

Ich versichere hiermit wahrheitsgemäß, die Arbeit bis auf die dem Aufgabensteller bereits
bekannte Hilfe selbständig angefertigt, alle benutzten Hilfsmittel vollständig und genau
angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert
oder mit Abänderung entnommen wurde.

Karlsruhe, den 30.04.2010

Aurelien Lourot

Diploma Thesis

Integration of Safety-Critical Real-Time Applications
on Platform Virtualization Software
Presented by Aurelien Lourot
V1.0/30.04.2010

Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

 www.kit.edu if.insa-lyon.fr www.comsoft.aero

Département
Informatique

Revision History

Version Date Description Resp.

V1.0 30.04.2010 Initial Version A. Lourot

COMSOFT GmbH
Wachhausstrasse 5a
76227 Karlsruhe
Phone +49 721 9497 - 0
Fax +49 721 9497 - 129

Copyright © 2010 by COMSOFT GmbH

Diploma Thesis

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 i

Acknowledgements
First of all I would like to thank Prof. Dr. rer. nat. Wolfgang Karl (KIT), David Kramer (KIT),
Frank Kulasik (Comsoft) and Mathieu Maranzana (INSA Lyon) for supervising this diploma
thesis.

Furthermore, I would like to show my gratitude to several colleagues and friends in the
context of this project: Andrew Dale, Johannes Fischer, Andreas Holzmann, Dr. Bernhard
Limbach, Dr. Klaus Lindemann, Frank Muzzulini, Jonas Weismüller and Marc Winkelmann
for their help concerning the Comsoft products; Manfred Kissel, Peter Risse and Thomas
Wirth for their help concerning hardware; David Barton, Yasmin Jakober and Isabelle Kurpat
for their support concerning the English and for proofreading this thesis; Dieter Drabold for
his training course on electrostatic discharge.

Last but not least I would like to thank all my colleagues who are not explicitly mentioned, for
their kindness and for making the company Comsoft a good place to work.

 Diploma Thesis

ii Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

Diploma Thesis

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 iii

Abstract (German)
Die Firma Comsoft GmbH beliefert ihre Kunden aus dem Bereich Air Traffic Management mit
Komplettsystemen. Ein System ist in diesem Fall ein Set von mehreren weichen
Echtzeitsanwendungen, die auf einem Set von Hardware Plattformen laufen. Sie brauchte
eine Lösung für Serverkonsolidierung mit der Möglichkeit, die Ressourcen (CPU, Festplatte,
usw.) gleichmäßig zwischen den Anwendungen zu verteilen, und mit einer garantierten
Beschränkung der von einer Anwendung zur Erreichung einer Ressource gebrauchten Zeit.
Comsoft bestellte eine auf Servervirtualisierung basierende Studie.

Wir haben die Anforderungen an dieser Lösung beschrieben und einen Entwurf
vorgeschlagen. Wir haben eine Reihe von Indikatoren und Tests definiert und haben sie
verwendet, um die Vorhersagbarkeit, die Leistung und die Isolierungskapazität existierender
Virtualisierungsansätze genau zu bewerten. Wir haben einige Produkte ausgewählt, die die
Anforderungen von Comsoft erfüllen könnten, und haben unsere neulich definierte Methodik
verwendet, um ihre Fähigkeit oder Unfähigkeit bei der Unterstützung und Isolierung der
Echtzeitsanwendungen Comsofts zu beweisen und damit die Auflösung des vorgelegten
Problems auch zu beweisen. Die Tauglichkeit von VMware ESXi wurde bewiesen.

Wir haben eine auf ESXi basierende Lösung umgesetzt und geprüft, um die Erfüllung der
übrigen Anforderungen zu bestätigen.

Gewerblich gesehen ist die Besonderheit dieser Studie die Sicherheitskritizität des Projekts.
Wissenschaftlich gesehen ist diese Arbeit unseres Wissens die erste Definition einer
Methodik zur Evaluierung existierender Virtualisierungsansätze, die sich so eingehend mit
Vorhersagbarkeit und Echtzeit bei allen virtuellen Ressourcen beschäftigt.

Abstract (English)
The Comsoft GmbH Company supplies their customers with full systems for Air Traffic
Management. Such a system is actually a collection of several soft real-time applications
running on a set of hardware platforms. The company needed a solution for server
consolidation with the possibility to equally distribute resources (CPU, hard-disk, etc.) among
their applications and the guarantee that the time needed for an application to get a resource
is limited. They ordered a study based on server virtualization.

We described the requirements for such a solution and proposed a design. We defined a
series of indicators and tests, and used them to precisely evaluate predictability,
performance and isolation of existing virtualization products. We selected virtualization
products that may fulfil Comsoft's requirements and used our newly defined methodology to
prove their ability or inability to support and isolate Comsoft's soft real-time applications, and
therefore to solve the submitted problem. The suitability of VMware ESXi has been proved.

We implemented a solution based on ESXi and tested it to confirm that the remaining
requirements are met.

From an industrial point of view, the particularity of this study is its safety-critical nature. From
a scientific point of view, this is, to our knowledge, the first definition of a methodology for
evaluating existing virtualization products focusing so precisely on predictability and real-time
for all virtualized resources.

 Diploma Thesis

iv Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

Diploma Thesis

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 v

Contents

1 Introduction..1
1.1 Motivation ...1
1.2 Objective ..3
1.3 Tasks..4
1.4 Structure of the Thesis ...5

2 Background ...6
2.1 Technical Background..6

2.1.1 Comsoft products ...6
2.1.2 Virtualization...12

2.1.2.1 Reasons ...12
2.1.2.2 Virtualization Techniques ...14

2.1.3 Real Time...21
2.1.3.1 Hard Real Time ..21
2.1.3.2 Soft Real Time..22

2.2 Related Work..24
2.2.1 Existing virtualization products ...24
2.2.2 Evaluation techniques ..24
2.2.3 Future evolutions..26
2.2.4 Related topics...27
2.2.5 Other utilizations of virtualization..27
2.2.6 Particularities of our work...28

2.3 Requirements ...29
2.3.1 Technical Requirements...29

2.3.1.1 From Customers...29
2.3.1.2 From Comsoft...32

2.3.2 Commercial Requirements...32
2.3.3 SWAL 3 ..32

3 Design ...33
3.1 Existing design ...33
3.2 New design...34
3.3 Compliance with the requirements ...36
3.4 Comparison of virtualization products ..37

3.4.1 VMware Infrastructure..37
3.4.2 Other VMware products ...39
3.4.3 Xen Hypervisor...39
3.4.4 QEMU . ..40
3.4.5 KVM . ..40
3.4.6 Linux VServer...41
3.4.7 OpenVZ. ...41
3.4.8 Other virtualization products...42
3.4.9 Conclusion ...43

3.5 Evaluation...44

 Diploma Thesis

vi Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

3.5.1 VMware ESXi .. 46
3.5.1.1 CPU Utilization .. 46
3.5.1.2 Main Memory... 78
3.5.1.3 Hard Disk Drive ... 86
3.5.1.4 Network. .. 101
3.5.1.5 Human-Computer Interface ... 107
3.5.1.6 Conclusion... 109

3.5.2 KVM ... 110
3.5.2.1 CPU Utilization .. 110
3.5.2.2 Conclusion... 117

4 Implementation ... 118
4.1 Architecture ... 118
4.2 Details.. 121
4.3 Compliance with the requirements .. 124

5 Verification and Validation .. 126
5.1 Hard disk latency ... 126
5.2 Test scripts .. 127
5.3 Untested compliance ... 133
5.4 Other requirements.. 133

6 Summary and Outlook .. 134
Appendix A Implementing full virtualization ...A-1
Appendix B CPU reservation on VMware ESXi ...A-10
Appendix C Scheduling test on MS-DOS...A-12
Appendix D Scheduling test on Fedora Core 11..A-13
Appendix E Hard-disk latency reduction with ESXi..A-15
Appendix F Hard-disk space needed for the project..A-17
Appendix G Savings due to the project ..A-18
Appendix H Health of an AIDA-NG Recording Sub-SystemA-19
References..B-1
Glossary... C-1

Diploma Thesis

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 vii

List of Figures

Figure 1-1: Example of a solution ..1
Figure 1-2: Previous solution without SPOF..2
Figure 1-3: Previous solution with the least possible platforms (still without SPOF)3
Figure 1-4: Previous solution with virtualization (still without SPOF)4
Figure 2-1: Architecture of AIDA-NG ...7
Figure 2-2: Architecture of CADAS-ATS..8
Figure 2-3: Architecture of CADAS-IMS ..9
Figure 2-4: Structure of a classical computer running applications14
Figure 2-5: Computer running an emulator..14
Figure 2-6: Full virtualization..16
Figure 2-7: Operating system-level virtualization...18
Figure 2-8: Operating system API emulation ...20
Figure 2-9: Kernel in user mode ..20
Figure 2-10: Real-time system...22
Figure 3-1: Architecture of a standard Comsoft solution..33
Figure 3-2: Design of the new solution ..34
Figure 3-3: No redundancy for virtual NICs ...35
Figure 3-4: RAID system in the HP ProLiant DL380 G6 ..45
Figure 3-5: Different layouts of the front panel of the HP ProLiant DL380 G6...................45
Figure 3-6: Overhead on CPU-Bound applications (1 VM)..48
Figure 3-7: Overhead on CPU-Bound applications (1 VM)..52
Figure 3-8: Overhead on system calls ...55
Figure 3-9: Overhead on MMU usage ...57
Figure 3-10: Overhead on MMU usage (without VMI paravirtualization)58
Figure 3-11: Equal CPU time distribution among threads..61
Figure 3-12: Equal CPU time distribution among virtual machines......................................62
Figure 3-13: Equal CPU time distribution among virtual machines......................................63
Figure 3-14: Proportional CPU time distribution among virtual machines65
Figure 3-15: Equal CPU time distribution among virtual machines......................................66
Figure 3-16: Proportional CPU time distribution among virtual machines66
Figure 3-17: ESXi's CPU time distribution among virtual machines67
Figure 3-18: Distribution of the normalized approximate influence without

virtualization...73
Figure 3-19: Distribution of the normalized approximate influence (1 VM)74

 Diploma Thesis

viii Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

Figure 3-20: Distribution of the normalized approximate influence (4 VM) 75
Figure 3-21: Read-bandwidth without virtualization .. 80
Figure 3-22: Write-bandwidth without virtualization .. 80
Figure 3-23: Disturbed read-bandwidth without virtualization ... 81
Figure 3-24: Disturbed write-bandwidth without virtualization... 81
Figure 3-25: Read-bandwidth over ESXi... 82
Figure 3-26: Write-bandwidth over ESXi... 83
Figure 3-27: Disturbed read-bandwidth over ESXi.. 83
Figure 3-28: Disturbed write-bandwidth over ESXi ... 84
Figure 3-29: Read-latency without virtualization ... 85
Figure 3-30: Path from application to hard disk drive.. 88
Figure 3-31: Hard disk drive abstraction ... 88
Figure 3-32: Disk throughput without virtualization ... 90
Figure 3-33: Disk throughput with LSI Logic SAS virtual controller..................................... 92
Figure 3-34: Disk latency with LSI Logic Parallel virtual controller...................................... 95
Figure 3-35: Latency with one disturbing instance (without virtualization) 97
Figure 3-36: Latency with one disturbing instance (over ESXi) .. 98
Figure 3-37: Advanced parameters in vSphere Client .. 98
Figure 3-38: Structure of the overhead tests... 103
Figure 3-39: Structure of the isolation test between three clients 105
Figure 3-40: Test of the communication over the virtual network 106
Figure 3-41: Overhead on CPU-Bounded applications (1 VM) ... 111
Figure 3-42: Overhead on system calls .. 113
Figure 3-43: Overhead on MMU usage... 114
Figure 3-44: Equal CPU time distribution among threads... 115
Figure 3-45: Equal or proportional CPU time distribution among virtual machines........... 116
Figure 3-46: KVM's CPU time distribution among virtual machines.................................. 116
Figure 4-1: Architecture of the implemented solution.. 118
Figure 4-2: Redundancy with Linux bonding... 119
Figure 4-3: Linux bonding and VMware ESXi ... 120
Figure 4-4: ESXi's hot-standby mode.. 120
Figure 4-5: Virtual networks .. 123
Figure 5-1: Message generator and traffic monitor ... 126
Figure A-1: Relations between the newly defined modes and exceptionsA-3
Figure A-2: Intel's Protection Rings (from the Intel Documentation [C1])A-4
Figure B-1: CPU time distribution with a CPU reservation of 100 % for VM A.A-11

Diploma Thesis

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 ix

Figure D-1: Distribution of the influence on Fedora without virtualization, best caseA-13
Figure D-2: Distribution of the influence on Fedora without virtualization, worst case ...A-14
Figure E-1: VMDirectPath configuration dialog ..A-16
Figure H-1: Alive indicators missing ...A-19
Figure H-2: RSS in maintenance..A-19

 Diploma Thesis

x Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

List of Tables

Table 3-1: Fulfilled requirements ... 36
Table 3-2: Comparison of different virtualization products... 43
Table 3-3: Overhead on CPU-Bound applications (1 VM) ... 48
Table 3-4: Overhead on CPU-Bound applications (10 VMs) ... 50
Table 3-5: Overhead on CPU-Bound applications (1 VM) ... 52
Table 3-6: Overhead on MMU usage (without VMI paravirtualization) 58
Table 3-7: Equal CPU time distribution among virtual machines..................................... 59
Table 3-8: Equal CPU time distribution among threads... 60
Table 3-9: Proportional CPU time distribution among virtual machines........................... 60
Table 3-10: CPU time distribution .. 65
Table 3-11: Scheduling test on Xenomai without virtualization.. 71
Table 3-12: Importance of each time range ... 72
Table 3-13: Scheduling test on one virtual machine .. 74
Table 3-14: Compatibility and dependency between the options 89
Table 3-15: Disk throughput over ESXi.. 91
Table 3-16: Disk throughput without virtualization ... 93
Table 3-17: Disk throughput over ESXi.. 93
Table 3-18: Throughput sharing among virtual machines.. 94
Table 3-19: Disk latency without virtualization ... 96
Table 3-20: Disk latency over ESXi ... 97
Table 3-21: Parameters changed to reduce disk access latency....................................... 99
Table 3-22: Disk latency over ESXi with limitation of the disk bandwidth 99
Table 3-23: Final disk latency test ... 100
Table 3-24: Several applications using the same network interface................................ 102
Table 3-25: Network performance of ESXi .. 104
Table 3-26: CPU usage for networking over ESXi ... 104
Table 3-27: Networking isolation with ESXi ... 106
Table 3-28: Communication over the virtual network... 107
Table 3-29: Overhead on CPU-Bounded applications (10 VMs) 112
Table 4-1: Fulfilled requirements ... 124
Table 4-2: Requirements not fully fulfilled yet .. 125
Table 5-1: Unproven compliance ... 133
Table 5-2: Fulfilled requirements ... 133

Diploma Thesis

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 xi

Table D-1: Scheduling test on Fedora without virtualization, best case........................A-13
Table D-2: Scheduling test on Fedora without virtualization, worst caseA-13
Table F-1: Hard-disk space needed by Comsoft products..A-17

 Diploma Thesis

xii Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

Diploma Thesis Introduction

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 1

1 Introduction

1.1 Motivation
The Comsoft GmbH Company [A1] delivers solutions for Air Traffic Management1 (ATM) to
its customers. Such a solution is actually a collection of several full products (also called
systems), each of them being a collection of software processes (also called subsystems)
running on a set of hardware platforms (computers).

Note: One instance of a subsystem can only run on one platform.

Figure 1-1: Example of a solution

For obvious commercial reasons, Comsoft would like to be able to reduce the amount of
platforms. In this process, following elements have to be taken into account:

• The subsystems are executed on different and dedicated hardware platforms. This
isolation reduces drastically the amount of (unexpected) interaction between them, thus
helping to guarantee that each of them (and therefore the whole solution) fulfils the
performance requirements (see chapter 2.3 Requirements). The suppression of this
isolation often leads to a violation of these requirements, since the different
subsystems compete for the access to the same hardware components2.

• In the context of ATM, safety (protection against harm and damage) is an important
notion. The performance requirements are actually just a subset of the safety
requirements. In this context, a few tests are not sufficient to validate a solution and it
has to be demonstrated that the requirements are met.

1 Air Traffic Control (ATC), Air Traffic Flow Management (ATFM), Air Space Management (ASM), Air
Safety…
2 Not only the processor, but also the memory and all I/O components (hard disk drive, network
peripherals, …).

Platform 1

Subsystem 1 Subsystem 2

Platform 2

Subsystem 3

System 1 System 2

Platform 3

Subsystem 4

Solution

Introduction Diploma Thesis

2 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

• One important safety requirement is to avoid a single point of failure1 (SPOF). In
consequence each component of the system exists at least twice, leading to this type
of solution:

Figure 1-2: Previous solution without SPOF

Note: The different instances of the same subsystem are aware of each other and work
together by means of clustering mechanisms, thus increasing the availability2 of the solution.

For now, Comsoft doesn't sell any solution where several substantial systems share the
same platforms for the following reasons:

• The proof that their software applications fulfil the safety requirements is so far made
only in cases where each application runs on a dedicated platform and is considered
as a full independent product.

• Some tests were performed internally, where several applications were run on the
same platform (without virtualization layer), but were not always satisfactory. (Some
examples are given in chapter 2.1.1 Comsoft products.)

1 Component of a system which, if it fails, prevents the whole system from working. [N1]
2 The availability of a system during a given time interval is the probability that the system is able to
deliver the service(s) it is designed for. For instance an availability of 99% means that the system will
probably not work as expected (unavailability during a planned maintenance process doesn't count)
3.65 days a year. [H1]

Platform 1A

Subsystem 1
(instance 1)

Subsystem 2
(instance 1)

System 1

Solution

Platform 1B

Subsystem 1
(instance 2)

Subsystem 2
(instance 2)

Platform 2A

Subsystem 3
(instance 1)

Platform 2B

Subsystem 3
(instance 2)

Platform 3A

System 2

Platform 3B

Subsystem 4
(instance 1)

Subsystem 4
(instance 2)

Diploma Thesis Introduction

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 3

However making several systems share the same platforms is the goal of this diploma thesis.
A solution should then have the following structure:

Figure 1-3: Previous solution with the least possible platforms (still without SPOF)

Some precisions concerning the current Comsoft's current solutions have to be made at this
point:

• Each hardware platform is an HP Industrial Server of the HP ProLiant DL series or a
successor. Since these servers have proven their worth after years of utilization and
HP guaranties a support all over the world, they shall still be deployed.

• The operating system is a Red Hat or Fedora Linux distribution. Comsoft shall keep
using them, because a safety assessment was already performed for those
distributions.

• The systems are AIDA-NG, CADAS-ATS and CADAS-IMS (see chapter 2.1.1 Comsoft
products), each of their software parts consisting of several million lines of code, as
well as some smaller complementary products such as an X.500 directory server for
instance.

• Those systems are restricted by time constraints and can be, as we will see further on
in this document (see chapter 2.1.1 Comsoft products), considered as soft real-time
systems.

1.2 Objective
As mentioned, trying to deploy several subsystems on the same hardware platform often
leads to a failure to fulfil the safety requirements (see chapter 2.3 Requirements). For
instance CADAS-ATS performs a database replication, grabbing the CPU and RAID-I/O in
such a manner that AIDA-NG gets temporarily blocked and the message handling's latency
exceeds a threshold.

Setting up an adapted process scheduling policy is therefore not sufficient. Memory
management and I/O-access must be studied, and mutual blocking of applications must be
temporally limited.

Subsystem 1
(instance 1)

Subsystem 2
(instance 1)

System 1

Solution

System 2

Platform A

Subsystem 3
(instance 1)

Subsystem 4
(instance 1)

Subsystem 1
(instance 2)

Subsystem 2
(instance 2)

Platform B

Subsystem 3
(instance 2)

Subsystem 4
(instance 2)

Introduction Diploma Thesis

4 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

It seems obvious, that the access from applications to common resources such as CPU,
RAM and I/O devices could be easily controlled by virtualization techniques (see chapter
2.1.2 Virtualization). Instead of deploying subsystems on real platforms, it would be possible
deploy them on virtual platforms (representing a fraction of a real platform). No modification
on the subsystems (i.e. no software modification) would be needed:

Figure 1-4: Previous solution with virtualization (still without SPOF)

Note: There is still no single point of failure in the figure 1-4, since there is no subsystem
whose instances are on the same real platform.

1.3 Tasks
A virtualization software fulfilling the safety and commercial requirements has to be
deployed. As a result, the tasks to be performed in this diploma thesis are as follows:

• The safety and commercial requirements have to be clearly specified and justified.

• These requirements have to be completed by other requirements resulting from
existing applications and components' characteristics (compatibility of virtualization
software with hardware and operating system, with clustering mechanisms, etc.).

• Existing virtualization techniques and corresponding implementations shall be
evaluated according to the requirements and their validity shall be tested.

• The target architecture has to be designed for the found valid techniques and
implementations.

Virtual Platform 1A

Subsystem 1
(instance 1)

Subsystem 2
(instance 1)

System 1

Solution

Virtual Platform 1B

Subsystem 1
(instance 2)

Subsystem 2
(instance 2)

Virtual Platform 2A

Subsystem 3
(instance 1)

Virtual Platform 2B

Subsystem 3
(instance 2)

Virtual Platform 3A

System 2

Virtual Platform 3B

Subsystem 4
(instance 1)

Subsystem 4
(instance 2)

R
E
A
L

P
L
A
T
F
O
R
M

A

R
E
A
L

P
L
A
T
F
O
R
M

B

Diploma Thesis Introduction

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 5

• A system corresponding to this architecture shall be implemented. This system should
be suitable for an operational deployment. This means for example that no hardware
other than the one usually needed can be used.

• Test plans derived from the previous requirements must be specified and executed.
The traceability from requirement to test plan must be clear.

• In case a technical argumentation in addition to test plans is necessary or meaningful
to prove the fulfilment of a requirement, this argumentation shall be done.

• The fulfilment (or non-fulfilment) of the requirements shall also be examined with an
overall view.

• If residual problems are found in the overall view, the tasks to solve those problems
shall be specified.

1.4 Structure of the Thesis
Chapter 2 first gives technical explanations on Comsoft products, virtualization and real-time
systems, needed to understand the next parts of this document. It then presents the research
work related to our study and the requirements for the solution we propose.

We expose in chapter 3 the design of our solution and evaluate virtualization products in
order to implement it. This evaluation is the main part of our study.

We explain our implementation in chapter 4. Chapter 5 describes the verification and the
validation of this implementation.

Finally, chapter 6 sums up the results achieved while working on this thesis and points out
future work and perspectives.

Background Diploma Thesis

6 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

2 Background

2.1 Technical Background
This chapter gives technical explanations needed to understand the rest of this document.

2.1.1 Comsoft products

This chapter describes the Comsoft products (also called systems, see chapter 1.1
Motivation) concerned by this project.

AIDA-NG
AIDA-NG stands for Aeronautical Integrated Data Exchange Agent – Next Generation. [A5]
This product is a router for aeronautical messages (flight plans, weather reports, etc.) in
ground data networks. It supports most communication protocols of all layers used all over
the world for aeronautical telecommunication and is able to convert messages from one
standard to another, thus acting as a gateway too.

The two main aeronautical interconnection networks (covering the Earth) are:

• AFTN: Aeronautical Fixed Telecommunication Network. It involves AFTN messages
and AFTN addresses. It is an "old" standard (1950s).

• AMHS: ATS (Air Traffic Services) Message Handling System, with so called AMHS
messages and AMHS addresses. It is a newer standard (1990s) aiming to replace
AFTN.

Their lines are very heterogeneous. They are based on a lot of different protocol stacks
(X.400 over IP, X.400 over X.25, TCP/IP, UDP/IP, etc.).

Diploma Thesis Background

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 7

Figure 2-1: Architecture of AIDA-NG

This system is composed of several sub-systems:

• Core Sub-Systems (CSS, represented as "Core Server" on figure 2-1): this sub-system
routes the messages coming from one communication partner to another, eventually
performing conversions, based on routing rules. There are two instances of CSS (CSS
A and CSS B), running on different hardware platforms to ensure redundancy.

• Recording Sub-System (RSS, represented as "Recording Server" on figure 2-1): this
sub-system records in a database all messages going through the system and all
events happening in the system. Every airport has the legal obligation to keep a copy
of all messages during a time between 30 and 90 days. There are two instances of
RSS (RSS 1 and RSS 2), running on different hardware platforms to ensure
redundancy. Usually, CSS A and RSS 1 are running on the same hardware platform,
CSS B and RSS 2 on another one.

• Operating Sub-System (OSS, represented as "Operator Working Position" on figure
2-1): this sub-system is a graphical interface to configure and monitor the whole
system. Up to 100 instances of OSS can be deployed. They are usually deployed on
workstations (classical PCs). This is why the OSS is not part of this project, which
concerns the virtualization of the servers.

Like other Comsoft systems, AIDA-NG relies on two local networks:

• Internal LAN (ILAN): interconnects all AIDA-NG components.

• External LAN (ELAN): connects AIDA-NG to the other systems of the whole solution.

All components of both networks are doubled, to ensure redundancy. For more information
on this system, please refer to the following documents:

• AIDA-NG Product Information; [A5]

• AIDA-NG Interface Control Document; [A6]

Background Diploma Thesis

8 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

• AIDA-NG Routing; [A7]

• AIDA-NG System Architecture. [A8]

CADAS-ATS
CADAS-ATS stands for Comsoft's Aeronautical Data Access System – Air Traffic Services.
[A9] This system allows the creation of AFTN and AMHS mailboxes, so that operators can
send and receive AFTN and AMHS messages. This system is connected to the AIDA-NG
system (or to another AFTN/AMHS gateway) over the External LAN (see previous chapter).
The graphical interface of this system has a lot of standard message templates so that
operators can easily write flight plans, meteorological messages, etc.

Figure 2-2: Architecture of CADAS-ATS

The system is composed of several sub-systems:

• Message Handler: this sub-system routes the messages to the different mailboxes or to
AIDA-NG and stores in a database all messages and all events happening on the
system (and keeps them for a time between 30 and 90 days). There are two instances
of Message Handler (Message Handler 1 and Message Handler 2), running on different
hardware platforms to ensure redundancy.

• Terminal Server: this sub-system makes the java applications (terminals) available for
the Operator Working Positions. There are two instances of Terminal Server (Terminal
Server 1 and Terminal Server 2), running on different hardware platforms to ensure
redundancy. Usually, Message Handler 1 and Terminal Server 1 are running on the
same hardware platform, as well as Message Handler 2 and Terminal Server 2.

Like other Comsoft systems, CADAS-ATS relies on two local networks:

• Internal LAN (ILAN): interconnects all CADAS-ATS servers and allows them to
synchronise at any time with each other.

• External LAN (ELAN): connects CADAS-ATS to the other systems of the whole
solution (e.g. AIDA-NG) and to the workstations (Operator Working Positions).

Diploma Thesis Background

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 9

For more information on this system, please refer to the following documents:

• CADAS-ATS Product Information; [A9]

• CADAS-ATS: Administrator's Guide. [A10]

CADAS-IMS
CADAS-IMS stands for Comsoft's Aeronautical Data Access System – Information
Management & Services. [A11] There are several types of aeronautical messages. Three of
them concerned by CADAS-IMS are FPL (Flight Plan), NOTAM (Notice to Airmen) and
OPMET (Operational Meteorological). NOTAMs are messages sent by government agencies
to NOTAM offices (usually located in airports) to inform pilots of any hazard like for example:

• runway closure due to maintenance;

• military exercises;

• volcanic ash.

A NOTAM can indicate a new hazard, can replace/update a previous one or indicate that a
previous NOTAM has to be removed. Without any information system, as it's still the case in
some countries, the NOTAM office has a set of cabinets and folders containing one sheet per
NOTAM. NOTAM office employees have to regularly add, replace and remove sheets from
their "database".

Before a plane takes off, its pilot has to go to the NOTAM office to get a briefing. A briefing is
the list of all NOTAMs (and OPMETs) concerning its flight (inside its air corridor). Its air
corridor is already known based on the FPL (Flight Plan). A folder is given to the pilot, who
can then get onto the plane.

The role of CADAS-IMS is to replace the cabinets, the folders and the sheets of paper with a
database, automatically maintain it and automate the creation of briefings by cross-
referencing the FPLs, the NOTAMs and the OPMETs. This system is connected to the AIDA-
NG system (or to another AFTN/AMHS gateway) over the External LAN.

Figure 2-3: Architecture of CADAS-IMS

Background Diploma Thesis

10 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

The system is composed of several sub-systems:

• Database: this sub-system is the database for all messages and events happening on
the system, and for the static data (position and boundaries of all countries, position of
every airport, standard air corridors, etc.) There are two instances of Database
(Database 1 and Database 2), running on different hardware platforms to ensure
redundancy.

• Application Server: this sub-system contains all applications of the system and
executes them. There are two instances of Application Server (Application Server 1
and Application Server 2), running on different hardware platforms to ensure
redundancy.

• Web Server: this sub-system makes the graphical interface available to the
workstations (Operator Working Positions), which only need a web browser to display
it. Usually, Database 1, Application Server 1 and Web Server 1 are running on the
same hardware platform, Database 2, Application Server 2 and Web Server 2 on
another one.

Like other Comsoft systems, CADAS-IMS relies on two local networks:

• Internal LAN (ILAN): interconnects all CADAS-IMS servers and allows them to
synchronise at any time with each other.

• External LAN (ELAN): connects CADAS-IMS to the other systems of the whole solution
(e.g. AIDA-NG) and to the workstations (Operator Working Positions).

For more information on this system, please refer to the following documents:

• CADAS-IMS Product Information; [A11]

• CADAS-IMS: Technical Specification. [A12]

CCMS
CCMS stands for Comsoft Configuration Management Suite. [A13] It isn't a product but it's
part of all air traffic control solutions delivered by Comsoft. CCMS is a set of applications
installed on all platforms (servers and workstations). CCMS:

• provides a graphical interface, where administrators can declare and configure all
platforms, systems and sub-systems (see chapter 1.1 Motivation);

• spreads the software and the defined configuration to all platforms of the solution;

• tweaks the look and feel of the underlying operating system (Fedora) to work smoothly
with Comsoft applications and present a common user interface;

• provides scripts for easier access to Linux functions.

Thus CCMS is installed on all platforms and simplifies their configuration. Administrators
don't have to install and configure each platform one by one.

Diploma Thesis Background

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 11

Other products
The following products are for now not concerned by this project but will probably benefit
from its results in a near future:

• CNMS (Comsoft Network Management System) is a system to supervise and monitor
the health of all Comsoft systems at the same time, i.e. the health of all components of
the whole solution. [A15]

• EFG (E-Mail/Fax Gateway) is a system that receives e-mails, converts them, and
sends them as fax messages to the indicated destination. [A16]

• ATN-Router (Aeronautical Telecommunication Network Router) is a CLNP
(Connectionless Network Protocol) router. [A17]

• View500 (formerly ViewDS) is an X.500 Directory Server from the company eB2Bcom,
delivered by Comsoft. [N2]

• CADAS-AIMDB (Database for Aeronautical Information Management) is a database
containing all data necessary for the safety, regularity and efficiency of international air
navigation. It stores entities, attributes and relationships in order to describe
aeronautical features such as airports, runways, obstacles, routes, terminal
procedures, airspace structures, services and related aeronautical data. [A2] [A18]

Without virtualization
As mentioned in chapter 1.1 Motivation, this project isn't the first attempt from Comsoft to let
several systems share the same hardware platforms. No problem has been observed
concerning the CPU utilization, the main memory or the network, but rather concerning the
hard disk drives.

Every subsystem of AIDA-NG is composed of several processes called managers, each of
them performing a special task. All managers must send regularly (typically every third
second) an alive message to a special manager named system manager. There is one
system manager per subsystem. After a certain amount of missing alive messages (typically
six) from a certain manager, its system manager considers this manager to be
malfunctioning, stops all managers under its authority and declares the subsystem to be in
maintenance. An administrator must intervene.

The Recording Subsystem (RSS) of AIDA-NG is responsible for the database of AIDA-NG
and therefore often accesses the hard-disk drive. The Linux hard disk scheduler, trying to
optimize the movements of the hard disk (see chapter 3.5.1.3 Hard Disk Drive), doesn't
deliver any guarantee concerning the latency of a hard disk access by a process. If one
process is using the hard disk drive, another one also trying to access it can get blocked
during several seconds. But if one manager of the RSS gets blocked more than about 15
seconds, or needs more than 15 seconds to perform an elementary sequence of hard-disk
operations, the whole subsystem gets stopped, which is not acceptable.

It's easy to make this problem happen, following tests can be made:

• copying a "big" file (with the command dd or cp) during seconds while the RSS is
storing a lot of messages will make it crash;

• uncompressing a "big" tar-archive during seconds will lead to the same result.

Comsoft engineers noticed easily that this problem is not related to the maximum bandwidth
of the hard disk drive but just to the latency. They were ready to sacrifice the bandwidth in
order to guarantee a correct latency (a latency of even one second would have been

Background Diploma Thesis

12 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

acceptable!) and fairness. They invested a lot of effort in trying different disk schedulers1 and
configuring them, but did not manage to reduce the latency.

In the field, the Comsoft project for Vietnam Air Navigation Services Corporation
(VANSCORP) suffered the consequences of this problem. Comsoft delivered a system
where AIDA-NG, CADAS-ATS and CADAS-IMS share the same hardware platforms, without
virtualization layer. If one Message Handler of CADAS-ATS is switched off during a long
period and then switched on again, it has to synchronise its database with the other Message
Handler. This process is called a database replication. If there is a big difference between the
two databases, the replication can take a long time and make the RSS, running on the same
hardware platform, wait for the hard disk and crash. It actually happened several times,
forcing Comsoft to redesign the solution and deliver more servers.

All Comsoft products are based on such timers, guaranteeing that the solution works
correctly in the allotted time, with some tolerances. Thus Comsoft systems can be
considered as soft real-time systems (see chapter 2.1.3.2 Soft Real Time). The time
granularity/precision of Comsoft systems usually varies from one to a few seconds.2

Another problem appeared on the same project (VANSCORP). A software product from
another manufacturer had to be integrated to the project, but this manufacturer provides an
assistance only if the software runs on Fedora Core 4. Because Comsoft products were not
based on Fedora Core 4 at that time, an additional server had to be delivered especially for
this external software product. This could have been solved by virtualization (see chapter
2.1.2.1 Reasons). However this thesis doesn't focus on this purpose but rather on server
consolidation and real-time.

2.1.2 Virtualization

Virtualization is a set of software and hardware techniques allowing a real computer (or real
machine) to act like one or more computers (having the same architecture or not). These
simulated computers are usually called (guest) virtual machines.

This term has also been extended to higher levels: for example an operating system
simulating another one is a type of virtualization too (operating system API emulation, see
chapter 2.1.2.2 Virtualization Techniques).

2.1.2.1 Reasons

This chapter describes the main reasons for using virtualization. More details can be found in
Das Virtualisierungs-Buch [V1] or The Advantages of Using Virtualization Technology in the
Enterprise [V9].

Server consolidation
Some applications sometimes need to be separated on different servers, because for
example they need different operating systems, or several instances of the same application
can't coexist in the same environment. Several computers are then needed. It often leads to
a waste of resources, since the whole capacity of a computer is rarely used.

1 Linux proposes four different schedulers: CFQ, Noop, Anticipatory and Deadline, some of them
promising some guarantees. [C26] More information in the Linux documentation.
2 This is why a performance requirement would never look like "The system must be able to handle a
message in less than 50 ms." but rather like "The system must be able to handle 20 messages per
second." (see chapter 2.3 Requirements).

Diploma Thesis Background

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 13

With virtualization, several virtual machines (isolated from each other) can be simulated by
one real one. Even if the real one may have to be more powerful, it may allow:

• a better use of the resources (50 % of the processor may be used on average instead
of just 20 %, for example);

• an economy of space and energy;

• a lower purchase cost.

These are the reasons for which Comsoft wants to use virtualization.

Note: Server consolidation may also bring performance improvements, contrary to what one
might think. For example, two applications may communicate together faster if they are
running on the same physical hardware platform than if they have to communicate over a
network.

Software development
A developer may want to develop an application that could damage his/her development
environment. This developer could then safely test his/her application on a virtual machine,
as isolated as a real machine.

He/She may also be developing an application for another hardware platform, which may not
be available to him/her. This platform can then be emulated on the development platform.

Legacy software
Some applications may need an old platform architecture (which may moreover not be
available on the market) or an old operating system to run. In the first case, the old platform
can be emulated by a recent computer. In the second case, a special virtual machine can be
used to run the old operating system, so that it isn't necessary to use a dedicated platform.

Load balancing and disaster recovery
An image or snapshot of a virtual machine can be made and moved to another physical
machine, thus allowing easy migration of a virtual machine over physical ones. It is useful for
load balancing and disaster recovery.

Virtual desktops
Virtualization used on workstations allows for example to switch in a few milliseconds from a
Linux desktop to a Windows desktop.

High availability and clustering
Creating one virtual machine on several physical machines is one type of virtualization too.
There are several models:

• Several physical machines simulate the same virtual machine in parallel in a redundant
manner, thus improving availability (if one physical machine fails, the virtual machine
still remains operational).

Background Diploma Thesis

14 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

• Several physical machines simulate one more powerful virtual machine with a lot of
resources.

• Hybrid model: combination of both previous models.

2.1.2.2 Virtualization Techniques

Virtualization is a wide domain regrouping several concepts and techniques. However
specialists don't seem unanimous concerning the names given to these notions. We present
them in this chapter with the most explicit names in our opinion. We will stick to these names
in the whole document.

Emulation
This technique is the one best corresponding to the original concept of virtualization. An
emulation is a fully software reproduction of a machine. Every hardware component
(processor, memory and I/O devices) of the emulated machine is simulated. The main
characteristic of emulation in comparison to other techniques is actually the software
reproduction of the processor.

The software responsible for the emulation (i.e. the imitation/reproduction of a machine) is
called an emulator. The emulator is generally an application run by the operating system of
the host machine (the host operating system).

Figure 2-4: Structure of a classical computer running applications

Figure 2-5: Computer running an emulator

Processor RAM I/O Device

Hardware

Operating System

Application 1 Application 2 Application 3 Application 4 Application 5

Processor RAM I/O Device

Hardware (Host Machine)

Host Operating System

Application Emulator (Guest/Virtual Machine)

Virtual
Processor

Virtual
RAM

Virtual
I/O Device

Application

Guest Operating System

Application Application Application

Diploma Thesis Background

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 15

Several emulators can run at the same time. The main component of an emulator is a
command interpreter to replace the processor:

• Each instruction is executed by the interpreter whose implementation looks like the
implementation of a normal language interpreter.

• Data intended to be sent to a screen can be redirected by the interpreter to a window
or a terminal.

• Interrupts can be simulated by the interpreter by directly jumping to the first instruction
of the guest operation system's handler corresponding to that interrupt request.

• Data from the keyboard is forwarded to the guest like any other interrupt.

Pros:

• The guest's software part (operating system and applications) doesn't need any
modification. We usually say that it is not aware of being executed by an emulator
instead of a real machine.

• It is possible to emulate a machine having an architecture very different from the host
one. (For example PearPC emulates a PowerPC platform for the x86 architecture
[V45].) Thus you can emulate an old computer which is no longer produced and
continue to use applications designed for that machine.

• The host and the guest operating systems can be different.

• Isolation: The guest machine being usually seen as a normal application for the host
operating system, a crash of the guest should not affect the host nor the other
applications (and thus other emulators) running on the guest.

Cons:

• Overhead: since each guest instruction is interpreted, a guest being emulated by a host
of the same architecture (e.g. an Intel x86 being emulated by a real Intel x86, in order
to run several operating systems) can be about 5 to 10 times slower than a real
machine, even for the most powerful emulators, because of the mean number of host
instructions needed to emulate one guest instruction.

• Scheduling of several emulators running on the same host in order to guarantee
respect of deadlines has to be made using the features offered by the host operating
system to schedule standard applications. However some operating systems don't offer
many scheduling possibilities.

Full Virtualization
The major inconvenient of the emulation is the huge overhead. Because of it, this solution is
not adapted for server consolidation (see chapter 2.1.2.1 Reasons).

Full virtualization is the creation of virtual machines of the same type/architecture as the host
machine. Since the instruction set architecture1 is the same, there is no need to emulate
each of the guest's instructions. The guest can directly use the available hardware, in
particular the microprocessor(s), thus drastically reducing the overhead.

1 The instruction set architecture is the hardware interface accessible/visible for the software. It
encompasses for example the operations, the addressing modes, the visible registers, etc. You can
find more about this topic in Computer Architecture [C4] and Mikrocontroller und Mikroprozessoren
[C5].

