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Abstract (German) 
Die Firma Comsoft GmbH beliefert ihre Kunden aus dem Bereich Air Traffic Management mit 
Komplettsystemen. Ein System ist in diesem Fall ein Set von mehreren weichen 
Echtzeitsanwendungen, die auf einem Set von Hardware Plattformen laufen. Sie brauchte 
eine Lösung für Serverkonsolidierung mit der Möglichkeit, die Ressourcen (CPU, Festplatte, 
usw.) gleichmäßig zwischen den Anwendungen zu verteilen, und mit einer garantierten 
Beschränkung der von einer Anwendung zur Erreichung einer Ressource gebrauchten Zeit. 
Comsoft bestellte eine auf Servervirtualisierung basierende Studie.  

Wir haben die Anforderungen an dieser Lösung beschrieben und einen Entwurf 
vorgeschlagen. Wir haben eine Reihe von Indikatoren und Tests definiert und haben sie 
verwendet, um die Vorhersagbarkeit, die Leistung und die Isolierungskapazität existierender 
Virtualisierungsansätze genau zu bewerten. Wir haben einige Produkte ausgewählt, die die 
Anforderungen von Comsoft erfüllen könnten, und haben unsere neulich definierte Methodik 
verwendet, um ihre Fähigkeit oder Unfähigkeit bei der Unterstützung und Isolierung der 
Echtzeitsanwendungen Comsofts zu beweisen und damit die Auflösung des vorgelegten 
Problems auch zu beweisen. Die Tauglichkeit von VMware ESXi wurde bewiesen.  

Wir haben eine auf ESXi basierende Lösung umgesetzt und geprüft, um die Erfüllung der 
übrigen Anforderungen zu bestätigen.  

Gewerblich gesehen ist die Besonderheit dieser Studie die Sicherheitskritizität des Projekts. 
Wissenschaftlich gesehen ist diese Arbeit unseres Wissens die erste Definition einer 
Methodik zur Evaluierung existierender Virtualisierungsansätze, die sich so eingehend mit 
Vorhersagbarkeit und Echtzeit bei allen virtuellen Ressourcen beschäftigt.  

 

Abstract (English) 
The Comsoft GmbH Company supplies their customers with full systems for Air Traffic 
Management. Such a system is actually a collection of several soft real-time applications 
running on a set of hardware platforms. The company needed a solution for server 
consolidation with the possibility to equally distribute resources (CPU, hard-disk, etc.) among 
their applications and the guarantee that the time needed for an application to get a resource 
is limited. They ordered a study based on server virtualization.  

We described the requirements for such a solution and proposed a design. We defined a 
series of indicators and tests, and used them to precisely evaluate predictability, 
performance and isolation of existing virtualization products. We selected virtualization 
products that may fulfil Comsoft's requirements and used our newly defined methodology to 
prove their ability or inability to support and isolate Comsoft's soft real-time applications, and 
therefore to solve the submitted problem. The suitability of VMware ESXi has been proved.  

We implemented a solution based on ESXi and tested it to confirm that the remaining 
requirements are met.  

From an industrial point of view, the particularity of this study is its safety-critical nature. From 
a scientific point of view, this is, to our knowledge, the first definition of a methodology for 
evaluating existing virtualization products focusing so precisely on predictability and real-time 
for all virtualized resources.  
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1 Introduction 

1.1 Motivation 
The Comsoft GmbH Company [A1] delivers solutions for Air Traffic Management1 (ATM) to 
its customers. Such a solution is actually a collection of several full products (also called 
systems), each of them being a collection of software processes (also called subsystems) 
running on a set of hardware platforms (computers).  

Note: One instance of a subsystem can only run on one platform.  

 

Figure 1-1: Example of a solution 

For obvious commercial reasons, Comsoft would like to be able to reduce the amount of 
platforms. In this process, following elements have to be taken into account:  

• The subsystems are executed on different and dedicated hardware platforms. This 
isolation reduces drastically the amount of (unexpected) interaction between them, thus 
helping to guarantee that each of them (and therefore the whole solution) fulfils the 
performance requirements (see chapter 2.3 Requirements). The suppression of this 
isolation often leads to a violation of these requirements, since the different 
subsystems compete for the access to the same hardware components2. 

• In the context of ATM, safety (protection against harm and damage) is an important 
notion. The performance requirements are actually just a subset of the safety 
requirements. In this context, a few tests are not sufficient to validate a solution and it 
has to be demonstrated that the requirements are met.  

                                                 
1 Air Traffic Control (ATC), Air Traffic Flow Management (ATFM), Air Space Management (ASM), Air 
Safety… 
2 Not only the processor, but also the memory and all I/O components (hard disk drive, network 
peripherals, …). 
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• One important safety requirement is to avoid a single point of failure1 (SPOF). In 
consequence each component of the system exists at least twice, leading to this type 
of solution:  

 
Figure 1-2: Previous solution without SPOF 

Note: The different instances of the same subsystem are aware of each other and work 
together by means of clustering mechanisms, thus increasing the availability2 of the solution.  

For now, Comsoft doesn't sell any solution where several substantial systems share the 
same platforms for the following reasons:  

• The proof that their software applications fulfil the safety requirements is so far made 
only in cases where each application runs on a dedicated platform and is considered 
as a full independent product. 

• Some tests were performed internally, where several applications were run on the 
same platform (without virtualization layer), but were not always satisfactory. (Some 
examples are given in chapter 2.1.1 Comsoft products.) 

                                                 
1 Component of a system which, if it fails, prevents the whole system from working. [N1] 
2 The availability of a system during a given time interval is the probability that the system is able to 
deliver the service(s) it is designed for. For instance an availability of 99% means that the system will 
probably not work as expected (unavailability during a planned maintenance process doesn't count) 
3.65 days a year. [H1] 
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However making several systems share the same platforms is the goal of this diploma thesis. 
A solution should then have the following structure:  

 
Figure 1-3: Previous solution with the least possible platforms (still without SPOF) 

Some precisions concerning the current Comsoft's current solutions have to be made at this 
point: 

• Each hardware platform is an HP Industrial Server of the HP ProLiant DL series or a 
successor. Since these servers have proven their worth after years of utilization and 
HP guaranties a support all over the world, they shall still be deployed. 

• The operating system is a Red Hat or Fedora Linux distribution. Comsoft shall keep 
using them, because a safety assessment was already performed for those 
distributions. 

• The systems are AIDA-NG, CADAS-ATS and CADAS-IMS (see chapter 2.1.1 Comsoft 
products), each of their software parts consisting of several million lines of code, as 
well as some smaller complementary products such as an X.500 directory server for 
instance. 

• Those systems are restricted by time constraints and can be, as we will see further on 
in this document (see chapter 2.1.1 Comsoft products), considered as soft real-time 
systems. 

1.2 Objective 
As mentioned, trying to deploy several subsystems on the same hardware platform often 
leads to a failure to fulfil the safety requirements (see chapter 2.3 Requirements). For 
instance CADAS-ATS performs a database replication, grabbing the CPU and RAID-I/O in 
such a manner that AIDA-NG gets temporarily blocked and the message handling's latency 
exceeds a threshold.  

Setting up an adapted process scheduling policy is therefore not sufficient. Memory 
management and I/O-access must be studied, and mutual blocking of applications must be 
temporally limited. 
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It seems obvious, that the access from applications to common resources such as CPU, 
RAM and I/O devices could be easily controlled by virtualization techniques (see chapter 
2.1.2 Virtualization). Instead of deploying subsystems on real platforms, it would be possible 
deploy them on virtual platforms (representing a fraction of a real platform). No modification 
on the subsystems (i.e. no software modification) would be needed: 

 
Figure 1-4: Previous solution with virtualization (still without SPOF) 

Note: There is still no single point of failure in the figure 1-4, since there is no subsystem 
whose instances are on the same real platform.  

1.3 Tasks 
A virtualization software fulfilling the safety and commercial requirements has to be 
deployed. As a result, the tasks to be performed in this diploma thesis are as follows:  

• The safety and commercial requirements have to be clearly specified and justified. 

• These requirements have to be completed by other requirements resulting from 
existing applications and components' characteristics (compatibility of virtualization 
software with hardware and operating system, with clustering mechanisms, etc.). 

• Existing virtualization techniques and corresponding implementations shall be 
evaluated according to the requirements and their validity shall be tested.  

• The target architecture has to be designed for the found valid techniques and 
implementations.  
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• A system corresponding to this architecture shall be implemented. This system should 
be suitable for an operational deployment. This means for example that no hardware 
other than the one usually needed can be used.  

• Test plans derived from the previous requirements must be specified and executed. 
The traceability from requirement to test plan must be clear.  

• In case a technical argumentation in addition to test plans is necessary or meaningful 
to prove the fulfilment of a requirement, this argumentation shall be done.  

• The fulfilment (or non-fulfilment) of the requirements shall also be examined with an 
overall view.  

• If residual problems are found in the overall view, the tasks to solve those problems 
shall be specified.  

1.4 Structure of the Thesis 
Chapter 2 first gives technical explanations on Comsoft products, virtualization and real-time 
systems, needed to understand the next parts of this document. It then presents the research 
work related to our study and the requirements for the solution we propose.  

We expose in chapter 3 the design of our solution and evaluate virtualization products in 
order to implement it. This evaluation is the main part of our study.  

We explain our implementation in chapter 4. Chapter 5 describes the verification and the 
validation of this implementation.  

Finally, chapter 6 sums up the results achieved while working on this thesis and points out 
future work and perspectives. 
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2 Background 

2.1 Technical Background 
This chapter gives technical explanations needed to understand the rest of this document.  

2.1.1 Comsoft products 

This chapter describes the Comsoft products (also called systems, see chapter 1.1 
Motivation) concerned by this project.  

AIDA-NG 
AIDA-NG stands for Aeronautical Integrated Data Exchange Agent – Next Generation. [A5] 
This product is a router for aeronautical messages (flight plans, weather reports, etc.) in 
ground data networks. It supports most communication protocols of all layers used all over 
the world for aeronautical telecommunication and is able to convert messages from one 
standard to another, thus acting as a gateway too.  

The two main aeronautical interconnection networks (covering the Earth) are:  

• AFTN: Aeronautical Fixed Telecommunication Network. It involves AFTN messages 
and AFTN addresses. It is an "old" standard (1950s).  

• AMHS: ATS (Air Traffic Services) Message Handling System, with so called AMHS 
messages and AMHS addresses.  It is a newer standard (1990s) aiming to replace 
AFTN.  

Their lines are very heterogeneous. They are based on a lot of different protocol stacks 
(X.400 over IP, X.400 over X.25, TCP/IP, UDP/IP, etc.).  
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Figure 2-1: Architecture of AIDA-NG 

This system is composed of several sub-systems:  

• Core Sub-Systems (CSS, represented as "Core Server" on figure 2-1): this sub-system 
routes the messages coming from one communication partner to another, eventually 
performing conversions, based on routing rules. There are two instances of CSS (CSS 
A and CSS B), running on different hardware platforms to ensure redundancy.  

• Recording Sub-System (RSS, represented as "Recording Server" on figure 2-1): this 
sub-system records in a database all messages going through the system and all 
events happening in the system. Every airport has the legal obligation to keep a copy 
of all messages during a time between 30 and 90 days. There are two instances of 
RSS (RSS 1 and RSS 2), running on different hardware platforms to ensure 
redundancy. Usually, CSS A and RSS 1 are running on the same hardware platform, 
CSS B and RSS 2 on another one.  

• Operating Sub-System (OSS, represented as "Operator Working Position" on figure 
2-1): this sub-system is a graphical interface to configure and monitor the whole 
system. Up to 100 instances of OSS can be deployed. They are usually deployed on 
workstations (classical PCs). This is why the OSS is not part of this project, which 
concerns the virtualization of the servers.  

Like other Comsoft systems, AIDA-NG relies on two local networks:  

• Internal LAN (ILAN): interconnects all AIDA-NG components.  

• External LAN (ELAN): connects AIDA-NG to the other systems of the whole solution.  

All components of both networks are doubled, to ensure redundancy. For more information 
on this system, please refer to the following documents:  

• AIDA-NG Product Information; [A5] 

• AIDA-NG Interface Control Document; [A6] 
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• AIDA-NG Routing; [A7]  

• AIDA-NG System Architecture. [A8] 

CADAS-ATS 
CADAS-ATS stands for Comsoft's Aeronautical Data Access System – Air Traffic Services. 
[A9] This system allows the creation of AFTN and AMHS mailboxes, so that operators can 
send and receive AFTN and AMHS messages. This system is connected to the AIDA-NG 
system (or to another AFTN/AMHS gateway) over the External LAN (see previous chapter). 
The graphical interface of this system has a lot of standard message templates so that 
operators can easily write flight plans, meteorological messages, etc.  

 
Figure 2-2: Architecture of CADAS-ATS 

The system is composed of several sub-systems:  

• Message Handler: this sub-system routes the messages to the different mailboxes or to 
AIDA-NG and stores in a database all messages and all events happening on the 
system (and keeps them for a time between 30 and 90 days). There are two instances 
of Message Handler (Message Handler 1 and Message Handler 2), running on different 
hardware platforms to ensure redundancy.  

