
PLATO User Guide
Current version: PLATO 2.1

Last modified: June 2015

Ritchie Lab, Center for Systems Genomics

Pennsylvania State University, University Park, PA 16802

URL: https://ritchielab.psu.edu/

Email: software@ritchielab.psu.edu

mailto:software@ritchielab.psu.edu

Table of Contents
Overview...3

Examples...4

PLATO Quick Reference...5

Installation..6
Prerequisites..6
Unpacking...6
Configuration...6
Compilation and Installation...6

Running PLATO..7
Parallel Options...7
Special Options..8
Global Options..8

Commands..9
batch..9
concordance...9
filter-maf..11
filter-marker-call..11
filter-sample-call..11
filter-trait-missing..11
linear..12
load-categorical...15
load-data..16
load-trait..20
logistic...22
output-beagle...22
output-bed..23
output-eigenstrat..24
output-ped..24
output-tped...25
recode-alleles...25
regress-auto...26

Advanced Topics...27
Pre-Filtering Data..27
Permutation Testing...28
Model Generation for Regression...30

Overview

PLATO (the PLatform for the Analysis, Translation, and Organization of large-scale data) is analysis
software designed to efficiently and easily analyze genome-wide genetic data. PLATO is designed to
be both modular and extensible, making it easy to adapt to the ever-changing analysis requests of
bioinformaticians.

The core functionality of PLATO is encapsulated in a series of commands, specified by the user. Each
command is processed serially, either analyzing, loading, or printing genotypic data. By stringing
together a series of commands, the user can customize the analysis pipeline to suit their particular
needs. The convention for calling PLATO on the command line is:

$ plato [General Options] \
 command1 [command1 options] \
 command2 [command2 options] ...

This manual will document all of the available commands as well as all of the options available. To get
started, we recommend looking at the examples below as well as the load-data or load-trait commands,
which load genetic data and numeric data into PLATO for analysis. On the command line, options are
prefixed with either one or two dashes (- or --) for the short or long form of the option. All options will
have a long form, but not all options will have a short form. Commands given to PLATO are not
prefixed at all, and any options seen after the command will be passed to only that command.

When documenting the options for each command, we will use the following convention:

--<option> [-<short name>] <argument type> (=<default value>)

Here, the option is the option name, with the short name given if it exists. If the option takes an
argument, the type of the argument will be provided, with the type being one of the following:

• string
A character string value. Any restrictions on the string (filename, etc.) will be specified in the
description of the option. If the string includes whitespace, it should be enclosed with double
quotes (“”) or it will not be parsed correctly.

• int
An integer value. In most cases, the integer must be non-negative; if negative integers are
allowed for this parameter, it will be explicitly stated in the option description.

• float
A floating-point (decimal) number. In most cases, only non-negative entries make sense, but
PLATO does not enforce this restriction.

• enum
A string value with a very limited set of valid inputs. When this argument is seen, the
description of the option will describe all valid inputs for this parameter.

When a default value is given, this is the value that will be used if the option is not provided on the
command line. The default values are useful for necessary options such as thresholds and output file
names which need values, but the user may not want to provide all of the options for compelete
customization.

Examples

Below are some examples of analyses that can be run in PLATO and the options that are available to
the user. These examples are intended as a jumping off point for the user to customize their own
analyses. For a handy list of all available commands and options, organized by function, see the
PLATO Quick Reference, which lists the commands by function and is cross-referenced to their
location in the manual.

Recode PED/MAP to Binary PLINK format

$ plato load-data --file geno output-bed --file binarygeno

Recode Binary PLINK to PED/MAP, Only a Single Chromosome

$ plato load-data --bfile bingeno --chrom 22 \
 output-ped --ped geno.ped --map custom_geno.map

Perform a Simple Case/Control GWAS (no covariates, Bonferroni corrected p-values)

$ plato load-data --bfile bingeno \
 logistic --correction Bonferroni

PheWAS on Quantitative Outcomes using Markers with MAF between 10% and 40%

$ plato load-data --bfile bingeno \
 load-trait --file pheno.txt --missing=”-999” \
 filter-maf --min 0.1 --max 0.4 \
 linear --phewas --covariates AGE,BMI

EWAS (No Genetic Data, Quantitative Predictor Variables)

$ plato load-trait --file pheno.txt --dummy-samples --extra-samples
 linear --exclude-markers --use-traits --outcome PHENO

Concordance Checking (VCF vs. PED/MAP w/o FID)

$ plato load-data --vcf-file data.vcf.gz
 concordance --file geno --no-fid

GWAS with Dog Data and Permutation Testing

$ plato --chroms 38 load-data --file dog_geno
 logistic --permutations 1000

PLATO Quick Reference

General Options:
Special Options

-h [--help] Display help message
-L [--list-command] List all available PLATO commands
-C [--help-command] cmd Display help for the given command
-v [--version] Display version

Global Options
-f [--logfile] arg (=plato.log) Name of the log file
--chroms (=22) Number of autosomal chromosomes
--extra-chroms (=X,Y,XY,M-MT) Comma-separated list of extra chromosomes; dashes indicate aliases

Available Commands:
Data Loading

load-data Loads genetic data into PLATO
load-trait Loads numeric data into PLATO
load-categorical Load categorical covariate data into PLATO

Data Transformation
recode-alleles Set the referent allele for markers

Data Output
output-beagle Output data in BEAGLE format
output-bed Output data in binary PLINK (bed/bim/fam) format
output-eigenstrat Output data in Eigenstrat format
output-ped Output data in PLINK (ped/map) format
output-tped Output data in transposed PLINK (tped/tfam) format

Filtering
filter-maf Filter markers based on their minor allele frequency
filter-marker-call Filter markers based on their call rate (missing rate)
filter-sample-call Filter samples based on their call rate (missing rate)
filter-trait-missing Filter traits based on the missing rate

Analysis
batch Execute PLATO commands from a file
concordance Check concordance between two datasets
linear Perform linear regression on the data
logistic Perform logistic regression on the data
regress-auto Perform linear or logistic regression, based on the phenotype

Installation
PLATO is packaged with the GNU autotools, so installation occurs in four steps: unpacking,
configuration, compilation and installation. Each of those steps will be described below, but first the
user must ensure that the prerequisites for running PLATO are met.

Prerequisites

The following are prerequisites for building and running PLATO.

 A modern C++ compiler.

 Boost Libraries for C++, version 1.42 or later (http://www.boost.org).

 Gnu Scientific Library (http://www.gnu.org/software/gsl/).

 (optional) An MPI-enabled compiler and library suite.

Unpacking

PLATO is distributed as a zipped tarball, and the command for unpacking the distribution is:

$ tar -xvzf plato-2.1.0.tar.gz

This will unpack the source code into a directory called plato-2.1.0. For all of the following
commands, we assume that you are in this directory.

$ cd ./plato-2.1.0

Configuration

In order to compile PLATO, the user must first configure the software. This script will attempt to
detect all of the prerequisites on the user's system, and this is the time for the user to specify
system-specific options, such as the location of the installed program. The command is:

$./configure

The configure script can also take a number of helpful options, some of which are detailed below:

--help
This option will list all of the available options that can be passed to the configure script.

