows is not logged.

To determine if light appends occur

1. Execute onstat -g sql to obtain the session ID.

2. Execute onstat -g xmp to obtain the query ID for your session ID.

3. Execute onstat -g xqs queryid to display the SQL operators.

Light appends are occurring if you see multiple INSERT or FLEX
INSERT operators.

Unavailable Data
Another aspect of table I/O has to do with situations in which a query
requests access to a table or fragment in a dbspace that is temporarily
unavailable. When the database server determines that a dbspace is
unavailable as the result of a disk failure, queries directed to that dbspace fail
by default. You can specify dbspaces that can be skipped by queries when
they are not available, as described in “DATASKIP” on page 5-20.

Many DSS queries require statistical data instead of exact data. When you
specify dbspaces that can be skipped, consider the degree of precision that
your queries require and how the data in the skipped dbspaces might affect
query results.

Important: If a dbspace is unavailable because a coserver is down, queries cannot be
processed. All coservers must be on-line during query processing.
Effect of Configuration on I/O 5-17

Configuration Parameters That Affect I/O for Tables and Indexes
Configuration Parameters That Affect I/O for Tables and
Indexes
The following configuration parameters affect read-ahead:

■ ISOLATION_LOCKS

■ RA_PAGES and IDX_RA_PAGES

■ RA_THRESHOLD and IDX_RA_THRESHOLD

In addition, the DATASKIP configuration parameter enables or disables data
skipping.

The following sections describe the performance considerations associated
with these parameters. For more information about database server
configuration parameters, refer to the Administrator’s Reference.

ISOLATION_LOCKS

The ISOLATION_LOCKS configuration parameter specifies the maximum
number of rows that can be locked on a single scan when the Cursor Stability
isolation level is in effect.

The Cursor Stability isolation level keeps the current row locked and does not
release the lock until the row is no longer current. Use Cursor Stability when
Repeatable Read is too strong because it locks the entire table, but Committed
Read is too weak because it does not lock any rows. Cursor Stability allows
for one or more rows to be locked but does not lock the entire table.

The default setting of ISOLATION_LOCKS is 1, but you can set it to a higher
level. At some point, however, performance improvements level off, and
concurrency conflicts approach those of the Repeatable Read isolation level
or whole-table locking.

Important: If you set ISOLATION_LOCKS to a value greater than 1, review your
setting for the LOCKS configuration parameter. For more information on how to
determine the value for the LOCKS configuration parameter, refer to “LOCKS” on
page 4-19.
5-18 Performance Guide for Informix Extended Parallel Server

Configuration Parameters That Affect I/O for Tables and Indexes
RA_PAGES, IDX_RA_PAGES, RA_THRESHOLD, and
IDX_RA_THRESHOLD

The RA_PAGES parameter specifies the number of data pages that the
database server brings into memory in a single I/O operation during
sequential table scans, index builds, and UPDATE STATISTICS processing. The
RA_THRESHOLD parameter specifies the point at which the database server
issues an I/O request to bring in the next set of data pages from disk.

The IDX_RA_PAGES and IDX_RA_THRESHOLD configuration parameters
specify the read-ahead behavior for index pages. If your queries scan indexes
for a large range of values, adjust the index read-ahead parameters to accom-
modate these scans. The default value for IDX_RA_PAGES is 4 for single-
processor nodes and 8 for multiprocessor nodes. The default value for
IDX_RA_THRESHOLD is IDX_RA_PAGES / 2.

Because most I/O wait time is used to seek the correct starting point on disk,
you might increase the efficiency of sequential scans and index builds if you
increase the number of contiguous pages that are brought in with each
transfer. However, setting RA_PAGES AND IDX_RA_PAGES too large or
RA_THRESHOLD and IDX_RA_THRESHOLD as too high a proportion of
BUFFERS might result in unnecessary page cleaning to make room for pages
that are not needed immediately.

In general, set RA_THRESHOLD close to the value of RA_PAGES so that the
database server does not have to wait for read-ahead actions to be complete
before it can use the pages. Use onstat -P output, as shown in the following
example, to monitor read-ahead efficiency:

Profile
dskreads pagreads bufreads %cached dskwrits pagwrits bufwrits %cached
1468 845 2565859 99.94 80581 67220 593352 86.42
isamtot open start read write rewrite delete commit
rollbk
3329106 582147 539920 478921 116870 31109 28704 2240 18
ovlock ovuserthread ovbuff usercpu syscpu numckpts flushes
0 0 0 1364.45 90.76 15 2114
bufwaits lokwaits lockreqs deadlks dltouts ckpwaits compress seqscans
2322 4 20002682 0 0 7 1218 12130
ixda-RA idx-RA da-RA RA-pgsused lchwaits
0 0 13 13 107663
Effect of Configuration on I/O 5-19

Configuration Parameters That Affect I/O for Tables and Indexes
Add the values in the ixda-RA, idx_RA, and da-RA fields in the last row of
the output. Compare the total to the value in the RA-pgused field. If the sum
of the read-ahead field values is not approximately equal to the number of
read-ahead pages used, reduce the setting of RA_PAGES to adjust the number
of read-ahead pages.

Use the following formulas to calculate values for RA_PAGES and
RA_THRESHOLD:

RA_PAGES = (BUFFERS * bp_fract) / (2 * large_queries) + 2
RA_THRESHOLD = (BUFFERS * bp_fract) / (2 * large_queries) - 2

To monitor read-ahead activity, use onstat -P. If the sum of the read-ahead
columns is higher than RA-pgused, read-ahead is set too high. You might
also notice a decrease in the read-cache rate if read-ahead is set too high.
Adjust the IDX_RA_PAGES setting as appropriate to balance read-ahead for
index and data pages.

DATASKIP

The DATASKIP configuration parameter allows you to specify which
dbspaces, if any, queries can skip when those dbspaces are not available as
the result of a disk failure. You can list specific dbspaces or turn data skipping
on or off for all dbspaces.

To specify dbspaces to be skipped and turn DATASKIP off and on without
restarting the database server, you can use the SQL statement SET DATASKIP.
For more information, see the Informix Guide to SQL: Syntax.

The database server sets the sixth character in the SQLWARN array to Wwhen
data skipping is enabled. For more information about the SQLWARN array,
refer to the Informix Guide to SQL: Tutorial.

bp_fract is the portion of data buffers to use for large scans that require
read-ahead. For example, to allow large scans to take up to 75
percent of buffers, set bp_fract to 0.75 .

large_queries is the number of concurrent queries that require a read-ahead
and that you intend to support.
5-20 Performance Guide for Informix Extended Parallel Server

Background I/O Activities
Warning: The database server cannot determine whether the results of queries are
consistent when dbspaces can be skipped. If the dbspace contains a table fragment, the
user who executes the query must be sure that the rows in that fragment are not
needed for an accurate query result. If DATASKIP is on, queries with incomplete data
might return results that are inconsistent with the actual state of the database or with
similar queries run earlier or later, which might result in confusing or misleading
query results.

Background I/O Activities
Background I/O activities do not service SQL requests directly. Many of these
activities are essential to maintain database consistency and other aspects of
database server operation. However, they create overhead in the CPU and
take up I/O bandwidth, taking time away from queries and transactions. If
you do not configure background I/O activities properly, too much overhead
for these activities can limit the transaction throughput of applications.

You must balance the requirements for background I/O activities in the
following list:

■ Checkpoints

■ Logging

■ Page cleaning

■ Backup and restore

■ Rollback and recovery

Checkpoints occur regardless of the amount of database activity although
they occur more often as activity increases. Other background activities, such
as logging and page cleaning, also occur more often as database use
increases. Activities such as backups, restores, or fast recoveries occur only as
scheduled or under exceptional circumstances.

Checkpoints, logging, and page cleaning are necessary to maintain database
consistency. If checkpoints occur often and the logical logs are not large,
database recovery takes less time. For this reason, a major consideration
when you try to reduce the overhead for these activities is the delay that you
can accept during recovery.
Effect of Configuration on I/O 5-21

Configuration Parameters That Affect Checkpoints
Another consideration is how page cleaning is performed. If pages are not
cleaned often enough, an sqlexec thread that performs a query might not be
able to find the available pages that it needs. The sqlexec thread then writes
the buffer to disk (a foreground write) and waits for pages to be freed.
Foreground writes impair performance and should be avoided. To reduce the
frequency of foreground writes, increase the number of page cleaners or
decrease the threshold for triggering a page cleaning. (See “LRUS,
LRU_MAX_DIRTY, and LRU_MIN_DIRTY” on page 5-28.) Use xctl onstat -F
to monitor the frequency of foreground writes, as the following example
shows:

Fg Writes LRU Writes Chunk Writes
0 103 311
address flusher state data
302a5740 0 I 0 = 0X0
 states: Exit Idle Chunk Lru

Foreground writes should be eliminated or kept to a minimum. At check-
points, the page cleaners indicated by the flusher field should be writing to
chunks. Generally, for OLTP database servers should generate higher
numbers in the LRU Writes column and DSS database servers should generate
higher numbers in the Chunk Writes column.

For the most part, tuning background I/O activities involves striking a
balance between appropriate checkpoint intervals, logging modes and log
sizes, and page-cleaning thresholds. The thresholds and intervals that trigger
background I/O activity often interact. Adjustments to one threshold might
merely shift the performance bottleneck, not remove it.

Configuration Parameters That Affect Checkpoints
The following configuration parameters affect checkpoints:

■ CKPTINTVL

■ LOGFILES

■ LOGSIZE

■ LOGSMAX

■ ONDBSPDOWN

■ PHYSFILE

■ USEOSTIME
5-22 Performance Guide for Informix Extended Parallel Server

Configuration Parameters That Affect Checkpoints
CKPINTVL

The CKPTINTVL configuration parameter specifies the maximum interval
between checkpoints. In most instances, fuzzy checkpoints are performed
instead of full checkpoints to improve transaction throughput.

■ Fuzzy checkpoints are faster than full checkpoints because the
database server flushes fewer pages to disk. Because fuzzy check-
points take less time to complete, the database server returns more
quickly to processing queries and transactions. All changes to the
data since the last full checkpoint or fast recovery are recorded in the
logical log. In an emergency, fast recovery and rollback can return the
database to a consistent state.

■ Full checkpoints flush all dirty pages in the buffer pool to disk to
ensure that the database is physically consistent. The database server
can skip a checkpoint if all data is physically consistent at the check-
point time.

For information about when fuzzy checkpoints are performed and when full
checkpoints are performed, refer to the discussion of checkpoints in the
Administrator’s Guide.

The database server writes a message to the message log to note the time that
it completes a checkpoint. To read these messages, use onstat -m.

Checkpoints also occur whenever the physical log becomes 75 percent full.
However, with fuzzy checkpoints the physical log does not fill as rapidly
because fuzzy operations in pages are not physically logged. If you set
CKPTINTVL to a long interval, you can use physical-log capacity to trigger
checkpoints based on actual database activity instead of at a fixed interval.
Nevertheless, a long checkpoint interval can increase the time that is needed
for recovery if the system fails.

Depending on your throughput and data-availability requirements, you can
choose an initial checkpoint interval of 5, 10, or 15 minutes, with the under-
standing that checkpoints might occur more often if physical-logging activity
requires them.
Effect of Configuration on I/O 5-23

Configuration Parameters That Affect Checkpoints
LOGFILES, LOGSIZE, LOGSMAX, and PHYSFILE

The LOGSIZE parameter specifies the size of the logicaL log. Use the following
formula to obtain an initial estimate for LOGSIZE in kilobytes:

LOGSIZE = (connections * maxrows) * 512

LOGSIZE, LOGFILES, and LOGSMAX indirectly affect checkpoints because
they specify the size and number of logical-log files. Because fuzzy opera-
tions are written to the logical logs instead of being flushed to the disk, logical
logs fill more rapidly with fuzzy checkpoints. If your database system creates
many transactions, you probably need more logical logs than you would
need if only full checkpoints were performed.

A checkpoint can occur when the database server detects that the next
logical-log file to become current contains the most-recent checkpoint record.
The size of the log also affects the thresholds for long transactions. The log
should be large enough to accommodate the longest transaction, except as
the result of an error, that you are likely to encounter. For more information,
see “LTXHWM and LTXEHWM” on page 5-27.

The PHYSFILE parameter specifies the size of the physical log. This parameter
indirectly affects checkpoints because whenever the physical log becomes
75 percent full, a checkpoint occurs. If your workload requires intensive
updates and updates do not usually occur on the same pages, you can use the
following formula to calculate a maximum size for the physical log:

PHYSFILE = (connections * 20 * pagesize) / 1024

You can reduce the size of the physical log if applications require fewer
updates or if updates tend to cluster within the same data pages. If you
increase the checkpoint interval, as explained in “CKPINTVL” on page 5-23,
or expect increased activity, consider increasing the size of the physical log.
To use physical-log fullness to trigger checkpoints, decrease the size of the
physical log.

connections is the number of connections for all network types specified in
the sqlhosts file or registry by one or more NETTYPE
parameters.

maxrows is the largest number of rows to be updated in a single transac-
tion.
5-24 Performance Guide for Informix Extended Parallel Server

Configuration Parameters That Affect Checkpoints
ONDBSPDOWN

The ONDBSPDOWN configuration parameter specifies the database server
behavior when an I/O error indicates that a dbspace is down. By default, the
database server marks any dbspace that contains no critical database server
data as down and continues processing. Critical data includes the root
dbspace, the logical log, and the physical log. You must back up all logical
logs and then perform a warm restore on the down dbspace to restore access
to it.

The database server halts operation whenever a disabling I/O error occurs on
a nonmirrored dbspace that contains critical data, regardless of the setting for
ONDBSPDOWN. In such an event, you must perform a cold restore of the
database server to resume normal database operations.

When ONDBSPDOWN is set to 2, the database server continues processing to
the next checkpoint and then suspends processing of all update requests. The
database server repeatedly retries the I/O request that produced the error
until the dbspace is repaired and the request is complete or until the database
server administrator intervenes. The administrator can use onmode -O to
mark the dbspace down and continue processing while the dbspace remains
unavailable or use onmode -k to halt the database server.

Important: If you set ONDBSPDOWN to 2, be sure to monitor the status of your
dbspaces continuously.

When ONDBSPDOWN is set to 1, the database server treats all dbspaces as
though they were critical. Any nonmirrored dbspace that becomes disabled
halts normal processing and requires a cold restore. The performance impact
of halting the database server and performing a cold restore when any
dbspace goes down can be severe.

Important: If you decide to set ONDBSPDOWN to 1, consider mirroring all your
dbspaces.

USEOSTIME

The USEOSTIME parameter specifies whether the database server uses
subsecond precision when it gets the time for SQL statements. If database
applications do not require subsecond precision, set USEOSTIME to 0 to avoid
unnecessary calls to the operating-system clock.
Effect of Configuration on I/O 5-25

Configuration Parameters That Affect Logging
When USEOSTIME is set to 0, the database server gets the operating system
clock time every second and stores the time in a shared-memory location that
is accessible to all processes. When USEOSTIME is set to 1, the database server
gets the operating system clock time each time a process requires the time of
day.

The cost of calls to the operating system clock differs on different platforms.
Nevertheless, setting USEOSTIME to 0 generally improves system
performance.

Configuration Parameters That Affect Logging
The following configuration parameters affect logging:

■ LOGBUFF

■ PHYSBUFF

■ LTXHWM

■ LTXEHWM

LOGBUFF and PHYSBUFF

The LOGBUFF and PHYSBUFF configuration parameters affect logging I/O
activity because they specify the respective sizes of the logical- and physical-
log buffers in shared memory. The size of these buffers determines how
quickly the logs fill and therefore how often they are flushed to disk.

To monitor physical and logical log buffer size and activity, use onstat -l. For
the physical log, the output of onstat -l should show that the pages/io is
approximately 75 percent of the bufsize column.

Logical-log buffer usage depends on whether logging is buffered. If logging
is not buffered, buffer-flushing intervals depend on the size of the transac-
tions and not on how much buffer space is available. If most transactions are
smaller than the buffer page size, the ratio of pages/io to bufsize might
always be low.
5-26 Performance Guide for Informix Extended Parallel Server

Configuration Parameters That Affect Page Cleaning
LTXHWM and LTXEHWM

The LTXHWM and LTXEHWM configuration parameters specify the
maximum limits for long transactions and long-transaction exclusive
rollbacks respectively.

The LTXHWM parameter specifies the percentage of a logical log that can fill
before the database server starts to check for long transactions.

The LTXEHWM parameter specifies the point at which the database server
suspends new transaction activity to locate and roll back a long transaction.
These events should be rare. If they occur, they might indicate a serious
problem within an application. Informix recommends a value of 50 for
LTXHWM and 60 for LTXEHWM. If you decrease these thresholds, consider
increasing the size of your logical-log files.

For related information, see “LOGFILES, LOGSIZE, LOGSMAX, and
PHYSFILE” on page 5-24.

Configuration Parameters That Affect Page Cleaning
The following configuration parameters affect page cleaning:

■ CLEANERS

■ LRUS

■ LRU_MAX_DIRTY

■ LRU_MIN_DIRTY

■ RA_PAGES

■ RA_THRESHOLD

“RA_PAGES, IDX_RA_PAGES, RA_THRESHOLD, and
IDX_RA_THRESHOLD” on page 5-19 describes the RA_PAGES and
RA_THRESHOLD parameters.

CLEANERS

The CLEANERS configuration parameter specifies the number of page-
cleaner threads to run.
Effect of Configuration on I/O 5-27

Configuration Parameters That Affect Fast Recovery
For installations that support fewer than 20 disks, Informix recommends one
page-cleaner thread for each disk that contains database server data. For
installations that support between 20 and 100 disks, Informix recommends
one page-cleaner thread for every two disks. For larger installations,
Informix recommends one page-cleaner thread for every four disks. If you
increase the number of LRU queues as the next section describes, increase the
number of page-cleaner threads proportionally.

LRUS, LRU_MAX_DIRTY, and LRU_MIN_DIRTY

The LRUS configuration parameter specifies the number of least recently used
(LRU) queues to set up within the shared-memory buffer pool. The buffer
pool is distributed among LRU queues. Configuring more LRU queues allows
more page cleaners to operate and reduces the size of each LRU queue. For a
single-processor system, Informix suggests that you set the LRUS parameter
to a minimum of 4. For multiprocessor systems, set the LRUS parameter to a
minimum of 4 or NUMCPUVPS, whichever is greater.

The setting of LRUS is combined with LRU_MAX_DIRTY and LRU_MIN_DIRTY
to control how often pages are flushed to disk between full checkpoints. In
some cases, you can achieve high throughput by setting these parameters so
that very few modified pages remain to be flushed when checkpoints occur.
The main function of the checkpoint is then to update the physical-log and
logical-log files.

To monitor the percentage of dirty pages in LRU queues, use xctl onstat -R.
When the number of dirty pages consistently exceeds the LRU_MAX_DIRTY
limit, you have too few LRU queues or too few page cleaners. First use the
LRUS parameter to increase the number of LRU queues. If the percentage of
dirty pages still exceeds LRU_MAX_DIRTY, use the CLEANERS parameter to
increase the number of page cleaners.

Configuration Parameters That Affect Fast Recovery
The following configuration parameters affect fast recovery:

■ OFF_RECVRY_THREADS

■ ON_RECVRY_THREADS
5-28 Performance Guide for Informix Extended Parallel Server

Configuration Parameters That Affect Fast Recovery
The OFF_RECVRY_THREADS and ON_RECVRY_THREADS parameters specify
the number of recovery threads that operate when the database server per-
forms a cold restore, warm restore, or fast recovery. The
OFF_RECVRY_THREADS configuration parameter specifies the number of
threads for cold restore. The ON_RECVRY_THREADS configuration parameter
specifies the number of threads for warm restore and fast recovery.

The number of threads should usually match the number of tables or frag-
ments that are frequently updated on each coserver to roll forward the trans-
actions recorded in the logical log.

Another way to estimate the threads required is to use the number of tables
or fragments that are frequently updated. On a single-CPU coserver, the num-
ber of threads should be no fewer than 10 and no more than 30 or 40. At a cer-
tain point, however, the overhead that is associated with each thread
outweighs the advantages of parallel threads.

A warm restore takes place concurrently with other database operations. To
reduce the impact of the warm restore on other users, you can allocate fewer
threads to it than you would to a cold restore.
Effect of Configuration on I/O 5-29

6
Chapter
Table Performance
In This Chapter . 6-3

Choosing Table Types 6-4
Using STANDARD Tables 6-5
Using RAW Tables. 6-5
Using STATIC Tables 6-6
Using OPERATIONAL Tables. 6-7
Using Temporary Tables. 6-7

Implicit Temporary Tables. 6-7
Explicit Temporary Tables 6-8

Specifying a Table Lock Mode. 6-9
Monitoring Table Use 6-10

Specifying Table Placement 6-12
Assigning Tables to Dbspaces 6-13
Moving Tables and Table Fragments to Other Dbspaces 6-13
Managing High-Use Tables. 6-14

Improving Table Performance 6-15
Estimating Table Size 6-15

Estimating Data Page Size. 6-16
Estimating Dbspace Pages for Simple Large Objects 6-20

Managing Extents 6-21
Choosing Extent Sizes 6-22
Limiting the Number of Extents for a Table 6-24
Checking for Extent Interleaving 6-25
Eliminating Interleaved Extents 6-26
Reclaiming Unused Space in an Extent 6-29

6-2 Perf
Changing Tables . 6-30
Loading and Unloading Tables 6-31

Dropping Indexes Before You Load or Update Tables 6-31
Using External Tables to Load and Unload Simple

Large Objects 6-33
Attaching or Detaching Fragments 6-33
Altering a Table Definition 6-34

In-Place ALTER TABLE. 6-34
Slow ALTER TABLE 6-40
Fast ALTER TABLE 6-40

Denormalizing the Data Model to Improve Performance 6-41
Creating Companion Tables 6-42

Using Shorter Rows for Faster Queries 6-42
Expelling Long Strings 6-43

Building a Symbol Table 6-44
Splitting Wide Tables 6-45

Dividing by Bulk 6-45
Dividing by Frequency of Use 6-45
Dividing by Frequency of Update 6-45

Adding Redundant Data 6-46
Adding Redundant Data to Tables 6-46
Adding Redundant Tables 6-46

Keeping Small Tables in Memory. 6-47
ormance Guide for Informix Extended Parallel Server

In This Chapter
This chapter describes performance considerations that are associated with
unfragmented tables and with table fragments and indexes.

This chapter discusses the following issues:

■ Table types and their performance implications

■ Table placement on disk to increase throughput and reduce
contention

■ Estimating table size

■ Changing table definitions

■ Denormalizing the database for improved performance

An instance of Extended Parallel Server consists of one or more shared-nothing
coservers. This shared-nothing architecture means that performance tuning
of dbspaces, temporary space, and tables should be approached both from
the local coserver level and from the global database server level.

The topics discussed in this chapter focus on general table questions, such as
choosing table types and creating indexes on appropriate columns, as well as
other local coserver tuning issues, such as monitoring interleaved extents:

■ For information about table fragmentation for enhanced parallel
processing, refer to Chapter 9, “Fragmentation Guidelines.”

■ For table I/O performance guidelines, refer to “I/O for Tables and
Indexes” on page 5-14.
Table Performance 6-3

Choosing Table Types
As explained in “Maintenance of Good Performance” on page 1-35,
maintaining good database performance is the joint responsibility of the
operating-system administrator, the database administrator, and the
database and application designers. However, the database administrator or
the database and application designers can handle most of the tuning issues
that this chapter discusses. Only tuning measures that involve changes to
physical structures, such as disk volumes and chunks, require the assistance
of the operating-system administrator.

Choosing Table Types
Extended Parallel Server provides several table types for various purposes.
The table type that you create depends on the kind of queries and transac-
tions that are run on the tables. Each table type is designed for a specific use.

The STANDARD type, which corresponds to a table in a logged database, is
the default. If you issue the CREATE TABLE statement without specifying the
table type, you create a STANDARD table.

Figure 6-1 lists the available types of tables and their general features.

Figure 6-1
Available Table Types

Type Permanent Logged Indexes Light Append Rollback

RAW Yes No No Yes No

STATIC Yes No Yes No No

OPERATIONAL Yes Yes Yes Yes † Yes

STANDARD Yes Yes Yes No Yes

TEMP No Yes* Yes Yes Yes*

SCRATCH No No No Yes No

† If no triggers are defined on the table

* If created in a logging dbspace, not a temporary dbspace
6-4 Performance Guide for Informix Extended Parallel Server

Using STANDARD Tables
You can use the ALTER TABLE statement to change a permanent table type,
with the following restrictions:

■ Before you convert a table type to RAW, you must drop all indexes
and constraints.

■ Before you convert a table to STANDARD, you must perform a level-
0 backup.

You cannot alter a TEMP or SCRATCH table or convert a permanent table to a
temporary table.

Using STANDARD Tables
STANDARD tables are the default table type. They permit full logging and
recovery from backups, as well as all insert, delete, and update operations.

STANDARD tables do not permit light append, which is used for efficient bulk
loading of data. Data in STANDARD tables must be loaded row by row
instead. This feature is not a disadvantage in a real-time OLTP environment
in which users update or add rows one or a few at a time. Because STANDARD
tables are logged, the recoverability provided by the rollback and fast
recovery capabilities means that data changes for these tables cannot be lost.
Before you convert any modified nonlogging table to STANDARD type, make
a level-0 backup of the table.

You need to set the lock mode appropriately for STANDARD tables,
depending on how they are used, and also to make sure that SELECT state-
ments and update cursors are executed at an appropriate isolation level. For
information about setting lock modes for tables, see “Specifying a Table Lock
Mode” on page 6-9. For descriptions of the isolation levels and their use, see
“Setting the Isolation Level” on page 8-9.

Using RAW Tables
RAW tables are used primarily to load data from external tables. RAW tables
use light appends, but they are not logged and do not support indexes, refer-
ential constraints, or rollback. Whether fast recovery or restoration from a
backup is possible depends on several factors. For more information, refer to
the chapters in the Administrator’s Guide that refer to data storage locations
and fast recovery.
Table Performance 6-5

Using STATIC Tables
For extremely fast data loading from an external table in express mode, use
RAW tables to use light append and eliminate constraint-checking and index-
building overhead. Light-append operations append rows to a table and
bypass the buffer cache to eliminate buffer-management overhead. Because
rows are appended to the table, existing space in table pages is not reused.
The table is locked exclusively during an express load so that no other user
can access the table during the load. If you update tables by deleting old data
and loading new data, use deluxe mode to reuse the space in the table.

After a RAW table is created from loaded data, use the ALTER TABLE
statement to convert the table from RAW to a different type. Before you
convert a RAW table to a STANDARD table, perform a level-0 backup.

Using STATIC Tables
STATIC tables permit read-only access and for this reason are not logged. Use
them for stable data, such as postal codes, city and state combinations,
department numbers and names, and so on. Because STATIC tables are read-
only, they are not locked when they are accessed, which reduces overhead
and speeds queries and transactions.

Although inserts, updates, or deletes are not permitted, indexes and refer-
ential constraints are allowed. To avoid locking overhead and contention
problems, the database server can use light scans for STATIC tables, as
described in “Light Scans” on page 5-15.

Only STATIC tables can have Generalized Key (GK) indexes. GK indexes can
store derived data or can be selective indexes that contain keys for only a
subset of a table, virtual column indexes that contain the result of an
expression, and join indexes that contain keys that result from joining one or
more tables. The database server can use these indexes to satisfy queries
instead of accessing the tables. If the database server uses a GK index on a
table to process a query, however, it cannot use any other indexes on that
table.

If you change the type of a table from STATIC to any other type, you must
drop all GK indexes on it.

When a transaction accesses a STATIC table, Dirty Read isolation is appro-
priate because the table is read-only and its contents does not change.
6-6 Performance Guide for Informix Extended Parallel Server

Using OPERATIONAL Tables
Using OPERATIONAL Tables
OPERATIONAL tables are often used for data derived from another source so
that restorabilty is not important. OPERATIONAL tables are frequently used
to create tables for DSS applications by loading data from active OLTP
database systems.

If an OPERATIONAL table does not have any indexes, the database server can
perform express-mode loads that use light append. Light appends, however,
reduce the recoverability and restorability of the table. For information about
light appends, see “Light Appends” on page 5-17.

Although OPERATIONAL tables permit updates, inserts, and deletes, and are
logged to permit rollback or recovery after a disk or other system failure, they
can be recovered from a backup only if data was not loaded with light
append after the most recent level-0 backup.

Deluxe-mode loads, which can update existing indexes, can be performed on
OPERATIONAL tables if the cost of completely rebuilding table indexes is too
high. Unique constraint checking is allowed. For detailed information about
high-performance loading with external tables, refer to the Administrator’s
Reference.

Using Temporary Tables
Use temporary tables to reduce sorting scope, to select an ordered subset of
table rows that are required by more than one query, or to create other tables
that can easily be derived from permanent table data. Although temporary
tables are session specific, queries run by the same session can use temporary
tables that the session created earlier. When the session exits, all temporary
tables are dropped.

The two types of temporary tables are implicit and explicit.

Implicit Temporary Tables

When the database server processes queries that contain clauses such as
GROUP BY or when it creates an index, it automatically creates an implicit
temporary table.
Table Performance 6-7

Using Temporary Tables
You do not control the location of implicit temporary tables. The database
server places implicit temporary tables in the dbspaces or dbslices that
DBSPACETEMP specifies. If your application requires large temporary files,
make sure that you create temporary dbspaces or dbslices and specify these
spaces as arguments to the DBSPACTEMP configuration parameter or
environment variable. The default behavior of DBSPACETEMP is to use any
noncritical dbspaces.

When you create dbslices or dbspaces for temporary use, make sure that
space is evenly distributed across coservers and use the guidelines in
“Temporary Space Estimates” on page 5-14 to calculate a total amount of
space that is adequate for your applications. For information about setting
DBSPACETEMP, see “DBSPACETEMP Configuration Parameter” on
page 5-12.

Explicit Temporary Tables

You create an explicit temporary table with the CREATE TABLE statement or
the SELECT...INTO statement.

Explicit temporary tables can be either logged or unlogged. Unlogged tables
avoid the overhead of logging, but they cannot be recovered by roll back.

■ To create an explicit temporary table that the database server can
fragment efficiently for parallel processing across temporary
dbspaces, use the SCRATCH option of the CREATE TABLE statement
or the INTO SCRATCH clause of the SELECT statement.

SELECT * FROM customer INTO SCRATCH temp_table
WHERE custno > 3500

Temporary tables created with the SELECT...INTO SCRATCH
statement are not logged and cannot be indexed. If you do not need
to roll back data in a temporary table and do not need indexes on the
table, use SELECT...INTO SCRATCH statements or nonlogging
temporary tables for best performance.

If you create a temporary table with the CREATE SCRATCH TABLE
statement, you can specify a fragmentation scheme.
6-8 Performance Guide for Informix Extended Parallel Server

Specifying a Table Lock Mode
■ To create an explicit temporary table that can be indexed and can
have defined constraints, use the CREATE TEMP TABLE statement or
the INTO TEMP clause of the SELECT statement.

TEMP tables can be fragmented explicitly. They are also logged
unless you use the WITH NO LOG clause. The following SQL state-
ments create a nonlogging temporary table that is fragmented by
hash in a temporary dbslice:

CREATE TEMP big_bills (cust_no CHAR(6), fname
CHAR(15), lname CHAR(25), addr1 CHAR(30)...)

WITH NO LOG
FRAGMENT BY HASH(cust_no)
IN dbsl1_temp;

To populate the temporary table, use the following SELECT
statement:

SELECT * FROM customer INTO big_bills
WHERE bill_amt > 1500;

To create a logging TEMP table you must either specify a nontem-
porary dbspace or dbslice where it should be created or include
nontemporary logging dbspaces or dbslices in the argument to the
DBSPACETEMP configuration parameter. You cannot create a logging
TEMP table in a temporary dbspace.

Explicit temporary tables and indexes on temporary tables are session
specific and are visible only to the session that creates them. When the session
ends, its temporary tables and indexes are removed.

For detailed information about the syntax used to create temporary tables,
refer to the Informix Guide to SQL: Syntax.

To learn about performance advantages of explicit temporary tables, refer to
“Fragmenting Temporary Tables” on page 9-58 and “Using Temporary
Tables to Reduce Sorting Scope” on page 13-34. For information about the
syntax of the CREATE TABLE and SELECT statements, refer to the Informix
Guide to SQL: Reference.

Specifying a Table Lock Mode
The lock mode of a table determines what portion of a table is locked when
any row is accessed. The default lock mode is PAGE, which locks the data
page that contains the accessed row until the transaction is complete.
Table Performance 6-9

Monitoring Table Use
When you create or alter a table, you can set its lock mode to TABLE, PAGE,
or ROW:

■ If you use a table primarily for OLTP applications, you might create
the table with lock mode set to ROW, so that as many clients as
possible can access the table, even if they access rows on the same
data page.

■ If you use a table primarily for DSS queries, you might set the lock
mode to TABLE to reduce the overhead of acquiring locks at a smaller
granularity. However, if you run more than one DSS query against
the same data, deadlocks might result.

For more information about the table lock mode and its implications for OLTP
and DSS applications, see Chapter 8, “Locking.”

Tip: To lock more than one row when Cursor Stability is in effect, set
ISO_CURLOCKS to a number greater than 1. If you set ISO_CURLOCKS to a number
greater than 1, row buffering is more efficient, but concurrency might be reduced.

Monitoring Table Use
The first time that the database server accesses a table, it retrieves necessary
system-catalog information for the table from the disk. For each table access,
this system-catalog information is stored in memory in the data-dictionary
cache.

The database server still places pages for system catalog tables in the buffer
pool as it does all other data and index pages. However, the data-dictionary
cache offers an additional performance advantage because the data-
dictionary information is organized in a more efficient format and organized
to allow fast retrieval.

The database server uses a hashing algorithm to store and locate information
in the data-dictionary cache. DD_HASHSIZE and DD_HASHMAX control the
size of the data-dictionary cache. To specify the number of buckets in the
data-dictionary cache, change the DD_HASHSIZE configuration parameter. To
specify the number of tables that can be stored in one bucket, change the
DD_HASHMAX configuration parameter.
6-10 Performance Guide for Informix Extended Parallel Server

Monitoring Table Use
For example, if DD_HASHMAX is 10 and DD_HASHSIZE is 100, you can
potentially store information for 1000 tables in the data-dictionary cache,
and each hash bucket can have a maximum of 10 tables. If the bucket reaches
the maximum size, the database server uses a least-recently used mechanism
to clear entries from the data dictionary.

To monitor data-dictionary cache activity, use the onstat -g dic command.

The onstat -g dic output includes the following information.

Figure 6-2
onstat -g dic Output Sample

Dictionary Cache (251 x 50):
Flags:
 1 := T=temp R=raw C=static O=operational E=external S=standard V=view
 2 := D=dirty
 3 := X=locked
 4 := F=Fragmented L=Fragment-Locally

List# Siz Flags Refcount Lid Memory-Stats Table Name
1234 Loc.Use Rem Blk size

3 1 S--F 0.0 1 515 7 7264 sysmaster:informix.sysptnhdr
8 1 S--- 0.0 0 265 2 2048 stores_demo:informix.syssynonyms

Column Name Description

List# Bucket number

Size Number of tables in the bucket

Flags
1234

Information about the status of the table, as indicated by the
list of flag codes

 (1 of 2)
Table Performance 6-11

Specifying Table Placement
Specifying Table Placement
Tables that the database server supports reside on one or more portions of a
disk or disks in a dbspace. When you configure chunks and allocate them to
dbspaces, make sure that you provide enough chunks for all of the tables or
table fragments that the dbspaces will contain. To estimate the size of a table,
follow the instructions in “Estimating Table Size” on page 6-15.

The way that tables are fragmented across dbspaces is a more important
performance factor than the placement of the table on the physical disk. For
information about fragmentation issues, see Chapter 9, “Fragmentation
Guidelines.”

Refcount:
Loc and Rem

Number of current references to a specific data-dictionary
cache entry

A single table can have more than one data-dictionary cache
entry, and more than one entry can be accessed over time
and even at the same time.

The Loc column displays the number of times that the data-
dictionary cache entry has been referenced from the local
coserver.

The Rem column is applicable only for coserver 1 and
indicates how many other coservers have a copy of this
cache entry.

Table name Name of the table that the data-dictionary information
describes

Column Name Description

 (2 of 2)
6-12 Performance Guide for Informix Extended Parallel Server

Assigning Tables to Dbspaces
Assigning Tables to Dbspaces
When you create a table, you assign it to a dbspace in one of the following
ways:

■ Explicitly, with the IN DBSPACE or IN DBSLICE clause of the CREATE
TABLE statement

■ By default, in the dbspace of the current database

The current database is set by the most-recent DATABASE or
CONNECT statement that the DBA issues before issuing the CREATE
TABLE statement.

You can fragment a table across multiple dbspaces either as individual
dbspaces or grouped in dbslices, as described in “Planning a Fragmentation
Strategy” on page 9-6.

Moving Tables and Table Fragments to Other Dbspaces
Use the ALTER FRAGMENT statement to move a table or table fragment to
another dbspace or dbslice. The ALTER FRAGMENT statement is the simplest
way to change the location of a table. However, the table is not available
while the database server moves it. Schedule the movement of a table or
fragment at a time that affects the fewest users. For a description of the ALTER
FRAGMENT statement, refer to the Informix Guide to SQL: Syntax.

The database server administrator can perform the same actions with a series
of SQL statements and external tables for parallel inserts, as described in
“Loading and Unloading Tables” on page 6-31 and the Administrator’s
Reference. Other methods for moving tables to different dbspaces might be
simpler. To unload the data from a table and then move that data to another
dbspace, use the LOAD and UNLOAD statements as described in the Informix
Guide to SQL: Syntax.

When you move a table between databases with LOAD and UNLOAD or other
SQL statements, the table can become inconsistent with the rest of the
database while data from the table is copied and reloaded. To prevent incon-
sistency in databases that are updated by user input, restrict access to the
version that remains on disk while the data transfer occurs. If you use the
loaded tables for a read-only DSS-query database, minor inconsistencies
might not be important.
Table Performance 6-13

Managing High-Use Tables
Depending on the size and fragmentation strategy of the table, and its
associated indexes, it might be faster to unload a table and reload it than to
alter fragmentation. For other tables, it might be faster to alter fragmentation.
You might have to experiment to determine which method is faster for
moving or repartitioning a table.

Managing High-Use Tables
High-use tables require special management for performance, especially in
OLTP applications. The database server provides two levels of management
for such tables.

If a table or table fragment has high I/O activity, place it in a dbspace on a
dedicated disk to reduce contention for the data that is stored in that table.
When disk drives have different performance levels, you can put the tables
with the highest use on the fastest drives. Placing two high-use tables on
separate disks reduces competition for disk access when the two tables
experience frequent, simultaneous I/O from multiple applications or when
joins are formed between them.

To isolate a high-use table on a separate disk, assign the entire disk to a
chunk. The system administrator creates chunks on each disk in such a way
that the chunks can be associated with a specific coserver. If chunks are not
assigned to an entire disk but are located at offsets, make sure that only one
coserver accesses all of the chunks on the disk.

For information about fragmenting tables across coservers, see “Designing a
Distribution Scheme” on page 9-23.
6-14 Performance Guide for Informix Extended Parallel Server

Improving Table Performance
Improving Table Performance
The following factors affect the performance that is associated with a table or
table fragment:

■ The placement of the table on the disk, as the previous sections
describe

■ The size of the table or fragment

■ The indexing strategy that you use

■ The size of table extents and how they are grouped

■ The frequency of table access

Estimating Table Size
This section describes how to calculate the approximate number of disk
pages required for tables.

After you have estimated the total table size, refer to “Planning a Fragmen-
tation Strategy” on page 9-6 for information about fragmenting the table
across the coservers in your database server.

The disk pages that are allocated to a table or table fragment are collectively
referred to as a tblspace. Attached index pages and pages that store BYTE or
TEXT data are stored in separate tblspaces in the dbspace that contains the
associated data pages of the table.

The tblspace does not correspond to any single physical region in the chunks
assigned to the dbspace. The data extents and indexes that make up a table
can be scattered through the dbspace.

The following sections describe how to estimate the page count for each type
of page associated with a table.

Tip: If an appropriate sample table already exists, or if you can use simulated data to
build a sample table of realistic size, you do not need to estimate. You can run onutil
CHECK INFO IN TABLE to obtain exact numbers.
Table Performance 6-15

Estimating Table Size
Estimating Data Page Size

How you estimate the data pages of a table depends on whether the length
of the table rows is fixed or variable.

Estimating the Size of Tables with Fixed-Length Rows

Perform the following steps to estimate the number of disk pages required
for a table with fixed-length rows. A table with fixed-length rows has no
columns of type VARCHAR or NVARCHAR.

To estimate the page size, row size, number of rows, and number of data pages

1. Subtract 60 bytes from the page size for the header on each data page.
The resulting amount is referred to as pageuse.

The page size can be set to 2048, 4096, or 8092 bytes, as described in
“PAGESIZE” on page 4-21.

2. To calculate the size of a row, add the widths of all the columns in the
table definition. TEXT and BYTE columns each use 56 bytes. If you
have already created the table, use the following SQL statement to
obtain the size of a row:

SELECT rowsize FROM systables
WHERE tabname = ' table-name ';

3. Estimate the number of rows that the table should contain. This
number is referred to as rows.

The procedure for how to calculate the number of data pages that a
table requires differs depending on whether the row size is less than
or greater than pageuse.

4. If the size of the row is less than or equal to pageuse, use the following
formula to calculate the number of data pages. The trunc() function
notation indicates that you should round down to the nearest
integer.

data_pages = rows / trunc(pageuse /(rowsize + 4))

The maximum number of rows per page is 255, regardless of the size
of the row.
6-16 Performance Guide for Informix Extended Parallel Server

Estimating Table Size
5. If the size of the row is greater than pageuse, the database server
divides the row among pages. The page that contains the initial
portion of a row is called the home page. Pages that contain subse-
quent portions of a row are called remainder pages. If a row spans
more than two pages, some of the remainder pages are completely
filled with data from that row. When the trailing portion of a row
uses less than a page, it can be combined with the trailing portions of
other rows to fill out the partial remainder page. The number of data
pages is the sum of the home pages, the full remainder pages, and the
partial remainder pages.

a. Calculate the number of home pages. The number of home pages
is the same as the number of rows.

homepages = rows

b. Calculate the number of full remainder pages. First, to calculate
the size of the row remainder, use the following formula:

remsize = rowsize - (pageuse + 8)

If remsize is less than pageuse - 4, you have no full remainder
pages. If remsize is greater than pageuse - 4, you can use remsize
in the following formula to obtain the number of full remainder
pages:

fullrempages = rows * trunc(remsize /(pageuse - 8))

c. Calculate the number of partial remainder pages. First calculate
the size of a partial row remainder left after the home and full
remainder pages for an individual row have been accounted for.
In the following formula, the remainder() function notation
indicates that you should take the remainder after division:

partremsize = remainder(rowsize /(pageuse - 8)) + 4

The database server uses page-size thresholds to determine how
many partial remainder pages to use. If remsize is greater than
pageuse - 4, use the following formula to calculate the ratio of the
partial remainder to the page:

partratio = partremsize / pageuse
Table Performance 6-17

Estimating Table Size
If remsize is less than pageuse - 4, use remsize instead of
partremsize. in the formula.

Use the appropriate formula from the following chart to
calculate the number of partial remainder pages (partrempages)
by using the value of partratio that you obtain.

d. To calculate the total number of pages, use the following
formula:

tablesize = homepages + fullrempages + partrempages

Important: Although the maximum size of a row that the database server accepts is
approximately 32 kilobytes, performance deteriorates when a row exceeds the size of
a page. For information on breaking up wide tables for improved performance, refer
to “Denormalizing the Data Model to Improve Performance” on page 6-40.

Estimating the Size of Tables with Variable-Length Rows

When a table contains one or more VARCHAR or NVARCHAR columns, its
rows usually have varying lengths that reduce the precision of the calcula-
tions. You must estimate the typical size of each VARCHAR column, based on
your understanding of the data, and use that value when you make your
estimates.

Important: When the database server allocates space to rows of varying size, it
considers a page to be full when it does not contain enough space for an additional
row of the maximum size.

Partratio Formula to calculate the number of partial remainder pages

Less than .1 partrempages = rows/(trunc((pageuse/10)/remsize) + 1)

Less than .33 partrempages = rows /(trunc((pageuse/3)/remsize) + 1)

.33 or larger partrempages = rows
6-18 Performance Guide for Informix Extended Parallel Server

Estimating Table Size
To estimate the size of a table with variable-length rows, make the following
estimates and choose a value between them, based on your understanding of
the data:

■ The maximum size of the table, calculated with the maximum width
allowed for all VARCHAR or NVARCHAR columns

■ The projected size of the table, calculated with a typical width for
each VARCHAR or NVARCHAR column

The database server stores the size of the column in an extra byte that is
added to each variable-length column.

To estimate the maximum number of data pages

1. To calculate rowsize, add together the maximum values for all
column widths.

2. Use this value for rowsize and perform the calculations described in
“Estimating the Size of Tables with Fixed-Length Rows” on
page 6-16. The resulting value is called maxsize.

To estimate the projected number of data pages

1. To calculate rowsize, add together typical values for each of your
variable-width columns. Informix suggests that you use the most
frequently occurring width in a column as the typical width for that
column. If you do not have access to the data or do not want to
tabulate widths, you might choose a fraction of the maximum width,
such as two-thirds.

2. Use this value for rowsize and perform the calculations described in
“Estimating the Size of Tables with Fixed-Length Rows” on
page 6-16. The resulting value is called projsize.

Selecting an Intermediate Value for the Size of the Table

The actual table size should fall somewhere between projsize and maxsize.
Based on your knowledge of the data, choose a value in that range that seems
reasonable to you. The less familiar you are with the data, the higher your
estimate should be.
Table Performance 6-19

Estimating Table Size
Estimating Dbspace Pages for Simple Large Objects

When you estimate space required for a table, include space for simple large
objects that are to be stored in that dbspace. Simple large objects include only
TEXT and BYTE data.

To estimate the number of pages for simple large objects

1. Calculate the usable portion of the page with the following formula:
bpuse = 4096 - 32

The 4096 bytes is the default size of a page. If you have set the
PAGESIZE configuration parameter to a different number, as
described in “PAGESIZE” on page 4-21, use that number. The 32
bytes is for overhead.

2. For each simple large object of size n, calculate the number of pages
that the simple large object occupies (bpages_n) with the following
formula:

bpages1 = ceiling(bsize1 / bpuse)
bpages2 = ceiling(bsize2 / bpuse)
...

bpages_n = ceiling(bsize_n / bpuse)

The ceiling() function notation indicates that you should round up
to the nearest integer value.

3. Add up the total number of pages for all simple large objects, as
follows:

total_bpages = bpages1 + bpages2 + ... + bpages_n

Alternatively, you can base your estimate on the median size of a simple large
object, which is the large object size that occurs most frequently. This method
is less precise, but it is easier to calculate.
6-20 Performance Guide for Informix Extended Parallel Server

Managing Extents
To estimate the number of pages based on the median size of the simple large
objects

1. Average the sizes of the TEXT or BYTE data to obtain the median size
of a simple large object.

msize = avg(bsize1 + bsize2 +
... + bsizen) / n

2. Calculate the number of pages required for a simple large object of
median size as follows:

mpages = ceiling(msize / bpuse)

3. Multiply this amount by the total number of simple large objects, as
follows:

total_bpages = bcount * mpages

Managing Extents
As you add rows to a table, the database server allocates disk space to it in
units called extents. Each extent is a block of physically contiguous pages
from the dbspace. Even if the dbspace includes more than one chunk, each
extent is allocated entirely in a single chunk so that its pages can remain
contiguous.

Contiguity is important to performance. When the data pages are
contiguous, disk-arm motion is minimized when the database server reads
the rows sequentially. The use of extents is a compromise between the
following conflicting factors:

■ Most dbspaces are shared among several tables.

■ The size of some tables is not known in advance.

■ Tables grow at different times and different rates.

■ All the pages of a table should be adjacent for best performance.

Because table sizes are not always predictable, table space cannot be preallo-
cated. The database server adds extents only when they are needed, but all
the pages in any one extent are contiguous for better performance. In
addition, when the database server creates a new extent adjacent to the
previous extent, it treats both extents as a single extent.
Table Performance 6-21

Managing Extents
Choosing Extent Sizes

When you create a table, you can specify the size of the first extent as well as
the size of each extent to be added as the table grows. The following example
creates a table with a 512-kilobyte initial extent and 100-kilobyte next extents:

CREATE TABLE big_one (…column specifications…)
IN big_space
EXTENT SIZE 512
NEXT SIZE 100

The default value for the extent size and the next-extent size is eight times the
disk page size on your system. If your system uses the default page size of 4-
kilobytes, the default extent size and the next-extent size is 32 kilobytes.

To change the next-extent size, use the ALTER TABLE statement. This change
has no effect on extents that already exist. The following example changes the
next-extent size of the table to 50 kilobytes:

ALTER TABLE big_one MODIFY NEXT SIZE 50

When you fragment an existing unfragmented table, you should also reduce
its next-extent size because each fragment requires less space than the
original table. If the unfragmented table was defined with a large next-extent
size, the database server uses that same size for the next-extent on each
fragment, which results in over-allocation of disk space.

For example, if you fragment the preceding big_one sample table across five
coservers, you can alter the next-extent size to one-fifth the original size. For
more information on the ALTER FRAGMENT statement, see the Informix Guide
to SQL: Syntax. The following example changes the next-extent size to one-
fifth of the original 100-kilobyte size:

ALTER TABLE big_one MODIFY NEXT SIZE 20
6-22 Performance Guide for Informix Extended Parallel Server

Managing Extents
The next-extent sizes of the following kinds of tables are not as important for
performance:

■ A small table is a table that requires only one extent. If such a table is
heavily used, large parts of it remains in a memory buffer.

■ An infrequently used table is not important to performance no
matter what size it is.

■ A table in a dedicated dbspace is always allocated new extents that
are adjacent to its old extents. The size of these extents is not
important because, being adjacent, they are treated as one large
extent.

If the table has an index and the index is stored in the same dbspace,
however, newly allocated extents probably are not contiguous.

When you assign an extent size to these kinds of tables, the only consider-
ation is to avoid creating large numbers of extents. The more extents that a
table occupies, the longer the database server takes to find the data. In
addition, an upper limit exists on the number of extents allowed, as
explained in “Limiting the Number of Extents for a Table” on page 6-24.

The only limit to the size of an extent is the size of the chunk. If you expect
tables in a dbspace to grow steadily to an unknown size, assign next-extent
sizes large enough so that the dbspace will use a small number of extents.

The following steps suggest one approach to assigning extents for tables of
unknown size.

To allocate space for table extents

1. Decide how to allocate space among the tables in the dbspace. For
example, you might divide the dbspace among three tables so that
one table has 40 percent, another table has 20 percent, and a third
table has 30 percent, with 10 percent reserved for small tables and
overhead.

2. Assign each table a quarter of its share of the dbspace as its initial
extent.

3. Assign each table an eighth of its share as its next-extent size.

4. Monitor the growth of the tables regularly with onutil. For more
information on how to use the onutil utility, refer to the Adminis-
trator’s Reference.
Table Performance 6-23

Managing Extents
If you do not have enough contiguous space to create an extent of the
specified size as the dbspace fills up, the database server allocates as large an
extent as it can.

Limiting the Number of Extents for a Table

The number of extents that a table can acquire is limited, depending on the
page size and the table definition.

To calculate the upper limit on extents for a particular table, use the following
set of formulas:

vcspace = 8 * vcolumns + 136
tcspace = 4 * tcolumns
ixspace = 12 * indexes
ixparts = 4 * icolumns
extspace = pagesize – (vcspace + tcspace + ixspace + ixparts +
84)
maxextents = extspace /8

The table can have no more than maxextents extents.

The database server performs the following actions to help ensure that it does
not exceed the table limits:

■ The database server keeps track of the number of extents assigned to
a table. On every sixteenth next-extent assignment, it doubles the
next-extent size for the table. For example, the thirty-second next-
extent is four times the size of the first next-extent.

■ When the database server creates a new extent adjacent to the
previous extent, it treats both extents as a single extent.

vcolumns is the number of columns that contain simple-large-object and
VARCHAR data.

tcolumns is the number of columns in the table.

indexes is the number of indexes on the table.

icolumns is the number of columns named in those indexes.

pagesize is the size of a page reported by onutil CHECK RESERVED.
6-24 Performance Guide for Informix Extended Parallel Server

Managing Extents
If you receive error -136 (No more extents) after an INSERT request, the
database server needs to add an extent to a table but cannot do so. Either not
enough disk space is available in the dbspace, or the table has been given the
maximum number of extents that is allowed. For information about how to
correct the problem, refer to Informix Error Messages in Answers OnLine.

Tip: If tables overflow the allocated dbspaces, use the onutil ALTER DBSLICE...ADD
DBSPACE command to add dbspaces to a dbslice. Then use the SQL statement ALTER
FRAGMENT to redistribute the table and index fragments across all dbspaces in the
dbslice.

Checking for Extent Interleaving

When two or more growing tables share a dbspace, extents of one tblspace
might be placed between extents that another tblspace uses. Such extents are
interleaved. Interleaving creates distances between the extents of a table, as
Figure 6-3 shows. Performance suffers when disk seeks for a table must skip
over extents, particularly for sequential scans. Try to optimize the table-
extent sizes, which limits head movement, or consider placing tables in
separate dbspaces.

To check for extent interleaving, monitor chunks. Execute onutil with the
CHECK SPACE option to obtain the physical layout of information in the
chunk. The following information appears:

■ Dbspace name and owner

■ Number of chunks in the dbspace

■ Sequential layout of tables and free space in each chunk

■ Number of pages dedicated to each table extent or free space

This output is useful for determining the degree of extent interleaving. If the
database server cannot allocate an extent in a chunk despite an adequate
number of free pages, the chunk might be badly interleaved.

Figure 6-3
Interleaved Table

Extents
Table 1 extents

Table 2 extents

Table 3 extents
Table Performance 6-25

Managing Extents
Eliminating Interleaved Extents

You can eliminate interleaved extents with one of the following methods:

■ Reorganize the table by unloading it into an external table and
reloading it from the external table.

■ Reorganize the tables with the UNLOAD and LOAD statements.

■ Use the CREATE CLUSTER INDEX statement.

■ Use the ALTER TABLE statement.

For a discussion of ways to prevent extent interleaving, refer to “Choosing
Extent Sizes” on page 6-22.

Reorganizing Dbspaces and Tables to Eliminate Extent Interleaving

You can eliminate interleaved extents by rebuilding a dbspace, as Figure 6-4
illustrates. The order of the reorganized tables in the dbspace is not
important. All that matters is that the extents of each reorganized table are
contiguous.

To reorganize tables in a dbspace

1. Drop indexes to unload or reload tables rapidly.

2. Copy the tables in the dbspace to external tables individually with
any of the following methods:

■ The SELECT INTO EXTERNAL TABLE statement

■ The CREATE EXTERNAL TABLE and the INSERT INTO EXTERNAL
TABLE statements

■ The UNLOAD statement

Use external tables for the best performance.

Figure 6-4
A Dbspace That

Eliminates
Interleaved Extents

Table 1 extents

Table 2 extents

Table 3 extents
6-26 Performance Guide for Informix Extended Parallel Server

Managing Extents
3. Drop all the tables in the dbspace.

4. Re-create and load the tables with one of the following methods,
depending on how you unloaded the data:

■ The CREATE TABLE and INSERT FROM EXTERNAL TABLE
statements

■ The LOAD statement

The LOAD statement re-creates the tables with the same
properties as they had before, including the same extent sizes.

5. Perform a level-0 backup, re-create indexes and run UPDATE
STATISTICS on the re-created tables.

For further information about using external tables to load and unload large
tables, refer to the Administrator’s Reference. For more information about the
syntax of the UNLOAD and LOAD statements, refer to the Informix Guide to
SQL: Syntax.

Creating a Cluster Index to Eliminate Extent Interleaving

Sometimes you can eliminate extent interleaving if you create a clustered
index. When you use the CLUSTER keyword of the CREATE INDEX statement,
the database server sorts and reconstructs the table. The CLUSTER keyword
causes the database server to reorder rows in the physical table to match the
order in the index.

In Extended Parallel Server, however, you cannot create a clustered index on
a STANDARD type table. For more information, refer to “Clustering Indexes”
on page 7-18.
Table Performance 6-27

Managing Extents
The CLUSTER keyword eliminates interleaved extents in the following
circumstances:

■ The chunk must contain enough contiguous space to rebuild the
table.

■ The database server must use this available contiguous space to
rebuild the table.

If blocks of free space exist before this larger contiguous space, the
database server might allocate the smaller blocks first. The database
server allocates space for the CREATE INDEX process from the
beginning of the chunk, looking for blocks of free space that are
greater than or equal to the size that is specified for the next extent.
When the database server rebuilds the table with the smaller blocks
of free space that are scattered throughout the chunk, it does not
eliminate extent interleaving.

To display the location and size of the blocks of free space, execute the onutil
CHECK SPACE command.

To use the CLUSTER keyword to try to eliminate extent interleaving

1. If the index that you want to cluster already exists, drop it.

2. Create the index that you want to cluster with the CLUSTER keyword
of the CREATE INDEX statement.

This step eliminates interleaving of the extents when you rebuild the
table by rearranging the rows.

The CREATE INDEX operation automatically rebuilds all other
indexes on a table when it creates a clustered index. You compact the
indexes in this step because the database server sorts the index
values before it adds them to the B+ tree.

3. If you want to eliminate extent interleaving on other tables that
reside in the chunk, repeat steps 1 and 2 for each table.

To prevent interleaved extents from recurring, consider increasing the size of
the tblspace extents. For more information, see the Informix Guide to SQL:
Tutorial.
6-28 Performance Guide for Informix Extended Parallel Server

Managing Extents
Using ALTER TABLE to Eliminate Extent Interleaving

If you use the ALTER TABLE statement to add or drop a column or to change
the data type of a column, the database server copies and reconstructs the
table. When the database server reconstructs the entire table, the table is
rewritten onto other extents in the dbspace. However, because other tables
are still in the dbspace, the new extents might not be adjacent to each other.

Important: If you only add one or more columns to the end of a table row, the database
server does not copy and reconstruct the table during the ALTER TABLE operation.
In this case, the database server uses an in-place alter algorithm to modify each row
later, when it is updated. For more information on the conditions and syntax when
this in-place ALTER TABLE algorithm is used, refer to the “Informix Guide to SQL:
Syntax.”

Reclaiming Unused Space in an Extent

After the database server has allocated disk space to a tblspace as part of an
extent, that space remains allocated to the tblspace. Even if all extent pages
are empty after data is deleted, other tables cannot use their disk space.

Important: When you delete rows in a table, the database server reuses that space to
insert new rows in the same table. This section describes procedures to reclaim
unused space for use by other tables.

You can resize a table that does not require the entire amount of space that
was originally allocated to it. Create a new table with smaller extent sizes,
unload the data from the larger table, load it into the smaller table, and drop
the original larger table. When you drop the original, larger table, you release
the unneeded space for other tables to use.
Table Performance 6-29

Changing Tables
To reclaim the disk space in empty extents and make it available to other
tables, the database server administrator can rebuild the table. To rebuild the
table, use any of the following methods:

■ External tables

If the table does not include an index, you can unload the table, re-
create the table either in the same dbspace or in another one, and
reload the data. Using external tables improves performance. For
further information about using external tables to load and unload
very large tables, refer to the Administrator’s Reference.

■ ALTER FRAGMENT INIT

You can use the ALTER FRAGMENT INIT statement to rebuild a table,
which releases space in the extents that were allocated to that table.

For more information about the syntax of the ALTER FRAGMENT INIT
statement, refer to the Informix Guide to SQL: Syntax.

■ ALTER TABLE

You can use the ALTER TABLE statement that invokes the slow alter
algorithm to rebuild a table, which releases space in the extents that
were allocated to that table.

For information about using the ALTER TABLE statement to reclaim
empty extent space, see“Altering a Table Definition” on page 6-34.
For more information about the syntax of the ALTER TABLE
statement, refer to the Informix Guide to SQL: Syntax.

Changing Tables
You might change an existing table for the following reasons, among others:

■ To refresh large decision-support tables with data periodically

■ To add or drop historical data from a specific time period

■ To add, drop, or modify columns in large decision-support tables
when the need arises for different data analysis
6-30 Performance Guide for Informix Extended Parallel Server

Loading and Unloading Tables
Loading and Unloading Tables
Databases for decision-support applications are often created by periodically
loading and restructuring tables that have been unloaded from active OLTP
databases. Data is often loaded with external tables in express mode into
OPERATIONAL or RAW tables to get the advantage of light appends.

For example, you might use a series of SQL statements to restructure the data
and store it in a temporary table. To take advantage of parallel processing and
avoid logging overhead, use a SELECT.... INTO SCRATCH statement to unload
table data into a temporary table in temporary dbspaces. Then create an
external table and insert the temporary table into it. You then use the external
table to load the data into your data mart or data warehouse.

For a complete description of unloading and loading data from external
tables, see the Administrator’s Reference.

If you expect to load and unload the same table often to build a data mart or
data warehouse, monitor the progress of the job to estimate how long similar
jobs will take in the future. To monitor a load job, first run onstat -g sql to
obtain the session ID, and run onstat -g xmp to obtain the query ID for the
session ID. Then you can run onstat -g xqs query id to get the runtime number
of rows.

You can also enter the SET EXPLAIN ON statement to write the number of
rows to be processed to the sqlexplain.out file and then use the onstat
options to monitor the load process. Enter the SET PLOAD FILE statement to
specify a file that stores statistics about the number of rows loaded and
rejected and the location of the reject file.

Dropping Indexes Before You Load or Update Tables

In decision-support applications, you can confine most table updates to a
single time period. You might be able to set up your system so that all
updates are applied overnight or on specified dates.
Table Performance 6-31

Loading and Unloading Tables
When updates are performed as a batch, you can drop all nonunique indexes
while you make updates and then create new indexes afterward. This
strategy can have the following positive effects:

■ The updating program can run faster with fewer indexes to update.
Often, the total time to drop the indexes, update without them, and
re-create them is less than the time to update with the indexes in
place. For information about the time cost of updating indexes, see
“Update-Time Costs” on page 7-12.