Background Diploma Thesis

16 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

Of course, this technique doesn't make any sense if there is only one guest. Why would you
create one virtual machine identical to your physical one? It makes sense if you create
several virtual machines on top of one physical one. You could then let different operating
systems run on the same physical machine at the same time. It makes a server consolidation
possible.

However several operating systems are now competing for the same resources. That is why
we need a referee to supervise and allocate those hardware resources: this referee is named
Hypervisor or Virtual Machine Manager (VMM).

Figure 2-6: Full virtualization

Appendix A Implementing full virtualization shows how complicated the implementation of a
full virtualization product can be and gives an overview of the different solutions.

Full virtualization enables the creation of virtual machines on top of one physical/real
machine, where the virtual machines have the same instruction set architecture as the real
one.

Pros:

• The guest's software part (operating system and applications) doesn't need any
modification. (Same advantage as for emulation)

• The operating system of each virtual machine can be different.

• Isolation: a crash of a guest should neither affect the hypervisor nor the other guests.
(Same advantage as for emulation)

• Lower overhead than for the emulation.

• Scheduling: the hypervisor may offer some reliable options to schedule the different
virtual machines, since it is operating at a very low level.

Cons:

• Virtual machines must have the same architecture as the real machine.

• Even if the overhead is lower than for the emulation, it is still not negligible (about 30%
[V6]).

Paravirtualization
With full virtualization, the goal is to reproduce exactly the behaviour of a real machine so
that an unmodified guest operating system can run on the virtual machine without any
modification and without even "knowing" that the underlying machine is virtual.

Hardware

Hypervisor

Guest Operating System

Application Application

Guest Operating System

Application Application

Diploma Thesis Background

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 17

With paravirtualization, a virtual machine doesn't have exactly the same behaviour as a real
one, so that the guest operating system has to be modified to be able to run. There are
several reasons to this approach:

• As explained in appendix A Implementing full virtualization, it can be quite difficult to
develop a hypervisor without hardware support. And the result, using dynamic
recompilation, might not be as efficient as expected. Instead of converting each of the
guest's instructions on the fly, the hypervisor performing paravirtualization lets all the
guest's instructions be executed, considering that they are safe and that a guest
needing to access hardware will voluntary "call" the hypervisor (by means of a system
call, in this case a hypercall).

 But a hypervisor can't actually just assume that every guest is safe, otherwise a
malicious or buggy guest could directly access a hardware resource which was
assigned to another guest and crash it or even the entire system. One common
solution on x86 architecture is to let every guest operating system run in protection ring
1, 2 or 3 and put the hypervisor and hardware resources in ring 0 (see appendix A
Implementing full virtualization for more details). Of course those guest operating
systems have to be modified to be able to run in a restrictive ring.

 So the use of the protection ring 1 was not a valid solution for full virtualization, but it
becomes valid when combined with modification of the guest operating system.

• Paravirtualization can be used to make the whole system even more efficient. For
instance, every modern hypervisor gives the possibility to create virtual NICs (Network
Interface Cards) to make an Ethernet connection between the guests (each guest sees
then an NIC, which is actually a virtual one set up by the hypervisor). Without any
modification, a normal guest operating system would perform cyclic redundancy check
(CRC) on data coming from each NIC to ensure data integrity, including on data
coming from the virtual NIC, since the guest doesn't know that it is virtual. But testing
data integrity without telecommunication is unnecessary and thus a waste of CPU time.

In paravirtualization, guest operating systems (kernel + drivers) are modified to
recognise virtual devices and benefit from this information. They can also be modified
so that they don't perform some verifications or operations which are now already
performed by the hypervisor.

Some specialists refer to paravirtualization as a subset of full virtualization or a solution to
achieve it, whereas some others differentiate them more strongly (we share this second
opinion):

• Full virtualization is the sharing of a real machine among virtual machines with exactly
the same architecture, able to run operating systems originally designed for the real
machine.

• Paravirtualization is the sharing of a real machine among virtual machines with the
same architecture but presenting a slightly different behaviour, needing operating
systems to be modified to be able to run.

By extension, the modification of a guest operating system to improve performance, even if it
is not necessary to achieve virtualization, can be named paravirtualization. The modification
is then often available as a package to install in the guest and it is generally recommended to
install it. [VV22]

Note: Paravirtualization implies modifications in the guest operating system but no
modification in the guest applications.

Background Diploma Thesis

18 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

You can find more information on paravirtualization:

• Xen and the Art of Virtualization [VX2];

• Computer Architecture [C4];

• Das Virtualisierungs-Buch [V1].

The main drawbacks of paravirtualization are:

• It is not possible to modify every operating system (for example some operating
systems are not maintained anymore and/or not open source);

• Thus the list of supported operating systems is shorter for a hypervisor using
paravirtualization than for one using full virtualization;

• When modifying an operating system kernel, there is a risk of inserting bugs.

Operating System-Level Virtualization

"Operating system-level virtualization enables multiple isolated execution
environments within a single operating system kernel." [VZ1]

These execution environments are often called containers, virtual environments (VE), virtual
private servers (VPS), partitions or jails. They are isolated, which means:

• each container has its own set of processes, users, groups, etc.;

• one element inside a container can't see elements from another container;

• all containers share the same operating system kernel, which means they share the
resources of the machine through the single kernel instance (responsible for allocating
resources not only to processes, but also to containers), but not the entire operating
system (e.g. for Linux, containers can have different distributions based on the same
kernel);

• containers shouldn't be able to affect each other; they can only communicate through
tools set up by the kernel for this purpose.

Figure 2-7: Operating system-level virtualization

Pros:

• Less overhead (only around 1-2% [VZ2], negligible in many scenarios) than with a
classical virtualization (full virtualization or paravirtualization), because: [V7]
• If the kernel of the OS-level virtualization solution is able to share the code of an

application when several instances of this application are running (e.g. with a copy-

Processor RAM I/O Device

Hardware

Operating System Kernel

Container

Application Application

Container

Application Application

Container

Application

OS without Kernel OS without Kernel OS w/o K.

Diploma Thesis Background

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 19

on-write strategy), it will be able to do so even if the instances are running in
different containers, achieving a "factorization" (suppression of identical elements),
thus reducing the number of cache misses. Such factorization is hardly possible with
a classical virtualization.

• With OS-level virtualization, only one kernel runs, in opposition to classical
virtualization. More CPU cycles remain available for the applications.

• When a classical hypervisor performs a virtual machine switch (stops the execution
of one virtual machine to give the processor to another one, according to the
scheduling policy), the TLB (translation look-aside buffer, a cache for the page table
entries) has to be flushed, leading to a lot of cache misses for the next instructions.
This effect can be reduced by means of a shadow page table. [C4]

• As shown in part Paravirtualization, some classical virtualization solutions can suffer
from the fact that some operations/verifications are done twice (one time by the
guest kernel, one time by the hypervisor). This drawback doesn't exist with OS-level
virtualization.

• Flexibility: resource allocation between containers can be easily and dynamically
changed. With a classical virtualization it isn't so easy: a classical guest kernel will
crash if you reduce its amount of RAM (it would be the equivalent of removing a RAM
module from a real computer while it's running). With paravirtualization though it's
possible (e.g. with ballooning, a technique where the hypervisor asks a guest to free
some memory [VX5]).

Cons:

• Less isolation: a bug in the kernel may crash the whole system, since all "guests" share
the same kernel.

• No possibility of running several operating systems on the same physical machine.

• A kernel modification may be needed to support this virtualization feature, thus taking
the risk of inserting bugs.

More information on this topic can be found in:

• Das Virtualisierungs-Buch [V1];

• Virtualization in Linux [VZ1];

• OpenVZ User's Guide [VZ2];

• Performance Evaluation of Virtualization Technologies for Server Consolidation [V7].

Operating System API Emulation
When only one architecture is involved (e.g. x86), if you want to run on one operating system
(e.g. Linux) an application designed to be run on another one (e.g. Windows), a classical
virtualization is not absolutely needed. The only reason why a Windows application cannot
run on Linux, even if you use the same architecture in both cases, is because the interface
offered by Windows to applications is different from the one offered by Linux. [V1]

An OS API emulator can for instance reproduce in Linux the interface of Windows, thus
allowing a Windows application to run on Linux. This is the goal of the Wine project. [V44]

This type of virtualization has nothing to do with resource allocation and is therefore out of
the scope of this study.

Background Diploma Thesis

20 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

Figure 2-8: Operating system API emulation

Kernel in user mode
This technique consists in modifying the guest kernel (in a similar way to paravirtualization)
so that it can be able to run as a normal application (in the protection ring 3) on the host
operating system. [V1]

The major problem of this approach is that guest applications and guest kernel are running
on the same privilege level, thus removing the guest kernel's protection against malicious or
buggy guest applications. For this reason, this technique can't be used in production and is
out of the scope of this study.

The main advantage of this approach is that the guest kernel can be traced and debugged
using tools used to debug classical applications. For this reason, this technique is very useful
in kernel development.

Figure 2-9: Kernel in user mode

Conclusion
Our project needs a solution for server consolidation enabling a precise configuration of the
resource allocation and high performance. As already demonstrated, emulation, OS API
Emulation and Kernel in user mode are not fitted for server consolidation.

OS-level virtualization should offer the best performances and the fact that all containers
have to share the same kernel is not a problem for our project. However since the
virtualization is done on a higher level than with classical virtualization, the timings for
resources' allocation between the containers may not be precise.

Hardware-supported virtualization seems to be the solution offering the most predictable
results, and therefore should be the best solution when dealing with real-time constraints.
Moreover the hardware platforms used for this project can make use of this feature. However
at this point it isn't clear if this technique is more or less efficient than virtualization based on
dynamic recompilation (see appendix A Implementing full virtualization).

Processor RAM I/O Device

Hardware

Operating System A

Application 1
(for OS A) OS (B) API Emulator

Application 2
(for OS A)

Application 3
(for OS B)

Application 4
(for OS B)

Processor RAM I/O Device

Hardware

Host Operating System

Application 1 Guest Operating System Application 2

Application 3 Application 4

Diploma Thesis Background

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 21

Paravirtualization may also be an efficient solution, either as complete virtualization
technique, or as an optimization for one of the previously mentioned techniques.

2.1.3 Real Time

A non real-time system is a system (computing outputs from its inputs) where only the
correctness of the result matters. In a real-time system the respect of time constraints is as
important as the correctness of the result. [C7] [CR1] In such a system, a result delivered too
late is as good as a wrong one.

Real-time systems are usually divided in two categories: hard real-time systems and soft
real-time systems.

2.1.3.1 Hard Real Time

In such system (not necessarily a computer), the time constraints must be respected. For
example an airbag (car safety device) is controlled by a hard real-time system. It must be
guaranteed that the airbag will be deployed at the right moment (actually a time interval) after
an impact. The deployment of the airbag is the result delivered by the system. If this result is
delivered too late (or sometimes too early), it can be fatal.

Moreover, a system respecting the time constraints in 99% of all cases is not a hard real-time
system. [CR1] A hard real-time one always respects them. Thus you cannot use a personal
computer with a classical operating system to develop a hard real-time system. What would
happen if the computer is slowed down by an antivirus update when you have a collision?

In a hard real-time system, the worst-case execution time (WCET) is very important [CR1]. It
is the longest time needed by the system to deliver the result. A short mean execution time
doesn't bring anything, if the WCET is too long to meet the deadline. That's why some
computer optimizations like cache memory aren't used in hard real-time systems, since they
only improve the best-case execution time (BCET) (and thus the mean execution time too),
but not the WCET.

Such a system must be as simple as possible to be predictable. If it isn't predictable, you
can't determine the WCET. Thus you can't prove that the system respects the time
constraints.

The predictability is actually so important, that the difference between the WCET and the
BCET (representing the jitter) should be as small as possible. [CR1]

Most complex real-time systems are driven by a software application made of several tasks
or processes. The typical structure of such a task looks like this:

// initialization

// main loop:
bool terminate = false;
while (!terminate)
{
 event e = nextEvent(); // wait for an event
 switch (e)
 {
 case EVENT_TYPE_1:
 // real-time reaction to this event
 break;

Background Diploma Thesis

22 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

 case EVENT_TYPE_2:
 // real-time reaction to this event
 break;

 // ...

 case QUIT:
 terminate = true;
 break;
 }
}

// termination

A real-time operating system is then responsible of scheduling the different tasks according
to their priority, and offering them a basic set of objects and concepts to communicate (e.g.
events, mutexes and messages) among them and with the outside.

Figure 2-10: Real-time system

Let p be a function representing the predictability of a layer and delivering a value between 0
(unpredictable) and 1 (fully predictable). The predictability of the whole system is then the
product of the predictability of each layer:

The system on figure 2-10 is a hard real-time system if:

That is to say: the only way to manage to do a hard-real time system is to make every layer
completely predictable.

2.1.3.2 Soft Real Time

A soft real-time system is a system where:

The time needed by the system to react or to do a certain work doesn't have to be totally
predictable. The time constraints in such system should be seen as directives or guidelines.
[CR1] Those time constraints can be transgressed as long as it doesn't happen too often.
Usually the following is tolerated:

• A time constraint can be often transgressed if the transgression is limited in a tolerance
interval.

Hardware

Operating System

Application

Task 1 Task 2 Task 3

Layer 3

Layer 2

Layer 1

Diploma Thesis Background

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 23

• The transgression of a time constraint can be high if it happens rarely.

However the second assertion doesn't apply to Comsoft products, because as already
explained in chapter 2.1.1 Comsoft products a high latency when accessing the hard disk
drive is not acceptable.

The evaluation of a soft real-time system can often be carried out with only a general
knowledge of the system and by collecting statistics on its behaviour, whereas a hard real-
time system can only be deemed hard real-time after a very close examination of the
implementation of each component (never after a statistical study).

Background Diploma Thesis

24 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

2.2 Related Work

2.2.1 Existing virtualization products

The particularity of our approach is due to the fact that the company Comsoft needs a
solution as quickly as possible. Therefore we renounced to design an adapted hypervisor or
even extensions for an existing one. Instead we defined a series of indicators and implement
tests carrying them out, in order to evaluate existing off-the-shelf solutions.

First of all several papers describe the state of the art virtualization, as does chapter 2.1.2
Virtualization. Jeff Daniels [V10] and Simon Crosby et al. [V16] present the concept of
virtualization, its history, the different techniques to achieve it and the reasons to use it. He
presents virtualization as a useful and mature technology. Mark F. Mergen et al. [V11]
present the benefits of virtualization: flexible OS variety, productivity, performance, reliability,
availability, security and simplicity. However Liana Fong et al. [V12] show that even if
virtualization may provide simplicity, it also may add complexity at some levels. Ulrich
Drepper [V21] describes all low-level performance problems occurring with virtualization.

Edward Ray et al. [V38] describe the security risks related to virtualization. They remind us
that the isolation between two virtual machines is not as good as the one between two
hardware platforms and highlight several security holes in hypervisors (e.g. man-in-the-
middle attack during a live migration, rootkits, etc.). They present a set of best-practices to
limit the risks.

Some articles focus on one virtualization product and help to establish a list of already
existing products and to get a first opinion. Irfan Habib [VK2] presents KVM, Paul Barham et
al. [VX2] Xen, Kirill Kolyshkin [VZ1] OpenVZ. We discuss their properties in chapter 3.4
Comparison.

Several documents [V13] [V14] [V15] compare briefly following virtualization products:
VMware products, VirtualBox and KVM. However this comparison is made in the context of
desktop virtualization, which is not directly related to our topic. Nevertheless those
documents may be of interest since they help to get a first opinion on those products and to
discover their features.

Rusty Russel presents in a paper [V36] virtio, an API and series of drivers for device
paravirtualization in a guest Linux.

2.2.2 Evaluation techniques

Two main approaches are usually deployed to evaluate the performance of virtualization
products, or more generally of hardware platforms and operating systems: micro-
benchmarks and macro-benchmarks. Micro-benchmarks are series of small programs, each
of them stressing one element or type of action (e.g. arithmetic operations, system calls, etc.)
of the system and measuring its performance and properties. Macro-benchmarks are set of
real applications (e.g. web servers, compilers, databases, etc.) or programs simulating real
applications in order to evaluate the performance under real workload.

In their work, Padma Apparao et al. [V17] define a representative macro-benchmark for
server consolidation. The problem of such an approach is that only generic mean indicators
can be measured, like mean throughput of different resources or mean CPU utilization. In the
best case, such a study could determine some mean latencies. It's definitely not adapted to
our problem, where the real-time dimension plays an important role. In our study, we rather

Diploma Thesis Background

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 25

need to determine maximum latencies, throughput variations (and thus predictability) and
isolation between virtual machines. Pure performance (that is to say mean throughput) is
only a secondary criterion, allowing to decide between two valid virtualization products
(offering a good predictability and isolation). This kind of study (with macro-benchmarks) is
only useful in a non real-time context (in this case Information Technology) to compare the
general performance of two virtualization products.

Tsuyoshi Tanaka et al. [V19] made also a study with macro-benchmarks. This study led to
the conclusion that applications with heavy disk I/O and low CPU utilization are good
candidates for server consolidation concerning performance. This is an encouraging result
since this profile of application matches with Comsoft applications.

Jeanna Neefe Matthews et al. [V18] have made an important study on quantifying the
isolation between virtual machines for several products. Their approach is similar to ours
(used in chapter 3.5 Evaluation) in terms of strategy: they measure the performance of some
virtual machines when other virtual machines are running programs stressing one element of
the system (e.g. CPU or hard disk). However they use a web server to measure the
performance: they used the amount of HTTP requests which got a reply "in-time" as an
indicator for the isolation. Our opinion is that this indicator is way too coarse-grained for our
study. The authors argued that other indicators can be used, and this is the case in our
study: the stressing programs and the programs measuring the indicators are the same, like
in a micro-benchmark approach, and are similar to their stressing programs. Moreover, they
chose to measure the performance of web servers located in misbehaving virtual machines
too (virtual machines where stressing programs are running), and use these results to
conclude, which is, from our point of view, quite misleading: the behaviour of an application
disturbed by another one running in the same virtual machine has nothing to do with isolation
between virtual machines. However their study shows a perfect isolation for VMware
Workstation (full virtualization) and a good isolation for Xen (full virtualization). The isolation
of OpenVZ (OS-level virtualization) is not so good, particularly concerning the communication
over the network.

Keith Adams et al. [V6] use both micro-benchmarks and macro-benchmarks to compare
software-supported (binary translation) and hardware-supported virtualization. Their micro-
benchmarks are adapted to our study (we used similar ones) but they limited their work to
mean execution times, which is way insufficient for a real-time problematic. They conclude
that hardware-supported virtualization is less efficient than software-supported virtualization,
but their study is four years old and hardware-support was at the very beginning of its
existence.

In Xen and the Art of Virtualization [VX2], Paul Barham et al. measure the performance, the
isolation and the scalability of Xen by means of micro-benchmarks and macro-benchmarks.
Unfortunately they focused again on mean execution times.

Stephen Soltesz et al. [V20] have made a comparison between OS-level virtualization and
full virtualization, using both micro-benchmarks and macro-benchmarks. They concentrated
their work on isolation (fault isolation, resource isolation and security isolation) and mean
performance. They concluded that for CPU-bound applications, both techniques are
equivalent but OS-level virtualization is more efficient on I/O. The fault isolation should be
better for full virtualization. Both techniques should be equivalent concerning resource and
security isolation. They argue that efficiency and isolation are partially conflicting, and
that a trade-off has to be found. In our project, isolation is clearly more important than
efficiency. They showed near-native performance for VServer (OS-level virtualization
product) whereas the performance was clearly worse for Xen (full virtualization). They also
showed that VServer scales better with the number of virtual machines. The performance

Background Diploma Thesis

26 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

isolation is better with Xen. Again they limited their study to mean throughput measurements,
which is insufficient for a real-time problem.

Robert Kaiser [V22] has written an important document on virtualization for (hard) real-time
systems. He explains how virtualization increases the reaction time (time between the
occurrence of an event and the reaction of an application to this event) and induces a jitter.
He explains that if this jitter is short in comparison to the deadlines the concerned real-
time applications have to meet, virtualization is suitable for a real-time system without
negative effect.1 In the other case, the author exposes the requirements for a real-time
hypervisor and proposes a design.

Vineet Chadha et al. [V23] described an interesting method that could be used to evaluate
virtualization products. Instead of running the product directly on a hardware platform, it can
be run in a platform simulator (or emulator) allowing to finely configure micro-architectural
details of the platform to be simulated. A lot of low-level events can be gathered by means of
the simulator, which can be correlated with the high-level events gathered in a virtual
machine.

2.2.3 Future evolutions

Several papers propose different designs to improve the performance of current virtualization
products. They are not directly useful for this study, but show that a lot of effort is currently
put in improving virtualization.

Yaozu Dong et al. [V24] proposed a standardization of I/O virtualization in order to achieve
better performance and predictability. They implemented it for Xen Hypervisor and measured
the improvement.

Kaushik Kumar Ram et al. [V25], Guangdeng Liao et al. [V28] and Jiuxing Liu et al. [V29]
present mechanisms and optimizations to achieve 10 Gb/s on network interfaces. These
optimizations are for example the use of multi-queue NICs, grant reusing, cache-aware
scheduling and dedicated CPU-core for polled I/O. They all obtained satisfying results.

Hwanju Kim et al. [V26] address the problem of starvation of I/O-bound tasks running in the
same virtual machine as a CPU-bound task. They propose a solution for the hypervisor's
virtual machine scheduler to boost those tasks without sacrificing CPU-fairness. Our opinion
is however that this kind of optimization is partially in contradiction with the principle of
isolation: the minimal resource amount assigned to a virtual machine should be independent
of its workload and of the workload of other virtual machines. This is actually a danger that
Comsoft has to take into account: virtualization products are "benefiting" of more and
more optimizations, which means that a virtualization product adapted to Comsoft's project
may not be adapted anymore in a few years.

This problem of starvation of I/O-bound tasks had already been highlighted by Diego Ongaro
et al. [V33] They studied the impact of the hypervisor's virtual machine scheduler on I/O
performance.

Chuliang Weng et al. [V27] also propose an optimization for the hypervisor's virtual machine
scheduler. Some virtual machines are running concurrent applications and the hypervisor
should try as much as possible to schedule the virtual CPUs of this virtual machine on
physical CPUs at the same time to improve performance, without violating CPU-fairness. A
virtual machine could be declared as concurrent to benefit from this optimization.

1 It seems to be the case for Comsoft systems, since this jitter should be of the same order of
magnitude as a time-slice of the hypervisor's scheduler (usually 100 ms). The precision/granularity of
time constraints imposed to Comsoft applications is one second.

Diploma Thesis Background

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 27

Himanshu Raj et al. [V30] expose the concept of self-virtualized I/O device. Such device
provides virtual interfaces to virtual machines. The goal is to increase throughput and
scalability and to reduce latency, by reducing the involvement of the hypervisor in device
virtualization.

Seetharami R. Seelam et al. [V35] designed and implemented a virtual I/O scheduler
focusing on fairness between applications (or virtual machines) and isolation. However this
scheduler does not take latency into account for the moment.

Jianyong Zhang et al. [V37] designed a scheduler for storage virtualization. This scheduler
isolates throughputs and guarantees statistically a certain latency for a given throughput.
Statistically means in this case that 95 % of the requests will be handled in time. As
explained in chapter 3.5.1.1.5 Scheduling we defined in our project an indicator named
bound95% which is even stricter.

2.2.4 Related topics

Server virtualization may also benefit from works coming from related topics.

Philip M. Wells et al. [V31] wrote an interesting paper on multicore virtualization. The main
idea is to let the hardware exposes virtual processors and map them to physical processors,
instead of letting software (operating system or hypervisor) handle it. The result is a
performance gain, as well as the possibility to handle heterogeneity due to for example
changing reliability, power or thermal conditions.

Lan Huang et al. [V32] designed and implemented a system for storage virtualization named
Stonehenge. In contrary to most storage virtualization systems, this one does not only focus
on capacity but also on bandwidth and latency, being able to deliver real-time guarantees.

Gernot Heiser showed in a paper [V34] that current virtualization products are not suitable for
embedded systems: the isolation principle actually doesn't fit the requirements of embedded
systems: efficient sharing, priorities (how to give a priority to a virtual machine if all tasks of
all virtual machines have overlapping priorities?), energy management, fine-grained
encapsulation.

2.2.5 Other utilizations of virtualization

Several papers describe the use of virtualization to improve security. Even through this topic
is not ours, those document are likely to bring useful information.

Igor Burdonov et al. [V39] present a design where two virtual machines are running on the
same hardware platform:

• One private virtual machine is isolated from the outside world (e.g. internet). It executes
trusted processes and contains sensitive data. Even if the guest operating system is
untrusted, the isolation provided by the hypervisor makes the run processes trusted.

• One public virtual machine is connected to the internet. It can only communicate with
the private virtual machine by means of a restricted set of RPCs (Remote Procedure
Calls).

Yih Huang et al. [V40] present a framework for tracking application interactions while putting
each application in a different virtual machine, using operating-system level virtualization.

Application tracking and monitoring can be made by running all programs in a virtual
machine and the monitor in another one, in order to provide a good security. However with

Background Diploma Thesis

28 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

full virtualization, such a solution may create a significant overhead because of the frequency
of VM Entries and Exits. Monirul Sharif et al. [V41] propose a new design, where the monitor
is located in the same virtual machine as the system to be monitored, but in a separate
hypervisor protected guest address space. Such a design has been made possible by
hardware support for virtualization (e.g. Intel VT). Such a design offers the same level of
isolation between the monitor and the monitored system, without overhead due to virtual
machine switches (i.e. entries and exits) when an event triggers the monitor (only one virtual
machine exists). They analysed the security of their design and implemented a prototype
over KVM, whose evaluation showed very satisfying results.

Haibo Chen et al. [V42] propose a solution based on virtualization to apply patches and
upgrades on an operating system kernel while it is running, i.e. without service interruption
(live update). The main idea is to run the system over a hypervisor and let the guest
operating system initiate the live update by means of a hypercall. Therefore the guest
operating system will remain blocked until the end of the live update, guarantee the atomicity
of this operation. If the update is short, no service interruption will be noticed. They designed
the whole framework and implemented a prototype for Linux over Xen. The measured
overhead is negligible.

Youssef Laarouchi et al. [V43] explore the possibility to run the same application on different
operating systems at the same time, so that in case one operating system is corrupted,
leading to a wrong output from one instance of the application, this problem will be detected
by comparison of the outputs. This improves the dependability of the application.

2.2.6 Particularities of our work

Only a few scientific studies about server virtualization and real-time have been done for the
moment. Apart from the fact that our work is applied to a very concrete problem coming from
an industrial company, its scientific part (evaluation of existing virtualization products) is
singular. To our knowledge, this work is the first one with following particularities:

• It focuses not only on mean performance but also on predictability and real-time.
When measuring a throughput, the deviation of this throughput over the time is taken
into account. We measured maximum latencies instead of mean latencies. Isolation
has also been carefully evaluated.

• The indicators we defined to evaluate virtualization products are much stricter than
those usually used for this purpose.

• Care has been taken in order to define precise indicators and fine-grained tests to
measure them. All precautions have been explained.

• All tests are documented, reproducible and easily portable. They are designed to be
reused.

• In particular a phenomenon similar to "Heisenbugs" has been taken into account when
implementing evaluation tools: a computer system has a different behaviour while
being under test or observation because it takes an active part in this observation.
Firstly we reduced as much as possible this active part. Secondly we made sure that
this distortion can only lead to worse results when evaluating a system.

• We didn't focus on one particular virtualized resource. We evaluated CPU, RAM,
hard-disk, networking and graphical interface.

Diploma Thesis Background

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 29

2.3 Requirements
Nomenclature:

Throughout this chapter the term

shall specifies a requirement that is mandatory

should specifies a requirement that is highly desirable.

may specifies an optional requirement.

2.3.1 Technical Requirements

2.3.1.1 From Customers

The System Requirements Specification (SRS) for an AFTN/AMHS System [A4] describes
the requirements for a system for the transmission, processing, and storage of aeronautical
messages in connection with international AFTN and AMHS related networks and in
compliance with the relevant ICAO recommendations. Only the following subset of these
requirements may be compromised by the virtualization of the hardware and have to be
taken into account during the next steps of the project. All other requirements from the
document [A4] are unaffected by the project.

2.3.1.1.1 ATS Message Switching Centre
(1) The system shall be configurable to be able to exchange messages via AFTN, AMHS

and a combination of both without discontinuities in the reception and transmission of
messages.

(2) The system shall be capable to synchronise with external NTP time servers.

2.3.1.1.2 System Management
(1) The system shall implement continuous supervision of the health state of all system

components.

(2) The system shall implement fault and error management and shall log all faults and
errors in an appropriate log.

(3) This log shall comprise a configurable period of time (not less than one month).

(4) The system shall be able to automatically switchover or re-assign resources upon
detection of a fault.

(5) A switchover or re-assignment shall not take longer than ten seconds.

(6) The system shall be able to perform automatic re-initialisation (e.g. reboot of the
affected system components) upon detection of a fault.

(7) Pending message transactions including message queues shall be restored in less
than five minutes.

(8) It shall be configurable whether a re-initialisation is performed or not and with or
without traffic recovery.

Background Diploma Thesis

30 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

(9) A complete re-initialisation (e.g. after power failure) shall not take longer than ten
minutes.

(10) The system shall collect diagnostic and statistical information of the various system
components.

2.3.1.1.3 Reliability, Maintainability and Availability
(1) The system shall be available 24 hours per day / 7 days per week.

(2) The total availability rate of the system shall be greater than 99.999%.

(3) The values indicated in the offer shall be based on the study of existing operational
systems.

(4) The hardware shall be deployed in a redundant way that allows exchange of
components of the operational system without interruption of service.

(5) There shall be no single point of failure in the system. Databases used for online
traffic storage and configuration data shall be clustered without shared use of
hardware and software modules. LAN and WAN adaptors shall be redundantly
implemented in hot-standby configuration.

(6) The offer shall detail the procedures for recovering from failure situations in terms of
rapid system re-installation.

(7) The offer shall detail the Mean Time Between Failures (MTBF) and the Mean Time
to Repair (MTTR) predictions for the system.

2.3.1.1.4 Performance and Sizing
(Those values are the ones used for "standard" customers. Some customers may have
stricter requirements.)

(1) The system shall support an average message input rate of 20 messages per
second with a mean input-output ratio of 1:2 with no accumulation of messages
within the system.

(2) With a mixed message input of AFTN and AMHS/X.400 messages, the system shall
support an average message input rate of at least 20 AFTN messages and at least
20 AMHS/X.400 messages.

(3) This means, with AFTN messages only, that the system shall support an average
message input rate of 20 AFTN messages per second; with a mixed message input,
the system shall support a sustained message input rate of 10 AFTN and 10
AMHS/X.400 messages per second.

(4) The system shall operate with the average message input rate with any
combination of message addressees.

(5) The AFTN/AMHS gateway shall support the simultaneous transformation of 20
AFTN to AMHS messages per second and 20 AMHS to AFTN messages per
second.

(6) The message transfer time within the system shall not exceed 1 second operating
at the sustained message input rate.

(7) The system shall be able to process a peak load which is three times the average
load detailed above for at least one hour without queuing of messages.

Diploma Thesis Background

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 31

(8) The requirements above base on the following message profile:

• average message text size: 1.500 bytes;

• minimum message text size: 100 bytes;

• maximum message text size: 15.000 bytes.

(9) For the purpose of performance testing, the tenderer shall apply an appropriate
message mixture in order to achieve the average, minimum, and maximum
message text sizes above.

(10) The response time for operator commands shall be less than 500 ms under
average load and less than 1000 ms under peak load conditions (excluding
database retrievals).1

2.3.1.1.5 Redundant and Single System Operation
(1) The system shall be configurable to work as one redundant system or as two single

systems (e.g. a single system for testing and a single system for training purposes).

(2) Each single system shall provide the full system functionality.

(3) The system shall be able to automatically and manually switchover or re-assign
resources upon detection of a fault. A switchover or re-assignment shall not take
longer than ten seconds. Pending message transactions shall not get lost.

(4) It shall be possible to split a redundant system into two single systems by means of
configuration only.

(5) No hardware modifications shall be necessary for such splitting.

2.3.1.1.6 CADAS-ATS
(Those values are the ones used for "standard" customers. Some customers may have
stricter requirements.)

(1) The AMHS UA Terminal System shall be able to run 50 simultaneous terminal
sessions at a total load of 20 user message transactions per second.

2.3.1.1.7 Hardware Components and Power Supply
(1) The system shall consist of the following components:

• two AFTN/AMHS servers, operated in main/hot standby configuration; each of
the servers shall be equipped with a redundant disk array (RAID 1 or RAID 5
configuration);

• [...]

(2) Uninterrupted power supply (UPS) with a capacity to supply the AMHS switch and
its peripherals during power failure for one (1) hour shall be provided.

1 This requirement originally concerns the operator's working positions (i.e. workstations, see chapter
2.1.1 Comsoft products) and thus not our study. We decided to apply it to the servers too and to keep
it in mind for the evaluation of our implementation.

Background Diploma Thesis

32 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

2.3.1.1.8 Other Requirements
(1) In addition to the compliance to the requirements as listed above the tenderer shall

be prepared to demonstrate on request of the contractor its capabilities by a
practical presentation including all major building blocks of its solution.

(2) The presentation shall prove the capabilities of the tenderer to cope with the
requirements of this specification and to comply with them in their entirety.

2.3.1.2 From Comsoft

(1) The solution shall be based on servers of the HP ProLiant DL series, and should
be based on the same servers as those already used to build solutions without
virtualization, except for some minor configuration details: e.g. the servers may have
more RAM as usual.

(2) No unusual hardware component shall be needed.

(3) The guest operating system (see chapter 2.1.2 Virtualization) shall be a Red Hat or
a Fedora distribution, and should be the same as the one used for a solution
without virtualization.

(4) The guest operating system kernel shall not be recompiled but the default kernel of
the distribution shall be used, in order to benefit from the safety assessment of the
distribution.

(5) Existing software components shall not need any modification to be compatible with
the new solution, except configuration components.

(6) New software components needed for this project shall benefit from an extensive
support, either from a significant company or from a large community.

2.3.2 Commercial Requirements

(1) The solution should generate savings on purchase in comparison to a classical
solution. If not, the investment shall be reasonable, so that savings can be expected
thanks to a lower energy consumption on the long view.

(2) The solution may generate savings concerning the assistance and maintenance
services from HP.

2.3.3 SWAL 3

SWAL 3 stands for Software Assurance Level 3 and is one aspect of the Recommendations
for Air Navigation Systems Software. [A3] These recommendations imply following
requirements:

(1) This document shall demonstrate the fulfilment of each mentioned requirement: a
traceability between each requirement and each justification shall exist.

(2) The version of each software element of the final implementation shall be
mentioned.

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 33

3 Design
In the course of this study, we focus on the systems AIDA-NG, CADAS-ATS and CADAS-
IMS (see chapter 2.1.1 Comsoft products).

3.1 Existing design

Figure 3-1: Architecture of a standard Comsoft solution

The architecture of a standard Comsoft solution based on those three systems/products
looks like the figure 3-1. It may seem complicated at first but it's actually quite simple:

• each system runs on two different hardware platforms, to ensure redundancy;

• each system runs on its own set of hardware platforms, in order to guarantee that the
performance requirements are fulfilled (see chapter 1.1 Motivation). The goal of this
study is to reduce the number of hardware platforms.

• All hardware platforms communicate together by means of the ELAN (see chapter
2.1.1 Comsoft products). To ensure redundancy the ELAN is composed of two

Design Diploma Thesis

34 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

switches connected to each other1 and every hardware platform is directly connected to
both switches (that is why there are 12 orange cables).

3.2 New design

Figure 3-2: Design of the new solution

Figure 3-2 shows the design of the new solution. This design is optimal because it has the
minimal number of hardware platforms (two is the minimum in order to ensure hardware
redundancy) and still fulfils following constraints:

• the two instances of each sub-system are running on different hardware platforms;

• all physical components of the ELAN and ILANs are redundant, like in the classical
solution;

• the influence of a system on another is limited by the existence of virtual machines and
by the virtualization layer (the ability of virtualization products to create this isolation is
evaluated in chapter 3.5 Evaluation).

1 The link between both switches is redundant. The switches have to be configured so that this
redundant link doesn't create a loop in the network.

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 35

As you can see in figure 3-2, the virtualization must have a mechanism to virtually connect
the virtual network interfaces to the physical ones. Please note that redundancy for the virtual
network interfaces is pointless (if the virtualization layer crashes, all virtual NICs crash) and is
not needed by the software part: in a classical solution, bonding interfaces in hot standby
mode1 are created, so that the software part doesn't even "know" that all interfaces are
doubled (for example the software part of AIDA-NG only sees one network interface to the
ELAN).

If the virtualization layer supports an equivalent to this Linux bonding, being able to connect
one virtual interface to two physical ones, the number of virtual network interfaces can be
reduced:

Figure 3-3: No redundancy for virtual NICs

Pros of letting the virtualization layer ensure the bonding functionality:

• simplification of the virtual cabling;

• the problem detection is done at a lower level: it may reduce the reaction time.

Con:

• the guest virtual machine is not aware that a physical link is down

From the previous design we can deduce that:

• three virtual machines will be created on each hardware platform;

• the maximum number of virtual NICs for one virtual machine is five;

• each hardware platform needs nine physical NICs.

1 A Linux bonding interface is a logical interface based on several physical ones for transparent
redundancy. Hot standby and load balancing modes are supported. [C21]

Hardware platform

Sub-system

NIC

Virtual machine Virtual NIC

Virtual RJ-45 cables

SERVER 1

AIDA-NG 1

CSS A RSS 1

CADAS-ATS 1

MH 1 TS 1

CADAS-IMS 1

DB 1 AS 1 WS 1

 WAN AIDA-NG ILAN CADAS-ATS ILAN ELAN CADAS-IMS ILAN

Design Diploma Thesis

36 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

3.3 Compliance with the requirements
With this new design, following requirements are fulfilled:

Requirement Summary Justification of the compliance

2.3.1.1.1.(1) System configurable to
exchange aeronautical
messages without interruption.

- Possibilities and configurability of the system
unchanged.

- Redundancy of all components.

2.3.1.1.3.(4)
2.3.1.1.3.(5)

Redundant hardware and
exchange of components
without interruption of service.
No single point of failure.

- Redundancy of all components.
- One instance of each software component on

each hardware platform.

2.3.1.1.5.(1) System configurable to work as
one redundant system or as two
single systems.

- The system is composed of two hardware
platforms which can be used separately. This
change needs as much effort as without
virtualization.

2.3.1.1.5.(2) Each single system provides all
functionalities.

- One instance of each software component on
each hardware platform.

2.3.1.1.5.(4)
2.3.1.1.5.(5)

Splitting the system doesn't
require any physical modification
(e.g. change to the cable layout)

- The system is composed of two hardware
platforms which can be used separately. This
change needs as much effort as without
virtualization.

- Some cables are now "virtual" and some parts
of the cable layout can be changed virtually,
which even extends the possibilities.

2.3.1.2.(2) No unusual hardware
component needed.

- See figures 3-1 and 3-2.

Table 3-1: Fulfilled requirements

Note: The compliance of the new design with some requirements is based on the fact that
the current Comsoft design also fulfils these requirements.

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 37

3.4 Comparison of virtualization products
In this chapter, we compare different virtualization products in order to select those which are
most likely to fulfil our requirements. Their evaluation is made in chapter 3.5 Evaluation.

3.4.1 VMware Infrastructure

VMware is a company with more than 7000 employees and 1.9 billion USD revenue in 2008,
located in California and founded in 1998. [VV1] Its solution for server consolidation is
VMware Infrastructure. [VV2] This solution is available in three editions:

• Foundation Edition includes the following products (description below):
• the hypervisor ESX or ESXi (full virtualization + paravirtualization);
• vCenter Server Agent;
• Update Manager;
• Consolidated Backup.

• Standard Edition includes:
• the products already included in the Foundation Edition;
• High Availability.

• Enterprise Edition includes:
• the products already included in the Standard Edition;
• VMotion and Storage VMotion (migration of virtual machines);
• DRS (resource management) and DPM (power management).

ESX is a hypervisor based on Linux, providing several tools, whereas ESXi is a thinner
hypervisor, not running on top of an operating system. Therefore ESXi offers better
performance, security and reliability, and a smaller footprint due to a smaller code. [VV3] The
tools provided by ESX can also be used with ESXi with the help of a special virtual machine
named vSphere Management Assistant, available for free. [VV4]

Both hypervisors provide abstractions of the processor, the main memory, storage devices
and networking, allowing to establish minimum, maximum and proportional resource shares
for those resources. They require a 64-bit architecture1 and use hardware-assisted
virtualization (see appendix A Implementing full virtualization), supporting for example the
Extended Page Tables from Intel VT-x. [C14] [V5] They support large memory pages, TCP
Segmentation Offloading (TSO), TCP checksum offload2 and Jumbo Frames. They can also
make use of paravirtualization to improve performance of some devices. Paravirtualization
for Linux guests is supported since Linux Kernel 2.6.21.