--prefix=[path]
This option tells PLATO to install itself into the given path, which is useful if you do not have
administrative access to the computer. By default, the program will be in [path]/bin. Note: when using
this option, the path given must be an absolute path and cannot use any shell expansions, such as the
“~” notation.

--enable-debug
For the advanced users, this option will turn off all optimization and turn on debugging symbols, which
can be helpful in diagnosing a problem with the PLATO software.

Compilation and Installation

Once the configuration of PLATO is complete, the user can then compile and install the software. To

compile PLATO, simply use the “make” command. Note that to speed compilation, a user may use the
“-j N” option to make in order to specify a maximum of N simultaneous parallel processes:

$ make

Once compilation is complete, PLATO will be available in the current directory. Typically, the user
will need administrative rights to complete the installation step. In order to move PLATO to the
directory specified by the configuration step, type:

make install

Running PLATO

After PLATO is installed, the user should be able to run PLATO from the command line from any
directory. If PLATO is not found, the installation directory may need to be added to the user's PATH
environment variable.

This section describes the special and global options available to the user. These options should be
given before any commands on the command line; if any special commands are given, no commands
are necessary.

Parallel Options

In PLATO, certain commands may use parallelization in order to speed computation times. PLATO
utilizes a master/worker parallelization paradigm, where a single computational thread parcels out
chunks of data to multiple worker processes, who perform the computation and return the result to the
master thread, which compiles the overall result.

There are two types of parallelization that PLATO commands may implement: threaded (shared
memory) and interprocess (distributed memory). Threaded commands will typically have the
“--threads” option available on the command line, and these will require multiple cores on the same
machine. This option requires less overhead, and can substantially speed up computation, but it does
not scale beyond the number of processors on a single machine. To scale beyond a single machine,
PLATO can use interprocess parallelization using Message Passing Interface (MPI). Those commands
that are capable of MPI parallelization will be specifically noted in the manual; all other commands
will run in serial when using MPI. To use MPI, the user must have an MPI compiler installed on their
machine during the configuration step; PLATO will automatically attempt to enable MPI when it is
available. Additionally, the user must run plato through “mpirun” as follows:

$ mpirun -n N plato ...

Above, “N” is the number of processes used by PLATO, and the ellipsis indicates that all of the
remaining options to PLATO remain the same. Note that when using MPI, N should be greater than 2,
as one processor is solely devoted to dividing the work appropriately. Additionally, by combining
“--threads” and “mpirun”, PLATO can use multiple threads on each processor running the work, further
speeding processing time. When combining “--threads” and “mpirun,” care may need to be taken to
ensure that each node only starts a single PLATO process; the options to “mpirun” may differ based on
the specific MPI library used.

Special Options

The following options are special options that allow PLATO to print help messages. If any of the
following commands are given, no commands provided will be run. These arguments are listed below
in their order of priority.

--help [-h]

Prints some basic help messages. This is a good place to start for new users getting used to PLATO.

--list-commands [-L]

Lists all commands available in the current version of PLATO. In the case of a discrepancy between
the manual, the help documentation in the PLATO program should be considered correct.

--help-command [-C] string

Prints the help documentation for a given command. The help documentation will list ALL available
options for a given command. While every effort is taken to synchronize the manual to the available
PLATO options, there may be experimental or undocumented options available that will be shown
using this option. Note that if no command is given to this option, PLATO will print out the help
documentation for all available commands.

--version [-v]

Prints a brief version string, along with a copyright message and a bug-reporting email. If you find a
bug, we'd love to hear from you!

Global Options

The following options affect global settings for how data is stored and the location of files used by all
commands. Use of the options will not prevent commands from processing, but may affect how data is
represented and presented to the user.

--logfile [-f] string (=plato.log)

Gives the name of the log file for this run of PLATO. All informational messages, warnings, and errors
printed to the screen will also be printed to the log file so that a user can have a record of each PLATO
run.

--chroms int (=22)

Gives the number of autosomes in the organism for which you are loading genotypic data. By default,
PLATO was designed for human data and uses 22 autosomes.

--extra-chroms string (=X,Y,XY,M-MT)

Provides a comma-separated string of non-autosomal chromosomes to use in the analysis. You may
use dashes to indicate aliases for a chromosome, and chromosmes are case-insensitive. For each extra
chromosome given, PLATO will map it to the next number after the number of autosomes. In the
default configuration, chromosome X is chromosome 23, Y is mapped to chromosome 24, chromosome
XY (the pseudo-autosomal region of the sex chromosomes) is mapped to chromosome 25, and
chromosome M or MT (mitochondrial chromosome) is chromosome number 26.

Commands

In order to do useful work with PLATO, a user must enter one or more commands. Commands are
entered on the command line by beginning an argument without an argument escape (- or --). Any
arguments beginning with the argument escape will be processed according to the most recent
command. Because some command sequences can get long, commands as entered on the command
line will be printed in the log file, one per line. This section will describe all of the available
commands in PLATO along with the available options for each command.

batch

The batch command is a way for the user to save a sequence of commands to a file to be reused. For
those familiar with PLATO 1.x, this file is similar to the required batch file.

--file [-f] string

This option gives the batch command the name of the file containing commands to process. Each batch
file must contain a sequence of commands, one per line. Below is an example of a batch file that
performs some basic QC filtering and then runs a logistic regression:

filter-marker-call --threshold 0.99
filter-maf --min 0.05 --max 0.4
logisitc --output myResults.txt

concordance

The concordance command will check concordance between the currently loaded dataset and a new
dataset, to be loaded with this command. For the data input options, see the load-data command.
There are three distinct types of discordance possible:

 Sample mismatch
A sample is in one dataset but not another

 Marker mismatch
A marker is present in one dataset but not another

 Call discordance
The called genotype for a particular sample/marker combination does not match across the two
datasets.

This command will produce a single output for the first two kinds of mismatch, and three outputs for
the actual call discordance. The three discordance outputs are a file of every discordant call and a
summary of discordance by sample and by marker. Any of the file output can be suppressed by passing
an empty string (“”) to the appropriate argument. The naming convention for the files is
<prefix>.<suffix>.<extension>, all of which are customizable below.

--prefix string (=concordance)

This option is the prefix that all concordance files will begin with. Note that this argument may include
directories if the user wishes to place concordance files in a separate directory.

--error string (=error)

This argument gives the suffix for the file of every discordant call.

--sample string (=sample)

Gives the suffix for the discordance summary by sample.

--marker string (=marker)

Gives the suffix for the discordance summary by marker.

--marker-mismatch string (=marker-mismatch)

Gives the suffix for the marker mismatch file.

--sample-mismatch string (=sample-mismatch)

Gives the suffix for the sample mismatch file.

--extension string (=txt)

Gives the extension for all concordance output files.

--inc-missing

If given, the concordance command will consider calls that are present in one dataset and missing in the
second as discordant. By default, the concordance checking is performed only on calls that are present
in both datasets.