• Terminal Server: this sub-system makes the java applications (terminals) available for 
the Operator Working Positions. There are two instances of Terminal Server (Terminal 
Server 1 and Terminal Server 2), running on different hardware platforms to ensure 
redundancy. Usually, Message Handler 1 and Terminal Server 1 are running on the 
same hardware platform, as well as Message Handler 2 and Terminal Server 2.  

Like other Comsoft systems, CADAS-ATS relies on two local networks:  

• Internal LAN (ILAN): interconnects all CADAS-ATS servers and allows them to 
synchronise at any time with each other.  

• External LAN (ELAN): connects CADAS-ATS to the other systems of the whole 
solution (e.g. AIDA-NG) and to the workstations (Operator Working Positions).  
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For more information on this system, please refer to the following documents:  

• CADAS-ATS Product Information; [A9] 

• CADAS-ATS: Administrator's Guide. [A10] 

CADAS-IMS 
CADAS-IMS stands for Comsoft's Aeronautical Data Access System – Information 
Management & Services. [A11] There are several types of aeronautical messages. Three of 
them concerned by CADAS-IMS are FPL (Flight Plan), NOTAM (Notice to Airmen) and 
OPMET (Operational Meteorological). NOTAMs are messages sent by government agencies 
to NOTAM offices (usually located in airports) to inform pilots of any hazard like for example:  

• runway closure due to maintenance; 

• military exercises; 

• volcanic ash. 

A NOTAM can indicate a new hazard, can replace/update a previous one or indicate that a 
previous NOTAM has to be removed. Without any information system, as it's still the case in 
some countries, the NOTAM office has a set of cabinets and folders containing one sheet per 
NOTAM. NOTAM office employees have to regularly add, replace and remove sheets from 
their "database".  

Before a plane takes off, its pilot has to go to the NOTAM office to get a briefing. A briefing is 
the list of all NOTAMs (and OPMETs) concerning its flight (inside its air corridor). Its air 
corridor is already known based on the FPL (Flight Plan). A folder is given to the pilot, who 
can then get onto the plane.  

The role of CADAS-IMS is to replace the cabinets, the folders and the sheets of paper with a 
database, automatically maintain it and automate the creation of briefings by cross-
referencing the FPLs, the NOTAMs and the OPMETs. This system is connected to the AIDA-
NG system (or to another AFTN/AMHS gateway) over the External LAN.   

 
Figure 2-3: Architecture of CADAS-IMS 



Background Diploma Thesis 

10 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT 

The system is composed of several sub-systems:  

• Database: this sub-system is the database for all messages and events happening on 
the system, and for the static data (position and boundaries of all countries, position of 
every airport, standard air corridors, etc.) There are two instances of Database 
(Database 1 and Database 2), running on different hardware platforms to ensure 
redundancy.  

• Application Server: this sub-system contains all applications of the system and 
executes them. There are two instances of Application Server (Application Server 1 
and Application Server 2), running on different hardware platforms to ensure 
redundancy.  

• Web Server: this sub-system makes the graphical interface available to the 
workstations (Operator Working Positions), which only need a web browser to display 
it. Usually, Database 1, Application Server 1 and Web Server 1 are running on the 
same hardware platform, Database 2, Application Server 2 and Web Server 2 on 
another one.  

Like other Comsoft systems, CADAS-IMS relies on two local networks:  

• Internal LAN (ILAN): interconnects all CADAS-IMS servers and allows them to 
synchronise at any time with each other.  

• External LAN (ELAN): connects CADAS-IMS to the other systems of the whole solution 
(e.g. AIDA-NG) and to the workstations (Operator Working Positions).  

For more information on this system, please refer to the following documents:  

• CADAS-IMS Product Information; [A11] 

• CADAS-IMS: Technical Specification. [A12] 

CCMS 
CCMS stands for Comsoft Configuration Management Suite. [A13] It isn't a product but it's 
part of all air traffic control solutions delivered by Comsoft. CCMS is a set of applications 
installed on all platforms (servers and workstations). CCMS:  

• provides a graphical interface, where administrators can declare and configure all 
platforms, systems and sub-systems (see chapter 1.1 Motivation); 

• spreads the software and the defined configuration to all platforms of the solution; 

• tweaks the look and feel of the underlying operating system (Fedora) to work smoothly 
with Comsoft applications and present a common user interface; 

• provides scripts for easier access to Linux functions. 

Thus CCMS is installed on all platforms and simplifies their configuration. Administrators 
don't have to install and configure each platform one by one.  
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Other products 
The following products are for now not concerned by this project but will probably benefit 
from its results in a near future:  

• CNMS (Comsoft Network Management System) is a system to supervise and monitor 
the health of all Comsoft systems at the same time, i.e. the health of all components of 
the whole solution. [A15] 

• EFG (E-Mail/Fax Gateway) is a system that receives e-mails, converts them, and 
sends them as fax messages to the indicated destination. [A16] 

• ATN-Router (Aeronautical Telecommunication Network Router) is a CLNP 
(Connectionless Network Protocol) router. [A17] 

• View500 (formerly ViewDS) is an X.500 Directory Server from the company eB2Bcom, 
delivered by Comsoft. [N2] 

• CADAS-AIMDB (Database for Aeronautical Information Management) is a database 
containing all data necessary for the safety, regularity and efficiency of international air 
navigation. It stores entities, attributes and relationships in order to describe 
aeronautical features such as airports, runways, obstacles, routes, terminal 
procedures, airspace structures, services and related aeronautical data. [A2] [A18] 

Without virtualization 
As mentioned in chapter 1.1 Motivation, this project isn't the first attempt from Comsoft to let 
several systems share the same hardware platforms. No problem has been observed 
concerning the CPU utilization, the main memory or the network, but rather concerning the 
hard disk drives.  

Every subsystem of AIDA-NG is composed of several processes called managers, each of 
them performing a special task. All managers must send regularly (typically every third 
second) an alive message to a special manager named system manager. There is one 
system manager per subsystem. After a certain amount of missing alive messages (typically 
six) from a certain manager, its system manager considers this manager to be 
malfunctioning, stops all managers under its authority and declares the subsystem to be in 
maintenance. An administrator must intervene.  

The Recording Subsystem (RSS) of AIDA-NG is responsible for the database of AIDA-NG 
and therefore often accesses the hard-disk drive. The Linux hard disk scheduler, trying to 
optimize the movements of the hard disk (see chapter 3.5.1.3 Hard Disk Drive), doesn't 
deliver any guarantee concerning the latency of a hard disk access by a process. If one 
process is using the hard disk drive, another one also trying to access it can get blocked 
during several seconds. But if one manager of the RSS gets blocked more than about 15 
seconds, or needs more than 15 seconds to perform an elementary sequence of hard-disk 
operations, the whole subsystem gets stopped, which is not acceptable.  

It's easy to make this problem happen, following tests can be made:  

• copying a "big" file (with the command dd or cp) during seconds while the RSS is 
storing a lot of messages will make it crash; 

• uncompressing a "big" tar-archive during seconds will lead to the same result.  

Comsoft engineers noticed easily that this problem is not related to the maximum bandwidth 
of the hard disk drive but just to the latency. They were ready to sacrifice the bandwidth in 
order to guarantee a correct latency (a latency of even one second would have been 
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acceptable!) and fairness. They invested a lot of effort in trying different disk schedulers1 and 
configuring them, but did not manage to reduce the latency.  

In the field, the Comsoft project for Vietnam Air Navigation Services Corporation 
(VANSCORP) suffered the consequences of this problem. Comsoft delivered a system 
where AIDA-NG, CADAS-ATS and CADAS-IMS share the same hardware platforms, without 
virtualization layer. If one Message Handler of CADAS-ATS is switched off during a long 
period and then switched on again, it has to synchronise its database with the other Message 
Handler. This process is called a database replication. If there is a big difference between the 
two databases, the replication can take a long time and make the RSS, running on the same 
hardware platform, wait for the hard disk and crash. It actually happened several times, 
forcing Comsoft to redesign the solution and deliver more servers.  

All Comsoft products are based on such timers, guaranteeing that the solution works 
correctly in the allotted time, with some tolerances. Thus Comsoft systems can be 
considered as soft real-time systems (see chapter 2.1.3.2 Soft Real Time). The time 
granularity/precision of Comsoft systems usually varies from one to a few seconds.2 

Another problem appeared on the same project (VANSCORP). A software product from 
another manufacturer had to be integrated to the project, but this manufacturer provides an 
assistance only if the software runs on Fedora Core 4. Because Comsoft products were not 
based on Fedora Core 4 at that time, an additional server had to be delivered especially for 
this external software product. This could have been solved by virtualization (see chapter 
2.1.2.1 Reasons). However this thesis doesn't focus on this purpose but rather on server 
consolidation and real-time.  

2.1.2 Virtualization 

Virtualization is a set of software and hardware techniques allowing a real computer (or real 
machine) to act like one or more computers (having the same architecture or not). These 
simulated computers are usually called (guest) virtual machines.  

This term has also been extended to higher levels: for example an operating system 
simulating another one is a type of virtualization too (operating system API emulation, see 
chapter 2.1.2.2 Virtualization Techniques). 

2.1.2.1 Reasons 

This chapter describes the main reasons for using virtualization. More details can be found in 
Das Virtualisierungs-Buch [V1] or The Advantages of Using Virtualization Technology in the 
Enterprise [V9].  

Server consolidation 
Some applications sometimes need to be separated on different servers, because for 
example they need different operating systems, or several instances of the same application 
can't coexist in the same environment. Several computers are then needed. It often leads to 
a waste of resources, since the whole capacity of a computer is rarely used.  
                                                 
1 Linux proposes four different schedulers: CFQ, Noop, Anticipatory and Deadline, some of them 
promising some guarantees. [C26] More information in the Linux documentation.  
2 This is why a performance requirement would never look like "The system must be able to handle a 
message in less than 50 ms." but rather like "The system must be able to handle 20 messages per 
second." (see chapter 2.3 Requirements). 
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With virtualization, several virtual machines (isolated from each other) can be simulated by 
one real one. Even if the real one may have to be more powerful, it may allow:  

• a better use of the resources (50 % of the processor may be used on average instead 
of just 20 %, for example); 

• an economy of space and energy;  

• a lower purchase cost.  

These are the reasons for which Comsoft wants to use virtualization.  

Note: Server consolidation may also bring performance improvements, contrary to what one 
might think. For example, two applications may communicate together faster if they are 
running on the same physical hardware platform than if they have to communicate over a 
network.  

Software development 
A developer may want to develop an application that could damage his/her development 
environment. This developer could then safely test his/her application on a virtual machine, 
as isolated as a real machine.  

He/She may also be developing an application for another hardware platform, which may not 
be available to him/her. This platform can then be emulated on the development platform.  

Legacy software 
Some applications may need an old platform architecture (which may moreover not be 
available on the market) or an old operating system to run. In the first case, the old platform 
can be emulated by a recent computer. In the second case, a special virtual machine can be 
used to run the old operating system, so that it isn't necessary to use a dedicated platform. 

Load balancing and disaster recovery 
An image or snapshot of a virtual machine can be made and moved to another physical 
machine, thus allowing easy migration of a virtual machine over physical ones. It is useful for 
load balancing and disaster recovery. 

Virtual desktops 
Virtualization used on workstations allows for example to switch in a few milliseconds from a 
Linux desktop to a Windows desktop.  

High availability and clustering 
Creating one virtual machine on several physical machines is one type of virtualization too. 
There are several models:  

• Several physical machines simulate the same virtual machine in parallel in a redundant 
manner, thus improving availability (if one physical machine fails, the virtual machine 
still remains operational).  
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• Several physical machines simulate one more powerful virtual machine with a lot of 
resources.  

• Hybrid model: combination of both previous models.  

2.1.2.2 Virtualization Techniques 

Virtualization is a wide domain regrouping several concepts and techniques. However 
specialists don't seem unanimous concerning the names given to these notions. We present 
them in this chapter with the most explicit names in our opinion. We will stick to these names 
in the whole document.  

Emulation 
This technique is the one best corresponding to the original concept of virtualization. An 
emulation is a fully software reproduction of a machine. Every hardware component 
(processor, memory and I/O devices) of the emulated machine is simulated. The main 
characteristic of emulation in comparison to other techniques is actually the software 
reproduction of the processor.  

The software responsible for the emulation (i.e. the imitation/reproduction of a machine) is 
called an emulator. The emulator is generally an application run by the operating system of 
the host machine (the host operating system).  

 

 
Figure 2-4: Structure of a classical computer running applications 

 

Figure 2-5: Computer running an emulator 
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Several emulators can run at the same time. The main component of an emulator is a 
command interpreter to replace the processor:  

• Each instruction is executed by the interpreter whose implementation looks like the 
implementation of a normal language interpreter. 