■ Newly made indexes are more efficient. Frequent table updates tend
to dilute the index structure so that it contains many partly full leaf
pages. This dilution reduces the effectiveness of an index and wastes
disk space.

To save time, make sure that a batch-updating program calls for rows in the
sequence that the primary-key index defines. Then pages of the primary-key
index are read in order and only once.

The presence of indexes also slows the population of tables when you use the
LOAD statement or parallel inserts. Loading a table that has no indexes is fast,
little more than a disk-to-disk sequential copy, but updating indexes adds a
great deal of overhead.

To load a table that has no indexes

1. Drop the table (if it exists).

2. Create the table without specifying any unique constraints.

3. Load all rows into the table.

4. Alter the table to apply the unique constraints.

5. Create the nonunique indexes.

To guarantee that the loaded data satisfies all unique constraints, create
unique indexes and then load the rows in DELUXE mode, which modifies the
index and checks constraints for each row as it is loaded. You save time if the
rows are presented in the correct sequence for at least one of the indexes. If
you have a choice, make it the row with the largest key. This strategy
minimizes the number of leaf pages that must be read and written.
6-32 Performance Guide for Informix Extended Parallel Server

Attaching or Detaching Fragments
Using External Tables to Load and Unload Simple Large Objects

When you use external tables to load and unload data, you can define the
table to specify simple-large-object columns as either raw or delimited, as
described in the Informix Guide to SQL: Syntax.

The choice of raw or delimited format has the following performance
implications:

■ Raw format for simple large objects in external files does not have
any conversion costs. In addition, because the simple-large-object
length field is embedded in the row and the simple-large-object data
follows the row in the data stream, simple-large-object data is read
only once and then inserted into the existing field in the row where
it belongs.

■ Delimited format for simple large objects has specific conversion
costs. The simple large objects in delimited format files are read and
written at the position where the simple-large-object column is
defined. This process requires more buffer space and might also
require an extra read and write if buffer space is exceeded.

For more information about loading simple large objects from external tables,
refer to the Administrator’s Reference.

Attaching or Detaching Fragments
The ALTER FRAGMENT statement with its ATTACH and DETACH options is
often used to perform data warehouse operations. ALTER FRAGMENT
DETACH provides a way to delete a segment of the table data rapidly.
Similarly, ALTER FRAGMENT ATTACH lets you load large amounts of data
into an existing table incrementally. The attached table fragments must be the
same type as the table to which they are to be attached, such as RAW or
OPERATIONAL.

For more information about taking advantage of the performance enhance-
ments for the ATTACH and DETACH options of the ALTER FRAGMENT
statement, refer to “Attaching and Detaching Table Fragments” on page 9-62.
Table Performance 6-33

Altering a Table Definition
Altering a Table Definition
The database server chooses one of the following algorithms to process an
ALTER TABLE statement in SQL:

■ In-place alter

■ Slow alter

■ Fast alter

The algorithm chosen depends on the requested alteration, as described in
“Alter Operations That Do Not Use the In-Place Alter Algorithm” on
page 6-37.

In-Place ALTER TABLE

When you execute an ALTER TABLE statement that uses the in-place alter
algorithm, the database server creates a new version of the table structure.
When a row is updated, the in-place alter algorithm moves the altered row
from the old definition of the table to the new definition. Rows are not dupli-
cated in the old and new definition of the table.

The database server keeps track of all versions of table definitions. The
database server retains the version status as well as all of the version struc-
tures and alter structures until the entire table is converted to the final format
or a slow alter is performed. For complete information about ALTER TABLE
syntax and restrictions, see the Informix Guide to SQL: Syntax.

The in-place alter algorithm provides the following time and disk-space
performance advantages:
6-34 Performance Guide for Informix Extended Parallel Server

Altering a Table Definition
■ It increases table availability and improves system throughput
during the ALTER TABLE operation.

The table is available for use sooner when the ALTER TABLE
operation uses the in-place alter algorithm because the database
server locks the table for only the time that it takes to update the table
definition and rebuild indexes that contain altered columns.

The table is locked for a shorter time than with the slow alter
algorithm because the database server:

❑ does not make a copy of the table in order to convert the table to
the new definition or convert the data rows during the alter
operation.

❑ alters the physical rows in place with the latest definition after
the alter operation when you subsequently update or insert
rows. The database server converts the rows that reside on each
page that you updated.

❑ does not rebuild all indexes on the table.

This increase in table availability can increase system throughput for
application systems that require 24-by-7 operations.

■ It requires less space than the slow alter algorithm because the
database server:

❑ does not make a copy of the table in order to convert the table to
the new definition.

❑ does not log any changes to the table data during the alter
operation.

These space savings can be substantial for very large tables.
Table Performance 6-35

Altering a Table Definition
Performance Considerations for DML Statements

If the database server detects a version page from a previous level during the
execution of DML statements (INSERT, UPDATE, DELETE, SELECT), it performs
the following actions:

■ For UPDATE statements, the database server converts entire data
pages to the final format.

■ For INSERT statements, the database server converts the inserted row
to the final format and inserts it in the page where it fits best. The
database server converts the existing rows on the page to the final
format.

■ For DELETE statements, the database server does not convert the
data pages to the final format.

■ For SELECT statements, the database server does not convert the
entire data page to the final format.

If your query accesses rows that are not yet converted to the new
table definition, you might notice a slight degradation in the perfor-
mance of your individual query because the database server
reformats each row before it is returned.

Improving In-Place Alter Performance

As long as unconverted data pages exist, performance for updates and
queries on the altered table might suffer because the database server must
convert the data before processing it as requested.

An in-place ALTER TABLE is outstanding when data pages still exist with the
old definition. The onutil CHECK TABLE command displays data page
versions for outstanding in-place alter operations. The Count field displays
the number of pages that currently use that version of the table definition.

To improve performance, you might convert any remaining unconverted
data pages to the latest definition with a dummy UPDATE statement. For
example, the following statement, which sets a column value to the existing
value, causes the database server to convert data pages to the latest
definition:

UPDATE tab1 SET col1 = col1;
6-36 Performance Guide for Informix Extended Parallel Server

Altering a Table Definition
After an update is executed on all pages of the table, execute the onutil
CHECK TABLE command. The total number of data pages for the current
version of the table appears in the Count field.

Important: As you execute more ALTER TABLE statements that use the in-place alter
algorithm on a table, each subsequent ALTER TABLE statement takes more time to
execute than the previous statement. Therefore, Informix recommends that you not
have more than approximately 50 to 60 outstanding alters on a table. Outstanding
ALTER TABLE statements affect only the subsequent ALTER TABLE statements. They
do not affect the performance of SELECT statements.

Alter Operations That Do Not Use the In-Place Alter Algorithm

The database server does not use the in-place alter algorithm in the following
situations:

■ When you increase the length of a CHARACTER, DECIMAL, MONEY,
or SMALLINT column and specify more than one algorithm

If the ALTER TABLE statement contains more than one change, the
database server uses the slower algorithm in the execution of the
statement.

For example, assume that an ALTER TABLE MODIFY statement
extends a CHARACTER column and shrinks a DECIMAL column.
Increasing the length of a CHARACTER column is an in-place alter
operation that requires no data conversion, but decreasing the length
of a DECIMAL column is a slow-alter operation because it might
require data conversion. The database server uses the slow-alter
algorithm to execute this statement.
Table Performance 6-37

Altering a Table Definition
■ When you convert from real decimal to floating point

Special considerations apply when you convert a real (fixed-point)
decimal number to a floating-point number.

A fixed-point DECIMAL column has the format DECIMAL(p1,s1),
where p1 refers to the precision of the column (the total number of
significant digits) and s1 refers to its scale (the number of digits to the
right of the decimal point).

If you are using an ANSI-mode database and specify DECIMAL(p),
the value defaults to DECIMAL(p,0). In a non-ANSI database, the
value is treated as a floating point with a precision of p.

If a fixed-point DECIMAL is converted to a floating-point DECIMAL,
a slow alter is performed.

In addition to these restrictions, the slow-alter algorithm is used instead of
the in-place alter algorithm if:

■ the modified column is used for hash partitioning in either a hash or
hybrid fragmentation scheme.

■ you drop or modify a column in a table that has a bitmap index.

■ you drop or alter a simple-large-object column.

Altering a Column That Is Indexed

If an altered column is indexed, the table is still altered in place. The database
server automatically rebuilds the index or indexes. If the index does not need
to be rebuilt, improve performance by dropping or disabling the index before
you perform the alter operation.

However, if the column that you modify is a primary key or foreign key and
you want to keep this constraint, specify those keywords again in the ALTER
TABLE statement. The database server then rebuilds the index.
6-38 Performance Guide for Informix Extended Parallel Server

Altering a Table Definition
For example, suppose that you create tables and alter the parent table with
the following SQL statements:

CREATE TABLE parent
(si smallint PRIMARY KEY CONSTRAINT pkey);

CREATE TABLE child
(si smallint REFERENCES parent ON DELETE CASCADE
CONSTRAINT ckey);

INSERT INTO parent (si) VALUES (1);
INSERT INTO parent (si) VALUES (2);
INSERT INTO child (si) VALUES (1);
INSERT INTO child (si) VALUES (2);

ALTER TABLE parent
 MODIFY (si int PRIMARY KEY CONSTRAINT pkey);

This ALTER TABLE example converts a SMALLINT column to an INT
column.The database server retains the primary key because the ALTER
TABLE statement specifies the PRIMARY KEY keywords and the pkey
constraint. However, the database server drops any referential constraints
that reference that primary key. Therefore, you must also specify the
following ALTER TABLE statement for the child table:

ALTER TABLE child
 MODIFY (si int REFERENCES parent ON DELETE CASCADE

CONSTRAINT ckey);

Even though the ALTER TABLE operation on a primary key or foreign key
column rebuilds the index, the database server still takes advantage of the in-
place alter algorithm to provide the following performance benefits:

■ Does not make a copy of the table in order to convert the table to the
new definition

■ Does not convert the data rows during the alter operation

■ Does not rebuild all indexes on the table

Warning: If you alter a table that is part of a view, you must re-create the view to
obtain the latest definition of the table.
Table Performance 6-39

Altering a Table Definition
Slow ALTER TABLE

When the database server uses the slow alter algorithm, the table is locked
for a long period of time because the database server:

■ makes a copy of the table in order to convert the table to the new
definition.

■ converts the data rows during the alter operation.

The database server uses the slow alter algorithm when the ALTER TABLE
statement changes columns that cannot be changed in place. For more infor-
mation, see “Alter Operations That Do Not Use the In-Place Alter
Algorithm” on page 6-37.

Fast ALTER TABLE

The database server uses the fast alter algorithm when the ALTER TABLE
statement changes attributes of the table and does not affect the data. The
database server uses the fast alter algorithm when the ALTER TABLE
statement changes the following attributes:

■ The type of table (RAW, STATIC, OPERATIONAL, and STANDARD)

■ The lock mode of the table

■ The next-extent size

■ Constraints

When the database server uses the fast alter algorithm, the table is locked for
a short time. In some cases, the database server locks the system catalog
tables to change the attribute. In either case, the table is unavailable for
queries only briefly.
6-40 Performance Guide for Informix Extended Parallel Server

Denormalizing the Data Model to Improve Performance
Denormalizing the Data Model to Improve
Performance
Operational databases for OLTP transactions are usually constructed with the
entity-relationship data model described in the Informix Guide to SQL:
Tutorial. This model produces tables that contain no redundant or derived
data and ensures data integrity. These tables are well structured by the tenets
of relational theory.

Databases for data warehouses and data marts are usually constructed with
a different model, sometimes referred to as a star schema or fact-dimension
table model. This model is still relational in part, but it is constructed with
different goals in mind. A fact-dimension database contains one large fact table
and several smaller dimension tables. Each dimension table corresponds to a
key in the fact table and contains descriptive information.

For operational OLTP databases, the most frequent denormalization
techniques are as follows:

■ Creating companion tables that contain columns that are used less
often

■ Modifying table definitions to create shorter rows

■ Building symbol tables

■ Adding redundant data, either columns or tables

Fact-dimension database schemas for data warehouse applications usually
contain redundant data in the dimension tables for efficiency. Some of the
techniques described in “Adding Redundant Data” on page 6-45, such as
replicating tables across coservers, can also be used to improve performance
of data warehouse queries.

Important: If the database designer modifies the data model to meet special demands
for high performance, changes made to the database and table structure might also
require adjustments by the database application engineers.
Table Performance 6-41

Creating Companion Tables
Creating Companion Tables
Some of the methods described in the following sections involve splitting
tables to create companion tables. Evaluate your applications and database
use carefully before you denormalize the database in this way.

Creating companion tables has the following three disadvantages:

■ Each table consumes extra disk space and adds complexity.

■ Two copies of the primary key occur for each row, one copy in each
table. Two primary-key indexes also exist.

To estimate the number of added pages, you can use the methods
described in “Estimating Table Size” on page 6-15.

■ You must modify existing programs, reports, and forms that use
SELECT * because fewer columns are returned. Programs, reports,
and forms that use attributes from both tables must perform a join to
bring the tables together.

If many queries require table joins, the performance degradation
might be unacceptable.

In this case, when you insert or delete a row, two tables are altered
instead of one. If you do not coordinate the alteration of the two
tables (by making them in a single transaction, for example), you lose
semantic integrity.

Using Shorter Rows for Faster Queries

Tables with shorter rows yield better performance than ones with longer
rows because disk I/O is performed in pages, not in rows. The shorter the
rows of a table, the more rows occur on a page. The more rows per page, the
fewer I/O operations it takes to read the table sequentially and the more
likely it is that nonsequential access can be performed from data already in a
buffer. Shorter rows are also transferred faster between coservers.

The entity-relationship data model puts all the attributes of one entity into a
single table for that entity. For some entities, this strategy can produce very
long rows. To shorten the rows, you might create companion tables by
separating columns into tables with duplicate key values. As the rows get
shorter, query performance should improve, but only if the companion tables
are not joined in most queries.
6-42 Performance Guide for Informix Extended Parallel Server

Creating Companion Tables
Expelling Long Strings

The largest attributes are often character strings. Removing them from the
entity table makes the rows shorter. You can use the following methods to
expel long strings. The first two methods are relatively simple; the other two
methods require significant changes in application programs:

■ Use VARCHAR columns.

■ Use TEXT columns.

■ Move strings to a companion table.

You can also build a symbol table.

Using VARCHAR Columns

A database might contain CHAR columns that can be converted to VARCHAR
columns. You can use a VARCHAR column to shorten the average row length
when the average length of the text string in the CHAR column is at least
2 bytes shorter than the width of the column. For information about the
advantages of different character data types, refer to the Informix Guide to GLS
Functionality. ♦

VARCHAR data is immediately compatible with most existing programs,
forms, and reports. You might need to recompile any forms produced by
application development tools to recognize VARCHAR columns. Always test
forms and reports on a sample database after you modify the table schema.

Using TEXT Columns

When a string fills half a disk page or more, consider converting it to a TEXT
column, which is stored in a separate page in the dbspace with the table.The
length of the column in the data page is a pointer only 56 bytes long to the
TEXT data page. However, the TEXT data type is not automatically
compatible with existing programs. The code needed to fetch a TEXT value is
more complicated than the code to fetch a CHAR value into a program.

Moving Strings to a Companion Table

Strings shorter than half a page waste disk space if you treat them as TEXT
columns, but you can move them from the main table to a companion table.

GLS
Table Performance 6-43

Building a Symbol Table
Important: If you move strings to a companion table, queries and other application
program entities must be changed to join the tables. If too many changes must be
made or too many joins must occur, this method might not improve performance. The
same warning applies to the method described in the next section, “Building a
Symbol Table.”

Building a Symbol Table
If a column contains strings that are not unique in each row, you can move
those strings to a table in which only unique copies are stored.

For example, in a CUSTOMER table, the customer.city column contains city
names. Some city names are repeated down the column, and most rows have
some trailing blanks in the field. Using the VARCHAR data type eliminates the
blanks but not the duplication.

You can create a table named cities, as the following example shows:

CREATE TABLE cities (
city_num SERIAL PRIMARY KEY,
city_name VARCHAR(40) UNIQUE

)

You can change the definition of the customer table so that its city column
becomes a foreign key that references the city_num column in the cities table.

You must change any program that inserts a new row into customer to insert
the city of the new customer into cities. The database server return code in
the SQLCODE field of the SQL Communications Area (SQLCA) can indicate
that the insert failed because of a duplicate key. If this error occurs, it simply
means that an existing customer is located in that city. For information about
the SQLCA, refer to the Informix Guide to SQL: Tutorial.

In addition to changing programs that insert data, you must also change all
programs and stored queries that retrieve the city name. The programs and
stored queries must use a join into the new cities table to obtain their data.
The extra complexity in programs that insert rows and the extra complexity
in some queries is the result of giving up theoretical correctness in the data
model. Before you make the change, be sure that it returns a reasonable
savings in disk space or execution time.
6-44 Performance Guide for Informix Extended Parallel Server

Splitting Wide Tables
Splitting Wide Tables
Consider all the attributes of an entity that has rows that are too wide for
good performance. Look for some theme or principle to divide them into two
groups, and examine stored queries to find out what columns are used most
often. Split the table into two tables, a primary table and a companion table,
repeating the primary key in each one. The shorter rows allow you to query
or update each table quickly.

Before you split a wide table, however, carefully evaluate the performance
cost, as described in “Creating Companion Tables” on page 6-41.

Dividing by Bulk

One principle on which you can divide an entity table is bulk. Move the
bulky attributes, which are usually character strings, to the companion table.
Keep the numeric and other small attributes in the primary table. In the
stores_demo demonstration database used for the Informix Guide to SQL:
Tutorial, you can split the ship_instruct column from the orders table. You
can call the companion table orders_ship. It has two columns, a primary key
that is a copy of orders.order_num and the original ship_instruct column.

Dividing by Frequency of Use

Another principle for division of an entity is frequency of use. If a few
attributes are rarely queried, you can move them to a companion table. For
example, in the demonstration database, you query the ship_instruct,
ship_weight, and ship_charge columns in only one program. You can move
these columns to a companion table.

Dividing by Frequency of Update

Updates take longer than queries, and updating programs lock index pages
and rows of data during the update process, which prevents querying
programs from accessing the tables. If you can separate one table into two
companion tables, one of which contains the most updated entities and the
other of which contains the most queried entities, you can often improve
overall response time.
Table Performance 6-45

Adding Redundant Data
Adding Redundant Data
Normalized databases contain no redundant tables or data. Every attribute
appears in only one table. Normalized tables also contain no derived data.
Instead, data that can be computed from existing attributes is selected as an
expression based on those attributes.

Normalizing tables minimizes the amount of disk space used and expedites
updating tables. However, in databases used for data warehouses and data
marts, derived and redundant data can improve query processing time by
reducing the necessity of joining tables and performing aggregations.

As an alternative, you can introduce new columns that contain redundant
data and duplicate small tables on each coserver, provided that you under-
stand the trade-offs involved. You can also create special indexes that contain
summary, selected, and prejoined row data, as well as composite keys, as
described in “Using Indexes” on page 13-13.

Adding Redundant Data to Tables

A correct data model avoids redundancy by keeping attributes only in the
table for the entity that they describe. If the attribute data is needed in a
different context, you make the connection by joining tables. But joining takes
time. If a frequently used join affects performance, you can eliminate it by
duplicating the joined data in another table.

The disadvantage of adding redundant data to tables is that it takes space
and poses an integrity risk. If the data is updated in one table, it must also be
updated in other tables where it is duplicated. For more information, refer to
the Informix Guide to SQL: Syntax and the Informix Guide to SQL: Reference.

Adding Redundant Tables

Duplicating some small tables across all coservers can improve performance
for both OLTP and DSS applications. In DSS queries, the database server might
automatically replicate a table smaller than 128 kilobytes that is involved in
a hash join if such replication would improve performance. This feature is
called small-table broadcast. For more information, refer to “Balanced
Workload” on page 11-13.
6-46 Performance Guide for Informix Extended Parallel Server

Keeping Small Tables in Memory
Keeping Small Tables in Memory
Tables or indexes or fragments of tables or indexes that are in constant use
and are smaller than 10 or 12 megabytes can be made memory resident to
increase lookup efficiency. For fragmented tables or indexes, you can specify
residency for individual fragments. Memory-resident tables are cached in the
buffer pool of the coserver where the table, index, or fragment exists.

To specify that a table be cached in the buffer pool, use the SET Residency
statement, as shown in the following examples:

SET TABLE tab1 MEMORY_RESIDENT

A memory-resident table or index remains in the buffer pool until one of the
following events occurs:

■ You use the SET Residency statement to set the database object to
NON_RESIDENT.

■ The database object is dropped.

■ The database server is brought down.

Each time the database server is started you must specify the tables and
indexes that you want to cache in the buffer pool.

If you cache tables in the buffer pool, you should monitor memory buffers
carefully to make sure that they are being used efficiently and that table or
index fragments resident in the buffer pool do not cause foreground writes to
occur. To monitor memory buffers and memory-resident tables and display
the number of resident buffers for each partition, use onstat -P. To list all
memory buffers, use onstat -B.

For complete information about using the SET Residency statement, refer to
the Informix Guide to SQL: Syntax.
Table Performance 6-47

7
Chapter
Index Performance
In This Chapter . 7-3

Choosing Index Types 7-3
Generalized Key Indexes 7-4
Structure of a B-Tree Index 7-4

Estimating Index Page Size 7-6
Estimating Conventional Index Page Size. 7-6
Estimating Bitmap Index Size 7-8

Managing Indexes 7-11
Evaluating Index Costs 7-12

Disk-Space Costs 7-12
Update-Time Costs 7-12

Choosing an Attached or Detached Index. 7-14
Setting the Lock Mode for Indexes 7-15
Choosing Columns for Indexes 7-16

Indexing Filter Columns in Large Tables 7-16
Indexing Order-By and Group-By Columns 7-17
Avoiding Columns with Duplicate Keys 7-17

Clustering Indexes 7-18
Dropping Indexes 7-19

Dropping Indexes Before Table Updates 7-19
Maintaining Index Space Efficiency 7-21
Increasing Concurrency During Index Checks 7-21

Improving Performance for Index Builds 7-22
Estimating Sort Memory 7-23
Estimating Temporary Space for Index Builds 7-24

7-2 Perf
ormance Guide for Informix Extended Parallel Server

In This Chapter
This chapter describes general performance considerations associated with
indexes. It discusses the following issues:

■ Selecting an appropriate index type

■ Estimating the size of indexes

■ Managing indexes for disk-space efficiency and query performance

■ Improving the performance of index builds

For information about the performance advantages of specific index types,
including examples, see Chapter 13, “Improving Query and Transaction
Performance.”

Choosing Index Types
Extended Parallel Server provides several unique kinds of indexes. These
indexes improve performance when they are used appropriately. This section
provides a summary of the index types and their general use.

To decide what kinds of indexes will improve query and transaction
performance examine the queries and transactions run on your system and
evaluate the database structure. For information about when a particular
kind of index can improve query performance, see “Using Indexes” on
page 13-13.

Conventional indexes are stored as B-tree indexes. For information about the
structure of a B-tree index, see “Structure of a B-Tree Index” on page 7-4.
Index Performance 7-3

Generalized Key Indexes
A bitmap index is a specialized variation of a B-tree index that is useful for
indexing columns that can contain one of only a few values, such as marital
status or gender. For each highly duplicate value, a bitmap index stores a
compressed bitmap for each value that the column might contain. Each bit in
the bitmap represents one row in the table. A bit in the bitmap is turned on if
the table row that it represents contains the value that this bitmap indexes.

Generalized Key Indexes
Generalized key (GK) indexes let you store the result of an expression as a key.
The three kinds of GK indexes are selective, virtual column, and join.

Because GK indexes are permitted only on STATIC tables, they are most useful
in DSS applications that use stable data and in OLTP applications that use
lookup tables that do not change.

For detailed information about these index types, when and how to create
them, and when the optimizer uses them, see “Using Generalized-Key
Indexes” on page 13-23.

Structure of a B-Tree Index
This section explains how a B-tree index is organized. Information about
index structure can help you understand how indexes are used and why re-
creating an index might improve index efficiency.
7-4 Performance Guide for Informix Extended Parallel Server

Structure of a B-Tree Index
As Figure 7-1 shows, a B-tree index is arranged as a hierarchy of pages, which
is technically a B+ tree. The top level of the hierarchy contains a single root
page. Intermediate levels, when needed, contain branch pages. Each branch
page contains entries that refer to a subset of pages in the next level of the
index. The bottom level of the index contains a set of leaf pages. Each leaf page
contains a list of index entries that refer to rows in the table.

The number of levels needed to hold an index depends on the number of
unique keys in the index and the number of index entries that each page can
hold. The number of entries per page depends, in turn, on the size of the
columns being indexed.

For example, if the index page for a given table can hold 100 keys, a table of
up to 100 rows requires a single index level: the root page. When this table
grows beyond 100 rows, to a size between 101 and 10,000 rows, it requires a
two-level index: a root page and between 2 and 100 leaf pages. When the
table grows beyond 10,000 rows, to a size between 10,001 and 1,000,000 rows,
it requires a three-level index: the root page, a set of 100 branch pages, and a
set of up to 10,000 leaf pages.

For more information about the structure of B-tree indexes, refer to the
Administrator’s Reference.

Figure 7-1
B-Tree Structure of

an Index

.

.

. . .

Root page

Leaf page Leaf page

Branch page Branch page
Index Performance 7-5

Estimating Index Page Size
Estimating Index Page Size
The index pages associated with a table can add significantly to the size of a
dbspace. An attached index for a table is stored in the same dbspace as the
table, but in a different tblspace. A detached index is stored in different
dbspaces that you specify.

The database sever determines the index extent size, based on the extent size
of the table and the index key length and the table row size. The formula for
estimating the index extent size is as follows:

Index extent size = table extent size * ((key length + 8)/ row size)

The minimum extent size is four pages.

Estimating Conventional Index Page Size
For information about bitmap index size estimates, see “Estimating Bitmap
Index Size” on page 7-8.

To estimate the number of index pages

1. Add up the total widths of the indexed column or columns. This
value is referred to as colsize. For a nonfragmented index, add 5 to
colsize to obtain keysize, the actual size of a key in the index. For a
fragmented index, add 9 to colsize.

2. Calculate the expected proportion of unique entries to the total num-
ber of rows. This value is referred to as propunique. If the index is
unique or rows contain very few duplicate values, use 1 for
propunique. If a significant proportion of entries are duplicates,
divide the number of unique index entries by the number of rows in
the table to obtain a fractional value for propunique. If the resulting
value for propunique is less than .01 , use .01 in the calculations that
follow.
7-6 Performance Guide for Informix Extended Parallel Server

Estimating Conventional Index Page Size
3. Estimate the size of a typical index entry with one of the following
formulas, depending on whether the table is fragmented or not:

a. For nonfragmented tables, use the following formula:
entrysize = keysize * propunique + 5

b. For fragmented tables, use the following formula:
entrysize = keysize * propunique + 9

4. Estimate the number of entries per index page with the following
formula:

pagents = trunc(pagefree / entrysize)

The trunc() function notation indicates that you should round down
to the nearest integer value.

5. Estimate the number of leaf pages with the following formula:
leaves = ceiling(rows / pagents)

The ceiling() function notation indicates that you should round up
to the nearest integer value; rows is the number of rows that you
expect to be in the table.

6. Estimate the number of branch pages at the second level of the index
with the following formula:

branches 0 = ceiling(leaves / pagents)

7. If the value of branches0 is greater than 1, more levels remain in the
index. To calculate the number of pages contained in the next level of
the index, use the following formula:

branches n+1 = ceiling(branches n/ pagents)

8. Repeat the calculation in step 7 for each level of the index until the
value of branchesn+1 equals 1.

9. Add up the total number of pages for all branch levels calculated in
steps 6 through 8. This sum is referred to as branchtotal.

pagefree is the page size minus the page header (24 bytes).

branchesn is the number of branches for the last index level that
you calculated.

branchesn+1 is the number of branches in the next level.
Index Performance 7-7

Estimating Bitmap Index Size
10. Use the following formula to calculate the number of pages in the
compact index:

compactpages = (leaves + branchtotal)

11. To incorporate the fill factor into your estimate for index pages, use
the following formula:

indexpages = 100 * compactpages / FILLFACTOR

The default value of FILLFACTOR is 90 . To decrease the size of the
index and make index pages compact, specify a higher FILLFACTOR.
To allow room for expansion in each index page but increase the size
of the index, specify a lower FILLFACTOR.

As rows are deleted and new ones are inserted, the number of index
entries in a page varies. This method for estimating index pages yields a
conservative (high) estimate for most indexes. For a more precise value,
build a large test index with real data and check its size with the onutil
CHECK INDEX utility.

Estimating Bitmap Index Size
You can create bitmap versions of B-tree indexes, which can be used for tables
that are updated, and of GK indexes, which can be used only for STATIC
tables, which are not updated.

Conventional B-tree index and B-tree indexes with compressed bitmap leaf
pages differ only in the way in which the duplicate list for each key is stored
at the leaf level. In a B-tree index, duplicate values are stored in the same way
as unique values, one in each slot of an index leaf page. In a bitmap index,
duplicate values are stored as a bit map in a leaf page, with a bit mapped to
each row of the table. For rows that contain the specific value, the corre-
sponding bit is marked ON.

You might create a bitmap index if the column to be indexed contains many
identical values. The more identical values that the column contains, the
more efficient the index is, both in storage and processing. The more
accurately you can estimate the number of identical values in the key
columns, the more accurate your estimate of the index size and storage
efficiency will be.
7-8 Performance Guide for Informix Extended Parallel Server

Estimating Bitmap Index Size
For example, if the indexed column can contain only two values, such as M

and F, calculating the storage efficiency of a bitmap index is easy. On the other
hand, if a column can contain fifty or sixty values, such as the ages of
employees, calculating the efficiency of the index is harder, but a bitmap
index on this column might still store key values more efficiently than a
conventional B-tree index.

Follow these steps to determine the efficiency of a bitmap index on a table
column and to estimate the disk space that the index will require:

1. Use the maximum number of table rows that can fit in a table page of
255 slots to calculate the integer i, which is the first power of 2 that is
greater than or equal to the number of rows on a data page.

For example, if a data page can contain a maximum of 35 rows, i is 6,
because 25 < 35 <= 26. In fact, the value of i is 6 for any number of
rows between 33 and 64.

2. Estimate the average distance between two rows that have keys with
the same value, assuming that keys with identical values are
distributed evenly in the table fragment:

■ If the table is not fragmented, list the rowids with the following
SELECT statement (replacing key with the column on which the
index will be added and duplicate_value with the value of the
duplicate key):

SELECT rowid FROM table WHERE key = duplicate_value

■ If the table is fragmented, use the following onutil CHECK
INDEX command to list all rowids and their associated keys:

onutil
>check index with data database database_name

index index_name display data

■ The last byte of the hexadecimal row identifier is the slot
number. The first three bytes (leading zeros suppressed) are the
page ID. Use the following formula to calculate the distance
between any two specific row identifiers:

(PageID 2 - PageID 1) * 2 i + (slot# 2 - slot# 1)

For example, if each page contains 35 rows, the distance between
row identifier 0x302 and row identifier 0x401 is calculated as
(4 - 3) * 64 + (2 - 1) = 65 .
Index Performance 7-9

Estimating Bitmap Index Size
3. To calculate the integer, N, for a data fragment that contains a total
number of pages, P, use the following formula:

N = P * 2 i

For example, if P is 10,000 and i is 6, then N is 640,000.

4. Given these formulas, use your estimate of the number of rows in the
table and the number of duplicate key values to estimate the
minimum space that is required for each bitmap at the leaf nodes of
the index:

■ If the average row identifier distance between duplicate-key
records, as calculated by the formula in step 2, is greater than 64,
use the following formula to estimate the number of bytes
required for the bitmap for a particular key value:

bitmap_size = 24 + (8 * Number of duplicate-key
records)

■ If the average row identifier distance between duplicate-key
records is less than or equal to 64, use the following formula to
estimate the space required for each compressed bitmap key:

bitmap_size = 28 + N/8 bytes

Storage efficiency increases as the distance between rows with the same key
decreases. For example, if the average row identifier distance is 75, the space
required for a key with 100 duplicates is 824 bytes.

bitmap_size = 24 + (8 * 100) = 824 bytes

In this example, the 824 bytes to store the bitmap is more than the space
needed for the key in a conventional index (5 * 100 = approximately 500 bytes
plus the size of the key value).

However, if the value of N is 640,000 , and the row identifier distance
between duplicate key records is 40, the space required for a key is 80,028
bytes.

bitmap_size = 28 + 640,000/8 = 80,028 bytes

In this case, the bitmap is much more efficient than the 3,200,000 bytes
needed to store the duplicate row identifiers in a conventional index.

If the bitmap would be larger than the row identifier list of a conventional
B-tree index, the database server uses the row identifier list representation for
the key instead of the bitmap representation.
7-10 Performance Guide for Informix Extended Parallel Server

Managing Indexes
As with conventional B-tree indexes, only one bitmap value is permitted on
an overflow page.

In addition, bitmaps are aligned on the leaf nodes on 4-byte boundaries. On
each page, gaps of 0 to 3 bytes might exist between the end of the key and the
beginning of its bitmap. Consider the previous example, where N is 640,000 ,
the row identifier distance between duplicate-key records is 40, and the space
that is required for the bitmap is 80,028 bytes. If each index leaf page contains
4,000 free bytes and if the key size is 5 bytes, the bitmap is broken up into
3992- byte pieces because the space required for the key is rounded up to 8
bytes.

Managing Indexes
Indexes allow the database server to improve query and transaction
processing. The optimizer can choose to use an index to improve perfor-
mance in the following ways:

■ To provide the optimizer with the possibility of an index join instead
of a table join

■ To avoid sequential scans for low selectivity searches

■ To avoid reading row data when the database server processes
expressions that name only indexed columns

■ To avoid a sort (including building a temporary table) when the
database server executes the GROUP BY and ORDER BY clauses

■ To use only the index to perform aggregate operations

Indexes must be designed for your data and queries, however. For descrip-
tions of index types and information about when they are useful, see “Using
Indexes” on page 13-13.

Tip: By default, the lock granularity for the index matches the lock granularity of the
table, which might require many locks for index accesses. To reduce lock overhead for
indexes on tables for which the key values do not change, you might change the lock
granularity, as described in “Setting COARSE Locking for Indexes” on page 8-8.
Index Performance 7-11

Evaluating Index Costs
You can create several indexes on a single table. In some cases, the query
optimizer can choose to use more than one index in query processing.
Primarily, however, multiple indexes on a table allow the optimizer to choose
an index that provides a more efficient query plan.

Evaluating Index Costs
Although indexes can speed query execution, you should consider the cost
of their disk space and update time.

Disk-Space Costs

One cost of an index is disk space. Estimating methods for different indexes
appears in “Estimating Conventional Index Page Size” on page 7-6 and
“Estimating Bitmap Index Size” on page 7-8. An index can require large
amounts of disk space. For an indexed table, you might have as many index
pages as data pages.

Update-Time Costs

For performance tuning, a more important cost of an index is update time
whenever the table is modified. If you index tables that are modified at
specific times by load jobs, such as tables in databases used exclusively for
DSS queries, the cost of updating the index is incurred at load time. The cost
of updating an index might significantly affect performance of OLTP applica-
tions that update tables continuously.

The following descriptions of update-time cost assume that approximately
two pages must be read to locate an index entry, as is the case when the index
consists of a root page, one level of branch pages, and a set of leaf pages. The
root page is assumed to be in a buffer already. The index for a very large table
has at least two intermediate levels, so about three pages are read when you
reference such an index.

A second assumption is that one index is used to locate a row that is being
altered. The pages for that index might be found in page buffers in shared
memory. However, the pages for any other indexes that need altering must
be read from disk. Presumably, one index is used to locate a row being
altered.
7-12 Performance Guide for Informix Extended Parallel Server

Evaluating Index Costs
Under these assumptions, conventional B-tree index maintenance adds dif-
ferent amounts of time for different kinds of modifications, as the following
list describes:

■ When you delete a row from a table, its entries must be deleted from
all indexes.

You must look up the entry for the deleted row (two or three pages
read in), and you must rewrite the leaf page. The write operation to
update the index is performed in memory, and the leaf page is
flushed when the least-recently-used (LRU) buffer that contains the
modified page is cleaned. So this operation requires two or three
page accesses to read the index pages if needed, and one deferred
page access to write the modified page.

■ When you insert a row, its entries must be inserted in all indexes.

A place in which to enter the inserted row must be found within each
index (two or three pages read in) and rewritten (one deferred page
out), for a total of three or four immediate page accesses per index.

When you update a row, its entries must be looked up in each index
that applies to an altered column (two or three pages in).

The leaf page must be rewritten to eliminate the old entry (one
deferred page out), the new column value must be located in the
same index (two or three more pages in), and the row must be
entered (one more deferred page out).

Insertions and deletions change the number of entries on a leaf page. Almost
every pagents operation requires some additional work to deal with a leaf
page that has either filled up or been emptied. However, if pagents is greater
than 100, this additional work occurs less than 1 percent of the time. You can
often ignore this work when you estimate the I/O impact. (The calculation
and definition for pagents appears in “Estimating Conventional Index Page
Size” on page 7-6.)

In short, when a row is inserted or deleted at random, three to four added
page I/O operations occur for each index. When a row is updated, allow six
to eight page I/O operations for each index that applies to an altered column.

If a transaction is rolled back, all this work must be undone. For this reason,
rolling back a transaction can take a long time.
Index Performance 7-13

Choosing an Attached or Detached Index
Because the alteration of the row itself requires only two page I/O operations,
index maintenance can be the most time-consuming part of data modifica-
tion. For information about one way to reduce this cost, see “Dropping
Indexes” on page 7-19.

Choosing an Attached or Detached Index
The performance advantages of an attached or detached index depend on
how queries and transactions use the index. The optimizer considers both
attached and detached indexes for a multi-index plan. The optimizer cost
estimates might result in using a combination of attached and detached
indexes for a multi-index scan.

An attached index is fragmented in the same way as the underlying table,
with the same fragmentation scheme, and is stored in the same dbspaces but
in different tblspaces. If the index will be used to access the table fragment
that is stored in the same dbspace, create an attached index.

In general, attached indexes are considerably more efficient than detached
indexes, especially globally detached indexes. Nevertheless, you might cre-
ate detached indexes to provide unique constraints on keys that are not used
to fragment the table.

A detached index is either fragmented differently from the underlying table,
or nonfragmented when the table is fragmented. It can be stored in any spec-
ified dbspaces or dbslices. Indexes can be fragmented with any fragmenta-
tion scheme except round-robin.

Locally detached index fragments are stored on the same coserver as the corre-
sponding table fragments. Locally detached indexes are faster than globally
detached indexes, even for SELECT statements, because they do not incur
high messaging costs. Maintenance costs for locally detached indexes are also
lower than for globally detached indexes.

Globally detached index fragments are stored on coservers differently from the
table fragments because the index is fragmented differently from the table.
Globally detached indexes also allow unique constraints on any column.

Globally detached indexes increase maintenance costs for deletes, inserts,
and updates of the index key column data. If the underlying table rarely
changes, these costs should be insignificant, but the intercoserver messaging
cost of using a globally detached index is high.
7-14 Performance Guide for Informix Extended Parallel Server

Setting the Lock Mode for Indexes
A globally detached index might take advantage of fragment elimination or
reduced disk I/O to improve performance of queries with the following
requirements:

■ Selection of a single row based on columns that are not used for table
fragmentation

■ A key-only scan of the columns only in the detached index fragment,
as specified by the WHERE clause

■ A join that involves either selection of a single row or a key-only scan
of only the detached index fragment

In all other cases, a nonfragmented index, an attached index, or a locally
detached index provides better performance.

Important: You cannot create a FOR EACH ROW trigger on a table that has a globally
detached index.

Setting the Lock Mode for Indexes
By default, indexes inherit the lock granularity of the indexed table. If the
lock granularity of the indexed table is row locking, the lock mode of the
index is also row locking. Row or page locking adds unnecessary lock
overhead to index accesses for indexes in which the keys are rarely or never
changed.

If you know that index-key data will not change, you can improve perfor-
mance by setting the index lock mode to COARSE with the ALTER INDEX
statement, as explained in “Setting COARSE Locking for Indexes” on
page 8-8.

In COARSE lock mode, the database server places a shared lock on the entire
index fragment instead of using the key or page-level locking specified when
the index was created.
Index Performance 7-15

Choosing Columns for Indexes
Choosing Columns for Indexes
The columns that you choose for an index depend on the data in the columns
and the queries that might use the index:

■ Add a conventional index on columns that:

❑ are used in joins.

❑ are frequently used in filter expressions.

❑ are frequently used for ordering or grouping.

❑ are used for aggregation

❑ are used in selection

■ Add a bitmap index on columns that contain duplicate keys,
especially if many columns contain the same key value, such as a
gender or marital-status identifier.

For information about when to use bitmap indexes, see “Using Bit-
map Indexes” on page 13-20.

■ Add a GK index for a STATIC table on virtual columns, selected
columns, or columns joined from other STATIC tables, as suggested
in “Using Generalized-Key Indexes” on page 13-23.

Indexing Filter Columns in Large Tables

If a column in a large table is often used as a filter in a WHERE clause, consider
placing an index on it. The optimizer can use the index to select the required
rows and avoid a sequential scan of the entire table. One example is a table
that contains a large mailing list. If you find that a postal-code column is often
used to filter data, consider creating an index on that column.
7-16 Performance Guide for Informix Extended Parallel Server

Choosing Columns for Indexes
This strategy yields a net savings of time only when the cardinality of the
column is high; that is, when indexed values are duplicated in only a small
fraction of rows. Nonsequential access through an index takes more disk I/O
operations than does sequential access. Therefore, if a filter expression on the
column passes more than a quarter of the rows, the database server might as
well read the table sequentially. As a rule, indexing a filter column saves time
in the following cases:

■ The column is used in filter expressions in many queries or in slow
queries.

■ Most column values appear in fewer than 10 percent of the rows,
which indicates a selectivity of more than 90 percent.

Indexing Order-By and Group-By Columns

When many rows must be ordered or grouped, the database server must put
the rows in order. One way that the database server performs this task is to
select all the rows into a temporary table and sort the table. However, if the
ordering columns are indexed, the optimizer can sometimes read the rows in
sorted order through the index and avoid a final sort. For information about
how indexes improve query performance, see “Using Indexes” on
page 13-13.

Because the keys in an index are in sorted sequence, the index actually
represents the result of sorting the table. When you place an index on the
ordering column or columns, if the index keys are sorted in the order
required by the query, you can replace many sorts during queries with a
single sort that occurs when the index is created.

Avoiding Columns with Duplicate Keys

When duplicate keys are indexed in a conventional B-tree index, entries that
match a given key value are grouped in lists. The database server uses these
lists to locate rows that match a requested key value.

When the selectivity of the index column is high, these lists are generally
short. But when only a few unique values occur, the lists become long and can
even cross multiple leaf pages.
Index Performance 7-17

Clustering Indexes
Creating a conventional index on a column that has low selectivity (that is, a
small number of distinct values relative to the number of rows) can actually
slow performance because of the cost of searching through the duplicate
index key values for the rows that satisfy the query.

You can address this problem in both of the following ways:

■ If the data column that you want to index has a low selectivity, create
the index with the USING BITMAP expression. To find out if a bitmap
index will be efficient, see “Estimating Bitmap Index Size” on
page 7-8.

For information about the CREATE INDEX statement with the USING
BITMAP expression, refer to the Informix Guide to SQL: Syntax.

■ You might also replace the index on the low-selectivity column with
a composite index that has higher selectivity. Use the low-selectivity
column as the leading column and a high-selectivity column as the
second column in the index.

For more information about when and how to create composite
indexes, refer to “Using Composite Indexes” on page 13-21.

Clustering Indexes
Clustering indexes can be used for the following purposes:

■ To prevent table-extent interleaving

■ To reduce nonsequential access costs

You can have only one clustering index on a table although additional
indexes on other columns in the table are permitted.

B-tree clustering indexes are often created on columns that do not have
unique values for each row, such as a postal-code column. The table itself is
physically organized in blocks in such a way that the clustering index
contains a pointer to the first table block that contains a given value for the
clustering column.

Important: You cannot create clustering indexes on STANDARD tables in Extended
Parallel Server. If you need a clustering index on a table, first convert the table to
OPERATIONAL or STATIC type. Then create the clustering index, perform a level-0
backup of the dbspaces involved, and convert the table back to STANDARD type. The
clustering order is not retained when the table is updated.
7-18 Performance Guide for Informix Extended Parallel Server

Dropping Indexes
You can be sure that when the table is searched on the indexed column in a
clustering index, it is read in sequential instead of nonsequential order. For a
discussion of these issues, see Chapter 10, “Queries and the Query
Optimizer.”

Clustering is not preserved when you make changes to a table. When you
insert new rows into a table organized as a B-tree clustering index, the rows
are stored physically at the end of the table regardless of their clustering key
value. When you update rows and change the value of the clustering column,
the rows are written back into their original location in the table.

Clustering and reclustering consume a large amount of space and time. You
can avoid some of these costs if you build or load the table in the desired
order.

Dropping Indexes
When an update transaction commits, the database server btree cleaner
removes deleted index entries and, if necessary, rebalances the index nodes.
However, depending on the order in which your application adds and
deletes keys from the index, the structure of an index can become inefficient.

Use the onutil CHECK TABLE INFO command with the TABLESPACE option,
as described in the Administrator’s Reference, to determine the amount of free
space in each index page. If your table has relatively low update activity and
a large amount of free space exists, you might drop and re-create the index
with a higher value for FILLFACTOR to make the unused disk space available
for other uses.

Dropping Indexes Before Table Updates

In some applications, most table updates can be confined to a single time
period. You might be able to set up your system so that all updates are
applied overnight or on specified dates.
Index Performance 7-19

Dropping Indexes
When updates are performed as a batch, drop all nonunique indexes before
you update tables and then create new indexes afterward. This strategy can
have the following positive effects:

■ The updating program runs faster with fewer indexes to update.
Often, if the number of updates is large, the total time to drop the
indexes, update without them, and re-create them is less than the
time to update with the indexes in place. For the time cost of
updating indexes, see “Update-Time Costs” on page 7-12.

■ Newly made indexes are more efficient. Frequent updates tend to
dilute the index structure so that it contains many partly full leaf
pages. This dilution reduces the effectiveness of an index and wastes
disk space.

As a time-saving measure, make sure that a batch-updating program calls for
rows in the sequence defined by the primary-key index. That sequence
causes the pages of the primary-key index to be read in order and only once.

The presence of indexes might also slow the population of tables when you
use the LOAD statement. Loading a table that has no indexes is quick because
it is little more than a disk-to-disk sequential copy.

The amount of data that you are loading determines whether it is more effi-
cient to drop an index on a table. If you are loading a small amount of data,
it might be efficient to retain the index and use a load method that updates
the indexes. If you are loading a large amount of data, it might be efficient to
drop all indexes first and rebuild them after you load the new data.

For information about the steps for loading tables after you drop indexes,
see“Loading and Unloading Tables” on page 6-31.
7-20 Performance Guide for Informix Extended Parallel Server

Maintaining Index Space Efficiency
Maintaining Index Space Efficiency
When an update transaction commits, the database server btree cleaner
removes deleted index entries and balances the index nodes. However,
depending on the order in which your application adds and deletes keys
from the index, the structure of an index might become inefficient. Frequent
updates tend to expand the index structure, so that it contains many partly
full leaf pages. This expansion:

■ reduces the effectiveness of an index because more I/O operations
might be needed to scan the index.

■ wastes disk space.

Use the onutil CHECK TABLE command with the TABLESPACE and
ALLOCATION INFO options to find out how much free space is in each index
page. If the table has relatively little update activity and contains a large
amount of free space, drop and re-create the index with a larger value for
FILLFACTOR to make the unused disk space available for other uses.

You can also use the onutil CHECK INDEX KEYS command to verify the
integrity and consistency of B-tree indexes.

For the following information, refer to the Administrator’s Reference:

■ How the database server maintains an index tree

■ How to use onutil

Increasing Concurrency During Index Checks
To verify that indexes are correctly constructed and contain valid entries, use
the onutil CHECK INDEX command. This command checks the order of key
values and the consistency of horizontal and vertical node links for B-tree
indexes and bitmaps that are associated with the specified table and provides
information about how efficiently the index is using its allocated space.

By default, the onutil CHECK INDEX command opens all index fragments
with the locking granularity defined for the table. However, if you add the
LOCK keyword to the onutil CHECK INDEX command, it uses intent shared
locks instead. An intent shared lock allows other users to insert or modify
data in the indexed table while the index is being checked, but it does not
permit dropping or altering the table during the index check.
Index Performance 7-21

Improving Performance for Index Builds
Because users can insert and modify data while the index is being checked
with an intent shared lock, the index might contain some inconsistencies
even after it is checked. To make sure that an index is completely consistent,
do not use the LOCK keyword.

For example, to use intent shared locks while you check the index custidx in
the database YR97, enter the following command:

onutil
1> check index database yr97 index custidx LOCK;

For detailed information about the onutil CHECK INDEX command, refer to
the Administrator’s Reference.

Improving Performance for Index Builds
Whenever possible, the database server uses parallel processing to improve
the speed of index builds. The number of parallel processes depends
primarily on the number of fragments in the index. For more information, see
“Parallel Index Builds” on page 11-19.

You can often improve the performance of an index build by taking the
following steps:

1. Make sure that PDQPRIORITY is set to an appropriate value, as
described in “PDQPRIORITY” on page 4-22.

2. Make sure that enough memory and temporary space are available
to build the entire index:

a. Estimate the amount of virtual shared memory that the database
server might need for sorting.

The following section, “Estimating Sort Memory,” provides
detailed information.

b. Specify enough total DSS memory with the DS_TOTAL_MEMORY
configuration parameter.
7-22 Performance Guide for Informix Extended Parallel Server

Estimating Sort Memory
c. If not enough memory is available, estimate the amount of
temporary space needed for an entire index build.

For more information, refer to “Estimating Temporary Space for
Index Builds” on page 7-24.

d. Use the onutil CREATE TEMP DBSPACE and CREATE TEMP
DBSLICE commands to create large temporary dbspaces and
specify them in the DBSPACETEMP configuration parameter or
the DBSPACETEMP environment variable.

For information on optimizing temporary dbspaces, refer to
“Dbspaces for Temporary Tables and Sort Files” on page 5-10.

Estimating Sort Memory
To calculate the amount of virtual shared memory that the database server
might need for sorting, estimate the maximum number of sorts that might
occur concurrently and multiply that number by the average number of rows
in each dbspace and the average row size.

For example, if you estimate that 30 sorts could occur concurrently, the
average row size is 200 bytes, and the average number of rows in a table or
dbspace is 400, you can estimate the amount of shared memory that the
database server needs for sorting as follows:

30 sorts * 200 bytes * 400 rows = 2,400,000 bytes

If PDQPRIORITY is 0, the maximum amount of shared memory that the
database server allocates for a sort is about 128 kilobytes for each sort thread.
If PDQPRIORITY is greater than 0, the database server allocates sort memory
from the total memory allocated to the query.

Specify more memory with the DS_TOTAL_MEMORY configuration
parameter and request a larger portion of that memory with the
PDQPRIORITY configuration parameter. For more information, refer to
“Increasing Sort Memory” on page 11-22 and “How the RGM Grants
Memory” on page 12-5.
Index Performance 7-23

Estimating Temporary Space for Index Builds
Estimating Temporary Space for Index Builds
To estimate the amount of temporary space needed for an entire index build,
perform the following steps:

1. Add up the total widths of the indexed columns or returned values
from user-defined functions. This value is referred to as keysize.

2. Estimate the size of a typical item to sort with one of the following
formulas, depending on whether the index is attached or not:

■ For a nonfragmented table or a fragmented table with an
attached index, use the following formula:

sizeof_sort_item = keysize + 5

■ For fragmented tables with the index explicitly fragmented, use
the following formula:

sizeof_sort_item = keysize + 9

3. Estimate the number of bytes needed to sort with the following
formula:

temp_bytes = 2 * (rows * sizeof_sort_item)

This formula uses the factor 2 because everything is stored twice
when intermediate sort runs use temporary space. Intermediate sort
runs occur when not enough memory exists to perform the entire
sort in memory.

The value for rows is the total number of rows that you expect to be
in the table.
7-24 Performance Guide for Informix Extended Parallel Server

8
Chapter
Locking
In This Chapter . 8-3

Locking Granularity 8-3
Row and Key Locking 8-4
Page Locking 8-4
Table Locking 8-5

Using the LOCK TABLE Statement 8-6
Using the LOCK MODE TABLE Option 8-7
When the Database Server Locks the Table 8-7

Database Locking 8-7
Setting COARSE Locking for Indexes 8-8
Waiting for Locks 8-8

Locking with the SELECT Statement 8-9
Setting the Isolation Level 8-9

Dirty Read Isolation 8-9
Committed Read Isolation 8-10
Cursor Stability Isolation 8-11
Repeatable Read Isolation 8-11

Locking and Update Cursors 8-12

Placing Locks with INSERT, UPDATE, and DELETE 8-14

Key-Value Locking 8-14

Monitoring and Administering Locks 8-15
Monitoring Locks 8-16
Configuring and Monitoring the Number of Locks 8-17
Monitoring Lock Waits and Lock Errors 8-18
Monitoring Deadlocks 8-19

Reducing Deadlocks. 8-20

8-2 Perf
ormance Guide for Informix Extended Parallel Server

In This Chapter
This chapter describes how the database server uses locks and how locks
affect performance.

Efficient locking is an important factor for OLTP performance because of the
overhead involved in obtaining a lock. Different locking strategies might be
appropriate for DSS applications. Consider the locking options discussed in
this chapter, and adjust locking granularity for tables and indexes to
maximize concurrency but also maintain data integrity.

This chapter discusses the following topics:

■ Types of locks

■ Locking during query processing

■ Locking during updates, deletes, and inserts

■ Monitoring and configuring locks

Locking Granularity
A lock is a software mechanism that prevents other processes from using a
resource. This chapter discusses placing locks on data. You can place a lock
on the following data components:

■ An individual row

■ An index key

■ A page of data or index keys

■ A table

■ A database
Locking 8-3

Row and Key Locking
The amount of data that the lock protects is called locking granularity. Locking
granularity affects performance. When a user cannot access a row or key, the
user can wait for another user to unlock the row or key. If a user locks an
entire page, more users might have to wait for a row in the page.

The ability of more than one user to access a set of rows is called concurrency.
The goal of the database administrator is to increase concurrency to improve
total performance without sacrificing performance for an individual user
who needs a large number of locks.

Row and Key Locking
Because row and key locking are not the default behaviors, you must specify
row-level locking when you create the table, as in the following example:

CREATE TABLE customer(customer_num serial, lname char(20) …)
LOCK MODE ROW;

The ALTER TABLE statement can change the lock mode of an existing table.

When you insert or update a row, the database server creates a row lock. In
some cases, you place a row lock when you read the row with a SELECT
statement. When you insert, update, or delete a key, which occurs automati-
cally when you insert, update, or delete a row, the database server creates a
lock on the key in the index.

To increase concurrency, use row and key locks for good performance when
applications update a relatively small number of rows. However, the
database server incurs overhead whenever it obtains a lock. For an operation
that requires changing a large number of rows, obtaining one lock per row
might not be cost effective. In this case, consider using page locking.

Page Locking
Page locking is the default behavior when you create a table without the
LOCK MODE clause.

With page locking, the database server locks the entire page that contains the
row instead of locking only the row. If you update several rows on the same
page, the database server uses only one lock for the page.
8-4 Performance Guide for Informix Extended Parallel Server

Table Locking
When you insert or update a row, the database server creates a page lock on
the data page. In some cases, primarily dependent on the isolation level of the
transaction, the database server creates a page lock when you simply read the
row with a SELECT statement.

When you insert, update, or delete a key, which occurs automatically when
you insert, update, or delete a row, the database server creates a lock on the
index page that contains the key.

Important: A page lock on an index page might decrease concurrency more signifi-
cantly than a page lock on a data page. Index pages are dense and hold a large number
of keys. By locking an index page, you make a potentially large number of keys
unavailable to other users until you release the lock.

Page locks are useful for tables in which the normal process changes a lot of
rows at one time. For example, an orders table that holds orders that are
commonly inserted and queried individually is not a good candidate for
page locking. But a table that holds old orders and is updated nightly with all
of the orders placed during the day might be a good candidate. In this case,
the type of isolation level that you use to access the table as well as the type
and duration of the lock is important. For more information refer to“Setting
the Isolation Level” on page 8-9.

Table Locking
In a data warehouse environment, queries might run faster if they acquire
locks of a larger granularity. For example, if a query accesses most of the rows
in a table, its efficiency increases if it acquires a smaller number of table locks
instead of many page or row locks.

The database server places one or more locks on a table when a user executes
the LOCK TABLE statement. The database server can place the following two
types of table locks:

■ Shared lock. No other users can write to the table.

■ Exclusive lock. No other users can read from or write to the table.
Locking 8-5

Table Locking
An important distinction between these two types of table locks is in the
actual number of locks placed:

■ In shared mode, the database server places one shared lock on the
table so that no updates can be performed. In addition, the database
server adds locks for every row updated, deleted, or inserted.

■ In exclusive mode, the database server places only one exclusive lock
on the table, no matter how many rows it updates. If you are
updating most of the rows in the table, you should place an exclusive
lock on the table.

Important: A table lock on a table can decrease update concurrency radically. Only
one update transaction can access that table at any given time, and that update trans-
action locks out all other transactions. However, multiple read-only transactions can
simultaneously access the table. This behavior is useful in a data warehouse
environment where the data is loaded and then queried by many users.

Tables can be switched back and forth between table-level locking and the
other levels of locking. The ability to switch locking levels is useful when you
use a table for DSS queries during certain time periods but not in others.

The user requests table-level locking for a table with one of the following SQL
statements:

■ LOCK TABLE statement

■ LOCK MODE TABLE option with the CREATE TABLE or ALTER TABLE
statement

Using the LOCK TABLE Statement

The LOCK TABLE statement is used in the application. The application
specifies the type of lock (shared or exclusive) to place on the table.

The following example places an exclusive lock on the table:

LOCK TABLE tab1 IN EXCLUSIVE MODE

The following example places a shared lock on the table:

LOCK TABLE tab1 IN SHARE MODE
8-6 Performance Guide for Informix Extended Parallel Server

Database Locking
Using the LOCK MODE TABLE Option

When a transaction accesses a table that has table-level locking, it automati-
cally acquires a table lock if the isolation level for the transaction requires any
locks at all. The user does not need to acquire a table lock explicitly with the
LOCK TABLE statement.

To create a table with table-level locking use the CREATE TABLE statement, as
in the following example:

CREATE TABLE tab1 (col1 …) LOCK MODE TABLE

After you create a table, you can change its locking level with the ALTER
TABLE statement, as in the following example:

ALTER TABLE tab2 LOCK MODE TABLE

When you use this LOCK MODE TABLE option, the database server automat-
ically acquires the correct type of lock (shared or exclusive), depending on
the isolation level of the transaction:

■ Exclusive table locks (for write or read-write access) at all isolation
levels

■ Shared table locks (for read access) at Cursor Stability and
Repeatable Read isolation levels

When the Database Server Locks the Table

In some cases, the database server places its own table locks. For example, if
the isolation level is Repeatable Read, and the database server has to read a
large part of the table, it places a table lock automatically instead of setting
row or page locks. The database server also places a table lock on a table
when it creates or drops an index.

Database Locking
You can place a lock on the entire database when you open the database with
the DATABASE statement. A database lock prevents read or update access by
anyone but the current user.

The following statement opens and locks the sales database:

DATABASE sales EXCLUSIVE
Locking 8-7

Setting COARSE Locking for Indexes
Setting COARSE Locking for Indexes
When an index is locked in COARSE mode, the database server places a
shared lock on the index partition instead of using the key- or page-level
locking specified when the index was created. Locking the entire partition
reduces lock overhead, which is a critical factor in OLTP applications. Shared
locks allow many read-only transactions to access the index partition at the
same time.

If applications rarely update the key columns in a table, increase locking
efficiency by setting the lock mode for its indexes to COARSE.

Important: If a user updates the index and associated table when the index is locked
in COARSE mode, the updating user sets an exclusive lock on the table through the
index. Other users cannot access the table until the updating user releases the lock.

When the lock mode for an index is set to COARSE, the database server first
acquires an exclusive lock on the table to allow current transactions that are
executing with a finer-grain lock on the table to complete their work. Then it
switches the index lock mode to COARSE.

The syntax for changing the lock mode on an index is as follows:

ALTER INDEX index_name LOCK MODE COARSE

To reset the index to its original lock mode, use the ALTER INDEX statement
and set the lock mode to NORMAL.

You can easily switch the lock mode between COARSE and NORMAL to
accommodate periods when changes are made to key columns in the table.
The index lock mode is displayed in the onutil CHECK INDEX output.

Waiting for Locks
When a user process encounters a lock, the default behavior of the database
server is to return an error to the application immediately.

You can execute the following statement to wait indefinitely for a lock:

SET LOCK MODE TO WAIT
8-8 Performance Guide for Informix Extended Parallel Server

Locking with the SELECT Statement
You can also wait for a specific number of seconds, as the following example
shows:

SET LOCK MODE TO WAIT 20

To return to the default behavior (no waiting for locks), execute the following
statement:

SET LOCK MODE TO NOT WAIT

Consider the performance implications of allowing sessions to wait indefi-
nitely for locks to be released. You can prevent deadlocks if sessions wait only
a specified number of seconds for a lock to be released. It is often more
efficient to reenter an OLTP transaction than to slow input with long waits.

Locking with the SELECT Statement
The type and duration of locks that the database server places depend on
what isolation level is set in the application and whether the SELECT
statement is in an update cursor. The following section explains how
isolation levels and update cursors affect locking behavior.

Setting the Isolation Level
The number and duration of locks placed on data during a SELECT statement
depend on the isolation level that the user sets. The isolation level can affect
overall performance because it affects concurrency.

You can set the isolation level with the SET ISOLATION or the ANSI SET
TRANSACTION statement and a specific isolation-level name before you
execute the SELECT statement. You can execute SET TRANSACTION only once
in a transaction. You can execute SET ISOLATION more than once in a trans-
action, and it permits an additional isolation level, Cursor Stability. For more
information, see “Cursor Stability Isolation” on page 8-11.