--sep string (=<TAB>)

Gives the string to use for separating columns in concordance files. Useful for automated processing.

filter-maf

The filter-maf command will set markers as disabled if they do not meet the minor allele frequency
thresholds set by the user. All markers marked as disabled will be excluded from further analysis,
including output. Important Note: This command assumes a biallelic marker, and the minor allele
frequency is the minimum of the referent allele frequency and one minus the referent allele frequency.

--min float (=0.05)

Drop all markers with a minor allele frequency below this value (default is a MAF of 5%). Set to 0 to
disable dropping markers based on low minor allele frequency.

--max float (=1.0)

Drop all markers with a minor allele frequency above this value (default is to keep all markers). This
can be useful in isolating uncommon or rare variants in the dataset.

filter-marker-call

This command sets makers as disabled according to their missing rate. Note that even though a marker
has been marked as disabled, it can still be explicitly included in models tested by either linear or
logistic through the use of model files.

--threshold float (=0.99)

Drops all markers with a call rate below the given threshold (default is 99%, or a 1% missing rate).

filter-sample-call

This command sets samples as disabled according to their missing rate. Note that if the data given is
pair or trio data, this can adversely affect certain downstream analyses, such as output-beagle.

--threshold float (=0.99)

Drops all samples with a call rate below the given threshold (default is 99%, or a 1% missing rate).

filter-trait-missing

This command drops all traits according to their missing rate. Note that if a trait is disabled through the
use of this command, it is still possible to include it as a covariate in further analyses or to use it
explicitly as a variable though the use of a model file in the regression commands.

--threshold float (=0.99)

Drops all traits with a call rate below the given threshold (default is 99%, or a 1% missing rate).

linear

This command performs a simple (ordinary least-squares) regression on the data previously loaded into
PLATO. Most of the options outlined here also apply to the logistic command as well; any options that
are specific to this command will be noted.

The strength of PLATO as compared with other available tools is the ability to automatically generate
models to perform statistical hypothesis testing. By default, PLATO will perform a standard GWAS,
but it can be configured to perform an EWAS, GxG, GxE, or PheWAS analysis depending on the
options given. See the Model Generation for Regression section for details on how to properly specify
the desired analysis type. Additionally, PLATO can perform permutation testing; for details on how to
enable this feature, see the Permutation Testing section later in the manual.

NOTE: This command is MPI-enabled.

--interactions

If given, include the interaction terms between the variables of interest in the models. Note that this
argument has no effect if the generated models have only one variable.

--covariates string

Provides a comma-separated list of traits to include as covariates in each model. Covariates given in
this argument are premuted along with the phenotypic status when permutation testing is performed;
for this reason, this argument should include phenotypic control variables such as age and gender. This
argument may be given multiple times.

--const-covariates string

Provides a comma-separated list of traits to include as covariates in the model. When using
permutation testing, these covariates are NOT permutes along with the phenotypic status, and should
include genotypic control variables such as principal components. Note that when not using
permutation testing, this argument and the --covariates argument above are equivalent. This argument
may be specified multiple times.

--outcome string

Provides a comma-separated list of traits to use as outcomes for the regression models. The generated
models will be tested once for every trait given in this argument. This argument may be given multiple
times. If this is not provided, PLATO will use the phenotypic status loaded with the data in the
load-data command.

--encoding enum (=additive)

Specifies the encoding of the markers to be used in the models. The regression models used by PLATO
assume a biallelic marker, with a given referent allele. In the polyallelic setting, all non-referent alleles
are grouped into a single category, which we refer to as the “alternate” or “encoded” allele. Below are
the valid encodings along with a brief description of each.

 Additive
The classic GWAS encoding: Homozygous referent is “0”, heterozygous is “1”, and
homozygous alternate is “2”.

 Dominant
Homozygous referent is “0”, both heterozygous and homozygous alternate are “1”.

 Recessive
Homozygous referent and heterozygous are “0”, while homozygous alternate is “1”.

 Codominant
In this encoding, each marker uses two variables as a dummy encoding of a categorical
variable. The “Het” variable is 1 only when the marker is heterozygous, and the “Hom”
variable is 1 only when the marker is homozygous alternate. Note that this encoding incurs an
additional degree of freedom for each marker used, and interactions also incur extra degrees of
freedom.

 Weighted
This encoding is a hybrid between the traditional encodings and the codominant encoding. For
each marker, the result from a univariate model (with appropriate covariates) is used to
determine an encoding from marker state to the set {0, x, 1}, where x is chosen such that the
model with the encoded allele is identical to the codominant model. Then, this encoded allele is
used in the multivariate models. Note that in the univariate and non-interaction case, this
encoding is identical to the codominant encoding, but in the case of interactions, incurs fewer
degrees of freedom.

--show-univariate

If this argument is provided while examining multivariate models (with or without interaction terms),
PLATO will also perform the appropriate regression using each variable alone and report the results.
Note that the univariate regressions are not necessarily nested models, so the number of missing
samples reported for each model may not correspond to the univariate results.

--phewas

If given, PLATO will use all traits not explicity excluded or used as covariates as outcomes in a
PheWAS. Note that this option is incompatible with the “--outcome” argument.

--output string (=output.txt)

The filename of the output of the regression. The output of the regression is given as a
column-separated file, with one line per model tested, sorted by model p-value:

 Outcome name (if not using the default phenotypic status).

 IDs for the variables of interest.

 For any markers, allele and frequency of the encoded allele, calculated for the individual model.
Note that his value may be different for the same marker in different models because of
different patterns of missingness.

 The number of non-missing samples for the model.

 Convergence status (if using the logistic command)

 The coefficient, standard error and p-value for each variable. If testing interactions, the
coefficients will be displayed for both the reduced model (main effects only) and the full model
(main effects + interaction terms).

 The overall p-value of the model(s). Depending on the arguments used, there may be up to 3
distinct p-values for the model. When interactions are used, the overall p-value is the likelihood
of significance when comparing the full model (covariates + main effects + interactions) to the
reduced model (covariates and main effects only). The full and reduced model p-values are the
likelihood of significance when comparing the respective model to one including covariates
only. Without interactions, there is only a single p-value that is calculated comparing the model
with variables of interest and covariates to one including only covariates.

 The corrected p-value(s) of the models. The corrected p-values are calculated based on the
overall model p-value (see below for the meaning).

--separator string (=<TAB>)

The string to use for separating columns in the regression output file.

--threads int (=1)

The number of parallel processes to use in a regression in order to speed runtime. Setting this value to
0 disables threading, which can be useful in debugging PLATO.

--lowmem

If this argument is given, PLATO will use temporary files to output some of the results in an attempt to
save memory. This can be a useful option when testing millions of models, but it may increase runtime
due to the slow disk speeds when compared to memory.

--correction enum

A comma-separated list of multiple test correction strategies to use in reporting results from the
regression. Currently implemented strategies are limited to Bonferroni and FDR.

--thresh float (=1)

Gives a maximum p-value for printing models. This can be useful for showing only the most
significant models in an analysis. Note that any multiple test correction strategies given will accurately
correct for all tests performed, not just those pritned.