Note: Fedora 11 uses a 2.6.30 Linux Kernel.

1 The current versions (ESX 4.0 and ESXi 4.0) require a 64-bit architecture. For 32-bit architectures
ESX 3.5 and ESXi 3.5 can be used.
2 TSO and TCP checksum offload let some operations (performed on TCP packets) be done by the
network device itself instead of the processor. These techniques allow to reach a 1 or 10 Gb/s
throughput with a low CPU usage.

Design Diploma Thesis

38 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

ESX and ESXi support up to 1 TB of main memory and up to 255 GB can be assigned to
each virtual machine. With the vSMP product, ESX and ESXi allow one virtual machine to
run on top of up to eight physical processors1 simultaneously. [VV5]

The VMDirectPath technique (a.k.a. Passthrough) allows to assign a physical hardware
device (most PCI devices are supported) to one particular virtual machine so that it can
directly access it. In such case VMotion can't be used.

Memory overcommitment, a technique allowing to assign more RAM to virtual machines than
available (among other possibilities) [VX5], is also supported. With this technique, it is
possible to allocate 12 GB (virtual) RAM to each virtual machine on a host that only has 12
GB. The advantage is that each virtual machine is able to use nearly the whole RAM,
provided that the other virtual machines aren't using much memory at the time (otherwise the
hypervisor has to swap out some virtual pages to the hard disk [C7]). Without memory
overcommitment and with three virtual machines, you could only assign 4 GB RAM to each
virtual machine, preventing them from using more, even if you can guarantee that they won't
need more than 4 GB at the same time.2

Several powerful APIs (Application Programming Interfaces) are available to automate
operations and manipulate the virtualization layer from a virtual machine or from the network:
VIX API, vSphere CLI and vSphere PowerCLI. ESX and ESXi are also supported by libvirt (a
standard open source project of virtualization API supported by Red Hat). [VK5]

VMware gives us to understand that ESX and ESXi are optimized for the Oracle database,
which can be interesting for Comsoft, since some projects based on the product CADAS-IMS
(see chapter 2.1.1 Comsoft products) use this database. [VV3] Moreover, HP and Intel
recommend VMware3. [VV29] [VV30] Some VMware products can be bought directly from
HP.

The additional products only available in the Standard Edition and the Enterprise Edition are
not necessary for our projects: Comsoft has already implemented itself mechanisms for High
Availability, and the ability to migrate running virtual machines from one platform to another is
out of scope. VMware DRS (Distributed Resource Scheduler) has been designed for
datacenters, in order to perform a dynamic load sharing over all available resources. It isn't
needed here. VMware DPM (Distributed Power Management) is a module of DRS making
the resource scheduler aware of energy consumption.

vCenter Server provides a centralized solution to manage several hosts. It isn't needed,
because VMware vSphere Client is already provided with ESX and ESXi. vSphere Client is a
Windows software allowing to manage a single host4. Several instances of vSphere Client
can be run at the same time, so that one management computer can be used to configure
several hosts at the same time. VMware Update Manager is a product for automating
updates of VMware products. It isn't necessary because:

• The Comsoft policy is to deliver itself the software updates. Comsoft knows exactly the
version of all software components deployed on all customer sites. Comsoft may want

1 We are talking about eight microprocessors, not cores or execution units. See chapter 3.5
Evaluation.
2 This technique also allows to allocate e.g. 64 GB to one virtual machine, even if the host only has 12
GB RAM. This strategy will make the hypervisor swap pages out to the hard disk instead of the guest
operating system. It may be more effective, since the hypervisor is more aware of the underlying
hardware than the guest. Another aspect of this technique is to allow virtual machines to share
common/identical pages to free space in the main memory.
3 Comsoft solutions are based on HP servers with an Intel architecture.
4 Comsoft accepts to deliver a management computer running Microsoft Windows and dedicated to
the administration of the hosts.

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 39

to integrate the deployment of VMware updates to its Comsoft Configuration
Management Suite (see chapter 2.1.1 Comsoft products).

• In case Comsoft wants to use a VMware software to download and apply the latest
patches for ESX and ESXi, vSphere Host Update Utility is delivered with ESX and ESXi
and is highly sufficient.

VMware Consolidated Backup is a product allowing to backup virtual machines, with a lot of
features. This is not needed for this project. Moreover, if a customer exceptionally wants to
save a virtual machine, it can be done with vSphere Client.

In general, tools provided by the Foundation Edition are only needed to administrate a
datacenter with a lot of hosts and guests. This is not the case in this project.

ESXi is available with a free license. When using this free license, ESXi is limited, so that it
can't support migration features, high availability and all other features described as useless
for this project. It's also limited to 4-way SMP (the hardware platform used by Comsoft has
only two processors, see chapter 3.5 Evaluation), to 6 cores per processor (we only have 4
cores per processor) and to 256 GB RAM (we only have 12 GB). This free version provides
vSphere Client and vSphere Host Update Utility, and seems to be adapted to this project.
Note: The APIs described before should be supported by the free version of ESXi. However
this point is unclear and some of them may be blocked. We didn't find any categorical
document on this point.

3.4.2 Other VMware products

VMware's other two main virtualization products are: [V1]

• VMware Server: this hypervisor is just an application running on top of a host
operating system. This product is available for free and is presented by VMware as a
"display case" so that companies can experience the advantages of virtualization
before buying VMware Infrastructure (based on the more powerful ESX and ESXi).
[VV6] [VV8] Therefore VMware Server shouldn't be used for this project.

• VMware Workstation: this product is designed to provide virtualization in a convenient
way for the desktop. It isn't designed for server consolidation but to provide an easy
way to run desktop applications on different operating systems on the same physical
platform at the same time. Therefore VMware Workstation shouldn't be used for this
project. [VV9]

3.4.3 Xen Hypervisor

Xen is originally a virtualization project started by Ian Pratt at the University of Cambridge
and is now maintained by the company XenSource [VX3] [VX4], which has been acquired by
Citrix Systems in 2007. Citrix is a company with more than 4 620 employees and 2.5 billion
USD revenue in 2007, located in Florida and founded in 1989. Citrix focuses on virtualization
products.

Xen Hypervisor (full virtualization + paravirtualization) is a free and open source hypervisor
running on top of a Linux system (host operating system) [VX4], which makes it compatible
with a lot of hardware (Xen thus inherits the compatibility of the host operating system) but
probably generates more overhead than a thinner hypervisor like VMware ESXi. XenSource
claims that Xen Hypervisor is "exceptionally lean with less than 150 000 lines of code" [VX1],

Design Diploma Thesis

40 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

but given that it's based on Linux and therefore enjoys a lot of kernel and driver code already
written, we actually find that 150 000 lines are a lot.

It supports Intel VT-x and AMD-V to run unmodified guest operating systems with hardware-
assisted virtualization since Xen 3.0. (See appendix A Implementing full virtualization) [VX4]
[VX6] It can also run on other platforms without hardware support, making use of
paravirtualization. (See chapter 2.1.2.2 Virtualization Techniques) Xen can run on both 32-bit
and 64-bit architectures. Paravirtualization may lead to better performance but implies a
modification of the guest operating system, which can be a violation of the requirement
specifying that the default guest operating system's kernel has to be used. (See chapter
2.3.1.2 From Comsoft) Xen supports up to 64-way SMP and Intel PAE (Physical Address
Extension) and therefore supports up to 64 GB RAM on a 32-bit platform. Memory
overcommitment is not supported yet. [VX5]

Xen is supported by Intel [VX6] but seems to be abandoned by Red Hat1, which now
supports KVM. [VX10] Xen support was removed from Fedora since Fedora 9, but will
probably come back in Fedora 13 [C18] with an additional tool to migrate a virtual machine
from Xen to KVM.

Several CPU schedulers are available for Xen, some of them being soft real-time schedulers.
[VX7] However a soft real-time scheduler is not absolutely needed on the virtualization layer,
since the scheduling strategy we need is actually simple and is often achieved with a
classical time-slice scheduling [C9]: each virtual machine should be guaranteed to get a
minimal amount of the CPU time under all circumstances if it needs it.

On the networking side, Xen allows to limit the outgoing bandwidth of a guest, like ESXi. [V8]
The support for TCP Segmentation Offload seems not to be completely stable and effective
yet. [VX9] [VX8] Up to eight virtual network cards per virtual machine can be created since
Xen 3.1 (the limitation was set to three in the previous versions), which is enough (see
chapter 3 Design).

Xen has an equivalent of VMDirectPath (Passthrough) to assign a PCI device directly to a
virtual machine. [VX8] The support of large pages is unclear.

Xen Hypervisor seems to be adapted to this project.

3.4.4 QEMU .

QEMU is open source and can be used as a complete machine emulator or as a hypervisor
(full virtualization, using hardware support if available or dynamic recompilation). [VK4]
QEMU achieves better performance when used as a hypervisor, and this is the way KVM
uses QEMU.

3.4.5 KVM .

KVM (Kernel-based Virtual machine Monitor) is a free and open source virtualization project
originally created by the company Qumranet but now owned by Red Hat. [VK3]

It's based on QEMU and needs hardware support (Intel VT-x or AMD-V). It runs on top of a
host Linux operating system (it's a kernel module from the mainline Linux) but the strategy of
KVM is to merge the hypervisor and the host operating system as much as possible to avoid
superfluous operations. [VK6] Like Xen and VMware ESXi, it virtualizes the CPU, the main
memory, the hard-disk drives and the network cards. KVM can also make use of

1 Comsoft solutions are based on the Fedora distribution from Red Hat.

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 41

paravirtualization to improve performance for some devices (network, hard-disk, main
memory, etc.), using Virtio. [VK3] Memory overcommitment is still under development.

Virtual processors appear to be normal threads in the host operating system, [VK6] so if all
virtual machines have the same amount of virtual processors, they should get the same
amount of physical CPU time. It's the only way to configure CPU utilization.

KVM allows the Passthrough technique on platforms equipped with the Intel VT-d
technology. [VK7] Our platforms have this technology. [C14]

3.4.6 Linux VServer

Linux VServer is an open source project of operating system-level virtualization (a.k.a.
Partitioning, see chapter 2.1.2.2 Virtualization Techniques). The project started in 2001.
[VS1] Even though VServer is a well known project, it doesn't benefit from as much support
as ESXi, Xen or KVM.

With operating system-level virtualization the host and the guest share the same kernel.
Thus it's important that VServer can be used with Fedora and without the need to recompile
the kernel, because of the requirements. (See chapter 2.3.1.2 From Comsoft) This is actually
the case: VServer can be installed on Fedora by means of simple RPM packets. [VS2]

The overhead induced by this solution should be only about 1-2 %, because of its nature:
operating system-level virtualization. Most resource usage can be limited, even if the way to
do it sometimes seems a little complicated or vague. [VS1] Linux VServer relies entirely on
the different standard Linux disk schedulers ("noop", "anticipatory", "deadline" and "cfq") and
doesn't provide any additional way to limit disk I/O. It is unfortunately not sufficient for this
project (see chapter 2.1.1 Comsoft products).

VServer doesn't provide the possibility to create virtual network devices. "Networking is Host
Business" [VS1], which removes a lot of flexibility. It doesn't seem to provide any API and
isn't supported by libvirt. [VK5]

3.4.7 OpenVZ.

Like VServer, OpenVZ is an open source project of operating system-level virtualization.
[VZ3] OpenVZ is the basis for Parallels Virtuozzo Containers, a commercial virtualization
product. When Parallels started the Virtuozzo project, they had to bring modifications to the
Linux kernel, with the obligation to make those modifications public (open source), because
of the GPL license of the Linux kernel. OpenVZ is therefore the open source part of
Virtuozzo. The first version was released in 2001. Virtuozzo is nowadays a common solution
for web server virtualization, widely used by companies offering web hosting services.

OpenVZ is based on a special Linux kernel, which makes it unadapted to this project.
[VZ3] However we can imagine that in a few years OpenVZ might appear as a simple
collection of kernel modules. Comsoft should keep a watch on this project, because it
seems very promising.

The overhead induced by this solution should be close to zero, like Linux VServer. Amount of
CPU time can be limited for each container and is anyway assigned on a container basis (not
on a thread basis). [VZ2] A special I/O scheduler has been introduced, on a container basis,
guaranteeing that no container can saturate an I/O channel. [VZ4] The whole networking part
of OpenVZ is much more oriented towards the configuration of each container than VServer,
thus offering an advanced virtual networking functionality. The amount of main memory for
each container can be limited. OpenVZ is supported by libvirt. [VK5]

Design Diploma Thesis

42 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

3.4.8 Other virtualization products

Other more or less known virtualization products exist. User Mode Linux (kernel in user
mode) is for example a special guest Linux kernel running as a normal application over a
(host) Linux. [V1] (See chapter 2.1.2.2 Virtualization Techniques) Because the guest kernel
isn't a standard Fedora kernel, this solution isn't adapted to the project.

Microsoft has virtualization products too. Its product for server consolidation is Virtual Server
(the last version being 2005 R2 SP1). [VM1] This product wasn't retained, for several
reasons:

• In the domain of air safety, a system whose main part relies on Microsoft Windows is
often frowned upon. This argument may not seem impartial but the fact is: it can lead to
marketing problems, even if the system is stable. And Microsoft Virtual Server runs on
top of Microsoft Windows.

• It would have been worth evaluating this solution if some technical aspect made it
particularly different from other solutions but that isn't the case.

• In the FAQ [VM2], Microsoft claims that some versions of Linux as guest operating
system are supported but the page describing the product doesn't even mention it.
[VM1]

• Some limitations like "the guest operating system must be 32-bit" or "the guest
operating system can run only on one processor" (no virtual SMP) let us think that
Virtual Server is not a mature product yet. The reason for this limitation is easy to
guess: only the latest beta versions of Virtual Server support hardware assisted
virtualization. [VM3]

An other product by Microsoft is Windows Virtual PC, which is a desktop virtualization tool. It
doesn't support Linux as a guest operating system, but it may work.

The company VirtualLogix created a "real-time hypervisor" named VLX. [V46] But this
product doesn't seem to benefit from extensive support and a large user group. Real Time
Systems GmbH [V47] and KUKA [V48] developed their own real-time hypervisor too, but it
doesn't seem to have sufficient support and user group either.

National Instruments developed a real-time hypervisor too, which may benefit from extensive
support, but the only supported guest operating systems are Windows XP and LabVIEW
Real-Time. [V49]

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 43

3.4.9 Conclusion

 ESXi Xen KVM VServer OpenVZ

Hardware support √ √ √

Device paravirtualization √ √ √

Thin virtualization layer + - ~ ++ ++

Configuration of CPU utilization √ √ x ~ √

Configuration of main memory allocation √ √ √ ~ √

Configuration of hard-disk allocation √ √ √ √ √

Virtual networking √ √ √ x √

Passthrough √ √ √

TCP Segmentation Offloading √ ~ ? √ √

Large Pages Support √ ~ ? √ √

Support at least 12 GB RAM √ √ √ √ √

Memory overcommitment √ x x

Virtualization API √ √ √ x √

Supported by a large community ++ ++ ++ ~ +

Free ~ √ √ √ √

No compilation of the guest kernel √ √ √ √ x

Quality and coverage of the documentation + ~ ~ - ~

Table 3-2: Comparison of different virtualization products

Only three products may be suited to our project: ESXi, Xen and KVM. Considering the time
available for this study, we had to select two of them. ESXi seems to be the best candidate
and was obviously selected. The choice between Xen and KVM was not easy but KVM was
selected for two main reasons:

• The thin virtualization layer of KVM makes us think that we can reach more predictable
results than with Xen.

• Comsoft insisted on evaluating KVM because of the recent abandon of Xen by Red Hat
in favour of KVM (see chapter 3.4.3 Xen Hypervisor).

Design Diploma Thesis

44 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

3.5 Evaluation
After having selected ESXi and KVM, this chapter shows the tests performed, in order to:

• verify and prove that those products fit our needs;

• find which one best fits our needs.

Two identical instances of the following hardware platform were used to perform the tests.
This platform is an HP ProLiant DL380 Generation 6 [C11] with following characteristics:

• Processors: 2x Intel Xeon E5520: [C14] [C16]
• 8 MB unified L3 cache (data + instructions)
• 2.26 GHz
• 64-bits
• per processor: 4 cores / 8 threads
• per core:

• 32 KB L1 data cache
• 32 KB L1 instruction cache
• 256 KB L2 cache (data + instructions)

• RAM: 12 GB (6 x 2 GB) PC3-10600R (DDR3-1333) Registered DIMMs

• Two RAID Controllers: HP Smart Array P410i and HP Smart Array P410.1 [C12] [C13]
For each of them:
• 512 MB Battery-Backed Write-Cache
• RAID 0/1/1+0/5/5+0
• 2 Channels/Ports (see figure 3-4)

• Hard disk drives: 16x HP 146GB 3G SAS 10K SFF DP ENT HDD

• A total of 12 Gigabit network interfaces:
• Four integrated Gigabit network interfaces
• Two PCI-Express cards (HP NC364T PCIE 4PT), for each of them:

• Four Gigabit network interfaces.

1 No document indicates the difference between P410i and P410 or even mentions that they are
different. We therefore consider that they are identical.

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 45

Figure 3-4: RAID system in the HP ProLiant DL380 G6

Figure 3-5: Different layouts of the front panel of the HP ProLiant DL380 G6

With this platform it's possible to execute 16 threads at the same time (in parallel). For now,
following vocabulary will be used:

• this platform has two processors (Intel Xeon E5520);

• each processor has 4 cores;

• each core has 2 execution units.

As shown in the next test (chapter 3.5.1.1.1 Overhead on CPU-Bound applications), each
processor really is able to execute 8 threads in parallel without any loss of speed, so that we
can consider that each processor has 8 execution units. Each core uses the hyper-threading
technology1 to be able to run 2 threads in parallel. [C14] [C16] [VV19]

1 Information about this technology can be found in Mikrocontroller und Mikroprozessoren. [C5]

Mainboard

RAID
Controller 1

HDD A1

HDD A2

HDD A3

HDD A4

HDD B1

HDD B2

HDD B3

HDD B4

HDD C1

HDD C2

HDD C3

HDD C4

HDD D1

HDD D2

HDD D3

HDD D4

Channel 1 Channel 2

RAID
Controller 2

Channel 1 Channel 2

Layout of the front panel

With one RAID
controller

 With two RAID
controllers
(platform available
for this study)

Hard disk drive

Design Diploma Thesis

46 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

3.5.1 VMware ESXi

We first tested VMware ESXi 4.0.

3.5.1.1 CPU Utilization

3.5.1.1.1 Overhead on CPU-Bound applications
This test aims to measure the approximate overhead when running a CPU-bound [C8]
program (little or no memory and I/O access) over the hypervisor. We compared the
execution time of a test program on following platforms:

• A platform with simply a standard installation of Fedora Core 11 32-bits (i386) [C17],
without virtualization. This Linux distribution is the most recent one delivered by
Comsoft to its customers.

• A platform with VMware ESXi 4.0 Update 1 [VV11]. Here are the relevant parameters
for this test:
• 10 identical virtual machines are created, with following parameters:

• Guest OS: "Other 2.6x Linux-System (32-Bit)"; 1
• Amount of virtual processors: 8 (maximum value), this means that the guest

operating system will have the impression that it's working with 8 execution units
and will be able to run 8 threads in parallel.

• VMI Paravirtualization support: enabled.
• CPU/MMU virtualization: automatic.

• On each virtual machine a standard installation of Fedora Core 11 32-bits is
performed.

The maximum amount of virtual processors should be 16, because the htop command
(interactive process viewer) on the platform without virtualization confirms that a platform has
16 execution units. It should be possible to make a virtual machine use all of them. ESXi
could be limited to 8 virtual execution units per virtual machine. This point will be clarified
further.

Concerning VMI paravirtualization (Virtual Machine Interface), the document Performance of
VMware VMI [VV12] shows that this option should bring better performances, and the Linux
kernel of Fedora Core 11 32-bits supports this feature by default. You can see it by
displaying the current kernel configuration after having installed Fedora on a machine:

$ vim "/boot/config-`uname -r`"

You should find the following line:
CONFIG_VMI=y

More information can be found in Enabling VMI in a Linux kernel and in ESX [VV16].
Because of a recent announcement from VMware of a phased retirement of the VMI
functionality [VV17] [VV18], every test will also be performed without VMI paravirtualization
support (it will be mentioned).

1 Some terms may not be identical with the English version of VMware vSphere Client. We used the
German version.

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 47

Structure of the test program: (the full implementation is available on the CD-ROM:
/eval/cpu/overhead/impl1/)

create T threads executing
{
 // just the processor is needed:
 for (i = 0; i < M million; i++);
}
wait for the end of each thread;
display the execution time;

This test program is CPU-bound because:

• It's small enough to fit in the instruction cache (L1 instruction cache size = 32KB per
core [C15]), thus few memory accesses are needed to fetch the instructions.

• It accesses such a small amount of data that they can fit in the data cache (L1 data
cache size = 32KB per core [C15]).

• The only I/O access is the display of the result at the end.

Of course, this measurement is biased by following imperfections:

• the test process is not the only process launched on the system. However before
launching the test as few processes as possible are present on the system and the
htop command shows that on both systems, only one process is running1 (actually
htop), and only one execution unit is used (2% usage, actually because of htop). So
we can reasonably consider that the effect of other processes on the test result will be
negligible.

• The processor is regularly "disturbed" by interrupts coming from other components (I/O
devices, timers...), but as we saw with htop, handling those events requires less than
1% of one execution unit. We can reasonably consider that this effect is negligible.

• The test program itself makes some system calls, in order to create threads for
example, but we will set the parameters T and M (see the previous algorithm) so that
this effect is negligible (less than 50 threads, in comparison to more than 30 seconds of
execution).

• The Linux kernel's scheduler is regularly executed and may execute code triggering
VM Exits on the system running ESXi (see appendix A Implementing full virtualization),
but since it happens relatively rarely (for a process with normal priority, the time-slice is
100 ms, which is very long, especially for such a powerful machine [C9]), it is
negligible. We could have set the maximum priority to this test program (time-slice =
800 ms) but, again, this is an approximate test.

No significant difference is expected between both configurations, since ESXi is not an
emulator (see chapter 3.4.1 VMware Infrastructure). However, a difference might exist,
because ESXi has to be executed regularly to schedule the different virtual machines and to
update their timers [VV10]. The goal of this test is to check that this difference is negligible.

1 htop calls them running tasks but it should actually call them ready&running tasks. A ready task is a
task ready to be executed but waiting for the processor to do so (not waiting for any resource except
for an execution unit). A running task is a task being run by a processor. (See [C7] for more details.)

Design Diploma Thesis

48 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

Part 1
The test was run with M = 10 000, different numbers of threads (T) and 5 times for each
value of T. Here are the results:

Number of
threads

Execution time
(without virtualization)

Execution time
(over VMware ESXi)

Overhead

1 30.1 ± 0.5 s (σX = 0.55 s) 31.7 ± 0.5 s (σX = 0.45 s) 5.3 %

2 30.3 ± 0.5 s (σX = 0.84 s) 31.5 ± 0.5 s (σX = 0 s) 4.0 %

4 30.9 ± 0.5 s (σX = 0.55 s) 31.5 ± 0.5 s (σX = 0 s) 1.9 %

8 31.1 ± 0.5 s (σX = 0.55 s) 31.7 ± 0.5 s (σX = 0.45 s) 1.9 %

12 35.3 ± 0.5 s (σX = 0.45 s) 48.3 ± 0.5 s (σX = 0.84 s) No comparison possible1

16 35.7 ± 0.5 s (σX = 0.45 s) 64.1 ± 0.5 s (σX = 1.1 s) No comparison possible

20 47.7 ± 0.5 s (σX = 0.84 s) 79.1 ± 0.5 s (σX = 0.55 s) No comparison possible

32 72.3 ± 0.5 s (σX = 2.0 s) 126.1 ± 0.5 s (σX = 1.1 s) No comparison possible

Table 3-3: Overhead on CPU-Bound applications (1 VM)

y = 3,9333x + 0,2333

y = 2,2327x + 1,2923

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30 35

Number of threads

Ex
ec

ut
io

n
tim

e
(s

)

no virt.
ESXi

Figure 3-6: Overhead on CPU-Bound applications (1 VM)

Those results show that:

• On both systems, each thread is given about 100% of an execution unit to run, as long
as there are more execution units than threads. Since all threads (of the test program)
need the same time to complete. The execution of for example 1, 2 or 4 threads on a
machine with 8 execution units takes exactly the same time. That's why the first part of
each curve is horizontal.

1 See below.

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 49

• When there are more threads than available execution units, the time needed to
execute the whole program is then proportional to the number of threads, if the CPU
time needed to schedule the amount of threads is negligible.

• In particular the system with ESXi shows a behaviour amazingly near to the theory
explained in the two previous points. But the virtual machine only uses 8 execution
units.

• The maximum overhead caused by ESXi on a long execution of a CPU-bound
program in one virtual machine is about 5 % and appears when only one (Linux-)
thread has to be scheduled, i.e. when only one execution unit is needed.

• The standard deviation doesn't seem to be increased because of ESXi. ESXi doesn't
add any significant indeterminism on a long execution of a CPU-bound program
in one virtual machine.

Note: the same result has also been obtained without enabling the "VMI paravirtualization
support" for the virtual machine in ESXi.

Part 2
In the second part of this test, the test program is run simultaneously in 3 virtual machines,
with T = 8 and M = 10 000. This gives us a total of 24 threads. Will ESXi then use the 16
available execution units?

• If yes, the expected execution time (without overhead in comparison to the previous
result without virtualization) is: (see figure 3-6)

 2.2327 * 24 + 1.2923 = 54.9 s

• If not (only 8 execution units used), the expected execution time (without overhead in
comparison to the previous result using ESXi) is: (see figure 3-6)

 3.9333 * 24 + 0.2333 = 94.6 s

The three instances of the program should be started at the same time, give or take 0.5 s, to
keep a sufficient precision. To do so, we synchronize the machines with NTP (Network Time
Protocol).

The test program has been modified. Here is its new structure: (the full implementation is
available on the CD-ROM: /eval/cpu/overhead/impl2/)

wait until a given time;
create T threads executing
{
 // just the processor is needed:
 for (i = 0; i < M million; i++);
}
wait for the end of each thread;
display the execution time;

The test was repeated 5 times. The results are a mean execution time of 110.4 s and a
standard deviation of 0.83 s. They show that:

• ESXi still uses only 8 execution units (otherwise the execution time would have
been shorter).

• The mean overhead induced by ESXi on a long execution of CPU-bound programs in
3 virtual machines is 16.7 % (in comparison to the result with only one virtual machine),
which is not negligible.

Design Diploma Thesis

50 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

• The standard deviation doesn't seem to be increased because of ESXi. ESXi doesn't
add any significant indeterminism on a long execution of CPU-bound programs
in 3 virtual machines.

Note: without enabling the "VMI paravirtualization support" for the virtual machine in ESXi,
another result has been obtained:

• better mean execution time: 100.3 s (6.0 % overhead);

• worse standard deviation: 1.6 s;

• as shown in detail in the next part, a preference for one virtual machine (the third one)
by the scheduler has been observed.

Part 3
In the third step, the same test with 10 virtual machines is performed. The expected
execution time (without overhead in comparison to the execution time in only one virtual
machine) is: (see figure 3-6)

3.9333 * (10 * 8) + 0.2333 = 314.9 s

Here are the results:

Execution time (± 0.5 s) / VM N° Per test (s)

1 2 3 4 5 6 7 8 9 10 Mean σX

1 195.5 196.5 196.5 197.5 191.5 196.5 195.5 192.5 193.5 192.5 194.8 2.1

2 194.5 196.5 195.5 195.5 190.5 194.5 194.5 191.5 192.5 191.5 193.7 2.0

3 195.5 193.5 195.5 195.5 191.5 194.5 193.5 191.5 192.5 192.5 193.6 1.6

4 194.5 193.5 195.5 196.5 192.5 194.5 195.5 192.5 191.5 192.5 193.9 1.6 Te
st

 N
°

5 194.5 194.5 194.5 195.5 191.5 193.5 195.5 192.5 192.5 191.5 193.6 1.5

M
ea

n 194.9 194.9 195.5 196.1 191.5 194.7 194.9 192.1 192.5 192.1

Pe
r V

M
 (s

)

σ X
 0.55 1.52 0.71 0.89 0.71 1.1 0.90 0.55 0.71 0.55

Result:
193.9 s
(σX = 1.8 s)

 7.8 %
overhead

Table 3-4: Overhead on CPU-Bound applications (10 VMs)

Those results show that:

• This time, ESXi uses the 16 execution units. So the expected execution time
(without overhead in comparison to the execution time without virtualization) with 16
execution units would have been: (see figure 3-6)

 2.2327 * (10 * 8) + 1.2923 = 179.9 s

• The mean overhead induced by ESXi on a long execution of CPU-bound programs in
10 virtual machines is 7.8 % (in comparison to the execution time without
virtualization).

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 51

• The standard deviation per virtual machine is still small but the global one has
become a little bigger. The mean execution time per virtual machine shows the reason:
the ESXi scheduler seems to prefer some virtual machines, even if this difference
remains small. For example, virtual machine 5 always gets more CPU time than
number 4.

The problem discovered in this part of the test is that, on this platform, it can't be predicted
if ESXi will use 8 or 16 execution units, whereas the VMware Compatibility Guide [VV15]
shows that our platform ("HP ProLiant DL380 G6 – Intel Xeon 55xx Series") is supported by
our version of ESXi ("ESXi 4.0 Installable U1").

We tried to change the "CPU Affinity" of the virtual machines (properties / resources / CPU
advanced) to force some virtual machines to use the 8 first execution units ("0-7") and some
others to use the 8 last ones ("8-15"). ESXi recognizes that there are 8 cores and accepts
execution units from 0 to 15, but the number of execution units actually used stays
unpredictable. We haven't found any document about this problem. Thus we would admit
that ESXi is unpredictable when used on 2 Intel Xeon E5520 processors when
Hyperthreading is enabled.

Part 4
To bypass this problem, the same tests were run:

• on the same server, but with hyperthreading disabled in the BIOS (2 processors
without hyperthreading = 8 execution units);

• on another G6 server, exceptionally available at that time, having only one Intel Xeon
E5520 (1 processor with hyperthreading = 8 execution units).

This part focuses on running the tests on the hardware platform with only one Intel Xeon
E5520. A note indicates if similar results have been obtained on the other platform (2
processors without hyperthreading). However two Intel Xeon E5520 without hyperthreading
may be more efficient than the other platform because:

• Without hyperthreading, each execution unit has its own L1 and L2 cache (it doesn't
have to share it with another one), since there is one execution unit per core;

• With two processors, two MMU are available, since there is one MMU per processor.

Design Diploma Thesis

52 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

Here is the result of the comparison between the mean execution time of a CPU-bound
application on the machine without virtualization and the mean execution time over ESXi
(one virtual machine):

Number of
threads

Execution time
(without virtualization)

Execution time
(over VMware ESXi)

Overhead

1 30.9 ± 0.5 s (σX = 0.55 s) 33.3 ± 0.5 s (σX = 0.84 s) 7.8 %

2 30.9 ± 0.5 s (σX = 0.55 s) 32.1 ± 0.5 s (σX = 0.55 s) 3.9 %

4 30.9 ± 0.5 s (σX = 0.55 s) 32.1 ± 0.5 s (σX = 0.55 s) 3.9 %

8 35.7 ± 0.5 s (σX = 0.45 s) 36.9 ± 0.5 s (σX = 0.55 s) 3.4 %

12 53.7 ± 0.5 s (σX = 0.45 s) 56.3 ± 0.5 s (σX = 0.84 s) 4.9 %

16 70.7 ± 0.5 s (σX = 0.45 s) 73.7 ± 0.5 s (σX = 0.45 s) 4.2 %

20 89.9 ± 0.5 s (σX = 0.89 s) 92.9 ± 0.5 s (σX = 0.55 s) 3.3 %

32 142.1 ± 0.5 s (σX = 1.5 s) 147.3 ± 0.5 s (σX = 0.84 s) 3.7 %

Table 3-5: Overhead on CPU-Bound applications (1 VM)

y = 4,5892x + 0,6509

y = 4,4382x + 0,3075

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30 35

Number of threads

E
xe

cu
tio

n
tim

e
(s

)

no virt.
ESXi

Figure 3-7: Overhead on CPU-Bound applications (1 VM)

This time, ESXi uses as many execution units as available (8 units), as Linux does.
Conclusions stay about the same as in the first part of this test, which means:

• On both systems, each thread is given about 100% of an execution unit to run, as long
as there are more execution units than threads. Since all threads (of the test program)
need the same time to complete. The execution of for example 1, 2 or 4 threads on a
machine with 8 execution units takes exactly the same time. That's why the first part of
each curve is horizontal.

• When there are more threads than available execution units, the time needed to
execute the whole program is then proportional to the number of threads, if the CPU
time needed to schedule the amount of threads is negligible.

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 53

• The maximum overhead caused by ESXi on a long execution of a CPU-bound
program in one virtual machine is about 8 % and appears when only one (Linux-)
thread has to be scheduled, i.e. when only one execution unit is needed.

• The standard deviation doesn't seem to be increased because of ESXi. ESXi doesn't
add any significant indeterminism on a long execution of a CPU-bound program
in one virtual machine.

Note: the same result has also been obtained without enabling the "VMI paravirtualization
support" for the virtual machine in ESXi.

Note: similar results have also been obtained with 2 processors without hyperthreading, but
slightly better:

• no significant overhead;

• shorter execution time, for example about 122 s with 32 threads instead of 147 s.

Then, like before, the same test is run simultaneously on 3 virtual machines (total of 24
threads) with T = 8 and M = 10 000. The expected execution time (without overhead in
comparison to the execution time in one virtual machine) is: (see figure 3-7)

 4.5892 * 24 + 0.6509 = 110.8 s
The results are an execution time of 109.5 s (1.2 % improvement) without deviation. It was
justified to perform every test again on a machine with only one Intel Xeon processor,
because the results of the previous parts showed an overhead of about 17% when running 3
virtual machines, in comparison with the execution time when running only one virtual
machine. Those new results actually show a better CPU utilization when running 3 virtual
machines than when running only one (negative overhead).

The execution time is actually better than with two Intel Xeon E5520 processors with
hyperthreading enabled. This confirms that for now VMware ESXi doesn't correctly
support two Intel Xeon E5520 processors with hyperthreading on the same platform.
Those results also show a high predictability (no deviation was observed). So here again,
the test leads to the conclusion that ESXi doesn't add any significant indeterminism on a
long execution of CPU-bound programs in 3 virtual machines.
Note: the same result has also been obtained without enabling the "VMI paravirtualization
support" for the virtual machine in ESXi.

Note: similar results have also been obtained with 2 processors without hyperthreading, but
slightly better: The execution time is about 91 s, instead of 109.5 s.

Finally the same test with 10 virtual machines is performed. The expected execution time
(without overhead in comparison to the execution time in only one virtual machine) is: (see
figure 3-7)

4.5892 * (10 * 8) + 0.6509 = 367.8 s

The results are a mean execution time of 368.0 s, a standard deviation of 1.7 s, and no
observed preference for some virtual machines. They show that:

• No overhead has been introduced for the scheduling of 10 virtual machines performing
a long execution of CPU-bound programs (in comparison to the execution time in only
one virtual machine).

• The preference for some virtual machines may have been a consequence of the bad
handling of our two processors with hyperthreading.

Design Diploma Thesis

54 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

• The global standard deviation still remains very small (1.7 seconds in comparison with
a mean execution time of 368 seconds). We can conclude that ESXi doesn't add any
significant indeterminism on a long execution of CPU-bound programs.

Note: the same result has also been obtained without enabling the "VMI paravirtualization
support" for the virtual machine in ESXi.

Note: similar results have also been obtained with 2 processors without hyperthreading, but
slightly better: The execution time is about 310 s, instead of 368.0 s.

The results of the four parts of this test are satisfactory, except the unpredictable handling
of two Intel Xeon E5520 processors with hyperthreading.

3.5.1.1.2 Overhead on system calls
This test aims to measure the approximate overhead when performing system calls. We
compared the execution time of a test program on following systems:

• A system without virtualization (the one used for the previous test, with Fedora Core
11);

• A system with VMware ESXi (the one used for the previous test).

The hardware platform with only one Intel Xeon Processor is still used. Again, a note
indicates the result with two processors without hyperthreading.

As described in appendix A Implementing full virtualization, system calls can induce
overhead while making the guest enter the kernel mode, which has to be handled by the
hypervisor. The document Performance of VMware VMI [VV12] describes a microbenchmark
called "getppid" stressing the syscall entry and exit path, thus being able to measure the
system call overhead.

This test program is similar to the one used for the previous test, but on each iteration of the
loop, it issues a getppid system call (returns the process ID of the parent of the calling
process). Structure: (the full implementation is available on the CD-ROM:
/eval/cpu/overhead/sysc_mmu/)

create T threads executing
{
 for (i = 0; i < K thousand; i++)
 getppid();
}
wait for the end of each thread;
display the execution time;

Like for the previous test, we assume that the way the results will be biased by imperfections
already described is negligible.
The test was run with K = 100 000, different number of threads (T) and 5 times for each
value of T. Figure 3-8 shows the results. The measured standard deviation was the same on
both platforms (max. 0.84 s).

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 55

y = 4,125x + 0,3333

y = 5,425x + 0,6667

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20

Number of threads

E
xe

cu
tio

n
tim

e
(s

)

no virt.
ESXi

Figure 3-8: Overhead on system calls

Those results show that:

• VMware ESXi brings an improvement of about 20 % on this microbenchmark running
as many system calls as possible. The most plausible explanation would be that VMI
paravirtualization is the cause of this improvement (as explained in chapter 2.1.2.2
Virtualization Techniques, paravirtualization can lead to a performance better than
native). But following tests were made on the configuration of the virtual machine in
ESXi:
• The parameter "support VMI Paravirtualization" can be set to disabled or enabled, it

has actually no influence on the execution time. The assumption was wrong.
• Setting the parameter "CPU/MMU-Virtualization" to "Automatic", "Intel VT-x/AMD-V

for the virtualization of the instruction set and software for the virtualization of the
MMU" or "Intel VT-x/AMD-V for the virtualization of the instruction set and Intel
EPT/AMD RVI for the virtualization of the MMU" has no influence on the execution
time either.

• Setting this parameter to "software for the virtualization of the instruction set and the
MMU" leads to a longer execution time (about 120 % overhead)

 All this just proves that the improvement has nothing to do with instruction set
virtualization and VMI paravirtualization. But it doesn't prove that Intel EPT is
responsible for this improvement, just that without it, things get worse. We can't explain
why virtualization leads to an improvement of system call performance in this case.

• ESXi doesn't add any significant indeterminism on a long execution of this
microbenchmark.

Performing the same test on several virtual machines is not relevant here, because:

• This microbenchmark is CPU bound: we can assume that the implementation of the
Linux getppid system call doesn't heavily access the RAM. After this system call has
been executed once, its result or the data needed to perform it should remain in cache
memory.

Design Diploma Thesis

56 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

• We now already know the behaviour of ESXi when running long CPU-bound
applications.

The results of this test are more than satisfactory, because of this unexpected
improvement.

Note: with 2 processors without hyperthreading, this improvement hasn't been observed. An
overhead (max. 9 %) has been observed instead, which is still acceptable, since the
predictability stayed very high.

3.5.1.1.3 MMU Performance
This test aims to measure the approximate overhead when heavily using the MMU1. The Intel
Xeon E5520 Processor has the Intel EPT functionality (hardware support for MMU
virtualization, contained in the Intel VT-x technology. [C14] We compared the execution time
of a test program on following systems:

• A system without virtualization (the one used for the previous test, with Fedora Core
11);

• A system with VMware ESXi (the one used for the previous test).

The hardware platform with only one Intel Xeon Processor is still used. Again, a note
indicates the result with two processors without hyperthreading.

The Linux fork instruction makes a copy of the calling process that differs from it only in its
identifier and allocated resources (see the fork manual page). Its implementation uses the
copy on write technique (both processes will share the same memory pages until one of both
is modified) [C8]. Thus a simple call to fork doesn't need a big access to the memory; it just
uses the MMU, because one more address space is created. The document Performance of
VMware VMI [VV12] describes a microbenchmark called "nforkwait" stressing the MMU. It
makes it possible to measure how good the virtualization of the MMU achieved in ESXi is.