Dirty Read Isolation

Dirty Read isolation (or ANSI Read Uncommitted) places no locks on any
rows fetched during a SELECT statement. Dirty Read isolation is appropriate
for STATIC tables that are used for queries.
Locking 8-9

Setting the Isolation Level
Use Dirty Read with care if update activity occurs at the same time as queries.
With Dirty Read, the user can read a row that has not been committed to the
database and might be removed or changed during a rollback. For example,
consider the following scenario:

User 1 starts a transacion.
User 1 inserts row A.
User 2 reads row A.
User 1 rolls back row A.

In this case, user 2 reads a row that user 1 rolls back seconds later. In effect,
user 2 has read a row that was never committed to the database. Sometimes
known as a phantom row, uncommitted data that is rolled back can pose a
problem for applications.

Because the database server does not check or place any locks for queries,
Dirty Read isolation offers the best performance of all isolation levels.
However, because of potential problems with phantom rows, use it with care.

Because the phantom-row problem is associated only with transactions, non-
logging tables, which do not allow transactions, use Dirty Read as a default
isolation level.

Committed Read Isolation

Committed Read isolation (or ANSI Read Committed) removes the problem
of phantom reads. A reading process with this isolation level checks for locks
before it returns a row. Because inserted or updated rows are locked until the
transaction commits, the reading process does not return any uncommitted
rows.

The database server does not place any locks for rows read during
Committed Read. It only checks the lock table for any existing locked rows.

Committed Read is the default isolation level for databases with logging, and
it is an appropriate isolation level for most activities.
8-10 Performance Guide for Informix Extended Parallel Server

Setting the Isolation Level
Cursor Stability Isolation

A reading process with Cursor Stability isolation acquires a shared lock on
the row that is currently fetched. This action ensures that no other process can
update the row until the reading process fetches a new row.

The ISOLATION_LOCKS configuration parameter determines the number of
rows to lock when Cursor Stability isolation level is in effect.
ISOLATION_LOCKS offers an intermediate solution between Repeatable
Read, which locks the entire table, and Committed Read, which does not
obtain read locks. Increasing ISOLATION_LOCKS allows more efficient row
buffering, but locking many rows can reduce concurrency for the table. For
information about the ISOLATION_LOCKS parameter, refer
to“ISOLATION_LOCKS” on page 5-18.

The pseudocode in Figure 8-1 shows when the database server places and
releases locks with a cursor.

If you do not use a cursor to fetch data, Cursor Stability isolation behaves in
the same way as Committed Read. No locks are actually placed.

Repeatable Read Isolation

Repeatable Read isolation, which is the equivalent of ANSI Serializable and
ANSI Repeatable Read, is the most strict isolation level. With Repeatable
Read, the database server locks all rows examined, not just rows fetched, for
the duration of the transaction.

Figure 8-1
Locks Placed for
Cursor Stability

set isolation to cursor stability
declare cursor for SELECT * from customer
open the cursor
while there are more rows

fetch a row
do stuff

end while
close the cursor

Release the lock on the previous
row and add a lock for this row.

Release the lock on the last row.
Locking 8-11

Locking and Update Cursors
The pseudocode in Figure 8-2 shows when the database server places and
releases locks with a cursor.

Repeatable Read is useful during any processing in which multiple rows are
examined and none must change during the transaction. For example,
consider an application that checks the account balance of three accounts that
belong to one person. The application gets the balance of the first account and
then the second. But, at the same time, another application begins a trans-
action that debits the third account and the credits the first account. By the
time that the original application obtains the account balance of the third
account, it has been debited. However, the original application did not record
the debit of the first account.

When you use Committed Read or Cursor Stability, the previous situation
can occur. However, with Repeatable Read, it cannot. The original appli-
cation holds a read lock on each account that it examines until the end of the
transaction, so the application trying to change the first and third account
would fail (or wait, depending upon SET LOCK MODE).

Because even examined rows are locked, if the database server reads the table
sequentially, many rows unrelated to the query result can be locked. For this
reason, use Repeatable Read isolation for tables when the database server can
use an index to access a table.

Locking and Update Cursors
An update cursor is a special kind of cursor that applications can use when a
selected row might be updated. To use an update cursor, execute SELECT FOR
UPDATE in your application.

Figure 8-2
Locks Placed for
Repeatable Read

set isolation to repeatable read
begin work
declare cursor for SELECT * FROM customer
open the cursor
while there are more rows

fetch a row
do stuff

end while
close the cursor
commit work

Add a lock for this row and every
row examined to retrieve this row.

Release all locks.
8-12 Performance Guide for Informix Extended Parallel Server

Locking and Update Cursors
Update cursors use promotable locks. With a promotable lock, when the appli-
cation fetches the row, the database server places an update lock so that other
users can still view the row, but the lock is changed to an exclusive lock when
the application uses an update cursor and the UPDATE...WHERE CURRENT OF
statement to update the row.

The advantage of using an update cursor is that other users cannot view or
change the row that you are viewing while you are viewing it and before you
update it.

If you do not update the row, the default behavior of the database server is to
release the update lock when you execute the next FETCH statement or close
the cursor. However, if you execute the SET ISOLATION statement with the
RETAIN UPDATE LOCKS clause, the database server does not release any
currently existing or subsequently placed update locks until the end of the
transaction.

The pseudocode in Figure 8-3 shows when the database server places and
releases update locks with a cursor. The database server releases the update
lock on row one as soon as the next fetch occurs. However, after the database
server executes the SET ISOLATION statement with the RETAIN UPDATE
LOCKS clause, it does not release any update locks until the end of the
transaction.

In an ANSI-compliant database, you usually do not need update cursors
because any select cursor behaves the same as an update cursor without
requiring the RETAIN UPDATE LOCKS clause.

Figure 8-3
When Update Locks

Are Released
declare update cursor
begin work
open the cursor
fetch row 1

fetch row 2
SET ISOLATION TO COMMITTED READ

RETAIN UPDATE LOCKS
fetch row 3
fetch row 4

Commit work

Release lock for row 1. Add
update lock for row 2.

Add an update lock for row 1.

Add an update lock for row 3.
Add an update lock for row 4.

Release update locks for row 2, 3, and 4.
Locking 8-13

Placing Locks with INSERT, UPDATE, and DELETE
The pseudocode in Figure 8-4 shows when the database server places and
releases locks with a cursor.

For detailed information about the RETAIN UPDATE LOCKS clause of the SET
ISOLATION LEVEL statement, see the Informix Guide to SQL: Syntax.

Placing Locks with INSERT, UPDATE, and DELETE
When you execute an INSERT, UPDATE, or DELETE statement, the database
server uses exclusive locks. With an exclusive lock, no other users can view a
row unless they are using the Dirty Read isolation level. In addition, no other
users can update or delete the item until the database server removes the
lock.

Key-Value Locking
When a user deletes a row in a transaction, the row cannot be locked because
it does not exist. However, the database server must somehow record that a
row existed until the end of the transaction.

The database server uses key-value locking to lock the deleted row. When the
database server deletes a row, it does not remove key values in the indexes
for the table immediately. Instead, it marks each key value as deleted and
places a lock on the key value.

Figure 8-4
When Update Locks

Are Promoted
declare update cursor
begin work
open the cursor
fetch the row
do stuff
update the row (use WHERE CURRENT OF)
commit work

Add an update lock for this row.

Promote lock to exclusive.

Release lock.
8-14 Performance Guide for Informix Extended Parallel Server

Monitoring and Administering Locks
If other users encounter key values that are marked as deleted, the database
server determines whether a lock exists. If a lock exists, the delete has not
been committed. The database server sends a lock error back to the appli-
cation, or it waits for the lock to be released if the user executed SET LOCK
MODE TO WAIT.

One of the most important uses for key-value locking is to assure that a
unique key stays unique until the end of the transaction in which it is deleted.
Without this protection mechanism, user A might delete a unique key in a
transaction. Before the transaction commits, user B might insert a row with
the same key, which would make rollback by user A impossible. Key-value
locking prevents user B from inserting the row until the end of user A’s
transaction.

Monitoring and Administering Locks
The database server stores lock information in an internal lock table. When
the database server reads a row, it checks to see if the row or its associated
page, table, or database is listed in the lock table. If it is in the lock table, the
database server also checks the lock type. The lock table can contain the
following types of locks.

In addition, the lock table might store intent locks with the same lock type. A
a process uses an intent lock to register its possible intent to lock an item, so
that other processes cannot place a lock on the item but can read it.

Lock Name Description Statement That Usually Places the Lock

S Shared lock SELECT

X Exclusive lock INSERT, UPDATE, DELETE

U Update lock SELECT in an update cursor

B Byte lock Any statement that updates VARCHAR columns
Locking 8-15

Monitoring Locks
Depending on the type of operation and the isolation level, the database
server might continue to read the row and place its own lock on the row, or
it waits for the lock to be released if the user executed SET LOCK MODE TO
WAIT. The following table shows what locks a process can place if another
process holds a certain type of lock. For example, if one process holds an
exclusive lock on an item, another process that requests any kind of lock
(exclusive, update or shared) receives an error.

Monitoring Locks
To view the lock table, use onstat -k, or xctl onstat -k for multiple coservers.
Figure 8-5 shows sample output for onstat -k.

In this example, a user is inserting one row in a table. The user holds the
following locks, described in the order shown:

■ A shared lock on the database

■ A shared lock on a row in the systables system catalog table

■ An intent-exclusive lock on the table

■ An exclusive lock on the row

Hold X Lock Hold U Lock Hold S Lock

Request X lock No No Yes

Request U lock No No Yes

Request S lock No Yes Yes

Locks
address wtlist owner lklist type tblsnum rowid key#/bsiz
300b77d0 0 40074140 0 HDR+S 10002 106 0
300b7828 0 40074140 300b77d0 HDR+S 10197 123 0
300b7854 0 40074140 300b7828 HDR+IX 101e4 0 0
300b78d8 0 40074140 300b7854 HDR+X 101e4 102 0
 4 active, 5000 total, 8192 hash buckets

Figure 8-5
onstat -k Output
8-16 Performance Guide for Informix Extended Parallel Server

Configuring and Monitoring the Number of Locks
To find out which table has locks, execute the following SQL statement.
Substitute the value shown in the tblsnum field in the onstat -k output for
tblsnum.

SELECT tabname
FROM systables
WHERE partnum = hex(tblsnum)

For a complete description of onstat -k output, refer to the Administrator’s
Reference.

Configuring and Monitoring the Number of Locks
The LOCKS configuration parameter controls the size of the internal lock
table. If the number of locks placed exceeds the value set by LOCKS, the appli-
cation receives an error. For more information on how to determine an initial
value for the LOCKS configuration parameter, refer to “LOCKS” on page 4-19.

To specify the number of rows that can be locked in Cursor Stability isolation
level, set the ISOLATION_LOCKS configuration parameter to a value greater
than 1. Make sure that the LOCKS configuration parameter is set correctly if
you set ISOLATION_LOCKS. For more information, refer to “Cursor Stability
Isolation” on page 8-11.

To monitor the number of times that applications receive the out-of-locks
error, view the ovlock field in the output of onstat -p (or xctl onstat -p for
multiple coservers).

If the database server often receives the out-of-locks error, you might increase
the LOCKS parameter value. However, a very large lock table can slow perfor-
mance. Although the algorithm for reading the lock table is efficient, you
incur some cost for reading a large table each time that the database server
reads a row. If the database server is using an unusually large number of
locks, examine how individual applications are using locks.

First, monitor sessions with onstat -u to see if a particular process is using an
especially high number of locks (the high value in the locks column). If one
session uses a large number of locks, examine the SQL statements in the appli-
cation to determine whether you should lock the table or use individual row
or page locks.
Locking 8-17

Monitoring Lock Waits and Lock Errors
A table lock is more efficient than individual row locks, but it reduces concur-
rency. To reduce the number of locks placed on a table, you can also alter a
table to use page locks instead of row locks. However, page locks reduce
overall concurrency for the table, which can affect performance.

Monitoring Lock Waits and Lock Errors
If the application executes SET LOCK MODE TO WAIT, the database server
waits for a lock to be released instead of returning an error. An unusually
long wait for a lock can make users think that the application is hanging.

In Figure 8-5, the onstat -u output shows that session ID 84 is waiting for a
lock (L in the first column of the Flags field). The address field shows the
address of the lock for which the user is waiting. To find out the owner of the
lock, use the onstat -k command.You can cross-reference the owner of the
lock back to the onstat -u output. In the example, session ID 81 is the owner
of the lock.
8-18 Performance Guide for Informix Extended Parallel Server

Monitoring Deadlocks
To eliminate the contention problem, you can have the user of session 81 exit
from the application. If this action is not possible, you can kill the application
process or remove the session with onmode -z.

Monitoring Deadlocks
A deadlock occurs when user processes hold locks that other users want to
acquire.

For example, user joe holds a lock on row 10. User jane holds a lock on row
20. Suppose that jane wants to place a lock on row 10, and joe wants to place
a lock on row 20. If both users execute SET LOCK MODE TO WAIT, they might
wait for each other forever.

Figure 8-6
onstat -u Output

That Shows Lock
Use

onstat -u
...
Userthreads
address flags sessid user tty wait tout locks nreads
nwrites
40072010 ---P--D 7 informix - 0 0 0 35 75
400723c0 ---P--- 0 informix - 0 0 0 0 0
40072770 ---P--- 1 informix - 0 0 0 0 0
40072b20 ---P--- 2 informix - 0 0 0 0 0
40072ed0 ---P--F 0 informix - 0 0 0 0 0
40073280 ---P--B 8 informix - 0 0 0 0 0
40073630 ---P--- 9 informix - 0 0 0 0 0
400739e0 ---P--D 0 informix - 0 0 0 0 0
40073d90 ---P--- 0 informix - 0 0 0 0 0
40074140 Y-BP--- 81 lsuto 4 50205788 0 4 106
221
400744f0 --BP--- 83 jsmit - 0 0 4 0 0
400753b0 ---P--- 86 worth - 0 0 2 0 0
40075760 L--PR-- 84 jones 3 300b78d8 -1 2 0 0
 13 active, 128 total, 16 maximum concurrent

onstat -k
...
Locks
address wtlist owner lklist type tblsnum rowid key#/bsiz
300b77d0 0 40074140 0 HDR+S 10002 106 0
300b7828 0 40074140 300b77d0 HDR+S 10197 122 0
300b7854 0 40074140 300b7828 HDR+IX 101e4 0 0
300b78d8 40075760 40074140 300b7854 HDR+X 101e4 100 0
300b7904 0 40075760 0 S 10002 106 0
300b7930 0 40075760 300b7904 S 10197 122 0
 6 active, 5000 total, 8192 hash buckets
Locking 8-19

Monitoring Deadlocks
If user processes access tables or fragments on the local coserver, the database
server uses the lock table to detect deadlocks automatically and stop them
before they occur. Before a lock is granted, the database server examines the
lock list for each user. If a user holds a lock on the resource that the requestor
wants to lock, the database server traverses the lock wait list for the user to
see if the user is waiting on any locks that the requestor holds. If so, the
requestor receives an deadlock error.

Deadlock errors in OLTP applications can be unavoidable if applications
update the same rows frequently. However, certain applications might
always be in contention with each other. Examine applications that are
producing a large number of deadlocks and try to run them at different times.
To monitor the number of deadlocks, use the deadlks field in the output of
onstat -p (or xctl onstat -p for multiple coservers).

To monitor the number of distributed deadlock timeouts, use the dltouts
field in the onstat -p output.

Reducing Deadlocks

Deadlocks often occur in OLTP systems in which the same table or table
fragment is updated or read with locking by many users almost simulta-
neously. For this reason, you should resolve deadlocks automatically and
immediately so that they do not slow or halt the system.

In DSS databases, deadlocks might also occur if many queries are reading the
same table. In DSS databases, however, many tables are assumed to be in a
stable state, so they can be STATIC tables, which are not locked when they are
read.
8-20 Performance Guide for Informix Extended Parallel Server

Monitoring Deadlocks
To reduce the number of deadlocks in OLTP databases, you might use the
following methods:

■ Review table fragmentation.

Use the deadlock information in the log to determine which tables
and fragments are associated with most deadlocks and consider a
different fragmentation strategy. You might make the fragmentation
granularity smaller.

■ Review the isolation level of transactions.

For information about the relation of the isolation level and locking,
see “Setting the Isolation Level” on page 8-9.

Make sure that SPL routines used in transactions specify the
appropriate isolation level.

■ Review the table and locking mode.

Unless transactions change several rows at a time, set STANDARD
tables to row-level locking for OLTP applications.

Make as many tables as possible STATIC tables, which do not permit
changes but also do not require locks of any kind. Tables that contain
information that does not change often or changes only at regular
intervals, such as product tables, department tables, and so on, can
be made STATIC tables. You can change the table mode when updates
are required, and updates might be applied in a batch process.
Locking 8-21

9
Chapter
Fragmentation Guidelines
In This Chapter . 9-5

Planning a Fragmentation Strategy 9-6
Identifying Fragmentation Goals. 9-7

Improving Query Performance 9-8
Reducing I/O Contention 9-9
Increasing Data Availability 9-10
Increasing Granularity for Backup and Restore 9-11

Evaluating Fragmentation Factors for Performance 9-11
Balancing Processing Across All Coservers 9-11
Fragmenting Tables Across Coservers. 9-12
Eliminating Fragments for Fast Queries and Transactions . . . 9-13

Examining Your Data and Queries 9-14
Planning Storage Spaces for Fragmented Tables and Indexes . . . 9-15

Creating Cogroups and Dbslices for Fragmentation 9-17
Creating Cogroups and Dbslices 9-17
Increasing Parallelism by Fragmenting Tables Across Coservers . . 9-19
Using Dbslices for Performance and Ease of Maintenance 9-19

Creating Dbslices for Collocated Joins 9-20
Creating Dbslices to Increase Data Granularity 9-21
Creating Dbslices for Temporary Files 9-22

Designing a Distribution Scheme 9-23
Choosing a Distribution Scheme 9-24

Choosing a Distribution Scheme for DSS Applications 9-28
Choosing a Distribution Scheme for OLTP Applications . . . 9-29

Creating a System-Defined Hash Distribution Scheme 9-29
Ensuring Collocated Joins 9-30
Fragmenting on a Serial Column 9-31

9-2 Perf
Creating an Expression-Based Distribution Scheme 9-32
Creating a Hybrid Distribution Scheme 9-34
Creating a Range Distribution Scheme 9-36
Altering a Fragmentation Scheme 9-39
General Fragmentation Notes and Suggestions 9-39

Designing Distribution for Fragment Elimination 9-41
Queries for Fragment Elimination 9-42

Range Expressions in Query 9-43
Equality Expressions in Query 9-44

Types of Fragment Elimination 9-45
Range Elimination 9-45
Hash Elimination 9-46

Query and Distribution Scheme Combinations for
Fragment Elimination 9-48
System-Defined Hash Distribution Scheme 9-49
Hybrid Distribution Scheme 9-50

Fragmenting Indexes 9-52
Attached Indexes 9-52
Detached Indexes 9-54
Constraints on Indexes for Fragmented Tables 9-56
Indexing Strategies for DSS and OLTP Applications 9-57

Fragmenting Temporary Tables. 9-58
Letting the Database Server Determine the Fragmentation 9-59
Specifying a Fragmentation Strategy 9-60
Creating and Specifying Dbspaces for Temporary Tables and

Sort Files . 9-60

Attaching and Detaching Table Fragments 9-62
Improving ALTER FRAGMENT ATTACH Performance 9-62

Formulating Appropriate Distribution Schemes 9-62
Specifying Similar Index Characteristics 9-63

Improving ALTER FRAGMENT DETACH Performance 9-64

Monitoring Fragmentation 9-65
Monitoring Fragmentation Across Coservers 9-66

xctl onstat -d 9-66
xctl onstat -D 9-68
xctl onstat -g iof 9-69
ormance Guide for Informix Extended Parallel Server

Monitoring Fragmentation on a Specific Coserver 9-70
xctl -c n onstat -g iof 9-70
xctl -c n onstat -g ppf 9-70
sysfragments System Catalog Table 9-71
sysptprof System-Monitoring Interface Table 9-72
Fragmentation Guidelines 9-3

9-4 Perf
ormance Guide for Informix Extended Parallel Server

In This Chapter
This chapter discusses how table and index fragmentation can reduce data
contention and allow fragments to be eliminated for efficient query
processing.

Fragmenting tables and indexes across coservers and disks can significantly
reduce I/O contention for data and improve parallel processing. Additional
performance improvement results if you construct the fragmentation scheme
in such a way that unnecessary fragments can be eliminated in query
processing.

This chapter discusses the following topics:

■ Planning a fragmentation strategy

■ Fragmenting with cogroups and dbslices

■ Designing a distribution scheme

■ Eliminating table fragments in query processing

■ Fragmenting indexes

■ Fragmenting temporary tables

■ Improving the performance of attaching and detaching fragments

■ Monitoring fragmentation

For information about how fragmentation affects parallel query execution,
refer to Chapter 11, “Parallel Database Query Guidelines.”

This manual emphasizes the fragmentation methods that are most useful for
performance improvements. For an introduction to general fragmentation
methods, refer to the Informix Guide to Database Design and Implementation.

For information about the SQL statements that create fragmented tables, refer
to the Informix Guide to SQL: Syntax.
Fragmentation Guidelines 9-5

Planning a Fragmentation Strategy
Planning a Fragmentation Strategy
Planning a fragmentation strategy requires you to make the following
decisions:

1. Identify your primary fragmentation goal.

Your fragmentation goals depend on the types of applications and
the design of queries and transactions that access the table.

2. Analyze the workload.

OLTP applications and DSS queries might require different
fragmentation strategies. For example, OLTP applications might
require tables fragmented so that many users can access them
simultaneously. DSS queries might require tables fragmented for
improved efficiency of parallel processing.

Consider questions such as the following ones:

■ What tables do queries and transactions access most often?

■ What attributes are used in SELECT or WHERE clauses?

■ What tables do queries join most often?

■ For updates, what fields are changed most often?

■ How often are rows added to or deleted from tables?

3. Decide how the table should be fragmented.

You must make the following decisions:

■ Whether to fragment the table data, the table index, or both

■ What the most useful distribution of rows or index keys is for
the table
9-6 Performance Guide for Informix Extended Parallel Server

Identifying Fragmentation Goals
4. Choose one of the five distribution schemes.

If you choose an expression-based, range, or hybrid distribution
scheme, you are responsible for designing suitable fragment
expressions.

If you choose a system-defined hash or round-robin distribution
scheme, the database server determines which rows to put in a
specific fragment.

5. To complete the fragmentation strategy, decide on the location of the
fragments.

The number of coservers, dbslices, and dbspaces across which you
fragment the table determines the number of fragments.

Identifying Fragmentation Goals
Analyze your application and workload to determine how to balance the
following fragmentation goals:

■ Improved performance for queries and transactions

To improve the performance for OLTP transactions, fragment tables
so that the requested rows can be accessed immediately from the
appropriate table fragment and many users can access different
fragments of the table simultaneously.

For DSS queries, data required by the query can be scanned in
parallel by one thread for each table fragment to improve query
performance. Certain fragmentation schemes allow the database
server to identify fragments that are not required by the query and to
skip them automatically.

■ Reduced disk contention and disk bottlenecks

When tables are fragmented across several disks and coservers,
many users and many queries can access separate fragments without
causing I/O bottlenecks or data contention.

■ Increased data availability

Fragmentation can improve data availability if devices fail. Table
fragments on the failed device can be restored quickly, and other
fragments are still accessible.
Fragmentation Guidelines 9-7

Identifying Fragmentation Goals
■ Increased granularity for backup and restore

Consider how restoring tables and fragments of tables might affect
transaction and query processing and whether warm or cold restores
would be required to restore backed-up data.

■ Improved data-load performance

When the database server uses parallel inserts and external tables to
load a table in express mode, if the table is fragmented across multi-
ple coservers, the database server allocates threads to write data into
the fragments in parallel using light append. For more information
about loading data from external tables, refer to the Administrator’s
Reference.

You can also use the ALTER FRAGMENT ON TABLE statement with
the ATTACH clause to add data quickly to a very large table. For more
information, refer to “Attaching and Detaching Table Fragments” on
page 9-62.

The following factors primarily govern the performance of a fragmented
table:

■ How disk space is allocated in dbslices for fragments, discussed in
“Creating Cogroups and Dbslices for Fragmentation” on page 9-17

■ The distribution scheme used to assign rows to individual
fragments, discussed in “Designing a Distribution Scheme” on
page 9-23

Improving Query Performance

If the primary goal of fragmentation is improved performance for DSS
queries, distribute the rows of the table evenly over the different coservers.
Overall query-completion time is reduced when the database server does not
have to wait during parallel processing of queries while one thread retrieves
data from a table fragment that has more rows than other fragments. If you
use the fact-dimension database model, your fact table should be fragmented
across coservers. Consider using hybrid fragmentation, described on
“Creating a Hybrid Distribution Scheme” on page 9-34, to fine-tune fragmen-
tation for major tables.

One exception to fragmenting tables evenly across coservers is a dimension
table that contains fewer than 1000 rows. Such tables are usually more
efficient when they are stored on a single coserver.
9-8 Performance Guide for Informix Extended Parallel Server

Identifying Fragmentation Goals
If you use round-robin fragmentation, do not fragment the index. Consider
placing that index in a separate dbspace from other table fragments.

For more information about improving performance for queries, see
“Designing Distribution for Fragment Elimination” on page 9-41 and
Chapter 10, “Queries and the Query Optimizer.”

Reducing I/O Contention

Fragmentation can reduce contention for data in tables. Fragmentation often
reduces contention when many simultaneous queries against a table perform
index scans to return a few rows, such as queries about the inventory of
specific items in an order-entry application.

For tables that are subjected to this type of query workload, fragment both
the index keys and data rows with one of the following distribution schemes
to allow each query to eliminate unneeded fragments from its scan:

■ Expression-based

■ System-defined hash

■ Hybrid

■ Range

For more information, refer to “Designing Distribution for Fragment
Elimination” on page 9-41.

To fragment a table for reduced contention, start by investigating which
queries and transactions access which rows of the table. Next, fragment data
so that some of the queries and transactions are routed to one fragment while
others access a different fragment. The database server performs this routing
when it evaluates the fragmentation rule for the table. Finally, store the
fragments on separate coservers and disks.

Your success in reducing contention depends on how much you know about
the distribution of data in the table and how queries access the data.

For example, if queries against the table access rows at roughly the same rate
or randomly, try to distribute rows evenly across the fragments. However, if
certain rows are accessed more often than others, try to distribute these rows
over the fragments to balance the access. For more information, refer to
“Creating an Expression-Based Distribution Scheme” on page 9-32.
Fragmentation Guidelines 9-9

Identifying Fragmentation Goals
Increasing Data Availability

When you distribute table and index fragments across different disks, you
improve the availability of data during disk failures. If you have turned
DATASKIP on, the database server can continue to allow access to fragments
stored on disks that remain operational.

To specify which fragments can be skipped, execute the SET DATASKIP
statement before you execute a query. You can also set the DATASKIP config-
uration parameter. Use the onstat -f utility to find out if DATASKIP is on or
off. If DATASKIP is on, the onstat -f output lists the dbspaces that can be
skipped if they are not available. This feature has important implications for
the following types of applications:

■ Applications that do not require access to all fragments

An OLTP application or a query that does not require the database
server to access data in an unavailable fragment can still successfully
retrieve data from fragments that are available. For example, if the
table is fragmented by expression on a single column, as described in
“Creating an Expression-Based Distribution Scheme” on page 9-32,
the database server can determine if a row is contained in a fragment
without accessing the fragment. If the query accesses only rows that
are contained in available fragments, a query can succeed even when
some of the data in the table is unavailable.

■ Applications that accept the unavailability of data

Some applications might be designed in such a way that they can
accept the unavailability of data in a fragment and retrieve only the
data that is available. For example, some decision-support queries
require only a statistical sample of the table data.

If your fragmentation goal is increased availability of data, fragment both
table rows and index keys so that if a disk drive fails, some of the data is still
available.

If applications must always be able to access a particular subset of your data,
keep those rows together in the same mirrored dbspace.
9-10 Performance Guide for Informix Extended Parallel Server

Evaluating Fragmentation Factors for Performance
Increasing Granularity for Backup and Restore

Consider the following two backup and restore factors when you decide how
to distribute dbspaces across disks and coservers:

■ Data availability. When you decide where to place your tables or
fragments, remember that if a device that contains a dbspace fails, all
tables or table fragments in that dbspace are inaccessible even
though tables and fragments in other dbspaces are accessible. The
need to limit data unavailability in the event of a disk failure might
influence which tables you group together.

■ Cold versus warm restores. Although you must perform a cold
restore if a dbspace that contains critical data fails, you need to
perform only a warm restore if a noncritical dbspace fails.

Reduce the impact of cold restores by careful choice of the dbspace
where you store critical data, which includes the root dbspace on
each coserver and all dbspaces that contain logical or physical logs.
If possible, store critical data on separate disks.

For more information about backup and restore, see the Backup and Restore
Guide.

Evaluating Fragmentation Factors for Performance
As you formulate your fragmentation strategy, keep these interrelated factors
in mind:

■ Even balance of processing across all coservers

■ Parallel-processing advantages for tables that are fragmented across
coservers

■ Increased query-processing speed if the database server can
eliminate fragments

Balancing Processing Across All Coservers

For decision-support applications, the primary fragmentation consideration
should be to balance processing evenly across all coservers. When one or two
coservers are working harder than others, the entire system slows down.
Fragmentation Guidelines 9-11

Evaluating Fragmentation Factors for Performance
To take advantage of the hardware parallelism that underlies the database
server, SQL operations execute in parallel. If the workload is not evenly
distributed across coservers, parallel execution is unbalanced, and perfor-
mance suffers.

All of the performance-related factors discussed in this manual affect
processing balance, some more than others. Although the importance of
some of these factors depends on the kind of workload on the database
server, you should analyze queries and transactions and fragment tables to
avoid data skew as much as possible. Data skew occurs when a dispropor-
tionate amount of the data that an SQL operation requires resides on one
coserver instead of being distributed evenly across all coservers. Consider
expression and hybrid fragmentation schemes to distribute data appropri-
ately for the queries that users run most often.

Balance the resources on all nodes where participating coservers reside. All
participating coservers should have the same number of processors and
disks per processor and the same amount of memory.

Nodes that are used as connection coservers for client applications should
have additional ports, however, and might use processor affinity and allow
additional memory to ensure processor balancing for the database server
workload. If incoming data or data preprocessing is intensive, you might use
a dedicated node that does not run a database server for that purpose.

Fragmenting Tables Across Coservers

Because coservers process data in parallel, parallel I/O performance
improves in a linear fashion as table fragments are added if the fragments are
added evenly across coservers. This performance improvement is limited by
the number of CPUs, the latency of the high-speed interconnect between
coservers, and the bus bandwidth.

Increasing the number of table fragments can reduce contention for some
OLTP applications. For DSS applications, however, as the number of rows in
a fragment decreases, a query search is increasingly likely to span multiple
fragments. If the number of rows in each fragment is small, the overhead for
coordinating scan operations across coservers cancels the gains from
fragmentation unless tables are fragmented to take advantage of collocated
joins and can eliminate many fragments. For more information, refer to
“Ensuring Collocated Joins” on page 9-30.
9-12 Performance Guide for Informix Extended Parallel Server

Evaluating Fragmentation Factors for Performance
Eliminating Fragments for Fast Queries and Transactions

For DSS queries, you can reduce the number of I/O operations if queries can
take advantage of fragment elimination.

Before you decide on a fragmentation strategy, identify the tables that large
queries require and determine what portions of each table these queries
actually examine. Then fragment the tables to restrict the scope of queries to
a subset of table fragments or distribute fragments by hash on the column
that the queries use most often.

Fragment elimination is even more important for efficient OLTP transaction
processing. Examine transactions and fragment tables so that many transac-
tions against the same table can occur on different fragments of the table.

When you eliminate fragments from a scan, you eliminate the associated I/O
operations and delays, and you also reduce demand for buffers and LRU
queue activity. To perform calculations associated with the query or to
support other queries or OLTP operations, the database server can use CPU
cycles that are otherwise used to scan fragments and manage buffers. For
detailed information about creating queries that eliminate fragments, see
“Designing Distribution for Fragment Elimination” on page 9-41.

Base your decision regarding the number of fragments in a table on how you
distribute your data, or distribute your data based on the number of
coservers and disks that are available. The most important factor in planning
a fragmentation strategy is careful analysis of typical queries and
transactions.
Fragmentation Guidelines 9-13

Examining Your Data and Queries
Examining Your Data and Queries
To determine a fragmentation strategy, you must know how the data in a
table is used.

To gather information about the relation between queries and tables

1. Identify the queries that are critical to performance and whether they
are OLTP or DSS.

2. Use the SET EXPLAIN statement to find out how the data is being
accessed. For more information on how to interpret the output of the
SET EXPLAIN statement, refer to Chapter 10, “Queries and the Query
Optimizer.” Sometimes you can find out how the data is accessed by
reviewing the SELECT statements together with the table schema.

3. Find out if queries access data randomly or if a pattern exists. To
reduce I/O contention, use information about the access pattern to
fragment tables. You might be able to use this information to
improve ad hoc queries generated by a third-party application that
you cannot manage.

4. Find out if certain tables are always joined in DSS queries. Fragment
joined tables across the same coservers to take better advantage of
parallel processing.

5. Find out what statements create temporary files. Because decision-
support queries often create and access large temporary files,
placement of temporary dbspaces can be critical to performance.

6. Examine the columns in the table to decide which fragmentation
scheme would keep all scan threads equally busy for the decision-
support queries. To see how the column values are distributed,
execute the UPDATE STATISTICS statement and examine the data
distribution with dbschema:

dbschema -d database -hd table
9-14 Performance Guide for Informix Extended Parallel Server

Planning Storage Spaces for Fragmented Tables and Indexes
Planning Storage Spaces for Fragmented Tables and
Indexes
When you fragment a table or index, the physical placement issues that
pertain to an unfragmented table or applies to individual fragments. For
more details on table placement issues, refer to Chapter 6, “Table
Performance.”

Tip: If each node contains more than one coserver, the dbspaces for each coserver
should be on separate disks. Each disk should be assigned to a single coserver to
prevent coservers from sharing disks. If the nodes use disk clusters or disk arrays,
however, you might not be able to restrict certain disks to use by certain coservers. In
that case, create chunks for dbspaces evenly across as many disks as possible within
the disk cluster. The system administrator should be able to help you partition disks
and create chunks in such a way that you prevent coservers from sharing disks.

Fragmented and nonfragmented tables and indexes differ in the following
ways:

■ For fragmented tables, each fragment is placed in a separate, desig-
nated dbspace. For nonfragmented tables, the table can be placed in
the default dbspace of the current database. Regardless of whether
the table is fragmented, Informix recommends that each chunk the
dbspace contains be created on a separate disk if possible.

■ Extent sizes for a fragmented table are usually smaller than the
extent sizes for an equivalent nonfragmented table because
fragments do not grow in increments as large as the entire table. For
more information on extent sizes for fragmented tables, refer to
“Choosing Extent Sizes” on page 6-22.

■ In a fragmented table, the row identifier is not an unchanging pointer
to the row on a disk. A row identifier for a fragmented table is made
up of a fragment ID and row identifier. Although these two fields are
unique, they can change during the life of the row. An application
cannot access the row by fragment ID and row identifier. The
database server keeps track of the fragment ID and row identifier
combination and uses it internally to point to a table row in a
fragment.
Fragmentation Guidelines 9-15

Planning Storage Spaces for Fragmented Tables and Indexes
■ An attached index on a fragmented or nonfragmented table requires
4 bytes for the row identifier. A detached index requires 8 bytes of
disk space per key value for the fragment ID and row identifier
combination. For more information on how to estimate space for an
index, refer to “Estimating Table Size” on page 6-15.

Decision-support queries usually create and access large temporary files.
Placement of temporary dbspaces is a critical factor for performance. For
more information about placement of temporary files, refer to “Creating and
Specifying Dbspaces for Temporary Tables and Sort Files” on page 9-60.

Table and index fragments are placed in separate tblspaces with their own
extents and tblspace IDs. The tblspace ID is a combination of the fragment ID
and partition number.

Important: Data and index pages reside in the same dbspace but not in the same
tblspace in either a fragmented table or a nonfragmented table.

The database server stores the location of each table and index fragment, and
related information, in the system catalog table sysfragments. Use sysfrag-
ments to access the following information about fragmented tables and
indexes:

■ The value in the fragtype field specifies the fragment type of the
object, such as T for a table fragment, I for an index fragment, or B for
a TEXT or BYTE data fragment.

■ The value in the partn field is the physical location identifier of the
fragment.

■ The value in the strategy field is the distribution scheme used in the
fragmentation strategy.

For a complete description of field values that the sysfragments system
catalog table contains, refer to the Informix Guide to SQL: Reference. For
information on how to use the sysfragments table to monitor your
fragments, refer to “Monitoring Fragmentation on a Specific Coserver” on
page 9-70.
9-16 Performance Guide for Informix Extended Parallel Server

Creating Cogroups and Dbslices for Fragmentation
Creating Cogroups and Dbslices for Fragmentation
You can create cogroups and dbslices to:

■ simplify fragmentation of very large tables across multiple coservers.

■ improve performance of queries and other database operations that
access tables fragmented across multiple coservers.

For information about how to fragment and manage tables, depending on
your fragmentation goals, see “Designing a Distribution Scheme” on
page 9-23.

The number of dbslices and dbspaces that you can create is determined by
the CONFIGSIZE configuration parameter and two of its overriding configu-
ration parameters, MAX_DBSLICES and MAX_DBSPACES. For information
about these configuration parameters, refer to the Administrator’s Reference.

Creating Cogroups and Dbslices
For ease and efficiency of management, you can group the coservers that
make up the database server into cogroups, which are named lists of
coservers, and manage each group as a logical unit. For example, you might
create the cogroup sales to manage coservers that contain dbspaces used for
your order-entry database. A predefined cogroup, cogroup_all, includes all
coservers. For information about creating cogroups, refer to the Adminis-
trator’s Guide.

On the coservers included in a cogroup, you create dbslices, which are lists of
dbspaces that the database server manages as a single logical storage object.
For example, you might use onutil to create the following customer dbslice
from the sales cogroup:

% onutil
1> CREATE DBSLICE cust_dbslc
2> FROM cogroup sales
3> CHUNK "/dev/dbsl_customer%c"
4> SIZE 490000;
DBslice successfully created.
Fragmentation Guidelines 9-17

Creating Cogroups and Dbslices
When you create cust_dbslc in the previous example, the database server
creates dbspaces on all /dev/dbsl_customer chunks that have been created
across the coservers in the sales cogroup. As the database server creates
dbspaces, it names them by combining the dbslice name and an ordinal
number. In the previous example, the first dbspace created is cust_dbslc.1,
the second is cust_dbslc.2, and so on. If cogroup sales contains coservers 5,
6, 9, and 10, the dbspaces are distributed as follows.

A dbslice simplifies the creation of fragmented tables because you can refer
to all of the dbspaces for a single table with a single name, the dbslice name.
For example, to fragment a table across the dbspaces in the cust_dbslc
dbslice, use the following CREATE statement to specify a single dbslice name
instead of four dbspace names:

CREATE TABLE customer
(cust_id integer,
...

)
FRAGMENT BY HASH (cust_id)

IN cust_dbslc;

This example shows the customer table fragmented by system-defined hash
into all of the dbspaces in the cust_dbslc dbslice.

For information about creating dbslices that increase the possibility of collo-
cated joins, which join table fragments on each local coserver instead of
shipping data across the interconnect, see “Creating Dbslices for Collocated
Joins” on page 9-20.

Tip: Place fragments for each important table in their own dbslice. If you place frag-
ments of more than one table in the same dbslice, monitoring and tuning is extremely
difficult.

Dbspace Chunk

cust_dbslc.1 /dev/dbsl_customer.5

cust_dbslc.2 /dev/dbsl_customer.6

cust_dbslc.3 /dev/dbsl_customer.9

cust_dbslc.4 /dev/dbsl_customer.10
9-18 Performance Guide for Informix Extended Parallel Server

Increasing Parallelism by Fragmenting Tables Across Coservers
Increasing Parallelism by Fragmenting Tables Across
Coservers
You increase the degree of parallelism when you fragment tables across
multiple coservers. Fragmentation across coservers ensures that table
fragments are processed in parallel by threads that are running on each
coserver.

Fragmenting tables across coservers provides these advantages:

■ More efficient use of shared memory

The database server uses the resources on each coserver to process
table fragments in parallel.

■ More efficient fragment elimination

Expression, range, and hash fragmentation schemes let the database
server eliminate fragments for queries that use the fragmentation
columns in WHERE clauses.

■ Higher degree of parallelism for scans and sorts

The virtual processors (VPs) on each coserver can process queries in
parallel.

■ More efficient join operations

Collocated joins can reduce traffic between coservers.

Using Dbslices for Performance and Ease of Maintenance
Although cogroups and dbslices are primarily logical organizations that
make managing a complex database server easier, they also have the
following implications for performance:

■ Dbslices that contain more than one dbspace on each coserver can
increase data granularity and parallel processing of queries,
especially if tables are fragmented with hybrid methods.

■ Dbslices make it easy to distribute temporary dbspaces evenly across
coservers.
Fragmentation Guidelines 9-19

Using Dbslices for Performance and Ease of Maintenance
■ Dbslices for log files make it easy to manage logical logs across
coservers.

■ Dbslices permit collocated joins, in which rows are scanned and joined
on the local coserver to reduce traffic between coservers.

Creating Dbslices for Collocated Joins

The way in which you create a dbslice to distribute the dbspaces across
coservers can change the speed of queries dramatically, especially if tables
are fragmented to take advantage of collocated joins. A collocated join is a join
that is performed locally on one coserver before data is shipped to other
coservers for processing.

For example, you might fragment your customer table across five coservers
with two disks on each coserver.

If you create a round-robin dbslice as in the following sample onutil
command, you gain the advantage of collocated joins because the dbspaces
are defined round-robin across coservers rather than in a coserver:

% onutil
1> CREATE DBSLICE cust_dbsl FROM
2> COGROUP sales CHUNK "/dbspaces/dbs1%c" SIZE 490000,
3> COGROUP sales CHUNK "/dbspaces/dbs2%c" SIZE 490000;
Dbslice successfully added.

This onutil command creates dbspaces cust_dbsl.1 through cust_dbsl.5 on
separate coservers and dbspaces cust_dbsl.6 through cust_dbsl.10 on
separate coservers. Figure 9-1 shows the dbspaces that this onutil CREATE
DBSLICE command creates on each coserver.

Figure 9-1
Dbslice with Dbspaces Created Round-Robin Across Coservers

Cust_dbsl.5 Cust_dbsl.10. . .

. . .

Cust_dbsl.1 Cust_dbsl.6 Cust_dbsl.2 Cust_dbsl.7

Coserver 2 Coserver 5Coserver 1
9-20 Performance Guide for Informix Extended Parallel Server

Using Dbslices for Performance and Ease of Maintenance
If you create a dbslice as in the following sample onutil command, queries
do not have the advantage of collocated joins:

% onutil
1> CREATE DBSLICE cust_dbsl FROM COGROUP cust_group
2> CHUNK "/dbspaces/dbs%r(1..2)"
3> SIZE 490000;
Dbslice successfully added.

This dbslice creation command creates dbspaces cust_dbsl.1 and cust_dbsl.2
on the first coserver, dbspaces cust_dbsl.3 and cust_dbsl.4 on the second
coserver, and so forth. Because the database server creates collocated join
threads in a round-robin fashion across coservers, queries cannot take
advantage of collocated joins with this dbspace layout.

For detailed information about creating cogroups and dbslices, see the
Administrator’s Guide.

Creating Dbslices to Increase Data Granularity

For very large tables, increasing the granularity of data can improve query
and transaction processing dramatically.

For example, if a table uses a hybrid fragmentation scheme that fragments
the table on one column by expression into a dbslice and on another column
by hash across dbspaces in the dbslice, queries and transactions that select
rows based on the fragmenting columns can quickly find required rows
without accessing all table fragments.

The following example shows how to use the onutil CREATE DBSLICE
command to create a dbslice across 16 coservers in the orders_cogroup
cogroup so that each coserver dbslice section contains three dbspaces:

% onutil
1> CREATE DBSLICE orders_sl
2> FROM COGROUP orders_cogroup
3> CHUNK "/dev/dbsl_orders.%r(1..3)";
Fragmentation Guidelines 9-21

Using Dbslices for Performance and Ease of Maintenance
The database server creates the following dbspaces on the eight coservers:

coserver dbspace_identifier primary chunk
xps.1 orders_sl.1 /dev/dbsl_orders.1
xps.1 orders_sl.2 /dev/dbsl_orders.2
xps.1 orders_sl.3 /dev/dbsl_orders.3
xps.2 orders_sl.4 /dev/dbsl_orders.1
xps.2 orders_sl.5 /dev/dbsl_orders.2
xps.2 orders_sl.6 /dev/dbsl_orders.3
. . .
xps.8 orders_sl.22 /dev/dbsl_orders.1
xps.8 orders_sl.23 /dev/dbsl_orders.2
xps.8 orders_sl.24 /dev/dbsl_orders.3

Creating Dbslices for Temporary Files

In addition to dbslices that you create for tables and logical logs, create one
or more dbslices for the temporary output that is part of DSS query
processing.

Create the dbslices for temporary files across all coservers for balanced use of
resources on coservers. Specify these dbslices in either the DBSPACETEMP
configuration parameter or the DBSPACETEMP environment variable. For
more information, refer to “Dbspaces for Temporary Tables and Sort Files” on
page 5-10.

If temporary dbspaces are evenly distributed across coservers, the database
server can use collocated joins to build and process temporary files locally.
Other temporary activity is distributed by round-robin across all temporary
dbslices.

You can also place explicit temporary tables in the temporary dbspaces.

For information on fragmentation for temporary files, refer to “Creating and
Specifying Dbspaces for Temporary Tables and Sort Files” on page 9-60.
9-22 Performance Guide for Informix Extended Parallel Server

Designing a Distribution Scheme
Designing a Distribution Scheme
After you decide whether to fragment table rows, index keys, or both, and the
dbslices and dbspaces in which the table fragments are distributed, you
decide on a scheme to implement this distribution.

The database server supports the following distribution schemes:

■ Round-robin. This distribution scheme places rows as they are
inserted one after another in fragments, rotating through the series
of fragments to distribute the rows evenly.

As rows are added by INSERT statements, the database server uses a
hash function on a random number to determine the fragment in
which to place the row. If rows are added by INSERT cursors, the
database server places the first row in a random fragment, the second
in the next fragment sequentially, and so on. If one of the fragments
is full, it is skipped.

■ System-defined hash. This distribution scheme uses an internal,
system-defined rule that distributes rows with the intent of keeping
approximately the same number of rows in each fragment.

One advantage of system-defined hash distribution over round-
robin distribution is that the database server can identify the frag-
ment in which a row is placed, so that table fragments can be
eliminated if they are not needed for query or transaction processing.

■ Expression-based. This distribution scheme puts rows that contain
specified values in the same fragment. You specify a fragmentation
expression that defines criteria for assigning rows to each fragment,
either as a range rule or some other arbitrary rule. Although you can
specify a remainder fragment that holds all rows that do not match the
criteria for any other fragment, a remainder fragment reduces the
efficiency of the expression-based distribution scheme.
Fragmentation Guidelines 9-23

Choosing a Distribution Scheme
■ Hybrid fragmentation. This distribution scheme combines two
fragmentation strategies on the same table for increased data granu-
larity and fragment elimination during query processing.

Hybrid fragmentation provides a two-dimensional fragmentation
scheme such that a table is usually fragmented by expression into
specific dbslices or sets of dbspaces and fragmented by hash into the
specific dbspaces in each dbslice or set of dbspaces.

You can also use range fragmentation to create a hybrid range frag-
mentation scheme that uses ranges and subsets of the ranges to
divide a table into smaller fragments. For more information about
hybrid range fragmentation, see “Creating a Range Distribution
Scheme” on page 9-36.

■ Range fragmentation. This distribution scheme can be used either as
a single-level scheme or a hybrid scheme. Range fragmentation is
similar to clustering. It is designed to distribute and cluster rows
evenly, and it improves access performance for tables with dense,
uniform distributions and little or no duplication in the fragmen-
tation column.

This manual emphasizes distribution schemes that have general perfor-
mance advantages. For a description of possible variations on these
distribution schemes, refer to the Informix Guide to Database Design and
Implementation.

Choosing a Distribution Scheme
The following table compares expression-based, hybrid, round-robin, range,
and system-defined hash distribution schemes for three important features:
ease of data balancing, fragment elimination, and data skip.
9-24 Performance Guide for Informix Extended Parallel Server

Choosing a Distribution Scheme
Distribution
Scheme Ease of Data Balancing Fragment Elimination Data Skip

Expression-
based

You must know the data
distribution to balance
the number of rows in
fragments.

If expressions on one or two
columns are used, the
database server can eliminate
fragments for queries that
have either range or equality
expressions.

Fragmentation expressions
that use functions such as
DAY(date_field) do not
provide fragment elimination
unless the query filter uses an
expression of the form column
= "literal" , such as
date_field = "01-04-98" .
The literal expression can also
be a host variable or an SPL
routine variable.

You can determine whether
the integrity of a transaction
has been compromised
when you use the dataskip
feature. You cannot insert
rows if the fragment for
those rows is not available.

Round-robin The database server
automatically balances
data over time.

The database server cannot
eliminate fragments.

You cannot determine if the
integrity of the transaction is
compromised when you use
the dataskip feature.

You can insert into a table
that is fragmented by round-
robin if any table fragment is
accessible, even though
some fragments are not
available.

System-
defined hash

The database server does
not necessarily balance
data over time. If the
fragmentation column
contains unique,
well-distributed values,
data might be balanced.

The database server can
eliminate fragments for
queries that have equality
expressions.

You cannot determine if the
integrity of the transaction is
compromised when you use
the dataskip feature.

You cannot insert rows if the
fragment for those rows is
not available.

 (1 of 2)
Fragmentation Guidelines 9-25

Choosing a Distribution Scheme
The following factors should determine the distribution scheme that you
choose, as the previous table describes:

■ Whether your queries tend to scan the entire table

■ Whether you know the distribution of data to be added

■ Whether your applications tend to delete many rows

■ Whether you cycle your data through the table

Round-robin distribution schemes are certain to balance data. However, with
round-robin distribution, the database server has no information about
which fragment contains a specific row, and it cannot eliminate fragments.
With system-defined hash distribution, the database server can determine
which fragment contains a row, so it can eliminate fragments.

Hybrid You must know the data
distribution and queries
run against the table to
balance the table I/O
(lookups) across the
dbslice. Unless the hash
fragmentation column
contains evenly
distributed unique
values, hash-fragmented
tables do not necessarily
balance data.

The database server can
eliminate fragments for range
or equality statements on the
base-level expression strategy
or equality expressions on the
secondary-level hash strategy.

You can determine whether
the integrity of a transaction
has been compromised
when you use the dataskip
feature. You cannot insert
rows if the fragment for
those rows is not available.

Range Data balancing requires
dense, uniform, non-
duplicate distribution of
fragmentation column
data.

The database server can
eliminate fragments for
queries with equality and
range expressions.

You can determine whether
the integrity of a transaction
has been compromised
when you use the dataskip
feature. You cannot insert
rows if the fragment for
those rows is not available.

Distribution
Scheme Ease of Data Balancing Fragment Elimination Data Skip

 (2 of 2)
9-26 Performance Guide for Informix Extended Parallel Server

Choosing a Distribution Scheme
In general, choose round-robin or system-defined hash fragmentation only
when all the following conditions apply:

■ Your queries tend to scan the entire table.

■ You do not know the distribution of data to be added.

■ Your applications tend not to delete many rows. (The deletion of
many rows can degrade load balancing.)

Choose an expression-based, range, or hybrid distribution scheme to
fragment the data if any of the following conditions apply:

■ Many decision-support queries scan specific portions of the table.

■ You know what the data distribution is.

■ You plan to cycle data through a database by adding and removing
fragments.

You might also use a hybrid distribution scheme to fragment the data if any
of the following conditions apply:

■ The size of the data is so large that you can improve fragment elimi-
nation and parallel processing by further fragmenting each
expression-based fragment into two or more hash-based fragments.

■ To reduce contention among numerous transactions or decision-
support queries that scan specific portions of the table, your appli-
cation requires a finer granularity of fragments than a simple
expression-based or range scheme provides.

Choose a range distribution scheme if both of the following conditions apply:

■ The column used for fragmentation is densely and uniformly
distributed in the table.

■ The fragmentation column contains few or no duplicate values.

In some cases, an appropriate index scheme can circumvent the performance
problems of a particular distribution scheme. For more information, refer to
“Fragmenting Indexes” on page 9-52.

If you plan to add and delete large amounts of data periodically based on the
value of a column such as date, use that column in the distribution scheme.
You can then use the ALTER FRAGMENT ATTACH and ALTER FRAGMENT
DETACH statements to cycle the data through the table.
Fragmentation Guidelines 9-27

Choosing a Distribution Scheme
The ALTER FRAGMENT ATTACH and DETACH statements provide the
following advantages over bulk loads and deletes:

■ The rest of the table fragments are available for access. Only the
fragment that you attach or detach is not available.

■ The execution of an ALTER FRAGMENT ATTACH or DETACH
statement is much faster than a bulk load or mass delete.

For more information, refer to “Attaching and Detaching Table Fragments”
on page 9-62.

Choosing a Distribution Scheme for DSS Applications

As you consider possible distribution schemes for DSS applications, keep the
following factors in mind:

■ If queries scan an entire table, fragment the table so that one or two
fragments for each physical CPU are available to the coserver. If each
node hosts more than one coserver, divide the number of CPUs
available on the node by the number of coservers.

■ For optimal performance in decision-support queries, fragment the
table to increase parallelism but do not fragment the indexes. Create
detached indexes in a separate dbspace.

■ Use system-defined hash fragmentation on data when decision-
support queries scan the entire table. System-defined hash fragmen-
tation is a good way to spread data evenly across disks and provides
the following advantages over the round-robin distribution scheme:

❑ You can eliminate fragments for equality expressions on the hash
column.

❑ You can take advantage of collocated joins when you join on the
hash column.
9-28 Performance Guide for Informix Extended Parallel Server

Creating a System-Defined Hash Distribution Scheme
Choosing a Distribution Scheme for OLTP Applications

As you consider distribution schemes for OLTP applications, keep the
following factors in mind:

■ For improved performance in OLTP, fragment indexes to reduce
contention between sessions. You can often fragment an index by its
key value, which means the OLTP query has to look at only one
fragment to find the location of the row.

If the key value does not reduce contention, such as when every user
is using the same set of key values (for instance, a date range), con-
sider fragmenting the index on another value used in the WHERE
clause. To reduce fragment administration, consider not fragmenting
some indexes, especially if you cannot find a good fragmentation
expression to reduce contention.

■ If you fragment tables by expression or range, create fragments to
balance I/O requests across coservers and disks instead of balancing
quantities of data.

For example, if most transactions access only some of the rows in the
table, set up the fragmentation expression to spread active portions
of the table across coservers and disks even if this arrangement
results in an uneven distribution of rows.

Creating a System-Defined Hash Distribution Scheme
The optimal fragmentation strategy for a DSS-only environment is to
fragment tables across all coservers by system-defined hash on a key that is
used for joining the tables. When you fragment tables by system-defined
hash on one column, make sure that dbslices have been created to take
advantage of collocated joins, as the following section describes.

Hybrid fragmentation schemes, described in “Creating a Hybrid Distri-
bution Scheme” on page 9-34, might provide additional performance
benefits.
Fragmentation Guidelines 9-29

Creating a System-Defined Hash Distribution Scheme
Ensuring Collocated Joins

When you hash on the same column that is used for joins, you can obtain
collocated joins. A collocated join is a join that occurs locally on the coserver
where the data resides. Because the local coserver sends data to the other
coservers after the join is completed, less data is sent between coservers.

For information about creating dbslices to take advantage of collocated joins,
see page 9-20.

To take advantage of collocated joins

1. Create the dbslices so that the dbspace ordinal numbers are assigned
round-robin across coservers.

% onutil
1> CREATE DBSLICE cust_dbsl FROM
2> COGROUP sales CHUNK "/dbspaces/dbs1%c" SIZE 1024,
3> COGROUP sales CHUNK "/dbspaces/dbs2%c" SIZE 1024;

Suppose you have five coservers with two disks on each coserver.
This onutil command creates dbspaces cust_dbsl.1 through
cust_dbsl.5 on separate coservers and dbspaces cust_dbsl.6
through cust_dbsl.10 on separate coservers. Figure 9-2 shows that
dbspaces cust_dbsl.1 and cust_dbsl.6 are on the first coserver,
dbspaces cust_dbsl.2 and cust_dbsl.7 are on the second coserver,
and so on.

Create dbslice order_dbsl to distribute dbspaces across the same
coservers in the same way.

2. Fragment the tables by hash on the same column that is used to join
in the query.

CREATE TABLE customer (cust_id integer, …)
FRAGMENT BY HASH (cust_id) IN cust_dbsl;

CREATE TABLE order (... cust_id integer, …)
FRAGMENT BY HASH (cust_id) IN order_dbsl;
9-30 Performance Guide for Informix Extended Parallel Server

Creating a System-Defined Hash Distribution Scheme
3. Execute the following query:
SELECT ... FROM customer c, order o

WHERE c.cust_id = o.cust_id ...

Figure 9-2 shows that the hash join instances for this query match the
dbspace ordinal numbers of the dbslice.

Output from the onstat -g ath command shows the hash-join
instances. Sample onstat -g ath output appears in Figure 12-18 on
page 12-45. For more information on using the onstat command,
refer to “Using Command-Line Utilities to Monitor Queries” on
page 12-30.

Fragmenting on a Serial Column

You can specify a serial column in the system-defined hash distribution
scheme of a fragmented table. If you specify a serial column, it must be the
only column that you specify in the system-defined hash distribution
scheme.

Figure 9-2
Dbspace Ordinal Numbers and Hash-Join Instances for Collocated Joins

. . .

cust_dbsl.5 cust_dbsl.10. . .cust_dbsl.1 cust_dbsl.6 cust_dbsl.2 cust_dbsl.7

cu
st_

db
sl

Coserver 1 Coserver 2 Coserver 5

order_dbsl.5 order_dbsl.10. . .order_dbsl.1 order_dbsl.6 order_dbsl.2 order_dbsl.7

or
de

r_
db

sl

hjoin_1 hjoin_6 hjoin_2 hjoin_7 . . . hjoin_5 hjoin_10

Ha
sh

-J
oi

n
In

sta
nc

e

Fragmentation Guidelines 9-31

Creating an Expression-Based Distribution Scheme
You might notice a difference in serial values that are assigned to the serial
column in a fragmented table and a nonfragmented table. The database
server assigns serial values in each fragment. However, the values are do not
overlap. You cannot specify what values to use. The database server controls
the values to add. For more information about the FRAGMENT BY clause,
refer to the Informix Guide to SQL: Syntax.

Tip: Although you can create your own hash algorithm, if you use the system-defined
hash algorithm for queries and fragmentation, the database server can often eliminate
fragments from query processing.

Creating an Expression-Based Distribution Scheme
The first step in creating an expression-based distribution scheme is to
determine the distribution of data in the table, particularly the distribution of
values for the column on which you base the fragmentation expression.

To obtain the distribution of values for the fragmentation column

1. Run the UPDATE STATISTICS statement in MEDIUM or HIGH mode
for the table and specify the column.

2. Use the dbschema utility to examine the distribution.

For examples of dbschema use and output, see the Informix Migration
Guide.

If you know the data distribution, you can design a fragmentation rule that
distributes data across dbspaces as required to meet your fragmentation goal.
If your primary goal is to improve performance for DSS queries, a fragment
expression that generates a relatively even distribution of rows across
fragments might improve parallel processing of table fragments if all
fragments are required by most queries.
9-32 Performance Guide for Informix Extended Parallel Server

Creating an Expression-Based Distribution Scheme
For fragment elimination, the fragmentation scheme should match most
query filters. For example, a table might be fragmented so that data for the
days of the month, such as the first, the second, the third, and so on, are stored
in separate fragments. However, if queries require a range of data by month,
such as the first of January through the thirty-first of March, fragment elimi-
nation cannot occur. The fragmentation expression must be a simple
expression that uses a range of dates, such as the following example:

...
FRAGMENT BY EXPRESSION

bill_date >= "01/01/1998" AND bill_date < "02/01/1998" IN
dbsp2,

bill_date >= "02/01/1998" AND bill_date < "03/01/1998" IN
dbsp3,
...

The table on page 9-25 describes the limitations of date expressions.

If your primary fragmentation goal is improved concurrency for OLTP appli-
cations, analyze the queries that access the table:

■ If certain rows are accessed more often than others, try to distribute
data so that these rows are not in the same table fragment.

■ Avoid specifying columns in the fragmentation expression if they are
updated often. Such updates might cause rows to move, deleting
them from one fragment and adding them to another fragment. This
activity increases CPU and I/O overhead.

■ If all columns are used in many transactions, fragmentation expres-
sions based on more than one column can improve fragment
elimination. For example, you might create a hybrid fragmentation
scheme, fragmenting the table across coservers with an expression-
based scheme and across dbspaces within each coserver with a hash-
based scheme.

You might also consider one of the following specialized types of
expression-based distribution schemes:

❑ Overlapping or noncontiguous fragments based on one or two
columns

❑ Nonoverlapping fragments based on one or two columns

❑ A REMAINDER fragment
Fragmentation Guidelines 9-33

Creating a Hybrid Distribution Scheme
These specialized expression-based distribution schemes are not rec-
ommended because they do not permit fragment elimination. For
information about these modifications of expression-based distribu-
tion schemes, see the Informix Guide to Database Design and
Implementation.

When the query optimizer determines that the values that the
WHERE clause selects do not reside on certain fragments, the data-
base server can eliminate those fragments from query processing.
For more information, refer to “Designing Distribution for Fragment
Elimination” on page 9-41.

Creating a Hybrid Distribution Scheme
Hybrid fragmentation combines system-defined hash and expression-based
distribution schemes to increase parallel access and fragment elimination.

Hybrid fragmentation provides a two-dimensional fragmentation scheme
such that a table is fragmented by expression into specific dbslices on one
dimension and into the dbspaces that the dbslice contains on another
dimension. This distribution strategy provides finer granularity of table
fragments and permits the database server to eliminate fragments based on
the hash distribution, the expression distribution, or occasionally both.