--inflation

This option enables the calculation and reporting of the genomic inflation factor (GIF). The GIF is
reported in the log file. This can be a useful statistic for demonstrating true null signal in the majority
of the models being tested.

--inflation-adjust

This option adjusts the p-value of each model according to the calculated genomic inflation factor. The
adjustment is made so that the resultant GIF of the p-values will be exactly 1. See below for a
description of the available

--inflation-method enum (=GC)

This option provides the method used to calculate the genomic inflation factor. The available methods
are:

• GC (Genomic Control)
This method calculates the GIF by comparing the median of the p-values with the expected
median of the expected null distribution. The actual medians being tested are the Chi-squared
(df=1) values derived from the p-values. This is the method that PLINK uses to report GIF.

• Regression
This method calculates the GIF by calculating the slope of the best-fit regression regression line
(no intercept) of given p-values to expected p-values under the null hypothesis (uniform
distribution). Conceptually, this is the “slope” of a QQ plot.

load-categorical

This function loads categorical covariates into PLATO. Categorical covariates are those in that are
unordered and take on more than two values. Examples of a categorical covariate that can be entered
through this command is race or genotyping center. Gender is technically a categorical covariate as
well, but as it typically only takes two values, any numeric encoding will suffice. The typical approach
to these variables is to gnerate a dummy encoding; through the use of this command, PLATO will allow
the entry of non-numeric classes and will automatically generate a dummy encoding. Note that
variables added in this manner may only be used as covariates and not as predictor or outcome
variables.

The options accepted by the load-categorical command are identical to those of the load-trait
command; please see that section for details. The only difference is that this command does not accept
the --ignore-error option, so if a missing value is used, it must be specified explicitly.

--file string

This option gives the categorical covariate file to be loaded. As the format of this file differs slightly
from that in load-data, we provide an example below.

This line is a comment, and ignored
FID IID Race Site
Note the above line, which loads 2 traits, 'Race' and 'Site'
1 1 EA 1
Note that the 'Race' is a string and 'Site' is numeric, but
treated as a string here
2 2 AA 2
See --missing for how to handle 'NA'
3 3 NA 4
4 4 Other 1

... (Further lines truncated) ...

load-data

This function loads genotypic data into PLATO for further processing or during concordance checking.
Files are loaded from traditional genotype file formats including PLINK and Beagle. When parsing
options for this command, PLATO will load the first set of files that is complete, in the following
priority order (also the order of the commands listed in the help documentation):

1. PLINK files (ped/map)
2. Binary PLINK files (bed/bim/fam)
3. Transposed PLINK files (tped/tfam)
4. Long-format PLINK files (lgen/map/fam)
5. Beagle files
6. VCF Files

Any options that are given in the section of commands that do not apply to the loaded files will be
ignored, potentially without warning. As an example, in the argument combination “--file myPlink
--bgl-poly”, the”--bgl-poly” argument will have no effect, as PLAT will load the PLINK files
myPlink.ped and myPlink.map.

--file string

Gives a filename base for reading ped/map files. By default, PLATO will load the files arg.ped and
arg.map, where arg is the given parameter to the “--file” argument. This can be overridden by the
“--ped” and “--map” arguments.

--ped string

Specifies a PED file to load. Overrides the “--file” argument.

--map string

Specifies a MAP file to load. Overrides the “--file” and “--lfile” arguments.

--bfile string

Gives a filename base for reading bed/bim/fam files. By default, PLATO will load the files arg.bed
arg.bim and arg.fam, where arg is the parameter to the “--bfile” argument. This can be overridden by
the “--bed”, “--bim” and “--fam” arguments.

--bed string

Specifies a BED file to load. Overrides the “--bfile” argument.

--bim string

Specifies a BIM file to load. Overrides the “--bfile” argument.

--fam string

Specifies a FAM file to load. Overrides the “--bfile” and “--lfile” arguments.

--tfile string

Gives a filename base for reading tped/tfam files. By default, PLATO will load the files arg.tped and
arg.tfam, where arg is the parameter given to the “--tfile” argument. This can be overridden by the
“--tped” and “--tfam” arguments.

--tped string

Specifies a TPED file to load. Overrides the “--tfile” argument.

--tfam string

Specifies a TFAM file to load. Overrides the “--tfile” argument.

--lfile string

Gives a filename base for reading lgen/map/fam files. By default, PLATO will load the files arg.lgen,
arg.map and arg.fam, where arg is the parameter to the “--lfile” argument. This can be overridden by
the “--lgen”, “--map”, and “--fam” arguments.

--lgen string

Specifies an LGEN file to load. Overrides the “--lfile” argument.

--no-sex

If given, indicates that the PED file (or equivalent, in the case of binary/transposed filesets) does not
contain gender information (typically column 5)

--no-parents

If given, indicates that the PED file (or equivalent) does not contain information about parental IDs
(typically, columns 3 and 4).

--no-fid

If given, indicates that the PED file (or equivalent) does not contain family ID information (typically,
column 1). Internally, the ID used to identify the sample will be the Individual ID repeated.

--no-pheno

If given, indicates that the PED file (or equivalent) does not contain phenotypic information (typically,
column 6)

--map3

If given, indicates that the MAP file (or equivalent) does not contain genetic distance information
(typically, column 3). Note that as of PLATO 2.0, genetic distance is ignored even if given.

--map-ref

If given, indicates that the MAP file (or equivalent) provides the referent allele in the column following
the position information (typically, column 5). Note that in the case of reading a BIM file, this is
implicitly selected.

--map-alt

If given, indicates that the MAP file (or equivalent) provides the alternate allele in the column
following the referent allele (typically, column 6). Note that in the case of reading a BIM file, this is
implicitly selected.

--control0

If given, indicates that the case/control phenotypic information from the PED file is encoded as 0/1,
where 0 indicates a control and 1 indicates a case. By default, PLATO assumes a 1/2 encoding, where
1 indicates a control and 2 indicates a case, with 0 representing a missing value.

--quant

If given, indicates that the phenotypic information in the PED file is quantitative in nature. Note that
the case/control status of all samples in this case will be unknown.

--beagle-prefix string

Gives the prefix for loading a set of Beagle files. By default, PLATO assumes a naming convention of
prefix.chrom.suffix, where prefix is the parameter given to this argument, and suffix is the parameter
given to “--beagle-suffix” or “--marker-suffix” for the genotype or marker file, respectively.
Additionally, chrom is a chromosome string, and it is assumed that each genotype file has a
corresponding marker file for a given chromosome.

--beagle-suffix string (=bgl)

Gives the suffix of the genotype files in a Beagle fileset. See “--beagle-prefix” for the naming
convention. Files compressed with either gzip or bzip2 with an appropriate extension (.z or .gz for gzip
and .bz for bzip2) will be automatically discovered and decompressed without the need to specify the
compression extension.

--marker-suffix string (=markers)

Gives the suffix of the marker files for a chromosme in a Beagle fileset. See “--beagle-prefix” for the
naming convention. Files compressed with either gzip or bzip2 with an appropriate extension (.z or .gz
for gzip and .bz for bzip2) will be automatically discovered and decompressed without the need to

specify the compression extension.