This test program is similar to the one used for the previous test, but on each iteration of the
loop, it creates a new process (with a fork system call) and waits for its termination (with a
waitpid system call). It's also an implementation of the "fw" (fork-wait) test program used by
VMware to evaluate the performance of Intel EPT Hardware Assist on an Intel Xeon. [VV13]

Structure of the test program: (the full implementation is available on the CD-ROM:
/eval/cpu/overhead/sysc_mmu/)

create T threads executing
{
 for (i = 0; i < K thousand; i++)
 {
 fork();
 code of the child process
 {
 exit(0); // terminate
 }

1 Memory Management Unit: hardware component (integrated into every Intel x86 processor since
Intel 80386 [C3]) responsible for translating virtual addresses (one virtual address space per process,
the word "virtual" has nothing to do with virtualization here) into physical addresses (one physical
address space per machine) [C5]. With virtualization, one MMU per virtual machine has to be
emulated if the hardware platform doesn't offer any support (e.g. Intel EPT [VV13] or AMD RVI
[VV14]).

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 57

 code of the parent process
 {
 wait for the termination of the child;
 }
 }
}
wait for the end of each thread;
display the execution time;

Like for the previous test, we assume that the way the results will be biased by imperfections
already described is negligible.
In this test we don't expect the execution time to scale with the number of threads like for the
previous tests, since there is only one MMU per microprocessor (not one per execution unit).

The test was run with K = 10, different numbers of threads (T) and 5 times for each value of
T. Here are the results:

0

200

400

600

800

1000

1200

0 5 10 15 20

Number of threads

Ex
ec

ut
io

n
tim

e
(s

)

no virt.
ESXi

Figure 3-9: Overhead on MMU usage

The test should have been run with a bigger K, so that the execution time is greater than 30
seconds on both platforms and the results are more precise (as explained in chapter
3.5.1.1.1 Overhead on CPU-Bound applications), but the execution time would then have
been huge on the platform using ESXi.

Those results show a huge overhead. Contrary to what one might expect, the "CPU/MMU-
Virtualization" parameter (allowing to choose between a software-assisted MMU virtualization
and a hardware-assisted one) has no influence on the result.

Finally VMI paravirtualization support has been disabled and much better results have been
obtained: (this time the test has been run with K = 100)

Design Diploma Thesis

58 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

Number of
threads

Execution time
(without virtualization)

Execution time
(over VMware ESXi)

Overhead

1 29.9 ± 0.5 s (σX = 0.55 s) 51.1 ± 0.5 s (σX = 0.55 s) 71 %

2 34.9 ± 0.5 s (σX = 0.55 s) 63.3 ± 0.5 s (σX = 0.45 s) 81 %

4 54.1 ± 0.5 s (σX = 0.55 s) 104.5 ± 0.5 s (σX = 0.71 s) 93 %

8 134.5 ± 0.5 s (σX = 1.2 s) 246.5 ± 0.5 s (σX = 0.71 s) 83 %

12 239.3 ± 0.5 s (σX = 1.9 s) 424.7 ± 0.5 s (σX = 1.8 s) 77 %

16 367.5 ± 0.5 s (σX = 2.2 s) 642.1 ± 0.5 s (σX = 4.0 s) 75 %

Table 3-6: Overhead on MMU usage (without VMI paravirtualization)

y = 1,4505x2 + 15,282x + 28,596

y = 0,952x2 + 6,7104x + 18,324

0

100

200

300

400

500

600

700

0 5 10 15 20

Number of threads

Ex
ec

ut
io

n
tim

e
(s

)

no virt.
ESXi

Figure 3-10: Overhead on MMU usage (without VMI paravirtualization)

Those results show that:

• As expected, the execution time doesn't scale well with the number of threads
(execution time is not proportional to the number of threads), because there is only one
MMU per processor, which acts as a bottleneck. The curves seem to be polynomial.

• The overhead is now reasonable but still not negligible. It's important to note that the
overhead seems to have a maximum, which is about 93 %.

• ESXi doesn't add any significant indeterminism on a long execution of this
microbenchmark. (A standard deviation of 4 seconds is actually still small in
comparison to an execution time of 642 seconds.)

The important conclusions of this test are:

• VMI paravirtualization shouldn't be used on this platform;

• Even if ESXi generates a significant overhead on MMU virtualization, this overhead has
a maximum and no significant indeterminism is created. Therefore ESXi still seems to
be a good candidate for this project.

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 59

Note: with 2 processors without hyperthreading, two MMUs are available, reducing the
bottleneck. This is why the maximum overhead observed is only 38 %.

3.5.1.1.4 CPU time distribution
As shown in chapter 3.5.1.1.1 Overhead on CPU-Bound applications, ESXi distributes CPU
time equally. This test aims to answer the following question: does "equally" means "equally
among virtual machines"?

During a certain time frame (relatively short for a human being and relatively long for a
microprocessor, usually between 100 milliseconds and a few seconds) each virtual machine
needs to execute a certain number of instructions1. Depending on how many instructions the
CPU can execute in this time frame, the need of a virtual machine corresponds to a certain
amount of CPU time, or fraction of the CPU. If the total CPU need (sum of the needs of all
the virtual machines) is greater than 100 % (CPU overloaded), the hypervisor has to decide
how to distribute the CPU time (fairly). Classical strategies for a fair CPU time distribution
are:

• Distribute CPU time equally among virtual machines means that when the CPU is
overloaded, every virtual machine gets the same amount of CPU time, except the ones
which don't need that much, for example:

CPU time request (need) CPU time allocation

VM 1 VM 2 VM 3 VM 4 VM 1 VM 2 VM 3 VM 4

Example 1 100 % 100 % 100 % 100 % 25 % 25 % 25 % 25 %

Example 2 50 % 50 % 50 % 50 % 25 % 25 % 25 % 25 %

Example 3 50 % 60 % 70 % 80 % 25 % 25 % 25 % 25 %

Example 4 10 % 30 % 40 % 60 % 10 % 30 % 30 % 30 %

Table 3-7: Equal CPU time distribution among virtual machines

 This scheduling strategy is a way similar to the fair-share scheduling described in the
book Operating Systems [C7].

• Distribute CPU time equally among threads means that when the CPU is overloaded,
the amount of CPU time given to one virtual machine is proportional to its number of
threads. For example on this hardware platform there are 8 execution units, and all
created virtual machines are based on 8 virtual CPUs, so they also "see" 8 execution
units. Normally if one virtual machine has 16 ready threads (waiting for one execution
unit), the scheduler of its guest operating system will allow only 8 of them to run at the
same time, thus this virtual machine is only requesting for 100 % of the CPU (8
execution units), not 200 %. But we can imagine that, with paravirtualization (see
chapter 2.1.2.2 Virtualization Techniques), the guest operating system indicates to the
hypervisor its number of ready threads, i.e. its real need. The hypervisor could then
give CPU time to virtual machines proportionally to their number of ready threads, so
that each thread gets the same CPU time, for example:

1 We consider that all instructions have the same duration. It simplifies the problem and leads to the
same result.

Design Diploma Thesis

60 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

Number of ready threads CPU time allocation

VM 1 VM 2 VM 3 VM 4 VM 1 VM 2 VM 3 VM 4

Example 1 8 8 8 8 25 % 25 % 25 % 25 %

Example 2 16 16 16 16 25 % 25 % 25 % 25 %

Example 3 8 8 16 32 12.5 % 12.5 % 25 % 50 %

Table 3-8: Equal CPU time distribution among threads

• Distributing CPU time among virtual machines proportionally to their needs:
CPU time request CPU time allocation

VM 1 VM 2 VM 3 VM 4 VM 1 VM 2 VM 3 VM 4

Example 1 100 % 100 % 100 % 100 % 25 % 25 % 25 % 25 %

Example 2 50 % 50 % 50 % 50 % 25 % 25 % 25 % 25 %

Example 3 50 % 60 % 70 % 80 % 19.2 % 23.1 % 26.9 % 30.8 %

Example 4 10 % 30 % 40 % 60 % 7.1 % 21.4 % 28.6 % 42.9 %

Table 3-9: Proportional CPU time distribution among virtual machines

Those three strategies can be considered as fair, but in our project an equal CPU time
distribution among virtual machines would be preferable. As you can see in the previous
examples, this strategy is the only one guaranteeing that a virtual machine gets a
reasonable minimal amount of CPU time (25 % in this example) if it needs it.

To find out which strategy ESXi implements, several tests have to be run.

Part 1
Two virtual machines are created (A and B). The hardware platform with only one Intel Xeon
processor is used again (8 execution units). Virtual machine A will run the test program
presented in the first part of chapter 3.5.1.1.1 Overhead on CPU-Bound applications with M =
10 000 (ten thousand iterations per thread) and T = TA = 8 (8 threads). Virtual machine B will
run the same program with M = 10 000 and T = TB = 16.

Let's define following variables and constants:

• I: number of CPU instructions in one iteration of the loop.

• yX(t): number of instructions per second the virtual machine X can execute at time t.

• Y: number of instructions per second the processor is able to execute.

• uX: time needed to execute the program of the virtual machine X.

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 61

Expected execution times for each strategy:

• ESXi distributes CPU time equally among threads: (assumption)

 Let's determine which virtual machine finishes first:

 So if both programs finish at the same time, this means that ESXi distributes CPU time
equally among threads.

Figure 3-11: Equal CPU time distribution among threads

• ESXi distributes CPU time equally among virtual machines: (assumption)

Exec. Unit 1
Exec. Unit 2
Exec. Unit 3
Exec. Unit 4
Exec. Unit 5
Exec. Unit 6
Exec. Unit 7
Exec. Unit 8

Time
begin uA = uB

VM A

VM B

Design Diploma Thesis

62 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

 Let's determine which virtual machine finishes first:

 Let's determine uB:

Figure 3-12: Equal CPU time distribution among virtual machines

Exec. Unit 1
Exec. Unit 2
Exec. Unit 3
Exec. Unit 4
Exec. Unit 5
Exec. Unit 6
Exec. Unit 7
Exec. Unit 8

Time
begin uA uB

VM A

VM B

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 63

• ESXi distributes CPU time proportionally among virtual machines: (assumption)

 Since both virtual machines have at least 8 threads, they both request 100 % of the
CPU time. Thus both of them will get the same amount of CPU time (50 %):

Like for the previous strategy, A will finish first and B will need 50 % more time. So if
the program on virtual machine B needs 50 % more time that the one on virtual
machine A, this means that ESXi distributes CPU time either equally or proportionally
among virtual machines.

This experiment showed that uB = 1.5 x uA: ESXi distributes CPU time either equally or
proportionally (to what they need) among virtual machines.
The next experiment should decide between equal and proportional distribution.

Part 2
This test is the same as before, but with TA = 4 and TB = 16.

Expected execution times for each strategy:

• ESXi distributes CPU time equally among virtual machines: (assumption)

 Like for the previous test, A finishes first and:

Figure 3-13: Equal CPU time distribution among virtual machines

Exec. Unit 1
Exec. Unit 2
Exec. Unit 3
Exec. Unit 4
Exec. Unit 5
Exec. Unit 6
Exec. Unit 7
Exec. Unit 8

Time
begi

VM A

VM B

uA uB

Design Diploma Thesis

64 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

• ESXi distributes CPU time proportionally among virtual machines: (assumption)

• E: number of available execution units on the hardware platform. (= 8)
• eA(t): number of execution units wanted by A at time t.

 Let's determine which virtual machine finishes first:

 Let's determine uB:

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 65

Figure 3-14: Proportional CPU time distribution among virtual machines

The same test has also been done with TA = 4 and TB = 8. Here are the results:

 Test 1 (TA = 4, TB = 16) Test 2 (TA = 4, TB = 8)

Expected uB/uA if equal distribution 2.5 1.5

Expected uB/uA if prop. distribution 1.67 1

Observed uB/uA 2.05 1.28

Table 3-10: CPU time distribution

Note: similar results have also been obtained with 2 processors without hyperthreading.

There are at this point two possible explanations:

• VMware implemented a scheduling strategy leading to a hybrid CPU time distribution
(between equal distribution and proportional distribution). However VMware claims to
implement a scheduler distributing CPU time equally among virtual machines (if no
CPU reservation or limit is set) in The CPU Scheduler in VMware ESX 4. [VV21] The
author names it Proportional-Share Based Algorithm (not to mix up with distributing
CPU time among virtual machines proportionally to their number of threads).

• The result is biased by some cache effects or scheduling overhead.

Part 3
This test aims to quantify the guaranteed amount of CPU time for a virtual machine.

With an equal distribution of the CPU time among virtual machines, the guaranteed amount
of CPU time for a virtual machine only depends on the number of virtual machines, so that if
there are 4 virtual machines, one of them has the guaranty to get 25 % of the CPU if it needs
it (i.e. two of the eight execution units):

Exec. Unit 1
Exec. Unit 2
Exec. Unit 3
Exec. Unit 4
Exec. Unit 5
Exec. Unit 6
Exec. Unit 7
Exec. Unit 8

Time
begin

VM A

VM B

uA uB

Design Diploma Thesis

66 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8

needed (exec. units)

ob
ta

in
ed

 (%
) 1 VM

2 VM
4 VM
6 VM
8 VM

Figure 3-15: Equal CPU time distribution among virtual machines

A proportional distribution of the CPU time among virtual machines delivers less guaranty: if
there are 4 virtual machines, three of them wanting all execution units, the last one wanting
only 50 % of the CPU (4 execution units) will only get about 14 % of the CPU: (need / total
need = 4 / (3 x 8 + 4) = 14.3 %)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8

needed (exec. units)

ob
ta

in
ed

 (%
) 1 VM

2 VM
4 VM
6 VM
8 VM

Figure 3-16: Proportional CPU time distribution among virtual machines

A proportional CPU time distribution gives advantage to virtual machines running a lot of
threads, exactly like a normal Linux scheduler giving advantage to applications running a lot
of threads. In this project, we are looking for a solution that is fair on the virtual machine
level, not on the thread level, therefore an equal CPU time distribution is highly wanted.

To measure the real curves of the ESXi scheduler, we use the execution time without
virtualization as reference. For example, if the program with 4 threads gets run in 20 seconds
without virtualization (reference time), and if it gets run in 30 seconds with virtualization

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 67

whereas a second virtual machine needs all execution units, then a virtual machine wanting
4 execution units will obtain at least 33 % of the CPU time:

(ref. time / exec. time) x percentage of CPU wanted = (20 / 30) x 50 % = 33.3 %.

Each test has been done five times. Here are the results:

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8

needed (exec. units)

ob
ta

in
ed

 (%
) 1 VM

2 VM
4 VM
6 VM
8 VM

Figure 3-17: ESXi's CPU time distribution among virtual machines

Those results show that the CPU time distribution done by ESXi it a slightly smoothed
version of the equal distribution, nevertheless delivering following simple guarantees:

• with 2 virtual machines, each virtual machine gets at least 37 % of the CPU if it needs
it;

• with 4 virtual machines, each virtual machine gets at least 22 % of the CPU if it needs
it;

• with 6 virtual machines, each virtual machine gets at least 14 % of the CPU if it needs
it;

• with 8 virtual machines, each virtual machine gets at least 10.5 % of the CPU if it needs
it.

At this point, ESXi is still suited to this project.
To go further, ESXi provides the possibility to define a CPU reservation for each virtual
machine. With this feature, you can assign for example 70 % of the CPU time to one virtual
machine. This feature is not immediately needed for this project, since we will give the same
importance to each virtual machine (we just want to use a virtualization technology to
eliminate the risk that one application makes another one starve), but appendix B CPU
reservation on VMware ESXi examines this feature and shows that it doesn't work when
hyperthreading is enabled on our platform.

3.5.1.1.5 Scheduling
The hardware platform with only one Intel Xeon Processor is still used. We assume that the
platform with 2 processors delivers similar results.

Design Diploma Thesis

68 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

The idea of this test is simple but its precise implementation is not. The following program
has to be launched:

for (i = 0; i < 1 000 000 001; i++)
{
 // calculate the elapsed time between the current iteration and
 // the previous one:
 newTime = currentTime();
 diff = newTime – oldTime;
 oldTime = newTime;

 save(diff); // save the result somewhere
}
display statistics;

The main idea is: the elapsed time between two iterations should be constant, except when
the process is de-scheduled (no execution unit is available for its execution). The goal is to
evaluate the scheduling strategy1 of ESXi. If this program is running in a virtual machine,
since it always "wants" to run, the virtual machine also does. The scheduler of ESXi has then
to decide to give (or not) an execution unit to this virtual machine. This test is supposed to
answer the following question: If a virtual machine wants an execution unit to run, how
much time does it have to wait in the worst case?

However following constraints make the exercise more complicated:

• On a classical operating system, this process is not the only running one. So if the
process is de-scheduled, it doesn't mean that the virtual machine has been de-
scheduled by the ESXi scheduler. The process could just have been de-scheduled by
the scheduler of its operating system (guest operating system) to let another process
run. Thus running our test in such environment wouldn't make any sense, we need to
be sure that a de-scheduling of the test program means a de-scheduling of the virtual
machine. Following solutions are suitable:
• The program doesn't run on top of a (guest) operating system. The virtual machine

just boots directly on this program. This solution needs a lot of effort to be
implemented, because for example we need the program to be able to communicate
with us to deliver the results, and we would have somehow to develop "drivers" for
I/O.

• The program runs on top of a monotasking operating system (e.g. MS-DOS). On
such an operating system you have the guarantee that only one process is running
at a time and that it can't be de-scheduled. However most monotasking operating
systems are old now and their APIs (Application Programming Interfaces) are often
very restrictive. This solution has been explored but not retained (see Appendix C
Scheduling test on MS-DOS).

• The program runs on top of a hard real-time operating system. The operating
system must have a priority-driven scheduler (a process can only be de-scheduled if
another one with a higher priority wants to run) and our test program must have the
highest priority. This possibility seems to be the easiest one and it's the one we
have chosen.

• The save() function can't save the results anywhere, because if it accesses a device:
• Each iteration would last much longer than it should, thus distorting the results.

1 Information on scheduling can be found in Operating Systems [C7] and Echtzeitsysteme [CR1].

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 69

• The process would be de-scheduled on each iteration because it has to wait for the
device (interrupt-driven I/O strategy [C7]).

• The process would be waiting for the device most of the time, thus it wouldn't always
"want" to run, as already mentioned.

• Even accessing the RAM isn't adapted because it would probably be a bottleneck
(there are several execution units) and we wouldn't be able to monitor the real
performance. Moreover performing a RAM access is much longer than executing an
arithmetic instruction [C7].

 The most suitable solution would be to store the results in a small structure (fitting in
the L1 data cache). During the first iterations some cache misses will be encountered,
until the structure entirely resides in the L1 data cache, thus slightly distorting the result
at the beginning.1

• The currentTime() function has to deliver a value varying fast enough to be
different between two successive iterations. Considering the frequency of actual
microprocessors, the precision of the clock used by this function must be a few
nanoseconds.

Several hard-real time operating systems suitable for this test are available for free:

• RTLinux: it's complicated to find a Linux kernel that can be patched, find the correct
patch adapted to a specific kernel version and perform the installation. Then the
program has to be compiled and loaded as kernel module, which is not clearly
documented if you have some assembler files (.s files). Therefore we didn't choose it,
but documents [CR2] [CR3] [CR4] [CR5] may be interesting if you want to try it.

• MiniRTL: small version of RTLinux designed to fit in a floppy disk. It's easier to install
than RTLinux (the floppy disk image is already available) but it appeared to be unstable
on our system (a lot of segmentation faults when starting and appearing at
unpredictable moments). Therefore we didn't choose it, but the document [CR7] may
be interesting if you want to try it.

• Xenomai: very active project [CR8] where the Linux kernel is patched to run in user
mode as a normal application with the lowest priority for Xenomai's hard real-time
kernel. [CR9] Any application can then be run on top of the Linux kernel (not real-time)
or directly on top of Xenomai's kernel (real-time). We chose this OS for this test.

• RTAI: project based on the same principle as Xenomai. [CR10]

We followed exactly the instructions of the document [CR11] to install a hard real-time
operating system based on a Linux Debian Lenny on each (virtual or real) machine. The
document [CR12] shows some examples for programming in a Xenomai environment. The
document [CR13] is the official Xenomai API Documentation.

The document Timekeeping in VMware Virtual Machines [VV10] describes in a very
understandable way all the problems and solutions concerning time keeping on real and
virtual machines. In particular it exposes all available hardware counters that could be used
to implement the currentTime() function. The TSC (Time Stamp Counter) is adapted
("fine-grained and convenient"), and we are not concerned by the drawbacks highlighted in
the document:

1 Please note that every approximation made for this test will only make the results look worse than
they really are. There is no way that the results look good if they aren't.

Design Diploma Thesis

70 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

• we don't need to know exactly the frequency of the TSC, since we won't use it to keep
time on a clock;

• there is no reason for the hardware components or for the operating system to change
(slow down) the pace of the TSC during the test, since this test will keep the
microprocessor busy the whole time (the pace usually gets slowed down to save
energy when the computer has "nothing" to do);

• the TSC can be read in a virtual machine, since the implementation of the virtual TSC
in ESXi "doesn't count cycles of code run on the virtual CPU but advances even when
the virtual CPU is not running", which is what we need.

An example of implementation using the PIT (Programmable Interval Timer) instead of the
TSC is available in Appendix C Scheduling test on MS-DOS.

The structure chosen to save the statistics is an array of 12 integers. On each iteration:

• If the difference of time between the current iteration and the previous one is smaller
than 10 ticks of the TSC, the first box of the array is incremented;

• If the difference is between 10 and 100 ticks, the second box is incremented;
• ...
• If the difference is between 10k-1 and 10k, the kth box is incremented;
• ...
• If the difference is greater than 1011, the 12th box is incremented.

The new algorithm looks like: (the full implementation is available on the CD-ROM:
/eval/cpu/xenomai/)

for (i = 0; i < 1 000 000 001; i++)
{
 // calculate the elapsed time between the current iteration and
 // the previous one:
 newTime = rdtsc(); // Read TSC
 diff = newTime – oldTime;
 oldTime = newTime;

 if (diff > 10^11)
 {
 Result[11]++; // 12th box
 }
 else if (diff > 10^10)
 {
 Result[10]++;
 }
 // ...
 else if (diff > 10)
 {
 Result[1]++;
 }
 else
 {
 Result[0]++;
 }
}
display Result;

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 71

Because of the conditional structure, the duration of an iteration is not constant, depending
on which branch is taken. Fortunately it should converge (stabilize) pretty fast, because:

• If one iteration i is long,
• diff will be significant on iteration i+1,
• so one of the first cases ("if, else if, else if, ...") will be taken at the end of iteration i+1,
• thus making the execution time of the iteration i+1 shorter
• and diff smaller on iteration i+2.

In conclusion: the longer an iteration, the shorter the next one and vice versa.

Without virtualization
The test program was run five times on the platform running Xenomai without virtualization.
The worst obtained results are:

Table 3-11: Scheduling test on Xenomai without virtualization

This table means that the elapsed time between two consecutive iterations of the loop:

• has never been strictly lower than 10 ticks of the TSC timer;
• has been 999 992 427 times between 10 and 99 ticks;
• ...

We can see that the interval between two iterations has always been smaller than 1 million
ticks and has been higher than 10 000 ticks only 240 times in 10 billion. Those 240 times
have probably been caused by cache misses at the beginning or by disturbing interrupts
coming from devices (e.g. from one NIC). Even if the operating system waits before calling
the handlers corresponding to those interrupts (because a high priority task is running), it has
to write somewhere in its own data structures that an interrupt occurred and it has to
acknowledge the interrupt on the device.

When running this test several times, we can see that variation in the results is extremely
low. This is because we use a real-time operating system. When running a real-time task on
this system, all non real-time tasks are frozen. The system doesn't even react to the "Ctrl+C"
combination: it isn't possible to stop the task anymore. That means that this operating system
is exactly what we needed for this test: the only way to change the results is to add a
virtualization layer (a hypervisor) under this operating system. We will be able to measure the
influence of the hypervisor's scheduler.

On most processors the TSC's frequency (ticks per seconds) is the processors' frequency
(for some exceptions it can be a multiple). A program can easily be written to approximate
the TSC's frequency and confirm it (see the implementation on the CD-ROM:
/eval/cpu/tsc_freq/). On this hardware platform:

• TSC's frequency = 2266 MHz;
• 1 tick = 0.441 ns.

So the interval between two instructions has always been smaller than 441 ms, and has
been higher than 4.41 ms only 240 times in 10 billion. You might think that those 240 times in

240 0 7 138 195 999 992 427 0

[100K, 1M[[10K, 100K[[1K, 10K[[100, 1K[[10, 100[[0, 10[

0 0 0 0 0 0

[100G, ∞[[10G, 100G[[1G, 10G[[100M, 1G[[10M, 100M[[1M, 10M[

Design Diploma Thesis

72 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

10 billion are negligible, but are they really? In fact the approximate execution time of one
of those 240 iterations (between 100 000 and 999 999 ticks) is 10 000 times higher than the
approximate execution time of one of the 999 992 427 shortest iterations (between 10 and
100 ticks).

That means that one execution time between 100 000 and 999 999 ticks has about 10 000
times more importance than one between 10 and 100 ticks. Thus we have to define a
coefficient called importance for each time range where:

Table 3-12: Importance of each time range

We now define the approximate influence of the whole population of one range on the
execution time as:

The approximate influence can also be normalized, so that the sum of all normalized
influences is 1:

10-3 10-4 10-5 10-6 10-7 10-8 Importance

[100, 1M[[10K, 100K[[1K, 10K[[100, 1K[[10, 100[[0, 10[Time range

103 100 10 1 0.1 0.01

[100G, ∞[[10G, 100G[[1G, 10G[[100M, 1G[[10M, 100M[[1M, 10M[

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 73

Thus the result of this test can be represented by the following:

0,0
0E

+0
0

9,9
7E

-01

1,9
4E

-06

7,1
2E

-04

0,0
0E

+0
0

2,3
9E

-03

0,00

0,20

0,40

0,60

0,80

1,00

1,20

[0,
 10

[

[10
, 1

00
[

[10
0,

1K
[

[1K
, 1

0K
[

[10
K, 1

00
K[

[10
0K

, 1
M[

Figure 3-18: Distribution of the normalized approximate influence without virtualization

So we can conclude that the 240 times where the execution time between two iterations was
greater than 100 000 ticks are negligible, since their approximate influence on the total
execution time is only 0.239 %.

As explained in chapter 2.1.3.2 Soft Real Time, a soft real-time system doesn't need a
perfect predictability (predictability = 100 %). Thus we can accept on the virtualization layer a
predictability of only 95 %. In this test, aiming to measure the latency implied by the
scheduler of ESXi, this means that we can ignore the longest measurements whose total
influence is lower as 5 %. For example in this case, we can ignore measurements in the
range [100, ∞[, because the total influence of this range is:

1.94 x 10-6 + 7.12 x 10-4 + 2.39 x 10-3 = 3 x 10-3 = 0.3 %

This is the biggest range that can be ignored, because the next one ([10, 100[) has an
influence of 99.7 %. We can conclude that in this case (without virtualization and with
Xenomai as operating system) the execution time between two iterations of the test
program is in most cases shorter than 100 ticks (44.1 ns). The execution time can happen
to be longer, but the impact on the whole execution time is about 0.3 %.

This upper bound for the execution time can be formally defined as:

and more generally:

Note: do not forget that this value is just an order of magnitude, since the whole calculation
is based on powers of 10.

bound95% is an interesting indicator as it does not only guarantee that 95 % of the cases
are under the bound, but also that the influence on the whole execution time of the
exceeding cases is lower than 5 %.

Design Diploma Thesis

74 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

Appendix D Scheduling test on Fedora Core 11 shows the results of this test on Fedora Core
11 without virtualization, thus proving that Fedora couldn't have been used as a reference
system for this test.

With one virtual machine
The test has been run five times on one virtual machine running Xenomai. The worst results
are:

Table 3-13: Scheduling test on one virtual machine

0,0
0E

+0
0

9,6
3E

-01

2,3
8E

-02

9,3
0E

-04

7,1
1E

-03

5,1
0E

-03

0,00

0,20

0,40

0,60

0,80

1,00

1,20

[0,
 10

[

[10
, 1

00
[

[10
0,

1K
[

[1K
, 1

0K
[

[10
K, 1

00
K[

[10
0K

, 1
M[

Figure 3-19: Distribution of the normalized approximate influence (1 VM)

Like without virtualization, bound95% = 100 ticks = 44.1 ns. The order of magnitude is still the
same. We can conclude that ESXi doesn't generate any significant latency for the
processor when running one virtual machine. (The virtual machine doesn't have to wait to
get the possibility to run.)

Moreover, the variation between the best and the worst case is very small. Thus it can be
said that the way one virtual machine is scheduled by ESXi on the processor is very
predictable.

528 7 364 9 635 2 463 507 997 518 966 0

[100K, 1M[[10K, 100K[[1K, 10K[[100, 1K[[10, 100[[0, 10[

0 0 0 0 0 0

[100G, ∞[[10G, 100G[[1G, 10G[[100M, 1G[[10M, 100M[[1M, 10M[

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 75

With four virtual machines
For this test, following virtual machines have been created:

• 3 virtual machines with Fedora Core 11. Those virtual machines are not used to
perform the measurements, but to make the processor busy. Each virtual machine
executes the first part of chapter 3.5.1.1.1 Overhead on CPU-Bound applications, with
T = 8. That means each virtual machine executes 8 CPU-bounded threads.

• one virtual machine with Xenomai. This virtual machine is used to perform the
measurements. It always wants to run, but it is in competition with the 3 other virtual
machines, which also always want to run.

We already proved in chapter 3.5.1.1.1 Overhead on CPU-Bound applications that on a long
time of execution, each virtual machine gets the same amount of execution time. The
following test allows us to evaluate the granularity of ESXi's scheduler.

The worst case results are:

0,0
0E

+0
0

2,1
2E

-02

5,7
7E

-01

1,1
7E

-04

1,1
8E

-03

8,5
6E

-04

1,2
1E

-03
3,9

6E
-02

3,5
9E

-01

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

[0,
 10

[

[10
, 1

00
[

[10
0,

1K
[

[1K
, 1

0K
[

[10
K, 1

00
K[

[10
0K

, 1
M[

[1M
, 1

0M
[

[10
M , 1

00
M[

[10
0M

, 1
G[

Figure 3-20: Distribution of the normalized approximate influence (4 VM)

This time, bound95% = 1 billion ticks = 441 ms. It can seem huge, but actually it isn't: it is the
same order of magnitude as that of a time-slice in a classical Linux kernel [C9]. The ESXi's
scheduler's granularity1 has the same order of magnitude as a classical Linux
scheduler's.
Again, the variation between the best and the worst case is very small. Thus it can be said
that the way one virtual machine is scheduled by ESXi on the processor is very
predictable.
Note: This test was also performed with 4 identical virtual machines, each of them running
Xenomai and measuring the ESXi scheduler's performance. All machines were synchronized
as described in the second part of chapter 3.5.1.1.1 Overhead on CPU-Bound applications.
A very good result was obtained, probably because each virtual machine only needs 1

1 VMware doesn't give a lot of information about the implementation of its scheduler, but the
scheduling strategy must be a sort of round-robin (time-slice scheduling). [CR1] [C7]

Design Diploma Thesis

76 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

execution unit (8 are available on this hardware): bound95% = 100 ticks = 44.1 ns. Again, the
observed variation around this result is very small.

With eight virtual machines
This test is the same as the previous one, except that 7 virtual machines with Fedora are
making the processor busy instead of 3. (Again, each virtual machine with Fedora runs 8
CPU-bounded threads.)

Conclusions are the same as for the previous test, and bound95% = 1 billion ticks =
441 ms.

Note: Again, the test was also performed with 8 identical virtual machines. This time, it didn't
make the result better: bound95% = 1 billion ticks = 441 ms. Moreover:

• With only 7 identical virtual machines running, the result is still the same: bound95% = 1
billion ticks = 441 ms. It may be explained as following: in this case, one execution unit
is free, so the hypervisor has more "breathing space", but this execution unit has to
share its L1 and L2 caches with the other execution unit of the same core [C16], which
means it can lead to a performance loss if the free execution unit runs a different code
(e.g. the code of the hypervisor).

• With only 6 identical virtual machines running, we observed a small improvement:
bound95% = 100 million ticks = 44.1 ms.

Again, in all those cases, the predictability was very good.

The parameter "vSphere Client / Configuration / Software / Advanced Settings / Cpu /
Cpu.Quantum" probably represents the length of a time-slice for ESXi's scheduler (50 ms by
default). In Comsoft's products, most threads are run with a normal priority, which means the
Linux kernel gives them a time-slice of 100 ms. [C9] Distributing those threads in different
virtual machines would make them alternate faster, since the time-slice given by ESXi is
shorter. Thus ESXi could be a solution to reduce latency when requesting the processor
and to improve reaction time.

Improvement attempt
Following changes have been tried, to improve the results when running 6 identical virtual
machines:

• Since each virtual machine executes only one thread, the number of virtual CPUs for
each virtual machine (vSphere / Edit configuration / Hardware / CPUs) has been
reduced to one (instead of 8). It could have brought improvement by making the
scheduling easier, but bound95% fell back to 441 ms. Reducing the number of virtual
CPU per virtual machine is not a good strategy in ESXi.

• However we left one virtual CPU per virtual machine and tried to configure the CPU
affinity (vSphere / Edit configuration / Resources / Advanced CPU) in different profiles:
• The first virtual machine on the first execution unit, the second machine on the

second unit, etc. leaving 2 execution units of the same core free. Again, bound95% =
441ms. This time, the variation between the best case and the worst case was
significant: poor predictability.

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 77

• With 4 virtual machines (A, B, C and D) sharing two cores, and each of both other
ones (E and F) alone on one core. E and F displayed very good results: bound95% =
100 ticks = 44.1 ns, whereas A, B, C and D displayed bound95% = 441 ms and a
poor predictability. This configuration doesn't fulfil our needs, because we want
the same performance for each virtual machine and a good predictability.

 In conclusion, CPU affinity mustn't be used with ESXi.

• We set it back to eight virtual CPUs per virtual machine, and changed the parameter
concerning the hyperthreaded core sharing mode (vSphere / Edit configuration /
Resources / Advanced CPU). This parameter allows to describe how virtual CPUs (of a
virtual machine) share cores with other virtual CPUs (from the same virtual machine or
from others). It's described in detail in the vSphere Administration Guide [VV19]. This
parameter had no influence on the result. bound95% = 100 million ticks = 44.1 ms in all
cases. So the default value ("Any", allowing all virtual CPUs from all virtual machines
to share cores) should be kept.

• We set the parameter Cpu.Quantum (assumed to be the time-slice, see previous part)
to 10 ms instead of 50 ms. No improvement has been observed: bound95% = 100
million ticks = 44.1 ms. Thus the default value should be kept, because reducing the
time-slice may reduce the overall throughput of the system [C7].

3.5.1.1.6 Conclusion
The current version of ESXi (4.0.0, Update 1, Build 219382) shows a very good behaviour
concerning the assignment of the microprocessor(s) to virtual machines. This is essential
because without the microprocessor, a virtual machine can't even initiate or terminate an I/O
access.

During this test phase, ESXi showed following properties:

• low overhead on CPU-bounded applications: max. 8%;

• very good predictability during all tests;

• 20 % improvement on system calls (negative overhead);

• high overhead on MMU utilization, but limited: max. 93 %;

• same order of magnitude as Linux for the time-slice, probably even shorter.

Following parameters have to be set:

• VMI paravirtualization: disabled;

• CPU/MMU-Virtualization: automatic;

• number of virtual CPUs per virtual machine: maximum;

• CPU affinity: none;

• hyperthreading core sharing mode: any;

• Cpu.Quantum: 50 ms.

However, following problems have to be taken into account:

• ESXi is unpredictable when used with two Intel Xeon E5520 microprocessors if
hyperthreading is enabled. Hyperthreading should be disabled from the BIOS for this
configuration.

Design Diploma Thesis

78 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

• The CPU reservation feature can't be used if hyperthreading is enabled (even with
only one Intel Xeon E5520 processor).

Note: Those problems may be solved in the future (as you can see in the version number,
this release of ESXi is very recent).

3.5.1.2 Main Memory

The second most important aspect is the main memory. It's particularly important to observe
the influence of virtualization on the throughput/bandwidth and on the latency.

In contrary to what one might think, following aspects are irrelevant:

• Limitation of the amount of memory for each virtual machine: if the limit is reached, the
guest operating system will use a swapping mechanism, which is not tolerated.
Comsoft's current systems don't have any swap partition anyway, for performance
reasons (when the system "swaps", it's too slow). Thus you have to guarantee that the
amount of main memory needed by a virtual machine will never be higher than the
available main memory. Why set a limitation if you can already guarantee that it won't
be reached? We should rather pay attention to install enough main memory on the
host.

• Swapping performance of the hypervisor: in case you are not able to guarantee that the
total amount of main memory needed by all virtual machines is lower than the available
main memory, the hypervisor also has a swapping mechanism. But as explained, no
swapping is tolerated in our project.

The tests of this chapter were performed on the platform with two processors and without
hyperthreading. 1

To test the bandwidth and the latency of the main memory, test programs similar than those
used in chapter 3.5.1.1 CPU Utilization are needed. The test programs have to access the
main memory as often as possible. That means it has to execute the least instructions
possible that don't access the main memory. It's quite a difficult programming exercise, since
the following "natural" algorithm executes an already non-negligible amount of processor
instructions not accessing the main memory (at least one conditional jump, even though
recent processors are designed to optimise loops [C5]):

for (;;) // infinite loop
{
 temp = *mainMemoryAddress;
}

Moreover any modern compiler would notice that the temp variable is not even used and will
remove the instruction inside the loop, considering it as being a good optimization. As a
result the previous test program will probably not even access the main memory.

LMBench is an open-source widely-used suite of microbenchmarks for CPU, main memory,
file systems, etc. [C22] In his paper Carl Staelin (from HP Laboratories) describes how
powerful and extensible LMBench is. [C23] One important advantage of LMBench over other
microbenchmarks is that it doesn't focus on bandwidth but measures latency too. Several
advanced mechanisms are used to provide results within 1 % accuracy.

1 This detail may be important, even when testing the main memory, because with two
microprocessors, this hardware platform has a NUMA architecture (non uniform memory access): the
path length from one processor to one memory slot is not constant. [C4]

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 79

The first problem mentioned (concerning the amount of processor instructions not accessing
the main memory) is solved in LMBench by loop unrolling1. The second problem (concerning
the compiler optimization) is solved by declaring the temp variable as volatile2 and
involving it in a (useless) computation at the end of the loop.

For more detail on LMBench, please refer Carl Staelin's article [C23], its documentation
[C22] and its source code (properly documented). The document Memory hierarchy
performance measurement of commercial dual-core desktop processors gives an example
on using LMBench to perform memory performance measurements. [C24]

We used the last available version of LMBench (3.0-a9) to compare the usage of the main
memory between Fedora 11 32-bits without virtualization and Fedora 11 32-bits over
VMware ESXi. Again the results of those tests are biased by the imperfection already
described in chapter 3.5.1.1.1 Overhead on CPU-Bound applications (other small tasks are
running, the system is disturbed by interrupts, etc.), but again we can reasonably consider
that those effects are negligible. Moreover the recommendations displayed during the
LMBench installation (e.g. the X server should be turned off) have been respected.

We made a default configuration of LMBench during the installation process. Without
virtualization, the installation process indicated a timing granularity of 50 ms after some
measurements, which means it considers that running each test during only 50 ms will be
enough to reach a good precision. Each test will be run 11 times and the median result will
be delivered. [C23] On the system over ESXi, the timing granularity is 10 ms.

All scripts written to automate the tests and display the results are available on the CD-ROM:
/eval/ram/ .

3.5.1.2.1 Memory Bandwidth

Without virtualization
This test uses the bw_mem microbenchmark. It measures the bandwidth when reading from
or writing into an array. [C25] The array size can be specified and this test has been run five
times for several array sizes. To run this test yourself, type one of the following commands:

$./run.sh bw_rd_profile
$./run.sh bw_wr_profile

To display the results, type one of the following commands:
$./display.sh bw_rd_profile
$./display.sh bw_wr_profile

1 Loop unrolling is the replacement of a loop by a sequence of identical iterations. [C4]
2 volatile is a C++ keyword telling the compiler not to make any assumption concerning the value
of a variable, but to act as if its value could be modified at any time by an external agent.

Design Diploma Thesis

80 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

Figure 3-21: Read-bandwidth without virtualization

Figure 3-22: Write-bandwidth without virtualization

Figures 3-21 and 3-22 show the results. As we can see, the bandwidth is higher for array
sizes shorter than 8 MB since the array fits in the L3 cache (see chapter 3.5 Evaluation). For
larger arrays the test program actually accesses the main memory:

• Mean read-bandwidth: about 7400 MB/s;

• Mean write-bandwidth: about 4200 MB/s.