• Data intended to be sent to a screen can be redirected by the interpreter to a window 
or a terminal.  

• Interrupts can be simulated by the interpreter by directly jumping to the first instruction 
of the guest operation system's handler corresponding to that interrupt request.  

• Data from the keyboard is forwarded to the guest like any other interrupt.  

Pros:  

• The guest's software part (operating system and applications) doesn't need any 
modification. We usually say that it is not aware of being executed by an emulator 
instead of a real machine.  

• It is possible to emulate a machine having an architecture very different from the host 
one. (For example PearPC emulates a PowerPC platform for the x86 architecture 
[V45].) Thus you can emulate an old computer which is no longer produced and 
continue to use applications designed for that machine.  

• The host and the guest operating systems can be different. 

• Isolation: The guest machine being usually seen as a normal application for the host 
operating system, a crash of the guest should not affect the host nor the other 
applications (and thus other emulators) running on the guest.  

Cons:  

• Overhead: since each guest instruction is interpreted, a guest being emulated by a host 
of the same architecture (e.g. an Intel x86 being emulated by a real Intel x86, in order 
to run several operating systems) can be about 5 to 10 times slower than a real 
machine, even for the most powerful emulators, because of the mean number of host 
instructions needed to emulate one guest instruction.  

• Scheduling of several emulators running on the same host in order to guarantee 
respect of deadlines has to be made using the features offered by the host operating 
system to schedule standard applications. However some operating systems don't offer 
many scheduling possibilities.  

Full Virtualization 
The major inconvenient of the emulation is the huge overhead. Because of it, this solution is 
not adapted for server consolidation (see chapter 2.1.2.1 Reasons).  

Full virtualization is the creation of virtual machines of the same type/architecture as the host 
machine. Since the instruction set architecture1 is the same, there is no need to emulate 
each of the guest's instructions. The guest can directly use the available hardware, in 
particular the microprocessor(s), thus drastically reducing the overhead.  

                                                 
1 The instruction set architecture is the hardware interface accessible/visible for the software. It 
encompasses for example the operations, the addressing modes, the visible registers, etc. You can 
find more about this topic in Computer Architecture [C4] and Mikrocontroller und Mikroprozessoren 
[C5].  
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Of course, this technique doesn't make any sense if there is only one guest. Why would you 
create one virtual machine identical to your physical one? It makes sense if you create 
several virtual machines on top of one physical one. You could then let different operating 
systems run on the same physical machine at the same time. It makes a server consolidation 
possible.  

However several operating systems are now competing for the same resources. That is why 
we need a referee to supervise and allocate those hardware resources: this referee is named 
Hypervisor or Virtual Machine Manager (VMM). 

 
Figure 2-6: Full virtualization 
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With paravirtualization, a virtual machine doesn't have exactly the same behaviour as a real 
one, so that the guest operating system has to be modified to be able to run. There are 
several reasons to this approach:  

• As explained in appendix A Implementing full virtualization, it can be quite difficult to 
develop a hypervisor without hardware support. And the result, using dynamic 
recompilation, might not be as efficient as expected. Instead of converting each of the 
guest's instructions on the fly, the hypervisor performing paravirtualization lets all the 
guest's instructions be executed, considering that they are safe and that a guest 
needing to access hardware will voluntary "call" the hypervisor (by means of a system 
call, in this case a hypercall).  

 But a hypervisor can't actually just assume that every guest is safe, otherwise a 
malicious or buggy guest could directly access a hardware resource which was 
assigned to another guest and crash it or even the entire system. One common 
solution on x86 architecture is to let every guest operating system run in protection ring 
1, 2 or 3 and put the hypervisor and hardware resources in ring 0 (see appendix A 
Implementing full virtualization for more details). Of course those guest operating 
systems have to be modified to be able to run in a restrictive ring.  

 So the use of the protection ring 1 was not a valid solution for full virtualization, but it 
becomes valid when combined with modification of the guest operating system.  

• Paravirtualization can be used to make the whole system even more efficient. For 
instance, every modern hypervisor gives the possibility to create virtual NICs (Network 
Interface Cards) to make an Ethernet connection between the guests (each guest sees 
then an NIC, which is actually a virtual one set up by the hypervisor). Without any 
modification, a normal guest operating system would perform cyclic redundancy check 
(CRC) on data coming from each NIC to ensure data integrity, including on data 
coming from the virtual NIC, since the guest doesn't know that it is virtual. But testing 
data integrity without telecommunication is unnecessary and thus a waste of CPU time.  

In paravirtualization, guest operating systems (kernel + drivers) are modified to 
recognise virtual devices and benefit from this information. They can also be modified 
so that they don't perform some verifications or operations which are now already 
performed by the hypervisor.  

Some specialists refer to paravirtualization as a subset of full virtualization or a solution to 
achieve it, whereas some others differentiate them more strongly (we share this second 
opinion): 

• Full virtualization is the sharing of a real machine among virtual machines with exactly 
the same architecture, able to run operating systems originally designed for the real 
machine. 

• Paravirtualization is the sharing of a real machine among virtual machines with the 
same architecture but presenting a slightly different behaviour, needing operating 
systems to be modified to be able to run. 

By extension, the modification of a guest operating system to improve performance, even if it 
is not necessary to achieve virtualization, can be named paravirtualization. The modification 
is then often available as a package to install in the guest and it is generally recommended to 
install it. [VV22] 

Note: Paravirtualization implies modifications in the guest operating system but no 
modification in the guest applications.  
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You can find more information on paravirtualization: 

• Xen and the Art of Virtualization [VX2];  

• Computer Architecture [C4];  

• Das Virtualisierungs-Buch [V1]. 

The main drawbacks of paravirtualization are:  

• It is not possible to modify every operating system (for example some operating 
systems are not maintained anymore and/or not open source);  

• Thus the list of supported operating systems is shorter for a hypervisor using 
paravirtualization than for one using full virtualization;  

• When modifying an operating system kernel, there is a risk of inserting bugs.  

Operating System-Level Virtualization 

"Operating system-level virtualization enables multiple isolated execution 
environments within a single operating system kernel." [VZ1] 

These execution environments are often called containers, virtual environments (VE), virtual 
private servers (VPS), partitions or jails. They are isolated, which means:  

• each container has its own set of processes, users, groups, etc.; 

• one element inside a container can't see elements from another container; 

• all containers share the same operating system kernel, which means they share the 
resources of the machine through the single kernel instance (responsible for allocating 
resources not only to processes, but also to containers), but not the entire operating 
system (e.g. for Linux, containers can have different distributions based on the same 
kernel); 

• containers shouldn't be able to affect each other; they can only communicate through 
tools set up by the kernel for this purpose. 

 
Figure 2-7: Operating system-level virtualization 
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on-write strategy), it will be able to do so even if the instances are running in 
different containers, achieving a "factorization" (suppression of identical elements), 
thus reducing the number of cache misses. Such factorization is hardly possible with 
a classical virtualization.  

• With OS-level virtualization, only one kernel runs, in opposition to classical 
virtualization. More CPU cycles remain available for the applications. 

• When a classical hypervisor performs a virtual machine switch (stops the execution 
of one virtual machine to give the processor to another one, according to the 
scheduling policy), the TLB (translation look-aside buffer, a cache for the page table 
entries) has to be flushed, leading to a lot of cache misses for the next instructions. 
This effect can be reduced by means of a shadow page table. [C4] 

• As shown in part Paravirtualization, some classical virtualization solutions can suffer 
from the fact that some operations/verifications are done twice (one time by the 
guest kernel, one time by the hypervisor). This drawback doesn't exist with OS-level 
virtualization.  

• Flexibility: resource allocation between containers can be easily and dynamically 
changed. With a classical virtualization it isn't so easy: a classical guest kernel will 
crash if you reduce its amount of RAM (it would be the equivalent of removing a RAM 
module from a real computer while it's running). With paravirtualization though it's 
possible (e.g. with ballooning, a technique where the hypervisor asks a guest to free 
some memory [VX5]). 

Cons: 

• Less isolation: a bug in the kernel may crash the whole system, since all "guests" share 
the same kernel.  

• No possibility of running several operating systems on the same physical machine.  

• A kernel modification may be needed to support this virtualization feature, thus taking 
the risk of inserting bugs.  

More information on this topic can be found in: 

• Das Virtualisierungs-Buch [V1];  

• Virtualization in Linux [VZ1];  

• OpenVZ User's Guide [VZ2];  

• Performance Evaluation of Virtualization Technologies for Server Consolidation [V7]. 

Operating System API Emulation 
When only one architecture is involved (e.g. x86), if you want to run on one operating system 
(e.g. Linux) an application designed to be run on another one (e.g. Windows), a classical 
virtualization is not absolutely needed. The only reason why a Windows application cannot 
run on Linux, even if you use the same architecture in both cases, is because the interface 
offered by Windows to applications is different from the one offered by Linux. [V1] 

An OS API emulator can for instance reproduce in Linux the interface of Windows, thus 
allowing a Windows application to run on Linux. This is the goal of the Wine project. [V44] 

This type of virtualization has nothing to do with resource allocation and is therefore out of 
the scope of this study.  
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Figure 2-8: Operating system API emulation 

Kernel in user mode 
This technique consists in modifying the guest kernel (in a similar way to paravirtualization) 
so that it can be able to run as a normal application (in the protection ring 3) on the host 
operating system. [V1] 

The major problem of this approach is that guest applications and guest kernel are running 
on the same privilege level, thus removing the guest kernel's protection against malicious or 
buggy guest applications. For this reason, this technique can't be used in production and is 
out of the scope of this study.  

The main advantage of this approach is that the guest kernel can be traced and debugged 
using tools used to debug classical applications. For this reason, this technique is very useful 
in kernel development.  

 
Figure 2-9: Kernel in user mode 

Conclusion 
Our project needs a solution for server consolidation enabling a precise configuration of the 
resource allocation and high performance. As already demonstrated, emulation, OS API 
Emulation and Kernel in user mode are not fitted for server consolidation.  

OS-level virtualization should offer the best performances and the fact that all containers 
have to share the same kernel is not a problem for our project. However since the 
virtualization is done on a higher level than with classical virtualization, the timings for 
resources' allocation between the containers may not be precise.  

Hardware-supported virtualization seems to be the solution offering the most predictable 
results, and therefore should be the best solution when dealing with real-time constraints. 
Moreover the hardware platforms used for this project can make use of this feature. However 
at this point it isn't clear if this technique is more or less efficient than virtualization based on 
dynamic recompilation (see appendix A Implementing full virtualization).  
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Paravirtualization may also be an efficient solution, either as complete virtualization 
technique, or as an optimization for one of the previously mentioned techniques.  

2.1.3 Real Time 

A non real-time system is a system (computing outputs from its inputs) where only the 
correctness of the result matters. In a real-time system the respect of time constraints is as 
important as the correctness of the result. [C7] [CR1] In such a system, a result delivered too 
late is as good as a wrong one.  

Real-time systems are usually divided in two categories: hard real-time systems and soft 
real-time systems.  

2.1.3.1 Hard Real Time 

In such system (not necessarily a computer), the time constraints must be respected. For 
example an airbag (car safety device) is controlled by a hard real-time system. It must be 
guaranteed that the airbag will be deployed at the right moment (actually a time interval) after 
an impact. The deployment of the airbag is the result delivered by the system. If this result is 
delivered too late (or sometimes too early), it can be fatal.  

Moreover, a system respecting the time constraints in 99% of all cases is not a hard real-time 
system. [CR1] A hard real-time one always respects them. Thus you cannot use a personal 
computer with a classical operating system to develop a hard real-time system. What would 
happen if the computer is slowed down by an antivirus update when you have a collision? 

In a hard real-time system, the worst-case execution time (WCET) is very important [CR1]. It 
is the longest time needed by the system to deliver the result. A short mean execution time 
doesn't bring anything, if the WCET is too long to meet the deadline. That's why some 
computer optimizations like cache memory aren't used in hard real-time systems, since they 
only improve the best-case execution time (BCET) (and thus the mean execution time too), 
but not the WCET.  

Such a system must be as simple as possible to be predictable. If it isn't predictable, you 
can't determine the WCET. Thus you can't prove that the system respects the time 
constraints.  

The predictability is actually so important, that the difference between the WCET and the 
BCET (representing the jitter) should be as small as possible. [CR1] 

Most complex real-time systems are driven by a software application made of several tasks 
or processes. The typical structure of such a task looks like this:  

// initialization 
 
// main loop: 
bool terminate = false; 
while (!terminate) 
{ 
 event e = nextEvent(); // wait for an event 
 switch (e) 
 { 
  case EVENT_TYPE_1: 
   // real-time reaction to this event 
   break;  
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  case EVENT_TYPE_2: 
   // real-time reaction to this event 
   break; 
 
  // ... 
 
  case QUIT: 
   terminate = true; 
   break; 
 } 
} 
 
// termination 

A real-time operating system is then responsible of scheduling the different tasks according 
to their priority, and offering them a basic set of objects and concepts to communicate (e.g. 
events, mutexes and messages) among them and with the outside.  