--beagle-files string

A comma-separated list of Beagle genotype files to load. This argument allows the user to load Beagle
files that do not adhere to the convention assumed by PLATO, and will override any values given by
“--beagle-prefix” or the suffix arguments. This argument must be using in conjunction with
“--marker-files” and “--beagle-chroms”, and filenames must be given exactly, but automatic
decompression will still be performed given the appropriate extensions.

--marker-files string

A comma-separated list of Beagle marker files to load. Note that when using this option, there must be
exactly as many marker files as genotype files and chromosomes given with the “--beagle-files” and
“--beagle-chroms” options. As with “--beagle-files”, filenames must be given exactly, but automatic
decompression will still be performed given the appropriate extensions.

--beagle-chroms string

A comma-separated list of chromosomes that correspond to the files given by “--beagle-files” and
“--beagle-markers”. Note that all 3 arguments must have the same number of files / chromosomes.

--trio

If given, indicates that the data in the Beagle genotype files is trio data, with the convention that the
data is listed in the order of “mother, father, child”. Note that although the notation “mother” and
“father” are used, no gender information is assumed. If the number of samples given in the genotype
file is not a multiple of 3, PLATO will exit with an error. This argument is incompatible with the
“--pair” argument.

--pair

If given, indicates that the data in the Beagle genotype files is pair data, with the convention that the
data is listed in the order of “mother, child”. Note that although the notation “mother” is used, no
gender information is assumed. If the number of samples given in the genotype file is not a multiple of
2, PLATO will exit with an error. This argument is incompatible with the “--trio” argument.

--bgl-phased

If given, indicates that the data in the Beagle genotype files is phased. Note that biallelic phased data
will occupy twice as much memory as biallelic unphased data. By default, PLATO assumes that
Beagle files are biallelic and unphased.

--bgl-poly

If given, indicates that the data in the Beagle genotype file is polyallelic. IMPORTANT NOTE:
Polyallelic data (phased or unphased) will occupy eight times the memory as biallelic unphased data
and four times the memory of phased biallelic data.

--beagle-missing string (=0)

Gives the string to be interpreted as a missing allele when loading Beagle genotype files.

--vcf-file string

Gives the name of the VCF file to be loaded. If the VCF file is compressed, PLATO will automatically
uncompress the data provided that the extension is appropriate (i.e. '.gz' for a (b)gzipped file or '.bz' for
a bzipped file). Currently, PLATO does not use any associated index files.

--no-filter-marker

By default, PLATO will not load any marker that has a FILTER annotation other than “PASS” or “.”.
By setting the option, PLATO will load all markers without regard to the filter status.

--no-filter-geno

By default, PLATO will set any genotype that has a “FT” annotation other than “PASS” to missing.
Including this option will cuase PLATO to load all genotype calls without regard to genotype filter
annotation status.

--vcf-phased

Setting this option tells PLATO that the data in the VCF file is phased. Note that PLATO will warn the
user if the phasing in the VCF file is inconsistent with the options provided.

--vcf-poly

Setting this option tells PLATO that the data sin the VCF file is polyallelic. If the VCF file is truly
polyallelic and this option is not provided, PLATO will treat all non-referent alleles as the first alternate
allele. Additionally, PLATO will warn if polyallelic markers are detected and this option is not
provided.

load-trait

This command loads numeric data associated with samples into PLATO for further analysis. Note that
this command should not be used to load numeric data that is categorical in nature (for example,
numbers that represent sites, race or ethnicity). Examples of numeric data that can be loaded with this
command include age, lab measurements, or quantitative phenotypic measurements (such as height,
weight, BMI, blood pressure, etc.).

--file string

Gives the filename of the trait file to load. A trait file is a whitespace-delimited file with each row
representing an independent sample. The first two columns give the Family ID and the Individual ID
for the sample, and subsequent columns provide the numeric value. Empty lines, or lines beginning
with a pound sign (#) are ignored, and the first line of the file is considered the header line, and the
values given are the trait IDs that will be available for use in subsequent steps. An example of a trait

file is below:

This line is a comment, and ignored
FID IID Age BMI
Note the above line, which loads 2 traits, 'Age' and 'BMI'
1 1 25 22.4
2 2 34 21.7
See --ignore-error for how to handle 'NA'
3 3 NA 29.6
See --missing for how to handle '-9999'
4 4 52 -9999

... (Further lines truncated) ...

--missing string

Gives a string value to treat as a missing value. This is especially helpful when missing data is
represented by a valid number that is nonsensical in the context of the variables being loaded (e.g.
“-9999” as a value for BMI in the above example).

--no-fid

Indicates that the first column (Family ID) is missing from the file. Internally, PLATO will attempt to
find the appropriate sample by using the Individual ID repeated as the Sample ID.

--ignore-error

Allow non-numeric values in a trait file and treat those unparseable values as missing. Typically,
PLATO will exit with an error if it encounters a non-numeric value; this is especially helpful when
non-numeric values are used to represent missing data (such as 'NA' or '.').

--extra-samples

If samples are found in the trait file that are not present in the currently loaded, simply ignore the line.
By default, PLATO will exit with an error if a sample is present in a trait file but not present in the
previously loaded genotype data. Note that samples that have previously been marked as disabled are
still considered present in the dataset. This option is especially helpful when loading phenotype data
which may have been collected on more samples that the corresponding genotype data.

--dummy-samples

Similar to the “--extra-samples” option above, if this is provided, PLATO will create a sample with
completely missing genotype data for any samples found in a trait file but not found in the previously
loaded genotype data. This option is helpful for performing an EWAS or ExE analysis in which the
user may not have genotypic data.

--require-complete

If this option is given, PLATO will require an entry in the trait file for all enabled samples currently
loaded into memory. This can be a helpful check to ensure that the files are complete and correspond
to the same IDs.

logistic

This command performs logistic regression on the data previously loaded into PLATO. The logistic
regression is performed using a Newton-Rhapson iteratively reweighted least squares algorithm. Many
of the options for this command are also applicable to the linear command. For the sake of
compactness of the manual, the options documented below are those that are specific to this command.

NOTE: This command is MPI-enabled.

--firth

If given, PLATO will apply Firth bias reduction to the models being tested (for details see Firth, 1993
and Heinze and Shempel, 2002). This option can be helpful when using many categorical covariates as
control variables. Also, this can be helpful when testing a large number of dichotomous phenotypes
with widely varying case/control ratios, as you may see in a PheWAS.

--odds-ratio

If given, PLATO will display the odds ratios for each coefficient rather than the raw coefficient
returned by the logistic regression.

--max-iterations int (=30)

Gives the maximum number of least-squares steps allowed before declaring nonconvergence of the
method. Increasing this number will make the regression more robust, but may drastically increase the
runtime, especially in the cases where convergence using a simple logistic regression is impossible.

output-beagle

This command will output all currently enabled markers and samples in Beagle file format (see
http://faculty.washington.edu/browning/beagle/b eagle_3.3.2_31Oct11.pdf for a full description of the
file formats. Note that phasing and polyallelic data is automatically detected according to the data
types loaded into PLATO.