We tried to run the same test again while disturbing it with 6 other processes doing exactly
the same (also running bw_mem). To run this test yourself, type one of both following
commands:

$./run.sh bw_rd_disturb_profile
$./run.sh bw_wr_disturb_profile

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 81

To display the results, type one of both following commands:
$./display.sh bw_rd_disturb_profile
$./display.sh bw_wr_disturb_profile

Figure 3-23: Disturbed read-bandwidth without virtualization

Figure 3-24: Disturbed write-bandwidth without virtualization

Figures 3-23 and 3-24 show the results. As we can see, the results are the same: it didn't
reduce the bandwidth, whereas 7 execution units of 8 were accessing the most often
possible the main memory. Actually the write-bandwidth with an array size of 1 MB for
example has even been improved, probably due to some synergetic effects. [C6]

We can already conclude that on this architecture the access to the memory hierarchy
(caches + main memory) is not a bottleneck.

Design Diploma Thesis

82 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

Note: No more than seven instances of the test program should be run at the same time,
otherwise the results will be skewed by the scheduling and won't mean anything. The
processor is needed to initiate any access to any resource, therefore you need it during the
whole test to measure the access to the tested resource (here the main memory).

Over ESXi
The exact same sequence of tests was run in a virtual machine. Each disturbing instance of
the test program was run in its own virtual machine (which means seven virtual machines
were needed to run the second part of those tests). Therefore the commands

$./run.sh bw_rd_disturb_profile
$./run.sh bw_wr_disturb_profile

can no longer be used. Each disturbing instance has to be launched in a separate virtual
machine by means of one of these commands:

$./busyram.sh <size> rd
$./busyram.sh <size> wr

Figure 3-25: Read-bandwidth over ESXi

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 83

Figure 3-26: Write-bandwidth over ESXi

Figure 3-27: Disturbed read-bandwidth over ESXi

Design Diploma Thesis

84 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

Figure 3-28: Disturbed write-bandwidth over ESXi

Figures 3-25 and 3-26 show a loss of performance concerning the caches but no loss
concerning the main memory:

• Mean read-bandwidth: about 7000 MB/s (5 % overhead);

• Mean write-bandwidth: about 4700 MB/s (12 % improvement).

Figures 3-27 and 3-28 show that the cache bandwidth can be slightly disturbed but again, the
bandwidth when accessing the main memory is not reduced by the presence of the
disturbing instances of the test program.

ESXi shows native performances concerning the memory bandwidth.

3.5.1.2.2 Memory Latency

Without virtualization
This test uses the lat_mem_rd microbenchmark. It first allocates an array and then performs
a latency test. The test is run for several array sizes (X-axis). The latency test works as
follows: the microbenchmark starts at the end of the array, and reads backwards through the
array. It is implemented in such a manner that the array accesses are dependant on one
another, forcing the processor to really read the array (no optimization is possible). [C25] The
duration of one test is the timing granularity (50 ms in this case, see chapter 3.5.1.2 Main
Memory). If the microbenchmark is able to perform one million loads during those 50 ms,
then the mean load duration (or mean latency over this short period of 50 ms) is 50 ns (Y-
axis).

The microbenchmark considers the allocated array as an array of bytes. It doesn't
necessarily read every byte backwards but actually every Nth byte. N is called the stride size.
With a stride size of 1, every byte of the array is read. The test has been run with different
stride sizes (several curves).

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 85

Varying the array size helps to determine the different cache size. Each curve of the figure
3-29 for example has four plateaus:

• The first one ends with an array size of 32 kB, indicating that any array smaller than 32
kB fits in the L1 data cache, offering a small latency of 1.7 ns. The size of the L1 data
cache is probably 32 kB. This is actually the case (see chapter 3.5 Evaluation).

• The second plateau indicates a 256 kB long L2 data cache, where the array is too long
to fit in the L1 data cache but short enough to fit in the L2 data cache.

• The third plateau indicates an 8 MB long L3 cache.

• The last plateau represents the main memory latency.

Varying the stride size helps to determine the cache line size. For example the last plateau in
figure 3-29 is more or less high (different latencies) depending on the stride size. A L3 cache
line size of 256 bytes would be an explanation: when reading a byte in the main memory, a
block of 256 bytes is actually fetched from the main memory and copied into a cache line of
the L3 cache. If the stride size is bigger than or equal to 256 bytes, a block has to be fetched
on each byte to be read. If the stride size is 128 bytes, one fetched block delivers two
"interesting bytes", thus reducing the amount of main memory accesses and the mean
latency displayed on the curve. We can conclude that:

• the L1 cache line size is 64 bytes;

• the L2 cache line size is 256 bytes;

• the L3 cache line size is 256 bytes.

Of course the most interesting values for this chapter are the values where the caches are
not involved: i.e. the last plateau (corresponding to the main memory) where stride size is
greater than or equal to 256 bytes.

To run this test yourself and display the results, type the following commands:
$./run.sh lat_rd_profile
$./display.sh lat_rd_profile

Figure 3-29: Read-latency without virtualization

Design Diploma Thesis

86 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

Figure 3-29 shows the results. As we can see, the latency when reading a byte from the
main memory is about 100 ns.

We tried to run the same test again while disturbing it with 6 other processes running
bw_mem the whole time, to access the main memory as often as possible and disturb the
process measuring the latency. We didn't expect any difference in the result, since we prove
in the memory bandwidth test (see chapter 3.5.1.2.1 Memory Bandwidth) that memory
access is not a bottleneck. To run this test yourself and display the results, type the following
commands:

$./run.sh lat_rd_disturb_profile
$./display.sh lat_rd_disturb_profile

The obtained curves were almost the same as without perturbation.

Over ESXi
The exact same sequence of tests was run in a virtual machine. Each disturbing instance of
the test program was run in its own virtual machine (which means seven virtual machines
were needed to run the second part of those tests). Therefore the command

$./run.sh lat_rd_disturb_profile

can no longer be used. Each disturbing instance has to be launched in a separate virtual
machine by means of the following command:

$./busyram.sh 1024m rd

The obtained curves were almost identical as without virtualization. ESXi shows native
performances concerning the memory latency.

3.5.1.2.3 Conclusion
ESXi shows native performances concerning memory bandwidth and latency. They are
constant, predictable and independent of the number of running threads or virtual
machines.

3.5.1.3 Hard Disk Drive

In order to test the performances when accessing the hard disk drive, a test program has
been developed. This test program measures the throughput/bandwidth and the latency
when writing into a file (on a hard disk drive), with a precision of 50 ms. To achieve this, the
program periodically appends a "block" (e.g. 2 bytes) at the end of the output file and it can
be detected if the program "freezes" more than 50 ms when trying to access the file.

Here is its algorithm: (the full implementation is available on the CD-ROM:
/eval/hdd/write/)

thread // statistic thread
{
 latency = 0;
 do every 50 ms during 30 seconds
 {
 if (elapsedTime % 1000 ms == 0) // every second
 {
 perform and save throughput over the last second in RAM;
 }

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 87

 if (elapsedTime % 200 ms == 0) // every 200 ms
 {
 perform and save throughput over the last 200 ms in RAM;
 }

 // every 50 ms:
 perform and save throughput over the last 50 ms in RAM;
 if (throughput == 0)
 {
 latency += 50 ms;
 }
 else
 {
 save latency in RAM;
 latency = 0;
 }
 }
 make main thread exit its infinite loop;
}

thread // main thread
{
 create and open the file;
 create statistic thread;

 for (;;) // infinite loop
 {
 write(block, file);
 if (option –l) flush user-space buffer;
 if (option –s) force write on the device;

 send information to statistic thread so that it can perform
 throughput and latency measurement;
 }

 display mean throughput;
 display Bound_95%;
 save results of statistic thread into a file;
}

A standard program (like this one) doesn't directly access the hard disk drive when writing:

• The write() function is provided by a library. To reduce the number of switches
between user-mode and kernel-mode, this library creates a buffer (one per application):
the user-space buffer. When calling write(), the buffer is just filled, and the function
returns. When this buffer is full enough, the next call to write() will actually trigger a
switch to kernel-mode and the kernel will take all data from this buffer.

• The kernel doesn't directly write on the hard disk drive. It fills on its turn its own buffer
(one per hard disk drive). When the buffer is full enough or after a certain timeout (it
depends on the hard disk scheduling strategy), it sends all the data to the hard disk
drive in a particular order, to optimize the movements of the hard disk and to reach a
high throughput.

Design Diploma Thesis

88 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

Figure 3-30: Path from application to hard disk drive

More information on disk scheduling and buffering can be found in Operating Systems [C7].

Note: On figure 3-30, the hard disk drive is just an abstraction because:

• nowadays, most hard disk drives have on their turn one or several caches to optimize
write and read operations themselves;

• the RAID-controllers of our platform have a cache, again for the same purpose (see
chapter 3.5 Evaluation).

Figure 3-31: Hard disk drive abstraction

I/O-Scheduler und RAID-Performance [C26] is a very interesting article on the influence of
RAID on disk scheduling.

The kernel normally uses Direct Memory Access (DMA), a technique allowing a device to
access directly the main memory in order to perform the whole transfer without the need of
the CPU (the CPU is needed to start and to terminate the transfer). This technique is usually
problematic with virtualization, because when starting the transfer, the virtual CPU gives an
address from the virtual main memory to the virtual device, making the use of DMA (which is
a physical optimization) very difficult. Intel VT-d offers a hardware support for this purpose
[V5] and our test program will allow us to measure its performance when used by ESXi.

The test program has different options (type ./hdd -h to get the complete list). The most
important are:

• -k: disables kernel buffering (no kernel-space buffer will be used);
• -u: disables user-level buffering (no user-space buffer will be used);
• -l: flushes the user-level buffer after each written block (data is forced to leave the

user-space buffer, if any);

User address-space

Test
program

User-space
buffer/cache

Kernel
address-space

Kernel-space
buffer/cache

Hard disk drive

Hard disk drive (abstraction)

RAID controller

Hard disk drive

Hard disk drive

Hard disk drive

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 89

• -s: forces physical write after each block (data is forced to leave both user-space and
kernel-space buffers);1

• -b: specifies the size of the blocks (in bytes) to be written into the file on each iteration.

This test program has been run in the following context:

• the file is created on an ext3 partition of 100 GB with a block size of 4096 bytes;
• the ext3 partition was created on a RAID 5 group based on 4 hard disk drives

connected to the same hardware RAID channel (see figure 3-4). This partition was
dedicated to the test: the operating system, the virtualization layer if any and the test
program were located on another RAID group connected to the other RAID controller
(see figure 3-4) to avoid as many side effects as possible.

The different options can be combined together and after some tests, their compatibility with
each other has been determined:

Table 3-14: Compatibility and dependency between the options

Tests showed that the options -u and -l are equivalent when the block size (specified with
the option -b) is small (a few bytes), whereas -u alone has no effect when the block size is
bigger (a few kilobytes). Therefore -l is more efficient.

In this context, -kl only works when the block size is a multiple of 512 bytes (device's block
size).2

Note: We used RAID 5 because it's the method usually used by Comsoft to ensure data
redundancy.

1 The implementation uses the fsync() function. It isn't clear in the documentation if this function
forces the data to leave the hardware buffers too. It seems to depend on the implementation of the
driver.
2 For information, the implementation of the option -k uses the O_DIRECT flag of the open()
function.

√ √ √ √ -s

√ √ √ √ -l

√ √ = x -u

√ √ √ x -k

No option -s -l -u -k

When the option -k is used,
using the option -s or not
influences the result.

When the option -k is used,
you cannot use the -u
option.

When the option -l is used,
using the option -u has no
influence on the result.

Design Diploma Thesis

90 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

3.5.1.3.1 Maximum throughput on a long execution time

Without virtualization
Of course the maximum throughput is reached when all optimizations are enabled (no option
used for the test program) and when the block size is big enough. We reached it with a block
size greater than or equal to 64 bytes. You can run the test yourself and display the results
with the following commands:

$./hdd –b 64 –f <filepath_leading_to_the_test_partition>
$./display.sh throughput

Again, like for the previous tests (CPU and main memory tests), we consider this test to be
precise enough, since the load of the CPU when the test program is not running is lower than
1 %. Moreover, the time precision we are dealing with is much lower than for the previous
tests (milliseconds instead of nanoseconds).

The test was run several times over Fedora 11 without virtualization layer. Figure 3-32 shows
the results of one execution:

• The yellow curve represents the measurement of the throughput with a period of 50
ms.

• The red one with a period of 200 ms.
• The blue one with a period of one second.

Figure 3-32: Disk throughput without virtualization

As we can see, the throughput is very high at the beginning: the computer doesn't access the
hard disk at this time but is just filling the buffers located in the main memory. After less than
four seconds, the operating system considers the buffers to be full and starts to access the
hard disk drive or, at least, to communicate with the RAID controller. After ten seconds, the
program stops because the file reached its maximum size of 2 GB.

We are sure that the operating system is sending the data to the RAID controller during the
last six seconds because the main memory allocation stops growing (visible with the htop
command) and is smaller than 1 GB. Moreover no execution unit is fully used during the
execution, confirming that the RAID group is well and truly the bottleneck in this transfer.

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 91

During the last six seconds, the throughput varies around 175 MB/s. The mean throughput
for the whole exchange is about 200 MB/s (varying between 190 and 210 MB/s).

Over ESXi
The same test was run over ESXi. We then have an additional layer: a virtual hard disk drive
have been created on the real one, by means of the vSphere Client. This operation actually
creates a VMFS partition (Virtual Machine File System) on the physical hard disk. The default
parameters have been used:

• Max. file size: 256 GB, block size: 1 MB;
• VMFS version: 3.33

The virtual hard disk has a size of 100 GB and an ext3 partition similar to the one used for
the previous test was created with the guest operating system, taking up all of the available
space.

When creating the virtual hard disk drive, several types of (virtual) SCSI controllers are
available: [VV19]

• LSI Logic SAS;
• Bus Logic Parallel;
• LSI Logic Parallel (by default);
• Paravirtualization.

At first glance, LSI Logic SAS seems more adapted to our situation because we have SAS
hard disk drives (Serial Attached SCSI).

Again, the test was run several times with a block size of 64 bytes. Here are the results:

Controller type Throughput after 4
seconds

Note

LSI Logic SAS ≈ 150 MB/s (85 %) See figure 3-33. Increasing the block size doesn't improve
the result.

Bus Logic Parallel ≈ 7 MB/s (4 %) Increasing the block size doesn't improve the result.

LSI Logic Parallel ≈ 150 MB/s (85 %) Increasing the block size doesn't improve the result.

Paravirtualization ≈ 150 MB/s (85 %) Increasing the block size doesn't improve the result.

Table 3-15: Disk throughput over ESXi

Design Diploma Thesis

92 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

Figure 3-33: Disk throughput with LSI Logic SAS virtual controller

The controller type Bus Logic Parallel can already be excluded, because of its poor
performance.

We also exclude the controller type Paravirtualization, because the guest operating system
can't be used on such a virtual drive: a kernel module (pvscsi) has to be loaded into the
guest kernel so that the virtual drive can be used. Therefore a virtual machine can't boot on
this virtual drive because the guest kernel is not started yet. We need predictability for all
communications with the hard disk drives and thus we have to find a solution valid for the
drive where the guest operating system is installed too. More details on this controller type
are available in the document Configuring disks to use VMware Paravirtual SCSI adapters
[VV24].

Other controller types showed near-native performance.

3.5.1.3.2 Throughput with several instances of the test program .

Without virtualization
The same test program was run, while other instances of the program were doing the same
on the same partition. We expect the throughput of each instance to be divided by the
number of instances. Only one instance gathers statistics. The "disturbing" instances are
launched silently inside a loop with the following command:

$./loop.sh –n –f <file> -b 64

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 93

The file name must be different for all instances. Here are the results without virtualization:

Number of instances Throughput

2 (one disturbing instance) 83.8 MB/s (σX = 1.2 MB/s), 47.8 % (of 175 MB/s)

4 41.4 MB/s (σX = 0.6 MB/s), 23.7 %

8 18.8 MB/s (σX = 0.9 MB/s), 10.7 %

Table 3-16: Disk throughput without virtualization

As we can see, the throughput scales well with the number of instances. We didn't observe
any "warm-up phase" during the first seconds. Increasing the block size of all instances
doesn't change the result. Though increasing block size of one instance gives it a small
advantage on the others (slightly higher throughput).

Over ESXi
We did the same test over ESXi. First we launched all instances in the same virtual machine:

Controller type Number of instances Throughput

2 (one disturbing instance) 76.6 MB/s (σX = 4.7 MB/s), 51.1 % (of 150 MB/s)

4 36.8 MB/s (σX = 2.2 MB/s), 24.5 % LSI Logic SAS

8 18.8 MB/s (σX = 1.0 MB/s), 12.5 %

2 69.2 MB/s (σX = 2.3 MB/s), 46.1 %

4 34.4 MB/s (σX = 0.7 MB/s), 22.9 % LSI Logic Parallel

8 16.3 MB/s (σX = 2.4 MB/s), 10.9 %

Table 3-17: Disk throughput over ESXi

The conclusions are the same as without virtualization: the throughput scales well with the
number of instances. We didn't observe any "warm-up phase" during the first seconds.
Increasing the block size of all instances doesn't change the result. Though increasing block
size of one instance gives it a small advantage on the others (slightly higher throughput).

Note that the standard deviation is a little bit higher than without virtualization but it stays
reasonable. For example in the first line of the table 3-17 the deviation of 4.7 MB/s
represents only 6 % of the throughput. Moreover a hard disk drive is not a device for which
you can expect a low deviation because of the underlying (mechanical) technology.

For the following test, we put the "disturbing" instances of the program in a second virtual
machine. We expect ESXi to assign 50 % of the disk throughput to the measuring instance
(alone in the first virtual machine) and to share the rest of the throughput among the
disturbing instances (all in the second virtual machine).

To do so, we created two virtual hard disk drives located on the tested RAID 5 group and
assigned each virtual drive to one virtual machine. The virtual machines were using the same
type of SCSI controller: we didn't mix because the result wouldn't be interpretable:

Design Diploma Thesis

94 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

Controller type Number of instances Throughput

2 (one disturbing instance) 68.8 MB/s (σX = 6.8 MB/s), 45.9 % (of 150 MB/s)

4 72.5 MB/s (σX = 8.3 MB/s), 48.3 % LSI Logic SAS

8 64.7 MB/s (σX = 3.7 MB/s), 43.1 %

2 59.7 MB/s (σX = 8.0 MB/s), 39.8 %

4 45.4 MB/s (σX = 8.6 MB/s), 30.3 % LSI Logic Parallel

8 38.5 MB/s (σX = 3.0 MB/s), 25.7 %

Table 3-18: Throughput sharing among virtual machines

As we can see, LSI Logic SAS really makes a good isolation between virtual machines by
sharing throughput based on virtual machines instead of processes: in this experiment, each
machine is given 50 % of the throughput, independently from the number of processes trying
to access the hard disk drive.

Again, the deviation is higher than without virtualization but stays reasonable. Virtual
machines using LSI Logic SAS as a virtual SCSI controller seem to be a good solution to
isolate applications from each other. But we still need to analyse the latency of this
solution when accessing the hard disk drive (see next chapter).

The isolation provided by LSI Logic Parallel is not so good. We could have excluded this
controller type now but we decided to evaluate its guarantees concerning latency.

3.5.1.3.3 Latency .
As explained, our test program is able to detect latencies of over 50 ms. This latency is the
time between the moment when the program sends the block of data and the moment when
the program can continue its execution (and send the next block). Between those two
moments, the execution of the program is blocked.

It delivers a graph and computes the bound95% indicator, presented in chapter 3.5.1.1.5
Scheduling. Briefly, bound95% is the maximum observed latency, except if the number of
occurrences of this latency is so low that it represents less than 5 % of the total execution
time.

Consider for example the figure 3-34 representing in a histogram the detected latency during
the execution of the program (it's actually the worst case because we executed the test
program several times). Note that latencies shorter than 50 ms were not detected and
therefore are not represented on the graph. The execution time of the test program was
exactly 12.15 seconds. A latency to access the hard disk between 550 and 600 ms has been
observed once. To simplify, we consider that this access lasted 575 ms. But 575 ms
represents only 4.7 % of 12.15 seconds (this percentage is called influence, see chapter
3.5.1.1.5 Scheduling). We can ignore it, because it represents less than 5 %. Then a latency
of 275 ms to access the hard disk has been observed once, representing 2.3 % of the
execution time. We have to add to it the influences of all higher latencies:

2.3 % + 4.7 % = 7 % > 5 %

It can't be ignored anymore and the program concludes:

• maximum latency = 600 ms;
• bound95% = 300 ms.

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 95

Note: the execution of the program is limited to 30 seconds (it stops when the file size
reaches 2 GB or after 30 seconds, whatever comes first). 5 % of 30 seconds is 1.5 second,
which means that as soon as a latency longer than or equal to 1.5 second has been
detected, bound95% = maximum latency. This is why this indicator can't hide latencies greater
than 1.5 seconds (which is good, since it corresponds to the time granularity of Comsoft's
soft real-time products, see chapter 2.1.1 Comsoft products) and is a fair indicator to
compare solutions where maximum latencies are lower than 1.5 second. Briefly: the highest
latency will be ignored if it happens rarely, except if it's greater than 1.5 second.

Without virtualization
Once again, the same test program has been used, with all optimizations (without any
option) and with a block size of 64 bytes. You can run the test yourself and display the
results with the following commands:

$./hdd –b 64 –f <filepath_leading_to_the_test_partition>
$./display.sh latency

The worst case observed is bound95% = 50 ms (with a maximum latency of 150 ms).

Over ESXi
The same test has been done in a virtual machine, to measure the latency induced by ESXi.
LSI Logic SAS showed native performance, whereas LSI Logic Parallel showed
bound95% = 300 ms, with a maximum latency of 600 ms:

Figure 3-34: Disk latency with LSI Logic Parallel virtual controller

Therefore we decided to exclude LSI Logic Parallel, given the mediocre results for both
latency and throughput isolation among virtual machines.

Design Diploma Thesis

96 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

3.5.1.3.4 Latency with several instances of the test program
For now and unless otherwise specified, the LSI Logic SAS virtual controller will be used.

We now come to the main point of this thesis: the latency when several applications
need to access the same hard disk drive.
One of the best ways we found to precisely quantify this latency is to launch the following
instances of the test program:

• One measuring instance, gathering statistics. This instance should measure the time
needed to really access the device (not only the buffers located in the main memory)
and only to access it (without even trying to transfer a huge amount of data). Therefore
the test program will transfer blocks of only one byte, force the data to leave the buffers
after each transferred byte, and disable the kernel-space buffer:
$./hdd –ks –b 1 –f <file>

• Several disturbing instances, communicating the most possible with the device and
disturbing the most possible the measuring instance. We already know that the highest
throughput is reached when all optimizations are enabled and when the block size is
greater than or equal to 64 bytes. We discovered that increasing this block size
disturbs the measuring instance even more, and that a maximum is reached with a
block size greater or equal to one kilobyte:
$./loop.sh –b 1024 -f <file>

Without virtualization
We ran the tests over Fedora 11 without virtualization. The following table shows the results
(worst cases observed):

Number of disturbing
instances

bound95% Throughput of the measuring
instance (for information)

0 No latency detected 350 kB/s

1 1.7 s 35 kB/s

3 2.1 s 6 kB/s

7 3.1 s 5 kB/s

Table 3-19: Disk latency without virtualization

Note: Do not compare the throughput of the measuring instance with the throughput
observed in the previous tests! The throughput showed in the previous table is lower
because we disabled a lot of optimizations and the transferred blocks are smaller.

As we can see, the observed latency is very high (an application needing to send one byte
to the hard disk drive may have to wait for 3.1 s) and we need ESXi to reduce it.

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 97

Figure 3-35: Latency with one disturbing instance (without virtualization)

Over ESXi
The test has been run over ESXi, with the following configuration:

• the measuring instance is in one virtual machine;
• the disturbing instances are together in a second virtual machine.

We expect from the hypervisor a reduction of bound95% to an acceptable level. The following
table shows the results (worst cases observed):

Number of disturbing
instances

bound95% Throughput of the measuring
instance (for information)

0 No latency detected 263 kB/s

1 400 ms 122 kB/s

3 2.0 s 96 kB/s

7 2.0 s 96 kB/s

Table 3-20: Disk latency over ESXi

Again we can see that a good isolation between virtual machines is ensured concerning the
throughput but the results concerning the latency are still not satisfying although slightly
better.

Design Diploma Thesis

98 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

Figure 3-36: Latency with one disturbing instance (over ESXi)

Note: ESXi also provides the possibility to link a virtual hard disk drive to a virtual IDE
controller, but it didn't reduce the latency.

3.5.1.3.5 Improvement attempt
ESXi provides a long list of parameters that can be changed. Those parameters can be
found in vSphere Client / Host configuration / Software / Advanced configuration. They are
not documented. They are sorted into sections (Cpu, Disk, Scsi, ...) and each parameter
comes with a short description:

Figure 3-37: Advanced parameters in vSphere Client

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 99

We analysed the description of each parameter in the sections Disk and Scsi and tried to
reduce or to increase the value of the following parameters:

Reduced parameters Increased parameters

Disk.SectorMaxDiff

Disk.SchedQuantum

Disk.SchedNumReqOutstanding

Disk.SchedQControlVMSwitches

Disk.DelayOnBusy

Disk.ResetLatency

Disk.MaxResetLatency

Disk.ResetPeriod

Disk.DiskMaxIOSize

Disk.SchedQControlSeqReqs

Disk.QFullSampleSize

Table 3-21: Parameters changed to reduce disk access latency

We tried several combinations but it never had any effect on the latency, even after rebooting
the host. (Some parameter changes only take effect after a reboot of the host platform)

Then we decided to change the parameter Disk.BandwidthCap. This parameter is a
limitation of the disk throughput/bandwidth (in kB/s) for all virtual machines. There is no way
to set a different limitation for each virtual machine. The default and maximum value of this
parameter is 232-2 kB/s ≈ 4 TB/s, in other words: no limitation. Setting a limitation and
restarting the host (needed) improves immediately the results:

Disk.BandwidthCap Number of disturbing
instances

bound95% Throughput of the measuring instance
(for information)

1 100 ms 80 kB/s

3 250 ms 65 kB/s
130 MB/s

(87 % of 150 MB/s)
7 350 ms 65 kB/s

Table 3-22: Disk latency over ESXi with limitation of the disk bandwidth

As you can see, limiting all virtual machines to 87 % of its maximal throughput and therefore
limiting the disturbing virtual machine allows the measuring virtual machine to access the
hard disk drive without being disturbed. It stops working if the limitation is greater than 87 %.

We ran another test with the following instances:

• one virtual machine running only one measuring instance;
• three virtual machines, each of them running eight disturbing instances.

We obtained a good result: bound95% = 600 ms. (Again, the test was run several times and
this result is the worst case.)

Finally we decided to run the same test again, but with the measuring instance being of the
same type as the disturbing instance: all optimisations activated and a block size of 1 kB.
This measuring instance can be launched with the following command:

$./hdd –b 1024 -f <file>

We discovered that in order to reach a good result, the limitation has to be set to 30 MB/s
(20 % of 150 MB/s). We compared this result with the one obtained without virtualization

Design Diploma Thesis

100 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

(running the measuring instance and the 24 disturbing instances on the same hardware
platform):

 Over ESXi Without virtualization

bound95% 1.0 s 3.0 s

Throughput 30 MB/s 6 MB/s

Table 3-23: Final disk latency test

So we had reached an acceptable isolation between the virtual machines and a low
enough disk access latency. However we had to sacrifice the maximum disk throughput of
each virtual machine. The best practice is to limit the maximum throughput for all virtual
machines so that throughput limitation x number of virtual machines = 80 % x mean
throughput of ESXi.

Concretely in our configuration (RAID 5 over four hard disks), the mean throughput reached
by ESXi is 150 MB/s. Which means that:

• with two virtual machines, the limitation has to be 60 MB/s (40 %);
• with three virtual machines, the limitation has to be 40 MB/s (26.7 %);
• with four virtual machines, the limitation has to be 30 MB/s (20 %).

We didn't consider the case with more than four virtual machines because it isn't relevant for
this project (see chapter 3 Design) but we can assume that the previous result scales well
with a few more virtual machines.

Note: Sacrificing the maximum throughput is not a problem in a real-time system, because it
doesn't change the worst cases throughput, which is the throughput when all virtual
machines want to access the hard disk drive. With four virtual machines, this worst case
throughput is 30 MB/s. If 30 MB/s are enough for each machine, then there is no reason to
bewail the loss of the maximum throughput (150 MB/s). It's actually an advantage: as
explained in chapter 2.1.3.1 Hard Real Time, reducing the gap between the worst case and
the best case improves the predictability of the system and makes it easier to test and
dimension.

3.5.1.3.6 Throughput and latency when reading
Until now we only focused on the throughput and the latency when writing into a file. We can
assume that the results obtained for writing are also valid for reading, but we need to check
that the throughput when reading is greater than or equal to the throughput when writing,
otherwise the throughput limitation (which applies for writing and for reading) must be even
more restrictive.

The test program developed for this test is similar to the previous one. Instead of writing into
a file, the program creates a file with a size of 1 GB and fills it. As soon as the file is filled, the
test begins: the program reads blocks sequentially from this file. The main available options
are:

• -k: disables kernel buffering (no kernel-space buffer will be used);
• -u: disables user-level buffering (no user-space buffer will be used);
• -b: specifies the size of the blocks (in bytes) to be read from the file on each iteration.

Each read block is involved in a (useless) computation with the same technique as described
in chapter 3.5.1.2 Main Memory, in order to be sure that the data are really read from the

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 101

hard disk drive and that the compiler doesn't "notice" that there is no need to read the data.
The full implementation is available on the CD-ROM: /eval/hdd/read/ .

Without virtualization
Without virtualization, we reach the maximum throughput with a block size greater than or
equal to 2 kB and with all optimizations enabled. This throughput is 215.8 MB/s and the
standard deviation is 1 MB/s. No latency was detected. You can run the test yourself with the
following command:

$./hdd –b 2048 –f <file>

Over ESXi
Over ESXi, this throughput is 191.7 MB/s (89 %) and the standard deviation is still 1 MB/s.
No latency was detected.

ESXi shows near-native performance when reading from the hard-disk drive. Moreover the
throughput for reading is higher, which means that the throughput limitation determined in
chapter 3.5.1.3.5 Improvement attempt is restrictive enough.

Appendix E Hard-disk latency reduction with ESXi presents a few other solutions explored in
order to reduce the hard-disk latency.

3.5.1.3.7 Conclusion
ESXi solves Comsoft's main problem concerning the latency when several applications
are accessing the hard-disk drive. To achieve this the LSI Logic SAS virtual SCSI controller
has to be used and the advanced parameter Disk.BandwidthCap has to be set.

3.5.1.4 Network.

The test program designed to test the performances when communicating over the network
is very similar to the one designed to test the performances when accessing the hard disk
drive (see chapter 3.5.1.3 Hard Disk Drive): instead of reading from or writing into a file, a
client sends TCP packets over the network and a server receives those packets.

The full implementation of the client and the server is available on the CD-ROM:
/eval/network/. You can run all tests yourself with the following commands:

$./server –b <size of blocks to be read> -p <local TCP port>
$./client –b <size of blocks to be sent> -i <IP of the server>
 -p <remote TCP port>

3.5.1.4.1 Without virtualization
Two hardware platforms were connected with one Ethernet crossover cable. First we
determined the maximal throughput, by running one client on the first platform and one
server on the second platform. We reached a net TCP throughput of 114.5 MB/s
(915.7 Mb/s) when:

• the block size for the client application was greater than or equal to 128 bytes;
• the block size for the server application was greater than or equal to 512 bytes.

No latency was detected and the standard deviation of the mean throughput is negligible.

Design Diploma Thesis

102 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

In this section, we want to consider not only the throughput and the latency but also the CPU
usage (visible with the htop command). As a reference, we measured:

• on the client side, a CPU usage of between 7 and 10 % of one execution unit when the
block size is 4 kB (about 1 % of the whole CPU);

• on the server side, a CPU usage of between 65 and 80 % of one execution unit when
the block size is 4 kB (about 10 % of the whole CPU).

Then we tested what happens when N clients on one side send data to N servers on the
other side. Each client only communicates with one server at the same time, thus defining a
client/server pair. Data flows are separated by means of different TCP ports. Here are the
results:

Number of instances on each side Net throughput bound95%

2 57.5 MB/s (no deviation detected) No latency detected

4 28.8 MB/s (σX = 6.1 MB/s) 50 ms

8 14.4 MB/s (σX = 6.6 MB/s) 150 ms

Table 3-24: Several applications using the same network interface

As we can see, the network throughput assigned by Linux to each application is only
predictable if less than two applications are using the same network interface. Nevertheless
the latency stays reasonable.

3.5.1.4.2 Over ESXi
VMware has implemented in ESXi the concept of virtual switch. A virtual switch connects
several virtual NICs to several physical NICs, with the following properties:

• If several virtual NICs (typically from several virtual machines) are connected to the
same virtual switch, they can exchange Ethernet data just like physical NICs connected
to the same physical switch can.

• If several physical NICs are (virtually) connected to the same virtual switch, data
coming from virtual NICs and going outside (to the physical network) are distributed
over the different physical NICs, either with load sharing or considering one physical
NIC as being active and the others as being in standby mode (they will be used only if
the active one fails).

To create a virtual switch, click on "vSphere Client / Configuration / Network / Add
network...".

You can create up to 10 virtual NICs per virtual machine, which is enough for this project
(see chapter 3 Design). Several types of virtual NIC are available: [VV27]

• Flexible (default choice): it's an emulated version of the AMD 79C970 PCnet32 LANCE
NIC, compatible with most operating systems. However if you installed the VMware
Tools (guest additions for device paravirtualization) [VV23], the virtual NIC is used as a
VMXNET adapter (the VMware adapter making use of paravirtualization) offering better
performances, as soon as the VMware Tools are loaded. Therefore this adapter should
deliver high performances and is also recognized by the (virtual) BIOS, allowing
network boot.

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 103

• E1000: it's an emulated version of the Intel 82545EM Gigabit Ethernet NIC, compatible
with most newer operating systems. VMware Tools are not needed and this adapter
allows network boot.

• VMXNET 2 (enhanced): it's an improved version of the VMXNET adapter, supporting
features such as jumbo frames and hardware offloads (see chapter 3.4.1 VMware
Infrastructure). VMware Tools are needed and therefore network boot is not supported.

• VMXNET 3: it's the latest generation of VMware devices using paravirtualization. It
supports all features already offered by VMXNET 2 and adds several new features.
VMware Tools are needed and therefore network boot is not supported.

Note: The network boot feature (PXE) is not needed by Comsoft products for the moment.

We evaluate in this chapter the properties of each type of virtual network adapter.

Performance
In this part we measured the performance of each network adapter type, separately for the
client application and for the server application. To do so we created one virtual machine on
one hardware platform and connected it to another platform not using virtualization:

Figure 3-38: Structure of the overhead tests

The application running without virtualization (the server when testing the client, the client
when testing the server) uses a block size of 4 kB to make sure it isn't a bottleneck. The
following table shows the most relevant results:

Virtual adapter type Tested application Block size Net throughput

512 bytes 17.8 MB/s
Server

≥ 64 kB 58.4 MB/s

128 bytes 5.6 MB/s
Flexible without VMware Tools

Client
≥ 16 kB 13.9 MB/s

Client
Server

Hardware platform

Application

NIC

Virtual switch

RJ-45 cable

Virtual machine

Virtual NIC

Virtual RJ-45 cable

Client

Server

Overhead test for the client:

Overhead test for the server:

Design Diploma Thesis

104 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

Virtual adapter type Tested application Block size Net throughput

Server ≥ 512 bytes 113.1 MB/s (σX = 1.1 MB/s)
Flexible with VMware Tools

Client ≥ 128 bytes 112.3 MB/s (σX = 1.0 MB/s)

Server ≥ 512 bytes 105.4 MB/s (σX = 6.7 MB/s)

128 bytes 92.8 MB/s E1000
Client

≥ 256 bytes 111.2 MB/s (σX = 4.0 MB/s)

Server ≥ 512 bytes 109.9 MB/s (σX = 0.8 MB/s)

128 bytes 106.4 MB/s VMXNET 2 (enhanced)
Client

≥ 256 bytes 113.4 MB/s (σX = 1.2 MB/s)

Server ≥ 512 bytes 111.0 MB/s (σX = 0.7 MB/s)

128 bytes 102.5 MB/s VMXNET 3
Client

≥ 256 bytes 113.9 MB/s (σX = 0.7 MB/s)

Table 3-25: Network performance of ESXi

Note: In all cases, no latency was detected.

At this point, we can exclude the Flexible adapter when used without VMware Tools,
because of its poor performance. All other adapters showed near-native performance with
a good predictability.

CPU Usage
This test was performed like the previous one, but we measured the CPU usage during the
data transfer. To do so, we installed vSphere Management Assistant, a special virtual
machine provided by VMware for free. [VV27] This virtual machine provides a tool called
esxtop, similar to top, displaying the resource utilization on the host (see the manual of
esxtop and the document Using esxtop [VV20]). The CPU usage is visible on the line
containing "PCPU UTIL". A block size of 4 kB was used. The following table shows the
results:

Virtual adapter type Tested application CPU usage (% of the whole CPU)

Client ≈ 12 %
Flexible with VMware Tools

Server ≈ 12 %

Client ≈ 14 %
E1000

Server ≈ 17 %

Client ≈ 12 %
VMXNET 2 (enhanced)

Server ≈ 18 %

Client ≈ 12 %
VMXNET 3

Server ≈ 18 %

Table 3-26: CPU usage for networking over ESXi

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 105

There is no significant difference between the different adapter types concerning the CPU
usage. As already shown, the CPU usage of the client application without virtualization was
only 1 % and the CPU usage of the server application without virtualization was 10 %. Of
course the CPU usage with virtualization is higher but we are not able to say at this point if
it's acceptable or not: life-size tests with Comsoft products have to be made.

Isolation
The goal of this test is to determine how ESXi assigns the network throughput to several
virtual machines using the same physical NIC. For example the following figure shows the
structure of the test when testing the isolation of three clients using the same physical
interface. On the side without virtualization, three different NICs are used to make sure that
this side is not a bottleneck. All instances of the test program used a block size of 4 kB.

Figure 3-39: Structure of the isolation test between three clients

The following table shows the most relevant results:

Virtual adapter type Tested isolation Net throughput bound95%

Flexible with VMware Tools 2 clients 57.4 MB/s (σX = 21.6 MB/s) No latency detected

2 clients 58.1 MB/s (σX = 0.9 MB/s) 50 ms

2 servers 57.4 MB/s (σX = 2.1 MB/s) No latency detected

3 clients 38.3 MB/s (σX = 0.7 MB/s) No latency detected

3 servers 38.3 MB/s (σX = 9.7 MB/s) 50 ms

6 clients 19.9 MB/s (σX = 2.7 MB/s) 100 ms

E1000

6 servers 19.2 MB/s (σX = 7.7 MB/s) 100 ms

2 clients 57.4 MB/s (σX = 1.1 MB/s) 50 ms

2 servers 57.4 MB/s (σX = 1.7 MB/s) No latency detected

3 clients 38.3 MB/s (σX = 12.8 MB/s) 1.6 s
VMXNET 2 (enhanced)

3 servers 38.3 MB/s (σX = 8.9 MB/s) No latency detected

Client

Server

Client

Client

Server

Server

Hardware platform

Application

NIC

Virtual switch

RJ-45 cable

Virtual machine

Virtual NIC

Virtual RJ-45 cable

Gigabit switch

Data flow

Design Diploma Thesis

106 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

Virtual adapter type Tested isolation Net throughput bound95%

2 clients 113.1 MB/s (σX = 1.9 MB/s) 50 ms

2 servers 113.1 MB/s (σX = 2.3 MB/s) No latency detected

3 clients 113.1 MB/s (σX = 15.5 MB/s) 50 ms

3 servers 113.1 MB/s (σX = 0.4 MB/s) 50 ms

6 clients 113.1 MB/s (σX = 13.6 MB/s) 1.2 s

VMXNET 3

6 servers 113.1 MB/s (σX = 8.8 MB/s) 100 ms

Table 3-27: Networking isolation with ESXi

As we can see, E1000 offers the best results. The throughput with Flexible has a big
deviation, which means a bad isolation among virtual machines. The latency and the
standard deviation of the throughput with VMXNET 2 and 3 is higher than with E1000.

Moreover the deviation with E1000 is sometimes also not negligible but as we can see, it
only happens when the virtual machines are receiving TCP packets, not when they are
sending. It also only happens when more than two virtual machines are connected to the
same physical NIC. In all cases the latency stays very low.

If this leads to problems when life-size tests with Comsoft products are made, they can be
solved by one of the following means:

• The solution has to be designed so that at most two virtual machines are connected to
one physical NIC: it may of course increase the number of NICs needed.