 
Figure 2-10: Real-time system 

Let p be a function representing the predictability of a layer and delivering a value between 0 
(unpredictable) and 1 (fully predictable). The predictability of the whole system is then the 
product of the predictability of each layer:  

 
The system on figure 2-10 is a hard real-time system if:  

 
That is to say: the only way to manage to do a hard-real time system is to make every layer 
completely predictable.  

2.1.3.2  Soft Real Time 

A soft real-time system is a system where:  

 
The time needed by the system to react or to do a certain work doesn't have to be totally 
predictable. The time constraints in such system should be seen as directives or guidelines. 
[CR1] Those time constraints can be transgressed as long as it doesn't happen too often. 
Usually the following is tolerated:  

• A time constraint can be often transgressed if the transgression is limited in a tolerance 
interval.  
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• The transgression of a time constraint can be high if it happens rarely.  

However the second assertion doesn't apply to Comsoft products, because as already 
explained in chapter 2.1.1 Comsoft products a high latency when accessing the hard disk 
drive is not acceptable.  

The evaluation of a soft real-time system can often be carried out with only a general 
knowledge of the system and by collecting statistics on its behaviour, whereas a hard real-
time system can only be deemed hard real-time after a very close examination of the 
implementation of each component (never after a statistical study).  
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2.2 Related Work 

2.2.1 Existing virtualization products 

The particularity of our approach is due to the fact that the company Comsoft needs a 
solution as quickly as possible. Therefore we renounced to design an adapted hypervisor or 
even extensions for an existing one. Instead we defined a series of indicators and implement 
tests carrying them out, in order to evaluate existing off-the-shelf solutions.  

First of all several papers describe the state of the art virtualization, as does chapter 2.1.2 
Virtualization. Jeff Daniels [V10] and Simon Crosby et al. [V16] present the concept of 
virtualization, its history, the different techniques to achieve it and the reasons to use it. He 
presents virtualization as a useful and mature technology. Mark F. Mergen et al. [V11] 
present the benefits of virtualization: flexible OS variety, productivity, performance, reliability, 
availability, security and simplicity. However Liana Fong et al. [V12] show that even if 
virtualization may provide simplicity, it also may add complexity at some levels. Ulrich 
Drepper [V21] describes all low-level performance problems occurring with virtualization.  

Edward Ray et al. [V38] describe the security risks related to virtualization. They remind us 
that the isolation between two virtual machines is not as good as the one between two 
hardware platforms and highlight several security holes in hypervisors (e.g. man-in-the-
middle attack during a live migration, rootkits, etc.). They present a set of best-practices to 
limit the risks.  

Some articles focus on one virtualization product and help to establish a list of already 
existing products and to get a first opinion. Irfan Habib [VK2] presents KVM, Paul Barham et 
al. [VX2] Xen, Kirill Kolyshkin [VZ1] OpenVZ. We discuss their properties in chapter 3.4 
Comparison.  

Several documents [V13] [V14] [V15] compare briefly following virtualization products: 
VMware products, VirtualBox and KVM. However this comparison is made in the context of 
desktop virtualization, which is not directly related to our topic. Nevertheless those 
documents may be of interest since they help to get a first opinion on those products and to 
discover their features.  

Rusty Russel presents in a paper [V36] virtio, an API and series of drivers for device 
paravirtualization in a guest Linux.  

2.2.2 Evaluation techniques 

Two main approaches are usually deployed to evaluate the performance of virtualization 
products, or more generally of hardware platforms and operating systems: micro-
benchmarks and macro-benchmarks. Micro-benchmarks are series of small programs, each 
of them stressing one element or type of action (e.g. arithmetic operations, system calls, etc.) 
of the system and measuring its performance and properties. Macro-benchmarks are set of 
real applications (e.g. web servers, compilers, databases, etc.) or programs simulating real 
applications in order to evaluate the performance under real workload.  

In their work, Padma Apparao et al. [V17] define a representative macro-benchmark for 
server consolidation. The problem of such an approach is that only generic mean indicators 
can be measured, like mean throughput of different resources or mean CPU utilization. In the 
best case, such a study could determine some mean latencies. It's definitely not adapted to 
our problem, where the real-time dimension plays an important role. In our study, we rather 
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need to determine maximum latencies, throughput variations (and thus predictability) and 
isolation between virtual machines. Pure performance (that is to say mean throughput) is 
only a secondary criterion, allowing to decide between two valid virtualization products 
(offering a good predictability and isolation). This kind of study (with macro-benchmarks) is 
only useful in a non real-time context (in this case Information Technology) to compare the 
general performance of two virtualization products.  

Tsuyoshi Tanaka et al. [V19] made also a study with macro-benchmarks. This study led to 
the conclusion that applications with heavy disk I/O and low CPU utilization are good 
candidates for server consolidation concerning performance. This is an encouraging result 
since this profile of application matches with Comsoft applications.  

Jeanna Neefe Matthews et al. [V18] have made an important study on quantifying the 
isolation between virtual machines for several products. Their approach is similar to ours 
(used in chapter 3.5 Evaluation) in terms of strategy: they measure the performance of some 
virtual machines when other virtual machines are running programs stressing one element of 
the system (e.g. CPU or hard disk). However they use a web server to measure the 
performance: they used the amount of HTTP requests which got a reply "in-time" as an 
indicator for the isolation. Our opinion is that this indicator is way too coarse-grained for our 
study. The authors argued that other indicators can be used, and this is the case in our 
study: the stressing programs and the programs measuring the indicators are the same, like 
in a micro-benchmark approach, and are similar to their stressing programs. Moreover, they 
chose to measure the performance of web servers located in misbehaving virtual machines 
too (virtual machines where stressing programs are running), and use these results to 
conclude, which is, from our point of view, quite misleading: the behaviour of an application 
disturbed by another one running in the same virtual machine has nothing to do with isolation 
between virtual machines. However their study shows a perfect isolation for VMware 
Workstation (full virtualization) and a good isolation for Xen (full virtualization). The isolation 
of OpenVZ (OS-level virtualization) is not so good, particularly concerning the communication 
over the network.  

Keith Adams et al. [V6] use both micro-benchmarks and macro-benchmarks to compare 
software-supported (binary translation) and hardware-supported virtualization. Their micro-
benchmarks are adapted to our study (we used similar ones) but they limited their work to 
mean execution times, which is way insufficient for a real-time problematic. They conclude 
that hardware-supported virtualization is less efficient than software-supported virtualization, 
but their study is four years old and hardware-support was at the very beginning of its 
existence.  

In Xen and the Art of Virtualization [VX2], Paul Barham et al. measure the performance, the 
isolation and the scalability of Xen by means of micro-benchmarks and macro-benchmarks. 
Unfortunately they focused again on mean execution times.  

Stephen Soltesz et al. [V20] have made a comparison between OS-level virtualization and 
full virtualization, using both micro-benchmarks and macro-benchmarks. They concentrated 
their work on isolation (fault isolation, resource isolation and security isolation) and mean 
performance. They concluded that for CPU-bound applications, both techniques are 
equivalent but OS-level virtualization is more efficient on I/O. The fault isolation should be 
better for full virtualization. Both techniques should be equivalent concerning resource and 
security isolation. They argue that efficiency and isolation are partially conflicting, and 
that a trade-off has to be found. In our project, isolation is clearly more important than 
efficiency. They showed near-native performance for VServer (OS-level virtualization 
product) whereas the performance was clearly worse for Xen (full virtualization). They also 
showed that VServer scales better with the number of virtual machines. The performance 
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isolation is better with Xen. Again they limited their study to mean throughput measurements, 
which is insufficient for a real-time problem.  

Robert Kaiser [V22] has written an important document on virtualization for (hard) real-time 
systems. He explains how virtualization increases the reaction time (time between the 
occurrence of an event and the reaction of an application to this event) and induces a jitter. 
He explains that if this jitter is short in comparison to the deadlines the concerned real-
time applications have to meet, virtualization is suitable for a real-time system without 
negative effect.1 In the other case, the author exposes the requirements for a real-time 
hypervisor and proposes a design.  

Vineet Chadha et al. [V23] described an interesting method that could be used to evaluate 
virtualization products. Instead of running the product directly on a hardware platform, it can 
be run in a platform simulator (or emulator) allowing to finely configure micro-architectural 
details of the platform to be simulated. A lot of low-level events can be gathered by means of 
the simulator, which can be correlated with the high-level events gathered in a virtual 
machine.  

2.2.3 Future evolutions 

Several papers propose different designs to improve the performance of current virtualization 
products. They are not directly useful for this study, but show that a lot of effort is currently 
put in improving virtualization.  

Yaozu Dong et al. [V24] proposed a standardization of I/O virtualization in order to achieve 
better performance and predictability. They implemented it for Xen Hypervisor and measured 
the improvement.  

Kaushik Kumar Ram et al. [V25], Guangdeng Liao et al. [V28] and Jiuxing Liu et al. [V29] 
present mechanisms and optimizations to achieve 10 Gb/s on network interfaces. These 
optimizations are for example the use of multi-queue NICs, grant reusing, cache-aware 
scheduling and dedicated CPU-core for polled I/O. They all obtained satisfying results.  

Hwanju Kim et al. [V26] address the problem of starvation of I/O-bound tasks running in the 
same virtual machine as a CPU-bound task. They propose a solution for the hypervisor's 
virtual machine scheduler to boost those tasks without sacrificing CPU-fairness. Our opinion 
is however that this kind of optimization is partially in contradiction with the principle of 
isolation: the minimal resource amount assigned to a virtual machine should be independent 
of its workload and of the workload of other virtual machines. This is actually a danger that 
Comsoft has to take into account: virtualization products are "benefiting" of more and 
more optimizations, which means that a virtualization product adapted to Comsoft's project 
may not be adapted anymore in a few years.  

This problem of starvation of I/O-bound tasks had already been highlighted by Diego Ongaro 
et al. [V33] They studied the impact of the hypervisor's virtual machine scheduler on I/O 
performance.  

Chuliang Weng et al. [V27] also propose an optimization for the hypervisor's virtual machine 
scheduler. Some virtual machines are running concurrent applications and the hypervisor 
should try as much as possible to schedule the virtual CPUs of this virtual machine on 
physical CPUs at the same time to improve performance, without violating CPU-fairness. A 
virtual machine could be declared as concurrent to benefit from this optimization.  
                                                 
1 It seems to be the case for Comsoft systems, since this jitter should be of the same order of 
magnitude as a time-slice of the hypervisor's scheduler (usually 100 ms). The precision/granularity of 
time constraints imposed to Comsoft applications is one second.  
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Himanshu Raj et al. [V30] expose the concept of self-virtualized I/O device. Such device 
provides virtual interfaces to virtual machines. The goal is to increase throughput and 
scalability and to reduce latency, by reducing the involvement of the hypervisor in device 
virtualization.  

Seetharami R. Seelam et al. [V35] designed and implemented a virtual I/O scheduler 
focusing on fairness between applications (or virtual machines) and isolation. However this 
scheduler does not take latency into account for the moment.  

Jianyong Zhang et al. [V37] designed a scheduler for storage virtualization. This scheduler 
isolates throughputs and guarantees statistically a certain latency for a given throughput. 
Statistically means in this case that 95 % of the requests will be handled in time. As 
explained in chapter 3.5.1.1.5 Scheduling we defined in our project an indicator named 
bound95% which is even stricter.  

2.2.4 Related topics 

Server virtualization may also benefit from works coming from related topics.  

Philip M. Wells et al. [V31] wrote an interesting paper on multicore virtualization. The main 
idea is to let the hardware exposes virtual processors and map them to physical processors, 
instead of letting software (operating system or hypervisor) handle it. The result is a 
performance gain, as well as the possibility to handle heterogeneity due to for example 
changing reliability, power or thermal conditions.  

Lan Huang et al. [V32] designed and implemented a system for storage virtualization named 
Stonehenge. In contrary to most storage virtualization systems, this one does not only focus 
on capacity but also on bandwidth and latency, being able to deliver real-time guarantees.  

Gernot Heiser showed in a paper [V34] that current virtualization products are not suitable for 
embedded systems: the isolation principle actually doesn't fit the requirements of embedded 
systems: efficient sharing, priorities (how to give a priority to a virtual machine if all tasks of 
all virtual machines have overlapping priorities?), energy management, fine-grained 
encapsulation.  

2.2.5 Other utilizations of virtualization 

Several papers describe the use of virtualization to improve security. Even through this topic 
is not ours, those document are likely to bring useful information.  

Igor Burdonov et al. [V39] present a design where two virtual machines are running on the 
same hardware platform:  

• One private virtual machine is isolated from the outside world (e.g. internet). It executes 
trusted processes and contains sensitive data. Even if the guest operating system is 
untrusted, the isolation provided by the hypervisor makes the run processes trusted.  

• One public virtual machine is connected to the internet. It can only communicate with 
the private virtual machine by means of a restricted set of RPCs (Remote Procedure 
Calls).  