For even finer granularity on a single column, you can use the same column
as the distribution column for both the hash and expression distribution.

As an example, suppose that you have created dbslices defined across 12
coservers, and the dbslice includes two dbspaces on each coserver for a total
of 24 dbspaces, as the following onutil commands show:

% onutil
1> CREATE COGROUP sales
2> FROM xps42t_techpubs.%r(1..12);
Cogroup successfully added.
3> CREATE DBSLICE acct_dbsl FROM
4> COGROUP sales CHUNK "/dbspaces/dbs1.%c" SIZE 490000,
5> COGROUP sales CHUNK "/dbspaces/dbs2.%c" SIZE 490000;
Dbslice successfully added.
...

36> CREATE DBSLICE acct_dbsl12 FROM
37> COGROUP sales CHUNK "/dbspaces/dbs23.%c" SIZE 490000,
38> COGROUP sales CHUNK "/dbspaces/dbs24.%c" SIZE 490000;
Dbslice successfully added.
9-34 Performance Guide for Informix Extended Parallel Server

Creating a Hybrid Distribution Scheme
For more information on how to create a cogroup and a dbslice, refer to the
Administrator’s Guide.

If you have accounting data for a full year, you might fragment account
numbers by month, with each month in a separate dbslice. The following
CREATE TABLE statement in SQL shows the combination of the expression-
based distribution scheme to fragment each month into one of the twelve
dbslices and the hash distribution scheme to fragment the monthly account
numbers into the dbspaces in each dbslice:

CREATE TABLE account
(account_num integer,
account_bal integer,
account_date date,
account_name char(30)
)
FRAGMENT BY HYBRID (account_num) EXPRESSION

account_date >= '01/01/1996'
and account_date < '02/01/1996' IN acct_dbsl1

account_date >= '02/01/1996'
and account_date < '03/01/96' IN acct_dbsl2

...

account_date >= '12/01/1996'
and account_date < '01/01/97' IN acct_dbsl12

For more information on hybrid fragmentation syntax, see the Informix Guide
to SQL: Syntax.
Fragmentation Guidelines 9-35

Creating a Range Distribution Scheme
Figure 9-3 illustrates the dbspaces in each dbslice for the table fragments that
this hybrid distribution scheme defines.

Creating a Range Distribution Scheme
Range distribution ensures that rows are fragmented evenly across dbspaces
and the fragment that contains each row is uniquely identified. Only columns
that contain data of type INTEGER or SMALLINT can be used for range
fragmentation expressions, and simple fragmentation can be based on only
one column.

Figure 9-3
Hybrid Fragmentation

. . .

acct_dbsl1.48 acct_dbsl1.96. . .acct_dbsl1.1 acct_dbsl1.49 acct_dbsl1.2 acct_dbsl1.50

ac
ct_

db
sl1

Coserver 1

HASH(account_num)

Coserver 2 Coserver 48

acct_dbsl2.48 acct_dbsl2.96. . .acct_dbsl2.1 acct_dbsl2.49 acct_dbsl2.2 acct_dbsl2.50

ac
ct_

db
sl2

acct_dbsl12.48 acct_dbsl12.96. . .acct_dbsl12.1 acct_dbsl12.49 acct_dbsl12.2 acct_dbsl12.50

ac
ct_

db
sl1

2

. .
9-36 Performance Guide for Informix Extended Parallel Server

Creating a Range Distribution Scheme
Hybrid range fragmentation schemes can specify different columns in each
fragmentation statement. For small number ranges, a hybrid range fragmen-
tation scheme might avoid data skew that sometimes occurs with hybrid
hash fragmentation schemes.

Range distribution is similar to expression distribution in that rows are
distributed by a range of values. You can use range fragmentation in any
circumstances in which expression fragmentation is appropriate and the
fragmentation columns are INTEGER or SMALLINT data types.

In range distribution, however, the database server balances the distribution
of rows evenly among fragments on the basis of the MIN and MAX values if
they are provided or on the assumption that the single stated RANGE value
is the maximum and 0 is the minimum.

Equality searches on the search key or keys are faster when rows are grouped
in range partitions. For example, queries and transactions with filters of the
form WHERE a.col1 = b.col1 or WHERE a.col1 = ‘12345’ can take
advantage of the range function on col1 if either table a or b is a range-
fragmented table.

The following simple example shows how to create a table with the RANGE
fragmentation option. This example shows how to fragment an account
lookup table evenly across the ten dbspaces in the dbslice accounts so that
each dbspace contains approximately 900 rows. The MIN and MAX keywords
indicate the total range of expected values, with account numbers beginning
at 1000 and ending at 9999.

CREATE TABLE accth(account_num integer,...)
...
FRAGMENT BY RANGE (account_num MIN 1000 MAX 9999) IN accounts;

Range fragmentation can be used in a hybrid distribution scheme if the
RANGE keyword is used for both fragmentation statements.
Fragmentation Guidelines 9-37

Creating a Range Distribution Scheme
For example, assuming that store numbers are evenly distributed from 1 to
1800 and no store number can be greater than 1800, you might enter the
following statement to fragment a file on one column in dbslices across
coservers and on the same column through dbspaces in the dbslices on each
coserver:

CREATE TABLE stores(store_num integer,...)
...
FRAGMENT BY HYBRID (RANGE (store_num))
RANGE(store_num MIN 1 MAX 1800)

IN stores1, stores2

Figure 9-4 shows how the store numbers will be distributed among the
dbspaces in the stores1 and stores2 dbslices.

If any values of store_num fall outside of the specified range, 0 to 1800, the
database server returns an error and does not insert the rows that contain
those values into the table. To prevent such problems, you can specify a
REMAINDER fragment in a single dbspace. However, rows in a REMAINDER
fragment reduce the efficiency of a range-fragmented table for queries that
require range searches.

Figure 9-4
Range Fragmentation

stores1.3stores1.1 stores1.2

sto
re

s1

Coserver 1 Coserver 2

stores2.3stores2.1 stores2.2

sto
re

s2

Store number
1 - 300

Store number Store number

Store number Store number Store number

301- 600 601 - 900

901 - 1200 1201 - 1500 1501 - 1800

Coserver 3
9-38 Performance Guide for Informix Extended Parallel Server

Altering a Fragmentation Scheme
For finer granularity, you can also use range fragmentation to create a hybrid
range fragmentation scheme on two columns. For detailed information about
the rules for hybrid range fragmentation, refer to the Informix Guide to SQL:
Syntax.

Although the ALTER FRAGMENT... INIT statement can be used to fragment an
existing nonfragmented table with range fragmentation, the ALTER
FRAGMENT statements ATTACH or DETACH and ADD, DROP, or MODIFY are
not supported for range-fragmented tables.

For detailed information about the syntax of hybrid range fragmentation
expressions, see the Informix Guide to SQL: Syntax.

Altering a Fragmentation Scheme
If you find that the original fragmentation scheme is not efficient, you can
change it with the SQL statement ALTER FRAGMENT, except for range-
fragmented tables. Use ALTER FRAGMENT with the INIT keyword to re-create
the table with a different fragmentation strategy.

To add a dbspace to a dbslice, use the onutil ALTER DBSLICE statement. After
you add the dbspace, use the ALTER FRAGMENT statement with the INIT
keyword to refragment the table so that it uses the new dbspace.

For more information about the ALTER FRAGMENT statement, refer to the
Informix Guide to SQL: Syntax. For information about the onutil ALTER
DBSLICE command, refer to the Administrator’s Reference.

General Fragmentation Notes and Suggestions
Use the following suggestions as guidelines to fragment tables and indexes:

■ Keep fragmentation expressions simple. Although fragmentation
expressions can be as complex as you want, complex expressions
take more time to evaluate and usually prevent fragment elimination
for queries.

■ Avoid expressions that require a data type conversion. These conver-
sions increase the time to evaluate the expression. For example, a
DATE data type is implicitly converted to INTEGER for comparison
purposes.
Fragmentation Guidelines 9-39

General Fragmentation Notes and Suggestions
■ Do not fragment tables by expression on columns that contain a
value that is used to remove rows from the table unless you are
willing to incur the administration costs.

For example, if you fragment a table on a date column and then
delete rows that contain older dates to keep the table up-to-date, the
fragments with the oldest dates eventually become empty and the
fragments with the recent dates overfill unless you use the ALTER
FRAGMENT ATTACH and ALTER FRAGMENT DETACH statements to
add and remove table fragments.

■ If you fragment indexes in the same way as the table, performance
improves for the ALTER FRAGMENT ATTACH and ALTER FRAGMENT
DETACH statements. For more information, refer to “Attaching and
Detaching Table Fragments” on page 9-62.

■ Do not fragment every table:

❑ Identify the large or critical tables that are accessed most
frequently and focus on fragmenting them efficiently.

❑ Do not fragment small tables. A small table is a table that
occupies one extent or less.

■ Create the number of fragments on a coserver as a multiple of the
number of its processors and its disks.

■ Make sure that you do not allocate too much disk space for each
fragment. When you fragment an unfragmented table, make sure
that the next-extent size is appropriate for the expected growth of the
table fragment.
9-40 Performance Guide for Informix Extended Parallel Server

Designing Distribution for Fragment Elimination
Designing Distribution for Fragment Elimination
Fragment elimination is a database server feature that reduces the number of
table fragments that the database server must access for a query or trans-
action. Eliminating fragment access can improve performance significantly
in the following ways:

■ Reduces contention for the disks on which fragments reside

In some cases, all of the fragments on a given coserver can be elimi-
nated. In other cases, all of the fragments in a given dbslice can be
eliminated.

■ Improves both response time for a given query and concurrency
between queries

Because the database server does not need to scan unnecessary frag-
ments, I/O for a query is reduced.

■ Reduces activity in the LRU queues

The database server does not need to scan unnecessary fragments
into the buffer pool.

If you use an appropriate distribution scheme, the database server can
eliminate fragments from the following database operations:

■ The fetch portion of the SELECT, INSERT, DELETE or UPDATE state-
ments in SQL

The database server can eliminate fragments when these SQL state-
ments are optimized, before the actual search.

■ Nested-loop joins

When the database server obtains the key value from the outer table,
it can eliminate fragments to search on the inner table.

Depending on the form of the query expression and the distribution scheme
of the table, the database server can eliminate either individual fragments or
sets of fragments before it performs the actual search.
Fragmentation Guidelines 9-41

Queries for Fragment Elimination
Whether the database server can eliminate fragments from a search depends
on two factors:

■ The form of the query expression (the expression in the WHERE
clause of a SELECT, INSERT, DELETE or UPDATE statement)

■ The distribution scheme of the table that is being searched

Queries for Fragment Elimination
The filter expression, which is the expression in the WHERE clause, is a
primary factor in determining the table fragments that must be accessed to
satisfy a query or transaction.

The WHERE clause expression can consist of any of the following expressions:

■ Simple expression

■ Multiple expressions

■ Not simple expression

Nevertheless, for fragment elimination, the database server considers only
simple expressions or several simple expressions that are combined with
certain operators.

A simple expression consists of the following parts:

column operator value

Simple-Expression Part Description

column A single column name

Extended Parallel Server supports fragment elimination on
all column types except columns that are defined on the
TEXT and BYTE data types.

operator An equality or range operator

value A literal or a host variable
9-42 Performance Guide for Informix Extended Parallel Server

Queries for Fragment Elimination
The following examples show simple expressions:

name = "Fred"
date < "01/25/1994"
value >= :my_val

The database server considers two types of simple expressions for fragment
elimination, based on the operator:

■ Range expressions

■ Equality expressions

The following examples are not simple expressions and cannot be used for
fragment elimination:

unitcost * count > 4500
price <= avg(price)
result + 3 > :limit

Important: Built-in functions such as DAY(date-col) are considered complex
expressions.

Range Expressions in Query

Range expressions use the following relational operators:

■ <

■ >

■ <=

■ >=

■ !=

The database server can eliminate fragments for queries that contain any
combination of these relational operators with one or two of the columns
used for fragmentation in the WHERE clause.
Fragmentation Guidelines 9-43

Queries for Fragment Elimination
The database server can also eliminate fragments when these range expres-
sions are combined with the following operators:

■ AND

■ OR

■ NOT

■ IS NULL

■ IS NOT NULL

If the range expression contains MATCHES or LIKE, the database server can
also eliminate fragments if the string ends with a wildcard character.
However, if the expression involves an NCHAR or NVARCHAR column with
MATCHES or LIKE, the database server cannot eliminate fragments.

The following examples show query expressions that can take advantage of
fragment elimination:

columna MATCHES "ab*"
columna LIKE "ab%" OR columnb LIKE "ab_"

Equality Expressions in Query

Equality expressions use the following equality operators:

■ =

■ IN

The database server can eliminate fragments for queries that contain any
combination of these equality operators with one or two of the columns used
for fragmentation in the WHERE clause.

The database server can also eliminate fragments when these equality
expressions are combined with the following operators:

■ AND

■ OR
9-44 Performance Guide for Informix Extended Parallel Server

Types of Fragment Elimination
Types of Fragment Elimination
The database server provides the following types of fragment elimination:

■ Range Elimination. This type of fragment elimination determines
which fragments to exclude from the scan based upon an appro-
priate combination of:

❑ a range-based distribution scheme or an expression-based distri-
bution scheme in which fragments are ordered so that overlaps
in the expressions do not result in any ambiguity about which
fragment contains a particular fragmentation key.

❑ a query expression that contains range or equality expressions
on values of the columns specified in the range-based or
expression-based distribution scheme.

■ Hash Elimination. This type of fragment elimination determines
which fragments to exclude from the scan based upon an appro-
priate combination of:

❑ a hash-based distribution scheme.

❑ a query expression that contains equality expressions that
involve values of the columns specified in the hash-based distri-
bution scheme.

Range Elimination

For simple expressions, range elimination can occur if the column is used for
range or expression-based table fragmentation. If the column is not used for
table fragmentation, range elimination cannot occur for the expression.

Range elimination can occur only for simple expressions. “Queries for
Fragment Elimination” on page 9-42 describes simple expressions.

If expressions for which fragment elimination can occur are connected by
either AND or OR operators, range elimination can occur for the resulting
combined expression. For example, range elimination can occur if the
columns specified in the WHERE clause of the query are all columns used for
table fragmentation.

name = "Fred" AND date < "01/25/1994"
region IN (1,2,3,4) AND sales > :min
cost < 100.00 OR quantity < 5
Fragmentation Guidelines 9-45

Types of Fragment Elimination
If an expression for which range elimination cannot occur is connected to an
expression for which range elimination can occur by an AND operator, range
elimination can occur for the resulting combined expression.

If an expression for which range elimination cannot occur is connected to an
expression for which range elimination can occur by an OR operator, range
elimination cannot occur for the resulting combined expression.

In the following examples, assume that region is a column used for fragmen-
tation and sales is not. Range elimination can occur for the following
expressions:

region IN (1,2,3,4) AND sales > 10000
(region = 1 AND sales > 10000) OR (region = 2 AND sales < 100)

Range elimination cannot occur for the following examples:

region IN (1,2,3,4) OR sales > 10000
(region = 1 AND sales > 10000) OR sales < 100

Hash Elimination

For simple expressions, hash elimination can occur if the column is used for
hash fragmentation of the table. If the column is not used to fragment the
table, hash elimination cannot occur for the expression.

For example, suppose you define hash fragmentation on column
account_num. The following examples show simple expressions for which
hash elimination can occur:

account_num = 12345
account_num IN (12345, 11111, 23987)

Hash elimination cannot occur for expressions that do not fit the preceding
definition of simple expressions or do not use an equality operator. For
example, hash elimination cannot occur for the following expressions:

price = AVG(price)
orderno > 1000

All columns in the hash distribution specification must be present in a simple
equality expression, and all such expressions must be connected with the
AND operator. If not all hash columns are present in an expression, or any
expression on a hash column is not logically connected to the others by an
AND operator, no hash elimination can be performed for the overall
expression.
9-46 Performance Guide for Informix Extended Parallel Server

Types of Fragment Elimination
For example, if you define hash fragmentation on columns a and b, hash
elimination can occur for the following expressions:

a = 1 AND b = 2
a = 1 AND b = 2 AND color = "Red"
a IN (1,2,3) AND (b = 4 OR b = 5)

Hash elimination cannot occur for the following expressions:

a = 1 OR b = 2
(a = 1 AND b = 2) OR color = "Red"
a IN (1,2,3) OR (b = 4 OR b = 5)

An expression for which hash elimination can occur can be combined
with other such expressions using either AND or OR operators, and hash
elimination can occur for the resulting expression.

If an AND operator connects an expression for which hash elimination
cannot occur to an expression for which hash elimination can occur, hash
elimination can occur for the resulting combined expression. For example,
suppose you define hash fragmentation on column orderno. Hash
elimination can occur for the following query expressions:

orderno = 2001 OR orderno = 2002
orderno IN (2001,2002,4095) AND color = "Red"
orderno = 2001 OR (color = "Red" AND orderno = 2002)

Hash elimination cannot occur for the resulting combined expression if an OR
operator connects an expression for which hash elimination cannot occur to
an expression for which hash elimination can occur.

For example, hash elimination cannot occur for the following expression:

orderno IN (2001,2002) OR color = "Red"
Fragmentation Guidelines 9-47

Query and Distribution Scheme Combinations for Fragment Elimination
Query and Distribution Scheme Combinations for Fragment
Elimination
Figure 9-5 summarizes the fragment-elimination behavior for Extended
Parallel Server. It also shows the different combinations of distribution
schemes and query expressions that involve the following columns:

■ Fragmentation columns

A fragmentation column is a column that you specify in the
distribution scheme when you define the fragmentation strategy

■ Nonfragmentation columns that are connected by the AND operator
to an expression for which fragment elimination can occur

Figure 9-5
Fragment-Elimination Behavior

Query Expression Contains

Distribution Scheme

Any Number of Equality
Expressions on
Fragmentation Column

Range Expressions
on One or More
Columns Other Expressions

Expressions on three or more
columns

None None None

Expressions on as many as five
columns

Range elimination Range elimination Range elimination, if
combined with AND
operator

Range distribution on one or two
columns

Range elimination Range elimination Range elimination, if
combined with AND
operator

Hash on one or multiple columns Hash elimination None Hash elimination, if
combined with AND
operator

Hybrid with expressions on three or
more columns

Hash elimination None None

Hybrid with expressions on as
many as five columns

Hash elimination and
range elimination

Range elimination None
9-48 Performance Guide for Informix Extended Parallel Server

Query and Distribution Scheme Combinations for Fragment Elimination
In the following circumstances, fragment elimination cannot occur:

■ Some of the hash fragmentation columns do not appear in an
equality expression.

■ A query expression contains more than five fragmentation columns
and at least one expression on a fragmentation column is a range
expression.

■ A query expression contains one or more nonfragmentation columns
that are connected to the other expressions with an OR operator.

■ A query expression contains no fragmentation columns.

Figure 9-5 indicates that the query expression in the WHERE clause of the
query in question determines the effectiveness of fragment elimination. The
following sections provide examples of distribution schemes and query
expressions that enable fragment elimination.

System-Defined Hash Distribution Scheme

The following CREATE TABLE statement shows a fragmentation strategy that
uses a system-defined hash distribution scheme to fragment a table across
multiple dbspaces in a dbslice:

CREATE TABLE account
(account_num integer,
account_bal integer,
account_date date,
account_name char(30)
) FRAGMENT BY HASH(account_num)
IN acct_dbslc;

The database server cannot eliminate any of the fragments from the search if
the WHERE clause includes a range expression such as the following one:

account_num >= 11111 AND account_num <= 12345

However, the database server can eliminate all but one fragment from the
search if the WHERE clause includes an equality expression, such as the
following one:

account_num = 12345
Fragmentation Guidelines 9-49

Query and Distribution Scheme Combinations for Fragment Elimination
Hybrid Distribution Scheme

The database server can eliminate fragments from the search based on the
hash distribution scheme, the expression-based distribution scheme, or both
schemes.

Suppose you have a very large table that keeps a history of account activities
for each month in a year. Figure 9-6 on page 9-51 provides a sample hybrid
distribution scheme and dbspace layout in each dbslice for this table.

The database server can eliminate some of the fragments from the search if
the WHERE clause includes any combination of the following expressions:

■ An equality expression on the hash column
account_num = 12345

■ An equality expression on the column that is used for the expression-
based distribution scheme

account_date = '01/01/1996'

■ A range expression with the column that is used for the expression-
based distribution scheme

account_date >= '01/01/1996'
AND account_date <='03/01/1996'

If the WHERE clause in a query includes the following expression, the
database server eliminates the fourth through twelfth dbspaces from the
search of the hybrid fragmentation layout that Figure 9-6 shows. This query
expression reads only three fragments.

account_date IN ('01/01/1996','02/01/1996','03/01/1996')
AND account_num = 12345
9-50 Performance Guide for Informix Extended Parallel Server

Query and Distribution Scheme Combinations for Fragment Elimination
Figure 9-6
Hybrid Fragmentation and Fragment Elimination

. . .

acct_sl1.48 acct_sl1.96. . .acct_sl1.1 acct_sl1.49 acct_sl1.2 acct_sl1.50

ac
ct_

db
slc

1

Coserver 1

HASH(account_num)

Coserver 2 Coserver 48

acct_sl2.48 acct_sl2.96. . .acct_sl2.1 acct_sl2.49 acct_sl2.2 acct_sl2.50

ac
ct_

db
slc

2

acct_sl12.48 acct_sl12.96. . .acct_sl12.1 acct_sl12.49 acct_sl12.2 acct_sl12.50

ac
ct_

db
slc

12

. .

FRAGMENT BY HYBRID (HASH (account_num)) EXPRESSION
account_date < '02/01/1996'

AND account_date >= '01/01/1996' IN acct_sl1
account_date < '01/03/1996'

AND account_date >= '02/01/1996' IN acct_sl2
...
account_date < '01/01/1997'>=

AND account-date '12/01/1996' IN acct_sl12
Fragmentation Guidelines 9-51

Fragmenting Indexes
The database server cannot eliminate fragments defined by the hash distri-
bution scheme if the WHERE clause includes a range expression with this
hash column as in the following expression:

account_num >= 11111 AND account_num <= 12345

Fragmenting Indexes
You choose the fragmentation strategy for your table data. When you create
an index on a very large table, the index might also be very large. To improve
performance of queries and other database operations, you can also fragment
the index across multiple dbspaces.

You can fragment the index with either of the following strategies:

■ Same fragmentation strategy as the table (attached index)

■ Different fragmentation strategy from the table (detached index)

Attached Indexes
An attached index is an index that is created with the same fragmentation
strategy as the table. A fragmentation strategy is the distribution scheme and
set of dbspaces in which the fragments are located.

Tip: To avoid rebuilding the entire index for the table, create an attached index if you
expect to use ALTER FRAGMENT ATTACH and ALTER FRAGMENT DETACH to
modify the table.

Because the index is created with the same fragmentation strategy as the
table, you do not specify a fragmentation strategy to create an attached index,
as the following two sample SQL statements show:

CREATE TABLE tb1(a int)
FRAGMENT BY EXPRESSION

(a >= 0 and a < 5) IN dbspace1,
(a >= 5 and a < 10) IN dbspace2
...

CREATE INDEX idx1 ON tb1(a);
9-52 Performance Guide for Informix Extended Parallel Server

Attached Indexes
To fragment the attached index with the same distribution scheme as the
table, the database server uses the same rule for index keys as for table data.
As a result, attached indexes have the following physical characteristics:

■ The number of index fragments is the same as the number of data
fragments.

■ Each attached index fragment resides in the same dbspace as the
corresponding table data, but in a separate tblspace.

The partn column in the sysfragments system catalog table contains
a different tblspace (partition) number for the index fragment and
the table fragment.

Tip: If you create a unique index on columns that are not used to fragment the table,
the index is fragmented by hash into the same dbspaces as the table. The result might
be a globally detached index. For information about locally and globally detached
indexes, see “Choosing an Attached or Detached Index” on page 7-14.
Fragmentation Guidelines 9-53

Detached Indexes
Figure 9-7 illustrates the storage scheme for the indexes that are attached to a
table that is fragmented across five coservers.

Detached Indexes
A common fragmentation strategy is to fragment indexes in the same way as
the table but to specify different dbspaces for the index fragments. Putting
the index fragments into different dbspaces from the table might improve the
performance of operations such as backup and recovery.

Indexes can be detached locally on the same coserver with the table or table
fragment or globally, across coservers.

Detached indexes can be fragmented with any scheme except round-robin.
You can specify a hash, expression, or hybrid fragmentation scheme. For
information about constraints in indexes, see “Constraints on Indexes for
Fragmented Tables” on page 9-56.

Figure 9-7
Storage Scheme for Indexes That Are Attached to a Fragmented Table

dbspace1 dbspace2

. . .

. . .

Index fragment 2
 Data fragment 2

 Index fragment 1

. . .Coserver 1 Coserver 2 Coserver 5

 Data fragment 1

dbspace5

 Index fragment 5
 Data fragment 5

Index tblspace

Data tblspace

Index tblspace

Data tblspace

Index tblspace

Data tblspace
9-54 Performance Guide for Informix Extended Parallel Server

Detached Indexes
If you think that an unfragmented index for a fragmented table might
improve performance, place the index in a separate dbspace with the IN
dbspace clause of the CREATE INDEX statement.

If you decide to create a fragmented detached index for a fragmented table,
consider the effect on performance carefully. If an index fragment is on one
coserver and its index values are used to look up data in a table fragment on
another coserver, the overhead of intercoserver communication slows perfor-
mance.

A fragmented and globally detached index might be useful for some DSS
queries. A globally detached fragmented index might be appropriate in the
following cases:

■ If queries require singleton selects on columns that are indexed but
not used to fragment the table

■ If queries require key scans of only the columns contained in the
index, particularly if the WHERE clause permits index fragment
elimination

The performance impact of table and index updates should be minimal if the
table is modified by batch processes that perform large deletes or inserts.
However, OLTP transactions that update, add, or delete one or a few rows at
a time might not update a globally detached index as quickly as a locally
detached or attached index. On the other hand, using a nonfragmentation
column to select a single table row might be quicker if the column is used to
fragment a detached index.

The following sample SQL statements show how an index might be detached:

CREATE TABLE tb1 (a int)
FRAGMENT BY EXPRESSION

(a <= 10) IN tabdbspc1,
(a <= 20) IN tabdbspc2,
(a <= 30) IN tabdbspc3;

CREATE INDEX idx1 ON tb1 (a)
FRAGMENT BY EXPRESSION

(a <= 10) IN idxdbspc1,
(a <= 20) IN idxdbspc2,
(a <= 30) IN idxdbspc3;
Fragmentation Guidelines 9-55

Constraints on Indexes for Fragmented Tables
In this example, the CREATE INDEX statement specifies the same distribution
scheme as the table but specifies different dbspaces. Indexes can also be
fragmented with a different scheme from the underlying table or globally
detached, as described in “Choosing an Attached or Detached Index” on
page 7-14.

Figure 9-8 illustrates a possible storage scheme for detached indexes.

For more information on the CREATE INDEX statement, refer to the Informix
Guide to SQL: Syntax.

Constraints on Indexes for Fragmented Tables
Unique constraints are permitted on any indexed column, including columns
that are not unique keys in the table. If the index is created with constraints,
the following strategies apply:

■ If the table is not fragmented, the index is placed in the same dbspace
with the table.

■ If the table is fragmented with some of the keys used to fragment the
index, the index is fragmented in the same way as the table.

Figure 9-8
A Possible Storage Scheme for Detached Indexes

tabdbspc1 idxdbspc1 tabdbspc2 idxdbspc2 tabdbspc5 idxdbspc5

. . .
Data Index Data Index Data Index

. . .Coserver 1 Coserver 2 Coserver 5

. . .

Index fragment 2
 Data fragment 2

 Index fragment 1
 Data fragment 1

 Index fragment 5
 Data fragment 5
9-56 Performance Guide for Informix Extended Parallel Server

Indexing Strategies for DSS and OLTP Applications
■ If the table is fragmented on different columns from the index, the
index is fragmented by hash into the same dbspaces as the table.

For example, if a table contains columns named order_num,
cust_num, order_date, and ship_meth and cust_num is a foreign
key, the table might be fragmented by hash on order_num. The frag-
mented index on cust_num for this table is hashed into the same
dbspaces as the table. A globally detached index might result,
however.

Indexing Strategies for DSS and OLTP Applications
OLTP applications usually access a very small number of rows in a table in a
single transaction. Indexes improve the performance of OLTP transactions
because only a few index pages and possibly one data page need to be read.
Attached indexes, in which the index fragment resides in the same dbspace
as the corresponding table data, benefit OLTP queries.

DSS applications usually access many rows of a large table. A DSS query that
accesses a large volume of data often performs better if it uses a table scan
instead of an index. For optimal performance in decision-support queries,
fragment the table to take advantage of fragment elimination and to increase
parallelism. Tables and indexes can use different fragmentation strategies
and different degrees of fragmentation. Usage patterns might indicate that it
is more efficient to separate an index into fewer fragments than its base table
and to store the index fragments in different dbspaces or dbslices from the
base table.

When a DSS query accesses only values that are part of an index key, the
query scans only the index and does not need to access the table. The
database server provides the following types of indexes to improve the
performance of DSS applications:

■ Bitmap indexes

Bitmap indexes can save disk space if the indexed column contains
many duplicate key values, and they can improve performance of
queries that use multiple indexes or require counts of duplicated
data in the indexed key columns. For information about the perfor-
mance and space advantages of bitmap indexes, see “Using Bitmap
Indexes” on page 13-20.
Fragmentation Guidelines 9-57

Fragmenting Temporary Tables
■ Generalized-key (GK) indexes, described in “Using Generalized-Key
Indexes” on page 13-23

A GK index can contain key values that are:

❑ a subset of rows from a table.

❑ derived from an expression.

❑ join columns from multiple tables.

❑ a combination of various indexes on a table.

For tables that are not updated, create as many indexes as are useful for
queries. The database server can use multiple indexes in a single execution.

For more information on when to use the different types of indexes, refer to
“Using Indexes” on page 13-13.

For more information on estimating the amount of space that is required for
the different types of indexes, refer to “Estimating Index Page Size” on
page 7-6.

Fragmenting Temporary Tables
Just as you fragment permanent tables, you can fragment explicit temporary
tables across coservers. The database server provides two kinds of explicit
temporary tables. Your choice of one or the other has performance
implications.

Scratch tables are nonlogging temporary tables that do not support indexes,
constraints, or rollback. Temp tables are logged tables although they also
support bulk operations such as light appends. Temp tables support indexes,
constraints, and rollback. For more information about the characteristics of
temporary tables, see “Using Temporary Tables” on page 6-7.

To create a temporary, fragmented table, use the TEMP TABLE or SCRATCH
TABLE option of the CREATE TABLE statement. If you use the CREATE TEMP
TABLE option, you can specify what fragmentation scheme and which
dbspaces to use for the temporary table. The database server fragments
SCRATCH tables with the round-robin scheme into the dbspaces or dbslices
specified by the DBSPACETEMP configuration parameter or environment
variable unless you specify a fragmentation scheme as part of the CREATE
TABLE statement.
9-58 Performance Guide for Informix Extended Parallel Server

Letting the Database Server Determine the Fragmentation
Temporary tables are subject to the following rules:

■ You can define your own fragmentation strategy for an explicit
temporary table, or you can let the database server determine the
fragmentation strategy dynamically.

■ You cannot alter the fragmentation strategy of a temporary table as
you can with permanent tables.

■ Unless you specify a dbspace or dbslice when you use the CREATE
TEMP TABLE statement, the table is stored in the spaces specified by
the setting of the ONCONFIG parameter DBSPACETEMP.

For more information about temporary tables, refer to the Administrator’s
Guide. For more information about the SQL keywords that you use to create
temporary tables, refer to the Informix Guide to SQL: Syntax.

Letting the Database Server Determine the Fragmentation
An explicit temporary table for which the database server determines a
fragmentation strategy automatically is called a flexible (flex) temporary table.

You do not need to know the column names and data types for flex
temporary tables, as you do with temporary tables created with the CREATE
TEMP TABLE statement.

The database server creates this kind of table during the execution of the
following types of queries:

SELECT * FROM customer INTO SCRATCH temp_table
SELECT * FROM customer INTO TEMP temp_table WITH NO LOG

If temporary tables created with the INTO TEMP keywords are stored in
temporary dbspaces created by onutil CREATE TEMP DBSPACE or CREATE
TEMP DBSLICE statements, you must specify WITH NO LOG. Tables in
temporary spaces are not logged.

When you use SELECT...INTO TEMP syntax, the database server uses a flex
temporary table operator to optimize the use of the dbspaces and dbslices as
specified by DBSPACETEMP for storage of temporary tables and fragments.

The flex operators execute the insert into these fragments in parallel. The
number of CPU VPs available to the query determines the number of parallel
instances of the flex SQL insert operator.
Fragmentation Guidelines 9-59

Specifying a Fragmentation Strategy
If the rows that the query produces are less than or equal to 8 kilobytes, the
temporary table resides in only one dbspace. If the rows exceed 8 kilobytes,
the temporary table is fragmented with a round-robin distribution scheme. If
an instance of the flex insert operator does not receive any data, it does not
create any fragments.

Specifying a Fragmentation Strategy
If you use SET EXPLAIN output to analyze query performance, you might see
a way to improve performance by specifying the fragmentation for one or
more temporary tables. For example, for the advantage of fragment elimi-
nation, you might create a temporary table that is fragmented by hash on the
same column as another table to be used in a query.

To create a temporary, fragmented table, use the TEMP TABLE option of the
CREATE TABLE statement and specify the distribution scheme and dbspaces
to use for the temporary table.

For a simple example of an explicitly fragmented temporary table, see
“Explicit Temporary Tables” on page 6-8.

Creating and Specifying Dbspaces for Temporary Tables
and Sort Files
Because large DSS queries require large amounts of temporary space for sorts
and joins, you should provide adequate temporary disk space. Specifying
temporary dbspaces prevents queries from putting temporary tables and sort
files in the root dbspace or in dbspaces that permanent tables use.

You can define one or more dbslices to distribute temporary space across
coservers that you specify, or you can define dbspaces on coservers one at a
time. List the dbspaces or dbslices as arguments to the DBSPACETEMP config-
uration parameter or the DBSPACETEMP environment variable. Applications
can use the DBSPACETEMP environment variable to specify lists of dbspaces
for temporary tables and sort files.
9-60 Performance Guide for Informix Extended Parallel Server

Creating and Specifying Dbspaces for Temporary Tables and Sort Files
To create a dbspace for the exclusive use of temporary tables and sort files,
use one of the following commands:

■ The onutil CREATE TEMP DBSLICE command to create temporary
dbspaces across multiple coservers

■ The onutil CREATE TEMP DBSPACE command to create a temporary
dbspace on one coserver

Tip: Dbspaces and dbslices that you create with the CREATE TEMP DBSPACE or
CREATE TEMP DBSLICE command can contain only nonlogging temporary files. If
you create logging dbspaces or dbslices and specify these dbspaces or dbslices as
arguments to the DBSPACETEMP configuration parameter, you can create logged
temporary tables with the INTO TEMP keywords. Implicit temporary files and files
created with the INTO SCRATCH keywords are not logged even if they are placed in
standard dbspaces.

Regardless of the way in which you create dbspaces for temporary files, make
sure that they are evenly balanced across all coservers. If possible, create
dbspaces for temporary files on disks that permanent database files do not
use.

For more information, refer to “Dbspaces for Temporary Tables and Sort
Files” on page 5-10.

Figure 9-9 shows how the dbspaces that DBSPACETEMP lists might be
distributed across three disks on a single coserver.

Figure 9-9
Dbspaces for

Temporary Tables
and Sort Files on a

Single Coserver

Device 0x21 Device 0x22Device 0x27

dbspace tmpdbs1 dbspace tmpdbs3dbspace tmpdbs2

DBSPACETEMP= tmpdbs1,tmpdbs2,tmpdbs3
Fragmentation Guidelines 9-61

Attaching and Detaching Table Fragments
Attaching and Detaching Table Fragments
Many applications use ALTER FRAGMENT ATTACH and DETACH statements
to add or remove a large amount of data in a very large table. ALTER
FRAGMENT DETACH provides a way to delete a segment of the table data
rapidly. Similarly, ALTER FRAGMENT ATTACH provides a way to load large
amounts of data incrementally into an existing table by taking advantage of
the fragmentation scheme.

If the database server must completely rebuild detached indexes on the
surviving table, the ALTER FRAGMENT ATTACH and DETACH statement can
take a very long time to execute. For tables with attached indexes, the
database server can reuse the indexes on the surviving or existing fragments
and eliminate the index build during the attach or detach operation, with the
following results:

■ Reduces the time that it takes for the ALTER FRAGMENT ATTACH and
ALTER FRAGMENT DETACH statements to execute

■ Improves the table availability

Improving ALTER FRAGMENT ATTACH Performance
To reuse indexes on the surviving table fragments for the ALTER FRAGMENT
ATTACH statement, you must meet both of the following requirements:

■ Formulate appropriate distribution schemes for your surviving table
and index fragments.

■ Ensure that the indexes on the attached (consumed) tables are similar
to the surviving table.

Formulating Appropriate Distribution Schemes

You reuse existing attached indexes for a table when you execute the ALTER
FRAGMENT ATTACH statement. You create an attached index when you
create an index without specifying a fragmentation strategy. For more infor-
mation on attached indexes, refer to “Attached Indexes” on page 9-52.
9-62 Performance Guide for Informix Extended Parallel Server

Improving ALTER FRAGMENT ATTACH Performance
During execution of the ALTER FRAGMENT ATTACH statement, the database
server reuses the existing attached index fragments on the table and builds
an index only for the newly attached table fragment.

For example, suppose that you create a fragmented table and attached index
with the following SQL statements:

CREATE TABLE tb1(a int)
FRAGMENT BY EXPRESSION

(a >= 0 and a < 5) IN db1,
(a >= 5 and a < 10) IN db2;

CREATE INDEX idx1 ON tb1(a);

Now, suppose that you create another table that is not fragmented, and you
later decide to attach it to the fragmented table.

CREATE TABLE tb2 (a int, check (a >=10 and a<15))
IN db3;

ALTER FRAGMENT ON TABLE tb1
ATTACH

tb2 AS (a >= 10 and a < 15) AFTER db2;

This attach operation can take advantage of the existing index idx1.The index
idx1 remains as an index with the same fragmentation strategy as the table
tb1. But the database server builds an attached index for just the consumed
table, tb2, and attaches this index fragment as a fragment of index idx1.

During execution of the ALTER FRAGMENT ATTACH statement, the database
server rebuilds all detached indexes on the surviving table. For more infor-
mation on detached indexes, refer to “Detached Indexes” on page 9-54.

Specifying Similar Index Characteristics

The database server might also be able to reuse an existing index on the
consumed table if an index on the same columns exists on the surviving table.
Fragmentation Guidelines 9-63

Improving ALTER FRAGMENT DETACH Performance
To be reused, the index on the consumed table must have the following
characteristics:

■ It is an index on the same set of columns in the same order as the
index on the surviving table.

■ It is fragmented in the same way as the consumed table.

■ It has the same index characteristics (unique, clustered, and so forth)
as the index on the surviving table.

If such an index exists, the database server uses that index and attaches it as
a fragment of the corresponding index on the surviving table. If the
consumed table does not have such an index, the database server builds only
that index fragment on the consumed table.

Suppose you create an index on the consumed table in the previous example
with the following SQL statements:

CREATE TABLE tb2 (a int, check (a >=10 and a<15))
IN db3;

CREATE INDEX idx2 ON tb2(a);

Then suppose you attach this table to the first table with the following SQL
statement:

ALTER FRAGMENT ON TABLE tb1
ATTACH

tb2 AS (a >= 10 and a < 15) AFTER db2;

This attach operation can take advantage of the existing index idx2. The
database server reuses index idx2 and converts it into a fragment of index
idx1.

Improving ALTER FRAGMENT DETACH Performance
To take advantage of the performance optimizations for the ALTER
FRAGMENT DETACH statement, you can formulate appropriate distribution
schemes for your table and index fragments.

You can eliminate the index build during execution of the ALTER FRAGMENT
DETACH statement if you fragment the index in the same way as the table.
You fragment an index like the table when you create an index without speci-
fying a fragmentation strategy.
9-64 Performance Guide for Informix Extended Parallel Server

Monitoring Fragmentation
For example, suppose that you create a fragmented table and index with the
following SQL statements:

CREATE TABLE tb1(a int)
FRAGMENT BY EXPRESSION

(a >= 0 and a < 5) IN db1,
(a >= 5 and a < 10) IN db2,
(a >=10 and a < 15) IN db3;

CREATE INDEX idx1 ON tb1(a);

The database server fragments the index keys into dbspaces db1, db2, and
db3 with the same column a value ranges as the table because the CREATE
INDEX statement does not specify a fragmentation strategy.

Now, suppose that you decide to detach the data in the third fragment with
the following SQL statement:

ALTER FRAGMENT ON TABLE tb1
DETACH db3 tb3;

Because the fragmentation strategy of the index is the same as that for the
table, the ALTER FRAGMENT DETACH statement does not rebuild the index
on the surviving table after the detach operation. The database server drops
the index fragment in dbspace db3 and updates the system catalogs.

Monitoring Fragmentation
After you fragment tables, it is important to monitor fragment use. Even if
you have planned the fragmentation strategy carefully, as applications and
queries change and table fragments fill, fragment use patterns might also
change.

You can monitor processing balance and fragment use most usefully across
coservers, but you might monitor a single coserver if it alone seems to have
abnormal use patterns.
Fragmentation Guidelines 9-65

Monitoring Fragmentation Across Coservers
Monitoring Fragmentation Across Coservers
You monitor fragment use and I/O request queues across all coservers to find
out if I/O queues are unbalanced or if some fragments are used more than
others. If you see imbalances, you might adjust the fragmentation strategy.

Use options of the onstat command-line utility to monitor the following
aspects of fragmentation across all coservers:

■ Information about free space in all dbspaces

This information appears in Figure 9-10 as output of the
xctl onstat -d command.

■ The number of reads and writes to dbspaces, files, and chunks

This information appears in Figure 9-11 on page 9-68 as output of the
xctl onstat -D command and in Figure 9-12 on page 9-69 as output of
the xctl onstat -g iof command.

To display statistics for a coserver to which you are not connected or for
multiple coservers, use the xctl utility to execute the onstat command. The
xctl prefix to the onstat command-line options displays onstat information
for each coserver that is currently initialized.

xctl onstat -d

The xctl onstat -d command displays the following information for each
chunk in a dbspace:

■ Address of the chunk

■ Chunk number and associated dbspace number

■ Offset into the device in pages

■ Size of the chunk in pages

■ Number of free pages in the chunk

■ Approximate number of free blobpages

■ Path name of the physical device
9-66 Performance Guide for Informix Extended Parallel Server

Monitoring Fragmentation Across Coservers
Figure 9-10 shows an example of the xctl onstat -d output for that includes
UNIX pathnames.

For more information about the information that this option displays, refer to
the utilities chapter in the Administrator’s Reference.

Figure 9-10
xctl onstat -d Output

Dbspaces
address number flags fchunk nchunks flags owner name
a3a4190 1 0x8000 1 1 N informix rootdbs.1
 1 active, 32768 maximum (if CONFIGSIZE is LARGE)

Chunks
address chk/dbs offset(p) size(p) free(p) bpages flags pathname
a3a4288 1 1 0 17500 11967 PO- /work2/dbfiles/kermit/rootdbs.1
 1 active, 32768 maximum (if CONFIGSIZE is LARGE)

...
Dbspaces
address number flags fchunk nchDbspaces
address number flags fchunk nchunks flags owner name
a3a4190 1 0x8000 1 1 N informix rootdbs.1
 1 active, 32768 maximum (if CONFIGSIZE is LARGE)

Chunks
address chk/dbs offset(p) size(p) free(p) bpages flags pathname
a3a4288 1 1 0 17500 11967 PO- /work2/dbfiles/kermit/rootdbs.1
 1 active, 32768 maximum (if CONFIGSIZE is LARGE)
Fragmentation Guidelines 9-67

Monitoring Fragmentation Across Coservers
xctl onstat -D

The xctl onstat -D option displays the same information as xctl onstat -d and
also the following two fields:

■ Number of pages read from the chunk (page Rd)

■ Number of pages written to the chunk (page Wr)

Figure 9-11 shows sample output from the xctl onstat -D option.

The page Rd field in this output shows that chunk 7 has a disproportionately
higher number of page reads (481) compared to the other dbspaces.

To determine the dbspace name

1. In the Chunks section, find the dbspace number in the dbs field (7).

2. Find the same value in the number field of the Dbspaces section of
this output.

3. The name field in the Dbspaces section tells you the dbspace name
(product_dbsl.1).

To distribute the frequently accessed rows evenly to other dbspaces, you
might change the fragmentation strategy of the tables in the product_dbsl.1
dbspace.

...

Dbspaces
address number flags fchunk nchunks flags owner name
a10d5a0 1 1 1 1 N informix rootdbs1
a10d628 3 1 3 1 N informix customer_dbsl.1
a10d6b0 5 1 5 1 N informix period_dbsl.1
a10d738 7 1 7 1 N informix product_dbsl.1
4 active, 100 total

Chunks
address chk/dbs offset page Rd page Wr pathname
a108c30 1 1 0 74 12 /dev/rdsk/c0t1d0s6
a108d60 3 3 0 53 0 /dev/custdbsl.1
a108e90 5 5 50000 3 0 /dev/perdbsl.1
a108fc0 7 7 55000 481 0 /dev/proddbsl.1
4 active, 100 total

Figure 9-11
xctl onstat -D

Output
9-68 Performance Guide for Informix Extended Parallel Server

Monitoring Fragmentation Across Coservers
xctl onstat -g iof

The xctl onstat -g iof option displays the number of reads from and writes to
each dbspace or file. This option is similar to the -D option, except that it also
displays information on nonchunk files. It includes information about
temporary files and sort-work files.

Use this option to monitor the distribution of I/O requests for the different
fragments of a table. If one chunk has a disproportionate amount of I/O
activity, it might be a system bottleneck.

The sample output in Figure 9-12 shows that the disk reads and disk writes
are not balanced across the different dbspaces.

Figure 9-12 shows the following data skews:

■ The chunks whose pathname is /dev/proddbsl.1 on the first coserver
and /dev/proddbsl.2 on the second coserver have a disproportion-
ately high number of disk reads compared to the other chunks.

To distribute the frequently accessed rows evenly to other dbspaces,
you might change the fragmentation strategy of the table or tables in
the dbspace associated with the chunk.

...

AIO global files:
gfd pathname totalops dskread dskwrite io/s
 3 rootdbs1 86 74 12 0.2
 4 /dev/custdbsl.1 53 53 0 0.1
 5 /dev/perdbsl.1 3 3 0 0.0
 6 /dev/proddbsl.1 481 481 0 0.9
 7 /dev/dbsl.1 89 89 0 0.2

...

AIO global files:
gfd pathname totalops dskread dskwrite io/s
 3 rootdbs2 510 32 478 1.0
 4 /dev/custdbsl.2 30 30 0 0.1
 5 /dev/perdbsl.2 3 3 0 0.0
 6 /dev/proddbsl.2 483 483 0 0.9
 7 /dev/dbsl.2 89 89 0 0.2

Figure 9-12
xctl onstat -g iof

Output
Fragmentation Guidelines 9-69

Monitoring Fragmentation on a Specific Coserver
■ The root dbspace on the second coserver has a disproportionately
high number of disk writes compared to the other dbspaces.

You might need to define a temporary dbspace on the second
coserver if a query is using an implicit temporary table that defaults
to the root dbspace because neither the DBSPACETEMP configuration
parameter or the DBSPACETEMP environment variable is set.

Monitoring Fragmentation on a Specific Coserver
If you suspect that one or two specific coservers are creating performance
problems, you can monitor chunks and read and write calls for each
fragment on one coserver at a time.

The xctl -c n prefix to the onstat command-line options displays onstat infor-
mation for the coserver that is numbered n. You can also run onstat
commands without xctl from a specific coserver node to obtain statistics for
only that coserver.

The sysfragments system catalog table provides the names of tables that
reside in a chunk.

xctl -c n onstat -g iof

The xctl -c n onstat -g iof option displays the I/O statistics for each chunk or
nonchunk file. To display information about the chunks on each coserver,
issue this command for each coserver and specify the coserver number after
the -c flag.

xctl -c n onstat -g ppf

Use the xctl -c n onstat -g ppf option to display the number of read and write
calls for each fragment. To display information about the fragments on each
coserver, issue this command on each coserver and specify the coserver
number after the -c flag.

Although the read and write calls do not show how many disk reads and
writes occurred, you can still determine if the I/O activity is balanced across
fragments. Compare the number of reads (or writes) for each fragment to see
if they are about the same or if some are proportionally greater than others.
9-70 Performance Guide for Informix Extended Parallel Server

Monitoring Fragmentation on a Specific Coserver
The onstat -g ppf output does not report the table to which the fragment
belongs.

To determine the table name for a table fragment

1. Run onstat -g ppf and write down the value that appears in the
partnum field of its output.

2. Join the tabid column in the sysfragments system catalog table with
the tabid column in the systables system catalog table to obtain the
table name from the systables table. Use the partnum field value that
you obtain in step 1 in the SELECT statement.

SELECT a.tabname FROM systables a, sysfragments b
WHERE a.tabid = b.tabid

AND partn = partnum_value ;

The sysfragments system catalog table does not store the names of unfrag-
mented tables. Use the following SELECT statement to find the name of an
unfragmented table:

SELECT tabname FROM SYSTABLES WHERE partnum = partnum_value ;

sysfragments System Catalog Table

The sysfragments system catalog table stores information about fragmented
tables. It has a row for each tblspace that holds a table fragment or an index
fragment. The sysfragments system catalog table includes the following
columns that are useful for monitoring the performance of fragmented
tables.

Column Name Description

tabid Table identifier

indexname Index identifier

partn Physical location (tblspace ID)

strategy Distribution scheme (round-robin, expression based, range
based, system derived)

dbspace Dbspace name for fragment

npused Number of data pages or leaf pages

 (1 of 2)
Fragmentation Guidelines 9-71

Monitoring Fragmentation on a Specific Coserver
For a complete list of sysfragments columns, see the Informix Guide to SQL:
Reference.

sysptprof System-Monitoring Interface Table

While a table is open, you can query the sysptprof System-Monitoring
Interface (SMI) table for current activity information about a tblspace. When
the last user who has a table open closes it, all profile statistics are dropped.

You can get the following information directly from sysptprof:

■ The database name

■ The table name

■ The partition (tblspace) number

■ Lock information

■ Read and write information, both page and buffer

■ Sequential scan information.

Queries against sysptprof can provide useful information about how table
fragments are used during queries.

nrows Number of rows recorded by the most recent UPDATE
STATISTICS operation

fragtype Fragment type: I for index, B for TEXT or BYTE data, T for
table data

exprtext Names of the columns that are hashed

If the fragment is created by a hybrid scheme, the hash
columns appear first, followed by the fragmentation
expression for the dbslice or list of dbspaces

hybdpos Relative position of the fragment in the set of fragments
created by a hybrid fragmentation scheme

Column Name Description

 (2 of 2)
9-72 Performance Guide for Informix Extended Parallel Server

10
Chapter
Queries and the Query
Optimizer
In This Chapter . 10-3

Query Plan . 10-4
Access Plan . 10-4
Join Plan . 10-5

Nested-Loop Join. 10-5
Hash Join 10-6

Join Order . 10-9
Three-Way Join 10-9
Join with Column Filters 10-11
Join with Indexes 10-13

Display and Interpretation of the Query Plan 10-14
Query Plans for Subqueries 10-16

Query-Plan Evaluation 10-20
Statistics Used to Calculate Costs 10-21
Query Evaluation 10-22

Filter Selectivity Evaluation 10-22
Index Evaluation 10-23

Time Costs of a Query 10-25
Memory-Activity Costs 10-25
Sort-Time Costs. 10-26
Row-Reading Costs 10-27
Sequential-Access Costs 10-28
Nonsequential-Access Costs 10-29
Index-Lookup Costs 10-29
In-Place ALTER TABLE Costs 10-30
View Costs . 10-30
Small-Table Costs 10-31

10-2 Pe
Data-Mismatch Costs 10-32
GLS Functionality Costs 10-33
Fragmentation Costs 10-33

SQL in SPL Routines 10-33
Optimization of SQL 10-34
Execution of SPL Routines 10-34
rformance Guide for Informix Extended Parallel Server

In This Chapter
This chapter explains the general principles of query processing. It discusses
the following topics:

■ The query plan, which determines how the database server performs
query-execution tasks

■ Factors that affect the query plan and how to examine a query to
assess these factors

■ Operations that take the most time when the database server
processes a query

■ Optimization of SPL routines

This chapter provides the background information to help you understand
the detailed information in the chapters that follow:

■ Chapter 11, “Parallel Database Query Guidelines,” describes the
unique features of parallel database query optimization.

■ Chapter 12, “Resource Grant Manager,” describes how the RGM
manages execution of parallel database queries and explains how
you can monitor their use of resources.

■ Chapter 13, “Improving Query and Transaction Performance,”
explains how to improve the performance of specific queries and
transactions.
Queries and the Query Optimizer 10-3

Query Plan
Query Plan
The query optimizer formulates a query plan to fetch the data rows that are
required to process a query.

The optimizer must evaluate the different ways in which a query might be
performed. For example, the optimizer must determine whether indexes
should be used. If the query includes a join, the optimizer must determine the
join plan (hash or nested loop) and the order in which tables are evaluated or
joined. The following section explains the components of a query plan in
detail.

Access Plan
The way that the optimizer chooses to read a table is called an access plan. The
simplest way to access a table is to read it sequentially, which is called a table
scan. The optimizer chooses a table scan when most of the table must be read
or when the table does not have an index that is useful for the query.

The optimizer can also choose to access the table by an index. If the indexed
column is the same as a column in a filter of the query, the optimizer can use
the index to retrieve only the rows that the query requires. If all of the
required columns are in one or more indexes on the table, the optimizer can
use a key-only index scan. The database server retrieves data from the index
but does not access the associated table.

The optimizer compares the costs of each plan to determine the best one.
The database server calculates costs from estimates of the number of I/O
operations required, calculations required to produce the results, rows
accessed, sorting, and so on.
10-4 Performance Guide for Informix Extended Parallel Server

Join Plan
Join Plan
When a query contains more than one table, the tables are usually joined by
a WHERE clause, or filter, in the query. For example, in the following query,
the customer and orders table are joined by the customer.customer_num =

orders.customer_num filter:

SELECT * from customer, orders
WHERE customer.customer_num = orders.customer_num
AND customer.lname = "SMITH";

The way that the optimizer chooses to join the tables is the join plan. The join
method might be a nested-loop join or a hash join. If a generalized-key (GK)
index has been created to contain the result of a join on the tables, the
database server uses the GK index instead of joining the table columns again.
For more information on the requirements for this kind of index, refer to
“Join Indexes” on page 13-26.

Because of the way hash joins work, an application with isolation mode set
to Repeatable Read might temporarily lock all the records in tables that are
involved in the join, including records that fail to qualify the join. This
situation decreases concurrency among connections. Conversely, nested-
loop joins lock fewer records but provide inferior performance when a large
number of rows is accessed. Thus, each join method has advantages and
disadvantages.

Nested-Loop Join

In a nested-loop join, the database server scans the first, or outer table, and
then joins each of the rows that pass table filters to the rows found in the
second, or inner table, as shown in Figure 10-2 on page 10-7. To access the
outer table, the database server can use an index or scan the table sequen-
tially. The database server applies any table filters first. For each row that
satisfies the filters on the table, the database server reads the inner table to
find a match.
Queries and the Query Optimizer 10-5

Join Plan
The database server reads the inner table once for every row in the outer table
that fulfills the table filters. Because of the potentially large number of times
that the inner table can be read, the database server usually accesses the inner
table by an index.

If a table does not have a permanent index, the optimizer can construct an
autoindex on the table during query execution in order to use the table as an
inner table. In some cases, the database server might scan the table, apply any
table filters, and put any rows that pass the filters in a temporary table. Then
the database server constructs a dynamic index on the temporary table to
perform the join.

Hash Join

The optimizer usually uses a hash join when at least one of the two join tables
does not have an index on the join column or when the database server must
read a large number of rows from either of the tables. No index and no
sorting are required when the database server performs a hash join.

A hash join consists of two parts: building the hash table (build phase) and
probing the hash table (probe phase). Figure 10-2 shows a hash join in more
detail.

In the build phase, the database server chooses the smaller of the two tables,
reads the table and, after applying any filters that would exclude rows from
both tables, creates a hash table.

Figure 10-1
Nested-Loop Join

orders
ordernum custno
6692 1234
6693 1234
6695 1235

SELECT * FROM customer, orders
WHERE customer.customer_num =
orders.customer_num AND order_date > "01/01/97"

customer
custno custname
1234 XYZ LTD
1235 XSPORTS

1. Scan outer table.

2. Read inner table once for each row
found in outer table.
10-6 Performance Guide for Informix Extended Parallel Server

Join Plan
A hash table is like a set of buckets. To assign rows to each bucket, the database
server applies a hash function on the key value. All rows that evaluate to the
same hash value are stored in the same hash bucket.

In the probe phase, the database server reads the other table in the join and
applies any filters. For each row that satisfies the filters on the table, the
database server applies the same hash function on the join key and probes the
hash table in the matching hash bucket to find a matching row in the first
table.

Figure 10-2
How a Hash Join Is

Executed
orders

ordernum custno amount
6692 1234 $27.50
6693 1235 $38.90S

Hash table
bucket rows
3978 6692
4588 6693

1. Create hash table (apply filters that
exclude rows from both tables first).

customer
custno custname
1234 XYZ LTD
1235 XSPORTS

2. Probe hash table.
Queries and the Query Optimizer 10-7

Join Plan
Figure 10-3 shows why a hash join is efficient for joining rows in large tables.
The area of the entire square represents the work of processing each row in
the customers table and the orders table, as would be necessary in a nested-
loop join.

The areas of the small squares represent the work required to probe the hash
tables created during the build phase by applying a hash function to the join
key value in one of the tables.

In the probe phase, the same hash function is applied to the join key in the
other table. Then only the hash bucket that contains rows with the same key-
value hash result need be probed to match the join key.

The hash buckets, formally called partitions, can easily be processed in
parallel by several CPU VPs and across several coservers for even greater
efficiency.

Smaller hash tables can fit in the virtual portion of the database server shared
memory. If the database server runs out of memory, hash tables are stored on
disk in the dbspace specified by the DBSPACETEMP configuration parameter
or environment variable.

Figure 10-3
Hash-Join
Efficiency

Rows in table

Rows in table orders

customers
10-8 Performance Guide for Informix Extended Parallel Server

Join Order
Hash joins and other uses of hash functions are effective in balancing
processing or distribution only if the hashed column does not contain many
duplicates. For hash joins, if the join key column contains many duplicates,
one hash partition will contain many more rows than other partitions. This
condition creates one kind of data skew. Performance suffers because the other
coservers must wait for the coserver that is processing the largest hash table.

Join Order
The order in which the database server joins tables in a query is extremely
important. A poor join order can cause poor query performance.

The following section explains how the database server executes a plan
according to a specific join order.

Three-Way Join

Consider the following SELECT statement, which calls for a three-way join:

SELECT C.customer_num, O.order_num
FROM customer C, orders O, items I
WHERE C.customer_num = O.customer_num

AND O.order_num = I.order_num

The optimizer can choose one of the following join orders:

■ Join customer to orders. Join the result to items.

■ Join orders to customer. Join the result to items.

■ Join customer to items. Join the result to orders.

■ Join items to customer. Join the result to orders.

■ Join orders to items. Join the result to customer.

■ Join items to orders. Join the result to customer.
Queries and the Query Optimizer 10-9

Join Order
Assume that none of the three tables have indexes. Suppose that the
optimizer chooses the customer-orders-items path and the nested-loop join
for both joins. (In reality, the optimizer usually chooses a hash join for two
tables without indexes on the join columns.) Figure 10-4 shows the query
plan in pseudocode. For information about interpreting query-plan infor-
mation, see “Display and Interpretation of the Query Plan” on page 10-14.

This procedure reads the following rows:

■ All rows of the customer table once

■ All rows of the orders table once for each row of the customer table

■ All rows of the items table once for each row of the customer-orders
pair

This example does not describe the only possible query plan. Another plan
merely reverses the roles of customer and orders: for each row of orders, it
reads all rows of customer to match customer_num. It reads the same
number of rows in a different order and produces the same set of rows in a
different order. In this example, no difference exists in the amount of work
that the two possible query plans need to do.

for each row in the customer table do:
read the row into C
for each row in the orders table do:

read the row into O
if O.customer_num = C.customer_num then

for each row in the items table do:
read the row into I
if I.order_num = O.order_num then

accept the row and send to user
end if

end for
end if

end for
end for

Figure 10-4
Query Plan with Two

Nested-Loop Joins
10-10 Performance Guide for Informix Extended Parallel Server

Join Order
Join with Column Filters

The presence of a column filter changes things. A column filter is a WHERE
expression that might reduce the number of rows that a table contributes to
a join. The following example shows the preceding query with a filter added
to reduce the number of rows that the database server must evaluate in the
orders table:

SELECT C.customer_num, O.order_num
FROM customer C, orders O, items I
WHERE C.customer_num = O.customer_num

AND O.order_num = I.order_num
AND O.paid_date IS NULL

The expression O.paid_date IS NULL filters out some rows, reducing the
number of rows that are used from the orders table. Consider a plan that
starts by reading from orders. Figure 10-5 displays it in pseudocode.

Let pdnull represent the number of rows in orders that pass the filter. It is the
value of COUNT(*) that results from the following query:

SELECT COUNT(*) FROM orders WHERE paid_date IS NULL

If one customer exists for every order, the plan in Figure 10-5 reads the
following rows:

■ All rows of the orders table once

■ All rows of the customer table, pdnull times

■ All rows of the items table, pdnull times

for each row in the orders table do:
read the row into O
if O.paid_date is null then

for each row in the customer table do:
read the row into C
if O.customer_num = C.customer_num then

for each row in the items table do:
read the row into I
if I.order_num = O.order_num then

accept row and return to user
end if

end for
end if

end for
end if

end for

Figure 10-5
Query Plan with One

Nested-Loop Join
Queries and the Query Optimizer 10-11

Join Order
Figure 10-6 shows an alternative execution plan. It reads from the customer
table first.