PLATO will output the genotype and corresponding marker file for each chromosome that contains
data. The files will be named according to the pattern <prefix>.<chrom>.<suffix>, where prefix and
suffix are user-specifiable strings using the arguments below.

--prefix string (=output)

This is the prefix to use for all beagle files.

--suffix string (=bgl)

This is the suffix to use for all genotype files. Note that currently, PLATO does not support
compressed Beagle file output, but this is a feature we hope to add shortly.

http://faculty.washington.edu/browning/beagle/beagle_3.3.2_31Oct11.pdf
http://faculty.washington.edu/browning/beagle/beagle_3.3.2_31Oct11.pdf

--marker-suffix string (=markers)

This is the suffix to use for all marker files. As with the genotype files, PLATO does not support
output of compressed Beagle format directly.

--incl-traits

When this argument is given, PLATO will include the affection status as well as all currently loaded
traits in the genotype files that are output. These lines correspond to “A” and “T” output lines in the
Beagle specification.

--pair

Indicates that the data to be output is parent-child data, which affects the ordering of the samples. Note
that PLATO will exit with an error if the data loaded does not conform to this structure.

--trio

Indicates that the data to be printed is trio data (two parents, one child). Note that PLATO will exit
with an error if the data loaded does not conform to this structure.

--missing string (=0)

Gives the string to use to indicate the presence of a missing allele.

output-bed

This command outputs the currently loaded genotype data in binary PLINK (bed/bim/fam) format (see
http://pngu.mgh.harvard.edu/~purcell/plink/binary.shtml for a complete description of the format).

One note in the difference between PLATO and PLINK is that PLATO does not recode the alleles
unless explicitly requested in recode-alleles. Additionally, when automatic recoding of alleles is
requested, the major (and referent) allele will be printed in column 5 of the bim file and the minor
(coded) allele will be printed in column 6, which is opposite of the behavior of PLINK. Despite this
difference in behavior, both programs will print files that represent the same information and should be
100% concordant.

Important Note: currently, PLATO ignores any genetic distance (column 3 of the map file) given
when loading PLINK genotype files. When printing bim files, column 4 will ALWAYS be 0.

--file [-f] srting (=plato)

This argument gives the base filename of the bed/bim/bam files. By default, PLATO will output
arg.bed, arg.bim, and arg.fam files, where arg is the given parameter for this argument. This behavior
can be overridden on an individual file basis using the “--bed”, “--bim”, or “--fam” arguments.

http://pngu.mgh.harvard.edu/~purcell/plink/binary.shtml

--bed string

Provides an explicit filename for the bed file, overriding the “--file” argument.

--bim string

Provides an explicit filename for the bim file, overriding the “--file” argument.

--fam string

Provides an explicit filename for the fam file, overriding the “--file” argument.

--individual-major

Outputs the bed file in individual-major mode (default is SNP-major mode).

output-eigenstrat

This command outputs the currently enabled genotype data in Eigenstrat file format (see
http://genepath.med.harvard.edu/~reich/InputFileFor mats.htm for a full description of the format).

--file [-f] string (=plato)

This argument gives the base filename of the Eigenstrat files. By default, PLATO will output arg.geno,
arg.snp, and arg.indiv for the genotype, SNP and individual files, respectively. This behavior can be
overridden on an individual file basis using the “--geno”, “--snp”, and “--indiv” arguments.

--genotype string

Provides a filename for the genotype file, overriding the “--file” argument.

--snp string

Provides a filename for the SNP file, overriding the “--file” argument.

--indiv string

Provides a filename for the individual file, overriding the “--file” argument.

output-ped

This command prints all currently enabled genotype data in traditional PLINK (ped/map) format (see
http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml for a complete description of the file format).

Important Note: currently, PLATO ignores any genetic distance (column 3 of the map file) given
when loading PLINK genotype files. When printing map files, column 4 will ALWAYS be 0.

http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml
http://genepath.med.harvard.edu/~reich/InputFileFormats.htm
http://genepath.med.harvard.edu/~reich/InputFileFormats.htm

--file [-f] string (=plato)

Provides a base for the filenames to print the data to. By default, PLATO will output arg.ped and
arg.map, where arg is the parameter passed to this argument. This behavior can be overridden on an
individual file basis using the “--ped” and “--map” arguments.

--ped

Provides a filename for the ped file, overriding the “--file” argument.

--map

Provides a filename for the map file, overriding the “--map” argument.

output-tped

This command prints all currently enabled genotype data in transposed PLINK (tped/tfam) format (see
http://pngu.mgh.harvard .edu/~purcell/plink/data.shtml#tr for a complete description of the file format).

Important Note: currently, PLATO ignores any genetic distance (column 3 of the map file) given
when loading PLINK genotype files. When printing tped files, column 4 will ALWAYS be 0.

--file [-f] string

Provides a base filenamefor the transposed PLINK files. By default, PLATO will output arg.tped and
arg.tfam. This behavior can be overridden on an individual file basis using the “--tped” and “--tfam”
arguments.

--tped string

Provides a filename for the tped file, overriding the “--file” argument.

--tfam string

Provides a filename for the tfam file, overriding the “--file” argument.

recode-alleles

This command changes the referent allele for the markers currently loaded by previous commands.
This is helpful in order to correctly interpret the direction of effect of the coefficients in regression
models. Note that by changing the referent allele, the user will implicitly change the encoded allele.

--file string

Provide a two-column whitespace-separated file of marker IDs and the desired referent allele. Markers
can also be identified by chromosome and base pair location by using a colon (:) to separate the two.
Empty lines and lines beginning with a pound sign (#) are ignored. Note that if an allele is given but
not present for a marker, a warning will be issued, but the marker will remain unchanged. Below is an

http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml#tr
http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml#tr

example of this file format:

Example recoding allele file
rs23562 A
3:237630 T
chr11:9362856 C

... (Additional lines truncated) ...

--input-map

If this argument is given, we assume that the file provided above is in extended map format, with an
additional column providing the referent allele. In this case, markers are found using the provided ID,
or the chromosome and base pair position provided in the map file.

--map3

If this argument is provided, both input and output map files will not contain the genetic distance
column (fourth column in a traditional map file).

--auto

If given, PLATO will set the referent allele as the most common allele present in the dataset. In
biallelic data, this has the effect of making the minor allele the coded allele. If the “--file” argument is
also given, this argument is superseded by those markers found in the recoding file.

--out string

Provides a filename to print the marker ID and the referent allele after this step. This is particularly
useful when automatically detecting the referent allele and then seeking replication in another dataset,
as this will ensure that the coded allele is identical in both analyses.

--output-map

Prints the output above in extended map format. This may be useful as part of a pipeline including
other tools.

regress-auto

This command will perform either a linear or logistic regression based on the phenotype provided to
PLATO. If there are exactly two non-missing phenotypes, this command will perform a logistic
regression, as used in the logistic command. If there are more than two unique non-missing
phenotypes, this command will perform a linear regression, as in the linear command. The output of
the regression will include a column indicating the type of regression performed for each model in
addition to all of the output columns of the logistic command. For linear regression models, the
“Converged” column will always be 1, as all linear regressions are not iterative, and so they will always
“converge” in one step.