Yih Huang et al. [V40] present a framework for tracking application interactions while putting 
each application in a different virtual machine, using operating-system level virtualization.  

Application tracking and monitoring can be made by running all programs in a virtual 
machine and the monitor in another one, in order to provide a good security. However with 
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full virtualization, such a solution may create a significant overhead because of the frequency 
of VM Entries and Exits. Monirul Sharif et al. [V41] propose a new design, where the monitor 
is located in the same virtual machine as the system to be monitored, but in a separate 
hypervisor protected guest address space. Such a design has been made possible by 
hardware support for virtualization (e.g. Intel VT). Such a design offers the same level of 
isolation between the monitor and the monitored system, without overhead due to virtual 
machine switches (i.e. entries and exits) when an event triggers the monitor (only one virtual 
machine exists). They analysed the security of their design and implemented a prototype 
over KVM, whose evaluation showed very satisfying results.  

Haibo Chen et al. [V42] propose a solution based on virtualization to apply patches and 
upgrades on an operating system kernel while it is running, i.e. without service interruption 
(live update). The main idea is to run the system over a hypervisor and let the guest 
operating system initiate the live update by means of a hypercall. Therefore the guest 
operating system will remain blocked until the end of the live update, guarantee the atomicity 
of this operation. If the update is short, no service interruption will be noticed. They designed 
the whole framework and implemented a prototype for Linux over Xen. The measured 
overhead is negligible.  

Youssef Laarouchi et al. [V43] explore the possibility to run the same application on different 
operating systems at the same time, so that in case one operating system is corrupted, 
leading to a wrong output from one instance of the application, this problem will be detected 
by comparison of the outputs. This improves the dependability of the application.  

2.2.6 Particularities of our work 

Only a few scientific studies about server virtualization and real-time have been done for the 
moment. Apart from the fact that our work is applied to a very concrete problem coming from 
an industrial company, its scientific part (evaluation of existing virtualization products) is 
singular. To our knowledge, this work is the first one with following particularities:  

• It focuses not only on mean performance but also on predictability and real-time. 
When measuring a throughput, the deviation of this throughput over the time is taken 
into account. We measured maximum latencies instead of mean latencies. Isolation 
has also been carefully evaluated.  

• The indicators we defined to evaluate virtualization products are much stricter than 
those usually used for this purpose.  

• Care has been taken in order to define precise indicators and fine-grained tests to 
measure them. All precautions have been explained.  

• All tests are documented, reproducible and easily portable. They are designed to be 
reused.  

• In particular a phenomenon similar to "Heisenbugs" has been taken into account when 
implementing evaluation tools: a computer system has a different behaviour while 
being under test or observation because it takes an active part in this observation. 
Firstly we reduced as much as possible this active part. Secondly we made sure that 
this distortion can only lead to worse results when evaluating a system.  

• We didn't focus on one particular virtualized resource. We evaluated CPU, RAM, 
hard-disk, networking and graphical interface.  
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2.3 Requirements 
Nomenclature:  
 
Throughout this chapter the term 

shall specifies a requirement that is mandatory  

should specifies a requirement that is highly desirable.  

may specifies an optional requirement.  

2.3.1 Technical Requirements 

2.3.1.1 From Customers 

The System Requirements Specification (SRS) for an AFTN/AMHS System [A4] describes 
the requirements for a system for the transmission, processing, and storage of aeronautical 
messages in connection with international AFTN and AMHS related networks and in 
compliance with the relevant ICAO recommendations. Only the following subset of these 
requirements may be compromised by the virtualization of the hardware and have to be 
taken into account during the next steps of the project. All other requirements from the 
document [A4] are unaffected by the project.  

2.3.1.1.1 ATS Message Switching Centre 
(1) The system shall be configurable to be able to exchange messages via AFTN, AMHS 

and a combination of both without discontinuities in the reception and transmission of 
messages.  

(2) The system shall be capable to synchronise with external NTP time servers. 

2.3.1.1.2 System Management 
(1) The system shall implement continuous supervision of the health state of all system 

components. 

(2) The system shall implement fault and error management and shall log all faults and 
errors in an appropriate log.  

(3) This log shall comprise a configurable period of time (not less than one month). 

(4) The system shall be able to automatically switchover or re-assign resources upon 
detection of a fault.  

(5) A switchover or re-assignment shall not take longer than ten seconds.  

(6) The system shall be able to perform automatic re-initialisation (e.g. reboot of the 
affected system components) upon detection of a fault.  

(7) Pending message transactions including message queues shall be restored in less 
than five minutes.  

(8) It shall be configurable whether a re-initialisation is performed or not and with or 
without traffic recovery. 
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(9) A complete re-initialisation (e.g. after power failure) shall not take longer than ten 
minutes. 

(10) The system shall collect diagnostic and statistical information of the various system 
components.  

2.3.1.1.3 Reliability, Maintainability and Availability 
(1) The system shall be available 24 hours per day / 7 days per week. 

(2) The total availability rate of the system shall be greater than 99.999%.  

(3) The values indicated in the offer shall be based on the study of existing operational 
systems. 

(4) The hardware shall be deployed in a redundant way that allows exchange of 
components of the operational system without interruption of service.  

(5) There shall be no single point of failure in the system. Databases used for online 
traffic storage and configuration data shall be clustered without shared use of 
hardware and software modules. LAN and WAN adaptors shall be redundantly 
implemented in hot-standby configuration.  

(6) The offer shall detail the procedures for recovering from failure situations in terms of 
rapid system re-installation. 

(7) The offer shall detail the Mean Time Between Failures (MTBF) and the Mean Time 
to Repair (MTTR) predictions for the system. 

2.3.1.1.4 Performance and Sizing 
(Those values are the ones used for "standard" customers. Some customers may have 
stricter requirements.) 

(1) The system shall support an average message input rate of 20 messages per 
second with a mean input-output ratio of 1:2 with no accumulation of messages 
within the system.  

(2) With a mixed message input of AFTN and AMHS/X.400 messages, the system shall 
support an average message input rate of at least 20 AFTN messages and at least 
20 AMHS/X.400 messages. 

(3) This means, with AFTN messages only, that the system shall support an average 
message input rate of 20 AFTN messages per second; with a mixed message input, 
the system shall support a sustained message input rate of 10 AFTN and 10 
AMHS/X.400 messages per second. 

(4) The system shall operate with the average message input rate with any 
combination of message addressees. 

(5) The AFTN/AMHS gateway shall support the simultaneous transformation of 20 
AFTN to AMHS messages per second and 20 AMHS to AFTN messages per 
second. 

(6) The message transfer time within the system shall not exceed 1 second operating 
at the sustained message input rate. 

(7) The system shall be able to process a peak load which is three times the average 
load detailed above for at least one hour without queuing of messages. 
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(8) The requirements above base on the following message profile: 

• average message text size: 1.500 bytes; 

• minimum message text size: 100 bytes; 

• maximum message text size: 15.000 bytes. 

(9) For the purpose of performance testing, the tenderer shall apply an appropriate 
message mixture in order to achieve the average, minimum, and maximum 
message text sizes above. 

(10) The response time for operator commands shall be less than 500 ms under 
average load and less than 1000 ms under peak load conditions (excluding 
database retrievals).1 

2.3.1.1.5 Redundant and Single System Operation 
(1) The system shall be configurable to work as one redundant system or as two single 

systems (e.g. a single system for testing and a single system for training purposes).  

(2) Each single system shall provide the full system functionality. 

(3) The system shall be able to automatically and manually switchover or re-assign 
resources upon detection of a fault. A switchover or re-assignment shall not take 
longer than ten seconds. Pending message transactions shall not get lost. 

(4) It shall be possible to split a redundant system into two single systems by means of 
configuration only.  

(5) No hardware modifications shall be necessary for such splitting. 

2.3.1.1.6 CADAS-ATS 
(Those values are the ones used for "standard" customers. Some customers may have 
stricter requirements.) 

 

(1) The AMHS UA Terminal System shall be able to run 50 simultaneous terminal 
sessions at a total load of 20 user message transactions per second. 

2.3.1.1.7 Hardware Components and Power Supply 
(1) The system shall consist of the following components: 

• two AFTN/AMHS servers, operated in main/hot standby configuration; each of 
the servers shall be equipped with a redundant disk array (RAID 1 or RAID 5 
configuration); 

• [...]  

(2) Uninterrupted power supply (UPS) with a capacity to supply the AMHS switch and 
its peripherals during power failure for one (1) hour shall be provided. 

                                                 
1 This requirement originally concerns the operator's working positions (i.e. workstations, see chapter 
2.1.1 Comsoft products) and thus not our study. We decided to apply it to the servers too and to keep 
it in mind for the evaluation of our implementation.  
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2.3.1.1.8 Other Requirements 
(1) In addition to the compliance to the requirements as listed above the tenderer shall 

be prepared to demonstrate on request of the contractor its capabilities by a 
practical presentation including all major building blocks of its solution. 

(2) The presentation shall prove the capabilities of the tenderer to cope with the 
requirements of this specification and to comply with them in their entirety. 

2.3.1.2 From Comsoft 

(1) The solution shall be based on servers of the HP ProLiant DL series, and should 
be based on the same servers as those already used to build solutions without 
virtualization, except for some minor configuration details: e.g. the servers may have 
more RAM as usual.  

(2) No unusual hardware component shall be needed.  

(3) The guest operating system (see chapter 2.1.2 Virtualization) shall be a Red Hat or 
a Fedora distribution, and should be the same as the one used for a solution 
without virtualization.  

(4) The guest operating system kernel shall not be recompiled but the default kernel of 
the distribution shall be used, in order to benefit from the safety assessment of the 
distribution.  

(5) Existing software components shall not need any modification to be compatible with 
the new solution, except configuration components.  

(6) New software components needed for this project shall benefit from an extensive 
support, either from a significant company or from a large community.  

2.3.2 Commercial Requirements 

(1) The solution should generate savings on purchase in comparison to a classical 
solution. If not, the investment shall be reasonable, so that savings can be expected 
thanks to a lower energy consumption on the long view.  

(2) The solution may generate savings concerning the assistance and maintenance 
services from HP.  

2.3.3 SWAL 3 

SWAL 3 stands for Software Assurance Level 3 and is one aspect of the Recommendations 
for Air Navigation Systems Software. [A3] These recommendations imply following 
requirements:  

(1) This document shall demonstrate the fulfilment of each mentioned requirement: a 
traceability between each requirement and each justification shall exist.   

(2) The version of each software element of the final implementation shall be 
mentioned.  
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3 Design 
In the course of this study, we focus on the systems AIDA-NG, CADAS-ATS and CADAS-
IMS (see chapter 2.1.1 Comsoft products).  

3.1 Existing design 

 
Figure 3-1: Architecture of a standard Comsoft solution 

The architecture of a standard Comsoft solution based on those three systems/products 
looks like the figure 3-1. It may seem complicated at first but it's actually quite simple:  

• each system runs on two different hardware platforms, to ensure redundancy;  

• each system runs on its own set of hardware platforms, in order to guarantee that the 
performance requirements are fulfilled (see chapter 1.1 Motivation). The goal of this 
study is to reduce the number of hardware platforms.  

• All hardware platforms communicate together by means of the ELAN (see chapter 
2.1.1 Comsoft products). To ensure redundancy the ELAN is composed of two 
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switches connected to each other1 and every hardware platform is directly connected to 
both switches (that is why there are 12 orange cables).  

3.2 New design 

 
Figure 3-2: Design of the new solution 

Figure 3-2 shows the design of the new solution. This design is optimal because it has the 
minimal number of hardware platforms (two is the minimum in order to ensure hardware 
redundancy) and still fulfils following constraints:  

• the two instances of each sub-system are running on different hardware platforms; 

• all physical components of the ELAN and ILANs are redundant, like in the classical 
solution;  

• the influence of a system on another is limited by the existence of virtual machines and 
by the virtualization layer (the ability of virtualization products to create this isolation is 
evaluated in chapter 3.5 Evaluation).  

                                                 
1 The link between both switches is redundant. The switches have to be configured so that this 
redundant link doesn't create a loop in the network.  
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As you can see in figure 3-2, the virtualization must have a mechanism to virtually connect 
the virtual network interfaces to the physical ones. Please note that redundancy for the virtual 
network interfaces is pointless (if the virtualization layer crashes, all virtual NICs crash) and is 
not needed by the software part: in a classical solution, bonding interfaces in hot standby 
mode1 are created, so that the software part doesn't even "know" that all interfaces are 
doubled (for example the software part of AIDA-NG only sees one network interface to the 
ELAN).  

If the virtualization layer supports an equivalent to this Linux bonding, being able to connect 
one virtual interface to two physical ones, the number of virtual network interfaces can be 
reduced:  

 
Figure 3-3: No redundancy for virtual NICs 

Pros of letting the virtualization layer ensure the bonding functionality:  

• simplification of the virtual cabling; 

• the problem detection is done at a lower level: it may reduce the reaction time. 