Because the filter is not applied in the first step that Figure 10-6 shows, this
plan reads the following rows:

■ All rows of the customer table once

■ All rows of the orders table, once for every row of customer

■ All rows of the items table, pdnull times

The query plans in Figure 10-5 and Figure 10-6 produce the same output in a
different sequence. They differ in that one reads a table pdnull times, and the
other reads a table SELECT COUNT(*) FROM customer times. By choosing the
appropriate plan, the optimizer can save thousands of disk accesses in a real
application.

for each row in the customer table do:
read the row into C
for each row in the orders table do:

read the row into O
if O.paid_date is null and

O.customer_num = C.customer_num then
for each row in the items table do:

read the row into I
if I.order_num = O.order_num then

accept row and return to user
end if

end for
end if

end for

Figure 10-6
Query Plan with an
An Alternative to a

Nested Loop
10-12 Performance Guide for Informix Extended Parallel Server

Join Order
Join with Indexes

The preceding examples do not use indexes or constraints. Indexes and
constraints provide the optimizer with options that can greatly improve
query-execution speed. Figure 10-7 shows how use of an index might change
the query plan for this query:

SELECT C.customer_num, O.order_num
FROM customer C, orders O, items I
WHERE C.customer_num = O.customer_num

AND O.order_num = I.order_num
AND O.paid_date IS NULL

Because the keys in an index are sorted, when the database server finds the
first matching entry, it can read other rows in order without further searching
because they are located in physically adjacent positions. This query plan
reads only the following rows:

■ All rows of the customer table once

■ All rows of the orders table once (because each order is associated
with only one customer)

■ Only rows in the items table that match pdnull rows from the
customer-orders pairs

This query plan achieves a large reduction in effort compared with plans that
do not use indexes. An inverse plan, which reads orders first and looks up
rows in the customer table by customer table index, is also feasible by the
same reasoning.

for each row in the customer table do:
read the row into C
look up C.customer_num in index on orders.customer_num
for each matching row in the orders index do:

read the table row for O
if O.paid_date is null then

look up O.order_num in index on items.order_num
for each matching row in the items index do:

read the row for I
construct output row and return to user

end for
end if

end for
end for

Figure 10-7
Query Plan with

Indexes
Queries and the Query Optimizer 10-13

Display and Interpretation of the Query Plan
Using an index incurs one additional cost over reading the table sequentially.
The database server must locate each entry or set of entries with the same
value in the index. Then, for each entry in the index, the database server must
access the table to read the associated row.

The physical order of rows in a table also affects the cost of index use. To the
degree that a table is ordered relative to an index, the overhead of accessing
multiple table rows in index order is reduced. For example, if the orders table
rows are physically ordered according to the customer number, the database
server retrieves multiple orders for a given customer faster than if the table
rows are ordered randomly.

Display and Interpretation of the Query Plan
To display the query plan, any user who runs a query can execute the SET
EXPLAIN ON statement before running the query. After the database server
executes the SET EXPLAIN ON statement, it writes an explanation of each
query plan to a file called sqexplain.out. The sqexplain.out file includes
information about how the database server used threads to execute a parallel
query and what SQL operators it used. For more information, see “SQL
Operators” on page 11-6.

Examining query plans can be useful for analysis of OLTP transactions as well
as complex DSS queries.
10-14 Performance Guide for Informix Extended Parallel Server

Display and Interpretation of the Query Plan
For example, the following partial sqexplain.out output shows that the
database server executed a specific query with two hash joins. The report lists
the tables in their join order.

QUERY:

SELECT i.stock_num FROM items i, stock s, manufact m
 WHERE i.stock_num = s.stock_num
 AND i.manu_code = s.manu_code
 AND s.manu_code = m.manu_code

Estimated Cost: 1
Estimated # of Rows Returned: 9

1) informix.m: SEQUENTIAL SCAN

2) informix.s: SEQUENTIAL SCAN

DYNAMIC HASH JOIN (Build Outer Broadcast)
 Dynamic Hash Filters: informix.m.manu_code = informix.s.manu_code

3) informix.i: SEQUENTIAL SCAN

DYNAMIC HASH JOIN (Build Inner Broadcast)
 Dynamic Hash Filters: (informix.s.stock_num = informix.i.stock_num AND
informix.s.manu_code = informix.i.manu_code)

The Build Outer clause in this example means that the result of the hash join
of tables m and s is used as the build table. If this hash join is the first, the
Build Inner clause means that the resulting table is created with a base table
as input so that the Build Inner step can be created in memory before the
Build Outer step is complete. The database server broadcasts both tables to
each join thread to prevent data skew.
Queries and the Query Optimizer 10-15

Query Plans for Subqueries
The following partial sqexplain.out output shows that the database server
read the customer table using the index on customer_num and created a
temporary table to order the query results:

QUERY:

SELECT fname,lname,company FROM customer
 WHERE company MATCHES 'Sport*' AND customer_num
 BETWEEN 110 AND 115
 ORDER BY lname

Estimated Cost: 1
Estimated # of Rows Returned: 1
Temporary Files Required For: Order By

1) informix.customer: INDEX PATH

 Filters: informix.customer.company MATCHES 'Sport*'

 (1) Index Keys: customer_num (Parallel, fragments: ALL)
 Lower Index Filter: informix.customer.customer_num >= 110
 Upper Index Filter: informix.customer.customer_num <= 115

Query Plans for Subqueries
A SELECT statement nested in the WHERE clause of another SELECT
statement, or in an INSERT, DELETE, or UPDATE statement, is called a
subquery.

Subqueries can be correlated or uncorrelated. A subquery, which is an inner
SELECT statement, is correlated when the value that it produces depends on
a value produced by the outer SELECT statement that contains it. Any other
kind of subquery is considered uncorrelated.

Because the result of the subquery might be different for each row that the
database server examines, the subquery begins anew for every row in the
outer query if the current correlation values are different from the previous
ones. The optimizer tries to use an index on the correlation values to cluster
identical values together. This process can be extremely time consuming.
10-16 Performance Guide for Informix Extended Parallel Server

Query Plans for Subqueries
The optimizer can often rewrite a correlated subquery to unnest it in one of
the following ways:

■ As a join query

A join executes as fast as or faster than a correlated subquery. The
optimizer might use other SQL operators, such as GROUP and
INSERT, to ensure correct semantics of the query. These additional
SQL operators can execute in parallel to improve the response time of
the correlated subquery. For more information about SQL operators,
refer to “SQL Operators” on page 11-6.

■ As separate queries

Two separate queries can execute faster than a correlated subquery
because each query is optimized separately. The optimizer uses frag-
mented temporary tables to hold the interim results.

The optimizer can unnest most correlated subqueries if the rewritten query
provides a lower cost. Even if the optimizer cannot unnest a correlated
subquery, the database server can speed execution of the query with parallel
execution.

For information on how correlated subqueries execute in parallel, refer to
“Parallel Execution of Nested Correlated Subqueries” on page 11-25. If
possible, the application designer should avoid writing nested subqueries.
Queries and the Query Optimizer 10-17

Query Plans for Subqueries
If the optimizer decides to rewrite the correlated subquery, the output of the
SET EXPLAIN ON statement shows how the subquery is rewritten. For
example, the partial sqexplain.out output in Figure 10-8 shows a subquery
that the optimizer rewrites as the outer table in a hash join and broadcasts a
copy of the table to every join thread to prevent data skew. This
sqexplain.out output shows that the optimizer uses the GROUP operator to
ensure correct semantics of the query.

Figure 10-8
Rewritten Subquery as a Join in sqexplain.out Output

QUERY:

select a from tab1
where a in (select a from tab2 where tab2.b = 50)

Estimated Cost: 3
Estimated # of Rows Returned: 1

1) virginia.tab2: SEQUENTIAL SCAN

 Filters: virginia.tab2.b = 50

2) virginia.tab1: SEQUENTIAL SCAN

DYNAMIC HASH JOIN (Build Outer Broadcast)
 Dynamic Hash Filters: virginia.tab2.a = virginia.tab1.a

of Secondary Threads = 4

XMP Query Plan

 oper segid brid width

 scan 3 0 1
 scan 4 0 1
 hjoin 2 0 1
 group 2 0 1
 group 1 0 1
10-18 Performance Guide for Informix Extended Parallel Server

Query Plans for Subqueries
Figure 10-9 shows a query that the optimizer rewrites into a series of queries
with joins.

Figure 10-9
Rewritten Query as Series of Queries with Joins in sqexplain.out Output

QUERY:

select * from tab1
where tab1.a IN (
select tab2.a from tab2 where tab1.b = tab2.b
and tab2.c IN (
select tab3.c from tab3 where tab3.a = tab1.a
and tab3.b = tab2.b))
Estimated Cost: 14

Estimated # of Rows Returned: 10
1) virginia.tab1: SEQUENTIAL SCAN
2) virginia.tab3: SEQUENTIAL SCAN

DYNAMIC HASH JOIN (Build Outer Broadcast)
Dynamic Hash Filters: (virginia.tab1.b = virginia.tab3.b AND virginia.tab1.a =

virginia.tab3.a)
3) virginia.tab2: SEQUENTIAL SCAN

DYNAMIC HASH JOIN (Build Inner Broadcast)
Dynamic Hash Filters: virginia.tab1.b = virginia.tab2.b

of Secondary Threads = 7
XMP Query Plan
 oper segid brid width

 scan 5 0 1
 scan 6 0 1
 hjoin 4 0 1
 scan 7 0 1
 hjoin 3 0 1
 group 3 0 1
 group 2 0 1
 flxins 1 0 1

QUERY:

(continued...)
Estimated Cost: 14
Estimated # of Rows Returned: 10
1) subqtmp.0x60478018: SEQUENTIAL SCAN
of Secondary Threads = 2

XMP Query Plan
 oper segid brid width

 scan 2 0 1
 group 2 0 1
 group 1 0 1
Queries and the Query Optimizer 10-19

Query-Plan Evaluation
The optimizer uses the FLEX INSERT SQL operator to stage temporary results.
The FLEX INSERT SQL operator can execute parallel inserts into the
fragmented temporary table. For more information, refer to “Fragmenting
Temporary Tables” on page 9-58. For more information on how the database
server uses SQL operators for parallel execution, refer to “Structure of Query
Execution” on page 11-5.

Query-Plan Evaluation
When the optimizer determines the query plan, it assigns a cost to each
possible plan and then chooses the lowest-cost plan. Some of the factors that
the optimizer uses to create a query plan include:

■ the number of I/O requests that are associated with each file-system
access.

■ the CPU work that is required to determine which rows meet the
query predicate.

■ the resources that are required to sort or group the data.

■ the table statistics that are stored in the system catalog.

The optimizer considers all query plans by analyzing factors such as disk I/O
and CPU costs. It constructs all feasible plans simultaneously using a bottom-
up, breadth-first search strategy. That is, the optimizer first constructs all
possible join pairs. It eliminates the more expensive of any redundant pair,
which is a join pair that contains the same tables and produces the same set
of rows as another join pair. For example, if neither join specifies an ordered
set of rows by using the ORDER BY or GROUP BY clauses of the SELECT
statement, the join pair (A x B) is equivalent to (B x A). Because either join
produces the same rows, the optimizer does not need to determine which is
more expensive.

If the query uses additional tables, the optimizer joins each remaining pair to
a new table to form all possible join triplets, eliminating the more expensive
of redundant triplets, and so on for each additional table to be joined. When
a nonredundant set of possible join combinations has been generated, the
optimizer selects the plan that appears to have the lowest execution cost.
10-20 Performance Guide for Informix Extended Parallel Server

Statistics Used to Calculate Costs
Statistics Used to Calculate Costs
The optimizer uses system catalog statistics and information about the
available indexes to calculate costs for each query plan. The statistics describe
the characteristics of the table data and indexes, including the number of
rows in a table and how the column values are distributed.

The accuracy with which the optimizer can assess the execution cost of a
query plan depends on how accurate the information is and how recently it
was gathered. Use the UPDATE STATISTICS statement to maintain statistical
information about a table and its associated indexes. Updated statistics
provide the query optimizer with information that can minimize the amount
of time required to perform queries on that table.

The database server creates a statistical profile of a table when the table is
created. This profile is refreshed only when you issue the UPDATE STATISTICS
statement. To ensure that the optimizer selects a query plan that best reflects
the current state of your tables, run UPDATE STATISTICS at regular intervals.
The query optimizer does not recalculate the profile for tables.

In some cases, updating the statistics might take longer than executing a
query. For information about improving UPDATE STATISTICS performance,
refer to “Using Indexes” on page 13-13.

The optimizer uses the following system catalog information as it creates a
query plan:

■ The number of rows in a table, as calculated the last time that
UPDATE STATISTICS was run

■ Unique column constraints

■ The distribution of column values, when requested with the
MEDIUM or HIGH keyword in the UPDATE STATISTICS statement

For more information on data distributions, refer to “Creating Data-
Distribution Statistics” on page 13-9.

■ The number of disk pages that contain row data

In addition, the optimizer uses available table statistics and index type to
determine costs associated with index accesses.

For more information on system catalog tables, refer to the Informix Guide to
SQL: Reference.
Queries and the Query Optimizer 10-21

Query Evaluation
Query Evaluation
Before the optimizer estimates the cost of each possible query plan, it must
examine the query filters and the indexes that could be used in the plan.

Filter Selectivity Evaluation

The optimizer bases query-cost estimates on the number of rows to be
retrieved from each table. In turn, the estimated number of rows is based on
the selectivity of each conditional expression in the WHERE clause. A condi-
tional expression that is used to select particular rows is called a filter. The
selectivity is a value between 0 and 1 that indicates the proportion of rows in
the table that the filter can pass. A very selective filter, one that passes few
rows, has a selectivity near 0; a filter that passes almost all rows has a selec-
tivity near 1. For guidelines on filters, see “Improving Filter Selectivity” on
page 13-27.

The following table lists some common selectivity filters that the optimizer
assigns to filters of different types. The list is not exhaustive. Selectivities
calculated using data distributions are more accurate than those shown in the
table. However, if data distribution information from UPDATE STATISTICS is
not available, the optimizer calculates selectivities for the following filters
based on table indexes.

Filter Expression Selectivity (F)

indexed-col = literal-value

indexed-col = host-variable

indexed-col IS NULL

F = 1/(number of distinct keys in index)

tab1.indexed-col = tab2.indexed-col F = 1/(number of distinct keys in the larger
index)

indexed-col > literal-value F = (2nd-max - literal-value)/(2nd-max - 2nd-min)

indexed-col < literal-value F = (literal-value - 2nd-min)/(2nd-max - 2nd-min)

any-col IS NULL

any-col = any-expression

F = 1/10

 (1 of 2)
10-22 Performance Guide for Informix Extended Parallel Server

Query Evaluation
Index Evaluation

The optimizer notes whether an indexed column can be used to evaluate a
filter. For this purpose, an indexed column is any single column with an
index or the first column named in a composite index.

any-col > any-expression

any-col < any-expression

F = 1/3

any-col MATCHES any-expression

any-col LIKE any-expression

F = 1/5

EXISTS subquery F = 1 if subquery estimated to return >0 rows, else
0

NOT expression F = 1 - F(expression)

expr1 AND expr2 F = F(expr1) × F(expr2)

expr1 OR expr2 F = F(expr1) + F(expr2) - (F(expr1) × F(expr2))

any-col IN list Treated as any-col = item1 OR…OR any-col = itemn

any-col relop ANY subquery Treated as any-col relop value1 OR…OR any-col
relop valuen for estimated size of subquery n

Key:

■ indexed-col: first or only column in an index

■ 2nd-max, 2nd-min: second-largest and second-smallest key values in indexed
column

■ any-col: any column not covered by a preceding formula

Filter Expression Selectivity (F)

 (2 of 2)
Queries and the Query Optimizer 10-23

Query Evaluation
The optimizer can use an index in the following cases:

■ When the column is indexed and a value to be compared is a literal,
a host variable, or an uncorrelated subquery

To locate relevant rows in the table, the database server first looks for
the row in an appropriate index. If an appropriate index is not avail-
able and the database server cannot eliminate table fragments based
on the fragmentation scheme, the database server must completely
scan each table.

■ When the column is indexed and the value to be compared is a
column in another table (a join expression)

The database server can use the index to find matching values. The
following join expression shows such an example:

WHERE customer.customer_num = orders.customer_num

If rows of customer are read first, values of customer_num can be
applied to an index on orders.customer_num.

■ When processing an ORDER BY clause

If all the columns in the clause appear in the required sequence in a
single index, the database server can use the index to read the rows
in their ordered sequence, thus avoiding a sort.

■ When processing a GROUP BY clause

If all the columns in the clause appear in one index, the database
server can read groups with equal keys from the index without
requiring additional processing after the rows are retrieved from
their tables.

■ When queries frequently access only a subset of rows

For more information, refer to “Selective Indexes” on page 13-24.

■ When an expression is frequently used in a filter

For more information, refer to “Virtual-Column Index” on
page 13-25.

■ When a specific join of tables is frequently used in queries

For more information, refer to “Join Indexes” on page 13-26.

For detailed information about how the optimizer might choose to use
indexes, see “Using Indexes” on page 13-13.
10-24 Performance Guide for Informix Extended Parallel Server

Time Costs of a Query
Time Costs of a Query
This section explains the response-time effects of actions that the database
server performs as it processes a query.

You cannot adjust the construction of the query to reduce some of the costs
described in this section. However, you can reduce the following costs by
optimal query construction, appropriate table fragmentation, and appro-
priate indexes:

■ Sort time

■ Data mismatches

■ In-place ALTER TABLE

■ Index lookups

For information about how to optimize specific queries, see Chapter 13,
“Improving Query and Transaction Performance.”

Memory-Activity Costs
The database server can process only data that is in memory. It must read
rows into memory to evaluate those rows against the filters of a query. When
rows that satisfy those filters are found, the database server prepares an
output row in memory by assembling the selected columns.

The database server performs most of these tasks very quickly. Depending on
the computer and its workload, the database server can perform hundreds or
even thousands of comparisons each second. As a result, the time spent on
in-memory work is usually a small part of the execution time.

Although some in-memory activities, such as sorting, take a significant
amount of time, it takes much longer to read a row from disk than to examine
a row that is already in memory.
Queries and the Query Optimizer 10-25

Sort-Time Costs
Sort-Time Costs
A sort requires in-memory work as well as disk work. The in-memory work
depends on the number of columns that are sorted, the width of the
combined sort key, and the number of row combinations that pass the query
filter. You can use the following formula to calculate the in-memory work
that a sort operation requires:

Wm = (c * Nfr) + (w * Nfr log 2(Nfr))

Sorting might require writing information temporarily to disk if there is a
large amount of data to sort. You can direct the disk writes to the operating-
system file space or a dbspace that the database server manages. For details,
refer to “Dbspaces for Temporary Tables and Sort Files” on page 5-10.

The disk work depends on the number of disk pages where rows appear, the
number of rows that meet the conditions of the query predicate, the number
of rows that can be placed on a sorted page, and the number of merge opera-
tions that must be performed. Use the following formula to calculate the disk
work that a sort operation requires:

Wd = p + (Nfr / Nrp) * 2 * (m-1))

Wm is the in-memory work.

c is the number of columns to order. It represents the costs to extract
column values from the row and concatenate them into a sort key.

w is proportional to the width of the combined sort key in bytes. It
stands for the work to copy or compare one sort key. The numeric
value for w depends strongly on the computer hardware in use.

Nfr is the number of rows that pass the query filter.

Wd is the disk work.

p is the number of disk pages.

Nfr is the number of rows that pass the filters.

Nrp is the number of rows that can be placed onto a page.

m represents the number of levels of merge that the sort must use.
10-26 Performance Guide for Informix Extended Parallel Server

Row-Reading Costs
The factor m depends on the number of sort keys that memory can contain.
If there are no filters, Nfr/Nrp is equivalent to p.

When memory can contain all the keys, m=1 and the disk work is equivalent
to p. In other words, the rows are read and sorted in memory.

For moderate-sized to large tables, rows are sorted in batches that fit in
memory, and then the batches are merged. When m=2, the rows are read,
sorted, and written in batches. Then the batches are read again and merged,
resulting in disk work proportional to the following value:

Wd = p + (2 * (Nfr / Nrp))

The more specific the filters, the fewer the rows that are sorted. As the
number of rows increases, and the amount of memory decreases, the amount
of disk work increases.

To reduce the cost of sorting, use the following methods:

■ Make your filters as specific (selective) as possible.

■ Limit the projection list to the columns that are relevant to your
problem.

Row-Reading Costs
When the database server needs to examine a row that is not already in
memory, it must read that row from disk. The database server does not read
only one row; it reads the entire page that contains the row. If the row spans
more than one page, it reads all of the spanned pages.
Queries and the Query Optimizer 10-27

Sequential-Access Costs
The actual cost of reading a page is variable and hard to predict. It is a
combination of the following factors.

The time cost of reading a page can vary from microseconds for a page that
is already in a buffer, to a few milliseconds when contention is 0 and the disk
arm is already in position, to hundreds of milliseconds when the page is in
contention and the disk arm is over a distant cylinder of the disk.

Sequential-Access Costs
Disk costs are lowest when the database server reads the rows of a table in
physical order. When the first row on a page is requested, the disk page is
read into a buffer page. Once the page is read in, it need not be read again;
requests for subsequent rows on that page are filled from the buffer until all
the rows on that page are processed. After one page has been read, the page
for the next set of rows must be read. To make sure that the next page is ready
in memory, use the read-ahead configuration parameters described in
“LRUS, LRU_MAX_DIRTY, and LRU_MIN_DIRTY” on page 5-28.

When you use raw devices for dbspaces and the table is organized properly,
the disk pages of consecutive rows are placed in consecutive locations on the
disk. With this arrangement, the access arm moves little to read rows sequen-
tially. In addition, latency costs are usually lower when pages are read
sequentially.

Factor Implications

Buffering If the needed page is in a page buffer already, the cost of access is
nearly 0.

Contention If two or more applications require access to the disk hardware, I/O
requests can be delayed.

Seek time The slowest part of disk access is seek time, which is moving the
access arm to the track that holds the data. Seek time depends on the
speed of the disk and the location of the disk arm when the
operation starts. Seek time varies from 0 to nearly a second.

Latency The transfer cannot start until the beginning of the page rotates
under the access arm. This rotational delay depends on the speed of
the disk and on the position of the disk when the operation starts.
Latency can vary from 0 to a few milliseconds.
10-28 Performance Guide for Informix Extended Parallel Server

Nonsequential-Access Costs
Nonsequential-Access Costs
Whenever a table is read in random order, additional disk accesses are
required to read the rows in the required order. Disk costs are higher when
the rows of a table are read in a sequence unrelated to physical order on disk.
Because the pages are not read sequentially from the disk, both seek and
rotational delays occur before each page can be read. As a result, the disk-
access time is much higher when table rows are read nonsequentially than
when the same table is read sequentially.

Nonsequential access often occurs when you use an index to locate rows.
Although index entries are sequential, there is no guarantee that rows with
adjacent index entries must reside on the same (or adjacent) data pages. In
many cases, a separate disk access must be made to fetch the page for each
row located through an index. If a table is larger than the page buffers, a page
that contained a row previously read might be cleaned (removed from the
buffer and written back to the disk) before a subsequent request for another
row on that page can be processed. That page might have to be read in again.

Depending on the relative ordering of the table with respect to the index, you
can sometimes retrieve pages that contain several needed rows. The degree
to which the physical ordering of rows on disk corresponds to the order of
entries in the index is called clustering. A highly clustered table is one in
which the physical ordering on disk corresponds closely to the index.

Index-Lookup Costs
The database server incurs additional costs when it finds a row through an
index. The index is stored on disk, and its pages must be read into memory
along with the data pages that contain the desired rows.

An index lookup works down from the root page to a leaf page. (See
“Managing Indexes” on page 7-11.) The root page, because it is used so often,
is almost always found in a page buffer. The odds of finding a leaf page in a
buffer depend on the size of the index, the form of the query, and the
frequency of column-value duplication. If each value occurs only once in the
index and the query is a join, each row to be joined requires a nonsequential
lookup into the index, followed by a nonsequential access to the associated
row in the table.
Queries and the Query Optimizer 10-29

In-Place ALTER TABLE Costs
If many duplicate rows exist for each distinct index value and the associated
table is highly clustered, the added cost of joining through the index can be
slight.

In-Place ALTER TABLE Costs
When you execute an ALTER TABLE statement, the database server might use
an in-place alter algorithm to modify each row when it is inserted instead of
using a slow or fast ALTER TABLE operation. After you execute the ALTER
TABLE statement, the database server uses the new definition when it inserts
rows.

If your query accesses rows that are not yet converted to the new table
definition, you might notice a slight degradation in the performance of your
individual query because the database server reformats each row before it is
returned.

For more information on the conditions and performance advantages when
an in-place ALTER TABLE occurs, refer to “Altering a Table Definition” on
page 6-34.

View Costs
You can create views of tables for a number of reasons:

■ To limit the data that a user can access

■ To reduce the time that it takes to write a complex query

■ To hide the complexity of the query that a user needs to write

However, a query against a view might execute more slowly than expected if
the complexity of the view definition requires a temporary table to be created
to process the query. For example, a query against a a view that involves a
union to combine results from several SELECT statements causes the database
server to create a temporary table.
10-30 Performance Guide for Informix Extended Parallel Server

Small-Table Costs
The following sample SQL statement creates a view that includes unions:

CREATE VIEW view1 (col1, col2, col3, col4)
AS

SELECT a, b, c, d
FROM tab1 WHERE …

UNION
SELECT a2, b2, c2, d2

FROM tab2 WHERE …
...
UNION
SELECT an, bn, cn, dn

FROM tabn WHERE …
;

When you create a view that contains complex SELECT statements, the end
user does not need to manage the complexity. The user can write a simple
query, as the following example shows:

SELECT a, b, c, d
FROM view1

WHERE a < 10;

However, this query against view1 might execute more slowly than the
simplicity of the query might imply because the database server creates a
fragmented temporary table for the view before it executes the query.

To find out if you have a query that must build a temporary table to materi-
alize the view, execute the SET EXPLAIN statement in SQL and look at the
sqexplain.out file. If Temp Table For View appears in the sqexplain.out file,
your query requires a temporary table to materialize the view.

Small-Table Costs
A table is small if it occupies so few pages that it can be retained entirely
in the page buffers. Operations on small tables are generally faster than
operations on large tables.

For example, a state table that relates postal-code abbreviations to names of
states might have a total size less than 1,000 bytes and fit in no more than two
pages. You can include this table in any query at little cost. No matter how
the query uses this table, it costs no more than two disk accesses to retrieve
the whole table from disk the first time that it is required.
Queries and the Query Optimizer 10-31

Data-Mismatch Costs
To make sure that a small, often-used table remains in memory as long as
possible, specify the SQL statement SET Residency for the table, as described
in “Keeping Small Tables in Memory” on page 6-47.

Data-Mismatch Costs
An SQL statement can encounter additional costs when the data type of a
column that is used in a condition differs from the definition of the column
in the CREATE TABLE statement.

For example, the following query contains a condition that compares a
column to a data type value that differs from the table definition:

CREATE TABLE table1 (a integer, ...);
SELECT * FROM table1

WHERE a = '123';

The database server rewrites this query before execution to convert '123' to
an integer. The sqexplain.out output shows the query in its adjusted format.
This data conversion requires no noticeable overhead.

The additional costs of a data mismatch are highest when the query compares
a character column with a noncharacter value and the length of the number
is not equal to the length of the character column. For example, the following
query contains a condition in the WHERE clause that equates a character
column to an integer value because of missing quotation marks:

CREATE TABLE table2 (char_col char(3), ...);
SELECT * FROM table2

WHERE char_col = 1;

This query finds all of the following values that are valid for char_col:

' 1'
'001'
'1'

These values are not necessarily clustered together in the index keys.
Therefore, the index does not provide a fast and correct way to obtain the
data. The sqexplain.out file shows a sequential scan for this situation.

Warning: The database server does not use an index when the SQL statement
compares a character column with a noncharacter value that is not equal in length to
the character column.
10-32 Performance Guide for Informix Extended Parallel Server

GLS Functionality Costs
GLS Functionality Costs
Sorting and indexing certain data sets can cause significant performance
degradation. If you do not need a non-ASCII collation sequence, Informix
recommends that you use the CHAR and VARCHAR data types for character
columns whenever possible. Because CHAR and VARCHAR data require
simple value-based comparison, sorting and indexing these columns is less
expensive than for non-ASCII data types (NCHAR or NVARCHAR, for
example). For more information on other character data types, see the
Informix Guide to GLS Functionality.

Fragmentation Costs
How the data is fragmented across coservers and dbspaces can affect perfor-
mance, especially in large decision support queries. At a certain point, the
overhead for coordinating scan operations across coservers might offset the
gains from fragmentation, particularly for small fragments, unless you
fragment tables to take advantage of either of the following features:

■ Collocated joins

When you join two tables spread across coservers, you can achieve
better performance by using collocated joins. For more information
about collocated joins, refer to “Ensuring Collocated Joins” on
page 9-30.

■ Fragment elimination

To reduce response time for a query, you can eliminate fragments
from a query search. For more information, refer to “Designing
Distribution for Fragment Elimination” on page 9-41.

SQL in SPL Routines
SPL routines can improve performance of OLTP transactions because SQL
statements in SPL routines are optimized once and cached in memory for
repeated use during a single session.

The following section contains information about how and when the
database server optimizes and executes SQL in an SPL routine.

GLS
Queries and the Query Optimizer 10-33

Optimization of SQL
Optimization of SQL
If an SPL routine contains SQL statements, the query optimizer evaluates the
possible query plans for SQL in the SPL routine and selects the query plan
with the lowest cost. The database server puts the selected query plan for
each SQL statement in an execution plan for the SPL routine.

To avoid unnecessary reoptimization, query plans in an SPL routine are
cached for each session. If the query plan is not in the session cache, the
database server optimizes each SQL statement immediately before it executes
the statement in the SPL routine.

Execution of SPL Routines
When the database server executes an SPL routine with the EXECUTE
PROCEDURE statement, with the SPL CALL statement, or in an SQL statement,
the following activities occur:

■ The database server reads the interpreter code from the system
catalog tables and converts it from a compressed format to an
executable format.

■ The database server executes any SPL statements that it encounters.

■ When the database server encounters an SQL statement, it parses,
optimizes, and executes the statement. If the query plan for the
statement has been cached for the session, the statement is not
reoptimized.

■ When the database server reaches the end of the SPL routine or when
it encounters a RETURN statement, it returns any results to the client
application. Unless the RETURN statement has a WITH RESUME
clause, the SPL routine execution is complete.

The database server executes the SPL routine once for each EXECUTE
PROCEDURE statement. However, the database server can execute a
procedure many times if it is in a SELECT statement. The following example
calls get_order_total once for each row found in the customer table:

SELECT customer_num, get_order_total(customer_num)
FROM customer;
10-34 Performance Guide for Informix Extended Parallel Server

Execution of SPL Routines
If the SPL routine is in the WHERE clause of the SELECT statement, and it
contains no parameters or uses only constants as parameters, the database
server executes the SPL routine only once. The following example executes
get_first_day only once:

SELECT order_num, order_date
FROM orders
WHERE order_date > get_first_day();

Not only is a SPL routine of this kind executed only once, but it is pre-executed.
The database server executes the procedure and replaces the returned value
in the SQL statement.

SELECT order_num, order_date
FROM orders
WHERE order_date > "10/01/97"
Queries and the Query Optimizer 10-35

11
Chapter
Parallel Database Query
Guidelines
In This Chapter . 11-3

Parallel Database Queries 11-4
High Degree of Parallelism. 11-5
Structure of Query Execution 11-5

SQL Operators. 11-6
Exchanges 11-10
Parallel Processing Threads 11-13

Balanced Workload 11-13

Optimizer Use of Parallel Processing. 11-15
Decision-Support Query Processing. 11-16
Parallel Data Manipulation Statements 11-17

Parallel Inserts into Temporary Tables 11-17
Parallel Index Builds 11-19
Parallel Processing and SPL Routines 11-20

SQL Statements That Contain a Call to an SPL Routine. . . . 11-20
SQL Statements in an SPL Routine 11-20

Parallel Sorts. 11-21
Query Execution on a Single Coserver 11-21
Query Execution on Multiple Coservers 11-23
Other Sort Operations 11-24

Parallel Execution of UPDATE STATISTICS 11-24
Parallel Execution of onutil Commands 11-25
Correlated and Uncorrelated Subqueries 11-25

Parallel Execution of Nested Correlated Subqueries 11-25
Parallel Execution of Uncorrelated Subqueries. 11-26

SQL Operations That Are Not Processed in Parallel 11-27
Processing OLTP Queries 11-27

11-2 Pe
rformance Guide for Informix Extended Parallel Server

In This Chapter
Extended Parallel Server is designed to execute queries with parallel
processing whenever appropriate. When the database server processes a
query in parallel, it divides the work into subtasks and processes the subtasks
simultaneously on several processors and coservers. It processes memory-
intensive queries in parallel. For example, if a query requires joining tables or
sorting data, the optimizer can process the work in parallel on several
processors and on several coservers. Queries processed in parallel are
sometimes called PDQ queries.

Information in this chapter should help you interpret the output of the
various onstat utility commands and the output that the optimizer produces
when you use the SQL statement SET EXPLAIN ON. For information about
onstat utility commands, see “Monitoring Query Resource Use” on
page 12-18.

This chapter covers the following topics:

■ Parallel processing concepts

■ When the database server uses parallel processing

■ When the database server does not use parallel processing

Table fragmentation, which allows you to separate a table into fragments that
are stored on different coservers and disks, enhances the benefits of parallel
processing. parallel processing delivers maximum performance benefits
when the data that the query requires is in fragmented tables. For infor-
mation about how to combine the advantages of parallel processing and
fragmentation, see “Planning a Fragmentation Strategy” on page 9-6.

Whenever a query requires information from table fragments on more than
one coserver or requires resources that exceed the capacity of the local
coserver, the database server uses its parallel processing capabilities. For
information about when queries are not processed in parallel, see “SQL
Operations That Are Not Processed in Parallel” on page 11-27.
Parallel Database Query Guidelines 11-3

Parallel Database Queries
Parallel Database Queries
Parallel processing refers to the techniques that the optimizer uses to
distribute the execution of a single query over several processors and
coservers. The optimizer uses parallel processing for queries that require
large amounts of resources, in particular large quantities of memory.

When the database server processes a query in parallel, it first divides the
query into subplans that might be processed on several coservers and CPUs.
The database server then allocates the subplans to threads that process the
subplans in parallel. Because each subplan represents a smaller amount of
processing time when compared to the entire query, and because each
subplan is processed simultaneously with all other subplans, queries are
processed faster. Figure 11-1 illustrates how subplans might be processed.

Figure 11-1
Parallel Database

Query (PDQ)

CPU

Subplan

Subplan

Subplan

Query

Coserver1

Coserver3

CPUCPU

CPU

CPU CPU

Coserver2
11-4 Performance Guide for Informix Extended Parallel Server

High Degree of Parallelism
High Degree of Parallelism
The degree of parallelism for a query refers to the number of instances that
the optimizer executes in parallel to run the query. For example, a two-table
join executed by six instances, with each instance executing one-sixth of the
required processing, has a higher degree of parallelism than one executed by
two instances.

The database server determines the best parallel-processing plan for a query.
It bases its plan on the fragmentation of the tables that are being queried,
whether it can ignore some fragments, and the complexity of the query, as
well as the number of available coservers, the number of virtual processors
(VPs) on each coserver, and other resources.

Except for transactions that are not memory intensive and retrieve only a few
specified rows from a table fragment, SQL operations are completely parallel.
Completely parallel means that query execution occurs in multiple instances
simultaneously on all CPU VPs across all coservers.

The database server also processes the query components themselves in
parallel. For example, consider the way the database server uses pipes to
process a complex join. First, the database server scans the data in parallel.
As soon as it has scanned enough data, it begins the join. Immediately after
the join begins, the database server begins the sort and other required
processing, which continues until the full join is complete.

The greatest advantage of parallel processing occurs when you fragment
tables across coservers that are multiprocessor computers or other configura-
tions that allow extensive parallel processing. However, performance gains
occur even with nonfragmented tables on a uniprocessor computer.

Structure of Query Execution
The optimizer divides a query into components that it can perform in parallel
by VPs across coservers to increase the speed of query execution significantly.

Depending on the number of tables or fragments that a query must search,
the optimizer determines if a query subplan can execute in parallel. If the
words Parallel, fragments appear in the access plan for a table in the SET
EXPLAIN output, parallel scans occur.
Parallel Database Query Guidelines 11-5

Structure of Query Execution
The Resource Grant Manager (RGM) assigns the query operators to different
instances across coservers. The SET EXPLAIN output lists these instances as
secondary threads. For more information on the RGM, refer to Chapter 12,
“Resource Grant Manager.”

Secondary threads are classified as either producers or consumers, depending
on their function. A producer thread supplies data to another thread. For
example, a scan thread might read data from shared memory that corre-
sponds to a given table and pass it to a join thread. In this case, the scan
thread is considered a producer, and the join thread is considered a
consumer. The join thread, in turn, might pass data to a sort thread. In that
case, the join thread is considered a producer, and the sort thread is
considered a consumer.

The optimizer uses SQL operators and exchange operators to execute a query, as
the following sections explain.

SQL Operators

An SQL operator is a process that performs a small number of predefined
operations on one or more streams of rows.

Figure 11-2 shows the different types of SQL operators and how they might
be used in parallel processing. Use this list of operators to interpret the SET
EXPLAIN ON and onstat utility output.
11-6 Performance Guide for Informix Extended Parallel Server

Structure of Query Execution
Figure 11-2
Function and Parallel Execution of SQL Operators

SQL Operator Function
Parallel
Instances

ANTIJOIN Removes duplicate and incorrect rows that
might be produced by a nested loop join using
a outer join or occasionally by a hash join
when the rows are joined on different
instances.

Yes

EXPRESSION Evaluates an expression that is a subquery or
calls an SPL routine to determine the best
query plan.

No

FLEX INSERT Inserts rows into an automatically created
temporary table for a SELECT... INTO TEMP
statement.

Yes

FLEX JOIN Used only to balance data skew in the query
processing. The optimizer creates parallel
instances of the FLEX JOIN operator on
available coservers.

Flex joins must be enabled explicitly for a
session. For information about how to enable
flex joins, refer to your release notes.

Yes

GROUP Groups the data for GROUP BY clause, aggre-
gates, and DISTINCT processing.

Yes

HASH JOIN Uses a hash method to join two tables.

Uses one table to build a hash table and joins
the other data table to it. For an explanation of
the advantages of hash joins, see “Hash Join”
on page 10-6.

Yes

 INSERT Inserts rows into a local table or index
fragment or into an unfragmented table or
index for a INSERT statement.

Yes

NESTED LOOP JOIN Performs the standard nested-loop join logic. Yes

 (1 of 2)
Parallel Database Query Guidelines 11-7

Structure of Query Execution
The optimizer uses SQL operators and exchanges to divide a query plan and
construct a tree of operators. For information about exchanges, see
“Exchanges” on page 11-10. This operator tree consists of a branch and a
branch instance:

■ Branch (sometimes referred to as segment)

Each branch represents a set of one or more SQL operators that do not
have exchanges between them. For example, a branch might contain
a group operator and a hash-join operator.

■ Branch instance

A branch instance is a secondary thread that is actually executing one
of the SQL operators in the branch.

The optimizer creates multiple instances of each branch to execute in
parallel on different parts of the data.

The SCAN and INSERT operators execute in parallel, based on the
fragmentation strategy of the tables and indexes. For information
about the other SQL operators that execute in parallel, such as FLEX
INSERT, FLEX JOIN, and GROUP, see Figure 11-2 on page 11-7. The
number of instances of these SQL operators is determined by the
availability and number of CPU VPs.

Some SQL operators handle data from a local table or local index. A table or
index is local if it resides on the same coserver where the SQL operator is
executing. The INSERT and SCAN SQL operators handle local data.

PROJECT Obtains values in the projection list of the
SELECT statement.

Usually

SCAN Reads a local table or index fragment or an
unfragmented table or index sequentially.

Yes

SORT Orders the data. Yes

SQL Operator Function
Parallel
Instances

 (2 of 2)
11-8 Performance Guide for Informix Extended Parallel Server

Structure of Query Execution
The optimizer structures complex queries into a plan of SQL operators.
Figure 11-3 on page 11-9 shows the SQL operator plan that the optimizer
constructs to process the following SQL query:

SELECT geo_id, sum(dollars)
FROM customer a, cash b
WHERE a.cust_id=b.cust_id
GROUP BY geo_id
ORDER BY SUM(dollars);

Figure 11-3
SQL Operator Plan

for a Query

SCAN

customer
table

cash
table

SCAN

JOIN

GROUP

SORT
Parallel Database Query Guidelines 11-9

Structure of Query Execution
Exchanges

An exchange is an operator that serves as the boundary between SQL operator
branches. An exchange facilitates parallelism, pipelining, and communi-
cation of data from producer instances of the SQL operator branch below it to
consumer instances of the SQL operator branch above it. The optimizer
inserts exchanges at places in an SQL operator plan where parallelism is
beneficial.

When several producers supply data to a single consumer, the exchange
coordinates the transfer of data from those producers to the consumer. For
example, if a fragmented table is to be sorted, the database server usually
creates a separate scan thread for each fragment. Because of different I/O
characteristics, the scan threads might complete their work at different times.
The optimizer uses an exchange to divide the data that the various scan
threads produce into one or more sort threads with minimum buffering.

Depending on the complexity of the query, the optimizer might call for a
multilayered hierarchy of producers, exchanges, and consumers.
11-10 Performance Guide for Informix Extended Parallel Server

Structure of Query Execution
Figure 11-4 shows how an exchange can add parallelism to the set of SQL
operators from Figure 11-3 on page 11-9.

Figure 11-4
SImplified Illustration of Exchanges in SQL Operator Plan for a Query

HASH

SCAN

customer table

GROUP

SORT

EXCHANGES

EXCHANGES

EXCHANGES

EXCHANGE

HASH

SCAN

cash table

GROUP

SORT
Parallel Database Query Guidelines 11-11

Structure of Query Execution
The example in Figure 11-4 on page 11-11 shows how a single coserver with
two CPU VPs and one fragment of each of the customer and cash tables might
process the query. Starting from the bottom, Figure 11-4 shows the following
operations:

■ One CPU VPs scans a table fragment of the customer table while the
other CPU VP scans a table fragment of the cash table.

■ Exchange operators repartition the rows based on the join key and
distribute the request to form a join with the repartitioned data to the
two CPU VPs.

The exchange operators coordinate data from both the customer and
cash tables to ensure that customer and cash rows with the same key
go to the same CPU VPs for the join operation.

■ Two join operators use a hash-join method to combine the data from
the two table fragments.

■ Exchange operators receive the results of the joins and divide the
rows for the GROUP operation.

■ GROUP operators group the data by geographic area.

■ Exchange operators combine the results of the GROUP operation and
distribute the data to the sort instances.

■ The SORT operator sorts the data by dollar sum.

■ A final exchange operator combines the results of the sort.

On a real database server, of course, this example would be much more
complicated. Many table fragments and many CPU VPs might exist, either on
the same coserver or across many coservers. Figure 11-4 shows only the
simplest case.

The database server can execute each instance of an SQL operator on a
separate CPU VP, depending on the number of CPU VPs available. For
example, if five coservers are configured with two CPU VPs on each coserver,
the exchange operators can initiate 10 hash-join operators to increase the
parallel execution of the joins.
11-12 Performance Guide for Informix Extended Parallel Server

Balanced Workload
Parallel Processing Threads

Depending on the resources that are available for a decision-support query,
the Resource Grant Manager (RGM) assigns the different branch instances in
a query subplan to different coservers. The optimizer initiates the query plan
and the following threads:

■ An sqlexec thread on the connection coserver

The sqlexec threads manages the global session context on the
coserver to which the session is connected.

■ An x_exec thread on each participating coserver

The x_exec threads manage the session context on the participating
coservers.

■ Additional threads to execute the branch instances

The SET EXPLAIN output lists these threads as secondary threads.

The optimizer creates these secondary threads and exchanges automatically
and transparently. They are terminated automatically as they complete
processing for a given query. The optimizer creates new threads and
exchanges as needed for subsequent queries.

Some monitoring tools display only the SQL operator but not the exchanges.
For more information, refer to the “Monitoring Query Resource Use” on
page 12-18.

Balanced Workload
The database server provides small-table broadcast to balance the workload
automatically during the execution of a query.

During a hash join, either the hash table or probe table might be very small.
A very small table is approximately 128 kilobytes or less in size plus an
additional approximately 100 kilobytes of overhead so that it can fit into one
hash partition. If the optimizer detects that either the hash table or probe
table is very small, the optimizer decides to broadcast the small table within
the hash partition across all coservers so that SQL operators can process data
locally.
Parallel Database Query Guidelines 11-13

Balanced Workload
For example, the optimizer decides to execute the following SQL statement
with small-table broadcast because the hash table is very small:

SELECT tab1.item FROM tab1, tab2
WHERE tab1.item = tab2.item AND tab2.num = 50

Figure 11-5 shows an excerpt from a sample sqexplain.out file that displays
Build Outer Broadcast for the hash table.

Important: To ensure that the optimizer has an accurate count of the number of table
rows, run UPDATE STATISTICS in at least LOW mode on the tables that queries
frequently join. If UPDATE STATISTICS has not been run or if the optimizer estimates
that the table might be larger than 128 kilobytes, the database server does not attempt
to use small table broadcast.

QUERY:

select tab1.item from tab1, tab2
where tab1.item = tab2.item and tab2.num = 50

Estimated Cost: 2
Estimated # of Rows Returned: 9

1) virginia.tab1: SEQUENTIAL SCAN

2) virginia.tab2: SEQUENTIAL SCAN

Filters: virginia.tab2.num = 50

DYNAMIC HASH JOIN (Build Outer Broadcast)
Dynamic Hash Filters: virginia.tab1.item = virginia.tab2.item

Figure 11-5
Sample

sqexplain.out
File for Small

Table Broadcast
11-14 Performance Guide for Informix Extended Parallel Server

Optimizer Use of Parallel Processing
Optimizer Use of Parallel Processing
In Extended Parallel Server, queries are always executed in parallel when the
database operation requires data that is fragmented across multiple dbspaces
and when multiple CPU VPs are available. Parallel query processing can
occur on both a single coserver and across multiple coservers:

■ Single coserver execution

The database server executes database operations in parallel under
the following circumstances:

❑ The involved tables are fragmented across separate dbspaces on
separate disks that are local to one coserver.

❑ An SQL operator in the query plan processes a large amount of
data so that it dynamically allocates multiple threads to execute
in parallel across available CPU VPs on the single local coserver.

■ Multiple coserver execution

The database server achieves a high degree of parallelism for a query
when the involved tables are fragmented across more than one
coserver and multiple CPU VPs on the multiple coservers execute the
SQL operators in the query plan.

The following database operations are executed in parallel when the
involved tables are fragmented into separate dbspaces:

■ DSS queries, which are usually complex SELECT statements that
involve many rows to scan, join, aggregate, sort, or group

■ INSERT, DELETE, and UPDATE statements that process nonlocal data

■ Sorts

■ Index builds

■ UPDATE STATISTICS

■ onutil CHECK TABLE DATA and CHECK INDEX command options

■ Uncorrelated subqueries

The following sections describe how the database server uses parallel
processing to execute these database operations.
Parallel Database Query Guidelines 11-15

Decision-Support Query Processing
Decision-Support Query Processing
The complex queries that are typical of DSS applications benefit from parallel
processing. For example, queries that pose the following questions use
parallel processing:

■ Based on the predicted number of housing starts, the known age of
existing houses, and the observed roofing choices for houses in
different areas and price ranges, what roofing materials should we
order for each of our regional distribution centers?

■ How does the cost of health-care plan X compare with the cost of
health-care plan Y, considering the demographic profile of our
company? Would plan X be better for some regions and plan Y for
others?

DSS applications perform complex tasks that often include scans of entire
tables, manipulation of large amounts of data, multiple joins, and creation of
temporary tables. Such operations involve many I/O operations, many
calculations, and large amounts of memory.

Decision-support queries consume large quantities of non-CPU resources,
particularly large amounts of memory. The optimizer usually allocates large
amounts of memory to one or more of the following SQL operators:

■ HASH JOIN

■ SORT

■ FLEX JOIN

■ ANTIJOIN

■ GROUP

For more information on how the optimizer uses SQL operators for parallel
execution, refer to “Structure of Query Execution” on page 11-5.

Other factors also influence how the optimizer allocates resources to a query.
Consider the following SELECT statement:

SELECT col1, col2 FROM table1 ORDER BY col1
11-16 Performance Guide for Informix Extended Parallel Server

Parallel Data Manipulation Statements
If no indexes exist on table1, a sort is required, and the optimizer must
allocate memory and temporary disk space to sort the query. However, if
column col1 is indexed, the optimizer can sometimes provide the order that
the query specifies without consuming non-CPU resources. The optimizer
might not choose to sort the table but instead retrieve rows in order by using
the index. For more information on when to create indexes, refer to “Using
Indexes” on page 13-13.

Parallel Data Manipulation Statements
DELETE, INSERT, and UPDATE statements perform the following two steps:

1. Fetch the qualifying rows.

2. Perform the delete, insert, or update.

The optimizer processes the first step of the statement in parallel, with one
exception. The optimizer does not process the first part of a DELETE
statement in parallel if the targeted table has a referential constraint that can
cascade to a child table.

Parallel Inserts into Temporary Tables

The optimizer performs the following types of inserts in parallel:

■ SELECT...INTO TEMP inserts that use explicit temporary tables

■ INSERT INTO...SELECT inserts that use explicit temporary tables

■ SELECT... INTO EXTERNAL TABLE statements that unload data to an
external table

For more information on implicit and explicit temporary tables, refer to
“Using Temporary Tables” on page 6-7 and the Informix Guide to SQL: Syntax.

The following sections explain the details and restrictions that apply to
parallel inserts.
Parallel Database Query Guidelines 11-17

Parallel Data Manipulation Statements
Explicit Inserts with SELECT...INTO TEMP

The optimizer can insert rows in parallel into explicit temporary tables that
you specify in SQL statements of the form SELECT....INTO TEMP or
SELECT...INTO SCRATCH. For example, the optimizer can perform the inserts
in parallel into the temporary table, temp_table, as the following sample SQL
statement shows:

SELECT * FROM table1 INTO SCRATCH temp_table

To perform the insert in parallel, the optimizer first creates a fragmented
temporary table. The optimizer performs the parallel insert by writing in
parallel to each of the fragments in a round-robin fashion. Performance
generally improves as the number of fragments increases.

To obtain parallel inserts into fragments of a temporary table

1. Create a dbslice or set of dbspaces for the exclusive use of temporary
tables and sort files.

Use the onutil CREATE TEMP DBSLICE or onutil CREATE TEMP
DBSPACE command to create this temporary space.

2. Set the DBSPACETEMP configuration parameter or the
DBSPACETEMP environment variable to the dbslice or a list of two or
more dbspaces that you created in step 1. If you set the
DBSPACETEMP configuration parameter, you must restart the
database server for it to take effect.

3. Execute the SELECT...INTO statement.

For more information about performance considerations for temporary
space, refer to “Dbspaces for Temporary Tables and Sort Files” on page 5-10.

Explicit Inserts with INSERT INTO.SELECT

The database server can also insert rows in parallel into explicit tables that
the user creates for SQL statements of the form INSERT INTO...SELECT. For
example, the database server processes the following INSERT statement in
parallel:

INSERT INTO target_table SELECT * FROM source_table

The target table can be either a permanent table or a temporary table.
11-18 Performance Guide for Informix Extended Parallel Server

Parallel Index Builds
The database server processes this type of INSERT statement in parallel only
when the in the following circumstances:

■ The target table is fragmented into two or more dbspaces.

■ The target table has no enabled referential constraints.

■ Multiple CPU VPs are available on either of the following
configurations:

❑ On a single-coserver configuration, the NUMCPUVPS configu-
ration parameter must be greater than 1.

❑ On a multiple-coserver configuration, the NUMCPUVPS configu-
ration parameter can be set to 1.

■ The target table does not contain filtering constraints.

■ The target table does not contain columns of TEXT or BYTE data type.

Parallel Index Builds
The database server can build indexes in parallel. For index builds the
optimizer performs both scans and sorts in parallel. The following operations
start index builds:

■ CREATE INDEX

■ Add a unique, primary key

■ Add a referential constraint

■ ALTER FRAGMENT

Parallel execution can occur during index builds when any of the following
conditions exist:

■ These operations involve multiple fragments.

■ Multiple CPU VPs are available.

■ Multiple sort threads are available.

If your coservers have multiple CPUs, the optimizer uses one sort thread per
CPU VP during index builds.
Parallel Database Query Guidelines 11-19

Parallel Processing and SPL Routines
The PDQPRIORITY setting controls the amount of sorting memory for index
builds. To override the value of the PDQPRIORITY configuration parameter,
set the PDQPRIORITY environment variable, or issue the SQL statement SET
PDQPRIORITY.

For more information about index builds, refer to “Improving Performance
for Index Builds” on page 7-22.

Parallel Processing and SPL Routines
In certain circumstances, the database server can use parallel execution for
SQL statements in an SPL routine.

SQL Statements That Contain a Call to an SPL Routine

If an SQL statement contains a call to an SPL routine, the parts of the statement
that are related to the SPL routine call are executed only by the connection
coserver. SQL statements that are contained entirely in SPL routines might be
executed in parallel, however.

The following sample query contains several calls to SPL routines:

SELECT y,x proc0(y)
FROM tab1, tab2

WHERE proc1(x) = proc2(y) AND x = proc3(x);

In this query, SELECT y, x and FROM tab1, tab2 might be parallelized, but
the WHERE clause is executed by the connection coserver. This restriction
does not apply to execution of SQL statements that are contained in the SPL
routines themselves, proc1(), proc2(), and proc3().

SQL Statements in an SPL Routine

The optimizer can execute the SQL statements that are contained in an SPL:
routine in parallel. The degree of parallelism depends on factors such as the
SQL operators that make up the query plan for the individual SQL statement,
the fragmentation strategy of the tables that are involved in each SQL
statement, the number of CPU VPs available, and other resource availability.
The query plans for the SPL routine SQL statements are cached so that they
can be reused if the procedure is called again later in the session.
11-20 Performance Guide for Informix Extended Parallel Server

Parallel Sorts
The PDQPRIORITY setting controls the amount of memory that a query can
use. Queries specified with a low PDQPRIORITY value request proportionally
smaller amounts of memory, so more of those queries can run simulta-
neously. To change the client value of PDQPRIORITY, embed the SET
PDQPRIORITY statement in the body of the procedure.

Tip: Informix suggests that you set PDQPRIORITY to 0 when you enter an SPL
routine and then reset it for specific statements to avoid reserving large amounts of
memory for the procedure and to make sure that the crucial parts of the procedure use
the appropriate PDQPRIORITY setting.

For example, the following procedure contains several SET PDQPRIORITY
statements:

CREATE PROCEDURE my_proc (a INT, b INT, c INT)
Returning INT, INT, INT;

SET PDQPRIORITY 0;
...

SET PDQPRIORITY 85;
SELECT ... (big, complicated, memory-consuming

SELECT statement)
SET PDQPRIORITY 0;
...

;

Parallel Sorts
The optimizer can use parallel sorts for any query. Parallel sorts can occur
both when the query executes on a single coserver and when the query
executes across multiple coservers.

Query Execution on a Single Coserver

When a query executes on one coserver, the optimizer can allocate parallel
sort threads when any of the following conditions occur:

■ Data that the query requires is fragmented across multiple dbspaces
that reside on different disks.

■ Multiple processors are available for this query, and you specify
multiple CPU VPs in the NUMCPUVPS configuration parameter.
Parallel Database Query Guidelines 11-21

Parallel Sorts
■ Adequate amounts of memory are available for the sort.

■ Adequate amounts of temporary space are available if the sort
overflows memory.

Estimating Sort Memory

The amount of virtual shared memory that the optimizer allocates for a sort
depends on the number of rows to be sorted and the size of a row.

To calculate the amount of virtual shared memory needed for sorting

1. Estimate the maximum number of sorts that might occur
concurrently.

2. Multiply this maximum number by the average number of rows and
the average row size.

For example, if you estimate that 30 sorts might occur concurrently,
the average row size is 200 bytes, and the average number of rows in
a table is 400, estimate the amount of shared memory that the opti-
mizer needs for sorting as follows:
30 sorts * 200 bytes * 400 rows = 2,400,000 bytes

Increasing Sort Memory

PDQPRIORITY specifies the amount of memory that a query can use for all
purposes, including sorting.

When PDQPRIORITY is 0, the maximum amount of shared memory that the
optimizer allocates for a query is about 128 kilobytes for each SQL operator
instance. To request more memory, set PDQPRIORITY to a value that is greater
than 0. The PDQPRIORITY setting requests a percentage of the amount of
memory specified by the DS_TOTAL_MEMORY configuration parameter. The
RGM divides the allocated memory evenly among the sort threads for the
query.

Use one of the following methods to specify PDQPRIORITY:

■ Set the PDQPRIORITY configuration parameter in the ONCONFIG file.

■ Set the PDQPRIORITY environment variable.

■ Execute the SQL statement SET PDQPRIORITY before you issue a
query from a client program.
11-22 Performance Guide for Informix Extended Parallel Server

Parallel Sorts
When the RGM controls the resources for a query, sorting does not use more
than the amount of memory that is requested by the setting of PDQPRIORITY
and limited by the setting of MAX_PDQPRIORITY.

Specifying Multiple Temporary Dbspaces

If your applications use temporary tables or large sort operations, you can
improve performance by using the DBSPACETEMP configuration parameter
or the DBSPACETEMP environment variable to designate a dbslice or one or
more dbspaces for temporary tables and sort files.

For more information, refer to “Dbspaces for Temporary Tables and Sort
Files” on page 5-10.

Query Execution on Multiple Coservers

In Extended Parallel Server, parallel sorts occur even when PDQPRIORITY is
not set. If the data to be sorted resides on different coservers, the optimizer
creates one sort thread for each CPU VP.

The optimizer can use parallel sorts for any query when the following condi-
tions occur:

■ The data to be sorted resides in dbspaces on different disks across
multiple coservers.

■ You specify a multiple number of CPU VPs.

If you specify a value of 1 for the NUMCPUVPS configuration param-
eter, but you have multiple coservers configured on different nodes,
the optimizer can execute one sort thread per coserver.

■ You specify enough memory to perform the sort.

The setting of PDQPRIORITY determines the amount of memory
available for a sort. When PDQPRIORITY is 0, the maximum amount
of shared memory that the optimizer allocates for a sort is about
128 kilobytes per sort instance. This amount of sort memory enables
one sort thread per coserver.

For information about the amount of memory per coserver when
PDQPRIORITY is greater than 0, refer to “Increasing Sort Memory” on
page 11-22.
Parallel Database Query Guidelines 11-23

Parallel Execution of UPDATE STATISTICS
Other Sort Operations

Parallel sorts are not limited to queries with a PDQPRIORITY value greater
than 0. Other database operations also use parallel sorts.

When PDQPRIORITY is greater than 0, queries and other SQL statements with
sort operations benefit both from additional parallel sorts and from
additional memory. These other SQL statements with sort operations include
nonfragmented index builds and detached index builds.

For more information, refer to “Parallel Execution of UPDATE STATISTICS,”
which follows, and to “Parallel Processing and SPL Routines” on page 11-20.

Parallel Execution of UPDATE STATISTICS
The database server executes the SQL statement UPDATE STATISTICS in
parallel. The optimizer uses the SQL operators SCAN and SORT to divide the
processing for the UPDATE STATISTICS statement:

■ When you execute UPDATE STATISTICS in HIGH mode, the optimizer
scans the entire table. If the table is fragmented across multiple
dbspaces on different disks, parallel scans can occur.

■ When you execute UPDATE STATISTICS in MEDIUM or HIGH mode,
the optimizer sorts the data to obtain data distributions. These sorts
are not executed in parallel.

The setting of PDQPRIORITY affects the amount of memory that the UPDATE
STATISTICS statement uses.

For more information on environment variables, refer to the Informix Guide to
SQL: Reference. For more information on the syntax of SQL statements, refer
to the Informix Guide to SQL: Syntax
11-24 Performance Guide for Informix Extended Parallel Server

Parallel Execution of onutil Commands
Parallel Execution of onutil Commands
The database server can execute onutil commands in parallel, including the
following commands:

■ onutil CHECK TABLE DATA

■ onutil CHECK INDEX

■ onutil CREATE DBSLICE

■ onutil ALTER DBSLICE...ADD DBSPACE

If the onutil command requires work on more than one coserver, it can be
executed in parallel.

For information about the onutil utility, refer to the Administrator’s Reference.

Correlated and Uncorrelated Subqueries
The optimizer can execute correlated and uncorrelated subqueries in parallel.

Parallel Execution of Nested Correlated Subqueries

A correlated subquery is a nested subquery whose WHERE clause refers to an
attribute of a relation declared in the outer query. The optimizer evaluates the
subquery for each row or combination of rows that the outer query returns.

The optimizer can unnest most correlated subqueries if the rewritten query
provides a lower cost. For information about how the optimizer unnests
correlated subqueries, refer to “Query Plans for Subqueries” on page 10-16.

If the optimizer cannot unnest a a correlated subquery, the optimizer can
speed execution of the query with parallel execution.

Both the outer query and the correlated subquery can take advantage of
parallel execution. The database sever uses the SQL operator EXPRESSION to
process the subquery and can use parallel execution for the other SQL
operators in the query plan, such as SCAN.
Parallel Database Query Guidelines 11-25

Correlated and Uncorrelated Subqueries
For example, suppose you have the following correlated subquery:

SELECT ... FROM tab1, tab2
WHERE tab1.b = tab2.b

AND tab1.a = (SELECT tab3.a
FROM tab3
WHERE tab1.d = tab3.d) …

Figure 11-6 shows how the query plan might look for this sample correlated
query. The SQL operator EXPRESSION evaluates the subquery on tables tab1
and tab3. If tab1 and tab2 are fragmented across multiple dbspaces, the
optimizer can create multiple instances of the SQL operators SCAN and JOIN
to enable parallel execution.

Parallel Execution of Uncorrelated Subqueries

An uncorrelated subquery is a subquery whose WHERE clause does not
depend on a value that is returned in the main query. The optimizer executes
an uncorrelated subquery only once. For uncorrelated subqueries, only the
first thread that makes the request actually executes the subquery. Other
threads then use the results of the subquery and can do so in parallel.