Note that this command may be dangerous, as it can be difficult to compare linear and logistic
regression results in a statistically meaningful way.

--linear string

This option takes a comma-separated list of trait variables for which PLATO should perform linear
regression, regardless of the number of non-missing phenotypes. The variables provided to this option
and “--logistic” below must be mutually exclusive and given in the “--outcome” option if “--phewas” is
not provided. This option may be specified more than once.

--logistic string

This option takes a comma-separated list of trait variables for which PLATO should perform logistic
regression, regardless of the number of phenotypes. The variables provided to this option and “--linear”
above must be mutually exclusive and given in the “--outcome” option if “--phewas” is not provided.
This option may be specified more than once.

Advanced Topics

Pre-Filtering Data

In order to allow analysis on extremely large datasets, PLATO provides the option to only load a
portion of the dataset provided into memory. Note that unlike traditional filters like filter-maf or
filter-sample-call, if a marker or sample is excluded during the pre-filtering stage, it cannot be included
in any model or later analysis step. While these options can reduce the memory footprint of PLATO,
they will not reduce the time to load data, as the entire dataset must be read in order to ensure correct
loading of all data.

--chrom string

This argument gives a comma-separated list of chromosomes to load data for. If not given, PLATO
will load data for all chromosomes.

--bp-window srting

This argument gives a comma-separated list of base pair windows to include in the data loading. The
windows must be formatted as “#-#”, providing a lower and upper bound (inclusive) of positions to
load data. Note that either the upper or lower bound may be omitted, in which case, the bound will be
interpreted to mean either “0” or “max int”, respectively. Caution should be taken when including base
pair windows with multiple chromosomes, as the windows will apply to all chromosomes being loaded.

--incl-marker string

This command gives a comma-separated list of marker IDs to include. This can be useful when
extracting a very small number of SNPs from a large dataset. Note that marker IDs can be the
traditional RSID, or optionally a “chrom:basepair” string. This option may be specified more than
once.

--excl-marker string

This command gives a comma-separated list of marker IDs to exclude. This can be useful when
excluding a small number of markers from a dataset. Note that if a marker is both explicitly included
and explicitly excluded, the marker will NOT be loaded. This option may be specified more than once.

--incl-marker-fn string

This command gives a comma-separated list of files containing a list of marker IDs to include, one per
line. This can be helpful for including a large number of markers for analysis, as an example from LD
pruning. This option may be provided more than once.

--excl-marker-fn string

This command gives a comma-separated list of files containing marker IDs to exclude, one per line.
This option can be helpful when excluding a large number of markers, as an example when LD
pruning. Again, note that if a marker is explicitly included and explicitly excluded, the marker will
NOT be loaded.

--incl-sample string

This command gives a comma-separated list of sample IDs to include for analysis. This can be helpful
in extracting a small subset from a large dataset. Note that if samples are identified by both an IID and
an FID, the sample ID should include both, starting with the FID, and they should be whitespace
separated. For this reason, the user may need to enclose this argument in quotes. This option may be
specified more than once.

--excl-sample string

This command gives a comma-separated list of sample IDs to exclude in any subsequent analysis. This
can be helpful in excluding problematic samples from analysis, such as cryptically related samples. As
above, care must be taken when using sampled identified by both FID and IID, and if a sample is both
explicitly included and explicitly excluded, the sample will NOT be loaded. This option may be
specified more than once.

--incl-sample-fn string

This command gives a comma-separated list of files containing sample IDs to include for analysis.
Each sample should be included once per line, and any extra columns will be ignored. This option may
be specified more than once.

--excl-sample-fn string

This command gives a comma-separated list of files containing sample IDs to exclude from analysis.
Each sample ID must be provided once per line, and any additional columns will be ignored. As
before, any sample both explicitly excluded and included will not be loaded. This option may be
provided more than once.

Permutation Testing

PLATO offers permutation testing for calculation of the p-value of a model in addition to the
parametric p-value calculation inherent with the regression models. For each model tested, PLATO
provides for the calculation of a permuted p-value in three ways, as defined below:

• Model Permuted p-value
This p-value is the proportion of permutations for which the unpermuted model was more
significant (had a lower p-value) than in the permuted data. This value has a granularity of the
number of permutations, and may need to be corrected for multiple testing.

• Rank Permuted p-value
This p-value is the proportion of permutations that had more significant models than the
unpermuted data at the level of significance of the unpermuted model. As an example, if a
model is the 3rd most significant in unpermuted data, and it's rank permuted p-value is 0.1, it
means that 10% of the permutations had at least 3 models more significant than the unpermuted
model being tested. This value has a granularity of the number of permutations, but should
NOT need to be adjusted for multiple testing.

• Permuted p-value
This p-value is defined to be the fraction of times any permuted model was more significant
than the unpermuted model. Note that the permuted p-value should still be subject to multiple
test correction, and the granularity of the adjusted permuted p-value will be determined by the
number of permutations. Thus, if a user ran 1,000 permutations, the smallest nonzero adjusted
permuted p-value will be 0.001.

The following options control the behavior and output of the permutations run by PLATO.

--permutations int (=0)

This argument determines the number of permutations per model to run. Note that the runtime and
memory requirements will increase dramatically with this parameter. At a minimum, each permutation
will take the same amount of time as a single model and will require approximately 12 bytes of
memory (in --lowmem mode). For a modest GWAS consisting of 500,000 markers with 1,000
permutations, PLATO will need approximately 6 extra GB of RAM and will take 1,000 times as long to
execute.

--permu-seed int

This argument allows for repeatability of results by specifying the initial seed for the random number
generator used to initialize the permutations. If no seed is given, one will be generated at random and
reported to the user.

--permu-thresh float (=0.05)

PLATO will print detailed permutation results for all permuted models whose p-value falls below this
threshold. Be aware that increasing this threshold can dramatically increase the storage requirements.

--permu-detail-fn string (=permutation-detail.txt)

This is the name of the file that PLATO will print the detailed permutation output to. To disable this
output, set this argument equal to the empty string (“”).

--permu-pval-fn string (=permutation-pval.txt)

PLATO will print all p-values of all permuted models in this file, one per line. The p-values printed
will be sorted, with the following “special” p-values as flags with the following interpretation:

• 2: Calculation of the permuted model failed

• 3: Could not run permuted model (typically, too many missing values)

--permu-run-full

By default, PLATO will only run enough models in the permutation data to generate an appropriate
p-value. If the user specifies this option, PLATO will run all submodels during a permutation. This
option only has an effect when permuting interaction models, and in that case, specifying this option
will increase the runtime by 33%.

Model Generation for Regression

PLATO can test a variety of models in the regression procedures. Typically, models are generated by
iterating over the dataset and running a separate regression for each model generated. The manner in
which the user iterates over the dataset will determine the type of analysis being run, with possibilities
being GWAS, EWAS, GxE, GxG, and many others. Alternatively, the user can individually specify the
models to be run, which can be helpful in the case of a targeted subset of models.