Con:  

• the guest virtual machine is not aware that a physical link is down 

From the previous design we can deduce that:  

• three virtual machines will be created on each hardware platform; 

• the maximum number of virtual NICs for one virtual machine is five;  

• each hardware platform needs nine physical NICs.  

                                                 
1 A Linux bonding interface is a logical interface based on several physical ones for transparent 
redundancy. Hot standby and load balancing modes are supported. [C21] 

Hardware platform 

Sub-system 

NIC  

Virtual machine Virtual NIC 

Virtual RJ-45 cables 

SERVER 1 

AIDA-NG 1 

CSS A RSS 1 

CADAS-ATS 1 

MH 1 TS 1 

CADAS-IMS 1 

DB 1 AS 1 WS 1 

  WAN      AIDA-NG ILAN               CADAS-ATS ILAN                ELAN                   CADAS-IMS ILAN 
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3.3 Compliance with the requirements 
With this new design, following requirements are fulfilled:  

Requirement Summary Justification of the compliance 

2.3.1.1.1.(1) System configurable to 
exchange aeronautical 
messages without interruption.  

- Possibilities and configurability of the system 
unchanged. 

- Redundancy of all components. 

2.3.1.1.3.(4) 
2.3.1.1.3.(5) 

Redundant hardware and 
exchange of components 
without interruption of service. 
No single point of failure.  

- Redundancy of all components. 
- One instance of each software component on 

each hardware platform. 

2.3.1.1.5.(1) System configurable to work as 
one redundant system or as two 
single systems.  

- The system is composed of two hardware 
platforms which can be used separately. This 
change needs as much effort as without 
virtualization.  

2.3.1.1.5.(2)  Each single system provides all 
functionalities.  

- One instance of each software component on 
each hardware platform. 

2.3.1.1.5.(4)  
2.3.1.1.5.(5)  

Splitting the system doesn't 
require any physical modification 
(e.g. change to the cable layout) 

- The system is composed of two hardware 
platforms which can be used separately. This 
change needs as much effort as without 
virtualization.  

- Some cables are now "virtual" and some parts 
of the cable layout can be changed virtually, 
which even extends the possibilities.   

2.3.1.2.(2) No unusual hardware 
component needed.  

- See figures 3-1 and 3-2.  

Table 3-1: Fulfilled requirements 

Note: The compliance of the new design with some requirements is based on the fact that 
the current Comsoft design also fulfils these requirements.  
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3.4 Comparison of virtualization products 
In this chapter, we compare different virtualization products in order to select those which are 
most likely to fulfil our requirements. Their evaluation is made in chapter 3.5 Evaluation.  

3.4.1 VMware Infrastructure 

VMware is a company with more than 7000 employees and 1.9 billion USD revenue in 2008, 
located in California and founded in 1998. [VV1] Its solution for server consolidation is 
VMware Infrastructure. [VV2] This solution is available in three editions:  

• Foundation Edition includes the following products (description below):  
• the hypervisor ESX or ESXi (full virtualization + paravirtualization); 
• vCenter Server Agent; 
• Update Manager; 
• Consolidated Backup.  

• Standard Edition includes: 
• the products already included in the Foundation Edition; 
• High Availability. 

• Enterprise Edition includes:  
• the products already included in the Standard Edition; 
• VMotion and Storage VMotion (migration of virtual machines); 
• DRS (resource management) and DPM (power management).  

ESX is a hypervisor based on Linux, providing several tools, whereas ESXi is a thinner 
hypervisor, not running on top of an operating system. Therefore ESXi offers better 
performance, security and reliability, and a smaller footprint due to a smaller code. [VV3] The 
tools provided by ESX can also be used with ESXi with the help of a special virtual machine 
named vSphere Management Assistant, available for free. [VV4]  

Both hypervisors provide abstractions of the processor, the main memory, storage devices 
and networking, allowing to establish minimum, maximum and proportional resource shares 
for those resources. They require a 64-bit architecture1 and use hardware-assisted 
virtualization (see appendix A Implementing full virtualization), supporting for example the 
Extended Page Tables from Intel VT-x. [C14] [V5] They support large memory pages, TCP 
Segmentation Offloading (TSO), TCP checksum offload2 and Jumbo Frames. They can also 
make use of paravirtualization to improve performance of some devices. Paravirtualization 
for Linux guests is supported since Linux Kernel 2.6.21.  

Note: Fedora 11 uses a 2.6.30 Linux Kernel.  

                                                 
1 The current versions (ESX 4.0 and ESXi 4.0) require a 64-bit architecture. For 32-bit architectures 
ESX 3.5 and ESXi 3.5 can be used.  
2 TSO and TCP checksum offload let some operations (performed on TCP packets) be done by the 
network device itself instead of the processor. These techniques allow to reach a 1 or 10 Gb/s 
throughput with a low CPU usage.  
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ESX and ESXi support up to 1 TB of main memory and up to 255 GB can be assigned to 
each virtual machine. With the vSMP product, ESX and ESXi allow one virtual machine to 
run on top of up to eight physical processors1 simultaneously. [VV5] 

The VMDirectPath technique (a.k.a. Passthrough) allows to assign a physical hardware 
device (most PCI devices are supported) to one particular virtual machine so that it can 
directly access it. In such case VMotion can't be used.  

Memory overcommitment, a technique allowing to assign more RAM to virtual machines than 
available (among other possibilities) [VX5], is also supported. With this technique, it is 
possible to allocate 12 GB (virtual) RAM to each virtual machine on a host that only has 12 
GB. The advantage is that each virtual machine is able to use nearly the whole RAM, 
provided that the other virtual machines aren't using much memory at the time (otherwise the 
hypervisor has to swap out some virtual pages to the hard disk [C7]). Without memory 
overcommitment and with three virtual machines, you could only assign 4 GB RAM to each 
virtual machine, preventing them from using more, even if you can guarantee that they won't 
need more than 4 GB at the same time.2 

Several powerful APIs (Application Programming Interfaces) are available to automate 
operations and manipulate the virtualization layer from a virtual machine or from the network: 
VIX API, vSphere CLI and vSphere PowerCLI. ESX and ESXi are also supported by libvirt (a 
standard open source project of virtualization API supported by Red Hat). [VK5] 

VMware gives us to understand that ESX and ESXi are optimized for the Oracle database, 
which can be interesting for Comsoft, since some projects based on the product CADAS-IMS 
(see chapter 2.1.1 Comsoft products) use this database. [VV3] Moreover, HP and Intel 
recommend VMware3. [VV29] [VV30] Some VMware products can be bought directly from 
HP.  

The additional products only available in the Standard Edition and the Enterprise Edition are 
not necessary for our projects: Comsoft has already implemented itself mechanisms for High 
Availability, and the ability to migrate running virtual machines from one platform to another is 
out of scope. VMware DRS (Distributed Resource Scheduler) has been designed for 
datacenters, in order to perform a dynamic load sharing over all available resources. It isn't 
needed here. VMware DPM (Distributed Power Management) is a module of DRS making 
the resource scheduler aware of energy consumption.  

vCenter Server provides a centralized solution to manage several hosts. It isn't needed, 
because VMware vSphere Client is already provided with ESX and ESXi. vSphere Client is a 
Windows software allowing to manage a single host4. Several instances of vSphere Client 
can be run at the same time, so that one management computer can be used to configure 
several hosts at the same time. VMware Update Manager is a product for automating 
updates of VMware products. It isn't necessary because:  

• The Comsoft policy is to deliver itself the software updates. Comsoft knows exactly the 
version of all software components deployed on all customer sites. Comsoft may want 

                                                 
1 We are talking about eight microprocessors, not cores or execution units. See chapter 3.5 
Evaluation.  
2 This technique also allows to allocate e.g. 64 GB to one virtual machine, even if the host only has 12 
GB RAM. This strategy will make the hypervisor swap pages out to the hard disk instead of the guest 
operating system. It may be more effective, since the hypervisor is more aware of the underlying 
hardware than the guest. Another aspect of this technique is to allow virtual machines to share 
common/identical pages to free space in the main memory.  
3 Comsoft solutions are based on HP servers with an Intel architecture.  
4 Comsoft accepts to deliver a management computer running Microsoft Windows and dedicated to 
the administration of the hosts.  
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to integrate the deployment of VMware updates to its Comsoft Configuration 
Management Suite (see chapter 2.1.1 Comsoft products).  

• In case Comsoft wants to use a VMware software to download and apply the latest 
patches for ESX and ESXi, vSphere Host Update Utility is delivered with ESX and ESXi 
and is highly sufficient.  

VMware Consolidated Backup is a product allowing to backup virtual machines, with a lot of 
features. This is not needed for this project. Moreover, if a customer exceptionally wants to 
save a virtual machine, it can be done with vSphere Client.  

In general, tools provided by the Foundation Edition are only needed to administrate a 
datacenter with a lot of hosts and guests. This is not the case in this project.  

ESXi is available with a free license. When using this free license, ESXi is limited, so that it 
can't support migration features, high availability and all other features described as useless 
for this project. It's also limited to 4-way SMP (the hardware platform used by Comsoft has 
only two processors, see chapter 3.5 Evaluation), to 6 cores per processor (we only have 4 
cores per processor) and to 256 GB RAM (we only have 12 GB). This free version provides 
vSphere Client and vSphere Host Update Utility, and seems to be adapted to this project.  
Note: The APIs described before should be supported by the free version of ESXi. However 
this point is unclear and some of them may be blocked. We didn't find any categorical 
document on this point.  

3.4.2 Other VMware products 

VMware's other two main virtualization products are: [V1] 

• VMware Server: this hypervisor is just an application running on top of a host 
operating system. This product is available for free and is presented by VMware as a 
"display case" so that companies can experience the advantages of virtualization 
before buying VMware Infrastructure (based on the more powerful ESX and ESXi). 
[VV6] [VV8] Therefore VMware Server shouldn't be used for this project.  

• VMware Workstation: this product is designed to provide virtualization in a convenient 
way for the desktop. It isn't designed for server consolidation but to provide an easy 
way to run desktop applications on different operating systems on the same physical 
platform at the same time. Therefore VMware Workstation shouldn't be used for this 
project. [VV9] 

3.4.3 Xen Hypervisor 

Xen is originally a virtualization project started by Ian Pratt at the University of Cambridge 
and is now maintained by the company XenSource [VX3] [VX4], which has been acquired by 
Citrix Systems in 2007. Citrix is a company with more than 4 620 employees and 2.5 billion 
USD revenue in 2007, located in Florida and founded in 1989. Citrix focuses on virtualization 
products.  

Xen Hypervisor (full virtualization + paravirtualization) is a free and open source hypervisor 
running on top of a Linux system (host operating system) [VX4], which makes it compatible 
with a lot of hardware (Xen thus inherits the compatibility of the host operating system) but 
probably generates more overhead than a thinner hypervisor like VMware ESXi. XenSource 
claims that Xen Hypervisor is "exceptionally lean with less than 150 000 lines of code" [VX1], 
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but given that it's based on Linux and therefore enjoys a lot of kernel and driver code already 
written, we actually find that 150 000 lines are a lot.  

It supports Intel VT-x and AMD-V to run unmodified guest operating systems with hardware-
assisted virtualization since Xen 3.0. (See appendix A Implementing full virtualization) [VX4] 
[VX6] It can also run on other platforms without hardware support, making use of 
paravirtualization. (See chapter 2.1.2.2 Virtualization Techniques) Xen can run on both 32-bit 
and 64-bit architectures. Paravirtualization may lead to better performance but implies a 
modification of the guest operating system, which can be a violation of the requirement 
specifying that the default guest operating system's kernel has to be used. (See chapter 
2.3.1.2 From Comsoft) Xen supports up to 64-way SMP and Intel PAE (Physical Address 
Extension) and therefore supports up to 64 GB RAM on a 32-bit platform. Memory 
overcommitment is not supported yet. [VX5] 

Xen is supported by Intel [VX6] but seems to be abandoned by Red Hat1, which now 
supports KVM. [VX10] Xen support was removed from Fedora since Fedora 9, but will 
probably come back in Fedora 13 [C18] with an additional tool to migrate a virtual machine 
from Xen to KVM.  

Several CPU schedulers are available for Xen, some of them being soft real-time schedulers. 
[VX7] However a soft real-time scheduler is not absolutely needed on the virtualization layer, 
since the scheduling strategy we need is actually simple and is often achieved with a 
classical time-slice scheduling [C9]: each virtual machine should be guaranteed to get a 
minimal amount of the CPU time under all circumstances if it needs it.  

On the networking side, Xen allows to limit the outgoing bandwidth of a guest, like ESXi. [V8] 
The support for TCP Segmentation Offload seems not to be completely stable and effective 
yet. [VX9] [VX8] Up to eight virtual network cards per virtual machine can be created since 
Xen 3.1 (the limitation was set to three in the previous versions), which is enough (see 
chapter 3 Design).  

Xen has an equivalent of VMDirectPath (Passthrough) to assign a PCI device directly to a 
virtual machine. [VX8] The support of large pages is unclear.  