Figure 11-6
Sample Query Plan

for Correlated
Subquery

EXPR

SCAN tab1

SCAN tab2

JOIN
11-26 Performance Guide for Informix Extended Parallel Server

SQL Operations That Are Not Processed in Parallel
SQL Operations That Are Not Processed in Parallel
The optimizer does not process the following types of queries or statements
in parallel:

■ Queries started with an isolation mode of Cursor Stability

Subsequent changes to the isolation mode do not affect the parallel-
ism of queries already prepared. This situation results from the
nature of parallel scans, which scan several rows simultaneously.

■ OLTP queries that require quick response and return only a small
amount of information

The following section, “Processing OLTP Queries,” describes consid-
erations for processing OLTP queries.

■ An UPDATE statement that has an update trigger that updates in the
For Each Row section of the trigger definition

■ Execution of data definition language (DDL) statements, such as
CREATE DATABASE, CREATE TRIGGER, CREATE VIEW, and some
ALTER TABLE statements

For a complete list of DDL statements, see the Informix Guide to SQL:
Syntax.

Important: The optimizer executes the CREATE INDEX statement in parallel. For
more information on building indexes in parallel, refer to “Parallel Index Builds” on
page 11-19.

Processing OLTP Queries
Not all queries should be processed in parallel. Although DSS applications
can benefit from parallel processing, OLTP queries and other small queries
often do not. The database server considers queries that require rows from
only one table fragment to be OLTP queries. The optimizer recognizes OLTP
queries and processes them appropriately.
Parallel Database Query Guidelines 11-27

Processing OLTP Queries
Queries that do not use parallel processing require quick response and
generate only a small amount of information. For example, the following
queries do not use parallel processing:

■ Do we have a hotel room available in Berlin on December 8?

■ Does the store in Mill Valley have green tennis shoes in size 4?

For more information on DSS and OLTP applications, refer to “Decision
Support” on page 1-9.
11-28 Performance Guide for Informix Extended Parallel Server

12
Chapter
Resource Grant Manager
In This Chapter . 12-3

Coordinating Use of Resources. 12-3
How the RGM Grants Memory 12-5

Scheduling Queries. 12-7
Setting Scheduling Levels 12-7
Using the Admission Policy 12-8

Specifying the Admission Policy 12-9
Understanding the Effect of PDQPRIORITY on
Query Admission 12-10

Processing Local Queries 12-10
Managing Must-Execute Queries. 12-11

Managing Resources for DSS and OLTP Applications 12-11
Controlling Parallel-Processing Resources 12-12

Requesting Memory. 12-12
Limiting the Memory That a Single DSS Query Uses 12-14
Maximizing DSS Use of Memory 12-14
Maximizing OLTP Throughput 12-15
Adjusting Total Memory for DSS Queries 12-16
Limiting the Maximum Number of Queries 12-17

Changing Resource Limits Temporarily 12-17

Monitoring Query Resource Use 12-18
Monitoring Queries That Access Data Across Multiple Coservers . 12-19
Monitoring RGM Resources on a Single Coserver 12-24
Using SET EXPLAIN to Analyze Query Execution 12-24

Displaying SQL Operator Statistics in the Query Plan 12-26
Adjusting PDQPRIORITY Settings to Prevent

Memory Overflow. 12-29
Using Command-Line Utilities to Monitor Queries 12-30

12-2 Pe
Monitoring SQL Information by Session 12-35
Monitoring Query Segments and SQL Operators 12-36
Monitoring SQL Operator Statistics 12-40
Monitoring User Threads and Transactions 12-43
Monitoring Data Flow Between Coservers 12-46
rformance Guide for Informix Extended Parallel Server

In This Chapter
This chapter explains how the Resource Grant Manager (RGM) coordinates
the use of resources for queries that are processed in parallel and how it
decides which queries to run if more than one query is in the queue.

The chapter also describes:

■ when and how to set the configuration parameters and environment
variables that affect RGM resource coordination.

■ how to monitor large, memory-consuming queries, with examples
and explanation of command-line utility output.

Coordinating Use of Resources
The RGM dynamically allocates the following resources for DSS queries and
other parallel database operations, such as building indexes:

■ The amount of memory that the query can reserve in the virtual
portion of database server shared memory

The RGM uses values that you set to determine how to grant memory
to a decision-support query. For information about adjusting the
resources granted to decision support queries, refer to “Managing
Resources for DSS and OLTP Applications” on page 12-11.
Resource Grant Manager 12-3

Coordinating Use of Resources
■ The number of parallel threads that can be started for each query

The RGM uses the SQL operators that make up the query plan to
determine the number of threads to start for a query.

For JOIN, GROUP, and SORT SQL operators, the RGM uses the follow-
ing factors to determine the number of threads to start:

❑ The values of configuration parameters (NUMCPUVPS,
DS_TOTAL_MEMORY, DBSPACETEMP, and so forth) that the
database server administrator sets

For more information on setting the parameters that affect paral-
lel processing, refer to “Controlling Parallel-Processing
Resources” on page 12-12.

❑ The number of CPU VPs available

❑ The availability of computer-system resources (CPUs, memory,
and disk I/O)

For SCAN and INSERT SQL operators, the RGM also uses the number
of fragments that the database operation accesses to determine the
number of scan and insert threads (disk I/O).

For more information on fragmentation strategy guidelines to improve
performance, refer to Chapter 9, “Fragmentation Guidelines.” For more
information on SQL operators, refer to “Structure of Query Execution” on
page 11-5.

Important: The RGM does not coordinate local queries or simple inserts, deletes, and
updates if they execute on a single branch instance.

If your database server has heavy OLTP use and you find performance is
degrading, use the RGM-related parameters to limit the resources committed
to decision-support queries. During off-peak hours, you can reserve a larger
proportion of the resources for parallel processing, which achieves higher
throughput for decision-support queries. For example, you might reduce the
setting of DS_TOTAL_MEMORY to a smaller percent of SHMTOTAL. For
additional information, refer to “Managing Resources for DSS and OLTP
Applications” on page 12-11.
12-4 Performance Guide for Informix Extended Parallel Server

How the RGM Grants Memory
How the RGM Grants Memory
The RGM grants memory to a query for such operations as sorts, hash joins,
and processing of GROUP BY clauses. The setting of DS_TOTAL_MEMORY
determines the amount of memory that the RGM controls. The total amount
of memory that all large memory-consuming queries use cannot exceed
DS_TOTAL_MEMORY.

Figure 12-1
Sample RGM-

Related Memory-
Availability

Configuration for a
Single Coserver

To
tal

 sh
ar

ed
 m

em
or

y

Memory for the operating system

DS_TOTAL_MEMORY

MAX_PDQPRIORITY
(90 percent of DS_TOTAL_ MEMORY)

PDQPRIORITY ONCONFIG setting, high range
(60 percent of DS_TOTAL_MEMORY)

PDQPRIORITY ONCONFIG setting, low range
(25 percent of DS_TOTAL_MEMORY)

Shared memory reserved for processing of queries that
the RGM does not manage
Resource Grant Manager 12-5

How the RGM Grants Memory
The memory-availability configuration for a single coserver shown in
Figure 12-1 provides about 15 percent of memory for OLTP and other appli-
cation processing. It reserves about 85 percent for processing the queries that
the RGM manages because these queries require large amounts of memory
and use tables that are fragmented across coservers. The systemwide default
setting of PDQPRIORITY in Figure 12-1 controls use of this memory. Although
this systemwide default recommends that a single query be allocated a
maximum and minimum amount of memory, users and applications can use
the PDQPRIORITY environment variable and SQL statements to override the
system default and request more or less memory.

Setting MAX_PDQPRIORITY to 90 provides a scaling factor that ensures no
query can use more than 90 percent of the DS_TOTAL_MEMORY amount. In
fact, the PDQPRIORITY amount requested by any query is scaled to 90 percent
of the request. For example, a query run with the default PDQPRIORITY
setting of 60 high and 25 low would be allocated a maximum of 90 percent of
its 60 percent request, or 54 percent of DS_TOTAL_MEMORY.

A query can use the SQL statement SET PDQPRIORITY to request a single
percentage of memory or a minimum and maximum percentage range of
memory. The default set in the ONCONFIG file or by the application can be
used instead if it is appropriate.

Although many system factors influence the amount of memory that the
RGM grants to a single memory-consuming query, in general, the RGM uses
the following formula to estimate the minimum amount of memory to grant
to a single query:

min_memory_grant = DS_TOTAL_MEMORY*(min_pdq_priority /100)
* (MAX_PDQPRIORITY / 100)
* number_of_coservers

The value of number_of_coservers is the number of currently running
coservers that your ONCONFIG file defines.

The value of min_pdq_priority is the integer value specified with the LOW
keyword in the PDQPRORITY configuration parameter, the PDQPRIORITY
environment variable, or the SQL statement SET PDQPRIORITY.

The most recent setting of PDQPRIORITY determines its value for a query. If
the session sets PDQPRIORITY in the environment variable, that setting takes
precedence over the ONCONFIG setting. If the query sets PDQPRIORITY with
the SQL statement, that setting takes precedence over previous settings.
12-6 Performance Guide for Informix Extended Parallel Server

Scheduling Queries
Use the following formula to estimate the maximum amount of memory that
the RGM grants to a query:

max_memory_grant = DS_TOTAL_MEMORY*(max_pdq_priority /100)
* (MAX_PDQPRIORITY / 100)
* number_of_coservers

The value of max_pdq_priority is the maximum integer value specified with
the HIGH keyword in the PDQPRORITY configuration parameter, the
PDQPRIORITY environment variable, or the SQL statement SET PDQPRORITY.

For more information about using this environment variable and the SQL
statement, refer to “Requesting Memory” on page 12-12.

Scheduling Queries
The RGM uses the following values to determine how to schedule a query:

■ The integer that you specify in the SET SCHEDULE LEVEL statement

■ The keyword that you specify in the DS_ADM_POLICY configuration
parameter

After the RGM selects a query as the candidate query, the memory request
specified in PDQPRIORITY determines whether the query can run immedi-
ately. If the required memory is not available, the query must wait. The table
on page 12-10 provides an example of how the schedule level and the
requested memory interact.

Setting Scheduling Levels
Users can set a scheduling level for a query to indicate its relative importance.
In general, the RGM selects the query that has the highest scheduling level as
the candidate query, although the admission policy determines which query
actually executes next.

Because scheduling level indicates relative importance, the effect of a
scheduling-level value depends on the scheduling levels of the other queries
that are waiting for execution. If all queries have the same scheduling level,
the admission policy and the amount of memory available determine the
query-execution priority.
Resource Grant Manager 12-7

Using the Admission Policy
Use the SQL statement SET SCHEDULE LEVEL to set the scheduling level for a
query. The default scheduling level is 50 .

Using the Admission Policy
The RGM uses the admission policy to help determine query-scheduling
order and whether or not to permit starvation. Starvation occurs when a
query is delayed indefinitely behind other queries at a higher scheduling
level.

The DS_ADM_POLICY configuration parameter determines whether the
admission policy is STRICT or FAIR.

STRICT Policy

With the STRICT policy, the query with the highest scheduling level is the
candidate query. If more than one query is at that level, the RGM selects the
one with the earliest arrival time. Queries at the same level are executed in
order of arrival if enough memory is available.

The STRICT policy allows query starvation to occur because a constant stream
of high-priority queries can indefinitely delay a query with a lower-priority
scheduling level.

FAIR Policy

With the FAIR policy, the RGM defines a fairness value for each waiting query.
The fairness value takes into account the following factors:

■ Scheduling level (assigned importance)

■ How long the query has been waiting for execution

■ PDQPRIORITY setting

The query that has been least fairly treated is the candidate query.

The RGM calculates the fairness value for a query by multiplying the time
that a query has waited by its scheduling level. For example, if its requested
memory is available, a query with a scheduling level of 20 that has waited
sixty seconds runs before a query with a scheduling level of 40 that has
waited only twenty seconds. Thus, this policy avoids starvation.
12-8 Performance Guide for Informix Extended Parallel Server

Using the Admission Policy
For queries that have the same fairness value, RGM tends to choose queries
with lower PDQPRIORITY settings instead of those with higher PDQPRIORITY
settings so that more queries can run simultaneously, but the FAIR policy also
avoids starvation of higher PDQPRIORITY queries.

Specifying the Admission Policy

The default admission policy is FAIR. With the FAIR policy, the RGM takes into
account how long a query has been waiting. The RGM determines the next
candidate query by the largest fairness value, as calculated by the following
formula:

fairness = (sched_lvl / 100) * wait_time

Figure 12-2 shows an excerpt from sample output for onstat -g rgm that
shows three queries in the wait queue.

sched_lvl is the value that you specify for the query in the SET SCHEDULE
LEVEL statement in SQL. The default value is 50 .

wait_time is the number of seconds that the query has been in the wait
queue.

Resource Grant Manager (RGM)
============================

DS_ADM_POLICY: FAIR
DS_MAX_QUERIES: 10
MAX_PDQPRIORITY: 100
DS_TOTAL_MEMORY: 16000 KB
Number of Coservers: 2
DS Total Memory Across Coservers: 32000 KB

...

RGM Wait Queue: (len = 3)

Lvl Session Plan PdqPrio Local Cosvr Candidate Wait Time
100 1.16 6 80-100 1
40 1.18 7 50-70 10
20 1.12 4 10-20 20
...

Figure 12-2
Wait Queue Excerpt
from onstat -g rgm

Output
Resource Grant Manager 12-9

Processing Local Queries
The RGM obtains the following fairness values for these three queries.

Queries 7 and 4 have the same fairness values. However, the lower
PDQPRIORITY setting of query 4 requests less memory, so query 4 is the
candidate query that the RGM executes next.

Understanding the Effect of PDQPRIORITY on Query Admission

After the RGM chooses a candidate query, it determines whether it can
execute the query.

If the minimum PDQPRIORITY resource request for the query is available, the
RGM executes the query after setting its PDQPRIORITY to the largest available
percentage within the range that PDQPRIORITY specifies.

If the minimum PDQPRIORITY setting for the query exceeds the available
percentage of system resources, the RGM does not execute the query until
enough resources are available.

Processing Local Queries
A local query is a query that accesses only tables on the connection coserver,
which is the coserver to which the client is connected. The RGM grants local
queries the PDQPRIORITY percent of the DS_TOTAL_MEMORY on the local
coserver only, as the following formula shows:

memory_grant_local = DS_TOTAL_MEMORY*(min_pdq_priority /100)
* (MAX_PDQPRIORITY / 100)

Thus, when PDQPRIORITY is 100 for a local query, the RGM grants 100 percent
of the specified DS_TOTAL_MEMORY shared memory on the local coserver.

Query Plan Fairness Value PDQPRIORITY Range

6 100 / 100 * 1 = 1 80 to 100

7 40 / 100 * 10 = 4 50 to 70

4 20 / 100 * 20 = 4 10 to 20
12-10 Performance Guide for Informix Extended Parallel Server

Managing Must-Execute Queries
You can use onstat -g rgm to display information about queries in the wait
queue. The sample onstat -g rgm output in Figure 12-3 on page 12-19 shows
that plan ID 2 in session 1.13 is an active local query.

Managing Must-Execute Queries
Must-execute queries are queries that the RGM allows to execute to prevent
blocking. Must-execute queries include cursors, subqueries, triggers, and SPL
routines

When the RGM executes these must-execute queries, the requested amount of
memory might not be available. If the memory-grant amount, as calculated
with the preceding formula, is not available, the RGM grants the query
whatever memory is available or 128 kilobytes per SQL-operator instance,
whichever is greater. The query is still executed, but it takes longer than when
the requested amount of memory is allocated.

When the RGM does not grant the requested amount of memory to a must-
execute query, an asterisk (*) appears next to the memory grant for the query
in the Active Queue section of the onstat -g rgm output. For an example of a
must-execute query, see plan ID 8 in session 1.15 in Figure 12-3 on page 12-19.
Even though this query arrived after the other waiting queries, RGM allows
it to execute because its PDQPRIORITY value is 0.

Managing Resources for DSS and OLTP Applications
Systems that run both DSS and OLTP applications require careful control of
resource use. Without resource management, the performance of decision-
support applications might be uneven, and OLTP applications and other
applications that share the system resources might perform badly.

A DSS application transaction is a query that the RGM manages if:

■ it requires data from tables that are fragmented across coservers.

■ it requires significant amounts of memory for joins, sorts, and so on.
Resource Grant Manager 12-11

Controlling Parallel-Processing Resources
Controlling Parallel-Processing Resources
This section describes how you can manage the configuration parameters
that determine how the RGM executes queries. For general information about
how the RGM uses these parameters, see “Coordinating Use of Resources”
on page 12-3. For specific information about setting PDQPRIORITY,
MAX_PDQPRIORITY, and DS_TOTAL_MEMORY, refer to Chapter 3, “Effect of
Configuration on CPU Use.”

Requesting Memory

PDQPRIORITY specifies the percentage of shared memory that the RGM can
allocate for a query. If the PDQPRIORITY configuration parameter is not
explicitly set, it has a value of 0, for which RGM grants a minimum of 128
kilobytes of shared memory for each SQL operator instance.

The database server administrator can set the PDQPRIORITY configuration
parameter to specify a memory range as a minimum and maximum
percentage of memory permitted for memory-consuming queries. To
override this configuration parameter setting, the SQL user or database
server administrator can set the PDQPRIORITY range with the SQL statement
or the environment variable, as described in “PDQPRIORITY” on page 4-22.

The setting of MAX_PDQPRIORITY and DS_TOTAL_MEMORY limits the
amount of memory each query is granted, as the following section describes.

The following sections describe how these different methods of requesting
memory are interrelated and how the database server administrator can
control the amount of memory allocated.

Assigning Memory Ranges to DSS Queries

PDQPRIORITY provides a minimum value and an optional maximum value
for the percentage of shared memory that an individual query can use.

The largest PDQPRIORITY value in the range is the optimal memory
allocation. The smallest PDQPRIORITY value is the minimum acceptable
memory allocation for the query. The PDQPRIORITY range leaves the choice
of the actual amount of allocated memory to the discretion of the RGM, and
the choice depends on the current workload. Thus, the amount of memory
allocated for a query can vary from one execution to another.
12-12 Performance Guide for Informix Extended Parallel Server

Controlling Parallel-Processing Resources
The query cannot run unless the minimum amount of memory is available.
If you specify a single percentage of memory, the RGM can run a query only
when the specified amount of memory is available. If you set a range of
memory, the RGM can run a query when available memory falls in the
specified range. The RGM ensures that the amount of memory granted to the
query is significantly within the range requested by the setting of
PDQPRIORITY.

For more information on how to limit memory that can be allocated to
queries, see “Limiting the Memory That a Single DSS Query Uses” on
page 12-14.

User Control of Resources

The PDQPRIORITY value can be any integer from -1 through 100. To override
the PDQPRIORITY configuration parameter value for a query, use one of the
following methods:

■ Set the PDQPRIORITY environment variable. When the
PDQPRIORITY environment variable is set in the environment of a
client application, it limits the percentage of shared memory that can
be allocated to any query that the client starts.

■ Execute the SQL statement SET PDQPRIORITY statement before you
issue a query from a client program.

The values that the SET PDQPRIORITY statement set take precedence
over the setting of the PDQPRIORITY environment variable or the
PDQPRIORITY configuration parameter.

In effect, users can request a certain amount of memory for the query, but the
setting of MAX_PDQPRIORITY limit the amount of memory that is actually
allocated. For more details, refer to “Limiting the Memory That a Single DSS
Query Uses” on page 12-14.

For example, you might execute the following SET PDQPRIORITY statement
before you run a query:

SET PDQPRIORITY LOW 20 HIGH 50
Resource Grant Manager 12-13

Controlling Parallel-Processing Resources
This request allows the RGM to run the query if only 20 percent of the
memory allowed to memory-consuming queries is available. If 30 percent of
allowed memory is available, the RGM runs the query with the higher
amount. Thus, the actual amount of memory allocated to a query can vary
from one execution to another. If you specify only one memory percentage,
the RGM runs the query only when the specified amount of memory is
available.

Limiting the Memory That a Single DSS Query Uses

If your database server executes many memory-consuming queries at the
same time, you might quickly exhaust the amount of memory that you
specified in the DS_TOTAL_MEMORY configuration parameter. The active
PDQPRIORITY setting and the MAX_PDQPRIORITY configuration parameter
together determine the amount of DS_TOTAL_MEMORY memory to allocate
to a query for parallel processing. Set these values correctly to ensure
effective execution of DSS queries.

No well-defined rules exist for choosing these environment variable and
parameter values. To get the best performance from your database server,
take the following steps:

■ Choose reasonable values for the PDQPRIORITY environment
variable and MAX_PDQPRIORITY parameter.

■ Observe the behavior of the database server and monitor query
performance.

■ Adjust these values.

The following sections discuss strategies for setting PDQPRIORITY and
MAX_PDQPRIORITY for specific needs.

Maximizing DSS Use of Memory

To allow decision-support queries to use more memory, increase the value of
MAX_PDQPRIORITY. If MAX_PDQPRIORITY is set too low, decision-support
queries do not perform well.

If you want the database server to devote as much memory as possible to
processing single DSS queries, set PDQPRIORITY and MAX_PDQPRIORITY to
100 .
12-14 Performance Guide for Informix Extended Parallel Server

Controlling Parallel-Processing Resources
If your system supports a multiuser query environment, you might set
MAX_PDQPRIORITY to a low number to increase the number of queries that
can run simultaneously at the cost of some query performance. Because
queries compete for the same memory, a trade-off exists between running
several queries more slowly and running only a single query very fast. As a
compromise, you might set MAX_PDQPRIORITY to a low value such as 20 or
30. With this setting, no query can be granted more than 20 or 30 percent of
DS_TOTAL_MEMORY even if the query sets PDQPRIORITY to 100 , and five or
more queries can run simultaneously.

Maximizing OLTP Throughput

At times, you might want to allocate memory to maximize the throughput of
individual OLTP queries rather than allocate memory for decision support
and parallel processing in queries. You can maximize OLTP throughput in
one of the following ways:

■ Reduce DS_TOTAL_MEMORY.

Queries that require large amounts of memory cannot be allocated
more memory than the value that you specify in the
DS_TOTAL_MEMORY configuration parameter.

■ Reduce DS_MAX_QUERIES.

The DS_MAX_QUERIES configuration parameter specifies the maxi-
mum number of memory-consuming queries that can execute
concurrently.

■ Set MAX_PDQPRIORITY to a low value to reserve more memory for
OLTP queries.

When you set MAX_PDQPRIORITY to 0, the amount of memory avail-
able for parallel execution is limited to 128 kilobytes for each SQL
operator instance.

■ If applications make little use of queries that require parallel sorts
and parallel joins, consider setting PDQPRIORITY to a low value.

When you reduce the value of MAX_PDQPRIORITY or DS_TOTAL_MEMORY,
response for decision-support queries is slow.
Resource Grant Manager 12-15

Controlling Parallel-Processing Resources
Adjusting Total Memory for DSS Queries

For information about the basic process for estimating the amount of shared
memory to make available for decision-support queries, see
“DS_TOTAL_MEMORY” on page 4-15.

To monitor memory that the RGM allocates to an executing query, run
onstat -g rgm. This command displays only the amount of memory that is
currently in use; it does not display the amount of memory that has been
granted. For more information about this command, including output
examples, refer to “Monitoring Query Resource Use” on page 12-18.

If you expect your database server to run OLTP applications at the same time
that it runs DSS queries, use operating-system tools to monitor paging and
swapping. When paging increases, decrease the value of
DS_TOTAL_MEMORY so that the OLTP transactions can be processed quickly.

The value for DS_TOTAL_MEMORY that is derived from the following
formula serves as a starting point for estimating the amount of shared
memory to allocate to decision-support queries:

DS_TOTAL_MEMORY =p_mem - os_mem - rsdnt_mem - (128K * users)
- other_mem

The variables in the formula are defined as follows.

Many system factors influence the amount of memory granted to a single
large memory-consuming query. For more information refer to “Limiting the
Memory That a Single DSS Query Uses” on page 12-14. The minimum
memory grant is 128 kilobytes for each SQL operator.

Variable Description

p_mem Total physical memory available on host

os_mem Size of operating system, including buffer cache

resdnt_mem Size of Informix resident shared memory

users Number of expected users (connections) specified by the third
argument of the NETTYPE configuration parameter

other_mem Size of memory used for other (non-Informix) applications
12-16 Performance Guide for Informix Extended Parallel Server

Changing Resource Limits Temporarily
Limiting the Maximum Number of Queries

The DS_MAX_QUERIES configuration parameter limits the number of
concurrent decision-support queries that can run. To estimate the number of
decision-support queries that the database server can run concurrently, count
each query that runs with PDQPRIORITY greater than 1 as one full query.

Because less memory is allocated to queries that run with lower
PDQPRIORITY settings, you might assign lower-priority queries a
PDQPRIORITY value between 1 and 30 , depending on the resource impact of
the query. If you use the setting of DS_MAX_QUERIES to control the number
of DSS queries that run simultaneously, remember that the total number of
queries that run with PDQPRIORITY values greater than 0 cannot exceed
DS_MAX_QUERIES.

The PDQPRIORITY and MAX_PDQPRIORITY settings also limit the number of
queries that run simultaneously because queries can run only if the requested
amounts of memory are available, as explained in “Limiting the Memory
That a Single DSS Query Uses” on page 12-14.

Changing Resource Limits Temporarily
User informix and user root can use the xctl onmode command-line utility
to change the values of the following configuration parameters temporarily
on all coservers:

■ Use xctl onmode -M to change the value of DS_TOTAL_MEMORY.

■ Use xctl onmode -Q to change the value of DS_MAX_QUERIES.

■ Use xctl onmode -D to change the value of MAX_PDQPRIORITY.

These changes remain in effect only as long as the database server is up and
running. The next time that the database server is initialized, it uses the
values set in the ONCONFIG file.

For more information about these configuration parameters, refer to
“Controlling Parallel-Processing Resources” on page 12-12. For more infor-
mation about how to use onmode with xctl, refer to the Administrator’s Guide.
Resource Grant Manager 12-17

Monitoring Query Resource Use
If you change the values of the decision-support parameters regularly, such
as to set MAX_PDQPRIORITY to 100 each night for processing reports, you can
use a scheduled operating-system job to set the values. For information about
creating scheduled jobs, refer to your operating-system manuals.

Monitoring Query Resource Use
Monitor the shared memory and thread resources that the RGM has granted
for queries.

Monitor query resource use in any of these ways:

■ For overall information about current queries in the system, run the
onstat -g rgm utility, which the following sections describe.
Examples of onstat -g rgm appear on page 12-19 and page 12-20.

■ To write the query plan to an output file, execute a SET EXPLAIN
statement before you run a query. For more information, refer to
“Using SET EXPLAIN to Analyze Query Execution” on page 12-24.

■ To capture information about specific aspects of a running query, run
onstat utility commands. For more information on the uses of these
commands and their output, refer to “Using Command-Line Utilities
to Monitor Queries” on page 12-30.

For detailed information about the RGM and query optimization, refer to
“Coordinating Use of Resources” on page 12-3.
12-18 Performance Guide for Informix Extended Parallel Server

Monitoring Queries That Access Data Across Multiple Coservers
Monitoring Queries That Access Data Across Multiple
Coservers
To monitor current memory use across multiple coservers and to determine
if any queries are in the wait queue, execute the onstat -g rgm option on
coserver 1. This option reads shared-memory structures and provides
statistics that are accurate at the instant that the command executes.

Figure 12-3 shows the first section of onstat -g rgm output.

Important: You must issue the onstat -g rgm command from coserver 1. If you
issue this command on another coserver, a message explains that the information is
available only from coserver 1.

The onstat -g rgm output in Figure 12-3 displays the values of the configu-
ration parameters that affect parallel processing and the RGM calculated
values.

Figure 12-3
First Section of

onstat -g rgm
Output

Field Name Field Description

DS_ADM_POLICY Displays how the RGM schedules queries.

DS_MAX_QUERIES Displays maximum number of memory-consuming
queries that can be active at any one time on the database
server.

DS_TOTAL_MEMORY Displays maximum amount of memory that can be
granted for use by memory-consuming queries on each
coserver.

 (1 of 2)

Resource Grant Manager (RGM)
============================

DS_ADM_POLICY: FAIR
DS_MAX_QUERIES: 10
MAX_PDQPRIORITY: 100
DS_TOTAL_MEMORY: 16000 KB
Number of Coservers: 2
DS Total Memory Across Coservers: 32000 KB
Resource Grant Manager 12-19

Monitoring Queries That Access Data Across Multiple Coservers
The second section of the display, shown in Figure 12-4, describes internal
control information for the RGM. It includes two groups of information.

The first row is labelled Queries and contains the following information.

Number of Coservers Displays number of coservers defined in your ONCONFIG
file that are currently initialized.

DS Total Memory
Across Coservers

Displays total amount of memory that is available across
all coservers.

The RGM calculates this value with the following
formula:

Number of Coservers * DS_TOTAL_MEMORY

Figure 12-4
Second Section of

onstat -g rgm
Output

Column Name Description

Active Displays the number of memory-consuming queries that are
currently executing.

Waiting Displays the number of user queries that are ready to run but whose
execution the database server deferred for admission-control
reasons.

Field Name Field Description

 (2 of 2)

...
Queries: Waiting Active

4 3

Memory: Total Free
(KB) 32000 512
12-20 Performance Guide for Informix Extended Parallel Server

Monitoring Queries That Access Data Across Multiple Coservers
The next row is labelled Memory and displays the following information.

The third section of the display (Wait Queue), shown in Figure 12-5,
describes the current RGM wait queue. It shows the queries that are waiting
to be executed

Column Name Memory Section Column Description

Total Displays the kilobytes of memory available for use by queries that
require parallel processing. To calculate this total, RGM multiplies
the DS_TOTAL_MEMORY value by the number of coservers
defined in your ONCONFIG file that are currently initialized.

Free Displays kilobytes of memory for queries that is not currently
granted.

...
RGM Wait Queue: (len = 4)

Lvl Session Plan PdqPrio Local Cosvr Candidate Wait Time
50 1.5 5 80-80 * 54
50 1.16 6 80-100 37
50 1.18 7 20-20 35
10 1.12 4 10-20 64

Figure 12-5
Third Section of

onstat -g rgm
Output

Column Name Description

Lvl Displays the scheduling level for the query.

Session Displays the global session ID for the coserver that initiated
the query.

The global session ID has the following format:

coserver_number.local-id

In this example, coserver_number is the connection coserver
number, and local-id is the session ID on the connection
coserver. In Figure 12-3 on page 12-19, the connection
coserver for the first session in the Wait Queue is 1, and the
session ID is 5.

PdqPrio Displays the PDQPRIORITY range requested for the query.

 (1 of 2)
Resource Grant Manager 12-21

Monitoring Queries That Access Data Across Multiple Coservers
Figure 12-6 shows the last section of onstat -g rgm output.

Local Cosvr For local queries, displays the coserver on which the query
requires memory.

Candidate Displays an asterisk (*) for a query that is waiting for suffi-
cient memory.

Wait Time Displays the number of seconds the query has been
waiting.
Queries can be waiting for one of the following reasons:

■ Not enough memory is available.

■ The number of active queries has reached the value for
DS_MAX_QUERIES.

Column Name Description

 (2 of 2)

...
RGM Active Queue: (len = 3)

Lvl Session Plan PdqPrio Memory (KB) #Cosvrs Local Cosvr
70 1.14 3 90-100 28800 2
50 1.13 2 10-10 1600 1 1
50 1.15 8 0-0 *128 2

Figure 12-6
Last Section of

onstat -g rgm
Output
12-22 Performance Guide for Informix Extended Parallel Server

Monitoring Queries That Access Data Across Multiple Coservers
The last section of the display (Active Queue), which is shown in Figure 12-6,
describes the current RGM active queues. This section shows the resources
that are granted to each query.

Column Name Description

Lvl Displays the scheduling level for the query.

Session Displays the global session ID for the coserver that initiated
the query, in the following format:

connection_coserver.local-id

The connection_coserver is the number of the coserver where
the user is logged in for this session. The local-id is the
unique session ID on the connection coserver. In
Figure 12-3 on page 12-19, the connection coserver for the
first active query is 1, and the session ID is 14 .

Plan Displays the plan ID for the query.

PdqPrio Displays the PDQPRIORITY range assigned to the query.

Memory Displays the number of kilobytes of memory currently
granted to the query.

The sample onstat -g xqs output in Figure 12-16 on
page 12-42 shows the total memory that is allocated to a
query across coservers. If an asterisk (*) appears next to the
memory amount, the session has been granted less than the
requested amount of memory.

#Cosvrs Shows the number of coservers that are executing the
query.

Figure 12-3 on page 12-19 shows that two coservers are
executing the active query with global session ID 1.14 .

Local Cosvr For local queries, displays the coserver on which memory
is allocated for the query.
Resource Grant Manager 12-23

Monitoring RGM Resources on a Single Coserver
Monitoring RGM Resources on a Single Coserver
To view query memory use for individual coservers, use the onstat -g rgm csr
command. Figure 12-7 shows an example of this single coserver output. This
onstat -g rgm csr output shows that memory on coserver 1 is overallocated
by 128 kilobytes, but 4000 kilobytes of memory is unused on coserver 2.

Using SET EXPLAIN to Analyze Query Execution
The query optimizer decides how to perform a query and formulates a query
plan for fetching the data rows that are required. A query plan states the order
in which the database server examines tables and the methods by which it
accesses the data in these tables to process a query. For more information on
factors that affect the query-plan formulation, refer to “Filter Selectivity
Evaluation” on page 10-22.

Resource Grant Manager (RGM)
============================

Per-Coserver Memory Information:

Cosvr Total (KB) Free (KB) Over (KB)
1 8000 128
2 8000 4000

Figure 12-7
onstat -g rgm csr
Output for Local

Query
12-24 Performance Guide for Informix Extended Parallel Server

Using SET EXPLAIN to Analyze Query Execution
Figure 12-8 shows a simple query plan example on a single coserver system.
Figure 12-15 on page 12-40 shows part of the output of a complex example
with parallel processing across coservers.

After the query statement, the query plan includes the following
information:

■ The optimizer estimate of the work to be done in the units that it uses
to compare plans

Figure 12-8 shows that the cost for the query is 102 . These units rep-
resent a relative time for query execution, in which each unit is
assumed to be roughly equivalent to a typical disk access. The opti-
mizer chose this query plan because the estimated cost for its
execution was the lowest among all the evaluated plans.

■ The optimizer estimate for the number of rows that the query is
expected to produce, based on the information in the system catalog
tables

The example in Figure 12-8 on page 12-25 shows that the number of
rows returned is estimated to be 12.

Figure 12-8
Output from the SET EXPLAIN ON Statement

QUERY:

SELECT C.customer_num, O.order_num, SUM (I.total_price)

FROM customer C, orders O, items I
WHERE C.customer_num = O.customer_num

AND O.order_num = I.order_num
GROUP BY C.customer_num, O.order_num;

Estimated Cost: 102
Estimated # of Rows Returned: 12
Temporary Files Required For: GROUP BY

1) pubs.o: SEQUENTIAL SCAN

2) pubs.c: INDEX PATH

 (1) Index Keys: customer_num (Key-Only)
 Lower Index Filter: pubs.c.customer_num = pubs.o.customer_num

3) pubs.i: INDEX PATH

 (1) Index Keys: order_num
 Lower Index Filter: pubs.i.order_num = pubs.o.order_num
Resource Grant Manager 12-25

Using SET EXPLAIN to Analyze Query Execution
■ The order in which tables are accessed and the method, or access
path, that was used to read each table

The plan in Figure 12-8 shows that the database server will perform
the following actions:

1. The database server reads the orders table first. Because no filter
exists on the orders table, the database server must read all rows.
Reading the table in physical order is the least expensive
approach.

2. For each row of orders, the database server searches for
matching rows in the customer table. The search uses the index
on customer_num. The notation Key-Only means that only the
index need be read for the customer table because only the
c.customer_num column is used in the join and the output, and
that column is an index key.

Lower Index Filter shows the key value where the index read
begins. If the filter condition contains more than one value, an
Upper Index Filter would be shown for the key value where
the index read stops.

3. For each row of orders that has a matching customer_num, the
database server searches for a match in the items table using the
index on order_num.

The following sections explain how to interpret information in the SET
EXPLAIN output when you run a query such as the following one:

SET PDQPRIORITY 10;
SET EXPLAIN ON;
select geo_id, sum(dollars)

from customer a, cash_rr b
where a.cust_id=b.cust_id
group by geo_id
order by geo_id;

Displaying SQL Operator Statistics in the Query Plan

The SET EXPLAIN output provides the statistics for each SQL operator in a
query plan. For a complete list of SQL operators and a description of the
function of each operator, see “SQL Operators” on page 11-6.The following
table lists the common SQL operators and explains how to interpret the infor-
mation that appears.
12-26 Performance Guide for Informix Extended Parallel Server

Using SET EXPLAIN to Analyze Query Execution
To display these statistics, use the following monitoring tools:

■ The sqexplain.out file that results from the SQL statement SET
EXPLAIN ON

■ Output of onstat -g xqs qryid

For more information on how the database server divides a query for
execution, refer to “Structure of Query Execution” on page 11-5.

SQL Operator Statistics Reported

EXPRESSION Number of rows evaluated and the coserver number for each
branch instance

FLEX INSERT Number of rows inserted into the temporary table and the
coserver number for each branch instance

FLEX JOIN Number of rows produced, number of rows in build, number
of rows in probe, kilobytes of memory allocated, number of
partitions written as overflow to temporary disk space, and
the coserver number for each branch instance

GROUP Number of rows produced, number of rows consumed,
kilobytes of memory allocated, number of partitions that were
written as overflow to temporary disk space, and the coserver
number for each branch instance

HASH JOIN Number of rows produced, number of rows in build, number
of rows in probe, kilobytes of memory allocated, number of
partitions that were written as overflow to temporary disk
space, and the coserver number for each branch instance

NESTED LOOP JOIN Number of rows produced and the coserver number for each
branch instance

PROJECT Number of rows produced and the coserver number for each
branch instance

SCAN Number of rows produced, number of rows scanned, and the
coserver number for each branch instance

SORT Number of rows produced and the coserver number for each
branch instance
Resource Grant Manager 12-27

Using SET EXPLAIN to Analyze Query Execution
To display SQL operator statistics in the sqexplain.out file

1. Execute the SQL statement SET EXPLAIN ON from a client connection.

2. Execute the query.

3. Look at the statistics in sqexplain.out file.

Figure 12-9 shows statistics excerpts from a sample sqexplain.out file.

Figure 12-9
Statistics Excerpt from the sqexplain.out File

XMP Query Statistics

Cosvr_ID: 1
Plan_ID: 9

 type segid brid information
 ---- ----- ---- -----------
 scan 6 0 inst cosvr time rows_prod rows_scan
 ---- ----- ---- --------- ---------
 0 1 0 1 1

 1 1 1

 scan 7 0 inst cosvr time rows_prod rows_scan
 ---- ----- ---- --------- ---------
 0 1 13 758 991161
 1 1 12 687 989834
 2 1 13 677 975101
 3 1 12 691 972258
 4 1 11 736 952424
 5 1 12 686 981833
 6 1 9 330 628271
 7 1 8 359 641173
 8 1 9 345 671366
 9 1 5 402 343214
 10 1 4 343 345530
 11 1 5 359 334115

 12 6373 8826280

 hjoin 5 0 inst cosvr time rows_prod rows_bld rows_probe mem ovfl
 ---- ----- ---- --------- -------- ---------- --- ----
 0 1 13 0 0 0 80 0
 1 1 39 6373 1 6373 88 0
 2 1 13 0 0 0 80 0
 3 1 13 0 0 0 80 0

 4 6373 1 6373 (6656)
12-28 Performance Guide for Informix Extended Parallel Server

Using SET EXPLAIN to Analyze Query Execution
This sqexplain.out file shows the following query-plan information.

Adjusting PDQPRIORITY Settings to Prevent Memory Overflow

For increased query-processing efficiency, hash-join overflows to temporary
space are read back in asynchronously through read-ahead buffers. These
read-ahead buffers are either 16 kilobytes in size or the size of the largest row,
whichever is larger, and the buffers are read with a light-scan operation.
Nevertheless, try to avoid hash-join overflow to temporary space if possible.

If onstat -g xqs output or the sqexplain.out file shows that hash joins are
overflowing to temporary space, you might adjust PDQPRIORITY to ensure
that the query is granted enough memory.

For example, consider the following sample section of onstat -g xqs output:

hjoin 2 0 inst cosvr time rows_prod rows_bld rows_probe mem ovfl
----- - -- --- --- ------- ------ --------

0 1 5 52 9995 52 1672 0
1 2 7 48 60005 48 3048 1

--
2 100 70000 100 (4160)

The mem column shows the approximate number of kilobytes of memory
required to fit all the build rows in coserver memory. If the number in the ovfl
column is greater than 0, that instance had a memory overflow. The number
in parentheses in the last row of the example is the total memory allocated for
the HASH JOIN across all the coservers. If -1 appears in the ovfl column, the
operator did not build a hash table.

Column Name Description

type The SQL operator type

segid The ID of the segment within a query plan that contains the
operator

brid The branch ID within the segment that contains the SQL
operator

information SQL operator-specific statistics, including the time for each
instance of each operator
Resource Grant Manager 12-29

Using Command-Line Utilities to Monitor Queries
In this example, coserver 1 requires approximately 1672 kilobytes for all the
build rows and coserver 2 requires 3048 kilobytes. However, 1 in the ovfl
column for coserver 2 indicates that the HASH JOIN on coserver 2 did not get
enough memory.

To calculate the PDQPRIORITY value that would give coserver 2 the memory
that it requires for this HASH JOIN, divide the memory required (3048
kilobytes) by the value of DS_TOTAL_MEM, which is 16,000 kilobytes in this
case. Then multiply the result by 100.

If more than one memory-consuming instance overflows, ensure that all
instances get enough memory by choosing the instance that has the largest
memory requirement.

Using Command-Line Utilities to Monitor Queries
You can use various onstat options to determine how queries and transac-
tions are being run in your database server. Although onstat information
provides only a snapshot of the current state of the system, you can use the -r
option to run it repeatedly at specified intervals. The following sections illus-
trate the most commonly used onstat options with examples.

For complete information about onstat options, see the Administrator’s
Reference.
12-30 Performance Guide for Informix Extended Parallel Server

Using Command-Line Utilities to Monitor Queries
The following table lists command-line utilities for specific resource-
monitoring purposes. Run the command-line utilities from the connection
coserver, which is the coserver where the query originated.

Command Description

onstat -g rgm Displays information about RGM parameters and policies,
as well the queries in the wait and active queues. This
option displays RGM wait and active queue information
for each query currently in the system.

Use this information to get a snapshot of current query
status and resource use. Use the session ID to identify or
request query information in other onstat command
output.

For an output sample and more information, refer to
“Monitoring Queries That Access Data Across Multiple
Coservers” on page 12-19.

onstat -g sql Displays SQL statement information by session.

For more information, refer to “Monitoring SQL Infor-
mation by Session” on page 12-35.

xctl onstat -g xmp Displays information about the query segments and SQL
operators that are currently executing on each coserver.
This information includes session IDs.

For more information, refer to “Monitoring Query
Segments and SQL Operators” on page 12-36.

onstat -g xqs qryid Displays query statistics for a specific query plan. Obtain
the value for qryid from the output of the onstat -g rgm or
onstat -g xmp commands.

SET EXPLAIN output also displays query-plan infor-
mation, as discussed in “Using SET EXPLAIN to Analyze
Query Execution” on page 12-24.

For more information, refer to “Monitoring SQL Operator
Statistics” on page 12-40.

onstat -g xqp qryid Displays summary information about a specific query
plan. Obtain the value for qryid from the output of the
onstat -g rgm or onstat -g xmp commands.

For more information, refer to “Monitoring Query Plans”
on page 12-39.

 (1 of 2)
Resource Grant Manager 12-31

Using Command-Line Utilities to Monitor Queries
onstat -g ses Displays shared memory and threads that specific sessions
use.

For more information, refer to“Monitoring SQL Infor-
mation by Session” on page 12-35.

xctl onstat -u and
xctl onstat -g ath

Display user threads and transactions on all coservers,
listed by coserver.

For more information, refer to “Monitoring User Threads
and Transactions” on page 12-43.

onstat -g dfm and
onstat -g xmf

Display data flow between coservers on the high-speed
interconnect.

For more information, refer to “Monitoring Data Flow
Between Coservers” on page 12-46.

Command Description

 (2 of 2)
12-32 Performance Guide for Informix Extended Parallel Server

Using Command-Line Utilities to Monitor Queries
Figure 12-10 shows the output of the onstat -g ses command on the
connection coserver to display a list of sessions on all coservers.

The onstat -g ses option output displays the following information:

■ The shared memory allocated for a session that is running a
decision-support query

■ The shared memory used by a session that is running a DSS query

■ The number of threads that the database server started for a session

Use the onstat -g ses option to obtain this information for only the coserver
on which you issue the onstat command.

For example, Figure 12-10 shows that session 1.60 has started four threads.

Figure 12-10
onstat -g ses Output

local

sessid

#RSAM

hostname

total

threads

used

memorysessid user tty pid memory

1.10 64 informix - 436 - 1 65536 29208

1.63 63 informix - 0 - 0 16384 8408

1.60 62 gxypl - 8619 - 3 139264 111320

1.61 61 informix - 0 - 0 16384 8408

1.60 60 gxypl pts/2 8619 mesmero 1 98304 75520

1.56 59 informix - 8618 - 1 81920 28920

1.54 57 superv - 8587 - 2 147456 95960

1.56 56 informix pts/1 8618 mesmero 1 73728 30704

1.54 54 superv pts/4 8587 mesmero 1 98304 75192

1.10 10 informix CEREBUS 436 cerebus 1 73728 30896

1.8 8 informix - 0 - 0 16384 12368

1.7 7 informix - 0 - 0 16384 8408

1.5 5 informix - 0 - 0 16384 12368

1.4 4 informix - 0 - 0 16384 8408

1.3 3 informix - 0 - 0 16384 8408

1.2 2 informix - - 1 24576 16864
Resource Grant Manager 12-33

Using Command-Line Utilities to Monitor Queries
To display detailed information about a session, run the xctl onstat -g ses
session id option. Figure 12-11 provides an example of the onstat -g ses
session id output.

local #RSAM total used
sessid sessid user tty pid hostname threads memory memory
1.81 81 informix 7 12914 port_mei 1 114688 59888

tid name rstcb flags curstk status
2850 sqlexec_ 30ad8540 --BP--- 1736 sleeping(secs: 1)

Memory pools count 1
name class addr totalsize freesize #allocfrag #freefrag
81 V 31252010 114688 54800 307 10

name free used name free used
overhead 0 104 scb 0 80
opentable 0 5704 filetable 0 856
log 0 4184 temprec 0 1608
ralloc 46304 16384 gentcb 0 8448
ostcb 0 2064 net 0 3704
sqscb 0 11736 rdahead 0 104
sqlparser 8312 0 hashfiletab 0 280
osenv 184 704 sqtcb 0 400
fragman 0 1048

Sess SQL Current Iso Lock SQL ISAM F.E.
Id Stmt type Database Lvl Mode ERR ERR Vers
1.81 CREATE INDEX idxtsterdb CR Not Wait 0 0 8.20

Current SQL statement :
 create index i on orders (order_num)

Last parsed SQL statement :
 create index i on orders (order_num)

Figure 12-11
onstat -g ses id

Output
12-34 Performance Guide for Informix Extended Parallel Server

Using Command-Line Utilities to Monitor Queries
The xctl onstat -g ses session id option displays the threads and memory
allocated for and used by a session. The onstat -g ses session id output in
Figure 12-11 contains the following information.

Monitoring SQL Information by Session

Use the xctl onstat -g sql session-id option to display summary information
about the last or currently executing SQL statement in the session.

Column Name Column Description

Session ID
and local session ID

The database server uses global session numbers in the
following format:

connection_coserver.local-id

The connection_coserver is the number of the coserver
where the user is logged in for this session. The local-
sessid is the session ID on the connection coserver.

User The login name of the connected user

Tty The terminal ID

Pid The UNIX process ID

If the process ID is a negative number, the process is a
client process running an external application. For
example, user sessions that run ad hoc queries from
applications on PCs will have negative PIDs.

Hostname The name of the database server to which the session is
attached

RSAM threads The number of threads executing transactions or queries
for this session

Total Memory The total amount of memory allocation for this session

Used memory The amount of allocated memory that the session is
using
Resource Grant Manager 12-35

Using Command-Line Utilities to Monitor Queries
The onstat -g sql session-id command displays the following information:

■ Type of SQL statement

■ Database name

■ Isolation level

■ Lock mode

Figure 12-12 provides an example of the onstat -g sql output.

Monitoring Query Segments and SQL Operators

Use the xctl onstat -g xmp option to display information about the query
segments and SQL operators that are currently executing on a coserver.

Figure 12-13 and Figure 12-20 show the XMP Query Segments section and the
XMP Query Operators section of onstat -g xmp output on coserver 1.

Sess SQL Current Iso Lock SQL ISAM F.E.
Id Stmt type Database Lvl Mode ERR ERR Vers
1.81 - idxtsterdb CR Not Wait 0 0 8.30
1.81 CREATE INDEX idxtsterdb CR Not Wait 0 0 8.30

Figure 12-12
Sample onstat -g

sql Output for
Connection

Coserver

XMP Query Segments
segid width numbr qryid sessid flags seqno
0 1 1 1644 1.123 0x11a 1
2 2 1 1644 1.123 0x118 3
1 2 1 1644 1.123 0x118 4
0 1 1 1656 1.87 0x11a 1
2 2 1 1656 1.87 0x118 3
4 2 1 1656 1.87 0x118 4
1 2 1 1656 1.87 0x118 5
0 1 1 1657 1.107 0x11a 1
2 2 1 1657 1.107 0x118 3
4 2 1 1657 1.107 0x118 4

Figure 12-13
onstat -g xmp

Query Segments
Section
12-36 Performance Guide for Informix Extended Parallel Server

Using Command-Line Utilities to Monitor Queries
Figure 12-13 shows the first section of onstat -g xmp, which contains Query
Segments information.

Column Name Description

segid The ID of the segment within a plan

width The number of instances for this branch for the entire plan,
not just this coserver

numbr The branch ID within the segment

qryid The plan ID

Use this value for the onstat -g xqp qryid and onstat -g xqs
qryid commands.

sessid The global session ID for the user

flags The processing flags for the segment

seqno The sequence number, which represents the order that the
segment within the plan was activated for execution
Resource Grant Manager 12-37

Using Command-Line Utilities to Monitor Queries
The second section of the display shows information about the SQL operators
that the query uses.

Figure 12-14 shows the second section of onstat -g xmp, which contains
Query Operators information.

Figure 12-14
onstat -g xmp Query Operators Section

...
XMP Query Operators
opaddr qry segid branch brtid opname phase rows in1 in2
0x111f5118 1644 2 0-0 5966 xchg open 53436 0x111f52e0 0x0
0x111f52e0 1644 2 0-0 5966 nljoin next 53579 0x111f54d8 0x111cdca0
0x111f54d8 1644 2 0-0 5966 xchg next 244 0x0 0x0
0x111f5118 1644 2 0-0 5966 xchg open 53436 0x111f52e0 0x0
0x111f52e0 1644 2 0-0 5966 nljoin next 53579 0x111f54d8 0x111cdca0
0x111f54d8 1644 2 0-0 5966 xchg next 244 0x0 0x0
0x111cdca0 1644 2 0-0 5966 scan next 3584 0x0 0x0
0x111f7788 1644 1 0-0 5967 xchg open 113704 0x111f7948 0x0
0x111f7948 1644 1 0-0 5967 antij next 113827 0x111fd1c8 0x0
0x111fd1c8 1644 1 0-0 5967 xchg next 113948 0x0 0x0
0xb458468 1656 2 0-0 6007 xchg open 1560 0xf276020 0x0
0xf276020 1656 2 0-0 6007 hjoin probe 1692 0xf2761c0 0xf276420
0xf2761c0 1656 2 0-0 6007 xchg done 99 0x0 0x0
0xf276420 1656 2 0-0 6007 xchg next 1709 0x0 0x0
0xf27b4f0 1656 4 0-0 6008 xchg open 1708 0xc70e020 0x0
0xc70e020 1656 4 0-0 6008 scan next 1817 0x0 0x0
0xed586b8 1656 1 0-0 6009 xchg create 0 0xed58878 0x0
0xed58878 1656 1 0-0 6009 sort create 0 0xb45bfb8 0x0
0xb45bfb8 1656 1 0-0 6009 xchg next 4680 0x0 0x0
0xefcff10 1657 2 0-0 6011 xchg create 0 0xefd0238 0x0
0xefd0238 1657 2 0-0 6011 group create 0 0xefd0638 0x0
0xefd0638 1657 2 0-0 6011 hjoin probe 1669 0xefd0a38 0xefd0ba8
0xefd0a38 1657 2 0-0 6011 xchg done 99 0x0 0x0
0xefd0ba8 1657 2 0-0 6011 xchg next 1669 0x0 0x0
0xf4be2f0 1657 4 0-0 6012 xchg done 1668 0xf4be618 0x0
0xf4be618 1657 4 0-0 6012 scan done 1898 0x0 0x0

Field Name Description

opaddr The in-memory address of operator structure

This information helps to associate in1 and in2 values with
other operators

qry The plan ID for the query

segid The ID for the segment within a plan

branch The ID for the branch within the segment

 (1 of 2)
12-38 Performance Guide for Informix Extended Parallel Server

Using Command-Line Utilities to Monitor Queries
For more information on query segments, refer to “Displaying SQL Operator
Statistics in the Query Plan” on page 12-26.

Monitoring Query Plans

Use the xctl onstat -g xqp qryid option to display summary information
about a specific query plan. A plan can be displayed only from the connection
coserver, which is the coserver where the sqlexec thread is running.

The database server uses SQL operators and exchanges to divide a query plan
into segments and construct a tree of operators. The onstat -g xqp command
displays this operator tree in the order of execution. The order of the
operators in the output of the onstat -g xqp command is the same as in the
output for the SQL statement SET EXPLAIN ON. For more information on SQL
operators and exchanges, refer to “Structure of Query Execution” on
page 11-5. For more information on the SQL statement SET EXPLAIN ON, refer
to “Using SET EXPLAIN to Analyze Query Execution” on page 12-24.

The following sample command displays information about query plan ID 9:

onstat -g xqp 9

brtid The thread ID that is executing the branch instance

opname The type of SQL operator

phase The processing phase of SQL operator

rows The number of rows that this SQL operator processed

in1/in2 The address of SQL operators

Operators are constructed into tree structures, and in1 and
in2 represent linkage operators. A 0x0 value represents no
child.

Field Name Description

 (2 of 2)
Resource Grant Manager 12-39

Using Command-Line Utilities to Monitor Queries
Figure 12-15 shows the output for the preceding command.

This onstat -g xqp display shows the following query-plan information.

Monitoring SQL Operator Statistics

You can use the onstat -g xqs qryid option to display query statistics for a
specific query plan. A plan is available for display only on the connection
coserver, which is the coserver on which the sqlexec thread is running.

Figure 12-15
Sample onstat -g

xqp Output for
Query Plan 9

Column Name Description

oper The type of SQL operator

For more information on the types of SQL operators, refer
to “Displaying SQL Operator Statistics in the Query Plan”
on page 12-26 and “SQL Operators” on page 11-6.

segid The ID of the segment within a plan that contains the
operator

brid The branch ID within the segment that contains the
operator

width The number of instances of this branch in the query plan

Multiple instances can exist for each branch because the
SQL operator can execute in parallel on multiple fragments
of a table.

XMP Query Plan

 oper segid brid width

 scan 5 0 2
 scan 6 0 2
 hjoin 4 0 1
 scan 7 0 1
 hjoin 3 0 1
 group 3 0 1
 group 2 0 1
 flxins 1 0 1
12-40 Performance Guide for Informix Extended Parallel Server

Using Command-Line Utilities to Monitor Queries
The database server uses SQL operators and exchanges to devise a query
plan. The onstat -g xqs command displays this SQL operator tree in the order
of execution. The information that appears for each SQL operator instance
includes the following statistics:

■ Type of SQL operator

■ Coserver number

■ Number of rows that each specific SQL operator processed

■ Amount of memory granted to each specific SQL operator

■ Amount of memory that each specific SQL operator used

■ Number of partitions that were written to temporary disk space

The onstat -g xqs command displays statistics for all currently active query
plans. The statistics reported by onstat -g xqs are updated periodically as the
query runs, and might not reflect the current state of the query. Some infor-
mation, such as overflow information, might not be useful until the query is
complete. The final statistics for the query appear in the sqexplain.out file if
you run SET EXPLAIN ON before you run the query.

The following sample command displays SQL operator statistics for query
plan ID 4146:

onstat -g xqs 4146
Resource Grant Manager 12-41

Using Command-Line Utilities to Monitor Queries
Figure 12-16 shows the output for the preceding command.

Cosvr_ID: 1
 Plan_ID: 4146

 type segid brid information
 ---- ----- ---- -----------
 scan 5 0 inst cosvr time rows_prod rows_scan
 ---- ----- ---- --------- ---------
 0 1 1 5000 5000
 1 1 1 4998 4998

 2 9998 9998

 scan 6 0 inst cosvr time rows_prod rows_scan
 ---- ----- ---- --------- ---------
 0 1 59 200030 200030
 1 1 158 800154 800154

 2 1000184 1000184

 hjoin 4 0 inst cosvr time rows_prod rows_bld rows_probe mem ovfl
 ---- ----- ---- --------- -------- ---------- --- ----
 0 1 174 26725 9998 1000184 592 23

--
1 26725 9998 1000184 (192)

 scan 7 0 inst cosvr time rows_prod rows_scan
 ---- ----- ---- --------- ---------
 0 1 1 1000 1000

 1 1000 1000

 hjoin 3 0 inst cosvr time rows_prod rows_bld rows_probe mem ovfl
 ---- ----- ---- --------- -------- ---------- --- ----
 0 1 172 2631 1000 26725 8 0

--
1 2631 1000 26725 (1592)

 group 3 0 inst cosvr time rows_prod rows_cons mem ovfl
 ---- ----- ---- --------- --------- --- ----
 0 1 172 2631 2631 104 0
 --
 1 2631 2631 (128)

 group 2 0 inst cosvr time rows_prod rows_cons mem ovfl
 ---- ----- ---- --------- --------- --- ----
 0 1 5 2631 2631 216 2
 --
 1 2631 2631 (120)

 flxins 1 0 inst cosvr time it_count
 ---- ----- ---- --------
 0 1 1 2632

 1 2632

Figure 12-16
Sample onstat -g

xqs Output for
Query Plan 4146
12-42 Performance Guide for Informix Extended Parallel Server

Using Command-Line Utilities to Monitor Queries
The onstat -g xqs output in Figure 12-16 shows the following SQL operator
statistics.

The order of the operators in the output of the onstat -g xqs command is the
same as in the output of the following tools:

■ onstat -g xmp command

For more information, refer to “Monitoring Query Segments and
SQL Operators” on page 12-36.

■ SQL statement SET EXPLAIN ON

For more information, refer to “Using SET EXPLAIN to Analyze
Query Execution” on page 12-24.

For more information on SQL operators and exchanges, refer to “Structure of
Query Execution” on page 11-5.

Monitoring User Threads and Transactions

Each decision-support query has a primary thread on the connection
coserver. This primary thread can start additional threads to perform tasks
for the query, such as scans and sorts.

Field Name SQL Operator Statistics

type The type of SQL operator

segid The ID of the segment within a query plan that contains the
operator

brid The branch ID within the segment that contains the
operator

information SQL operator-specific statistics, including the time for each
SQL operator instance, the number of kilobytes of memory
required to build the hash table, and the number of parti-
tions written as overflow to temporary space. If -1 appears
in the Mem or Ovfl columns, no hash table was built.

For information about these SQL operator-specific
statistics, refer to “Displaying SQL Operator Statistics in
the Query Plan” on page 12-26.
Resource Grant Manager 12-43

Using Command-Line Utilities to Monitor Queries
To obtain information on all the threads that are running for a
decision-support query, use the xctl onstat -u and xctl onstat -g ath options.

The xctl onstat -u option lists all the threads that are executing queries. The
primary thread and any additional threads on participating coservers are
listed. If you issue the onstat -u command on a specific coserver, only the
threads on that specific coserver appear in the output.

The thread information shows what threads each session is running, how
busy each thread is, and how many locks each thread holds.

For example, session 10 in Figure 12-17 has a total of five threads running.

P in the fourth flags column indicates the primary thread for a session. The
code in the first flags column indicates why a thread is waiting. The possible
flag codes are as follows.

Userthreads
address flags sessid user tty wait tout locks nreads
nwrites
80eb8c ---P--D 0 informix - 0 0 0 33 19
80ef18 ---P--F 0 informix - 0 0 0 0 0
80f2a4 ---P--B 3 informix - 0 0 0 0 0
80f630 ---P--D 0 informix - 0 0 0 0 0
80fd48 ---P--- 45 chrisw ttyp3 0 0 1 573 237
810460 ------- 10 chrisw ttyp2 0 0 1 1 0
810b78 ---PR-- 42 chrisw ttyp3 0 0 1 595 243
810f04 Y------ 10 chrisw ttyp2 beacf8 0 1 1 0
811290 ---P--- 47 chrisw ttyp3 0 0 2 585 235
81161c ---PR-- 46 chrisw ttyp3 0 0 1 571 239
8119a8 Y------ 10 chrisw ttyp2 a8a944 0 1 1 0
81244c ---P--- 43 chrisw ttyp3 0 0 2 588 230
8127d8 ----R-- 10 chrisw ttyp2 0 0 1 1 0
812b64 ---P--- 10 chrisw ttyp2 0 0 1 20 0
812ef0 ---PR-- 44 chrisw ttyp3 0 0 1 587 227
 15 active, 20 total, 17 maximum concurrent

Figure 12-17
onstat -u Output

Flag Code Event for Which Thread Is Waiting

B Buffer

C Checkpoint

G Logical-log write

L Lock

 (1 of 2)
12-44 Performance Guide for Informix Extended Parallel Server

Using Command-Line Utilities to Monitor Queries
The onstat -g ath option display also lists the primary thread and secondary
threads on the connection coserver and participating coservers. In addition,
it includes a name column that describes the activity of the thread, as
Figure 12-18 shows.