• Traffic shaping has to be configured either in the guest operating systems or on the
physical switches.

Note: ESXi gives the possibility to set up some traffic shaping, but it only applies to outgoing
traffic. [VV7] [VV28] No advanced option similar to Disk.BandwidthCap (see chapter 3.5.1.3.5
Improvement attempt) for the network bandwidth was found.

Communication over the virtual network
We tested the communication between two virtual machines of the same hardware platform.
The following figure shows the structure of this test:

Figure 3-40: Test of the communication over the virtual network

Hardware platform

Application

Virtual switch

Virtual machine

Virtual NIC

Virtual RJ-45 cable

Client

Server

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 107

A block size of 4 kB has been used on both sides. This table shows the results:

Virtual adapter type Net throughput bound95% CPU usage (% of the whole CPU)

E1000 124.4 MB/s (σX = 1.6 MB/s) 50 ms 21 %

VMXNET 2 (enhanced) 160.3 MB/s (σX = 4.8 MB/s) 50 ms 18 %

VMXNET 3 129.8 MB/s (σX = 9.7 MB/s) 100 ms 19 %

Table 3-28: Communication over the virtual network

E1000 offers the best predictability and latency with a CPU usage equivalent to the other
adapter types.

Even though E1000 has the lowest throughput, this throughput is still better than the
native one (throughput while communicating over a physical network). This improvement
was expected (see chapter 2.1.2.1 Reasons).

3.5.1.4.3 Conclusion
ESXi guarantees a short latency to guest operating systems using network adapters. It
provides a good throughput isolation with a high predictability, except when three or
more virtual machines receive TCP packets from the same overloaded physical NIC. In case
this turns out to be a problem during the life-sized tests, solutions have been proposed.

To reach those results, the E1000 virtual NIC has to be used.

3.5.1.5 Human-Computer Interface

Of course screen, keyboard and mouse have to be virtualized too (into virtual screen, virtual
keyboard and virtual mouse), in order to provide each virtual machine with a human-
computer interface. This is usually implemented as follows:

• the host's graphical interface provides the possibility to open a window for each virtual
machine, representing its virtual screen;

• when one of these windows is focused, all actions on the physical mouse or on the
physical keyboard are transmitted to the corresponding virtual machine, as if these
actions were done on the virtual mouse or the virtual keyboard.

This is how KVM and VirtualBox work, for example, but it isn't exactly the way ESXi works:
ESXi is designed to be as thin as possible. Therefore the interface displayed on the screen of
the host is just a semi-graphical interface (a.k.a. color text mode) and the mouse is not
supported. With ESXi, the virtual machines' interfaces are not displayed on the host but on
the management computer running vSphere Client over Microsoft Windows.

The human-computer interface is subject to the "real-time" requirement 2.3.1.1.4.(10),
limiting its reaction time. However this requirement is reasonably not to be understood as
needing a detailed proof but rather as an indication that the interface must react pretty
quickly and never freeze or give the impression of freezing.

vSphere Client
The vSphere Client interface works fine but has several disadvantages. First of all it can be
slow: when moving the mouse and/or a window in the guest operating system, you might

Design Diploma Thesis

108 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

notice a refresh frequency of less than 15 images per second, which can be very
uncomfortable when working on the system during several hours. The interface may seem to
lag behind, giving the overall impression that the system is slow. The problem is drastically
reduced if you connect the management computer directly or through a gigabit network to
the host.

When the interface of one virtual machine hasn't been used during several days, it can be
extremely slow when used again. This problem disappears after about 20 seconds of
use and is probably due to some long-term scheduling policy concerning the graphical
interface.

Another disadvantage is that when a virtual machine is overloaded, the graphical interface
(which probably has a very low priority) gets even slower. The installation of VMware Tools
(guest additions for device paravirtualization) [VV23] doesn't reduce the problem.

The last disadvantage is that vSphere Client is a Windows application. We can imagine that
a solution to automate the installation of ESXi could be developed by Comsoft by means of
the different APIs provided by VMware. vSphere Client wouldn't be needed to configure the
virtualization layer anymore, except for the human-computer interface of each virtual
machine. It would then be preferable to find another solution running on Linux, so that
Comsoft doesn't have to deliver any Windows workstations. The following parts present a
few Linux solutions.

X11-Forwarding
X11-Forwarding corresponds to the use of "ssh -X" or "ssh -Y" (see the manual of the
ssh command) under Linux to establish a connection to one guest from a Linux workstation.
This technique is very effective, even if the workstation is not connected to the server over a
"fast" connection (crossover or gigabit). Two problems remain:

• This solution doesn't allow viewing of the guest's desktop (XFCE desktop).

• This solution only works once the guest operating system is installed and configured.

VNC on the guest
Virtual Network Computing (VNC) is a well known platform-independent system to remotely
control another computer. It transfers the keyboard events, the mouse events and the screen
changes over the network. A VNC server has to be started on the guest operating system
(see the manual of vncserver and vncviewer under Linux). NX is also a very powerful
alternative (only for a remote access to an X11 server).

This solution allows the visualization of the guest's desktop but, again, only works once the
guest operating system is installed and configured.

VNC on the host
This is how the vSphere Client display works: it uses a VNC connection to the host. It is
possible to visualize each guest from another VNC client (e.g. TinyVNC under Linux). To
enable the VNC access to the virtual machine "VM1":

• Shut down the virtual machine.

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 109

• You need to edit the file VM1.vmx . One possibility to do so:
• Do a right click on the datastore in vSphere Client / Host Configuration / Storage,

and choose "Explore datastore...". Find the file and download it.
• Append the following lines at the end of the file:
remotedisplay.vnc.port="5900"
remotedisplay.vnc.enabled="true"
remotedisplay.vnc.password = "password"

• Upload the file into the datastore.

• Start the virtual machine.

You can now access the virtual machine from a Linux workstation with the following
command:

$ vncviewer <IP_of_the_host>:5900

You will have to choose a different port for each virtual machine.

This method allows to monitor a virtual machine, even before it boots any operating system,
which means that the virtual BIOS for example is accessible with this method. Surprisingly it
does not suffer from the performance disadvantages of vSphere Client and the display is
quite flowing.

Conclusion
Different methods exist to control and monitor a guest. Some are less efficient but don't
require the guest operating system to be started, whereas some others are more efficient
and convenient. No Windows workstation is required to monitor and act inside a virtual
machine, since Linux alternatives exist.

3.5.1.6 Conclusion

ESXi showed a good isolation between virtual machines, a high predictability and low
latencies in comparison to the time granularity of Comsoft products (see chapter 2.1.1
Comsoft products). Therefore ESXi can be a solution to the problem exposed by Comsoft.
Questions concerning the sizing of the system still remain: Are 12 GB RAM enough? Is the
now lower hard-disk throughput enough? etc. Those questions can only be answered by life-
sized tests (see chapter 5 Verification and Validation).

All tests exposed in this chapter (3.5.1 VMware ESXi) can constitute a reference for testing
any other virtualization product or even an operating system.

Design Diploma Thesis

110 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

3.5.2 KVM .

When testing KVM, Hyperthreading was activated in the BIOS of both platforms, in
contrary to most of the CPU tests performed on ESXi. Therefore each hardware platform has
16 execution units.

The tests presented in chapter 3.5.1 VMware ESXi have of course been used to evaluate
KVM too. The document Getting started with virtualization [VK1] gives some details on the
installation of KVM on Fedora.

3.5.2.1 CPU Utilization

3.5.2.1.1 Overhead on CPU-Bounded applications
This test aims to measure the approximate overhead when running a CPU-bounded [C8]
program (with little or no memory and I/O access) over the hypervisor. We compared the
execution time of a CPU-bounded program [C8] on following systems:

• A system with simply a standard installation of Fedora Core 11 32-bits (i386) [C17],
without virtualization. This Linux distribution is the most recent one delivered by
Comsoft to its customers.

• A system with KVM 0.12.2 [VK3] over a standard installation of Fedora Core 11 64-bits
(a 64-bits host kernel is needed for a complete use of KVM). Here are the relevant
parameters for this test:
• 10 identical virtual machines are created, with following parameters:

• OS type: Linux;
• Version: Fedora 11;
• CPUs: 16 (maximum value), this means that the guest operating system will have

the feeling that it's working with 16 execution units and will be able to run 16
threads in parallel.

• Virt Type: kvm.
• Architecture: x86_64.

• A standard installation of Fedora Core 11 32-bits is performed on each virtual
machine.

Part 1
The test was run with M = 10 000 (number of iterations for each thread), different numbers of
threads (T) and 5 times for each value of T. The structure of the test program can be found in
chapter 3.5.1.1.1 Overhead on CPU-Bound applications. The following figure shows the
results:

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 111

y = 2,2865x + 3,9385

y = 2,2327x + 1,2923

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35

Number of threads

E
xe

cu
tio

n
tim

e
(s

)

no virt.
KVM

Figure 3-41: Overhead on CPU-Bounded applications (1 VM)

These results are similar to those obtained with ESXi, except for the following differences:

• The virtual machine is able to use the 16 available execution units. However the curves
aren't perfectly horizontal for T ≤ 16.

• The maximum overhead caused by KVM on a long execution of a CPU-bounded
program in one virtual machine is about 12 % (5 % with ESXi) and appears when
16 (Linux) threads have to be scheduled.

The standard deviation didn't seem to be increased because of KVM. KVM doesn't add any
significant indeterminism on a long execution of a CPU-bounded program in one
virtual machine.

Part 2
In the second part of this test, the test program is run simultaneously in 3 virtual machines,
with T = 8 and M = 10 000. This makes a total of 24 threads. The structure of the test
program can be found in Part 2 of chapter 3.5.1.1.1 Overhead on CPU-Bound applications

The expected execution time (without overhead in comparison to the previous results with
virtualization) is: (see figure 3-41)

 2.2865 * 24 + 3.9385 = 63.9 s
The results are a mean execution time of 67.6 s and a standard deviation of 2.4 s. They
show that:

• The mean overhead induced by KVM on a long execution of CPU-bounded programs
in 3 virtual machines is 5.8 % (in comparison to the result with only one virtual
machine), which is low (even though there was no overhead with ESXi on 8 execution
units).

• The standard deviation is slightly increased because of KVM, but only represents 3.6 %
of the whole execution time, which is acceptable. (ESXi didn't increase the
indeterminism at this stage.)

Design Diploma Thesis

112 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

Part 3
In the third step, the same test is performed with 10 virtual machines. The expected
execution time (without overhead in comparison to the execution time with only one virtual
machine) is: (see figure 3-41)

2.2865 * (10 * 8) + 3.9385 = 186.9 s

Here are the results:

Execution time (± 0.5 s) / VM N° Per test (s)

1 2 3 4 5 6 7 8 9 10 Mean σX

1 235.5 233.5 237.5 237.5 234.5 225.5 235.5 237.5 237.5 236.5 235.1 3.7

2 260.5 263.5 260.5 259.5 252.5 253.5 260.5 257.5 262.5 266.5 259.7 4.3

3 272.5 266.5 273.5 279.5 270.5 265.5 270.5 265.5 271.5 267.5 270.3 4.3

4 256.5 258.5 253.5 262.5 252.5 257.5 249.5 261.5 256.5 262.5 257.1 4.4 Te
st

 N
°

5 239.5 245.5 243.5 242.5 230.5 231.5 234.5 243.5 244.5 247.5 240.3 6.1

M
ea

n 252.9 253.5 253.7 256.3 248.1 256.7 250.1 253.1 254.5 256.1

Pe
r V

M
 (s

)

σ X
 15.3 13.8 14.2 16.8 16.1 17.3 15.7 12.0 13.7 13.6

Result:
252.5 s
(σX = 13.8 s)

 35 %
overhead

Table 3-29: Overhead on CPU-Bounded applications (10 VMs)

Those results show that:

• The mean overhead induced by KVM on a long execution of CPU-bounded programs
in 10 virtual machines is 35 % (in comparison to the execution time without
virtualization), which is high. (ESXi didn't induce any overhead with 8 execution units.)

• The standard deviation per virtual machine is higher but still represents only 5.5 %
of the total execution time. It's acceptable.

KVM doesn't scale well with the number of virtual machines, but we only plan to create
three virtual machines per host in this project (see chapter 1 Introduction).

The results of the three parts of this test are satisfactory, even if the results are not as good
as with ESXi.

3.5.2.1.2 Overhead on system calls
This test has been described in chapter 3.5.1.1.2 Overhead on system calls. The test was
run with K = 100 000, different numbers of threads (T) and 5 times for each value of T. The
following figure shows the results. The measured standard deviation was the same on both
platforms (max. 2.4 s).

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 113

y = 2,7771x - 0,3743

y = 1,7986x + 2,4829

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

0 5 10 15 20 25 30 35

Number of threads

E
xe

cu
tio

n
tim

e
(s

)

no virt.
KVM

Figure 3-42: Overhead on system calls

Those results show that:

KVM brings an improvement of about 26 % on this microbenchmark running as many
system calls as possible. (We observed an overhead of 9 % with ESXi using 8
execution units. However a similar improvement has been observed using 16 execution
units.)

• KVM doesn't add any significant indeterminism on a long execution of this
microbenchmark.

The results of this test are more than satisfactory, because of the significant improvement
observed.

Design Diploma Thesis

114 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

3.5.2.1.3 MMU Performance
This test has been described in chapter 3.5.1.1.3 MMU Performance. It was run with K = 10
(number of iterations per thread). Here are the results for KVM:

y = 0,2578x2 + 8,4353x - 0,7628

y = 0,0917x2 + 0,814x + 1,7928

0,00

100,00

200,00

300,00

400,00

500,00

600,00

0 5 10 15 20 25 30 35

Number of threads

E
xe

cu
tio

n
tim

e
(s

)

no virt.
KVM

Figure 3-43: Overhead on MMU usage

Those results show a huge overhead (between 230 % and 540 %). (The observed overhead
with ESXi over 8 execution units was 38 %.) We tried to reduce it by making the following
changes:

• With "Architecture = i686", the results stay unchanged.

• With "Virt Type = qemu" and "Architecture = x86_64", following problems appear:
• If the RAM allocated to one virtual machine is greater than 4079 MB, it can't start

and the error notification "could not query memory balloon allocation" is displayed.
• The virtual machine often freezes and has to be rebooted. It seems unstable, even

when ACPI and/or APIC in the guest is disabled (by means of options passed to the
guest kernel in the GRUB menu).

• The virtual machine seems extremely slow.

• With "Virt Type = qemu" and "Architecture = i686", following problems appear:
• The guest Linux freezes when trying to detect the available execution units (at the

very beginning of the boot process), even with ACPI and/or APIC disabled in the
guest.

• Before freezing, the virtual machine seems extremely slow.

Even the standard deviation is high: with two threads, it represents more than 12 % of the
whole execution time. However we decided to continue testing KVM.

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 115

3.5.2.1.4 CPU time distribution
The goals and details of this series of tests are explained in chapter 3.5.1.1.4 CPU time
distribution.

Part 1
First we ran the test presented in Part 1 of chapter 3.5.1.1.4 CPU time distribution, with
M = 10 000 (number of iterations per thread), TA = 8 (number of threads in the first virtual
machine) and TB = 16 (second virtual machine). This time 16 execution units are available.

With similar calculations, we can deduce that:

• if KVM distributes the CPU time equally among threads, uA = uB is to be expected (see
figure 3-44);

• if KVM distributes the CPU time among virtual machines equally or proportionally (to
their needs), uB = 1.5 x uA is to be expected (see figure 3-45).

Figure 3-44: Equal CPU time distribution among threads

Exec. Unit 1
Exec. Unit 2
Exec. Unit 3
Exec. Unit 4
Exec. Unit 5
Exec. Unit 6
Exec. Unit 7
Exec. Unit 8

Time
begin uA = uB

VM A

VM

Exec. Unit 9
Exec. Unit 10
Exec. Unit 11
Exec. Unit 12
Exec. Unit 13
Exec. Unit 14
Exec. Unit 15
Exec. Unit 16

Design Diploma Thesis

116 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

Figure 3-45: Equal or proportional CPU time distribution among virtual machines

The result of this test is uB = 1.39 x uA, which doesn't allow us to determine the used
scheduling strategy. This is probably due to the overhead induced by KVM, which distorts the
result.

Part 2
We decided to draw the curves defined in Part 3 of chapter 3.5.1.1.4 CPU time distribution,
to visually identify the scheduling strategy of KVM. Figure 3-46 shows the result:

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

needed (exec. units)

ob
ta

in
ed

 (%
) 1 VM

2 VM
4 VM
6 VM
8 VM

Figure 3-46: KVM's CPU time distribution among virtual machines

uA uB

Exec. Unit 1
Exec. Unit 2
Exec. Unit 3
Exec. Unit 4
Exec. Unit 5
Exec. Unit 6
Exec. Unit 7
Exec. Unit 8

Time
begin

VM A

VM B

Exec. Unit 9
Exec. Unit 10
Exec. Unit 11
Exec. Unit 12
Exec. Unit 13
Exec. Unit 14
Exec. Unit 15
Exec. Unit 16

Diploma Thesis Design

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 117

The CPU time distribution done by KVM looks like a distribution among virtual machines
proportionally to their needs (see figure 3-16) distorted by a non-negligible overhead. As
explained, this CPU time distribution delivers few guarantees and a bad isolation between
virtual machines.

3.5.2.2 Conclusion

We decided to stop the evaluation of KVM at this point. KVM may be a good virtualization
product but it isn't currently adapted to our project. It added significant indeterminism on
some microbenchmarks and provides a poor isolation between virtual machines concerning
the CPU distribution.

Implementation Diploma Thesis

118 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

4 Implementation

4.1 Architecture
Figure 4-1 shows the architecture of our implementation.

Figure 4-1: Architecture of the implemented solution

Hardware platforms
The solution is based on two servers (HP ProLiant DL380 G6) running a virtualization
product (ESXi), as anticipated during the design phase (see chapter 3 Design). At least one
external workstation is needed to administrate ESXi and display the virtual machines' human-
computer interfaces (see chapter 3.5.1.5 Human-Computer Interface). For testing purposes
we decided to use two such management workstations ("Linux Workstation" and "Windows
Workstation").

In order to test our solution, a test partner is needed, representing the solution of another
airport/country. Therefore this hardware platform is not part of our solution.

Diploma Thesis Implementation

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 119

Physical networks
The networks "AIDA-NG ILAN", "CADAS-ATS ILAN", "ELAN" and "CADAS-IMS ILAN" are
similar to what was anticipated during the design phase, but "AIDA-NG ILAN" and "ELAN"
share the same switches. Comsoft often makes this simplification and separates both
networks on level 2 (Ethernet level) with different VLAN-IDs.1

The physical NICs used to communicate with other airports/countries (see "WAN" in chapter
3 Design) are not used here. They are normally connected to Comsoft devices named SNL
Boards (Serial Network Link), converting Ethernet lines to serial lines (e.g. V.24) and vice
versa.

Our test partner is connected to our solution over the ELAN, instead of using SNL Boards.
This is how Comsoft usually tests the performances of its systems.

The management workstations are connected to the servers over the Comsoft's internal
network. This allows us to test the speed of the different human-computer interfaces over a
slower network.

Virtual networks
The virtualization product used in our solution is VMware ESXi, and the virtual networks are
implemented by means of virtual switches. As explained in chapter 3.2 New design, a
classical solution uses a Linux bonding interface in a hot-standby mode, so that if one
network link fails, the second one is used, as shown in figure 4-2.

Figure 4-2: Redundancy with Linux bonding

The natural way to implement the same mechanism over a virtualization product would be to
let Linux deal with bonding as usual and just map one virtual NIC to one physical NIC.
However it can't work with ESXi because of the virtual switches: a virtual link can't fail
(except if an administrator disables it manually in vSphere Client). Therefore the bonding
interface can't detect that the physical link failed, as shown in figure 4-3.

1 The redundant link between the two switches is then called a redundant trunk link.

Hardware platform

Application

NIC

RJ-45 cable

Bonding interface

Data flow

√

App. x

App.
standby

√

Implementation Diploma Thesis

120 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

Figure 4-3: Linux bonding and VMware ESXi

The correct solution is to let ESXi do this work (hot-standby) instead of Linux, as shown in
figure 4-4 and as explained in chapters 3.2 New design and 3.5.1.4.2 Over ESXi.

Figure 4-4: ESXi's hot-standby mode

Using the test program presented in chapter 3.5.1.4 Network, we tested the time needed to
perform this line switching, when the first cable is unplugged while data is being sent over or
received from the network. The test program didn't suffer from any TCP disconnection: only a
latency/pause of about 600 ms (it varies between 500 and 700 ms) appeared during the
exchange when unplugging the first cable. This is acceptable for Comsoft.

One virtual machine (AIDA-NG 1) is connected to Comsoft's intranet, so that X11-Forwarding
(see chapter 3.5.1.5 Human-Computer Interface) can be tested from the Linux workstation
too. From this virtual machine we can access the others over the ELAN and use X11-
Forwarding for them too (cascading X11-Forwarding).

x

√

App.

standby

√

√

App.

standby

√

√

Bonding interface

Data flow

Virtual switch
Hardware platform

Application

NIC Gigabit switch

RJ-45 cable

Virtual machine Virtual NIC

Virtual RJ-45 cables

√
App.

standby

Data flow

Virtual switch
Hardware platform

Application

NIC Gigabit switch

RJ-45 cable

Virtual machine Virtual NIC

Virtual RJ-45 cables

√

App. x

Diploma Thesis Implementation

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 121

4.2 Details

Hardware platforms
Except for the points mentioned below, the hardware platforms supporting the hypervisor are
as described in chapter 3.5 Evaluation.

Hyperthreading was disabled in the BIOS. A firmware upgrade of the platform was made with
HP Firmware Update CD 8.70 (latest available version on 2010-02-04).

We only created one RAID 5 group on three hard-disk drives: A1, A2 and A3 (see figure 3-4).
All other drives are unnecessary and could have been removed. Appendix F Hard-disk space
needed for the project shows why three hard-disk drives are sufficient for this project.

Physical networks
Both Gigabit switches are Cisco WS-C3560G-24TS-S. [N3] [N4] The configuration files of
these switches are available on the CD-ROM: /impl/cisco/ . The procedure for
configuring Cisco switches can be found in Comsoft's LAN Installation Guide. [A19]

Hypervisor
ESXi 4.0.0 Update 1 Build 208167 (last available version on 2010-03-23) was installed on
both hardware platforms and all available patches have been applied with the Host Update
Utility. The version of ESXi is then "Build 219382". Its configuration is based on the
conclusions of chapter 3.5.1 VMware ESXi, except for the disk bandwidth limitation, as
described below.

Based on chapter 3.5.1.3 Hard Disk Drive, we measured the maximum write throughput in
one virtual machine on a RAID 5 group over three hard disk drives. The result is about
100 MB/s. Since three virtual machines have to be created on each hardware platform, the
parameter Disk.BandwidthCap should have been set to 27 306 kB/s.1 However we
observed that the virtual machines didn't run the installation of their guest operating system
(this procedure writes heavily on the hard-disk) at the same speed as each other, indicating
that the limitation wasn't restrictive enough. We decided to set this limitation to 20 000 kB/s.
This fixed the problem. Chapter 5.1 Hard disk latency shows that this setting brings reliable
results.

In contrary to chapter 3.5.1 VMware ESXi, a free license has been used for this
implementation. This free version of ESXi happens to come with a new limitation: a virtual
machine can only use 4 execution units (8 are available on each hardware platform). If you
try to assign more than 4 execution units to one virtual machine, ESXi refuses to start it.

This limitation is just a commercial limitation. It shouldn't change the results of chapter
3.5.1.1 CPU Utilization concerning the predictability of ESXi. Moreover it doesn't
fundamentally reduce the performance of the system: as explained in chapter 2.1.3.1 Hard
Real Time, the worst case is the only important indicator in a real time system. Without
limitation of ESXi and with three virtual machines, a virtual machine would get, if it needs it, 8
execution units in the best case and 2.67 in the worst case. With a free license, the worst
case stays the same but the best case is only 4 execution units. If all three virtual machines
need to execute several threads at the same time, the 8 available execution units will be
used: there is no waste.

1 100 MB/s x 80 % / 3 = 27 306 kB/s

Implementation Diploma Thesis

122 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

However chapter 3.5.1.1.5 Scheduling demonstrated that reducing the number of virtual
CPUs of each virtual machine may lead to a longer latency for a virtual machine to get an
execution unit. So if the latency tests fail for this implementation (see chapter 5.1 Hard disk
latency), it may mean that the CPU latency is too long and the full version of ESXi will have
to be tried.

The virtual machines must be automatically started when ESXi starts, so that this part of the
solution easily starts up after a power failure. Following parameters have been set in
vSphere Client / Configuration / Software / Virtual Machine Startup-Shutdown:

• Allow virtual machines to start and stop automatically with the system: yes;
• Default Startup Delay: 0 seconds;
• For each virtual machine:

• Any Order;
• Startup Delay: 0 seconds.

The complete configuration of ESXi can be found on the CD-ROM:
/impl/esxi/esxi1.txt and /impl/esxi/esxi2.txt .

Virtual machines
Their configuration is based on the conclusions of chapter 3.5.1 VMware ESXi, except for the
assigned main memory, as described below.

Chapter 3.5.1.2 Main Memory explains that there is no reason to limit the amount of main
memory usable by a virtual machine, because 12 GB are available and all Comsoft products
need less than 4 GB.1 However if each virtual machine is allowed to use 12 GB of main
memory, the Linux guest operating system will see a lot of unused main memory and feel
free to use it to buffer I/O operations.

One day we noticed that the virtual machine "CADAS-ATS 1" was using 6 GB of main
memory. We decided then to limit each virtual machine to 3.9 GB RAM. We now have the
guarantee that the system will never swap, because:

• our guest operating systems have no swap partition;
• 3.9 x 3 < 12 GB: the hypervisor has no reason to swap.

By default, 4 MB video-RAM are assigned to each virtual machine. It may not be enough to
start the virtual machine. We recommend to set the maximum value: 128 MB. This can be
configured in vSphere Client / Virtual machine configuration / Hardware / Graphic card.

The configuration of each virtual machine can be found on the CD-ROM: /impl/esxi/ .

Virtual networks
Figure 4-5 shows the configuration of the virtual networks on the first hardware platform. The
configuration of the second platform is similar.

1 4 GB/VM x 3 VM = 12 GB

Diploma Thesis Implementation

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 123

Figure 4-5: Virtual networks

Guest operating system and CCMS
The guest operating system of each virtual machine is a Fedora 11 32-bits installed by
means of the following media:

• Comsoft's Fedora 11 i386 DVD 2010-01-28;
• Comsoft's Kickstart CD built from CCMS R09.2 V2.0.2816.

The version R09.2 V2.0.2816 of CCMS has been installed (see chapter 2.1.1 Comsoft
products). In order to be able to start the X server, following platform-dependant lines had to
be removed from /etc/X11/xorg.conf :

Section "Device"
 Identifier "default"
 Driver "ati"
 ChipID 0x515a
EndSection

The CCMS configuration can be found on the CD-ROM: /impl/ccms/ .

AIDA-NG
The version R09.2 V2.77.0002 of AIDA-NG was installed. Its configuration can be found on
the CD-ROM:

• configuration of the solution: /impl/aida/aida.* ;
• configuration of the communication partner: /impl/aida/partner.* .

CADAS-ATS
The version V1.5.00.0014 of CADAS-ATS was installed. Its configuration can be found on
the CD-ROM: /impl/cadas/cadas.* .

Implementation Diploma Thesis

124 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

CADAS-IMS
The installed CADAS-IMS is based on the following components:

• main modules: V2.1.09.0006 (Fiji Project);
• map server: V2.1.10.0005 (Zimbabwe Project);
• CCMS High Availability: V1.3.78.

A basic configuration was set up.

4.3 Compliance with the requirements
With this implementation, following requirements are fulfilled:

Requirement Summary Justification of the compliance

2.3.1.1.1.(2) Synchronisation with NTP servers. - Each virtual machine can use NTP
independently from the others. [VV10]

2.3.1.1.2.(4)
2.3.1.1.2.(6)
2.3.1.1.2.(8)

Automatic switchover upon detection
of a fault.

- If one (or several) subsystem or virtual
machine fails, the system detects it and
reacts as if there were no virtualization.

- Possibilities and configurability of the
system are unchanged.

2.3.1.1.7.(1) 2 AFTN/AMHS servers in main/hot
standby configuration. RAID 1 or 5.

- RAID 5 on both hardware platforms.

2.3.1.1.7.(2) UPS with a capacity of one hour. - The power consumption is lower than in a
traditional solution (see G Savings due to
the project).

2.3.1.2.(1) Use of HP ProLiant DL380 G6. - More RAM, 2 processors and more NICs.

2.3.1.2.(3)
2.3.1.2.(4)

Usual guest operating system
without recompilation of the kernel.

- Fedora Core 11 32-bits usually delivered
by Comsoft.

2.3.1.2.(5) No software modification except on
configuration components.

- The CCMS and CNMS may need to be
extended.

2.3.1.2.(6) Extensive support for new
components.

- VMware ESXi benefits from a large
support (see chapter 3.4.1 VMware
Infrastructure).

2.3.2.(1)
2.3.2.(2)

Savings on purchase, energy
consumption, assistance and
maintenance.

- See appendix G Savings due to the
project.

2.3.3.(2) Version of each software element
mentioned.

- See previous parts of chapter 4
Implementation.

Table 4-1: Fulfilled requirements

Note: The compliance of this implementation with some requirements is based on the fact
that the current Comsoft solutions also fulfil these requirements.

Diploma Thesis Implementation

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 125

Some modifications would be needed to completely fulfil the following requirements:

Requirement Summary Lack

2.3.1.1.2.(1)
2.3.1.1.2.(2)
2.3.1.1.2.(3)
2.3.1.1.2.(10)

Monitor and log the health state of all
system components.

- The CNMS should be extended to be able
to monitor and log the health of VMware
ESXi.

2.3.1.1.3.(3) Values in the offer based on existing
operational systems.

- No operational system using virtualization
exists yet.

2.3.1.1.3.(6) Detail the procedure for rapid system
re-installation.

- At least the CCMS Administrator's Guide
[A14] shall be updated.

Table 4-2: Requirements not fully fulfilled yet

Verification and Validation Diploma Thesis

126 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

5 Verification and Validation

5.1 Hard disk latency
This test aims to easily verify that the problem exposed in chapter 2.1.1 Comsoft products,
which is the reason of this study, has been solved. The RSS shouldn't be disturbed by an
application running in another virtual machine, even if this application uses the hard disk
intensively.

Part 1
Appendix H Health of an AIDA-NG Recording Sub-System shows the different ways of
detecting when an RSS suffers from hard disk latencies.

Several instances of the test program presented in chapter 3.5.1.3 Hard Disk Drive have
been run in the same virtual machine as RSS 1 (AIDA-NG 1) with the following command:

./loop.sh –f /tmp/test<N>

At the same time, a message generator generating 50 AFTN messages per second and a
traffic monitor have been started:

Figure 5-1: Message generator and traffic monitor

The consequences were:

• With one instance, the RSS displayed some difficulties in rsdb1times.txt;
• With five instances, some manager warnings were generated and the traffic monitor

froze;
• With 20 instances, the RSS went to maintenance.

Note: 20 instances not only make the hard disk busy but also use 100 % of the guest CPU.

We now have found a set of applications that makes the RSS crash. The goal of the next
part is to check that if this set of applications is run in another virtual machine, the RSS
doesn't crash.

Part 2
We ran at the same time:

• 30 instances in the virtual machine CADAS-ATS 1;
• 30 instances in the virtual machine CADAS-IMS 1.

Diploma Thesis Verification and Validation

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 127

RSS 1 didn't show any problem and the traffic monitor stayed fluid, which means that even
the graphical interface had no problem: two virtual machines were overloaded but the
server wasn't.
Comsoft's problem is solved.

5.2 Test scripts
In this chapter tests are run in order to prove that the remaining requirements are fulfilled.
These test scripts are adapted from the official Comsoft test scripts. [A20] [A21]

Requirement 2.3.1.1.2.(5): (CSS-)Switchover in less than ten seconds.

Test description The duration of a switchover depends on the number of external lines (SNL
boards). This test compares the duration of a switchover with no external line on
our solution with the duration of a switchover on a classical solution (without
virtualization) with no external line.

Prerequisites None.

Procedure Expected Results/Observations

1) Make sure than both AIDA-NG machines have a
satisfying time synchronisation with NTP: open a
diagnosis dialog in an OSS and go to
/System/Supervision/Ntpd/.

The values in the column "Deviation
(ms)" are lower than 10.

2) Perform five switchovers.

3) Open an event retrieval dialog and look for the events
"CORE: OPERATIONAL-" and "OPERATOR: INITIATED
CORE SWITCHOVER".

The time difference between two
events gives the duration of a
switchover.

4) Perform steps 1 to 3 on a classical solution.

Results On both solutions, the duration of a switchover is 1.2 seconds (varying between
1.1 and 1.3 seconds).

Comments No difference between our solution and a classical one. Since a classical solution
fulfils this requirement, our solution fulfils this requirement.

Requirement 2.3.1.1.2.(7): Pending messages restored in less than five minutes.

Test description Pending message lists (PML) are filled and a switchover is performed.

Prerequisites - An AFTN message generator exists: its messages are routed to the AFTN
mailbox.

- An AMHS message generator exists: its messages are routed to a
disconnected P3 LA (communication partner).

- The legacy PML maximum size is 20 MB.
- The X.400 PML maximum size is 20 MB.

Procedure Expected Results/Observations

1) Launch the AFTN message generator until the legacy
PML length is excessive: open an event monitor.

An event "ROUTING: PML LENGTH
EXCESSIVE" occurs.

Verification and Validation Diploma Thesis

128 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

2) Launch the AMHS message generator until the X.400
PML length is excessive: open an event monitor.

An event "X.400: PML LENGTH
EXCESSIVE" occurs.

3) Perform five switchovers.

4) Open an event retrieval dialog and look for the events
"CORE: OPERATIONAL+" and "OPERATOR: INITIATED
CORE SWITCHOVER".

The time difference between two
events gives the duration of the
restoration.

Results The duration of the restoration is 4.4 seconds (varying between 3.8 and 5.0
seconds).

Comments Our solution fulfils this requirement.

Requirement 2.3.1.1.2.(9): Re-initialisation in less than ten minutes.

Test description Time needed to completely start a server and its software components.

Prerequisites - One of the servers is powered off.
- The virtual machines of the other server are used to monitor the status of

AIDA-NG (by means of an OSS), CADAS-ATS (by means of an
Administration Terminal) and CADAS-IMS (by means of the Pacemaker
Management GUI).

Procedure Expected Results/Observations

1) Start a stopwatch and power on the server.

2) When the status of AIDA-NG, CADAS-ATS and CADAS-
IMS are all green, stop the stopwatch.

The elapsed time gives the duration of
the re-initialisation.

3) Perform steps 1 and 2 five times.

Results The duration of the re-initialisation is 5 min 55 s (+/- 10 s). AIDA-NG is the
system which needs most time to re-initialise.

Comments Our solution fulfils this requirement.

Requirement 2.3.1.1.4.(1), 2.3.1.1.4.(2), 2.3.1.1.4.(3), 2.3.1.1.4.(4), 2.3.1.1.4.(8), 2.3.1.1.4.(9):
- Average message input rate of 20 messages per second.
- Either 20 AFTN messages or 20 AMHS messages or a mixed message input.
- Any combination of addresses.
- Average message text size of 1 500 bytes, minimum message text size of 100

bytes, maximum message text size of 15 000 bytes.
- Input-output ratio of 1:2.
- No accumulation within the system.
- These requirements concern only AIDA-NG. CADAS-IMS is not necessarily

designed to handle this throughput.

Diploma Thesis Verification and Validation

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 129

Test description - A communication partner sends 20 AFTN messages and 20 AMHS messages
per second to AIDA-NG over TCP. (4 different destination addresses for
AFTN and for AMHS)

- The message sizes are: 25 % x 100 bytes; 5 % x 15 000 bytes; 20 % x 1 000
bytes; 50 % x 1050 bytes.

- AIDA-NG sends two copies of each message back to the communication
partner over TCP.

- A copy of all messages is also sent to CADAS-ATS (even if this isn't part of
the requirement).

- A copy of the AFTN messages which have a length of 1 000 bytes is also sent
to CADAS-IMS (even if this isn't part of the requirement). CADAS-IMS then
receives 4 messages per second. CADAS-IMS doesn't support AMHS.

Prerequisites - Appropriate message generators on the communication partner.
- Appropriate routing entries are configured on both sides.
- Appropriate message sinks are configured on both sides.

Procedure Expected Results/Observations

1) Start all message generators on the communication partner.
After one full minute, stop them.

2) Check via statistics (/Routing/LA/) on the communication
partner that the specified load has been sent (1 200 AFTN
messages and 1 200 AMHS messages) and received (2 400
AFTN messages and 2 400 AMHS messages).

3) Run the load again during at least one hour and check via
statistics (/Routing/LA/) on the tested AIDA-NG that the
system is not building queues.

The column "pending messages"
doesn't grow.

Results Passed.

Comments Our solution fulfils these requirements. Note that the maximum incoming
throughput of our CADAS-IMS is 8 messages per second. It isn't possible to
cover all possibilities (all combinations of addresses, etc.) but this test was more
severe than the requirements (total of 40 messages per second instead of 20).

Requirement 2.3.1.1.4.(6): Message transfer time within the system shorter than one second.

Test description Same as the previous test.

Prerequisites Same as the previous test.

Procedure Expected Results/Observations

1) Run the load defined in the previous test.

2) Check via a Traffic Transit Time Calculation dialog on the
tested system that the transmission time for the AFTN
messages received from the communication partner and
sent back to it is lower than one second.

The values "Transm. Unqueued /
Maximum (ms)" and "Transm. Queued
/ Maximum (ms)" are lower than 1000.

3) Same verification for AMHS messages. The value "Transm. Unqueued /
Maximum (ms)" is lower than 1000.

Verification and Validation Diploma Thesis

130 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

Results The highest time is 459 ms. The average is lower than 50 ms.

Comments Our solution fulfils this requirement.

Requirement 2.3.1.1.4.(10).Part 1: AIDA-NG's graphical interface response time under
average load lower than 500 ms.

Test description Same as the previous test.

Prerequisites Same as the previous test.

Procedure Expected Results/Observations

1) Run the load defined in the previous test.

2) Browse in the graphical interface. No noticeable response time.

Results Passed.

Comments Our solution fulfils this requirement.

Requirement 2.3.1.1.4.(7), 2.3.1.1.4.(10).Part 2: Process a peak load which is three times the
average load specified for previous tests. AIDA-NG's graphical interface
response time lower than one second.

Test description Same as the previous test, but:
- All rates are multiplied by 2 (previous rates were already twice higher than the

requirement).
- No message sent to CADAS-IMS.

Prerequisites Same as the previous test.

Procedure Expected Results/Observations

1) Start all message generators on the communication partner.
After one full minute, stop them.

2) Check via statistics (/Routing/LA/) on the communication
partner that the specified load has been sent (2 400 AFTN
messages and 2 400 AMHS messages) and received (4 800
AFTN messages and 4 800 AMHS messages).

3) Run the load again during at least one hour and check via
statistics (/Routing/LA/) on the tested AIDA-NG that the
system is not building queues.

The column "pending messages"
doesn't grow.

4) Browse in the graphical interface during the test. No noticeable response time.

Results Passed.

Comments Our solution fulfils these requirements.

Diploma Thesis Verification and Validation

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 131

Requirement 2.3.1.1.4.(5), 2.3.1.1.4.(6): Simultaneous transformation of 20 AFTN to AMHS
messages per second and 20 AMHS to AFTN messages per second. Transfer
time within the system shorter than one second.

Test description - A communication partner sends 20 AFTN messages and 20 AMHS messages
per second to AIDA-NG over TCP. Each message is 1 500 bytes long.

- AIDA-NG converts each AFTN message into an AMHS message and sends it
back to the communication partner.

- AIDA-NG converts each AMHS message into an AFTN message and sends it
back to the communication partner.

Prerequisites Same as the previous test.

Procedure Expected Results/Observations

1) Start all message generators on the communication partner.
After one full minute, stop them.

2) Check via statistics (/Routing/LA/) on the communication
partner that the specified load has been sent (2 400 AFTN
messages and 2 400 AMHS messages) and received (4 800
AFTN messages and 4 800 AMHS messages).

3) Run the load again during at least one hour and check via
statistics (/Routing/LA/) on the tested AIDA-NG that the
system is not building queues.

The column "pending messages"
doesn't grow.

4) Check via a Traffic Transit Time Calculation dialog on the
tested system that the transmission time for the AMHS
messages received from the communication partner and sent
as AFTN messages back to it is lower than one second.