The options below are used by the regression options, linear and logistic. The Model Generation
Summary section provides a good summary of the combination of these options and the resultant
analysis that can be run using PLATO.

--models string

This parameter takes a comma-separated list of files containing models to test. Each line in the file is
assumed to be a whitespace delimited list of variables to include in the model and PLATO assumes that
the structure of all models contained in the model files are identical to the first. For each variable,
PLATO attempts to identify by marker ID, marker chromosome and position (separated by :), then trait
(in that order). Empty lines and lines beginning with a pound sign (#) are ignored. An example of a
model file is below:

This is a comment, and ignored
All models have 2 markers + a trait
rs122483 chr1:342864 BMI
chr2:86302 chr4:47290 LDL
Note that order of the variables doesn't matter
LDL rs347290 3:12386
Also, RSIDs are case insensitive and “chr” is optional for a chrom.
Rs122483 BMI 4:47290

Note that this argument can be given multiple times, and if given, will override any automated model

generation.

--exclude-markers

If given, automatically generated models will not include markers. This is useful for an EWAS or an
ExE analysis.

--use-traits

If given, will include the traits not listed as covariates in the models to be generated.

--pairwise

Generate exhaustive pairwise models.

--incl-traits string

Gives a comma-separated list of traits to include when generating models. This argument may be
provided multiple times. Note that “--excl-traits” takes precedence over this argument, so if a trait is
both included and excluded, the given trait will be excluded from analysis. This is especially helpful
when used in conjunction with the “--one-sided” argument.

--excl-traits string

Gives a comma-separated list of traits to exclude from analysis when generating models. This
argument may be given multiple times and supersedes “--incl-traits”.

--incl-markers string

Gives a comma-separated list of markers to include in the model generation. This argument may be
given multiple times, and is especially helpful when used in conjunction with the “--one-sided”
argument.

--one-sided

When used in conjunction with the “--pairwise” argument, will instruct PLATO to generate models
with one marker (or trait, if “--exclude-markers” was given) chosen from the provided list of markers
(or traits), and the other being chosen from all markers (or traits) not explicitly excluded.

Model Generation Summary

Because the options for generating PLATO models can be somewhat overwhelming, the table below
lists some of the options available and what the corresponding analysis. In the table, options are listed
by either “Y”, “N”, or “*”, which means that the option was given, not given, or either given or not:

--exclude-markers --use-traits --pairwise --one-sided Analysis

N N N N GWAS

N Y N N GxE

Y Y N N EWAS

N N Y N GxG

Y Y Y N ExE

N Y Y N GxGxE

N N Y Y Focused GxG

Y Y Y Y Focused ExE

Y Y Y Y Focused GxGxE

Y N * * Error

* * N Y Error

	Overview
	Examples
	Recode PED/MAP to Binary PLINK format
	Recode Binary PLINK to PED/MAP, Only a Single Chromosome
	Perform a Simple Case/Control GWAS (no covariates, Bonferroni corrected p-values)
	PheWAS on Quantitative Outcomes using Markers with MAF between 10% and 40%
	EWAS (No Genetic Data, Quantitative Predictor Variables)
	Concordance Checking (VCF vs. PED/MAP w/o FID)
	GWAS with Dog Data and Permutation Testing

	PLATO Quick Reference
	Installation
	Prerequisites
	Unpacking
	Configuration
	Compilation and Installation

	Running PLATO
	Parallel Options
	Special Options
	--help [-h]
	--list-commands [-L]
	--help-command [-C] string
	--version [-v]

	Global Options
	--logfile [-f] string (=plato.log)
	--chroms int (=22)
	--extra-chroms string (=X,Y,XY,M-MT)

	Commands
	batch
	--file [-f] string

	concordance
	--prefix string (=concordance)
	--error string (=error)
	--sample string (=sample)
	--marker string (=marker)
	--marker-mismatch string (=marker-mismatch)
	--sample-mismatch string (=sample-mismatch)
	--extension string (=txt)
	--inc-missing
	--sep string (=<TAB>)

	filter-maf
	--min float (=0.05)
	--max float (=1.0)

	filter-marker-call
	--threshold float (=0.99)

	filter-sample-call
	--threshold float (=0.99)

	filter-trait-missing
	--threshold float (=0.99)

	linear
	--interactions
	--covariates string
	--const-covariates string
	--outcome string
	--encoding enum (=additive)
	--show-univariate
	--phewas
	--output string (=output.txt)
	--separator string (=<TAB>)
	--threads int (=1)
	--lowmem
	--correction enum
	--thresh float (=1)
	--inflation
	--inflation-adjust
	--inflation-method enum (=GC)

	load-categorical
	--file string

	load-data
	--file string
	--ped string
	--map string
	--bfile string
	--bed string
	--bim string
	--fam string
	--tfile string
	--tped string
	--tfam string
	--lfile string
	--lgen string
	--no-sex
	--no-parents
	--no-fid
	--no-pheno
	--map3
	--map-ref
	--map-alt
	--control0
	--quant
	--beagle-prefix string
	--beagle-suffix string (=bgl)
	--marker-suffix string (=markers)
	--beagle-files string
	--marker-files string
	--beagle-chroms string
	--trio
	--pair
	--bgl-phased
	--bgl-poly
	--beagle-missing string (=0)
	--vcf-file string
	--no-filter-marker
	--no-filter-geno
	--vcf-phased
	--vcf-poly

	load-trait
	--file string
	--missing string
	--no-fid
	--ignore-error
	--extra-samples
	--dummy-samples
	--require-complete

	logistic
	--firth
	--odds-ratio
	--max-iterations int (=30)

	output-beagle
	--prefix string (=output)
	--suffix string (=bgl)
	--marker-suffix string (=markers)
	--incl-traits
	--pair
	--trio
	--missing string (=0)

	output-bed
	--file [-f] srting (=plato)
	--bed string
	--bim string
	--fam string
	--individual-major

	output-eigenstrat
	--file [-f] string (=plato)
	--genotype string
	--snp string
	--indiv string

	output-ped
	--file [-f] string (=plato)
	--ped
	--map

	output-tped
	--file [-f] string
	--tped string
	--tfam string

	recode-alleles
	--file string
	--input-map
	--map3
	--auto
	--out string
	--output-map

	regress-auto
	--linear string
	--logistic string

	Advanced Topics
	Pre-Filtering Data
	--chrom string
	--bp-window srting
	--incl-marker string
	--excl-marker string
	--incl-marker-fn string
	--excl-marker-fn string
	--incl-sample string
	--excl-sample string
	--incl-sample-fn string
	--excl-sample-fn string

	Permutation Testing
	--permutations int (=0)
	--permu-seed int
	--permu-thresh float (=0.05)
	--permu-detail-fn string (=permutation-detail.txt)
	--permu-pval-fn string (=permutation-pval.txt)
	--permu-run-full

	Model Generation for Regression
	--models string
	--exclude-markers
	--use-traits
	--pairwise
	--incl-traits string
	--excl-traits string
	--incl-markers string
	--one-sided
	Model Generation Summary