Figure 12-18 output lists the following items:

■ The primary thread, sqlexec_1.3567 , on the connection coserver

The session ID (1.3567) is part of the name of the sqlexec thread.

■ The x_exec thread, x_exec_1.3567 , that the primary thread starts on
a participating coserver to carry the context of the sqlexec thread

The x_exec thread initiates secondary threads on the participating
coserver.

S Mutex

T Transaction

Y Condition

X Rollback

DEFUNCT The thread has incurred a serious assertion failure and has been
suspended to allow other threads to continue their work. If this
status flag appears, refer to the appendix in the Administrator’s
Reference that explains thread suspension.

Flag Code Event for Which Thread Is Waiting

 (2 of 2)

Threads:
tid tcb rstcb prty status vp-class name
5 40067294 0 4 sleeping(secs: 0) 1cpu xmf_svc
12 407c85e8 0 2 running 5aio aio vp
38 40a0deec 4006bdd0 2 sleeping(secs: 49) 1cpu btclean
40 409e5c84 4006c540 4 sleeping(secs: 1) 1cpu onmode_mon
128129 40b97788 4006df48 2 sleeping(secs: 1) 1cpu sqlexec_1.3567
128130 4138187c 4006f598 2 sleeping(Forever) 1cpu x_exec_1.3567
128134 40b01d18 4006d420 2 ready 1cpu x_hjoin_0
128135 412266cc 40070478 2 sleeping(Forever) 1cpu x_flxjoin_0
128136 408cd1a0 4006fd08 2 sleeping(Forever) 1cpu x_scan_0
128137 408cd3cc 4006f950 2 running 1cpu x_scan_4
128138 904510d4 4006e6b8 2 sleeping(Forever) 1cpu x_scan_8

Figure 12-18
onstat -g ath Output
Resource Grant Manager 12-45

Using Command-Line Utilities to Monitor Queries
■ Three scan threads, x_scan_0, x_scan_4, and x_scan_8 , that either
the sqlexec or x_exec thread starts, depending on which coserver the
data resides

■ A hash-join thread, x_hjoin_0 , that starts as soon as two scan threads
have data to join

Monitoring Data Flow Between Coservers

If the onstat -g xqs output shows data skew, use the onstat -g dfm and
onstat -g xmf options to diagnose the problem. These options display work
and overall cycle information, as well as data flow between coservers on the
high-speed interconnect.

Tip: Imbalance in data flow between coservers might result from operating-system
or application activity on one of the coservers or across the high-speed interconnect..

To detect data skew that might be caused either by the fragmentation strategy
of the tables or by a large number of duplicate values in joined columns in the
query, use onstat -g dfm to monitor data flow between coservers.

Figure 12-19
Global Packet
Statistics inf

onstat -g dfm
Output

DFM Information cosvr_id: 1

max glob pk: 1000 num glob pk: 0

delay: 10 q pk: 2 init cred: 100
rsnd_fact: 30 rsnd_batch: 5 rsnd_bwait: 2
maxq: 450 max qpk: 225 minq: 20
maxq_rstep: 8 maxq_num_steps: 4

l1_cong_fact: 3 l2_cong_fact: 10 l3_cong_fact:20
l1_cong_rspnd: 2 l2_cong_rspnd: 5
l1_cong_trspnd: 10 l2_cong_trspnd: 20
12-46 Performance Guide for Informix Extended Parallel Server

Using Command-Line Utilities to Monitor Queries
Look at the global-packet statistics in the first part of the onstat -g dfm
output, which Figure 12-19 on page 12-46 shows. The following table lists
each field in the global-packet section of onstat -g dfm output and explains
how to interpret its statistics.

Field Description

max glob pk Value is determined by the number of CPU VPs in the system

For one or two CPU VPs, the value of max glob pk is 1000 . For
more than two and fewer than six CPU VPs, the value is 2000 .
For more than six CPU VPs, the value is 3000 .

num glob pk The current number of XMF (eXtended Message Facility)
buffers for the database server

A value of the num glob pk field that approaches the value in
the max glob pk field and stays high for a sustained period of
time might indicate a poor fragmentation strategy, data skew
caused by the filters in the query, or insufficient memory.
Insufficient memory causes overflow to temporary space and
requires disk reads for processing. The SET EXPLAIN output
field, ovfl, indicates if an operation is overflowing to
temporary space. If -1 appears in the ovfl field, the GROUP
operator did not build a hash table.

delay The number of milliseconds that the sender threads wait
before resending a packet

init cred Initial credits assigned

The database server assigns 100 credits to each sender thread.
Every time that the sender sends a packet, the sender loses one
credit. When the receiver sends an acknowledgment back to
the sender, the sender regains a credit.

rsnd_batch The number of resends after which the sender thread waits
longer than delay to resend a packet

rsnd_bwait The factor by which delay is multiplied to specify the number
of milliseconds that the sender thread waits after the
rsnd_batch number of packet resends

In the output sample in Figure 12-19, the sender thread waits
10 * 2 milliseconds after every fifth resend.

rsnd_fact The actual resend delay, which depends on whether
congestion is detected

 (1 of 2)
Resource Grant Manager 12-47

Using Command-Line Utilities to Monitor Queries
q pk The largest number of packets in each sender queue that the
receiver can queue before enforcing flow control policies

max q pk Limits the value of q pk

maxq Maximum queue length

minq Minimum queue length

Congestion fields Congestion indicators

Three levels of congestion specify increasing factors that delay
senders when the database server detects congestion. These
congestion-level factors provide flow control that smooths the
flow of traffic across the interconnect.

When congestion is detected, the actual sender delay is delay
* cong_fact .

Field Description

 (2 of 2)
12-48 Performance Guide for Informix Extended Parallel Server

Using Command-Line Utilities to Monitor Queries
Figure 12-20 shows the Sender information and Receiver information
sections in the second part of the onstat -g dfm output.

In the Sender Information and Receiver Information sections of the onstat
-g dfm output, the xpl.seg.br.bi(tid) field corresponds to the following fields
in the onstat -g xmp display.

Figure 12-20
Sender and Receiver Information in onstat -g dfm output

DFM Information cosvr_id: 1

...
Sender information:
xpl.seg.br.bi(tid): cred av: snd pend: msgs tot: rsnd q: rsnd tot: rsnd pend: rrsnd tot: rsnd skip:
249.1.0.0(635) 0 1 1541 1 1224 1 447 2754

253.2.0.0(645) 3 0 1526 1 0 0 0 0

 Receiver information:
 xpl.seg.br.bi(tid): q len: q total: q disc: q empty: q seq:
 249.0.0.0(630) 449 2528 1771 3/593 0/0
 schid: 0 nsndr: 2 max_q:450 qpk_lim:4
 sender: 0 (debt) 100 (disc) 1
 sender: 1 (debt) 100 (disc) 1
 249.1.0.0(635) 0 3845 0 2403/2280 0/0
 schid: 1 nsndr: 2 max_q:450 qpk_lim:4
 253.0.0.0(640) 0 0 0 0/846 0/0
 253.2.0.0(645) 0 36 0 27/27 0/0
 schid: 2 nsndr: 2 max_q:450 qpk_lim:4
 253.2.0.0(645) 0 1334 0 193/137 0/0
 schid: 3 nsndr: 2 max_q:450 qpk_lim:4
 253.1.0.0(648) 0 3402 0 1765/1723 0/0
 schid: 1 nsndr: 2 max_q:450 qpk_lim:4

Portion of Field Description

xpl The query ID, which is the same value as the qry field

seg The segment ID, which is the same value as the segid field

br The branch ID, which is the same value as the first digit in the
branch field

bi The branch instance, which is the same value as the second digit
in the branch field

(tid) The thread ID, which is the same value as the brtid field
Resource Grant Manager 12-49

Using Command-Line Utilities to Monitor Queries
Sender Information contains the following statistics for each thread.

Field Description

cred av The current number of available credits for this coserver to
send messages

A value of 0 in this cred av field indicates that the sender
can no longer send packets until a receiver returns credits
after processing the sent data. Although the value 0 might
appear momentarily in onstat -g dfm output, the last credit
is always returned to prevent deadlocks.

A low value in the sender cred av field indicates that the
receivers are not processing data and returning credits
quickly, which might be a sign of data skew in the query.

snd pend The number of messages waiting

msgs tot The total number of messages sent

rsnd q

rsnd tot

rsnd pend

Resend statistics

High values in the rsnd q, rsnd tot, or rsnd pend fields
indicate DFM communications problems that might result
from a receiver problem, such as a coserver down, poor
fragmentation strategy, or data skew resulting from many
duplicate values in the join column.

rrsnd tot The number of times resent messages were sent again

rsnd skip The number of times a message was not resent because of
flow-control logic that delays messages when appropriate

Congestion statistics The number of times congestion was detected (These
values are 0 and are not shown in Figure 12-20.)
12-50 Performance Guide for Informix Extended Parallel Server

Using Command-Line Utilities to Monitor Queries
The Receiver information section contains the following statistics for each
thread.

To see how well data is flowing for each SQL operator, correlate the query ID,
segment ID, and branch ID to the onstat -g xmp output. For a sample of
onstat -g xmp output, see Figure 12-13 on page 12-36 and Figure 12-20 on
page 12-49.

Field Description

q len The number of messages currently waiting to be
processed

q total The total number of messages that have been processed

q disc The total number of messages that have been discarded

q empty Empty queue information

The first number in the field shows the number of times
that the queue was empty when the message was
queued. The second number in the field shows the
number of times the receiver checked for a message and
had to wait for one. These numbers tell you that the
receiver thread was could have processed more work,
perhaps because the sender is slow.

q seq Packet sequence information

The first number is the sequence number of the first
packet in the queue. The second number is the sequence
number of the last packet in the queue.
Resource Grant Manager 12-51

Using Command-Line Utilities to Monitor Queries
Use onstat -g xmf to monitor the high-speed interconnect between coserver
nodes.

When you monitor the high-speed interconnect with onstat -g xmf, follow
these general guidelines:

■ Check the overall statistics in Coserver Information, which is the last
section of the onstat -g xmf output.

Coserver Information displays the following statistics by coserver.
The values in these fields indicate whether or not traffic between
coservers is balanced and not skewed toward any one coserver:

❑ The X_Msgs and X_Bytes fields display the number of messages
and bytes that each coserver transmits.

❑ The R_Msgs and R_Bytes fields display the number of messages
and bytes that each coserver receives.

❑ The X_Rtrns field displays the number of retransmits to this
coserver.

❑ The R_Dupls field displays the number of duplicate messages
that were received from this coserver

XMF Information

 Cosvr_id: 1 Domain_Cnt: 1

 Poll Information:

 Domain_ID Interval Current Average Cycle Wk_Cycles In_DG/Sig

 0 10 10 10 621918498 113281 N / N

 ...

 Coserver Information:

 ID X_Msgs X_Bytes R_Msgs R_Bytes X_Rtrns R_Dupls XOffs XO_Cycls

 1 1529 1109420 1529 1109420 0 0 0 0

2 1244 323321 111658 1399806 3 4 0 0
3 376 315612 334 57054 11 173 0 0

Figure 12-21
Selected onstat -g

xmf Output
12-52 Performance Guide for Informix Extended Parallel Server

Using Command-Line Utilities to Monitor Queries
Because some high-speed interconnects have limited kernel buffer
space for each connection, their buffer space might be exhausted
when interconnect traffic is heavy. When the buffer space is
exhausted, some packets are dropped and must be retransmitted.

If you see a large number of retransmits (X_Rtrns) with a low num-
ber of duplicate packets received (R_Dupls), you might adjust the
setting of the SENDEPDS configuration parameter. It is usually not
worth altering this parameter unless you see a large number of
retransmits with a low number of duplicate packets received, which
means that packets are being transmittied but are not arriving at the
remote end. For more information about the SENDEPDS parameter,
consult your machine notes file.

■ Check Poll Information in the first part of the onstat -g xmf output:

❑ The Average field displays the average poll-time interval.

❑ The Cycle field displays the number of polls.

❑ The Wk_Cycles field displays the number of polls that have
resulted in work.

The values in the Average, Cycle, and Wk_Cycles fields indicate
how often the database server checks the interconnect without any
work to do, as calculated by the following formula:

percent_poll_work = Wk_Cycles / Cycle

A low percentage by itself does not indicate a problem. However, if
a query is taking a long time to complete, but the percentage of poll
time that results in work is low, a problem exists somewhere. The
problem might be that a coserver is down, a data skew exists, or the
fragmentation strategy is incorrect. To locate the problem, check the
status of the nodes and coservers, the statistics in the onstat -g dfm
output, and other onstat utility output.
Resource Grant Manager 12-53

13
Chapter
Improving Query and
Transaction Performance
In This Chapter . 13-3

Evaluating Query Performance 13-4

Monitoring Query Execution 13-4

Improving Query and Transaction Performance 13-6
Maintaining Statistics for Data Distribution and Table Size 13-8

Updating the Number of Rows 13-8
Creating Data-Distribution Statistics 13-9

Using Indexes 13-13
Preventing Repeated Sequential Scans of Large Tables 13-14
Replacing Autoindexes with Permanent Indexes 13-14
Using Multiple Indexes on the Same Table 13-15
Using Key-Only Scans of Indexes 13-19
Using Bitmap Indexes 13-20
Using Composite Indexes 13-21
Using Generalized-Key Indexes 13-23

Improving Filter Selectivity 13-27
Avoiding Difficult Regular Expressions 13-28
Avoiding Noninitial Substrings 13-29
Improving Aggregate Statement Performance 13-29

Using SQL Extensions for Increased Efficiency 13-30
TRUNCATE TABLE Statement 13-30
DELETE USING Statement 13-31
CASE Statement 13-32
MIDDLE Clause 13-33

Reducing the Effect of Join and Sort Operations 13-34
Avoiding or Simplifying Sort Operations 13-34
Using Temporary Tables to Reduce Sorting Scope 13-34
Using Join Indexes 13-36

Reviewing the Optimization Level 13-36

13-2 Pe
Reviewing the Isolation Level 13-36
Setting Isolation Levels for DSS Queries 13-36
Setting Isolation Levels for Transaction Processing 13-37
rformance Guide for Informix Extended Parallel Server

In This Chapter
This chapter provides practical suggestions for improving the performance
of individual queries and transactions. Information in this chapter includes
tuning information for both DSS and OLTP applications and explains when
and how tuning techniques are appropriate for large queries or for real-time
transactions.

This chapter discusses the following topics:

■ Evaluating and monitoring individual queries

■ Possible query and transaction performance improvements:

❑ Maintaining the statistical information that the optimizer uses to
choose a query plan

❑ Creating more useful indexes

❑ Improving filter statements

❑ Taking advantage of new SQL extensions

❑ Reducing the effects of join and sort operations

❑ Reviewing the optimization and isolation level

For conceptual and general background information, see Chapter 10,
“Queries and the Query Optimizer,” and Chapter 11, “Parallel Database
Query Guidelines.” For monitoring information, see Chapter 12, “Resource
Grant Manager.”
Improving Query and Transaction Performance 13-3

Evaluating Query Performance
Evaluating Query Performance
Performance tuning is an iterative process. Each query and each database
server is different, so you must use your judgement to evaluate the output of
tuning utility programs and make tuning decisions. After you make tuning
adjustments, re-evaluate the effect and make further adjustments if
necessary.

Before you change a query, study its SET EXPLAIN output to determine the
kind and amount of resources that it requires. The SET EXPLAIN output
shows what parallel scans are used, the maximum number of threads
required, the indexes used, and so on. “Using SET EXPLAIN to Analyze
Query Execution” on page 12-24 provides an example of SET EXPLAIN
output.

This section describes a general approach to evaluating a particular query in
a DSS database server. The information comes from user experience with DSS
applications that use Extended Parallel Server.

Tip: Before you begin to evaluate queries, create a text file or printout that maps all
of the coservers and disks on the database server. The file should contain all disk
aliases, so that you can easily compare statistics that the operating system produces
as well as output from the database server utilities. For quick reference when you are
evaluating command-line utility output, you might also create a file that contains the
names of all tables and the dbspaces or dbslices across which they are fragmented.

Monitoring Query Execution
The major concerns in performance tuning for queries include:

■ balance of processing across coservers.

■ balance of resource use.

You can monitor individual queries in the following ways:

■ Execute the SET EXPLAIN statement before you run a query to write
the query plan to an output file.

■ Use command-line utilities to create snapshot information about a
query at a particular moment.
13-4 Performance Guide for Informix Extended Parallel Server

Monitoring Query Execution
Depending on the kind of query analysis that you are performing, you might
choose one or another of these methods. For full analysis, use both methods.

Because balance of processing across coservers and balanced resource use is
a major concern in performance tuning for a query, you need to monitor
process balance.

To detect skew during query processing

1. Examine repeated onstat -g rgm output to see information about
pending queues and the basic memory allocation for the query.

The onstat -g rgm output also displays the session and query plan
IDs, which you use in analyzing output from other onstat options to
track specific queries.

2. Check the onstat -g ses and onstat -g sql output to see basic session
information, such as the SQL statement. Because you execute these
onstat options on the connection coserver, you see information about
all coserver processes.

3. Examine the output of onstat -g xqp and onstat -g xqs, which you
execute on the connection coserver. These two onstat options display
query segment information for the entire database server.

4. Examine the output of xctl onstat -g xmp, which displays query
information by SQL operator on each coserver.

5. In addition, you might obtain CPU and disk I/O information from
operating-system utilities, and you can run the following database
server utility programs to examine processing across the high-speed
interconnect between coservers:

■ Run xctl onstat -g xps and examine any signs of operators that
use all of their allocated memory and write output to temporary
space.

If the query uses a lot of temporary space, run xctl onstat -d and
examine the output to see how the space is being used.

■ Examine the output of xctl onstat -g dfm and xctl onstat -g xmf
to see work and overall cycle information as well as sender and
receiver information.
Improving Query and Transaction Performance 13-5

Improving Query and Transaction Performance
For more information on using these onstat options, including sample
output, refer to“Monitoring Query Resource Use” on page 12-18. For general
information about these and other onstat options, refer to the utilities chapter
in the Administrator’s Reference.

As you gain experience with query monitoring and tuning your database
server, you can write script files that automate data collection by calling the
utility programs that you find most useful.

Improving Query and Transaction Performance
Several user-controlled factors combine to affect query and transaction
performance. The most important factors are as follows:

■ Up-to-date distribution and table-size statistics

Run UPDATE STATISTICS regularly and often. When the optimizer
chooses the query plan, it uses the distribution and table-size statis-
tics that are stored for each table in the system catalog tables. If these
statistics do not reflect the current size and content of the table, the
optimizer might not choose the most efficient plan.

For information about refreshing distribution statistics, see “Main-
taining Statistics for Data Distribution and Table Size” on page 13-8.

■ Appropriate fragmentation

Ideal fragmentation schemes allow the database server to eliminate
table fragments that are not required to satisfy the query and to iden-
tify the fragments that contain the rows requested by a transaction.

Although no single fragmentation scheme can provide this benefit
for all queries and transactions, if you evaluate the queries and
transactions that are run most often, you can usually create a
fragmentation scheme that permits fragment elimination for many
of them.

For more information about fragmentation and fragmentation
schemes, see Chapter 9, “Fragmentation Guidelines.”
13-6 Performance Guide for Informix Extended Parallel Server

Improving Query and Transaction Performance
■ Useful indexes

If you create several indexes on a table and design each index for one
of your most common queries or transactions, the optimizer is more
likely to find an index that increases efficiency. In addition, the opti-
mizer has more indexes from which to choose when it executes a
query or transaction.

Examine the queries that are run in your system, and determine the
indexes that the optimizer might use for greater efficiency. Do not
create more indexes than you are sure that you need. When tables are
modified, the more indexes that must be updated, the longer it takes
to complete the table modification.

For more information about creating useful indexes, see “Using
Indexes” on page 13-13.

■ Efficient SQL code

The SQL code in the query might sometimes force inefficient use of
resources. The optimizer can correct some of these problems auto-
matically. For example, the optimizer might unnest subqueries or
create automatic indexes. Nevertheless, the more efficient you make
the SQL code, the better the query performs. Certain kinds of expres-
sions slow query performance, as described in “Improving Filter
Selectivity” on page 13-27.

In addition, the database server provides several SQL extensions that
might improve specific queries and transactions. For information
about these extensions, see “Using SQL Extensions for Increased Effi-
ciency” on page 13-30.

In addition to these factors, how you use your database server also affects the
performance of queries, especially queries that run simultaneously with
other queries or transactions.

Database server use includes concurrency issues and the load on system
resources caused by operating-system processes or other processes and
applications that are not associated with the database server. Although
discussion of these problems is outside the scope of this manual, monitoring
the entire system use on your database server nodes can help you identify
resource concurrency issues.
Improving Query and Transaction Performance 13-7

Maintaining Statistics for Data Distribution and Table Size
Maintaining Statistics for Data Distribution and Table Size
The optimizer uses the statistics in the system catalogs to determine the
lowest-cost query plan. Make sure that you keep these statistics up-to-date so
that the optimizer can choose the best query plan. Whenever tables are
updated after they are created and populated, run UPDATE STATISTICS to
ensure that statistics are also updated. If tables are updated by adding many
rows in batch processes or by attaching table fragments, run UPDATE
STATISTICS as part of the update process. If tables are updated by insertions,
deletions, and updates of individual rows, run UPDATE STATISTICS on a
regular schedule.

UPDATE STATISTICS uses parallel processing to run fast, as described in
“Parallel Execution of UPDATE STATISTICS” on page 11-24. For information
about the setting of BUFFERS and the speed of UPDATE STATISTICS, see
“Tuning BUFFERS” on page 4-13.

The following sections provide guidelines for these topics:

■ Updating the number of rows

■ Creating data distributions

■ Updating statistics for join columns

■ Improving performance for the UPDATE STATISTICS statement

Updating the Number of Rows

When you run UPDATE STATISTICS LOW, the database server updates the
statistics in the table, row, and page counts in the system catalog tables

LOW is the default mode for UPDATE STATISTICS. The following sample SQL
statement updates the statistics in the systables, syscolumns, and sysin-
dexes system catalog tables but does not update the data distributions:

UPDATE STATISTICS FOR TABLE tab1;
13-8 Performance Guide for Informix Extended Parallel Server

Maintaining Statistics for Data Distribution and Table Size
Run UPDATE STATISTICS LOW frequently for tables in which the number of
rows changes often. Frequent updates of the statistics ensure that the row
statistics are as up-to-date as possible.

For example, if a database contains a rolling history table that DSS queries
use, run UPDATE STATISTICS on the table whenever a new set of rows is
added and an old set removed.

Creating Data-Distribution Statistics

To create data distributions on specific columns in a table as well as table size
statistics, use the MEDIUM or HIGH keywords with the UPDATE STATISTICS
statement. If you use these keywords, the database server generates statistics
about the distribution of data values for each specified column and places
that information in the sysdistrib system catalog table. If a distribution has
been generated for a column, the optimizer uses that information to estimate
the number of rows that match a query against a column.

Run the UPDATE STATISTICS statement with the MEDIUM keyword for each
table or for the entire database. If you run the UPDATE STATISTICS statement
for the entire database, you do not need to execute a separate UPDATE
STATISTICS statement for each table.

If the tables contain several tens or hundreds of columns, run an UPDATE
STATISTICS statement for each table and specify only a subset of the columns.
Specify columns that are most frequently used in query filters.

UPDATE STATISTICS MEDIUM FOR TABLE tab1(col1,col2);
UPDATE STATISTICS MEDIUM FOR TABLE tab2(col1,col3);
UPDATE STATISTICS MEDIUM FOR TABLE tab3(col2,col4);

You do not usually need to execute the UPDATE STATISTICS statement in
HIGH mode. In MEDIUM mode, the database server samples the data to
produce statistical query estimates for the columns that you specify.
Improving Query and Transaction Performance 13-9

Maintaining Statistics for Data Distribution and Table Size
Unless column values change frequently or you add rows to the table, you do
not need to regenerate the data distributions. To verify the accuracy of the
distribution, compare dbschema -hd output with the results of appropriately
constructed SELECT statements. The following dbschema command
produces a list of values for each column of table tab2 in database virg and
the number of rows with each specific value:

DBSCHEMA -hd tab2 -d virg

Tip: Because UPDATE STATISTICS in MEDIUM mode uses a sampling technique to
produce distribution statistics, the statistics are not always exactly the same.

For information about using dbschema, refer to the Informix Migration Guide.

Specifying a Confidence Level for UPDATE STATISTICS

Distribution statistics have an average margin of error less than percent of the
total number of rows in the table, where percent is the value that you specify
in the RESOLUTION clause in MEDIUM mode. The default percent value for
MEDIUM mode is 1 percent. For HIGH mode distributions, the default
resolution is 0.5 percent.

If a table is large, change the default parameters for resolution and
confidence:

■ Specify a resolution that is smaller than the default value of 1.

■ Specify a confidence level larger than the default level of 0.95 .

A finer resolution and a higher confidence level create a distribution
closer in approximation to the HIGH mode distribution.

UPDATE STATISTICS MEDIUM FOR TABLE tab2(col3)
RESOLUTION .1 .99;
13-10 Performance Guide for Informix Extended Parallel Server

Maintaining Statistics for Data Distribution and Table Size
Updating Statistics for Indexed Columns

For each table that the query accesses, use the following guidelines to build
data distributions for indexed and unindexed columns:

■ Run UPDATE STATISTICS MEDIUM for all columns in a table that are
not the first or only column in an index. This step is a single UPDATE
STATISTICS statement. The default parameters are sufficient unless
the table is very large. In that case, use a resolution of 1.0 , 0.99 .

With the DISTRIBUTIONS ONLY option, you can execute UPDATE
STATISTICS MEDIUM at the table level or for the entire system
because the overhead of the extra columns is not large.

■ Run UPDATE STATISTICS HIGH for all columns that are indexed. For
the fastest execution time of UPDATE STATISTICS, execute one
UPDATE STATISTICS HIGH statement for each column.

In addition, when you have indexes that begin with the same subset
of columns, run UPDATE STATISTICS HIGH for the first column in
each index that differs.

For example, if index ix_1 is defined on columns a, b, c, and d, and
index ix_2 is defined on columns a, b, e, and f, run UPDATE STATIS-
TICS HIGH on column a by itself. Then run UPDATE STATISTICS HIGH
on columns c and e. In addition, you can run UPDATE STATISTICS
HIGH on column b, but this step is usually not necessary.

■ For each multicolumn index, execute UPDATE STATISTICS LOW for all
of its columns. For the single-column indexes in the preceding step,
UPDATE STATISTICS LOW is implicitly executed when you execute
UPDATE STATISTICS HIGH.

Because the statement constructs the index information statistics only once
for each index, these steps ensure that UPDATE STATISTICS executes rapidly.

For additional information about data distributions and the UPDATE
STATISTICS statement, see “Using Indexes” on page 13-13 and the Informix
Guide to SQL: Syntax.
Improving Query and Transaction Performance 13-11

Maintaining Statistics for Data Distribution and Table Size
Updating Statistics for Join Columns

Because the optimizer uses statistics to choose the best query plan, you might
run UPDATE STATISTICS on join columns if your query uses equality
predicates:

■ Run UPDATE STATISTICS statement with the HIGH keyword for
specific join columns that appear in the WHERE clause of the query.
If you followed the guidelines in“Updating Statistics for Indexed
Columns” on page 13-11, columns that head indexes already have
HIGH mode distributions.

■ To determine whether HIGH mode distribution information on
columns that do not head indexes can provide a better execution
path, take the following steps:

1. Issue the SET EXPLAIN ON statement and rerun the query.

To improve performance after you run the query, issue SET
EXPLAIN OFF unless you want to create SET EXPLAIN output for
subsequent queries.

2. Note the estimated number of rows in the SET EXPLAIN output
and the actual number of rows that the query returns.

3. If these two numbers are significantly different, run UPDATE
STATISTICS HIGH on the columns that participate in joins, unless
you have already done so.

Important: If the table is very large, running UPDATE STATISTICS with the HIGH
mode can take a long time.

Because of improvements to cost estimates that establish better query plans,
the optimizer depends greatly on an accurate understanding of the under-
lying data distributions in certain cases.

The following example shows a query with equi-join columns:

SELECT employee.name, address.city
FROM employee, address
WHERE employee.ssn = address.ssn
AND employee.name = 'James'

In this example, the equi-join columns are the ssn fields in the employee and
address tables. The data distributions for both of these columns must
accurately reflect the actual data so that the optimizer can correctly
determine the best join method and execution order.
13-12 Performance Guide for Informix Extended Parallel Server

Using Indexes
If you are executing complex queries that involve equality filters, you might
still feel that the query is not executing quickly enough with MEDIUM mode
statistics. In that case, take one of the following actions:

■ Run UPDATE STATISTICS statement with the HIGH keyword for
specific join columns that appear in the WHERE clause of the query.

■ To determine whether HIGH mode distribution information on
columns that do not head indexes could provide a better execution
path, take the following steps:

1. Turn on sqexplain output with the SET EXPLAIN ON statement
and rerun the query. Note the estimated number of rows in the
sqexplain output.

2. Monitor your query with either onstat -g xqs qryid. Note the
number of rows that the last SQL operator processed.

3. For more information on monitoring queries, refer to
“Displaying SQL Operator Statistics in the Query Plan” on
page 12-26.

4. If these two numbers are significantly different, run UPDATE
STATISTICS HIGH on the columns that participate in equi-joins,
unless you have already done so.

Important: If the table is very large, UPDATE STATISTICS with the HIGH mode can
take a long time to execute.

You can use the UPDATE STATISTICS statement to create data distributions
only for tables in the current database.

For additional information about data distributions and the UPDATE
STATISTICS statement, see the Informix Guide to SQL: Syntax.

Using Indexes
You can often improve the performance of a query by creating more than one
index on a table. The optimizer has more indexes to choose from in creating
an efficient query plan and in some cases it can choose to use multiple
indexes on a table. Analyze individual queries to help decide what indexes
to create.
Improving Query and Transaction Performance 13-13

Using Indexes
Important: Although several indexes on a table might improve query performance,
the more indexes that must be updated, the longer it takes to update, insert, or delete
table rows. Consider the trade-off between query improvement and table-modification
time for your application.

The following sections describe how indexes improve query performance.

Preventing Repeated Sequential Scans of Large Tables

Sequential access to any table other than the first table in the plan might read
every row of the table once for every row selected from the preceding tables.
The number of times that tables are read determines the effect of sequential
reads on performance.

If the table is small enough to reside in memory, reading it repeatedly does
not degrade performance. Sequential search of an in-memory table can be
faster than searching the same table through an index, especially if
maintaining those index pages in memory removes other useful pages from
the buffers.

If the table is larger than a few pages, however, repeated sequential access
severely impairs performance.

One way to prevent this problem is to create an index on the column that is
used to join the table. An index consumes disk space proportional to the
width of the key values and the number of rows, as described in “Estimating
Index Page Size” on page 7-6.

If active tables are used for queries, the index is updated whenever rows are
inserted, deleted, or updated, which slows these operations. If space is
limited on your database system or if tables are updated frequently, you can
use the DROP INDEX statement to remove the index after a series of queries,
which frees space and makes table updates faster.

Replacing Autoindexes with Permanent Indexes

The database server sometimes creates an autoindex on a large table when the
optimizer determines that it is more cost effective to build the index dynam-
ically than to scan the whole table repeatedly during execution of a nested-
loop join. The sqexplain.out file shows when the optimizer chooses an
autoindex.
13-14 Performance Guide for Informix Extended Parallel Server

Using Indexes
If the query plan includes an autoindex path to a large table, you can add an
index on that column to improve performance. If you rarely perform the
query, you can reasonably let the database server build and discard an index.
But if you perform the query often, or if you perform other queries that might
use the index, create a permanent index.

Using Multiple Indexes on the Same Table

At appropriate isolation levels, the query optimizer can use more than one
index to read a table in a query under the following circumstances:

■ More than one index exists on the table.

If the optimizer chooses to use a GK index, however, it cannot use any
other indexes on the same table, including other GK indexes.

■ Using more than one of the available indexes improves performance.

■ The query or transaction is performed in Dirty Read or Committed
Read isolation level, or in Repeatable Read isolation level if the entire
table is locked.

The database server does not use multiple indexes at Cursor Stability
isolation level. For alternative index methods, see “Using Composite
Indexes” on page 13-21.

Important: Because use of multiple indexes depends on isolation level, query plans
created at one isolation level must be optimized again if they are run at a different
isolation level.

In a multiple-index scan, the database server examines only the first column
in an index. This means that composite indexes can be used in a multiple-
index scan. The database server does not use multiple-index scans in the
following kinds of processes:

■ Index aggregates, except for COUNT(*)

■ Sort and group elimination

■ Key-only scans

■ Joins
Improving Query and Transaction Performance 13-15

Using Indexes
When the Optimizer Uses Multiple Indexes on the Same Table

The database server might be able to use multiple indexes on a single table to
reduce I/O to the table itself.

For example if a table T with columns A and B has an index iA on column A
and an index iB on column B, the optimizer might choose to use both indexes
for queries that require column A and column B in the WHERE clause.

When the database server uses both indexes, it scans index iA and generates
a result set RA based on the WHERE clause requirements for column A. The
database server also scans index iB in the same way to generate a result set
RB. It then merges result sets RA and RB to generate result set R and uses
result set R to retrieve the required data rows from table T. Because the merge
of the result sets RA and RB into R eliminates many candidate rows, the
database server does not need to retrieve table rows simply to evaluate them.

In some cases, however, the optimizer might not choose to use both indexes.
The decision depends in part on the selectivity of the column, which the
optimizer assesses from the table statistics that the UPDATE STATISTICS
statement stores in the system catalog tables.

In the case of an AND operator (WHERE A = ? AND B = ?), the optimizer can
consider other alternatives. A single index scan is often a better choice
because it can be used for several purposes.

In the case of an OR operator (WHERE A = ? OR B = ?), the only alternative is
a sequential scan. If the combination of the predicates is less than 10 percent,
the optimizer chooses a multiple-index scan if the isolation level permits.

The optimizer might also choose to use multiple indexes on a single table in
the following circumstances:

■ For COUNT(*) queries

If all of the predicates in the WHERE clause can be evaluated by
examining indexes, the database server can count the number of
matching rows in the indexes and return the result without accessing
the table pages.

■ For queries with NOT predicates

To determine the list of rows that satisfy a NOT predicate, the data-
base server can reverse the bitmap values that it obtains by
evaluating indexes for a complementary predicate.
13-16 Performance Guide for Informix Extended Parallel Server

Using Indexes
Nevertheless, if you can design a single index to meet the needs of your
queries, that solution is preferable to creating multiple indexes. The single
index can be used for multiple purposes during the same query execution
and is less costly to maintain when the table is modified by insert, update, or
delete transactions.

The following section describes an example of a multiple-index scan.

Example of a Multiple-Index Scan

The database server uses two indexes to perform the following query:

SELECT * FROM customer
WHERE (customer_num = "113" OR customer_num = "119")
AND order_num = "3";

The database server uses an index on customer_num to retrieve the first set
of rows (customer_num = "113" OR customer_num = "119") and an index
on order_num to retrieve the other set of rows (order_num = "3"). Without
the ability to execute a query using multiple indexes for one table, the
database server would probably perform a sequential scan or use only one
index.

The following excerpt from the SET EXPLAIN output shows the query path:

QUERY:

select * from customer
where(customer_num = 113 or customer_num = 119)
and order_num = 3
Estimated Cost: 1
Estimated # of Rows Returned: 1
1) informix.customer: MULTI INDEX PATH
 Filters: (informix.customer.customer_num = 113 OR
lsuto.abc.customer_num = 119)
 (1) Index Keys: order_num (Serial, fragments: ALL)
 Index Filter: informix.customer.order_num = 3
Improving Query and Transaction Performance 13-17

Using Indexes
To use multiple indexes to execute the query, one or more threads retrieve
rows that meet the filter criteria using an index on customer_num, and one
or more threads retrieve identifiers of rows that meet the filter criteria using
an index on order_num. The database server converts each stream of row
identifiers into a bitmap, performs an AND operation on the bitmaps to
produce a final row identifier list, and uses the row identifier list to retrieve
the rows from the table, as Figure 13-1 shows.

Whenever possible, the database server stores the combined bitmap in the
virtual portion of shared memory. If temporary storage in memory grows too
large, the database server might transfer the bitmap to temporary storage on
disk.

Figure 13-1
Multiple Indexes
Used in a Query

order_num
index

customer
custnum custname
1234 XYZ LTD
1235 XSPORTS

Combined
bitmap

Get table data

customer_num
index

Get rows that pass
filter criteria.

Get rows that pass
filter criteria.

Return result.

SELECT * FROM customer
WHERE (customer_num = 113 OR customer_num = 119) AND order_num = 3
13-18 Performance Guide for Informix Extended Parallel Server

Using Indexes
Using Key-Only Scans of Indexes

If the values contained in the index can satisfy the query, the database server
does not read the table rows. This operation is called a key-only scan. It is faster
to omit the page lookups for data pages whenever the database server can
read values directly from the index. For example, if an index contains all
columns required for a query that uses an aggregate function, such as COUNT
or SUM, the database server can return the correct value without accessing
the table.

Consider the following simple table and indexes:

CREATE TABLE table (col1 int, col2 int);
CREATE INDEX idx_1 on table(col1);
CREATE INDEX idx_2 on table(col2);

The optimizer can choose a key-only scan for the following query:

SELECT col1 FROM table WHERE col1 = 10;

However, the optimizer cannot use a key-only scan for the following query
because it requires all of the values in the row:

SELECT * FROM table WHERE col1 = 10;

The database sever uses multiple-index scans as key-only scans only if the
query requests a simple COUNT(*) aggregate on indexed columns. For
example, the optimizer might choose to use only the idx_1 and idx_2 indexes
to satisfy the following query:

SELECT COUNT(*) FROM table WHERE col1 = 10 AND col2 = 10;

Although the database server returns return counts of key values from
multiple-index scans, it does not return the key values themselves. The
optimizer cannot use a key-only scan for the following query:

SELECT col1, COUNT(*) FROM table WHERE col1 = 10 and col2 = 10
GROUP BY col1;

Even when the optimizer cannot choose a key-only index scan, however, an
index lookup can improve query efficiency by skipping table pages that do
not contain any required rows. When the database server uses a multiple-
index scan it can also order the rows to be retrieved according to their row
identifiers so that no table page needs to be read more than once.
Improving Query and Transaction Performance 13-19

Using Indexes
Using Bitmap Indexes

Bitmap indexes differ from conventional B-tree indexes in the way that they
store duplicate keys. A B-tree index stores a list of row identifiers for any
duplicate key value. A bitmap index stores a bitmap for any highly duplicate
key value. The bitmap indicates the rows that have the duplicate key value.

The more duplicate values in the key column, the more efficient the bitmap
index is. For example, a bitmap index on a key column that can contain only
one of two values is extremely efficient. The efficiency of the bitmap index
decreases as the number of possible values increases.

To create a bitmap index, include the USING BITMAP keywords in the CREATE
INDEX statement, as in the following example:

CREATE INDEX ix1 ON customer(status) USING BITMAP

For information about creating bitmap indexes and estimating their size and
efficiency, refer to “Estimating Bitmap Index Size” on page 7-8.

When Bitmap Indexes Speed Queries

Bitmap indexes provide the most benefit for queries in the following
circumstances:

■ The key values in the index contain many duplicates.

■ The index can be used in a query with the COUNT aggregate.

■ The optimizer chooses to use more than one index on a table.

Consider the following example:

SELECT count(*) FROM customer
WHERE zipcode = "85255" AND sales_agent_id = 22;

If the customer table has an index on zipcode and another index on
sales_agent_id, the optimizer might use both indexes to execute the query.
The database server creates a list of row identifiers that satisfy each part of
the query and then compares the list of row identifiers to produce the final
result.
13-20 Performance Guide for Informix Extended Parallel Server

Using Indexes
Bitmap indexes excel in comparing the result of one part of the query (or
predicate) to another part. The process of comparing row identifiers of rows
in which zipcode is 85255 to row identifiers of rows in which sales_agent_id
is 22 is faster with a bitmap index because the two lists of row identifiers are
already in a form that is more efficient to compare.

Bitmap indexes also improve performance for queries that use the COUNT
aggregate function. Because it is faster to count bits in a bitmap than to count
row identifiers and the table need not be accessed, queries such as the
following one perform better with a bitmap index:

SELECT COUNT(*) FROM customer
WHERE zipcode BETWEEN "85255" AND "87255" ;

In most other kinds of queries, bitmap indexes are comparable to B-tree
indexes. Because bitmap indexes store nonduplicate key values in the same
manner as B-tree indexes, performance is the same as if the index were a
conventional B-tree index.

When Bitmap Indexes Decrease Index Space

If an index has many duplicate values, a bitmap index uses less disk space
than a conventional B-tree index. However, the exact savings is hard to
estimate because it also depends on how rows that contain the duplicate
value are physically spread across the table.

Although the bitmaps are compressed, the size of the compressed bitmap
depends upon the pattern of the bitmap. The practical accurate way to
determine whether a bitmap index saves space is to create a bitmap index
and record its size. Then drop the bitmap index and create a conventional
index. Compare the size of the conventional index to the size of the bitmap
index.

For more information on sizing a bitmap index, refer to “Estimating Bitmap
Index Size” on page 7-8.

Using Composite Indexes

Composite indexes are commonly used to improve performance of DSS
queries as well as to increase transaction efficiency for active tables in OLTP
applications. A composite index can contain up to 16 keys.
Improving Query and Transaction Performance 13-21

Using Indexes
You can create a composite index on a table of any type, including a
temporary table.

Because a composite index indexes more than one column, it can be tailored
to match the SELECT, ORDER BY, and GROUP BY clauses of the transaction or
query to improve processing speed.

For example, the optimizer can use an index on the columns a, b, and c, in
that order, in the following ways:

■ For a key-only search, which is a scan that retrieves data from the
index without accessing the table

■ To join column a, columns ab, or columns abc to equivalent columns
in another table

■ To implement ORDER BY or GROUP BY on columns a, ab, or abc, but
not on b, c, ac, or bc

■ To locate a particular row by using equality filters followed by range
expressions that use the index keys in order

An index locates a row by specifying the first columns with equality
filters and subsequent columns with range expressions (<, <=, >, >=).
The following examples of filters use the columns in a composite
index:

WHERE a=1
WHERE a>=12 AND a<15
WHERE a=1 AND b < 5
WHERE a=1 AND b = 17 AND c >= 40

The following examples of filters cannot use the composite index:
WHERE b=10
WHERE c=221
WHERE a>=12 AND b=15

Execution is most efficient when you create a composite index with the
columns in order from most to least distinct. In other words, the first column
in a composite index should be the column that returns the highest count of
distinct rows when it is queried with the DISTINCT keyword of the SELECT
statement.

Tip: To see the data distribution of columns, use the dbschema utility, which is
described in the “Informix Migration Guide.”
13-22 Performance Guide for Informix Extended Parallel Server

Using Indexes
If your application performs several long queries, each of which contains
ORDER BY or GROUP BY clauses, you can sometimes improve performance by
adding indexes that produce these orderings without requiring a sort. For
example, the following query sorts each column in the ORDER BY clause in a
different direction:

SELECT * FROM t1 ORDER BY a, b DESC;

To avoid using temporary tables to sort column a in ascending order and
column b in descending order, create a composite index on either (a, b DESC)
or (a DESC, b). If your queries sort in both directions, create both indexes. For
more information on bidirectional traversal of indexes, refer to the Informix
Guide to SQL: Syntax.

On the other hand, it might be less expensive to scan the table and sort the
results instead of using the composite index if the number of rows that the
query retrieves does not represent a small percentage of the available data.

For large queries at appropriate isolation levels, the database server can use
multiple indexes on a table instead of a composite index. Because of the order
restrictions of composite indexes, multiple indexes are more flexible than
composite indexes. For example, if you have a composite index on columns
a, b, and c (in that order), an index on b, and an index on c, the optimizer can
use the index on column b and the index on column c to satisfy the following
query, but it cannot use the composite index:

SELECT * FROM tab1
WHERE b = 221 AND c = 10;

OLTP transactions, however, are almost always executed at an isolation level
that prohibits use of multiple indexes. For this reason, designers of OLTP
applications frequently create composite indexes for specific transactions.

Using Generalized-Key Indexes

Generalized-key (GK) indexes expand conventional index functionality to
make indexes more useful for optimizing specific DSS queries.

Tip: Because DSS databases often use relatively stable tables of the STATIC type, GK
indexes can replace many of the uses of composite indexes. For information about how
composite indexes improve performance, see “Using Composite Indexes” on
page 13-21.
Improving Query and Transaction Performance 13-23

Using Indexes
GK indexes store the result of an expression as a key in a B-tree or bitmap
index, which can be useful in specific queries on one or more large tables.

GK indexes have the following limitations:

■ Only STATIC tables can have GK indexes.

To change a table from STATIC to any other mode, you must first drop
all GK indexes on the table.

■ If the optimizer chooses to use a GK index on a table, it can use only
one index on that table.

If you also create other types of indexes on the table, the optimizer
might choose to use more than one of these indexes, however.

■ GK indexes cannot be used for key-only scans.

■ GK indexes must be fragmented with the same distribution scheme
as the table.

The three categories of GK indexes are as follows:

■ Selective index, which contains keys for only a subset of a table

■ Virtual column index, which contains keys that are the result of an
expression

■ Join index, which contains keys that are the result of a query that
joins multiple tables

Selective Indexes

A selective index is created with a subquery that selects only a subset of rows
from one or more tables.

For example, suppose you have a large table that contains orders. A common
query finds the sum of all orders over a certain dollar amount, as follows:

SELECT sum(order_amt) FROM orders
WHERE order_amt > 1000
AND order_date > "01/01/97"
13-24 Performance Guide for Informix Extended Parallel Server

Using Indexes
If you create a conventional index on order_amt, it contains one key (or row
identifier in the case of duplicate keys) for every row. Even a large table
fragmented across coservers might have an index with four or five levels.
However, you can create a selective index such as the following:

CREATE GK INDEX ix1 ON orders
(SELECT order_amt, order_date FROM orders

WHERE order_amt > 1000 AND order_date > "01/01/97")

In queries such as the preceding one, the database server can retrieve all
qualified rows without reading the table first. On the other hand, with an
index on only order_amt, the database server could use the index to retrieve
all order amounts greater than 1000 , but it must still the read the table data
to check that these orders have an order date greater than 01/01/97 .

In addition, if you create a selective index, the number of levels created for
the index might be reduced, which would decrease the amount of disk I/O.

Virtual-Column Index

A virtual-column index contains a key that is derived from an expression. For
example, suppose you commonly query on total order cost, which includes
merchandise total, tax, and shipping in the following query:

SELECT order_num FROM orders
WHERE order_amt + shipping + tax > 1000;

If you add a virtual-column index to that contains the sum of order_amt,
shipping and tax, the optimizer might choose to use the index to satisfy this
query. The CREATE INDEX statement might be as follows:

CREATE GK index ix2 ON orders
(SELECT order_amt + shipping + tax FROM orders);

Without a virtual-column index in this case, the database server must scan
the table sequentially to retrieve each row and add up the three columns.

Another use for a virtual-column index is for queries that search on a non-
initial substring. Without a GK index, the optimizer cannot take advantage of
any index on the column that contains the substring. However, the optimizer
can use a GK index created on the same substring as in the query.
Improving Query and Transaction Performance 13-25

Using Indexes
The following example shows how queries with noninitial substrings can use
a GK index:

CREATE GK INDEX dept ON accts
(SELECT code[4,5] FROM accts);

SELECT * FROM accts
WHERE code[4,5] > '50'

Join Indexes

A join index is created by an SQL statement that joins key columns in multiple
tables to create keys in an index. The major advantage of using a join index is
that the database server precomputes the join results when you create the
index, eliminating the need to access some tables that are involved in a query.

You create a join index on one table, referred to here as the indexed table. Any
other tables that are involved in the index are referred to as foreign tables.

Any foreign tables must be joined by their primary key or a unique key.
Figure 13-2 shows a sample entity-relationship diagram, including tables for
which a join index can be used effectively. The indexed table, orders, contains
foreign keys that are joined to primary keys in two other foreign tables:
salesman and customer. The relationship between the indexed table and the
foreign tables is many-to-one, which guarantees that the result of the join is
one row.

Figure 13-2
Sample Scenario for

Join Indexes

salesman

sales_id (PK)
sales_region
...

customer

customer_num(PK)
zipcode
...

orders

order_num(PK)
customer_num(FK)
sales_id(FK)
...
13-26 Performance Guide for Informix Extended Parallel Server

Improving Filter Selectivity
Suppose that a common query retrieves all of the orders booked by salesmen
in a particular region for customers with a specific zip code.

SELECT order_num, order_amt
FROM orders, customer, salesman
WHERE salesman.sales_region = 20
AND customer.zipcode = 89401
AND orders.customer_num = customer.customer_num
AND orders.sales_id = salesman.sales_id

If you create the following index, the customer and salesman tables do not
need to be scanned in the previous query, resulting in a large time and
resource savings:

CREATE GK INDEX gk_ord_sale_cust ON orders
(SELECT salesman.sales_region, customer.zipcode
FROM orders, customer, salesman
WHERE orders.customer_num = customer.customer_num
AND orders.sales_id = salesman.sales_id)

As the following SET EXPLAIN output shows, the query reads only the GK
index on orders to fulfill the query:

QUERY:

select order_num, order_amt
from orders, customer, salesman
where salesman.sales_region = 20
and customer.zipcode = 89451
and orders.customer_num = customer.customer_num
and orders.sales_id = salesman.sales_id
Estimated Cost: 139
Estimated # of Rows Returned: 9
1) sales.orders: G-K INDEX PATH

(1) Index Keys: salesman.sales_region customer.zipcode
(Parallel, fragments: ALL)

Lower Index Filter: (lsuto.salesman.sales_region = 20 AND
sales.customer.zipcode = 89451)

For more information on creating a GK index with the CREATE INDEX
statement, refer to the Informix Guide to SQL: Syntax.

Improving Filter Selectivity
The more precisely you specify the required rows, the faster your queries
complete. The WHERE clause of the SELECT statement determines the
amount of information that the query evaluates. The conditional expression
in the WHERE clause is commonly called a filter.
Improving Query and Transaction Performance 13-27

Improving Filter Selectivity
The selectivity of a filter is a measure of the percentage of rows in the table that
the filter can pass. The database server uses data distributions to calculate
selectivities. However, in the absence of data distributions, the database
server calculates default selectivities, as described in “Filter Selectivity
Evaluation” on page 10-22.

To improve selectivity information for filters, schedule frequent UPDATE
STATISTICS statements for the most frequently accessed tables. For more
information, refer to “Creating Data-Distribution Statistics” on page 13-9.

Rewrite queries to avoid the following filter methods if possible:

■ Certain difficult regular expressions

■ Noninitial substrings unless the substring has a GK index

The following sections describe these types of filters and the reasons for
avoiding them.

Avoiding Difficult Regular Expressions

The MATCHES and LIKE keywords support wildcard matches, which are
technically known as regular expressions. Some regular expressions are more
difficult than others for the database server to process. A wildcard in the
initial position, as in the following example (find customers whose first
names do not end in y), forces the database server to examine every value in
the column:

SELECT * FROM customer WHERE fname NOT LIKE '%y'

Because you cannot use an index with such a filter, the database server must
access the table in this example sequentially.

If a difficult test for a regular expression is essential, avoid combining it with
a join. If necessary, process the single table, applying the test for a regular
expression to select the required rows. Save the result in a temporary table,
and join that table to the others.

Regular-expression tests with wildcards in the middle or at the end of the
operand do not prevent the use of an index when one exists.
13-28 Performance Guide for Informix Extended Parallel Server

Improving Filter Selectivity
Avoiding Noninitial Substrings

A filter based on a noninitial substring of a column also requires every value
in the column to be tested, as the following example shows:

SELECT * FROM accts
WHERE code[4,5] > '50'

A standard index cannot be used to evaluate such a filter.

You might be able to create a GK index on the substring, as described in
“Virtual-Column Index” on page 13-25. However, if queries must often
search standard columns for noninitial substrings, the table definition might
be at fault. For example, an accounting system might use a long string of
numbers as hierarchical account codes. Each level of the hierarchy should be
a separate column.

Improving Aggregate Statement Performance

You can improve performance for filters that contain aggregate statements if
you construct appropriate indexes for the queries. Performance improve-
ments result because of single lookups, range scans, and elimination of the
GROUP SQL operator.

A filter-aggregate query has these requirements:

■ It requires data from a single table.

■ It uses the COUNT, MIN, or MAX keywords in the SELECT clause.

■ It uses a WHERE clause that requires scanning only one index
fragment to filter data.
Improving Query and Transaction Performance 13-29

Using SQL Extensions for Increased Efficiency
You can improve query performance if you construct queries according to the
following rules:

■ The filter expression in the WHERE clause should be conjunctive, and
the filters should not contain subqueries.

■ The MIN or MAX aggregate should be on an index key that immedi-
ately follows major keys in the WHERE clause filters. For example, in
an index with major keys A, B, and C, the next index key, D, can be
the aggregate column, and A, B, and C should have exact-match
filters in the WHERE clause.

■ Remaining WHERE clause filters do not need to be exact-match filters
and should use index keys that appear after the aggregate column in
the index key list. For example, in the index that contains A, B, and C
as major keys and D, E, and F as minor keys, E and F can be involved
in the remaining WHERE clause filters if D is the aggregate term.

Even if the query does not contain a WHERE clause, the same performance
improvement results if only one table fragment is scanned and the aggregate
column is a major key of the table. For example, if table T is not fragmented
and contains columns A, B, and C, with an index on columns A and B, the
following query is quickly executed by scanning only the index:

SELECT MIN(A) from T;

Using SQL Extensions for Increased Efficiency
Certain SQL extensions can improve transaction and query processing if you
use them appropriately. This section lists some of these SQL extensions and
provides advice about their optimal use.

TRUNCATE TABLE Statement

Use the TRUNCATE TABLE statement to remove all rows from a table in a
single operation and leave it ready for new content. The TRUNCATE TABLE
statement is a quick way to prepare a table into which you plan to load
completely new data.
13-30 Performance Guide for Informix Extended Parallel Server

Using SQL Extensions for Increased Efficiency
When it executes the TRUNCATE TABLE statement, the database server
executes a single transaction that includes a commit and writes only three
records to the logical log. When the database server removes rows from the
table, it frees the old extents and allocates a new extent immediately. It also
removes the contents of all indexes and re-creates the indexes when the table
is populated again.

To execute the TRUNCATE TABLE statement, you must be the owner of the
table or have DBA privileges. You cannot use the TRUNCATE TABLE statement
to remove rows from an external table or from any of the internal database
tables, such as the system catalog tables or the violation tables.

The TRUNCATE TABLE statement provides the following performance
advantages:

■ It removes rows from a table without changing access privileges so
that you do not have to re-create the table definition and assign
access privileges to users.

■ It does not use a time-consuming row-by-row delete operation,
which also adds a record to the logical log for each deleted row,
greatly increasing the size of the logical log file.

Although the database server can roll back an unsuccessful TRUNCATE
TABLE operation, it cannot roll back a successful TRUNCATE TABLE operation
because it is committed immediately.

DELETE USING Statement

The DELETE....USING statement lets you join two tables and delete rows from
one table based on a WHERE clause that compares column values in both
tables. The performance of a single statement to join tables A and B and
perform a conditional delete is better than the performance of two state-
ments, the first of which selects rows and the second of which deletes the
selected rows. In addition to improving processing performance,
DELETE...USING statement simplifies the syntax required to perform the
operation.
Improving Query and Transaction Performance 13-31

Using SQL Extensions for Increased Efficiency
For example, to delete rows in the open table based on a comparison with
certain columns in the bills table, you might enter the following statement:

DELETE FROM open USING open, bills
WHERE open.cust_no = bill.custno
AND open.paid_date > bills.bill_date
AND open.pd_amt = bills.bill_amt;

The only table listed in the FROM clause is the table from which rows will be
deleted, but all joined tables must be listed in the USING clause. Outer joins
are not allowed.

The DELETE...USING statement performs its actions in two steps. First it joins
the tables and creates a temporary table based on all rows for which the
WHERE clause evaluates to true. Then it deletes the matching rows in the
target table.

For a complete description of the DELETE... USING statement, refer to the
Informix Guide to SQL: Syntax.

CASE Statement

The CASE statement in SPL routines improves the performance of transac-
tions or queries that use IF...THEN...ELSE...END IF statements.

For example, consider a transaction or query that calls an SPL routine that
contains the following set of IF...THEN...ELSE...END IF statements:

IF i < 5 THEN -- 1 2 3 4
IF i < 3 THEN -- 1 2

IF i < 2 THEN -- 1
LET i_id1, whse_id1 =

i_id,whse_id;
ELSE -- 2

LET i_id2, whse_id2 =
i_id, whse_id;

END IF;
ELSE -- 3 4

IF i < 4 THEN -- 3
LET i_id3, whse_id3 =

i_id, whse_id;
ELSE -- 4

LET i_id4, whse_id4 =
i_id, whse_id;

END IF;
END IF;
13-32 Performance Guide for Informix Extended Parallel Server

Using SQL Extensions for Increased Efficiency
You can rewrite this set of statements as a CASE statement as follows:

CASE (i)
WHEN 1 THEN

LET i_id1, whse_id1 =
i_id,whse_id;

WHEN 2 THEN
LET i_id2, whse_id2 =

i_id, whse_id;
WHEN 3 THEN

LET i_id3, whse_id3 =
i_id, whse_id;

WHEN 4 THEN
LET i_id4, whse_id4 =

i_id, whse_id;
ELSE:

RAISE EXCEPTION 100; -- Illegal value
END CASE

The CASE statement is easier to maintain, and it also reduces processing
overhead because each condition is evaluated only once.

For detailed information about the CASE statement, refer to the Informix Guide
to SQL: Syntax.

MIDDLE Clause

The MIDDLE clause adds selection capabilities similar to those that the FIRST
clause provides. Use the MIDDLE clause to select one or more rows that fall
in the middle set of values. To return the median values of an ordered set, use
the ORDER BY clause.

For example, the following query selects the 10 employees with salaries in the
median range:

SELECT MIDDLE 10 name, salary
FROM emp
ORDER BY salary DESC

The MIDDLE clause can replace complex SQL statements that use the FOR
EACH and IF...THEN...ELIF...ENDIF construction in SPL routines or CURSOR
statements to retrieve the middle rows of a sorted range, which provides a
performance improvement over other formulations of this query.
Improving Query and Transaction Performance 13-33

Reducing the Effect of Join and Sort Operations
Reducing the Effect of Join and Sort Operations
After you understand how the query is processed, look for ways to obtain the
same output with less effort. The following suggestions can help you rewrite
your query more efficiently:

■ Avoid or simplify sort operations.

■ Use temporary tables to reduce sorting scope.

■ Use join indexes.

Avoiding or Simplifying Sort Operations

Sorting is not necessarily a liability. The sort algorithm is highly tuned and
extremely efficient. It is as fast as any external sort program that you might
apply to the same data. You need not avoid occasional sorts or sorts of
relatively small numbers of output rows.

Avoid or reduce the scope of repeated sorts of large tables. The optimizer
avoids a sort step whenever it can produce the output in its proper order
automatically from an index:

■ One or more of the ordered columns is not included in the index.

■ The columns are named in a different sequence in the index and in
the ORDER BY or GROUP BY clause.

For some queries, you can avoid large sorts by creating temporary tables, as
the following section describes. If a sort is necessary, look for ways to
simplify it. As discussed in “Sort-Time Costs” on page 10-26, the sort is
quicker if you can sort on fewer or narrower columns.

Using Temporary Tables to Reduce Sorting Scope

Building a temporary, ordered subset of a table can speed up a query. It can
help to avoid multiple-sort operations and can simplify the work of the
optimizer in other ways.
13-34 Performance Guide for Informix Extended Parallel Server

Reducing the Effect of Join and Sort Operations
For example, suppose that your application produces a series of reports on
customers who have outstanding balances, one report for each major postal
area, ordered by customer name. In other words, a series of queries occur,
each of the following form:

SELECT cust.name, rcvbles.balance, ...other columns...
FROM cust, rcvbles
WHERE cust.customer_id = rcvbles.customer_id

AND rcvbls.balance > 0
AND cust.postcode LIKE '98_ _ _'

ORDER BY cust.name

This query reads the entire cust table. For every row with the requested
postal code, the database server searches the index on rcvbles.customer_id
and performs a nonsequential disk access for every match. It writes the rows
to a temporary file and sorts them. For more information on temporary files,
refer to “Dbspaces for Temporary Tables and Sort Files” on page 5-10.

This procedure is acceptable if the query is performed only once, but this
example includes a series of queries, each of which incurs the same amount
of work.

If the customer table is fragmented by hash, an alternative is to select all
customers with outstanding balances into a temporary table ordered by
customer name, and to fragment the temporary table by hash so that the
database server can eliminate table fragments as it processes the query. The
following example shows how to create the temporary table:

SELECT cust.name, rcvbles.balance, …other columnsº
FROM cust, rcvbles
WHERE cust.customer_id = rcvbles.customer_id

AND cvbls.balance > 0
INTO TEMP cust_with_balance
fragment by HASH (cust_id) in customer_dbslc;

You can direct queries against the temporary table in this form, as the
following example shows:

SELECT *
FROM cust_with_balance
WHERE postcode LIKE '98_ _ _'
ORDER BY cust.name

Each query reads the temporary table sequentially, but the table has fewer
rows than the primary table.
Improving Query and Transaction Performance 13-35

Reviewing the Optimization Level
Using Join Indexes

A join index can eliminate the need to access some tables that are involved in
a query because the precomputed join results are stored in an index. For more
information on join indexes, refer to “Join Indexes” on page 13-26.

Reviewing the Optimization Level
The default optimization level, HIGH, usually produces the best overall
performance. The time required to optimize the query is usually insignif-
icant. However, if testing shows that a query is still taking too long, you can
set the optimization level to LOW and then check the SET EXPLAIN output to
see if the optimizer chose the same query plan as before.

To specify a HIGH or LOW level of database server optimization, use the SET
OPTIMIZATION statement. The Informix Guide to SQL: Syntax describes this
statement in detail.

Reviewing the Isolation Level
The isolation level at which a query or transaction is executed affects
concurrent queries and transactions. As you analyze transactions and
queries, make sure that their isolation level is set appropriately.