The values "Transm. Unqueued /
Maximum (ms)" and "Transm.
Queued / Maximum (ms)" are
lower than 1000.

5) Same verification for the other direction. The value "Transm. Unqueued /
Maximum (ms)" is lower than
1000.

Results The highest time is 229 ms. The average is lower than 60 ms.

Comments Our solution fulfils these requirements.

Requirement 2.3.1.1.5.(3): Automatic switchover upon detection of a fault. Pending messages
are not lost.
Note: the duration of a manual switchover when pending message lists are full
has already been measured in a previous test for the requirement 2.3.1.1.2.(7)
and is lower than 5 seconds.

Test description Pending message lists (PML) are filled and the physical hardware platform where
the operational CSS runs is powered off.

Prerequisites - An AFTN message generator exists: its messages are routed to the AFTN
mailbox.

- An AMHS message generator exists: its messages are routed to a
disconnected P3 LA (communication partner).

- The legacy PML maximum size is 20 MB.
- The X.400 PML maximum size is 20 MB.

Verification and Validation Diploma Thesis

132 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

Procedure Expected Results/Observations

1) Launch the AFTN message generator until the legacy
PML length is excessive: open an event monitor. Note
the number of pending messages.

An event "ROUTING: PML LENGTH
EXCESSIVE" occurs.

2) Launch the AMHS message generator until the X.400
PML length is excessive: open an event monitor. Note
the number of pending messages.

An event "X.400: PML LENGTH
EXCESSIVE" occurs.

3) Open an OSS on the platform where the standby CSS
is running.

4) Remove the power cables of the hardware platform
running the operational CSS.

The standby CSS becomes operational
after a few seconds and the number of
pending messages is still the same.

Results The opened OSS detected that the operational CSS was gone after 10 seconds
(same as for a classical solution). No message has been lost.

Comments Our solution fulfils this requirement.

Requirement 2.3.1.1.6.(1): Capacity of CADAS-ATS servers to handle 50 terminals at the
same time generating a total of 20 messages per second.

Test description Starting 50 terminals to generate traffic would require a great number of
workstations and technical experts. We used instead a configurable simulator
("Test Client") already developed by Comsoft for this purpose.

Prerequisites - 50 different users exist.
- The test client is configured to make each user generate messages with a

period of 2.5 seconds (stricter than the requirement).

Procedure Expected Results/Observations

1) Install the test client on one of the CADAS-ATS virtual
machines.

2) Start it and monitor the destination mailbox:

$ java –jar testclientall.jar test.xml

The number of pending messages is
incremented by 1 200 every minute, as
soon as all users are logged in (see the
output of the test client).

Results Passed.

Comments Our solution fulfils this requirement. The file test.xml is available on the
CD-ROM: /impl/cadas/test_cl/.

Diploma Thesis Verification and Validation

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 133

5.3 Untested compliance
The compliance with the following requirements couldn't be tested within the given time:

Requirement Summary Comments

2.3.1.1.3.(1) Availability 24
hours per day and
7 days per week.

- No component of the solution needs to be regularly restarted.
- However the solution should be tested during one month

under real load.

2.3.1.1.3.(2) Availability greater
than 99.999 %.

- The solution should be tested during one month under real
load.

2.3.1.1.3.(7) Detail the MTBF
and the MTTR.

- No unexpected failure has been observed, so it was
impossible to determine the MTBF.

- The MTTR requires the determination of all types of failures
to be repaired.

- Those values could have been calculated if VMware
published its own values concerning the availability of ESXi.

Table 5-1: Unproven compliance

The solution has been used and tested during one month (however not always under real
load) and showed a high stability comparable to a classical solution (without virtualization).
There is no reason to think that those requirements may not be fulfilled.

5.4 Other requirements
Following requirements are finally fulfilled:

Requirement Summary Justification of the compliance

2.3.1.1.8.(1)
2.3.1.1.8.(2)
2.3.3.(1)

Demonstration of
the compliance to
the requirements
and demonstration
of the capabilities by
a practical
presentation
including all major
blocks of the
solution. Traceability
between each
requirement and
each justification.

- All requirements are exposed in chapter 2.3 Requirements.
- The compliance to each requirement has been shown in

chapters 3.3 Compliance with the requirements, 4.3
Compliance with the requirements and 5 Verification and
Validation.

- The requirements which are not fully fulfilled yet are listed
in chapters 4.3 Compliance with the requirements and 5
Verification and Validation.

- The proof of the compliance is based on the complete
evaluation of VMware ESXi in chapter 3.5.1 VMware ESXi.

- The main blocks of the solution are presented in chapters
3.2 New design and 4.1 Architecture.

- A real solution has been built and tested.

Table 5-2: Fulfilled requirements

Summary and Outlook Diploma Thesis

134 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

6 Summary and Outlook
Comsoft needed a solution for server consolidation with the possibility to distribute equally
resources among its soft real-time applications and the guarantee that the time needed for
an application to get a resource is limited. They ordered a study based on server
virtualization.

We solved their problem by designing and implementing a solution based on VMware ESXi.
This solution provides a satisfying isolation between applications, high predictability and
limited latencies, with low performance degradation. The validity of the solution has not only
been tested but also proved by means of precise and strict statistic indicators. Moreover this
study is solidly founded on a significant amount of external documents and sources. All
aspects of this study are precisely documented and can be reproduced.

Apart from its contribution to Comsoft, this study brings also a scientific contribution. It
defines a series of indicators and tests which can be used to precisely evaluate predictability,
performance and isolation of virtualization products in a soft real-time context. More generally
this study can be used to evaluate any level of a computer system (e.g. an operating system
or an application framework). We encourage anyone who wants to extend and reuse this
methodology.

The implemented solution fulfils almost all requirements (availability, mean time between
failures and mean time to repair still have to be determined) and could be sold. The next
steps for Comsoft are as follows:

• The application monitoring the health of the systems (CNMS) should be extended to
monitor the health of the virtualization layer.

• Installation procedures have to be defined and the corresponding documentation has to
be written. Maintenance procedures have to be updated.

• A configuration tool for ESXi could be developed in order to replace vSphere Client, so
that no Windows workstation has to be delivered.

The current trend in virtualization is to improve mean performance by implementing more
and more optimizations, thus reducing the predictability of the hypervisors and their
schedulers. This may represent a danger for Comsoft since VMware ESXi may become less
predictable in the future. The tests defined in this study should be rerun after each major
change in ESXi.

At the same time, Comsoft may re-evaluate other virtualization products: they may also
become valid in the future.

Finally, care has to be taken not to consider VMware ESXi as the best virtualization solution
on the market. Several other products have been excluded at the beginning of this study due
to requirements specific to Comsoft. Their predictability or real-time properties may be
actually better than ESXi.

Diploma Thesis

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 A-1

Appendix A Implementing full virtualization
This appendix gives an overview of the different techniques used to implement a full
virtualization product and their respective complexities.
A hidden section ID

Problem
Nowadays, every architecture (except some embedded systems' architectures) generally
offers at least two execution modes: kernel mode and user mode. Let's considerer first
computers with only one execution unit (see chapter 3.5 Evaluation). On such a computer,
only one execution path or code sequence can be run at a time. That means that if an
application is running, the operating system is not: contrary to what one might think, a
running application is not monitored by the operating system. But an application runs in
user mode. In this execution mode, some processor instructions are forbidden (a protection
fault exception will be thrown if an application tries to execute such an instruction). Those
protected instructions can only be run in kernel mode. The operating system will get control
of the computer back on following events:

• interrupt: event triggered by a component1 (e.g. the keyboard indicates that a key was
pressed) independently from the instruction being executed at that moment (the
interrupt's cause is not the executed code). Moreover one timer can trigger periodically
an interrupt to guaranty that the operating system is regularly in control (which means
the operating system gets the execution unit).

• exception: event that is the result of the (usually abnormal) execution of one instruction
(e.g. division by zero or protection fault).

• system call (a.k.a. syscall): special instruction used to jump to a service provided by the
operating system. For instance if an application wants to write a character on a device,
it cannot do it directly (it would throw a protection fault exception2) but has to perform a
system call to let the operating system's kernel (running in kernel mode) do it. A system
call could be considered as an instruction always throwing an exception, but since an
exception is usually unwanted, we usually distinguish system calls from exceptions.

When one of those three events happens, the processor performs following operations3:

• the context of the running application (registers' content, stack, …) is saved;
• the execution mode is set to kernel mode;
• the processor jumps to the handler corresponding to this event (interrupt, exception or

system call);
• the handler (and thus the operating system) is run;
• the processor jumps back to the application (or to another one, depending on the

scheduling policy): the context of the application is restored and the execution mode is
set to user mode.

As you can see, the operating system's kernel runs in kernel mode and has full access to
hardware. This is usually wanted: the role of the operating system is to decide which
application receives which hardware resource and the operating system can assume it is the
only decision-maker on board concerning the entire hardware.

1 Internal or external to the processor.
2 The standard reaction of an operating system to such exception is the destruction of the application.
3 You should be aware that this is a simplification to understand the principles. You can find more
details on this topic in Operating Systems [C7] and Understanding the Linux Kernel [C8].

 Diploma Thesis

A-2 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

However this behaviour is not acceptable if several (guest) operating systems are running. In
this configuration, the decision-maker is the hypervisor, which should be called each time a
decision concerning hardware allocation to virtual machines has to be made.

But how can this be achieved without modifying the guest operating system?

Solution 1: Hardware Support
We need a way to:

• detect when a guest tries to access hardware while executing an instruction in kernel
mode;

• suspend the execution of this instruction;
• put the hypervisor in control, so that it can perform some operations, decide whether

the guest is allowed to perform this access or not, and resume the guest's execution or
not, according to the hypervisor's scheduling policy.

In other words, instructions which usually don't throw any exception if executed in kernel
mode shall now throw an exception if executed by a guest, in order to make the processor
jump to an exception handler set up by the hypervisor. Therefore two additional modes are
needed:

• guest mode: the code of a guest (virtual machine) is run in this mode;
• hypervisor mode: the code of the hypervisor is run in this mode.

This behaviour is also known as trap-and-emulate. [V6]

Diploma Thesis

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 A-3

Figure A-1: Relations between the newly defined modes and exceptions

Solutions based on this model have been developed:

• Intel developed Intel VT-x, the virtualization technology on the x86 platform. [V9]
• AMD developed AMD-V (AMD Virtualization).

In the Intel solution, the processor support for virtualization is called VMX (Virtual Machine
eXtension). The hypervisor is called Virtual Machine Monitor. The hypervisor mode is called
VMX root operation and the guest mode is called VMX non-root operation. Transitions
between those modes are called VMX transitions:

• a VMX transition from the VMX non-root operation to the VMX root operation is a VM
exit;

• a VMX transition from the VMX non-root operation to the VMX root operation is a VM
entry.

Some instructions, if executed in VMX non-root operation (i.e. executed by a guest) will
trigger a VM exit, allowing the Virtual Machine Monitor to control hardware resources.

There is no way for software (e.g. no special instruction or register) to know if it is being
executed in VMX non-root operation or in VMX root operation. Thus an operating system
can't know if it is being executed on a virtual machine. You will see in part Solution 2:
Protection Ring 1 that this is an important point.

More details can be found in the Intel documentation [C2] or in Intel® Virtualization
Technology: Hardware support for efficient processor virtualization [V5].

User mode

Guest mode Hypervisor
mode

Guest
application

(classical)
exception

Hypervisor
exception
handler

Time / Execution
order

Kernel
exception
handler

(new type of)
exception

Kernel
mode

 Diploma Thesis

A-4 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

Solution 2: Protection Ring 1
Hardware support for virtualization doesn't exist on every computer and is actually quite new
on the x86 architecture (Intel-VT is available since 2005 [V9]).

In this architecture, kernel mode and user mode are implemented by means of four privilege
levels (a.k.a. protection rings). An operating system should run in the highest privilege level
(ring 0, representing the kernel mode) whereas code not to be trusted (e.g. applications)
should run in the lowest privilege level (ring 3, representing the user mode). Privilege levels
are not only assigned to code segments, but also to data segments and devices. Following
rules apply:

• A program (i.e. a peace of code) can only access data and devices from its own ring or
from a ring with lower privilege. Thus an application cannot access the operating
system's data objects.

• A program can only call another program from its own ring or from a ring with more
privilege. Thus a program can only call one that is more trusted. That is why an
application can ask for a service from the operating system's kernel by means of a
system call.

• Anything that goes against those rules triggers a General Protection Fault exception.

Figure A-2: Intel's Protection Rings (from the Intel Documentation [C1])

More details on the privilege levels on the x86 architecture can be found in the Intel
Documentation [C1].

It follows from the previous rules that the operating system's kernel has access to the entire
hardware. Running applications in the protection ring 3 (user mode) and assigning protection
rings 0, 1 or 2 to devices ensure that no application will be able to directly access the
hardware.

Whereas protection rings 1 and 2 should be used for device drivers, most operating systems
only use rings 0 and 3 to implement kernel and user modes. One idea to achieve
virtualization was to move the guest kernel's code into protection ring 1 (which is not used)
and to put the hypervisor's code and devices which have to be shared among virtual

Diploma Thesis

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 A-5

machines in protection ring 0. Thus each time a guest's kernel tries to access a device under
control of the hypervisor, a General Protection Fault exception is thrown and the processor
jumps to the corresponding exception's handler of the hypervisor.

Although this solution seems perfect and we think we might have solved the problem
exposed in part Problem, it is not. It is possible for any application to know in which
protection level it is being executed: the instruction or register indicating the current
protection level is not protected.1 A guest kernel running the following code (C++) in a virtual
machine will crash:

// Crashes if the condition is false:
assert(myRing == 0);

The main difference between this solution and the previous one (hardware support) is that in
this solution, the guest can know if it is running in a virtual machine or not. This contradicts
one of the formal requirements for virtualizable architectures from Gerald J. Popek and
Robert P. Goldberg:

"Any program run under the VMM should exhibit an effect identical with that
demonstrated if the program had been run on the original machine directly, with
the possible exception of differences caused by the availability of system
resources and differences caused by timing dependencies." [V2]

And this problem is real since common operating systems (e.g. Linux and Windows) actually
make use of such problematic instructions. Thus the solution presented in this chapter
("protection ring 1") is not a valid solution.

Interesting information on this topic can be found in:

• Analysis of the Intel Pentium’s Ability to Support a Secure Virtual Machine Monitor [V3];
• Running multiple operating systems concurrently on an IA32 PC using virtualization

techniques [V4];
• Intel® Virtualization Technology: Hardware support for efficient processor virtualization

[V5];
• A Hardware Architecture for Implementing Protection Rings [C10];
• Das Virtualisierungs-Buch [V1].

Note: The hypervisor mode created in the hardware support solution is often referred as "ring
-1", in comparison to the four existing protection rings presented in this chapter.

Solution 3: Dynamic Recompilation
Dynamic recompilation (or dynamic binary translation) is an optimization of emulation. The
basic structure of an emulator is, as already mentioned in chapter 2.1.2.2 Virtualization
Techniques, the same as an interpreter's. If you ignore interrupt handling, the code should
look like this (C++):

// also known as Program Counter:
unsigned long instructionPointer = FIRST_INSTR_OF_THE_GUEST;

for (;;)
{
 // fetch the next instruction:
 instruction i = fetch(instructionPointer);

1 More details in the Intel Documentation [C1] [C2].

 Diploma Thesis

A-6 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

 // execute it:
 switch (i.opCode())
 {
 case OP_CODE_1: // example: ADD
 // implementation (updates instructionPointer)
 break;

 case OP_CODE_2:
 // implementation (updates instructionPointer)
 break;

 // ...

 case OP_CODE_N:
 // implementation (updates instructionPointer)
 break;
 }
}

Since in our case, the architecture of the virtual machine is the same as the host's, we can
execute each instruction directly on the host processor (there is no need to re-write an
implementation for each instruction). Moreover, in this case we are developing a hypervisor
which handles several guests. Thus the hypervisor should decide periodically which guest
should be run, according to its scheduling policy:

// also known as Program Counter:
unsigned long instructionPointer[NB_GUESTS];

initialize(instructionPointer);

int guestToRunNext = 0;

for (;;)
{
 // fetch the next instruction:
 instruction i = fetch(instructionPointer[guestToRunNext]);

 // execute i directly on the processor
 // (updates instructionPointer[guestToRunNext])

 // decide which guest will run next:
 guestToRunNext = scheduler();
}

But as we said, some instructions are not safe and should be intercepted, to prevent the
guest from directly accessing the hardware without the hypervisor's permission. We have to
mix the two previous pieces of code:

// also known as Program Counter:
unsigned long instructionPointer[NB_GUESTS];

initialize(instructionPointer);

int guestToRunNext = 0;

for (;;)
{
 // fetch the next instruction:
 instruction i = fetch(instructionPointer[guestToRunNext]);

Diploma Thesis

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 A-7

 // execute it:
 switch (i.opCode())
 {
 case OP_CODE_SAFE_1:
 case OP_CODE_SAFE_2:
 // ...
 case OP_CODE_SAFE_N:
 // execute i directly on the processor

 // (updates instructionPointer[guestToRunNext])
 break;

 case OP_CODE_UNSAFE_1:
 // implementation
 // (updates instructionPointer[guestToRunNext])
 break;

 case OP_CODE_UNSAFE_2:
 // implementation
 // (updates instructionPointer[guestToRunNext])
 break;

 // ...

 case OP_CODE_UNSAFE_N:
 // implementation
 // (updates instructionPointer[guestToRunNext])
 break;
 }

 // decide which guest will run next:
 guestToRunNext = scheduler();
}

This version of the emulator now works without any hardware support and is a little more
powerful than a normal emulator, since we don't emulate every instruction, but only the ones
which are unsafe. Dynamic recompilation is an evolution of this principle: instead of fetching
and executing each guest instruction one by one, it fetches instructions block by block to
improve speed. Then the block is parsed and each unsafe instruction is replaced by a jump
to one of the hypervisor's handlers. After those replacements, the whole block is considered
as safe and can be run directly by the processor:

// also known as Program Counter:
unsigned long instructionPointer[NB_GUESTS];
instructionBuffer buffer[NB_GUESTS];

initialize(instructionPointer);

int guestToRunNext = 0;

for (;;)
{
 // fetch the next instructions:
 fetch(instructionPointer[guestToRunNext], &buffer[NB_GUESTS],
 NB_INSTRUCTIONS_TO_BE_FETCHED);

 Diploma Thesis

A-8 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

 // parse and modify the buffer to make it safe:
 // (the implementation of makeSafe() should consist of a
 // "switch (opCode)" statement)
 makeSafe(&buffer[NB_GUESTS]);

 // execute it (updates instructionPointer[guestToRunNext])

 // decide which guest will run next:
 guestToRunNext = scheduler();
}

Of course the previous algorithm is a huge simplification of a real hypervisor based on
dynamic recompilation. For instance, following aspects have been ignored:

• When letting a block run, the hypervisor actually loses control and the processor won't
jump back to the hypervisor by itself after having executed the block. The makeSafe()
function has to add this "jump back" instruction at the end of each block before letting it
run.

• The hypervisor fetches several instructions (let's say 256) at a time (block by block),
but we don't have the guarantee that those 256 instructions will be executed. The 10th
instruction may be a conditional jump (if condition then jump) likely to jump to a
place outside the block. First the makeSafe() function has to convert this instruction
so that the control is not lost forever (if the processor jumps out of the block, the "jump
back" instruction at the end of this block will never be executed and the hypervisor will
never get control of the machine again). But then we face a performance problem: is a
hypervisor parsing and converting 256 instructions in order to execute only ten of them
efficient?

This last problem, encountered while implementing a virtual processor (i.e. the part of the
hypervisor's code responsible for executing guest's instructions), is in fact already well known
concerning the implementation of a real microprocessor. One set of solutions is named
Branch Prediction. You can find a lot of explanations concerning this issue as well as all the
issues encountered when developing a modern (real or virtual) microprocessor in Computer
Architecture [C4] and Mikrocontroller und Mikroprozessoren [C5].

Once all those issues are solved by means of the same optimizations as those used in a real
microprocessor or in a classical interpreter, a hypervisor using dynamic recompilation can be
much faster than one fetching one instruction at a time.

More details on dynamic recompilation for virtualization can be found in:

• Running multiple operating systems concurrently on an IA32 PC using virtualization
techniques [V4];

• Introduction to Dynamic Recompilation [V50];
• An Emulator Writer's HOWTO for Static Binary Translation [V51];
• A Comparison of Software and Hardware Techniques for x86 Virtualization [V6].

Diploma Thesis

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 A-9

Comparison
Keith Adams and Ole Agesen (from VMware) wrote an interesting paper in 2006 [V6]
dispelling the myth that a hardware-driven solution is necessarily faster than a software-
driven one. At the time, Intel-VT and AMD-V solutions for hardware-supported virtualization
were quite new (Intel-VT is available since 2005 [V9]) and they showed that:

• "Software and hardware VMMs both perform well on compute-bound workloads" [V6],
which means native performances (without virtualization) are almost reached, since:
• a software VMM (using dynamic recompilation) doesn't need to modify this type of

instructions, which are safe;
• those instructions don't trigger any VM exit with a hardware VMM (using hardware

support).

• "For workloads that perform I/O, create processes, or switch contexts rapidly, software
outperforms hardware" [V6], because:
• "each guest page table write causes a VM exit" [V6] with a hardware VMM, which

has a non-negligible cost;
• mode switches are avoided with a software VMM by replacing unsafe instructions.

• "In two workloads rich in system calls, the hardware VMM prevails" [V6], because:
• system calls can be executed natively with a hardware VMM;
• they have to be replaced when using a software VMM.

This paper tends to show that at the time, a software VMM was lightly more efficient than a
hardware one, though the authors hoped that the improvements announced by Intel and
AMD may change this: AMD's "nested paging" and Intel's "EPT".

"In both schemes, the VMM maintains a hardware-walked 'nested page table'
that translates guest physical addresses to host physical addresses. This
mapping allows the hardware to dynamically handle guest MMU operations,
eliminating the need for VMM interposition." [V6]

Hardware VMMs still have the advantage of being drastically simpler that software VMMs,
thus reducing the number of potential bugs. Hybrid VMMs [V6] are VMMs trying to combine
the advantages of both software and hardware VMMs. Paravirtualization (see chapter 2.1.2.2
Virtualization Techniques) may also provide a good optimization for hardware VMMs.

 Diploma Thesis

A-10 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

Appendix B CPU reservation on VMware ESXi
ESXi provides the possibility to define a CPU reservation for each virtual machine and for
each pool (group of virtual machines). With this feature, you can assign for example 70 % of
the CPU time to one virtual machine.

Again, this feature was tested on two different platforms:

• one with two Intel Xeon E5520 processors, with hyperthreading disabled;
• one with one Intel Xeon E5520 processor, with hyperthreading enabled.

Both platforms have 8 execution units, each unit having a frequency of 2 267 MHz. Thus
ESXi considers that the total frequency is 8 x 2 267 = 18 136 MHz.

To assign 70 % of the CPU time to one virtual machine, we have to define a CPU reservation
of 70 % for this virtual machine. In ESXi however, CPU reservations are not defined with
percentages but with MHz. So the reservation for this virtual machine will be 18 136 x 70 % =
12 696 MHz.

Note: Of course, the sum of all reservations can't be greater than 18 136 MHz.

With one processor
There is obviously a bug in vSphere Client (the configuration tool) or ESXi for this hardware
platform, since the total CPU reservation is limited to 7 137 MHz instead of 18 136 MHz.
Here are some different appearances of the bug:

• The maximum value of the CPU reservation for a virtual machine (vSphere Client /
Settings / Resources / CPU / Reservation) is 7 137 MHz whereas the maximum value
of the limitation (vSphere Client / Settings / Resources / CPU / Limit) is 18 136 MHz.

• The maximum value of the CPU reservation for a pool (vSphere Client / Settings / CPU
Reservation) is 7 137 MHz. For the pools the maximum value of the limitation (vSphere
Client / Settings / CPU Limit) is 7 137 MHz, which is not consistent with the previous
point.

• In the tab "resource distribution" of the host, the CPU speed is 7 137 MHz.

• In "distribution of system resources" in the tab "configuration", you can configure the
CPU reservation for ESXi. The default reservation is 227 MHz, but this value and the
limitation can grow up to 9 066 MHz. If you choose 9 066 MHz, you get an error dialog
displaying "vim.fault.InsufficientCpuResourcesFault".

All those values are inconsistent. No document related to this problem has been found. We
assigned 100 % of those 7 137 MHz to one virtual machine but we didn't observe any
difference when running two virtual machines.

Note: the same problem was observed:

• with ESXi 4.0.0 Update 1, HP Customized, Build 208167 (special version for HP
ProLiant)

• with ESX 4.0.0 Update 1 Build 208167 (last available version on 2010-02-04);
• with ESXi 3.5.0 Update 5 Build 207095 (last version of ESXi 3.5)
• after a firmware upgrade of the platform with HP Firmware Update CD 8.70 (last

available version on 2010-02-04)

Diploma Thesis

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 A-11

With two processors
With two processors without hyperthreading, the most disturbing part of the bug is gone:

• The maximum value of the CPU reservation for a virtual machine (vSphere Client /
Settings / Resources / CPU / Reservation) is 16 201 MHz and the maximum value of
the limitation (vSphere Client / Settings / Resources / CPU / Limit) is 18 128 MHz. (This
small difference is probably due to some resources being kept free for ESXi.)

• For the pools the maximum value of the limitation (vSphere Client / Settings / CPU
Limit) is 16 201 MHz too.

• In the tab "resource distribution" of the host, the CPU speed is 16 201 MHz.

• This time, the CPU reservation for ESXi can grow up to 18 133 MHz. Again, if you
choose this value, you get an error dialog displaying
"vim.fault.InsufficientCpuResourcesFault".

We run the program described in the second part of chapter 3.5.1.1.1 Overhead on CPU-
Bound applications on two virtual machines (A and B), with M = 10 000 and T = 16, and we
assigned 100 % of the CPU to virtual machine A. The application in virtual machine B
needed exactly twice as much time as the application in virtual machine A, which means that
virtual machine A really had 100 % of the CPU at the beginning, although both applications
actually "started" at the same time:

Figure B-1: CPU time distribution with a CPU reservation of 100 % for VM A.

We didn't test the predictability of this feature.

uA uB

Exec. Unit 1
Exec. Unit 2
Exec. Unit 3
Exec. Unit 4
Exec. Unit 5
Exec. Unit 6
Exec. Unit 7
Exec. Unit 8

Time
begin

VM A

VM B

Exec. Unit 9
Exec. Unit 10
Exec. Unit 11
Exec. Unit 12
Exec. Unit 13
Exec. Unit 14
Exec. Unit 15
Exec. Unit 16

 Diploma Thesis

A-12 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

Appendix C Scheduling test on MS-DOS
The test exposed in chapter 3.5.1.1.5 Scheduling could have been developed on a
monotasking system. Since this solution was explored and since it's hard to find
documentation on this topic, this appendix exposes the different achieved steps for the
interested reader.

We installed FreeDOS (free alternative to MS-DOS) [CR14] and DJGPP (version of GCC for
MS-DOS) [CR15].

Test program
This example gets the current time from the CMOS RTC and the three PIT counters [VV10]
and displays it. Details on how to program those PIT counters can be found in documents
[C19] and [C20].

The assembly syntax used with GCC is called the AT&T syntax. The implementation of this
example is available on the CD-ROM: /eval/cpu/msd_test/ .

Conclusion
If you try to implement the test described in chapter 3.5.1.1.5 Scheduling, you will see that
the frequency of PIT-0 is high enough, but its length (16 bits) is too short (it rolls over in a few
milliseconds). So to calculate the elapsed time between two iterations of a loop, you need to
compare values coming not only from PIT-0 but also from another timer with a lower
frequency.

The CMOS RTC can't be used for this purpose because its frequency is too short: the time
needed to make PIT-0 roll over is shorter than the CMOS RTC period. PIT-1 or PIT-2 could
be used for this purpose, but are again too short. The only solution would be to use all of this
at the same time:

• PIT-0 to determine the elapsed time,
• PIT-1 or PIT-2 to determine how many times PIT-0 rolled over, and
• CMOS RTC to determine how many times PIT-1 or PIT-2 rolled over.

It's possible but not convenient. This is why we chose the TSC timer to implement this test.

Concerning MS-DOS, our opinion is that it isn't as convenient and as easy to configure as
Linux (in particular for networking and communication). This is why we chose a real-time
operating system based on Linux to implement this test.

Diploma Thesis

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 A-13

Appendix D Scheduling test on Fedora Core 11
Chapter 3.5.1.1.5 Scheduling presents a test to evaluate the scheduler of ESXi. As
explained, it's important for this purpose to use a hard real-time operating system, because if
the scheduler of the guest operating system isn't fully predictable, it isn't possible to evaluate
the virtualization layer's scheduler.

This appendix shows the results of this test program run on a Fedora Core 11 without
virtualization, to prove that this operating system was not adapted for this purpose.

When running the test 5 times, you can observe a significant difference between the best
case and the worst case:

Table D-1: Scheduling test on Fedora without virtualization, best case

0,0
0E

+0
0

9,8
7E

-01

6,3
0E

-03

3,0
4E

-03

7,9
8E

-04

2,4
4E

-03

0,00

0,20

0,40

0,60

0,80

1,00

1,20

[0,
 10

[

[10
, 1

00
[

[10
0,

1K
[

[1K
, 1

0K
[

[10
K, 1

00
K[

[10
0K

, 1
M[

Figure D-1: Distribution of the influence on Fedora without virtualization, best case

Table D-2: Scheduling test on Fedora without virtualization, worst case

8 702 2 408 39 381 7 629 551 992 319 957 0

[100K, 1M[[10K, 100K[[1K, 10K[[100, 1K[[10, 100[[0, 10[

0 0 0 0 0 1

[100G, ∞[[10G, 100G[[1G, 10G[[100M, 1G[[10M, 100M[[1M, 10M[

247 808 30 727 637 911 999 330 307 0

[100K, 1M[[10K, 100K[[1K, 10K[[100, 1K[[10, 100[[0, 10[

0 0 0 0 0 0

[100G, ∞[[10G, 100G[[1G, 10G[[100M, 1G[[10M, 100M[[1M, 10M[

 Diploma Thesis

A-14 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

0,0
0E

+0
0

8,5
4E

-01

6,5
7E

-02

3,3
9E

-03

2,0
7E

-03
7,4

9E
-02

8,6
1E

-05

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

[0,
 10

[

[10
, 1

00
[

[10
0,

1K
[

[1K
, 1

0K
[

[10
K, 1

00
K[

[10
0K

, 1
M[

[1M
, 1

0M
[

Figure D-2: Distribution of the influence on Fedora without virtualization, worst case

On the best case, bound95% = 100 ticks = 44.1 ns, exactly the same as on Xenomai. In this
case, the test process was obviously very rarely de-scheduled by the Linux scheduler.

On the worst case, bound95% = 1 million ticks = 441 µs, which means that if a process wants
to execute, it may have to wait for an execution up to 441 µs on this system. Of course this
value is just an order of magnitude.

The variation between the best case and the worst case is really significant, whereas both
experiments have been made in the same conditions. How can later variations induced by
the virtualization level be detected if the reference test is so unstable?

Moving the mouse during the test for example can make the results even worse, which is not
the case on Xenomai.

Diploma Thesis

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 A-15

Appendix E Hard-disk latency reduction with ESXi
Other solutions than the one exposed in chapter 3.5.1.3 Hard Disk Drive have been explored
in order to reduce the latency and isolate the different virtual machines. This appendix gives
an overview of the results.

Distribution of the instances of the test program on different RAID
channels
We tested the throughput and the latency when distributing the different instances of the test
program over two RAID 5 groups, both connected to the same RAID controller but each of
them connected to one RAID channel. The goal of this test is to determine if the use of two
different RAID channels delivers guarantees.

Without virtualization, a high deviation of the writing throughput appeared when both
channels were under high solicitation: we couldn't predict before launching the test program if
the throughput would be 150 MB/s or 200 MB/s. However the observed latency stayed low:
bound95% ≈ 250 ms.

Over ESXi with two virtual machines, each of them using one different RAID group, the result
was worse. When both channels were under high solicitation at the same time, one had a
throughput of 142 MB/s and the other one only 20 MB/s, with a latency reaching
3.6 seconds. We couldn't predict before launching the test program which one of both virtual
machines would suffer from a low throughput. Applying the throughput limitations defined in
chapter 3.5.1.3.5 Improvement attempt solved the problem.

Therefore we prefer to consider that using different RAID channels of the same RAID
controller doesn't deliver any guarantee.

Distribution of the instances of the test program on different RAID
controllers
The same test has been run on different RAID controllers. This time we observed a perfect
isolation and a low latency with and without virtualization.

Using different RAID controllers is a good way to guarantee a low latency, but it isn't
adapted to this project since we only have two RAID controllers and we need to isolate at
least three Comsoft products on the same hardware platform. Comsoft could buy additional
RAID controllers (on PCI boards) but the layout of HP ProLiant DL380 G6 servers makes it
impossible to insert additional hard disk drives. (The existing hard disk slots can't be used for
this purpose: they are already connected to the provided RAID controllers.)

Based on the same principle, we could imagine using one distinct physical iSCSI device
(Internet SCSI)1 per virtual machine or a similar technique. VMware ESXi provides the
possibility to create a virtual hard disk drive on an iSCSI device. [VV3] However this solution
hasn't been explored. An external scheduler for storage virtualization delivering latency
guarantees could then be used, as described in chapter 2.2 Related Work.

1 Protocol for SCSI over TCP/IP.

 Diploma Thesis

A-16 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

VMDirectPath
VMDirectPath (or Passthrough) allows guest operating systems to directly access an I/O
device, bypassing the virtualization layer. It can of course improve performance, but it
prevents several virtual machines from sharing the same hardware device. [VV25]

To see the list of all devices supporting VMDirectPath, open vSphere Client / Configuration /
Hardware / Advanced settings / Configure Passthrough :

Figure E-1: VMDirectPath configuration dialog

Almost all PCI devices are supported for Passthrough. However figure E-1 shows that the
different RAID channels can't be assigned, but only the RAID controllers, which would
prevent us from creating more than two virtual machines. It's actually even worse: the first
RAID controller can't be assigned to a virtual machine, since ESXi is installed on it.

More information about VMDirectPath can be found in Configuration Examples for
VMDirectPath [VV25] and Configuring VMDirectPath [VV26].

Diploma Thesis

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 A-17

Appendix F Hard-disk space needed for the project
The following table details the hard-disk space needed for the project on one hardware
platform:

Product Partition Needed space Note

/ 30 GB Software

/boot 100 MB

/var 30 GB Database: 100 days x 300 MB/day
AIDA-NG

Total 61 GB

/ 30 GB Software

/boot 100 MB

/var 50 GB Database
CADAS-ATS

Total 81 GB

/ 30 GB Software

/boot 100 MB

/shared 50 GB Database

/var 5 GB

CADAS-IMS

Total 86 GB

Total 228 GB

Table F-1: Hard-disk space needed by Comsoft products

With a RAID 5 group over three hard-disk drives of 140 GB, we theoretically obtain a total
space of 280 GB. A few tests showed that the actual space is 270 GB.

ESXi software needs less than 5 GB, but free space is needed in case the total main
memory assigned to virtual machines is bigger than the physical available main memory.
ESXi would use this space as a swap space. Even if we are sure that ESXi will never need to
swap memory pages out (see chapter 3.5.1.2 Main Memory), ESXi will refuse to start a
virtual machine if there is not enough free space on the hard-disk. If we assign the whole
available main memory (12 GB) to all three virtual machines, a free space of 36 GB is
needed.

270 GB - 36 GB - 5 GB = 229 GB > 228 GB
Conclusion: three hard-disk drives are sufficient for our project.

 Diploma Thesis

A-18 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

Appendix G Savings due to the project
Note: This is an approximation. Some aspects (energy, postage, documentation writing,
training, etc.) couldn't be taken into account.

The web page http://egui.houston.hp.com/eGlue/eco/begin.do allows to calculate the price of
a server. Without virtualization (see chapter 3.1 Existing design), six servers with the
following configuration are usually purchased:

• Model: HP DL380G6 E5520;
• Number of processors: 1;
• RAM: 4 GB (2 x 2 GB) PC3-10600R;
• 1 PCI Express Card: HP NC364T 4Pt (Gigabit NIC);
• DVD Optical Kit;
• 3x HP 146GB 3G SAS 10K SFF DP ENT HDD;
• 1 Redundant Power Supply.

The price of such a server is 4 524 USD without service nor support, which makes a total of
27 144 USD.

For our project, only two servers are needed (see chapter 4 Implementation), with the same
configuration except on following points:

• Number of processors: 2;
• RAM: 12 GB (6 x 2 GB) PC3-10600R;
• 2 PCI Express Cards: HP NC364T 4Pt (Gigabit NIC).

The price of such a server is 6 372 USD without service nor support, which makes a total of
12 744 USD. The hardware costs for the servers have been divided by 2.1. Moreover the
energy consumption of the whole solution will be lower.

HP assistance contracts (Service and Support) are called Care Packs. One Care Pack
concerns only one server, making the price of the assistance proportional to the number of
servers. Our project divides the assistance costs by 3.

Diploma Thesis

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 A-19

Appendix H Health of an AIDA-NG Recording Sub-
System
Several indicators exist to know if an RSS suffers from high latencies.

rsdb<N>times.txt
Monitor the file /var/aida/db/rsdb<N>times.txt, N being the ID of the RSS:

$ tail –f /var/aida/db/rsdb1times.txt

This file is a developer log-file. When an RSS performs an operation on its database, it
measures the time needed to do it. Except when the RSS starts, such an operation should
never last longer than 500 ms. Otherwise such a line is appended at the end of the file:

29.03.2010 17:37:00,743 : req getDiagData reqSize 0 cnfSize 962 :
→ 916[msec], # mbox msgs: 0

Manager Warning
When a RSS is having severe difficulties, it fails to regularly send alive indicators to its
system manager (see chapter 2.1.1 Comsoft products), which triggers manager warnings, as
shown in figure H-1. These warnings can be detected by means of an alarm.