Xen Hypervisor seems to be adapted to this project.  

3.4.4 QEMU   . 

QEMU is open source and can be used as a complete machine emulator or as a hypervisor 
(full virtualization, using hardware support if available or dynamic recompilation). [VK4] 
QEMU achieves better performance when used as a hypervisor, and this is the way KVM 
uses QEMU.  

3.4.5 KVM      . 

KVM (Kernel-based Virtual machine Monitor) is a free and open source virtualization project 
originally created by the company Qumranet but now owned by Red Hat. [VK3]  

It's based on QEMU and needs hardware support (Intel VT-x or AMD-V). It runs on top of a 
host Linux operating system (it's a kernel module from the mainline Linux) but the strategy of 
KVM is to merge the hypervisor and the host operating system as much as possible to avoid 
superfluous operations. [VK6] Like Xen and VMware ESXi, it virtualizes the CPU, the main 
memory, the hard-disk drives and the network cards. KVM can also make use of 

                                                 
1 Comsoft solutions are based on the Fedora distribution from Red Hat.  
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paravirtualization to improve performance for some devices (network, hard-disk, main 
memory, etc.), using Virtio. [VK3] Memory overcommitment is still under development.  

Virtual processors appear to be normal threads in the host operating system, [VK6] so if all 
virtual machines have the same amount of virtual processors, they should get the same 
amount of physical CPU time. It's the only way to configure CPU utilization.  

KVM allows the Passthrough technique on platforms equipped with the Intel VT-d 
technology. [VK7] Our platforms have this technology. [C14] 

3.4.6 Linux VServer 

Linux VServer is an open source project of operating system-level virtualization (a.k.a. 
Partitioning, see chapter 2.1.2.2 Virtualization Techniques). The project started in 2001. 
[VS1] Even though VServer is a well known project, it doesn't benefit from as much support 
as ESXi, Xen or KVM.  

With operating system-level virtualization the host and the guest share the same kernel. 
Thus it's important that VServer can be used with Fedora and without the need to recompile 
the kernel, because of the requirements. (See chapter 2.3.1.2 From Comsoft) This is actually 
the case: VServer can be installed on Fedora by means of simple RPM packets. [VS2] 

The overhead induced by this solution should be only about 1-2 %, because of its nature: 
operating system-level virtualization. Most resource usage can be limited, even if the way to 
do it sometimes seems a little complicated or vague. [VS1] Linux VServer relies entirely on 
the different standard Linux disk schedulers ("noop", "anticipatory", "deadline" and "cfq") and 
doesn't provide any additional way to limit disk I/O. It is unfortunately not sufficient for this 
project (see chapter 2.1.1 Comsoft products).  

VServer doesn't provide the possibility to create virtual network devices. "Networking is Host 
Business" [VS1], which removes a lot of flexibility. It doesn't seem to provide any API and 
isn't supported by libvirt. [VK5] 

3.4.7 OpenVZ. 

Like VServer, OpenVZ is an open source project of operating system-level virtualization. 
[VZ3] OpenVZ is the basis for Parallels Virtuozzo Containers, a commercial virtualization 
product. When Parallels started the Virtuozzo project, they had to bring modifications to the 
Linux kernel, with the obligation to make those modifications public (open source), because 
of the GPL license of the Linux kernel. OpenVZ is therefore the open source part of 
Virtuozzo. The first version was released in 2001. Virtuozzo is nowadays a common solution 
for web server virtualization, widely used by companies offering web hosting services.  

OpenVZ is based on a special Linux kernel, which makes it unadapted to this project. 
[VZ3] However we can imagine that in a few years OpenVZ might appear as a simple 
collection of kernel modules. Comsoft should keep a watch on this project, because it 
seems very promising.  

The overhead induced by this solution should be close to zero, like Linux VServer. Amount of 
CPU time can be limited for each container and is anyway assigned on a container basis (not 
on a thread basis). [VZ2] A special I/O scheduler has been introduced, on a container basis, 
guaranteeing that no container can saturate an I/O channel. [VZ4] The whole networking part 
of OpenVZ is much more oriented towards the configuration of each container than VServer, 
thus offering an advanced virtual networking functionality. The amount of main memory for 
each container can be limited. OpenVZ is supported by libvirt. [VK5] 
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3.4.8 Other virtualization products 

Other more or less known virtualization products exist. User Mode Linux (kernel in user 
mode) is for example a special guest Linux kernel running as a normal application over a 
(host) Linux. [V1] (See chapter 2.1.2.2 Virtualization Techniques) Because the guest kernel 
isn't a standard Fedora kernel, this solution isn't adapted to the project.  

Microsoft has virtualization products too. Its product for server consolidation is Virtual Server 
(the last version being 2005 R2 SP1). [VM1] This product wasn't retained, for several 
reasons:  

• In the domain of air safety, a system whose main part relies on Microsoft Windows is 
often frowned upon. This argument may not seem impartial but the fact is: it can lead to 
marketing problems, even if the system is stable. And Microsoft Virtual Server runs on 
top of Microsoft Windows.  

• It would have been worth evaluating this solution if some technical aspect made it 
particularly different from other solutions but that isn't the case.  

• In the FAQ [VM2], Microsoft claims that some versions of Linux as guest operating 
system are supported but the page describing the product doesn't even mention it. 
[VM1] 

• Some limitations like "the guest operating system must be 32-bit" or "the guest 
operating system can run only on one processor" (no virtual SMP) let us think that 
Virtual Server is not a mature product yet. The reason for this limitation is easy to 
guess: only the latest beta versions of Virtual Server support hardware assisted 
virtualization. [VM3] 

An other product by Microsoft is Windows Virtual PC, which is a desktop virtualization tool. It 
doesn't support Linux as a guest operating system, but it may work.  

The company VirtualLogix created a "real-time hypervisor" named VLX. [V46] But this 
product doesn't seem to benefit from extensive support and a large user group. Real Time 
Systems GmbH [V47] and KUKA [V48] developed their own real-time hypervisor too, but it 
doesn't seem to have sufficient support and user group either.  

National Instruments developed a real-time hypervisor too, which may benefit from extensive 
support, but the only supported guest operating systems are Windows XP and LabVIEW 
Real-Time. [V49] 
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3.4.9 Conclusion 

 ESXi Xen KVM VServer OpenVZ

Hardware support √ √ √   

Device paravirtualization √ √ √   

Thin virtualization layer + - ~ ++ ++ 

Configuration of CPU utilization √ √ x ~ √ 

Configuration of main memory allocation √ √ √ ~ √ 

Configuration of hard-disk allocation √ √ √ √ √ 

Virtual networking √ √ √ x √ 

Passthrough √ √ √   

TCP Segmentation Offloading √ ~ ? √ √ 

Large Pages Support √ ~ ? √ √ 

Support at least 12 GB RAM √ √ √ √ √ 

Memory overcommitment √ x x   

Virtualization API √ √ √ x √ 

Supported by a large community ++ ++ ++ ~ + 

Free ~ √ √ √ √ 

No compilation of the guest kernel √ √ √ √ x 

Quality and coverage of the documentation + ~ ~ - ~ 

Table 3-2: Comparison of different virtualization products 

Only three products may be suited to our project: ESXi, Xen and KVM. Considering the time 
available for this study, we had to select two of them. ESXi seems to be the best candidate 
and was obviously selected. The choice between Xen and KVM was not easy but KVM was 
selected for two main reasons:  

• The thin virtualization layer of KVM makes us think that we can reach more predictable 
results than with Xen.  

• Comsoft insisted on evaluating KVM because of the recent abandon of Xen by Red Hat 
in favour of KVM (see chapter 3.4.3 Xen Hypervisor).  
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3.5 Evaluation 
After having selected ESXi and KVM, this chapter shows the tests performed, in order to:  

• verify and prove that those products fit our needs; 

• find which one best fits our needs.   

Two identical instances of the following hardware platform were used to perform the tests. 
This platform is an HP ProLiant DL380 Generation 6 [C11] with following characteristics:  

• Processors: 2x Intel Xeon E5520: [C14] [C16] 
• 8 MB unified L3 cache (data + instructions) 
• 2.26 GHz 
• 64-bits 
• per processor: 4 cores / 8 threads 
• per core:  

• 32 KB L1 data cache 
• 32 KB L1 instruction cache 
• 256 KB L2 cache (data + instructions) 

• RAM: 12 GB (6 x 2 GB) PC3-10600R (DDR3-1333) Registered DIMMs 

• Two RAID Controllers: HP Smart Array P410i and HP Smart Array P410.1 [C12] [C13] 
For each of them: 
• 512 MB Battery-Backed Write-Cache 
• RAID 0/1/1+0/5/5+0 
• 2 Channels/Ports (see figure 3-4) 

• Hard disk drives: 16x HP 146GB 3G SAS 10K SFF DP ENT HDD 

• A total of 12 Gigabit network interfaces:  
• Four integrated Gigabit network interfaces 
• Two PCI-Express cards (HP NC364T PCIE 4PT), for each of them:  

• Four Gigabit network interfaces.  

                                                 
1 No document indicates the difference between P410i and P410 or even mentions that they are 
different. We therefore consider that they are identical.  
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Figure 3-4: RAID system in the HP ProLiant DL380 G6 

 
Figure 3-5: Different layouts of the front panel of the HP ProLiant DL380 G6 

With this platform it's possible to execute 16 threads at the same time (in parallel). For now, 
following vocabulary will be used:  

• this platform has two processors (Intel Xeon E5520);  

• each processor has 4 cores; 

• each core has 2 execution units.  

As shown in the next test (chapter 3.5.1.1.1 Overhead on CPU-Bound applications), each 
processor really is able to execute 8 threads in parallel without any loss of speed, so that we 
can consider that each processor has 8 execution units. Each core uses the hyper-threading 
technology1 to be able to run 2 threads in parallel. [C14] [C16] [VV19] 

                                                 
1 Information about this technology can be found in Mikrocontroller und Mikroprozessoren. [C5] 
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3.5.1 VMware ESXi 

We first tested VMware ESXi 4.0.  

3.5.1.1 CPU Utilization 

3.5.1.1.1 Overhead on CPU-Bound applications 
This test aims to measure the approximate overhead when running a CPU-bound [C8] 
program (little or no memory and I/O access) over the hypervisor. We compared the 
execution time of a test program on following platforms:  

• A platform with simply a standard installation of Fedora Core 11 32-bits (i386) [C17], 
without virtualization. This Linux distribution is the most recent one delivered by 
Comsoft to its customers.  

• A platform with VMware ESXi 4.0 Update 1 [VV11]. Here are the relevant parameters 
for this test:  
• 10 identical virtual machines are created, with following parameters: 

• Guest OS: "Other 2.6x Linux-System (32-Bit)"; 1 
• Amount of virtual processors: 8 (maximum value), this means that the guest 

operating system will have the impression that it's working with 8 execution units 
and will be able to run 8 threads in parallel. 

• VMI Paravirtualization support: enabled.  
• CPU/MMU virtualization: automatic.  

• On each virtual machine a standard installation of Fedora Core 11 32-bits is 
performed.  

The maximum amount of virtual processors should be 16, because the htop command 
(interactive process viewer) on the platform without virtualization confirms that a platform has 
16 execution units. It should be possible to make a virtual machine use all of them. ESXi 
could be limited to 8 virtual execution units per virtual machine. This point will be clarified 
further.  

Concerning VMI paravirtualization (Virtual Machine Interface), the document Performance of 
VMware VMI [VV12] shows that this option should bring better performances, and the Linux 
kernel of Fedora Core 11 32-bits supports this feature by default. You can see it by 
displaying the current kernel configuration after having installed Fedora on a machine:  

$ vim "/boot/config-`uname -r`" 

You should find the following line:  
CONFIG_VMI=y 

More information can be found in Enabling VMI in a Linux kernel and in ESX [VV16]. 
Because of a recent announcement from VMware of a phased retirement of the VMI 
functionality [VV17] [VV18], every test will also be performed without VMI paravirtualization 
support (it will be mentioned).  

                                                 
1 Some terms may not be identical with the English version of VMware vSphere Client. We used the 
German version.  
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Structure of the test program: (the full implementation is available on the CD-ROM: 
/eval/cpu/overhead/impl1/) 

create T threads executing 
{ 
 // just the processor is needed: 
 for (i = 0; i < M million; i++); 
} 
wait for the end of each thread; 
display the execution time; 

This test program is CPU-bound because:  

• It's small enough to fit in the instruction cache (L1 instruction cache size = 32KB per 
core [C15]), thus few memory accesses are needed to fetch the instructions.  

• It accesses such a small amount of data that they can fit in the data cache (L1 data 
cache size = 32KB per core [C15]).  

• The only I/O access is the display of the result at the end.  

Of course, this measurement is biased by following imperfections:  

• the test process is not the only process launched on the system. However before 
launching the test as few processes as possible are present on the system and the 
htop command shows that on both systems, only one process is running1 (actually 
htop), and only one execution unit is used (2% usage, actually because of htop). So 
we can reasonably consider that the effect of other processes on the test result will be 
negligible.  