Setting Isolation Levels for DSS Queries

DSS queries do not change table data and usually do not run against tables
that are updated dynamically. For this reason, Dirty Read or Read Uncom-
mitted are appropriate isolation levels for such queries.

Dirty Read and Read Uncommitted isolation levels do not place locks on any
table or pay attention to locks that other processes set. If DSS queries are run
at these isolation levels against active database tables, imprecise information
might result, but the information might still be adequate for statistical
analysis of large amounts of data.
13-36 Performance Guide for Informix Extended Parallel Server

Reviewing the Isolation Level
Setting Isolation Levels for Transaction Processing

Transaction processing requires complete control over data integrity. For this
reason, OLTP applications usually set Committed Read, Read Committed,
Cursor Stability, Serializable, or Repeatable Read isolation levels.

For detailed information about the locking and concurrency effect of setting
these isolation levels, see the Informix Guide to SQL: Tutorial and “Setting the
Isolation Level” on page 8-9.

In addition, to tailor the effect of isolation levels, you can use the RETAIN
UPDATE LOCKS clause of the SET ISOLATION statement. For information
about how to use this clause, see “Locking and Update Cursors” on
page 8-12.
Improving Query and Transaction Performance 13-37

@

Index

O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Index
Numerics
3dmon monitoring tool 2-6

A
Access plan, description of 10-4
Administrator, database server,

responsibility of 1-35
Admission policy, used by RGM for

queries 12-8
Affinity, processor 3-11
AFF_NPROCS parameter, CPU

affinity 3-11
AFF_SPROC parameter, CPU

affinity 3-11
Aggregate functions, key-only

scans for 13-19
ALTER FRAGMENT statement

changing location of a table 6-13
reclaiming extent space 6-30

ALTER INDEX statement, setting
COARSE lock mode 8-8

ALTER TABLE statement
adding or dropping a

column 6-29
changing data type 6-29
changing extent sizes 6-22
effect on later actions 6-37
in-place alter algorithm

costs of 10-30
when used 6-29

MODIFY NEXT SIZE clause 6-22
reclaiming extent space 6-30
restrictions of 6-5
to change extent sizes 6-22

ANSI compliance, level Intro-13
ANSI isolation levels. See Isolation

levels.
Application

developer’s responsibility 1-35
types of 1-9

Asynchronous read-ahead for hash
join overflows 12-29

Attached indexes
advantages of 9-52
creating 9-52

Autoindexes, when created by
optimizer 13-14

B
Background I/O, configuring 5-21
Backup and restore

fragmentation for 9-11
performance issues 2-18

Benchmarks, description of 1-18
Bitmap indexes

calculating size 7-8 to 7-11
CREATE INDEX statement

example 13-20
using 13-20
when efficient 7-9
when to create 7-18

blobs. See Simple large objects.
Boldface type Intro-8
Branch index pages, definition

of 7-5
B-tree index

btree cleaner activity 7-19
description of 7-5

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Buffer size
for logical log 4-20
for physical log 4-23
for TCP/IP connections specified

in sqlhosts 4-13
BUFFERS parameter

buffers for data caching 4-12
measuring cache hit rate with

onstat-p option 4-13
tuning 4-13

BYTE data type, estimating column
size 6-16

C
Cardinality

definition of 7-17
determining useful filters 7-17

CASE statement, example 13-32
Central processing unit (CPU)

affected by configuration
parameters 3-7

estimating utilization 1-28
relation to VP use 3-17

CHAR data type
GLS recommendations 10-33
when to use 6-43

Checkpoints
adjusting interval for

performance 5-23
configuration parameters that

affect 5-22
effect of LRUS on 5-28
effect on performance 5-21
fuzzy, advantages of 5-23
performance tuning

for 5-23 to 5-25
Chunks

and dbspace configuration 5-3
and disk partitions 5-4
maximum allowed 5-4
monitoring activity in 9-68
monitoring I/O in 9-69
monitoring size and contents 2-13
monitoring writes with

onstat -F 5-22

CKPINTVL configuration
parameter, maximum interval
between checkpoints 5-23

CLEANERS configuration
parameter, number of page
cleaners 5-27

CLUSTER clause, eliminating
extent interleaving 6-28

Clustering index
definition of 7-18
for sequential access 10-29
not permitted on STANDARD

tables 6-27
COARSE lock mode, setting 8-8
Code, sample, conventions

for Intro-10
Collocated join

advantage for temporary
tables 9-22

creating dbslices for 9-20
definition of 9-20
for DSS applications 9-28

Columns
filter expression, with join 10-11
ORDER BY and GROUP BY 7-17
with duplicate keys 7-17

Commands, UNIX
iostat 2-6
ps 2-6
sar 2-6
time 1-23
vmstat 2-6

Comment icons Intro-9
COMMIT WORK statement, and

throughput measurement 1-19
Compliance, with industry

standards Intro-13
Composite index, optimal order of

columns 13-22
Concurrency

decreased by Repeatable Read
isolation level 10-5

effects of locks on 8-4
Configuration parameters

affecting checkpoints 5-22
affecting CPU 3-7
affecting critical data 5-9
affecting logging I/O 5-26
affecting logical log 5-9

affecting memory 4-10
affecting page cleaning 5-27
affecting physical log 5-9
affecting recovery 5-28
affecting root dbspace 5-9
affecting sequential I/O 5-19
AFF_NPROCS 3-11
AFF_SPROC 3-11
BUFFERS 4-12
CKPINTVL 5-23
CLEANERS 5-27
DATASKIP 5-20
DBSPACETEMP 5-10, 5-12
DD_HASHMAX 6-10
DD_HASHSIZE 6-10
DS_ADM_POLICY 4-14
DS_MAX_QUERIES 4-14, 12-15,

12-17
DS_TOTAL_MEMORY

description of 4-15
estimating 4-16, 12-16
for OLTP 12-15
in index builds 7-22

IDX_RA_PAGES 5-19
IDX_RA_THRESHOLD 5-19
LOCKS 4-19
LOGBUFF 4-20
LOGFILES 5-24
LOGSIZE 5-9, 5-24
LOGSMAX 5-9, 5-24
LRUS 5-28
LRU_MAX_DIRTY 5-28
LRU_MIN_DIRTY 5-28
LTXEHWM 5-27
LTXHWM 5-27
MAX_PDQPRIORITY, how

used 4-21
MULTIPROCESSOR 3-9
NOAGE 3-10
NUMAIOVPS 3-12
NUMCPUVPS 3-9
NUMFIFOVPS 3-13
OFF_RECVRY_THREADS 5-29
ON_RECVRY_THREADS 5-29
PAGESIZE 4-21
PDQPRIORITY 4-22 to 4-23
PHYSBUFF 4-23, 5-26
PHYSFILE 5-24
RA_PAGES 5-19
2 Performance Guide for Informix Extended Parallel Server

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
RA_THRESHOLD 5-19
RESIDENT memory 4-23
SENDEPDS 12-53
SHMADD 4-24
SHMTOTAL 4-26
SHMVIRTSIZE 4-27
SINGLE_CPU_VP 3-10
STACKSIZE 4-27
temporary changes to 12-17
USEOSTIME 5-25
See also individual parameters.

Connection coserver
definition of 1-6
obtaining session statistics with

onstat 13-5
sqlexec thread 11-13

Consumer thread, definition
of 11-6

Contact information Intro-14
Contention

I/O cost of reading a page 10-28
reducing with fragmentation 9-9

Contiguous extents, performance
advantage of 6-21

Conventions,
documentation Intro-8

Correlated subquery
definition of 10-16
parallel execution of 11-25

Coserver
description of 1-4
monitoring interconnect

activity 12-53
participating, definition of 1-6
threads on 11-13

Cost per transaction, financial 1-25
CPU utilization. See Formula,

service time.
CPU. See Central Processing Unit.
CREATE DBSLICE statement

example 9-17
example for collocated joins 9-20
for temporary files 9-22

CREATE EXTERNAL TABLE
statement 6-26

CREATE INDEX statement
example for bitmap index 13-20
parallel index builds 11-19
with TO CLUSTER 6-27

CREATE TABLE statement
SCRATCH 6-8
specifying extent size 6-22
TEMP 6-8
TEMP...WITH NO LOG 6-9
with IN DBSLICE or IN

DBSPACE 6-13
Critical data

advantage of separate disks
for 5-6

configuration parameters that
affect 5-9

cron
querying SMI tables 2-7
UNIX operating-system

scheduling facility 2-6, 4-10
Cursor Stability

definition of 5-18
row locking during 6-10

D
Data

derived 6-46
transfers per second 1-30

Data distributions
guidelines for creating 13-11
on filtered columns 13-9
on join columns 13-12

Data granularity, increasing with
dbslices 9-21

Data mart, definition of 1-10
Data skew

avoiding 9-12
fragmentation causes of 9-12
in hash joins, reason for 10-9
indicated by onstat -g dfm 12-46
monitoring queries for 13-5

Data types
BYTE column size 6-16
CHAR 6-43, 10-33
effect of mismatched 10-32
NCHAR 6-43
NVARCHAR 6-19, 6-43
TEXT 6-16, 6-43
VARCHAR 6-19, 6-43, 10-33
See also individual data types.

Database
design for DSS applications 1-11
placement of system catalog

tables 5-5
Database server administrator

responsibility 1-35
DATABASE statement, use of 5-5
Data-dictionary cache,

monitoring 6-11
DATASKIP

identifying dbspaces that can be
skipped 9-10

setting configuration
parameter 5-20

when to set 9-10
DB-Access utility Intro-5
dbschema utility

comparing distribution
output 13-10

evaluating information for
distribution schema 9-14

examining data distribution 9-32
Dbslices

cogroup all, predefined for
creating dbslices 9-17

for temporary files 9-22
fragmenting table in 9-18
granularity increase with 9-21
maximum allowed 5-4, 9-17
performance advantage of 9-19
purpose of 9-17
specifying logging slices for

DBSPACETEMP 6-9
Dbspaces

and chunk configuration 5-3
assigning table to 6-13
configuration parameters that

affect root 5-9
for temporary tables and sort

files 5-10, 9-60
maximum allowed 5-4
mirroring root 5-7
preventing extent

interleaving 6-26
DBSPACETEMP

advantages over
PSORT_DBTEMP 5-13

configuration parameter 5-10,
5-12
Index 3

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
environment variable 5-10, 9-60
how used for temporary

tables 9-59
setting 5-10 to 5-14
specifying dbslices for temporary

space 9-22
specifying location of temporary

space 9-60
specifying logging dbspaces

for 6-9
specifying multiple temporary

dbspaces 11-23
Deadlock

definition of 8-19
methods of reducing 8-20

Decision-support application
characteristics 1-11, 11-16
compared to OLTP 1-10
description of 1-9

Decision-support queries (DSS)
bitmap indexes for 13-20
composite indexes for 13-27
disabling process priority aging

for 3-10
GK indexes for 13-23
index strategies for 9-57
monitoring resources allocated

for 12-18
monitoring threads for 12-44,

12-45
optimizing schema for 1-11
primary thread for 12-45
setting schedule admission

policy 4-14
use of temporary files 9-16

Default locale Intro-4
DELETE USING statement, to

delete rows based on a table
join 13-31

Demonstration databases Intro-5
Dependencies, software Intro-4
Detached index

creating 9-54
definition of 7-14
global, description of use 7-14
inadvertent 9-53
local, definition of 7-14

Disk access
for sequential scans 13-14
performance effect of 10-28

Disk layout, and table
isolation 6-14

Disk utilization, calculation
for 1-31

Disks
associate partitions with

chunks 5-4
estimated time for access 1-30
overuse of (saturation) 5-3

DISTINCT keyword, in index
creation 13-22

Distribution scheme
designing 9-24, 9-35
expression-based 9-23, 9-32
hash 9-29
hybrid 9-24, 9-34
methods listed 9-23 to 9-40
range 9-24
round-robin 9-23
system-defined hash 9-23, 9-29
table of schemes 9-24

Distribution statistics
margin of error in 13-10
See also UPDATE STATISTICS

statement.
Documentation notes Intro-13
Documentation, types of

documentation notes Intro-13
error message files Intro-12
machine notes Intro-13
on-line manuals Intro-11
printed manuals Intro-12
related reading Intro-13
release notes Intro-13

DS_MAX_QUERIES parameter
for OLTP 12-15
limiting number of queries 12-17
maximum queries 4-14

DS_TOTAL_MEMORY parameter
estimating requirement 4-16
for OLTP 12-15
formula to estimate 12-16
in index builds 7-22
shared memory available for DSS

queries 4-15

dtcurrent() ESQL/C function, to get
current date and time 1-24

Duplicate keys
avoiding in indexes 7-17
bitmap indexes for 7-8

E
Environment variables Intro-8

affecting I/O 5-13
DBSPACETEMP 5-10, 9-60
PDQPRIORITY 4-22
PSORT_DBTEMP 5-13

en_us.8859-1 locale Intro-4
Equality expression, definition

of 9-44
Error message files Intro-12
Exchange, in parallel

processing 11-10
EXPLAIN output. See SET

EXPLAIN.
Expression-based distribution

scheme
creating 9-32
definition of 9-23

EXTENT SIZE clause, in CREATE
TABLE statement 6-22

Extents
changing next-extent size 6-22
checking layout 6-25
definition of 6-21
estimating the number needed by

table 6-24
interleaved, definition of 6-25
limits 6-24
next-extent size 6-23
no more extents error 6-25
performance implications of

contiguity 6-21
preventing interleaving 6-26
reclaiming empty space in 6-29
size calculation for index 7-6
4 Performance Guide for Informix Extended Parallel Server

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
F
Feature icons Intro-10
Features of this product,

new Intro-5
File descriptors, UNIX-

dependent 3-6
Files, temporary sort 9-60
Fill factor, setting for indexes 7-8
Filter

columns 10-11
definition of 10-5
noninitial substring in 13-29
regular expressions in 13-28
selectivity estimates for 10-22
WHERE clause example 10-24

finderr utility Intro-12
Flex temporary table, description

of 9-59
Forced residency, description

of 4-23
Foreground write

caused by memory-resident
tables 6-47

implications of 5-22
onstat -F to monitor 5-22

Formula
bitmap index size 7-10
connections per poll thread 3-16
CPU utilization 1-28
data buffer size estimate 4-5
decision-support total

memory 4-15, 4-16
disk utilization 1-30
distance between duplicate

rowids for bitmap indexes 7-9
expected paging delay 1-30
file descriptors required 3-6
for number of extents 6-24
hash table size estimate 5-14
index-page estimate 7-7
initial stack size for threads 4-28
LOGSIZE estimate 5-24
memory for single query,

minimum and maximum 12-6
message portion of memory 4-7
number of remainder pages 6-17
operating-system shared memory

segments 4-8

partial remainder pages 6-18
RA_PAGES 5-20
RA_THRESHOLD 5-20
resident portion of shared

memory 4-5
RGM FAIR policy 12-9
rows per table page 6-16
semaphores required for database

server 3-5
service time for operation 1-27
shared-memory increment

size 4-25
simple-large-object pages 6-20
size of physical log 5-24
sort operation, costs of 10-26
table-page estimate 6-18

Fragment elimination
advantages of 9-13, 9-41
combinations for 9-48
distribution schemes for 9-26,

9-41
equality expressions 9-44
hash elimination 9-45, 9-46
in hybrid distribution

scheme 9-34
limitations of function

expressions in 9-25
query expressions for 9-42
range elimination 9-45
range expressions 9-43
when possible 9-25

Fragment ID
definition of 9-16
get table name for 9-71

Fragmentation
data skew, avoiding 9-12
distribution schemes for fragment

elimination 9-41
examining queries to determine

scheme 9-14
for finer granularity of backup

and restore 9-11
for increased availability of

data 9-10
formulating strategy 9-6 to 9-14
globally detached indexes 9-55
goal for joined tables 9-14
identifying goals of 9-7
index space required 9-16

information in system catalog
tables 2-14

monitoring 9-65 to 9-72
monitoring disk usage with

system catalog tables 9-71
monitoring I/O requests for

fragments 9-69
performance advantage of 9-5
planning storage for 9-15
primary purpose of 9-11
reducing contention 9-9
rowids in 9-15
specifying fragments that queries

can skip 9-10
sysfragments table

information 9-16
table name of fragment,

getting 9-71
temporary files, goal for 9-14
temporary table examples 9-58

Function, ESQL/C,
dtcurrent() 1-24

Fuzzy checkpoints, advantages
of 5-23

G
GK indexes

join indexes
description of 13-26
example of use 13-27

limitations of 13-24
selective index, description

of 13-24
types of 13-23
virtual-column index 13-25

Global Language Support
(GLS) Intro-4

and VARCHAR strings 6-43
costs of sorting and

indexing 10-33
GROUP BY clause

memory grants for 12-5
use of index for 10-24

Guidelines
amount of temporary space

required 5-14
for fragmentation strategy 9-6
Index 5

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
for temporary table space 5-10
table-type advantages 6-5 to 6-9
temporary dbspace

distribution 5-11, 5-13

H
Hash distribution scheme

advantages of 9-29
fragment elimination in 9-46
fragmenting on serial

column 9-31
Hash join

data skew caused by duplicate
join keys 10-9

efficiency of 10-8
memory grants for 12-5
monitoring instances 9-31
read-ahead buffers for

overflow 12-29
SET EXPLAIN output 10-15

Hybrid distribution scheme
advantages of 9-34
definition of 9-24
example 9-35

I
Icons

feature Intro-10
Important Intro-9
platform Intro-10
product Intro-10
Tip Intro-9
Warning Intro-9

IDX_RA_PAGES parameter,
described 5-19

IDX_RA_THRESHOLD parameter,
described 5-19

Important paragraphs, icon
for Intro-9

Indexes
attached, creating 9-52
bitmap

calculating size 7-8 to 7-11
description of 13-20
when efficient 7-9

B-tree cleaner 7-21
build performance,

improving 7-22
checking consistency 7-21
clustering 7-18
COARSE lock mode for 8-8
columns

choosing 7-16
ORDER BY and GROUP

BY 7-17
ordering in composite

index 13-22
composite for OLTP 13-23
creating 6-27
detached

creating 9-54
inadvertent 9-53
local or global, advantages

of 7-14
disk space used by 7-12, 13-14
drop, when to 6-31
duplicate keys, avoiding 7-17
estimating

bitmap index size 7-8
B-tree index size 7-6
extent size 7-6

fill factor specified 7-8
fragmentation advice for 9-57
free space in index page 7-21
GK

join 13-26
limitations of 13-24
selective 13-24
virtual column 13-25
when to use 13-23

integrity checks 7-21
isolation level for multiple-index

scans 13-15
join methods to replace 10-5,

10-13
key-only scan

for aggregate functions 13-19
query examples 13-19
when used 10-4

lock mode for 7-15
low-selectivity columns in 7-18
managing 7-11
modification-time cost of 7-12

multiple-index scans 7-14, 13-15
performance guidelines for 7-16
physical order of table rows, effect

of 10-14
queries that use multiple 13-15
rebuild, when to 7-19
rowid in fragmented table

index 9-16
subquery use of 10-16
trigger restrictions 7-15
when not used by

optimizer 10-32, 13-28
when used by optimizer 10-13,

10-24
Industry standards, compliance

with Intro-13
INFORMIXDIR/bin

directory Intro-5
In-place ALTER TABLE

performance implications 6-36
when not used 6-37
when used 6-34

Input-output
background activities 5-21
contention and high-use

tables 6-14
for tables, configuring 5-14
monitoring chunk reads and

writes 9-69
monitoring queues 3-13
overuse of disk (saturation) 5-3

INSERT INTO TABLE
statement 6-26

Interleaved extents
checking for 6-25
definition of 6-25

iostat command 2-6
ISO 8859-1 code set Intro-4
Isolation levels

ANSI Read Committed 8-10
ANSI Read Uncommitted 8-9
ANSI Serializable and Repeatable

Read 8-11
Committed Read, effect on

locks 8-10
Dirty Read, effect on locks 8-9
effect on query optimization 10-5
locks in Cursor Stability 8-11
locks in Repeatable Read 8-11
6 Performance Guide for Informix Extended Parallel Server

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
multiple-index scan
requirements 13-15

relation to query join
method 10-5

when light scans permitted 5-15
with RETAIN UPDATE LOCK

clause 8-13
ISOLATION_LOCKS configuration

parameter, purpose of 8-11
ISO_CURLOCKS parameter, set for

cursor stability 6-10

J
Join

collocated
across dbslice 9-18
definition of 9-30

hash 10-6
method

hash join 10-6
isolation level effect 10-5
nested-loop join 10-5
replacing index use 10-9

order 10-9
plan, description of 10-5
with column filters 10-11

Join column
in collocated joins 9-30
running UPDATE STATISTICS

on 13-12
Join index (GK), description

of 13-26

K
Kernel asynchronous I/O

(KAIO) 3-12
Key-only index scans

multiple-index scan
requirements 13-19

query examples of 13-19
when used 10-4

L
Leaf index pages, description of 7-5
Light append

description of 5-17
monitoring for 5-17
OPERATIONAL table with

trigger 6-4
table types for 6-4
with RAW tables and express

load 6-6
Light scan

effect of isolation level 5-15
for indexes 5-16
when it occurs 5-15

Load jobs
dropping indexes before, when

to 6-31
external tables that contain simple

large objects 6-33
light append with RAW

tables 6-6
monitoring time for 6-31
without indexes 6-32

LOAD statement
parallel inserts with 6-32
performance with index 6-32,

7-20
to reorganize dbspaces and

extents 6-26
to reorganize tables 6-27

Locale Intro-4
Locks

COARSE mode for indexes 8-8
concurrency effects on 8-4
Cursor Stability isolation 8-11
database locking 8-7
deadlocks, monitoring with

onstat -p 8-20
determined by

ISOLATION_LOCKS
parameter 8-11

Dirty Read isolation 8-9
duration and isolation level 8-9
granularity, definition of 8-4
in Committed Read isolation 8-10

indexes, lock mode for 7-15
key-value locking in deleted

rows 8-14
locking more than one row 6-10
maximum number of

simultaneous 4-19
monitoring across coservers 8-17
monitoring out-of-locks

errors 8-17
monitoring sessions for 8-18
page locking, description of 8-4
promotable in update

cursors 8-13
removing session for contention

problems 8-19
Repeatable Read isolation 8-11
row and key locking, description

of 8-4
specifying table lock mode 6-9
table locking, description of 8-5
types of, listed 8-15
wait period, setting 8-8

LOCKS configuration parameter
maximum simultaneous

locks 4-19
purpose of 8-17

Log buffers, monitoring size and
activity 5-26

LOGBUFF parameter
compared to PHYSBUFF 5-26
description of 4-20
effect on critical data 5-9

LOGFILES parameter, effect on
checkpoints 5-24

Logical log
buffer size 4-20
configuration parameters that

affect 5-9
mirroring 5-7
onlog utility, description of 2-9
specifying dbspace for 5-6
specifying size 5-24
viewing records 1-19

LOGSIZE parameter
compared to other critical data

parameters 5-24
effect on critical data 5-9
formula for estimating 5-24
Index 7

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
LOGSMAX parameter
effect on checkpoints 5-24
effect on critical data 5-9

Long transactions, setting
LTXHWM to manage 5-27

LRU queues, monitoring 5-28
LRUS parameter

effect on checkpoints 5-28
LRU queue behavior 5-28

LRU_MAX_DIRTYparameter, LRU
queue behavior 5-28

LRU_MIN_DIRTY parameter, LRU
queue behavior 5-28

LTXEHWM parameter, transaction
rollback management 5-27

LTXHWM parameter, transaction
rollback management 5-27

M
Machine notes Intro-13
MAX_PDQPRIORITY

description of 4-21
limiting PDQPRIORITY 12-14
query memory limited by 4-21

Memory
components in virtual portion 4-5
configuration parameters for 4-10
effect of UPDATE STATISTICS

on 4-6
estimate for sorting 7-23
estimating use 1-28 to 1-30
formula for

DS_TOTAL_MEMORY 4-16
freeing shared 4-9
granted by RGM 12-5
monitoring current shared

memory segments 4-25
overflow to disk,

preventing 12-29
specifying increment for shared

memory 4-24
Memory-resident tables

foreground writes caused by 6-47
monitoring with onstat -P 6-47
setting 6-47

Message file for error
messages Intro-12

MIDDLE clause, SQL
statement 13-33

Mirroring
for critical data 5-7
with ONDBSPDOWN

settings 5-25
MODIFY NEXT SIZE clause, for

table 6-22
Monitoring

buffer read-cache rate 4-13
checkpoints 5-23
chunks on specific coserver 9-70
command-line utilities for 2-6
data-dictionary cache use 6-10
dbspace name within

chunks 9-68
deadlocks 8-20
disk usage 9-66
fragmentation across

coservers 9-66
hash-join instances 9-31
I/O for dbspace 9-70
I/O in chunks and nonchunk

files 9-69
I/O queues 3-13
I/O write types 5-22
light appends 5-17
light scans 5-16
locks, onstat -u example 8-19
memory-resident tables 6-47
percent of dirty pages in LRU

queues 5-28
queries 12-16
query segments and SQL

operators 12-36
RGM resources 12-19 to 12-24
session resources 12-33
specific coserver 9-70
SQL by session 12-35
table fragment information 9-72
table reads and writes for

fragment 9-70
threads on specific coserver 12-44
using SET EXPLAIN 12-24
with sar 2-6

Multiple-index scans
example 13-17
isolation levels for 13-15
key-only scan requirements 13-19
when used 13-15

MULTIPROCESSOR parameter 3-9
Must-execute query

definition of 12-11
memory granted 12-11

N
Named pipes, FIF virtual

processors for 3-13
NCHAR data type 6-43
Nested-loop join 10-5
Network

as performance bottleneck 2-18
connection configuration

setting 3-14 to 3-17
connections configured 3-6

New features of this
product Intro-5

NOAGE parameter, disabling
priority aging 3-10

Node, description of 1-4
NOFILE, NOFILES, NFILE, or

NFILES UNIX configuration
parameters 3-6

NUMAIOVPS parameter 3-12
NUMCPUVPS parameter 3-9
NUMFIFOVPS parameter 3-13
NVARCHAR data type

calculating size of column 6-19
when to use 6-43

O
OFF_RECVRY_THREADS

configuration parameter 5-29
OLTP

application
distribution strategies for 9-29
fragmentation for increased

data availability 9-10
8 Performance Guide for Informix Extended Parallel Server

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
fragmentation to reduce
contention 9-9

index strategies for 9-57
reducing lock overhead for 8-8

maximizing throughput for 12-15
performance

composite indexes for 13-23
fragmentation goals for 9-7
isolation level and multiple

index use 13-15
SPL routines 10-33

ONDBSPDOWN configuration
parameter

and mirroring 5-25
description of 5-25

On-line manuals Intro-11
onlog utility

displaying logical log
contents 2-9

purpose of 1-19
onmode utility

and forced residency 4-24
-F option to free memory 4-9
-M, -Q, -D, and -S options to

change parameters
temporarily 12-17

-p option
adding AIO VPs 3-13
adding FIF VPs 3-13
starting VPs 3-17

-z option to kill sessions 8-19
onstat utility

-D option for monitoring disk
usage 9-68

-d option for space
information 9-66

description of 2-7
-F example 5-22
-f option for DATASKIP

setting 9-10
-g ath option

description of 12-32
example 12-45
monitoring hash joins 9-31
purpose 12-44

-g dfm option
data-skew monitoring 12-46
description 12-32

-g dic, monitoring data-dictionary
cache 6-11

-g iof to monitor disk reads and
writes 9-69

-g ioq option, monitoring I/O
queues 3-13

-g mem option, displaying
memory statistics 4-7

-g options listed 2-12
-g rgm csr option 12-24
-g rgm option

description of 12-31
example 12-19
for wait-queue

monitoring 12-19
monitoring query 12-16
queues and memory allocation

displayed 13-5
-g scn, monitoring light

scans 5-16
-g seg option for memory

segments 4-25
-g ses option

basic session information 13-5
description of 12-32
information displayed 12-35
monitoring session

resources 12-33
output example 12-34

-g sql option
description of 12-31
information displayed 12-36
output example 12-36
SQL statement information 13-5

-g xmf option
data skew monitoring 12-46
description of 12-32

-g xmp option
description of 12-36
information by SQL

operator 13-5
output sample 12-36, 12-37

-g xqp option
description of 12-31, 12-39
example 12-40
query segment

information 13-5

-g xqs option
description of 12-31, 12-43
for single query 12-27
query monitoring 13-13
query-segment

information 13-5
-k option

for lock-owner list 8-18
monitoring locks 8-16

-m option 5-23
monitoring

chunk I/O requests 9-69
deadlocks with onstat -p 8-20
fragmentation 9-66
hash-join instances 9-31
I/O for dbspace 9-70
locks 8-17
memory-resident tables with

onstat -P 6-47
query segments 12-31, 12-36
reads and writes for a table 9-71
reads and writes for

fragment 9-70
RGM resources 12-19 to 12-24
specific coserver 9-70
SQL by session 12-35
threads on specific

coserver 12-44
-P option, monitoring read

ahead 5-19
RGM wait-queue sample

output 12-9
-u option

description of 12-32
monitoring locks 8-17

onutil utility
and index size 7-8
check index integrity 7-21
CHECK SPACE option 6-25
CHECK TABLE option 7-21
CREATE example for collocated

joins 9-34
CREATE TEMP DBSLICE

option 9-61
CREATE TEMP DBSPACE

option 9-61
determining free space in

index 7-21
Index 9

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
DISPLAY TABLE option 6-15
monitoring chunks and

extents 2-13
monitoring growth of tables 6-23

ON_RECVRY_THREADS
configuration parameter 5-29

Operating system
semaphores required 3-4
timing commands 1-23

OPERATIONAL table type,
advantages and disadvantages
of 6-7

Optimization level, setting for best
performance 13-36

Optimizer. See Query Optimizer.
ORDER BY clause, in query 10-24

P
Page buffer, effect on

performance 10-28
Page cleaning

configuration parameters that
affect 5-27

effect on performance 5-22
specifying number of

threads 5-27
PAGESIZE configuration

parameter, specifying page size
for the database server 4-21

Paging
calculating expected delay 1-30
definition of 1-29

Parallel
execution, enhanced 1-6
inserts, effect of indexes on 6-32
processing, definition of 11-3
sort

threads 11-21
when used 11-23

Parallel database query
allocating resources for 12-14
and correlated subqueries 11-25
description of 11-4
effect of table fragmentation 11-3
estimating shared memory

for 12-16

monitoring resources allocated
for 12-18

multiple CPU VPs, effect of 11-15
on multiple coservers 11-15
on single coserver 11-15
user control of resources 12-13
when not used 11-27

Parallelism
degree of, definition 11-5
factors that affect 11-15
fragmentation for maximum 9-11

Participating coserver
definition of 1-6
x_exec thread 11-13

Partitioning. See Fragmentation.
PDQPRIORITY

adjusting to prevent memory
overflow 12-29

configuration parameter
syntax 4-22

description of 4-22 to 4-23
environment variable syntax 4-22
limited by

MAX_PDQPRIORITY 12-14
minimum if not set 4-23
query admission policy, used

in 12-10
setting in SPL routines 11-20
SQL statement syntax 4-23
user control of setting 12-13

Performance
effect of

contiguous extents 6-25
correlated subquery 10-16
data mismatch 10-32
dbslices 9-19
disk access 10-28 to 10-29
duplicate index keys 7-18
filter expression 13-28
filter selectivity 10-22
index modification 7-12
indexes 7-16 to 7-17
redundant data 6-46
regular expressions 13-28
sequential access 13-14
specifying optimization

level 13-36
table size 13-14
temporary tables 13-34

goals, specifying 1-16
improving table update 6-31, 7-19
network bottleneck

problems 2-18
problem indications 1-14
problems caused by system

jobs 2-18
problems related to backup and

restore 2-18
Phantom rows, discussed 8-10
PHYSBUFF parameter 4-23, 5-26
PHYSFILE parameter 5-24
Physical log

buffer size 4-23
configuration parameters that

affect 5-9
estimating size of 5-24
mirroring 5-8
size related to checkpoints 5-24
specifying size of 5-24

Pipes, monitoring AIO read/write
with onstat -g ioq 3-13

Platform icons Intro-10
Printed manuals Intro-12
Priority aging, disabling 3-10
Processor affinity

description of 3-11
setting 3-11
when to use 3-11

Producer thread, definition of 11-6
Product icons Intro-10
PSORT_DBTEMP environment

variable 5-13

Q
Queries

assessing filters in 10-22
costs

data mismatch 10-32
fragmentation 10-33
GLS functionality 10-33
nonsequential access 10-29
row access 10-27
time 10-25

filter selectivity, improving 13-27
filters with regular

expressions 13-28
10 Performance Guide for Informix Extended Parallel Server

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
for fragment elimination 9-48
monitoring for data skew 13-5
monitoring resource use of 12-18
noninitial substrings in

filters 13-29
priority policy set 4-14
scan threads allocated for 3-8
temporary files used by 9-16

Query optimizer
and hash join 10-6
and SET OPTIMIZATION

statement 13-36
autoindex path 13-15
data distributions used by 13-9
index not used by 13-28
specifying HIGH or LOW level of

optimization 13-36
use of system catalog tables 10-21

Query plan
autoindex path 13-15
description of 10-4
displaying statistics for 12-40
displaying with SET

EXPLAIN 10-14, 12-24
in pseudocode 10-10
use of indexes in 10-13

R
Range distribution scheme,

description of 9-24
Range elimination, fragmentation

for 9-45
Range expression, definition

of 9-43
RAW table type, advantages and

disadvantages of 6-5
RA_PAGES parameter

described 5-19
onstat -P output to monitor and

adjust 5-19
RA_THRESHOLD parameter 5-19
Read cache rate, relation to

BUFFERS setting 4-13
Read-ahead

definition of 5-15
tuning and monitoring 5-19

Rebuilding index, reasons for 7-19

Recovery, configuration parameters
that affect 5-28

Redundant data, introduced for
performance 6-46

Redundant pairs, definition
of 10-20

Regular expression, effect on
performance 13-28

Related reading Intro-13
Release notes Intro-13
RESIDENT memory parameter,

setting 4-23
Resizing table to reclaim empty

space 6-29
Resource use

and performance 1-25
balancing across coservers 9-12
capturing data about 1-34
description of 1-26
estimating CPU 1-28
factors that affect 1-32
memory 1-28
temporary changes to

limits 12-17
Response time

description of 1-20
measuring 1-23

RETAIN UPDATE LOCK clause,
for isolation-level lock
efficiency 8-13

Rewritten subquery, SET EXPLAIN
output 10-18 to 10-19

RGM (Resource Grant Manager)
admission policy levels 12-8
description of 12-3
memory-grant factors 12-5
monitoring resources managed

by 12-18
PDQPRIORITY and query

admission 12-10
query admission policies 12-7
transactions not managed by 12-4

rofferr utility Intro-12
Root

dbspace configuration
parameters 5-9

index page, definition of 7-5

Round-robin distribution scheme,
description of 9-23

Row access cost, description
of 10-27

Rowids, in fragmented tables 9-15

S
sales_demo database Intro-5
Sample-code conventions Intro-10
sar command

for memory management 4-13
to display resource statistics 2-6

Saturation, definition of 5-3
Scalability, features for 1-8
Scans

light, discussed 5-15
sequential, discussed 5-15

Scheduling
cron facility 4-10
setting DSS query admission

policy 4-14
SCRATCH table, definition of 9-58
Seek time, definition of 10-28
SELECT INTO EXTERNAL

statement 6-26
SELECT statement,

examples 10-14 to 10-20
Selective index (GK), description

of 13-24
Selectivity

and indexed columns 7-18
definition of 10-22
estimates for filters 10-22
improving for filter 13-28
of filter, description of 10-22

Semaphores, required for database
server 3-4

SEMMNI UNIX configuration
parameter 3-4

SEMMNS UNIX configuration
parameter 3-5

SEMMSL UNIX configuration
parameter 3-4

SENDEPDS configuration
parameter, adjusting for
interconnect resends 12-53

Service time formula 1-27
Index 11

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Session
ID in query-monitoring

output 12-37
monitoring 2-11
onmode -z to kill 8-19

SET DATASKIP statement 9-10
SET EXPLAIN

determining UPDATE
STATISTICS 13-12

displaying query plan 10-14
for data-access information 9-14
for query analysis 12-24
hash join in output 10-15, 10-16
output example 12-25
query statistics in output, example

of 12-28
rewritten subquery in

output 10-18 to 10-19
showing join rows returned 13-12
small-table broadcast in

output 11-14
temporary tables in output 10-31

SET LOCK MODE TO WAIT
statement, effect of 8-18

SET LOG statement, purpose
of 1-19

Shared memory
allocating for database

server 4-3 to 4-7
configuring UNIX 4-8
estimating amount for DSS

queries 4-15, 12-16
estimating amount for

sorting 7-23
freeing 4-9
limiting for DSS queries 4-15
monitoring current

segments 4-25
parameters

SHMADD 4-24
SHMTOTAL 4-26
SHMVIRTSIZE 4-27

required for sorting 11-22
required for sorting in index

build 7-22
setting upper size limit 4-26
specifying size of increments 4-24

SHMADD parameter, specifying
memory increments 4-24

SHMSEG UNIX configuration
parameter 4-9

SHMTOTAL parameter
limiting shared memory for

coserver 4-26
SHMVIRTSIZE parameter,

specifying initial size of shared
memory 4-27

Simple large objects
estimating dbspace pages for 6-20
estimating tblspace pages

for 6-20
loading and unloading from

external tables 6-33
SINGLE_CPU_VP parameter,

setting 3-10
Size, estimating

data page contents 6-16
of NVARCHAR 6-19
of pages for simple large

objects 6-20
of tables 6-15
of TEXT data columns 6-16
of VARCHAR 6-19
table with variable-length

rows 6-18
Skew. See Data skew.
Skip scans, reported in onstat -g

scn 5-16
Small-table broadcast

importance of UPDATE
STATISTICS 11-14

SET EXPLAIN output 11-14
size of table for 11-13

SMI (system-monitoring interface)
tables

compared with system catalog
tables 2-7

description of 2-7
Software dependencies Intro-4
Sort memory

estimating for index builds 7-23
for UPDATE STATISTICS 11-24

Sorting
avoiding repeated 13-34
effect on performance 13-34
estimating temporary space

for 7-24
memory estimate for 7-23

sort files 5-10
using temporary table to

avoid 13-34
SPL routines

PDQPRIORITY settings in 11-20
preexecution of 10-35
when executed 10-34
when optimized 10-34

sqexplain.out file
description of 10-14
example

hash joins 10-16
query statistics 12-28
small-table broadcast 11-14

SQL code Intro-10
SQL extensions

CASE statement 13-32
for performance

improvements 13-30
MIDDLE clause 13-33

SQL operators
description of 11-6 to 11-13
list of 11-7

SQLCODE field of SQL
Communications Area, return
codes in 6-44

SQLWARN array, for data
skipping 5-20

STACKSIZE parameter, size of
thread stacks 4-27

STANDARD table type, advantages
and disadvantages of 6-5

STATIC table type, advantages and
disadvantages of 6-6

Stored procedure. See SPL routine.
stores_demo database Intro-5
Strings, expelling long 6-43
Structured Query Language (SQL)

ALTER FRAGMENT
statement 6-13, 6-30

ALTER TABLE statement 6-22,
6-29, 6-30

CLUSTER clause 6-28
COMMIT WORK statement 1-19
CONNECT statement 5-5
CREATE EXTERNAL TABLE

statement 6-26
CREATE INDEX statement 6-27
12 Performance Guide for Informix Extended Parallel Server

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
CREATE TABLE statement 6-13,
6-22

DATABASE statement 5-5
DELETE USING statement 13-31
DISTINCT keyword 13-22
EXTENT SIZE clause 6-22
GROUP BY clause 10-24
INSERT INTO TABLE

statement 6-26
LOAD and UNLOAD

statements 6-26, 6-32, 7-20
LOAD statement 6-27
MODIFY NEXT SIZE clause 6-22
NEXT SIZE clause for

extents 6-22
ORDER BY clause 10-24
SELECT INTO EXTERNAL

statement 6-26
SELECT statement 10-20
SET DATASKIP statement 9-10
SET EXPLAIN statement 10-14
TO CLUSTER clause 6-27
TRUNCATE TABLE

statement 13-30
UPDATE STATISTICS

statement 4-6, 10-21, 13-8,
13-9, 13-11, 13-12

WHERE clause 10-24
Subqueries

nested, and parallel
processing 11-25

uncorrelated, and parallel
processing 11-26

Symbol table, when to build 6-44
sysfragments table, columns

described 9-71
sysptprof SMI table, monitoring

tblspace activity 9-72
System catalog tables

compared with SMI tables 2-7
disk space required for 5-5
fragmentation-monitoring

information 9-70
monitoring fragmentation 2-14
sysdistrib, how optimizer

uses 13-9
sysfragments table 9-16
updating statistics in 10-21

System maintenance, conflicts with
database server use 2-18

System requirements
database Intro-4
software Intro-4

System-defined hash distribution
scheme, description of 9-23

T
Table types

chart of 6-4
OPERATIONAL 6-7
RAW 6-5
SCRATCH 9-58
STANDARD 6-5
STATIC 6-6
TEMP 6-9
temporary tables, definitions

of 9-58
Tables

adding redundant data 6-46
assigning to dbspace 6-13
backup of nonlogging type before

conversion 6-6
companion table

costs 6-42
for long strings 6-43

configuring I/O for 5-14
deleting all rows with

TRUNCATE TABLE
statement 13-30

estimating
data pages 6-16
index pages 7-6
simple large objects in

dbspace 6-20
size with fixed-length rows 6-16
size with variable-length

rows 6-18
expelling long strings 6-43
extent management 6-21
external, simple large objects

in 6-33
fragmentation

strategy 9-6 to 9-14

fragmentation, performance
advantage of 9-5

frequently updated columns 6-45
infrequently accessed

columns 6-45
loading and unloading 6-31
memory-resident 6-47
monitoring I/O for

fragments 9-69
placement on disk 6-12
reducing contention

between 6-14
redundant and derived data 6-46
row width, effect of 6-42, 6-45
specifying lock mode 6-9
table name for fragment 9-71
temporary

explicit 6-8
implicit 6-7

types. See Table types.
using SMI tables to monitor

activity 9-72
Tblspace

definition of 6-15
ID for fragmented table 9-16

TCP/IP buffers, specifying 4-13
Temporary changes to resource

limits, using onmode 12-17
Temporary dbspaces

creating with onutil 5-11, 9-60
for index builds 7-22
guidelines for creating 5-11
required for index builds 7-24
specifying logging dbspaces

for 5-10
specifying multiple 11-23
when used 5-10

Temporary tables
dbspaces for 5-10
explicit 6-8
explicit, created WITH NO

LOG 6-9
flex type 9-59
flexible, definition of 9-59
fragmentation methods for 9-58
how used 6-7 to 6-9, 9-58
implicit 6-7
in SET EXPLAIN output 10-16,

10-31
Index 13

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
reducing sorting scope 13-34
rules for configuring space

for 5-10
TEXT data type

estimating size 6-16
used in columns 6-43

Thrashing, definition of 1-29
Threads

consumers, definition of 11-6
DEFUNCT status of 12-45
monitoring for session 12-35
monitoring with onstat 12-43
number for each CPU VP 3-8
producers, definition of 11-6

Throughput
benchmarks 1-18
contrasted with response

time 1-22
definition of 1-18
measured by logged COMMIT

WORK statements 1-19
measuring with onstat

-p 1-19
Time

getting current 1-24
getting user, system, and

elapsed 1-24
Timing

commands 1-23
functions 1-24
performance monitor 1-24

Tip icons Intro-9
TO CLUSTER clause 6-27
TPC-A, TPC-B, TPC-C, and TPC-D

benchmarks 1-18
Transaction Processing

Performance Council
(TPC) 1-18

Transactions
configuration parameters that

affect rollback 5-27
financial cost 1-25
per second, per minute 1-18
See also OLTP.

Trigger
restriction for table with globally

detached index 7-15
restrictions for OPERATIONAL

table 6-4
TRUNCATE TABLE statement, to

remove all rows from a
table 13-30

U
Uncorrelated subquery, definition

of 11-26
UNIX

file descriptor requirement 3-6
NOFILE, NOFILES, NFILE, or

NFILES configuration
parameter 3-6

SEMMNI configuration
parameter 3-4

SEMMNS configuration
parameter 3-5

SEMMSL configuration
parameter 3-4

SHMSEG configuration
parameter 4-9

UNIX commands
iostat 2-6
ps 2-6
sar 2-6
time 1-23
vmstat 2-6

UNIX monitor, 3dmon 2-6
UNLOAD statement 6-26
Update cursors, locks in 8-12
UPDATE statement, dummy to

force table conversion 6-36
UPDATE STATISTICS statement

effect on memory
requirements 4-6

HIGH mode
for indexed columns 13-11
for join columns 13-12

importance for balancing
workload 11-14

improving query
performance 13-8

LOW mode 13-11
LOW mode, when to run 13-9
MEDIUM mode, when to

run 13-11
on join columns 13-12
parallel execution 11-24
purpose of 10-21
RESOLUTION clause in 13-10
setting BUFFERS to improve

performance 4-13
sort memory 11-24

USEOSTIME configuration
parameter, performance
issues 5-25

Users, types of Intro-3
Utilities

dbschema 9-14, 9-32, 13-10
onlog 1-19, 2-9
onmode

and forced residency 4-24
-F option to free memory 4-9
-M, -Q, -D, and -S options 12-17
-p option to add AIO VPs 3-13
-p option to add FIF VPs 3-13
-p option to start VPs 3-17

onstat
description of 2-7
-g ioq option to monitor I/O

queues 3-13
-g mem option to display

memory statistics 4-7
-g rgm option 12-16
-g seg option for memory

segments 4-25
-g xqp option 12-39
-m option 5-23

onutil
and index size 7-8
CHECK INDEX option 7-21
CHECK SPACE option 6-25
DISPLAY TABLE option 6-15
monitoring chunks and

extents 2-13
xctl. See xctl utility.
See also individual utilities.
14 Performance Guide for Informix Extended Parallel Server

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
V
VARCHAR data type

calculating size 6-19
GLS cost of 10-33
GLS information for 6-43
when to use 6-43

Variable-length rows, estimating
table size 6-18

Virtual memory, components
in 4-5

Virtual portion of shared memory,
specified 4-27

Virtual processors (VPs)
adding AIO 3-13
adding FIF 3-13
relation to CPU use 3-17
starting additional 3-17
threads allocated for 3-8

Virtual-column index (GK),
description of 13-25

VLDB (Very Large Database),
options for 1-6

vmstat command
displaying virtual-memory

statistics 2-6
for memory management 4-13

W
Warning icons Intro-9

X
xctl utility

displaying all executing
threads 12-44

displaying query plan across
coservers 12-39

displaying threads for
session 12-35

monitoring locks across
coservers 8-17

monitoring SQL operators 13-5
purpose of 2-6
with onlog 2-7

X/Open compliance level Intro-13
Index 15

	Answers OnLine Web Site
	Table of Contents
	Introduction
	In This Introduction
	About This Manual
	Types of Users
	Software Dependencies
	Assumptions About Your Locale
	Demonstration Databases

	New Features
	Data-Migration Enhancements
	Configuration Enhancements
	Table-Fragmentation Enhancements
	Performance Enhancements
	New SQL Functionality
	Utility Features
	Version 8.3 Features from Version 7.30

	Documentation Conventions
	Typographical Conventions
	Icon Conventions
	Feature, Product, and Platform Icons

	Sample-Code Conventions

	Additional Documentation
	On-Line Manuals
	Printed Manuals
	Error Message Documentation
	Documentation Notes, Release Notes, Machine Notes
	Related Reading

	Compliance with Industry Standards
	Informix Welcomes Your Comments
	Performance Basics
	In This Chapter
	Parallel Processing
	Parallel-Processing Architecture
	Performance Advantages
	Enhanced Parallel Access
	Enhanced Parallel Execution
	Scalability

	Decision Support
	Decision-Support Applications
	Decision-Support Environments
	Schemas for DSS Queries

	Dedicated Test Systems
	Basic Approach to Performance Measurement and Tuning
	Performance Goals
	Performance Measurements
	Resource Utilization
	Throughput
	Industry-Standard Throughput Benchmarks
	Throughput Measurement

	Response Time
	Response Time and Throughput
	Response-Time Measurement

	Financial Cost of a Transaction

	Resource Utilization and Performance
	Resource Utilization
	CPU Utilization
	Memory Utilization
	Disk Utilization

	Factors That Affect Resource Use

	Maintenance of Good Performance
	Topics Beyond the Scope of This Manual
	Performance Monitoring
	In This Chapter
	Evaluating Your Current Configuration
	Creating a Performance History
	Importance of a Performance History
	Tools That Create a Performance History
	Operating-System Tools
	Command-Line Utilities

	Monitoring Database Server Resources
	Monitoring Sessions
	Monitoring Memory Use
	Monitoring Data Distribution and Table Fragmentation Use
	Monitoring Data Distribution over Fragments
	Balancing I/O Requests over Fragments
	Querying System Catalog Tables for Table-Fragment Information
	Monitoring Chunks

	Monitoring Data Flow Between Coservers

	Monitoring Sessions and Queries
	Monitoring Sessions
	Monitoring Queries
	Using SET EXPLAIN
	Using onstat -g Options

	Performance Problems Not Related to the Database Server
	Effect of Configuration on CPU Use
	In This Chapter
	UNIX Parameters That Affect CPU Use
	UNIX Semaphore Parameters
	UNIX File-Descriptor Parameters
	UNIX Memory-Configuration Parameters

	Configuration Parameters and Environment Variables That Affect CPU Use
	NUMCPUVPS, MULTIPROCESSOR, and SINGLE_CPU_VP
	NUMCPUVPS
	MULTIPROCESSOR
	SINGLE_CPU_VP

	NOAGE
	AFF_NPROCS and AFF_SPROC
	NUMAIOVPS
	NUMFIFOVPS
	PSORT_NPROCS
	NETTYPE

	Virtual Processors and CPU Use
	Effect of Configuration on Memory Use
	In This Chapter
	Allocating Shared Memory for the Database Server
	Resident Portion
	Virtual Portion
	Message Portion

	Configuring Shared Memory
	Freeing Shared Memory
	Configuration Parameters That Affect Memory Use
	BUFFERS
	DS_ADM_POLICY
	DS_MAX_QUERIES
	DS_TOTAL_MEMORY
	LOCKS
	LOGBUFF
	MAX_PDQPRIORITY
	PAGESIZE
	PDQPRIORITY
	PHYSBUFF
	RESIDENT
	SHMADD
	SHMBASE
	SHMTOTAL
	SHMVIRTSIZE
	STACKSIZE

	Effect of Configuration on I/O
	In This Chapter
	Chunk and Dbspace Configuration
	Associate Disk Partitions with Chunks
	Associate Dbspaces with Chunks

	Management of Critical Data
	Separate Disks for Critical Data
	Mirroring for Critical Data
	Mirroring the Root Dbspace
	Mirroring the Logical Log
	Mirroring the Physical Log

	Configuration Parameters That Affect Critical Data

	Dbspaces for Temporary Tables and Sort Files
	DBSPACETEMP Configuration Parameter
	DBSPACETEMP Environment Variable
	Temporary Space Estimates

	I/O for Tables and Indexes
	Sequential Scans
	Light Scans
	Light Appends
	Unavailable Data
	Configuration Parameters That Affect I/O for Tables and Indexes
	ISOLATION_LOCKS
	RA_PAGES, IDX_RA_PAGES, RA_THRESHOLD, and IDX_RA_THRESHOLD
	DATASKIP

	Background I/O Activities
	Configuration Parameters That Affect Checkpoints
	CKPINTVL
	LOGFILES, LOGSIZE, �LOGSMAX, and PHYSFILE
	ONDBSPDOWN
	USEOSTIME

	Configuration Parameters That Affect Logging
	LOGBUFF and PHYSBUFF
	LTXHWM and LTXEHWM

	Configuration Parameters That Affect Page Cleaning
	CLEANERS
	LRUS, LRU_MAX_DIRTY, and LRU_MIN_DIRTY

	Configuration Parameters That Affect Fast Recovery

	Table Performance
	In This Chapter
	Choosing Table Types
	Using STANDARD Tables
	Using RAW Tables
	Using STATIC Tables
	Using OPERATIONAL Tables
	Using Temporary Tables
	Implicit Temporary Tables
	Explicit Temporary Tables

	Specifying a Table Lock Mode
	Monitoring Table Use

	Specifying Table Placement
	Assigning Tables to Dbspaces
	Moving Tables and Table Fragments to Other Dbspaces
	Managing High-Use Tables

	Improving Table Performance
	Estimating Table Size
	Estimating Data Page Size
	Estimating Dbspace Pages for Simple Large Objects

	Managing Extents
	Choosing Extent Sizes
	Limiting the Number of Extents for a Table
	Checking for Extent Interleaving
	Eliminating Interleaved Extents
	Reclaiming Unused Space in an Extent

	Changing Tables
	Loading and Unloading Tables
	Dropping Indexes Before You Load or Update Tables
	Using External Tables to Load and Unload Simple Large Objects

	Attaching or Detaching Fragments
	Altering a Table Definition
	In-Place ALTER TABLE
	Slow ALTER TABLE
	Fast ALTER TABLE

	Denormalizing the Data Model to Improve Performance
	Creating Companion Tables
	Using Shorter Rows for Faster �Queries
	Expelling Long Strings

	Building a Symbol Table
	Splitting Wide Tables
	Dividing by Bulk
	Dividing by Frequency of Use
	Dividing by Frequency of Update

	Adding Redundant Data
	Adding Redundant Data to Tables
	Adding Redundant Tables

	Keeping Small Tables in Memory

	Index Performance
	In This Chapter
	Choosing Index Types
	Generalized Key Indexes
	Structure of a B-Tree Index

	Estimating Index Page Size
	Estimating Conventional Index Page Size
	Estimating Bitmap Index Size

	Managing Indexes
	Evaluating Index Costs
	Disk-Space Costs
	Update-Time Costs

	Choosing an Attached or Detached Index
	Setting the Lock Mode for Indexes
	Choosing Columns for Indexes
	Indexing Filter Columns in Large Tables
	Indexing Order-By and Group-By Columns
	Avoiding Columns with Duplicate Keys

	Clustering Indexes
	Dropping Indexes
	Dropping Indexes Before Table Updates

	Maintaining Index Space Efficiency
	Increasing Concurrency During Index Checks

	Improving Performance for Index Builds
	Estimating Sort Memory
	Estimating Temporary Space for Index Builds

	Locking
	In This Chapter
	Locking Granularity
	Row and Key Locking
	Page Locking
	Table Locking
	Using the LOCK TABLE Statement
	Using the LOCK MODE TABLE Option
	When the Database Server Locks the Table

	Database Locking
	Setting COARSE Locking for Indexes
	Waiting for Locks

	Locking with the SELECT Statement
	Setting the Isolation Level
	Dirty Read Isolation
	Committed Read Isolation
	Cursor Stability Isolation
	Repeatable Read Isolation

	Locking and Update Cursors

	Placing Locks with INSERT, UPDATE, and DELETE
	Key-Value Locking
	Monitoring and Administering Locks
	Monitoring Locks
	Configuring and Monitoring the Number of Locks
	Monitoring Lock Waits and Lock Errors
	Monitoring Deadlocks
	Reducing Deadlocks

	Fragmentation Guidelines
	In This Chapter
	Planning a Fragmentation Strategy
	Identifying Fragmentation Goals
	Improving Query Performance
	Reducing I/O Contention
	Increasing Data Availability
	Increasing Granularity for Backup and Restore

	Evaluating Fragmentation Factors for Performance
	Balancing Processing Across All Coservers
	Fragmenting Tables Across Coservers
	Eliminating Fragments for Fast Queries and Transactions

	Examining Your Data and Queries
	Planning Storage Spaces for Fragmented Tables and Indexes

	Creating Cogroups and Dbslices for Fragmentation
	Creating Cogroups and Dbslices
	Increasing Parallelism by Fragmenting Tables Across Coservers
	Using Dbslices for Performance and Ease of Maintenance
	Creating Dbslices for Collocated Joins
	Creating Dbslices to Increase Data Granularity
	Creating Dbslices for Temporary Files

	Designing a Distribution Scheme
	Choosing a Distribution Scheme
	Choosing a Distribution Scheme for DSS Applications
	Choosing a Distribution Scheme for OLTP Applications

	Creating a System-Defined Hash Distribution Scheme
	Ensuring Collocated Joins
	Fragmenting on a Serial Column

	Creating an Expression-Based Distribution Scheme
	Creating a Hybrid Distribution Scheme
	Creating a Range Distribution Scheme
	Altering a Fragmentation Scheme
	General Fragmentation Notes and Suggestions

	Designing Distribution for Fragment Elimination
	Queries for Fragment Elimination
	Range Expressions in Query
	Equality Expressions in Query

	Types of Fragment Elimination
	Range Elimination
	Hash Elimination

	Query and Distribution Scheme Combinations for Fragment Elimination
	System-Defined Hash Distribution Scheme
	Hybrid Distribution Scheme

	Fragmenting Indexes
	Attached Indexes
	Detached Indexes
	Constraints on Indexes for Fragmented Tables
	Indexing Strategies for DSS and OLTP Applications

	Fragmenting Temporary Tables
	Letting the Database Server Determine the Fragmentation
	Specifying a Fragmentation Strategy
	Creating and Specifying Dbspaces for Temporary Tables and Sort Files

	Attaching and Detaching Table Fragments
	Improving ALTER FRAGMENT ATTACH Performance
	Formulating Appropriate Distribution Schemes
	Specifying Similar Index Characteristics

	Improving ALTER FRAGMENT DETACH Performance

	Monitoring Fragmentation
	Monitoring Fragmentation Across Coservers
	xctl onstat -d
	xctl onstat -D
	xctl onstat -g iof

	Monitoring Fragmentation on a Specific Coserver
	xctl -c n onstat -g iof
	xctl -c n onstat -g ppf
	sysfragments System Catalog Table
	sysptprof System-Monitoring Interface Table

	Queries and the Query Optimizer
	In This Chapter
	Query Plan
	Access Plan
	Join Plan
	Nested-Loop Join
	Hash Join

	Join Order
	Three-Way Join
	Join with Column Filters
	Join with Indexes

	Display and Interpretation of the Query Plan
	Query Plans for Subqueries

	Query-Plan Evaluation
	Statistics Used to Calculate Costs
	Query Evaluation
	Filter Selectivity Evaluation
	Index Evaluation

	Time Costs of a Query
	Memory-Activity Costs
	Sort-Time Costs
	Row-Reading Costs
	Sequential-Access Costs
	Nonsequential-Access Costs
	Index-Lookup Costs
	In-Place ALTER TABLE Costs
	View Costs
	Small-Table Costs
	Data-Mismatch Costs
	GLS Functionality Costs
	Fragmentation Costs

	SQL in SPL Routines
	Optimization of SQL
	Execution of SPL Routines

	Parallel Database Query Guidelines
	In This Chapter
	Parallel Database Queries
	High Degree of Parallelism
	Structure of Query Execution
	SQL Operators
	Exchanges
	Parallel Processing Threads

	Balanced Workload

	Optimizer Use of Parallel Processing
	Decision-Support Query Processing
	Parallel Data Manipulation Statements
	Parallel Inserts into Temporary Tables

	Parallel Index Builds
	Parallel Processing and SPL Routines
	SQL Statements That Contain a Call to an SPL Routine
	SQL Statements in an SPL Routine

	Parallel Sorts
	Query Execution on a Single Coserver
	Query Execution on Multiple Coservers
	Other Sort Operations

	Parallel Execution of UPDATE STATISTICS
	Parallel Execution of onutil Commands
	Correlated and Uncorrelated Subqueries
	Parallel Execution of Nested Correlated Subqueries
	Parallel Execution of Uncorrelated Subqueries

	SQL Operations That Are Not Processed in Parallel
	Processing OLTP Queries

	Resource Grant Manager
	In This Chapter
	Coordinating Use of Resources
	How the RGM Grants Memory

	Scheduling Queries
	Setting Scheduling Levels
	Using the Admission Policy
	Specifying the Admission Policy
	Understanding the Effect of PDQPRIORITY on Query Admission

	Processing Local Queries
	Managing Must-Execute Queries

	Managing Resources for DSS and OLTP Applications
	Controlling Parallel-Processing Resources
	Requesting Memory
	Limiting the Memory That a Single DSS Query Uses
	Maximizing DSS Use of Memory
	Maximizing OLTP Throughput
	Adjusting Total Memory for DSS Queries
	Limiting the Maximum Number of Queries

	Changing Resource Limits Temporarily

	Monitoring Query Resource Use
	Monitoring Queries That Access Data Across Multiple Coservers
	Monitoring RGM Resources on a Single Coserver
	Using SET EXPLAIN to Analyze Query Execution
	Displaying SQL Operator Statistics in the Query Plan
	Adjusting PDQPRIORITY Settings to Prevent Memory Overflow

	Using Command-Line Utilities to Monitor Queries
	Monitoring SQL Information by Session
	Monitoring Query Segments and SQL Operators
	Monitoring SQL Operator Statistics
	Monitoring User Threads and Transactions
	Monitoring Data Flow Between Coservers

	Improving Query and Transaction Performance
	In This Chapter
	Evaluating Query Performance
	Monitoring Query Execution
	Improving Query and Transaction Performance
	Maintaining Statistics for Data Distribution and Table Size
	Updating the Number of Rows
	Creating Data-Distribution Statistics

	Using Indexes
	Preventing Repeated Sequential Scans of Large Tables
	Replacing Autoindexes with Permanent Indexes
	Using Multiple Indexes on the Same Table
	Using Key-Only Scans of Indexes
	Using Bitmap Indexes
	Using Composite Indexes
	Using Generalized-Key Indexes

	Improving Filter Selectivity
	Avoiding Difficult �Regular �Expressions
	Avoiding Noninitial Substrings
	Improving Aggregate Statement Performance

	Using SQL Extensions for Increased Efficiency
	TRUNCATE TABLE Statement
	DELETE USING Statement
	CASE Statement
	MIDDLE Clause

	Reducing the Effect of Join and Sort Operations
	Avoiding or Simplifying Sort Operations
	Using Temporary Tables to Reduce Sorting Scope
	Using Join Indexes

	Reviewing the Optimization Level
	Reviewing the Isolation Level
	Setting Isolation Levels for DSS Queries
	Setting Isolation Levels for Transaction Processing

	Index