Figure H-1: Alive indicators missing

Maintenance
After five missing alive indicators, the RSS is switched off by its system manager (see
chapter 2.1.1 Comsoft products). It is declared as being in maintenance:

Figure H-2: RSS in maintenance

Diploma Thesis

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 B-1

B hidden section ID

References

Aeronautics
[A1] Official website. COMSOFT Corporate Website. http://www.comsoft.aero/ (last

accessed on 2010-04-22)

[A2] Official website section. EUROCONTROL – Aeronautical Information
Management.
http://www.eurocontrol.int/aim/public/subsite_homepage/homepage.html (last
accessed on 2010-03-05)

[A3] EUROCONTROL. Recommendations for ANS Software. V1.0. 2005. Electronic
document. http://www.dcs.gla.ac.uk/~johnson/Eurocontrol/software/SW_V1/ (last
accessed on 2010-03-24). SAF.ET1.ST03.1000.GUI-01-00

[A4] Comsoft internal document. AFTN/AMHS System – System Requirements
Specification (SRS). V1.3, 2007-04-24. 37 p. AFTN/AMHS-SRS-V1.3

[A5] Comsoft. AIDA-NG: Product Information. 12 p.
http://www.comsoft.aero/download/atc/product/english/aida_ng.pdf (last accessed
on 2010-03-04)

[A6] Comsoft internal document. AIDA-NG R09.2: Interface Control Document. V1.3,
2009. 103 p. AIDA-NG-A-ICD-V1.3

[A7] Comsoft internal document. AIDA-NG R09.2: Routing. V1.4, 2009-01-22. 35 p.
AIDA-NG-Routing-V1.4

[A8] Comsoft internal document. AIDA-NG R09.2: System Architecture. V1.0,
2009-08-31. 43 p. AIDA-NG-System-Architecture-V1.0

[A9] Comsoft. CADAS-ATS: Product Information. 4 p.
http://www.comsoft.aero/download/atc/product/english/cadas_ats.pdf (last
accessed on 2010-03-04)

[A10] Comsoft internal document. CADAS-ATS: Administrator's Guide. V1.3,
2009-03-11. 51 p. 3990_HEAD_CadasAtm_AdmGuide-V1.3

[A11] Comsoft. CADAS-IMS: Product Information. 6 p.
http://www.comsoft.aero/download/atc/product/english/cadas_ims.pdf (last
accessed on 2010-03-04)

[A12] Comsoft internal document. CADAS-IMS: Technical Specification. V1.2,
2009-04-15. 79 p. C-IMS-V1.2

[A13] Comsoft internal document. CCMS R10.1: System Architecture. V1.0,
2010-02-10. 20 p. CCMS-SysArc-R10.1-V1.0

[A14] Comsoft internal document. CCMS: Administrator's Guide. V1.5, 2010-03-12.
32 p. CCMS-AdmGuide-V1.5

[A15] Comsoft internal document. CNMS: System Architecture. V1.0, 2009-06-09. 21 p.
CNMS-SysArch-V1.0

[A16] Comsoft internal document. EFG: Administrator's Guide. V1.8, 2010-02-18. 48 p.
EFG-AdmGuide-V1.8

[A17] Comsoft internal document. ATN Router Course. Training presentation. 295 p.
2010-03-05

 Diploma Thesis

B-2 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

[A18] Comsoft internal document. CADAS-AIMDB R3.2: Architectural Design
Documentation. V1.0, 2010-03-05. 11 p. CADAS-AIMDB-ADD-R3.2-V1.0

[A19] Comsoft internal document. LAN Installation Guide. V1.1, 2009-17-11. 32 p.
LAN-InstGuide-V1.1

[A20] Comsoft internal document. AIDA-NG R09.2: Reliability Testscript. V2.0,
2009-09-18. 34 p. AIDA-NG-Reliability-V2.0

[A21] Comsoft internal document. AIDA-NG R09.2: Performance Testscript. V2.2,
2009-12-16. 8 p. AIDA-NG-Performance-V2.2

Computer architecture and operating systems
[C1] Intel. Intel 64 and IA-32 Architectures Software Developer's Manual. Volume 1:

Basic Architecture. 2009. Electronic document. Order Number: 253665-032US
[C2] Intel. Intel 64 and IA-32 Architectures Software Developer's Manual. Volume 3B:

System Programming Guide, Part 2. 2009. Electronic document. Order Number:
253669-032US

[C3] Intel. Intel 80386 Programmer's Reference Manual. 1986. 421 p. Electronic
document

[C4] Hennessy, John L.; Patterson, David A. Computer Architecture: A Quantitative
Approach. 4th edition. San Francisco, USA: Morgan Kaufmann Publishers, 2007.
423 p. 978-0-12-370490-0

[C5] Brinkschulte, Uwe; Ungerer, Theo. Mikrocontroller und Mikroprozessoren. 2nd
edition. Berlin, Germany: Springer-Verlag, 2007. 453 p. 978-3-540-46801-1

[C6] Ungerer, Theo. Parallelrechner und parallele Programmierung. Berlin, Germany:
Spektrum Akademischer Verlag, 1997. 375 p. 978-3827402318

[C7] Stallings, William. Operating Systems: Internals and Design Principles. 6th
edition. Upper Saddle River, USA: Pearson Prentice Hall, 2009. 832 p.
978-0-13-600632-9

[C8] Bovet, Daniel P.; Cesati, Marco. Understanding the Linux Kernel. 3rd edition.
Sebastopol, USA: O'Reilly Media, 2005. 942 p. 978-0-596-00565-8

[C9] Love, R. Linux Kernel Development. 2nd edition. Novell Press, 2005. 432 p.
978-0-672-32720-9

[C10] Schroeder, Michael D.; Saltzer, Jerome H. A Hardware Architecture for
Implementing Protection Rings. New York, USA: ACM, 1972. Communications of
the ACM 15(3), 157-170. ISSN 0163-5980.
DOI= http://doi.acm.org/10.1145/850614.850623

[C11] HP. HP ProLiant DL380 Generation 6, Worldwide QuickSpecs. Version 10. 2009.
Electronic document. DA – 13234

[C12] HP. HP ProLiant RAID Smart Array controllers. Electronic document.
http://h18000.www1.hp.com/products/servers/proliantstorage/arraycontrollers/
(last accessed on 2010-02-18)

[C13] HP. HP SmartArray P410 Controller. Version 9. 2010. Electronic document.
DA – 13201

Diploma Thesis

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 B-3

[C14] Intel. Intel Xeon Processor E5520. Electronic document.
http://ark.intel.com/Product.aspx?id=40200 (last accessed on 2010-01-04)

[C15] Intel. Intel Xeon Processor 5500 Series, Datasheet, Volume 1. 2009. Electronic
document. Document Number: 321321-001

[C16] Intel. First the Tick, Now the Tock: Next Generation Intel Microarchitecture
(Nehalem). 2008. Electronic document.
http://www.intel.com/pressroom/archive/reference/whitepaper_Nehalem.pdf (last
accessed on 2010-01-20)

[C17] Official website. Fedora Project. http://fedoraproject.org/ (last accessed on
2010-01-04)

[C18] Fedora. Fedora 12 Release Notes. 2009. Electronic document.
[C19] 8253 functions (General overview). 2002. Electronic document.

http://www.sharpmz.org/mz-700/8253ovview.htm (last accessed on 2010-01-19)
[C20] Friesen, Brandon. Kernel development tutorial. 1999. Electronic document.

http://www.osdever.net/bkerndev/ (last accessed on 2010-01-19)
[C21] The Linux Foundation. Bonding. 2009. Electronic document.

http://www.linuxfoundation.org/collaborate/workgroups/networking/bonding (last
accessed on 2010-03-08)

[C22] Official website. LMBench. http://www.bitmover.com/lmbench/ (last accessed on
2010-03-09)

[C23] Staelin, Carl. lmbench – an extensible micro-benchmark suite. Great Britain:
Software Practice and Experience, 2005. Vol. 35; Numb. 11, 1079-1105.
ISSN 0038-0644

[C24] Peng, Lu; Peir, Jih-Kwon; Prakash, Tribuvan K.; Staelin, Carl; Chen, Yen-
Kuang; Koppelman, David. Memory hierarchy performance measurement of
commercial dual-core desktop processors. Journal of Systems Architecture 54
(2008) 816–828. ISSN 1383-7621

[C25] Maxwell, M. Tyler; Cameron; Kirk W. Optimizing Application Performance: A
Case Study Using LMBench. Crossroads, the ACM Student Magazine, 2002.
Electronic document. http://www.acm.org/crossroads/xrds8-5/optaperf.html
(available 2010-03-09)

[C26] Jaenisch, Volker; Klapproth, Martin; Westphal, Patrick. I/O-Scheduler und
RAID-Performance. Version 5. Linux Technical Review. 16 p. Electronic
document.
http://www.linuxtechnicalreview.de/Themen/Performance-and-Tuning/I-O-
Scheduler-und-RAID-Performance (last accessed on 2010-03-11)

Real-Time
[CR1] Wörn, Heinz; Brinkschulte, Uwe. Echtzeitsysteme. Berlin, Germany: Springer-

Verlag, 2005. 556 p. 978-3-540-20588-3
[CR2] Official website. Wind River: RTLinuxFree. http://www.rtlinuxfree.com/ (last

accessed on 2009-12-18)

[CR3] List, Stéphane; Ferre, Nicolas. RTLinux. V1.22. Saint-Denis, France: Alcôve. 44
p. Electronic document. http://nferre.free.fr/rtl/rtlinux_sl_v3_r.pdf (last accessed
on 2010-01-18)

 Diploma Thesis

B-4 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

[CR4] Rivers, Brian. How to install RTLinux 3.1 with RedHat 7.1, 7.2 & 7.3. Electronic
document. http://www.brivers.net/rtlinux-install-howto.html (last accessed on
2010-01-18)

[CR5] Divakaran, Dinil. RTLinux HOWTO. V1.1. Electronic document.
http://tldp.org/HOWTO/RTLinux-HOWTO.html (last accessed on 2010-01-18)

[CR6] Ficheux, Pierre; Kadionik, Patrice. Temps réel sous Linux. 2003. 37 p.
Electronic document.
http://uuu.enseirb.fr/~kadionik/embedded/linux_realtime/linux_realtime.pdf (last
accessed on 2010-01-18)

[CR7] McGuire, Nicholas. MiniRTL-V2.3 (Kernel 2.2.14). Electronic document.
http://www.rtlinux-gpl.org/cgi-bin/viewcvs.cgi/rtldoc-3.2-
pre1/doc/html/minirtl.html?rev=1.1.1.1 (last accessed on 2010-01-18)

[CR8] Official website. Xenomai. http://www.xenomai.org/ (last accessed on
2010-01-18)

[CR9] Cuvillon, Loïc. Systèmes temps réel et systèmes embarqués. 2008. 53 p.
Electronic document.
http://eavr.u-strasbg.fr/wiki/upload/8/81/TR_chap_linux_temps_reel_08_poly.pdf
(last accessed on 2010-01-18)

[CR10] Official website. RTAI. http://www.rtai.org/ (last accessed on 2010-01-18)
[CR11] Santana, Pedro Henrique; Amui, Bruno Guilherme; Cavalcanti, Felipe

Brandão; Scandaroli, Glauco Garcia; Borges, Geovany Araújo. Building a
real-time Debian distribution for embedded systems. 2010. 11 p. Electronic
document.
http://www.lara.ene.unb.br/~phsantana/files/technotes/HowTo_Debian_Embedde
d.pdf (last accessed on 2010-01-18)

[CR12] eAVR. Systèmes temps-réel et systèmes embarqués. Electronic document.
http://eavr.u-strasbg.fr/wiki/index.php/Syst%C3%A8mes_temps-
r%C3%A9el_et_syst%C3%A8mes_embarqu%C3%A9s (last accessed on 2010-
01-18)

[CR13] Xenomai. Xenomai API Documentation. Electronic document.
http://www.xenomai.org/documentation/xenomai-head/html/api/ (last accessed on
2010-01-18)

[CR14] Official website. The FreeDOS Project. http://www.freedos.org/ (last accessed on
2010-01-18)

[CR15] Official website section. DJGPP. http://www.delorie.com/djgpp/ (last accessed on
2010-01-18)

High Availability
[H1] Linux-Magazin. High Availability. 4th edition. Munich, Germany: Linux New Media

AG, 2007. 144 p. 978-3-939551-06-5

Telecommunication
[N1] Dooley, Kevin. Designing Large-Scale LANs. Sebastopol, USA: O'Reilly Media,

2002. 400 p. 978-0-596-00150-6

Diploma Thesis

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 B-5

[N2] Official website. View500 Directory Server. http://www.view500.com/ (last
accessed on 2010-03-05)

[N3] Cisco Systems. Cisco Catalyst 3560 Series Switches: Data Sheet. 2009. 21 p.
Doc.-ID: C78-379068-08

[N4] Cisco Systems. Catalyst 3560 Switch Software Configuration Guide. Cisco IOS
Release 12.2(52)SE. San Jose, USA: 2009. 1296 p. Doc.-ID: OL-8553-07

Virtualization
[V1] Thorns, Fabian. Das Virtualisierungs-Buch. 1st edition. Böblingen, Germany:

Computer und Literaturverlag, 2007. 665 p. 978-3-936546-43-9

[V2] Popek, Gerald J.; Goldberg, Robert P. Formal requirements for virtualizable
third generation architectures. New York, USA: ACM, 1974. Communications of
the ACM 17(7), 412-421. ISSN 0001-0782.
DOI= http://doi.acm.org/10.1145/361011.361073

[V3] Scott Robin, John; Irvine, Cynthia E. Analysis of the Intel Pentium’s Ability to
Support a Secure Virtual Machine Monitor. Denver, USA, 2000. Proceedings of
the 9th USENIX Security Symposium

[V4] Lawton, Kevin. Running multiple operating systems concurrently on an IA32 PC
using virtualization techniques. 1999. Electronic document.
http://www.ece.cmu.edu/~ece845/sp05/docs/plex86.txt (last accessed on
2009-12-08)

[V5] Neiger, Gil; Santoni, Amy; Leung, Felix; Rodgers, Dion; Uhlig, Rich. Intel®
Virtualization Technology: Hardware support for efficient processor virtualization.
Intel Technology Journal, Volume 10, Issue 03. 2006-08-10. ISSN 1535-864X.
DOI= 10.1535/itj.1003.01

[V6] Adams, Keith; Alesen, Ole. A Comparison of Software and Hardware
Techniques for x86 Virtualization. New York, USA: ACM, 2006. ASPLOS-XII,
2-13, DOI= http://doi.acm.org/10.1145/1168857.1168860

[V7] HP Laboratories. Padala, Pradeep; Zhu, Xiaoyun; Wang, Zhikui; Singhal,
Sharad; Shin, Kang G. Performance Evaluation of Virtualization Technologies
for Server Consolidation. 2007. HPL-2007-59R1

[V8] Red Hat. Curran, Christopher; Holzer, Jan Mark. Red Hat Enterprise Linux 5:
Virtualization Guide. 4th edition. 2009

[V9] Burger, Thomas. The Advantages of Using Virtualization Technology in the
Enterprise. 2008. Electronic document.
http://software.intel.com/en-us/articles/the-advantages-of-using-virtualization-
technology-in-the-enterprise/ (last accessed on 2009-12-11)

[V10] Daniels, Jeff. Server Virtualization Architecture and Implementation. ACM
Crossroads, Fall 2009 / Vol. 16, No. 1

[V11] Mergen, Mark F.; Uhlig, Volkmar; Krieger, Orran; Xenidis Jimi. Virtualization
for High-Performance Computing. SIGOPS Oper. Syst. Rev. 40, 2 (Apr. 2006),
8-11. DOI= http://doi.acm.org/10.1145/1131322.1131328

[V12] Fong, Liana; Steinder, Malgorzata. Duality of Virtualization: Simplification and
Complexity. SIGOPS Oper. Syst. Rev. 42, 1 (Jan. 2008), 96-97.
DOI= http://doi.acm.org/10.1145/1341312.1341330

 Diploma Thesis

B-6 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

[V13] Childers, Bill. Virtualization Shootout: VMware Server vs. VirtualBox vs. KVM.
Linux J. 2009, 187 (Nov. 2009), 12

[V14] Li, Peng. Selecting and using virtualization solutions: our experiences with
VMware and VirtualBox. J. Comput. Small Coll. 25, 3 (Jan. 2010), 11-17

[V15] Miller, Karissa; Pegah, Mahmoud. Virtualization: virtually at the desktop. In
Proceedings of the 35th Annual ACM SIGUCCS Conference on User Services
(Orlando, Florida, USA, October 07 - 10, 2007). SIGUCCS '07. ACM, New York,
NY, 255-260. DOI= http://doi.acm.org/10.1145/1294046.1294107

[V16] Crosby, Simon; Brown, David. The Virtualization Reality. Queue 4, 10 (Dec.
2006), 34-41. DOI= http://doi.acm.org/10.1145/1189276.1189289

[V17] Apparao, Padma; Iyer, Ravi; Zhang, Xiaomin; Newell, Don; Adelmeyer, Tom.
Characterization & Analysis of a Server Consolidation Benchmark. In
Proceedings of the Fourth ACM SIGPLAN/SIGOPS international Conference on
Virtual Execution Environments (Seattle, WA, USA, March 05 - 07, 2008). VEE
'08. ACM, New York, NY, 21-30.
DOI= http://doi.acm.org/10.1145/1346256.1346260

[V18] Matthews, Jeanna Neefe; Hu, Wenjin; Hapuarachchi, Madhujith; Deshane,
Todd; Dimatos, Demetrios; Hamilton, Gary; McCabe, Michael; Owens,
James. Quantifying the Performance Isolation Properties of Virtualization
Systems. In Proceedings of the 2007 Workshop on Experimental Computer
Science (San Diego, California, June 13 - 14, 2007). ExpCS '07. ACM, New York,
NY, 6. DOI= http://doi.acm.org/10.1145/1281700.1281706

[V19] Tanaka, Tsuyoshi; Tarui, Toshiaki; Naono, Ken. Investigating Suitability for
Server Virtualization using Business Application Benchmarks. In Proceedings of
the 3rd international Workshop on Virtualization Technologies in Distributed
Computing (Barcelona, Spain, June 15 - 15, 2009). VTDC '09. ACM, New York,
NY, 43-50. DOI= http://doi.acm.org/10.1145/1555336.1555344

[V20] Soltesz, Stephen; Pötzl, Herbert; Fiuczynski, Marc E.; Bavier, Andy;
Peterson, Larry. Container-based Operating System Virtualization: A Scalable,
High-performance Alternative to Hypervisors. SIGOPS Oper. Syst. Rev. 41, 3
(Jun. 2007), 275-287. DOI= http://doi.acm.org/10.1145/1272998.1273025

[V21] Drepper, Ulrich. The Cost of Virtualization. 2008. Queue 6, 1 (Jan. 2008), 28-35.
DOI= http://doi.acm.org/10.1145/1348583.1348591

[V22] Kaiser, Robert. Alternatives for Scheduling Virtual Machines in Real-Time
Embedded Systems. In Proceedings of the 1st Workshop on Isolation and
integration in Embedded Systems (Glasgow, Scotland, April 01 - 01, 2008). M.
Engel and O. Spinczyk, Eds. IIES '08. ACM, New York, NY, 5-10.
DOI= http://doi.acm.org/10.1145/1435458.1435460

[V23] Chadha, Vineet; Figueiredo, Renato J.; Illikkal, Ramesh; Iyer, Ravi; Moses,
Jaideep; Newell, Donald. I/O Processing in a Virtualized Platform: A Simulation-
Driven Approach. In Proceedings of the 3rd international Conference on Virtual
Execution Environments (San Diego, California, USA, June 13 - 15, 2007). VEE
'07. ACM, New York, NY, 116-125.
DOI= http://doi.acm.org/10.1145/1254810.1254827

Diploma Thesis

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 B-7

[V24] Dong, Yaozu; Dai, Jinquan; Huang, Zhiteng; Guan, Haibing; Tian, Kevin;
Jiang, Yunhong. Towards High-Quality I/O Virtualization. In Proceedings of
SYSTOR 2009: the Israeli Experimental Systems Conference (Haifa, Israel).
SYSTOR '09. ACM, New York, NY, 1-8.
DOI= http://doi.acm.org/10.1145/1534530.1534547

[V25] Kumar Ram, Kaushik; Santos, Jose Renato; Turner, Yoshio; Cox, Alan L.;
Rixner, Scott. Achieving 10 Gb/s using Safe and Transparent Network Interface
Virtualization. In Proceedings of the 2009 ACM SIGPLAN/SIGOPS international
Conference on Virtual Execution Environments (Washington, DC, USA, March 11
- 13, 2009). VEE '09. ACM, New York, NY, 61-70.
DOI= http://doi.acm.org/10.1145/1508293.1508303

[V26] Kim, Hwanju; Lim, Hyeontaek; Jeong, Jinkyu; Jo, Heeseung; Lee, Joowon.
Task-aware Virtual Machine Scheduling for I/O Performance. In Proceedings of
the 2009 ACM SIGPLAN/SIGOPS international Conference on Virtual Execution
Environments (Washington, DC, USA, March 11 - 13, 2009). VEE '09. ACM, New
York, NY, 101-110. DOI= http://doi.acm.org/10.1145/1508293.1508308

[V27] Weng, Chuliang; Wang, Zhigang; Li, Minglu; Lu, Xinda. The Hybrid
Scheduling Framework for Virtual Machine Systems. In Proceedings of the 2009
ACM SIGPLAN/SIGOPS international Conference on Virtual Execution
Environments (Washington, DC, USA, March 11 - 13, 2009). VEE '09. ACM, New
York, NY, 111-120. DOI= http://doi.acm.org/10.1145/1508293.1508309

[V28] Liao, Guangdeng; Guo, Danhua; Bhuyan, Laxmi; King, Steve R. Software
Techniques to Improve Virtualized I/O Performance on Multi-Core Systems. In
Proceedings of the 4th ACM/IEEE Symposium on Architectures For Networking
and Communications Systems (San Jose, California, November 06 - 07, 2008).
ANCS '08. ACM, New York, NY, 161-170.
DOI= http://doi.acm.org/10.1145/1477942.1477971

[V29] Liu, Jiuxing; Abali, Bulent. Virtualization Polling Engine (VPE): Using Dedicated
CPU Cores to Accelerate I/O Virtualization. In Proceedings of the 23rd
international Conference on Supercomputing (Yorktown Heights, NY, USA, June
08 - 12, 2009). ICS '09. ACM, New York, NY, 225-234.
DOI= http://doi.acm.org/10.1145/1542275.1542309

[V30] Raj, Himanshu; Schwan, Karsten. High Performance and Scalable I/O
Virtualization via Self-Virtualized Devices. In Proceedings of the 16th international
Symposium on High Performance Distributed Computing (Monterey, California,
USA, June 25 - 29, 2007). HPDC '07. ACM, New York, NY, 179-188.
DOI= http://doi.acm.org/10.1145/1272366.1272390

[V31] Wells, Philip M.; Chakraborty, Koushik; Sohi, Gurindar S. Dynamic
Heterogeneity and the Need for Multicore Virtualization. SIGOPS Oper. Syst.
Rev. 43, 2 (Apr. 2009), 5-14. DOI= http://doi.acm.org/10.1145/1531793.1531797

[V32] Huang, Lan; Peng, Gang; Chiueh, Tzi-cker. Multi-Dimensional Storage
Virtualization. SIGMETRICS Perform. Eval. Rev. 32, 1 (Jun. 2004), 14-24.
DOI= http://doi.acm.org/10.1145/1012888.1005692

[V33] Ongaro, Diego; Cox, Alan L.; Rixner, Scott. Scheduling I/O in Virtual Machine
Monitors. In Proceedings of the Fourth ACM SIGPLAN/SIGOPS international
Conference on Virtual Execution Environments (Seattle, WA, USA, March 05 -
07, 2008). VEE '08. ACM, New York, NY, 1-10.
DOI= http://doi.acm.org/10.1145/1346256.1346258

 Diploma Thesis

B-8 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

[V34] Gernot Heiser. The Role of Virtualization in Embedded Systems. In Proceedings
of the 1st Workshop on Isolation and integration in Embedded Systems
(Glasgow, Scotland, April 01 - 01, 2008). M. Engel and O. Spinczyk, Eds. IIES
'08. ACM, New York, NY, 11-16.
DOI= http://doi.acm.org/10.1145/1435458.1435461

[V35] Seelam, Seetharami R.; Teller, Patricia J. Virtual I/O Scheduler: A Scheduler of
Schedulers for Performance Virtualization. In Proceedings of the 3rd international
Conference on Virtual Execution Environments (San Diego, California, USA, June
13 - 15, 2007). VEE '07. ACM, New York, NY, 105-115.
DOI= http://doi.acm.org/10.1145/1254810.1254826

[V36] Rusty Russell. virtio: Towards a De-Facto Standard For Virtual I/O Devices.
SIGOPS Oper. Syst. Rev. 42, 5 (Jul. 2008), 95-103.
DOI= http://doi.acm.org/10.1145/1400097.1400108

[V37] Zhang, Jianyong; Sivasubramaniam, Anand; Wang, Qian; Riska, Alma;
Riedel, Erik. Storage Performance Virtualization via Throughput and Latency
Control. Trans. Storage 2, 3 (Aug. 2006), 283-308.
DOI= http://doi.acm.org/10.1145/1168910.1168913

[V38] Ray, Edward; Schultz, Eugene. Virtualization Security. In Proceedings of the 5th
Annual Workshop on Cyber Security and information intelligence Research:
Cyber Security and information intelligence Challenges and Strategies (Oak
Ridge, Tennessee, April 13 - 15, 2009). F. Sheldon, G. Peterson, A. Krings, R.
Abercrombie, and A. Mili, Eds. CSIIRW '09. ACM, New York, NY, 1-5.
DOI= http://doi.acm.org/10.1145/1558607.1558655

[V39] Burdonov, Igor; Kosachev, Alexander; Iakovenko, Pavel. Virtualization-based
separation of privilege: working with sensitive data in untrusted environment. In
Proceedings of the 1st Eurosys Workshop on Virtualization Technology For
Dependable Systems (Nuremberg, Germany, March 31 - 31, 2009). VDTS '09.
ACM, New York, NY, 1-6. DOI= http://doi.acm.org/10.1145/1518684.1518685

[V40] Huang, Yih; Stavrou, Angelos; Ghosh, Anup K.; Jajodia, Sushil. Efficiently
Tracking Application Interactions using Lightweight Virtualization. In Proceedings
of the 1st ACM Workshop on Virtual Machine Security (Alexandria, Virginia, USA,
October 27 - 27, 2008). VMSec '08. ACM, New York, NY, 19-28.
DOI= http://doi.acm.org/10.1145/1456482.1456486

[V41] Sharif, Monirul; Lee, Wenke; Cui, Weidong; Lanzi, Andrea. Secure In-VM
Monitoring Using Hardware Virtualization. In Proceedings of the 16th ACM
Conference on Computer and Communications Security (Chicago, Illinois, USA,
November 09 - 13, 2009). CCS '09. ACM, New York, NY, 477-487.
DOI= http://doi.acm.org/10.1145/1653662.1653720

[V42] Chen, Haibo; Chen, Rong; Zhang, Fengzhe; Zang, Binyu; Yew, Pen-Chung.
Live Updating Operating Systems Using Virtualization. In Proceedings of the 2nd
international Conference on Virtual Execution Environments (Ottawa, Ontario,
Canada, June 14 - 16, 2006). VEE '06. ACM, New York, NY, 35-44.
DOI= http://doi.acm.org/10.1145/1134760.1134767

[V43] Laarouchi, Youssef; Deswarte, Yves; Powell, David; Arlat, Jean; De Nadai,
Eric. Enhancing Dependability in Avionics Using Virtualization. In Proceedings of
the 1st Eurosys Workshop on Virtualization Technology For Dependable Systems
(Nuremberg, Germany, March 31 - 31, 2009). VDTS '09. ACM, New York, NY,
13-17. DOI= http://doi.acm.org/10.1145/1518684.1518687

Diploma Thesis

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 B-9

[V44] Official website. WineHQ. http://www.winehq.org/ (last accessed on 2009-12-11)
[V45] Official website. Biallas, Sebastian. PearPC. http://pearpc.sourceforge.net/ (last

accessed on 2009-12-04)

[V46] Official website. VirtualLogix. http://www.virtuallogix.com/ (last accessed on
2010-03-04)

[V47] Official website. Real-Time Systems. http://www.real-time-systems.com/ (last
accessed on 2010-03-04)

[V48] KUKA RTOS. Virtualizing Real-Time Operating Systems with Windows.
Electronic document. http://virtualization.kuka-rtos.com/ (last accessed on
2010-03-04)

[V49] National Instruments. NI Real-Time Hypervisor Architecture and Performance
Details. 2009. Electronic document.
http://zone.ni.com/devzone/cda/tut/p/id/9629 (last accessed on 2010-03-04)

[V50] Tutorial. Introduction to Dynamic Recompilation. Electronic document.
http://web.archive.org/web/20051018182930/www.zenogais.net/Projects/Tutorials
/Dynamic+Recompiler.html (last accessed on 2009-12-08)

[V51] Tutorial. Toal, Graham. An Emulator Writer's HOWTO for Static Binary
Translation. http://www.gtoal.com/sbt/ (last accessed on 2009-12-09)

KVM
[VK1] Fedora. Getting started with virtualization. Electronic document.

http://fedoraproject.org/wiki/Virtualization_Quick_Start (last accessed on
2010-01-26)

[VK2] Habib, Irfan. Virtualization with KVM. Linux J. 2008, 166 (Feb. 2008), 8
[VK3] Official website. KVM. http://www.linux-kvm.org/ (last accessed on 2010-01-28)
[VK4] Official website. QEMU. http://wiki.qemu.org/ (last accessed on 2010-03-03)
[VK5] Official website. The virtualization API. http://libvirt.org/ (last accessed on

2010-01-28)
[VK6] Shah, Amit. Kernel-based virtualization with KVM. In Linux Magazine, Issue #86,

January 2008.
[VK7] KVM. How to assign devices with VT-d in KVM. Electronic document.

http://www.linux-kvm.org/page/How_to_assign_devices_with_VT-d_in_KVM (last
accessed on 2010-03-03)

Microsoft
[VM1] Microsoft. Microsoft Virtual Server 2005 R2 SP1 – Enterprise Edition. Electronic

document.
http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=bc4
9c7c8-4840-4e67-8dc4-1e6e218acce4 (last accessed on 2010-03-04)

[VM2] Microsoft. Virtual Server 2005 R2 SP1 Download Frequently Asked Questions.
2007. Electronic document.
http://technet.microsoft.com/en-us/virtualserver/bb676680.aspx (last accessed on
2010-03-04)

 Diploma Thesis

B-10 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

[VM3] Howard, John. Virtual Server 2005 R2 SP1 Beta 1 download link and availability
details. 2006. Electronic document.
http://blogs.technet.com/jhoward/archive/2006/04/28/426703.aspx (last accessed
on 2010-03-04)

Linux VServer
[VS1] Official website. Linux-VServer. http://linux-vserver.org/ (last accessed on

2010-03-04)
[VS2] Campbell, C. Installation on Fedora. Electronic document.

http://linux-vserver.org/Installation_on_Fedora (last accessed on 2010-03-04)

VMware
[VV1] VMware. VMware Company Overview. 2009. Electronic document.

http://www.vmware.com/files/pdf/VMware-Company-Overview-DS-EN.pdf (last
accessed on 2010-03-02)

[VV2] VMware. VMware Infrastructure. Electronic document.
http://www.vmware.com/products/vi/overview.html (last accessed on 2010-02-22)

[VV3] VMware. VMware ESX and VMware ESXi. Electronic document.
http://www.vmware.com/files/pdf/VMware-ESX-and-VMware-ESXi-DS-EN.pdf
(last accessed on 2010-02-28)

[VV4] VMware. VMware Management Assistant Guide. (vSphere 4.0). 34 p. Electronic
document. EN-000116-00

[VV5] VMware. VMware Virtual SMP (product datasheet). Electronic document.
http://www.vmware.com/pdf/vsmp_datasheet.pdf (last accessed on 2010-03-02)

[VV6] VMware. VMware Server 2: A Risk-Free Way to Get Started with Virtualization.
2009. Electronic document.
http://www.vmware.com/files/pdf/VMware-Server-2-DS-EN.pdf (last accessed on
2010-03-02)

[VV7] Troy, Ryan; Helmke, Matthew. VMware Cookbook. O'Reilly Media, 2009. 304 p.
978-0-596-15725-8

[VV8] Larisch, Dirk. Praxisbuch VMware Server – Das praxisorientierte
Nachschlagewerk zu VMware Server. Wuppertal, Germany: Carl Hanser Verlag
München Wien, 2007. 498 p. 978-3-446-40901-9

[VV9] VMware. VMware Workstation 7: The Gold Standard in Desktop Virtualization.
2009. Electronic document.
http://www.vmware.com/files/pdf/VMware-Workstation-7-DS-EN.pdf (last
accessed on 2010-03-02)

[VV10] VMware. Timekeeping in VMware Virtual Machines. 2008. Electronic document.
http://www.vmware.com/pdf/vmware_timekeeping.pdf (last accessed on
2009-12-17)

[VV11] VMware. VMware ESXi 4.0 Update 1 Release Notes. 2009. Electronic document.
http://www.vmware.com/support/vsphere4/doc/vsp_esxi40_u1_rel_notes.html
(last accessed on 2010-01-04)

Diploma Thesis

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 B-11

[VV12] VMware. Performance of VMware VMI. 2008. Electronic document.
http://www.vmware.com/pdf/VMware_VMI_performance.pdf (last accessed on
2010-01-05)

[VV13] VMware. Performance Evaluation of Intel EPT Hardware Assist. 2009. Electronic
document. http://www.vmware.com/pdf/Perf_ESX_Intel-EPT-eval.pdf (last
accessed on 2010-01-14)

[VV14] VMware. Performance Evaluation of AMD RVI Hardware Assist. 2009. Electronic
document. http://www.vmware.com/pdf/RVI_performance.pdf (last accessed on
2010-01-14)

[VV15] VMware. VMware Compatibility Guide. Electronic document.
http://www.vmware.com/resources/compatibility/search.php (last accessed on
2010-01-05)

[VV16] VMware. Enabling Virtual Machine Interface (VMI) in a Linux kernel and in ESX
3.5. 2009. Electronic document. http://kb.vmware.com/kb/1003644 (last accessed
on 2010-01-14)

[VV17] VMware. Update: Support for guest OS paravirtualization using VMware VMI to
be retired from new products in 2010-2011. 2009. Electronic document.
http://blogs.vmware.com/guestosguide/2009/09/vmi-retirement.html (last
accessed on 2010-01-14)

[VV18] VMware. Migrating VMI-enabled virtual machines to platforms that do not support
VMI. 2009. Electronic document. http://kb.vmware.com/kb/1013842 (last
accessed on 2010-01-14)

[VV19] VMware. vSphere Basic System Administration (Update 1, ESX 4.0, ESXi 4.0,
vCenter Server 4.0). 2009. 368 p. Electronic document. EN-000260-00

[VV20] VMware. Using esxtop to troubleshoot performance problems. 2004. 7 p.
Electronic document. ESX-PFP-Q404-003

[VV21] VMware. VMware vSphere 4: The CPU Scheduler in VMware ESX 4. 2009. 21 p.
Electronic document.
http://www.vmware.com/files/pdf/perf-vsphere-cpu_scheduler.pdf (last accessed
on 2010-01-24)

[VV22] Official website section. Installing VMware Tools.
http://www.vmware.com/support/ws55/doc/new_guest_tools_ws.html (last
accessed on 2009-12-09)

[VV23] VMware. VMware Tools for Linux Guests. Electronic document.
http://www.vmware.com/support/ws55/doc/ws_newguest_tools_linux.html (last
accessed on 2010-02-11)

[VV24] VMware. Configuring Disks to use VMware Paravirtual SCSI adapters. Electronic
document. http://kb.vmware.com/kb/1010398 (last accessed on 2010-02-11)

[VV25] VMware. Configuration Examples and Troubleshooting for VMDirectPath. 2009. 5
p. Electronic document. EN-000217-00

[VV26] VMware. Configuring VMDirectPath I/O pass-through devices on an ESX host.
Electronic document. http://kb.vmware.com/kb/1010789 (last accessed on 2010-
02-18)

[VV27] VMware. Choosing a network adapter for your virtual machine. Electronic
document. http://kb.vmware.com/kb/1001805 (last accessed on 2010-03-15)

 Diploma Thesis

B-12 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

[VV28] Petri, Daniel. Traffic Shaping With VMware ESX Server. 2009. Electronic
document. http://www.petri.co.il/traffic_shaping_with_vmware_esx_server.htm
(last accessed on 2010-03-16)

[VV29] HP. HP and VMware: Virtualization to consolidate server resources for maximal
efficiency. 2003. Electronic document. 5982-0616EN

[VV30] VMware. VMware and Intel Capital Announce Investment. 2007. Electronic
document. http://www.vmware.com/company/news/releases/vmware_intel.html
(last accessed on 2010-03-02)

Xen
[VX1] Official website section. Xen Hypervisor. http://xen.org/products/xenhyp.html (last

accessed on 2010-03-03)
[VX2] Barham, Paul; Dragovic, Boris; Fraser, Keir; Hand, Steven; Harris, Tim; Ho,

Alex; Neugebauer, Rolf; Pratt, Ian; Warfield Andrew. Xen and the Art of
Virtualization. New York, USA: ACM, 2003. Proceedings of the nineteenth ACM
symposium on Operating systems principles, 164-177. 1-58113-757-5

[VX3] Radonic, Andrej; Meyer, Frank. Xen 3. Poing, Germany: Franzis Verlag, 2006.
439 p. 978-3-7723-7899-7

[VX4] XenSource. Xen User's Manual: Xen v3.0. 2005. Electronic document.
http://tx.downloads.xensource.com/downloads/docs/user/user.html (last accessed
on 2010-03-03)

[VX5] Magenheimer, Dan. Memory Overcommit… without the commitment. 2008. Xen
Summit 2008. Electronic document.
http://wiki.xensource.com/xenwiki/Open_Topics_For_Discussion?action=
AttachFile&do=get&target=Memory+Overcommit.pdf (last accessed on
2009-12-10)

[VX6] Dong, Yaozu; Li, Shaofan; Mallick, Asit; Nakajima, Jun; Tian, Kun; Xu,
Xuefei; Yang, Fred; Yu, Wilfred. Extending Xen with Intel Virtualization
Technology. 2006. ISSN 1535-864X

[VX7] Mathai, Jacob. Xen Scheduling. 2007. Electronic document.
http://wiki.xensource.com/xenwiki/Scheduling (last accessed on 2010-03-03)

[VX8] XenSource. Xen FAQ. 2010. Electronic document.
http://wiki.xensource.com/xenwiki/XenFaq (last accessed on 2010-03-03)

[VX9] Xu, Herbert. TCP/Generic Segmentation Offload and its application in Xen.
Electronic document. http://www.xen.org/files/summit_3/rdd-tso-xen.pdf (last
accessed on 2010-03-03)

[VX10] Perilli, Alessandro. Red Hat adopts KVM: what happens to Xen now? 2008.
Electronic document.
http://www.virtualization.info/2008/06/red-hat-adopts-kvm-what-happens-to-
xen.html (last accessed on 2010-03-03)

OpenVZ
[VZ1] Kolyshkin, Kirill. Virtualization in Linux. 2006. Electronic document.

http://download.openvz.org/doc/openvz-intro.pdf (last accessed on 2009-12-10)

Diploma Thesis

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 B-13

[VZ2] SWsoft, Inc. OpenVZ User's Guide. Version 2.7.0-8. 2005. Electronic document.
http://download.openvz.org/doc/OpenVZ-Users-Guide.pdf (last accessed on
2009-12-10)

[VZ3] Official website. OpenVZ Wiki. http://wiki.openvz.org/ (last accessed on
2010-03-04)

[VZ4] OpenVZ. Features. 2010. Electronic document.
http://wiki.openvz.org/Features (last accessed on 2010-03-04)

Diploma Thesis

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 C-1

C hidden section ID

Glossary
ACPI Advanced Configuration and Power Interface

AIDA-NG Aeronautical Integrated Data Exchange Agent – Next Generation

AFTN Aeronautical Fixed Telecommunication Network

AIM Aeronautical Information Management

AMHS ATS Message Handling System

API Application Programming Interface

APIC Advanced Programmable Interrupt Controller

AS Application Server

ASM Air Space Management

ATC Air Traffic Control

ATFM Air Traffic Flow Management

ATM Air Traffic Management

ATN Aeronautical Telecommunication Network

ATS Air Traffic Services

BCET Best Case Execution Time

CADAS Comsoft's Aeronautical Data Access System

CCMS Comsoft Configuration Management Suite

CFQ Completely Fair Queuing

CLNP Connectionless Network Protocol

CMOS Complementary Metal Oxide Semiconductor

CNMS Comsoft Network Management System

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CSS Core Sub-System

DB Database

DMA Direct Memory Access

DPM Distributed Power Management (VMware)

DRS Distributed Resource Scheduler (VMware)

EFG E-Mail/Fax Gateway

ELAN External LAN

EPT Extended Page Table

FPL Flight Plan

 Diploma Thesis

C-2 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

HDD Hard Disk Drive

HTTP Hypertext Transfer Protocol

ICAO International Civil Aviation Organization

IDE Integrated Drive Electronics

ILAN Internal LAN

IMS Information Management & Services

I/O Input/Output

IP Internet Protocol

iSCSI Internet SCSI

KVM Kernel-based Virtual Machine

LA Logical Address

LAN Local Area Network

MH Message Handler

MMU Memory Management Unit

MTBF Mean Time Between Failures

MTTR Mean Time To Repair

NIC Network Interface Card

NOTAM Notification To Airmen

NTP Network Time Protocol

NUMA Non Uniform Memory Access

OPMET Operational Meteorological

OS Operating System

OSS Operating Sub-System

OWP Operator Working Position

PAE Physical Address Extension

PCI Peripheral Component Interconnect

PIT Programmable Interval Timer

PML Pending Message List

PXE Pre-boot Execution Environment

RAID Redundant Array of Independent Disks

RAM Random Access Memory

RPC Remote Procedure Call

RPM RPM Package Manager

RSS Recording Sub-System

Diploma Thesis

© KIT and COMSOFT Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 C-3

RTC Real Time Clock

RVI Rapid Virtualization Indexing (AMD)

SAS Serial Attached SCSI

SCSI Small Computer System Interface

SMP Symmetric Multiprocessing

SNL Serial Network Link

SPOF Single Point of Failure

SRS System Requirements Specification

SWAL Software Assurance Level

TCP Transmission Control Protocol

TLB Translation Look-aside Buffer

TS Terminal Server

TSC Time Stamp Counter

TSO TCP Segmentation Offloading

UA User Agent

UDP User Datagram Protocol

UPS Uninterrupted Power Supply

VE Virtual Environment

VLAN Virtual LAN

VM Virtual Machine

VMFS Virtual Machine File System

VMI Virtual Machine Interface

VMM Virtual Machine Manager

VMX Virtual Machine Extension

VNC Virtual Network Computing

VPS Virtual Private Server

VT Virtualization Technology (Intel)

VT-d Virtualization Technology for Directed I/O (Intel)

VT-x Virtualization Technology on the x86 platform (Intel)

WAN Wide Area Network

WCET Worst Case Execution Time

WS Web Server

 Diploma Thesis

C-4 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT

End of document