• The processor is regularly "disturbed" by interrupts coming from other components (I/O 
devices, timers...), but as we saw with htop, handling those events requires less than 
1% of one execution unit. We can reasonably consider that this effect is negligible.  

• The test program itself makes some system calls, in order to create threads for 
example, but we will set the parameters T and M (see the previous algorithm) so that 
this effect is negligible (less than 50 threads, in comparison to more than 30 seconds of 
execution).  

• The Linux kernel's scheduler is regularly executed and may execute code triggering 
VM Exits on the system running ESXi (see appendix A Implementing full virtualization), 
but since it happens relatively rarely (for a process with normal priority, the time-slice is 
100 ms, which is very long, especially for such a powerful machine [C9]), it is 
negligible. We could have set the maximum priority to this test program (time-slice = 
800 ms) but, again, this is an approximate test.  

No significant difference is expected between both configurations, since ESXi is not an 
emulator (see chapter 3.4.1 VMware Infrastructure). However, a difference might exist, 
because ESXi has to be executed regularly to schedule the different virtual machines and to 
update their timers [VV10]. The goal of this test is to check that this difference is negligible.  

                                                 
1 htop calls them running tasks but it should actually call them ready&running tasks. A ready task is a 
task ready to be executed but waiting for the processor to do so (not waiting for any resource except 
for an execution unit). A running task is a task being run by a processor. (See [C7] for more details.) 
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Part 1 
The test was run with M = 10 000, different numbers of threads (T) and 5 times for each 
value of T. Here are the results: 

Number of 
threads 

Execution time 
(without virtualization) 

Execution time 
(over VMware ESXi) 

Overhead 

1 30.1 ± 0.5 s (σX = 0.55 s) 31.7 ± 0.5 s (σX = 0.45 s) 5.3 % 

2 30.3 ± 0.5 s (σX = 0.84 s) 31.5 ± 0.5 s (σX = 0 s) 4.0 % 

4 30.9 ± 0.5 s (σX = 0.55 s) 31.5 ± 0.5 s (σX = 0 s) 1.9 % 

8 31.1 ± 0.5 s (σX = 0.55 s) 31.7 ± 0.5 s (σX = 0.45 s) 1.9 % 

12 35.3 ± 0.5 s (σX = 0.45 s) 48.3 ± 0.5 s (σX = 0.84 s) No comparison possible1 

16 35.7 ± 0.5 s (σX = 0.45 s) 64.1 ± 0.5 s (σX = 1.1 s) No comparison possible 

20 47.7 ± 0.5 s (σX = 0.84 s) 79.1 ± 0.5 s (σX = 0.55 s) No comparison possible 

32 72.3 ± 0.5 s (σX = 2.0 s) 126.1 ± 0.5 s (σX = 1.1 s) No comparison possible 

Table 3-3: Overhead on CPU-Bound applications (1 VM) 
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Figure 3-6: Overhead on CPU-Bound applications (1 VM) 

Those results show that:  

• On both systems, each thread is given about 100% of an execution unit to run, as long 
as there are more execution units than threads. Since all threads (of the test program) 
need the same time to complete. The execution of for example 1, 2 or 4 threads on a 
machine with 8 execution units takes exactly the same time. That's why the first part of 
each curve is horizontal.  

                                                 
1 See below. 
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• When there are more threads than available execution units, the time needed to 
execute the whole program is then proportional to the number of threads, if the CPU 
time needed to schedule the amount of threads is negligible.  

• In particular the system with ESXi shows a behaviour amazingly near to the theory 
explained in the two previous points. But the virtual machine only uses 8 execution 
units.  

• The maximum overhead caused by ESXi on a long execution of a CPU-bound 
program in one virtual machine is about 5 % and appears when only one (Linux-) 
thread has to be scheduled, i.e. when only one execution unit is needed.  

• The standard deviation doesn't seem to be increased because of ESXi. ESXi doesn't 
add any significant indeterminism on a long execution of a CPU-bound program 
in one virtual machine.  

Note: the same result has also been obtained without enabling the "VMI paravirtualization 
support" for the virtual machine in ESXi.  

Part 2 
In the second part of this test, the test program is run simultaneously in 3 virtual machines, 
with T = 8 and M = 10 000. This gives us a total of 24 threads. Will ESXi then use the 16 
available execution units?  

• If yes, the expected execution time (without overhead in comparison to the previous 
result without virtualization) is: (see figure 3-6) 

 2.2327 * 24 + 1.2923 = 54.9 s 

• If not (only 8 execution units used), the expected execution time (without overhead in 
comparison to the previous result using ESXi) is: (see figure 3-6) 

 3.9333 * 24 + 0.2333 = 94.6 s  

The three instances of the program should be started at the same time, give or take 0.5 s, to 
keep a sufficient precision. To do so, we synchronize the machines with NTP (Network Time 
Protocol).  

The test program has been modified. Here is its new structure: (the full implementation is 
available on the CD-ROM: /eval/cpu/overhead/impl2/) 

wait until a given time; 
create T threads executing 
{ 
 // just the processor is needed: 
 for (i = 0; i < M million; i++); 
} 
wait for the end of each thread; 
display the execution time; 

The test was repeated 5 times. The results are a mean execution time of 110.4 s and a 
standard deviation of 0.83 s. They show that:   

• ESXi still uses only 8 execution units (otherwise the execution time would have 
been shorter).  

• The mean overhead induced by ESXi on a long execution of CPU-bound programs in 
3 virtual machines is 16.7 % (in comparison to the result with only one virtual machine), 
which is not negligible.  
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• The standard deviation doesn't seem to be increased because of ESXi. ESXi doesn't 
add any significant indeterminism on a long execution of CPU-bound programs 
in 3 virtual machines.  

Note: without enabling the "VMI paravirtualization support" for the virtual machine in ESXi, 
another result has been obtained:  

• better mean execution time: 100.3 s (  6.0 % overhead); 

• worse standard deviation: 1.6 s;  

• as shown in detail in the next part, a preference for one virtual machine (the third one) 
by the scheduler has been observed.  

Part 3 
In the third step, the same test with 10 virtual machines is performed. The expected 
execution time (without overhead in comparison to the execution time in only one virtual 
machine) is: (see figure 3-6) 

3.9333 * (10 * 8) + 0.2333 = 314.9 s 

Here are the results:  

Execution time (± 0.5 s) / VM N° Per test (s)  

1 2 3 4 5 6 7 8 9 10 Mean σX 

1 195.5  196.5 196.5  197.5  191.5 196.5 195.5 192.5 193.5 192.5 194.8 2.1 

2 194.5  196.5 195.5  195.5  190.5 194.5 194.5 191.5 192.5 191.5 193.7 2.0 

3 195.5  193.5 195.5  195.5  191.5 194.5 193.5 191.5 192.5 192.5 193.6 1.6 

4 194.5  193.5 195.5  196.5  192.5 194.5 195.5 192.5 191.5 192.5 193.9 1.6 Te
st

 N
° 

5 194.5  194.5 194.5  195.5  191.5 193.5 195.5 192.5 192.5 191.5 193.6 1.5 

M
ea

n 194.9 194.9 195.5 196.1 191.5 194.7 194.9 192.1 192.5 192.1 

Pe
r V

M
 (s

) 

σ X
 0.55 1.52 0.71 0.89 0.71 1.1 0.90 0.55 0.71 0.55 

Result:  
193.9 s 
(σX = 1.8 s) 

 7.8 % 
overhead 

Table 3-4: Overhead on CPU-Bound applications (10 VMs) 

Those results show that:  

• This time, ESXi uses the 16 execution units. So the expected execution time 
(without overhead in comparison to the execution time without virtualization) with 16 
execution units would have been: (see figure 3-6) 

 2.2327 * (10 * 8) + 1.2923 = 179.9 s 

• The mean overhead induced by ESXi on a long execution of CPU-bound programs in 
10 virtual machines is 7.8 % (in comparison to the execution time without 
virtualization).  
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• The standard deviation per virtual machine is still small but the global one has 
become a little bigger. The mean execution time per virtual machine shows the reason: 
the ESXi scheduler seems to prefer some virtual machines, even if this difference 
remains small. For example, virtual machine 5 always gets more CPU time than 
number 4.  

The problem discovered in this part of the test is that, on this platform, it can't be predicted 
if ESXi will use 8 or 16 execution units, whereas the VMware Compatibility Guide [VV15] 
shows that our platform ("HP ProLiant DL380 G6 – Intel Xeon 55xx Series") is supported by 
our version of ESXi ("ESXi 4.0 Installable U1").  

We tried to change the "CPU Affinity" of the virtual machines (properties / resources / CPU 
advanced) to force some virtual machines to use the 8 first execution units ("0-7") and some 
others to use the 8 last ones ("8-15"). ESXi recognizes that there are 8 cores and accepts 
execution units from 0 to 15, but the number of execution units actually used stays 
unpredictable. We haven't found any document about this problem. Thus we would admit 
that ESXi is unpredictable when used on 2 Intel Xeon E5520 processors when 
Hyperthreading is enabled.  

Part 4 
To bypass this problem, the same tests were run:  

• on the same server, but with hyperthreading disabled in the BIOS (2 processors 
without hyperthreading = 8 execution units); 

• on another G6 server, exceptionally available at that time, having only one Intel Xeon 
E5520 (1 processor with hyperthreading = 8 execution units).  

This part focuses on running the tests on the hardware platform with only one Intel Xeon 
E5520. A note indicates if similar results have been obtained on the other platform (2 
processors without hyperthreading). However two Intel Xeon E5520 without hyperthreading 
may be more efficient than the other platform because:  

• Without hyperthreading, each execution unit has its own L1 and L2 cache (it doesn't 
have to share it with another one), since there is one execution unit per core; 

• With two processors, two MMU are available, since there is one MMU per processor.  
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Here is the result of the comparison between the mean execution time of a CPU-bound 
application on the machine without virtualization and the mean execution time over ESXi 
(one virtual machine):  

Number of 
threads 

Execution time 
(without virtualization) 

Execution time 
(over VMware ESXi) 

Overhead 

1 30.9 ± 0.5 s (σX = 0.55 s) 33.3 ± 0.5 s (σX = 0.84 s) 7.8 % 

2 30.9 ± 0.5 s (σX = 0.55 s) 32.1 ± 0.5 s (σX = 0.55 s) 3.9 % 

4 30.9 ± 0.5 s (σX = 0.55 s) 32.1 ± 0.5 s (σX = 0.55 s) 3.9 % 

8 35.7 ± 0.5 s (σX = 0.45 s) 36.9 ± 0.5 s (σX = 0.55 s) 3.4 % 

12 53.7 ± 0.5 s (σX = 0.45 s) 56.3 ± 0.5 s (σX = 0.84 s) 4.9 % 

16 70.7 ± 0.5 s (σX = 0.45 s) 73.7 ± 0.5 s (σX = 0.45 s) 4.2 % 

20 89.9 ± 0.5 s (σX = 0.89 s) 92.9 ± 0.5 s (σX = 0.55 s) 3.3 % 

32 142.1 ± 0.5 s (σX = 1.5 s) 147.3 ± 0.5 s (σX = 0.84 s) 3.7 % 

Table 3-5: Overhead on CPU-Bound applications (1 VM)  
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Figure 3-7: Overhead on CPU-Bound applications (1 VM) 

This time, ESXi uses as many execution units as available (8 units), as Linux does. 
Conclusions stay about the same as in the first part of this test, which means:  

• On both systems, each thread is given about 100% of an execution unit to run, as long 
as there are more execution units than threads. Since all threads (of the test program) 
need the same time to complete. The execution of for example 1, 2 or 4 threads on a 
machine with 8 execution units takes exactly the same time. That's why the first part of 
each curve is horizontal.  

• When there are more threads than available execution units, the time needed to 
execute the whole program is then proportional to the number of threads, if the CPU 
time needed to schedule the amount of threads is negligible.  
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• The maximum overhead caused by ESXi on a long execution of a CPU-bound 
program in one virtual machine is about 8 % and appears when only one (Linux-) 
thread has to be scheduled, i.e. when only one execution unit is needed.  

• The standard deviation doesn't seem to be increased because of ESXi. ESXi doesn't 
add any significant indeterminism on a long execution of a CPU-bound program 
in one virtual machine.  

Note: the same result has also been obtained without enabling the "VMI paravirtualization 
support" for the virtual machine in ESXi.  

Note: similar results have also been obtained with 2 processors without hyperthreading, but 
slightly better:  

• no significant overhead; 

• shorter execution time, for example about 122 s with 32 threads instead of 147 s.  

Then, like before, the same test is run simultaneously on 3 virtual machines (  total of 24 
threads) with T = 8 and M = 10 000. The expected execution time (without overhead in 
comparison to the execution time in one virtual machine) is: (see figure 3-7) 

 4.5892 * 24 + 0.6509 = 110.8 s 
The results are an execution time of 109.5 s (1.2 % improvement) without deviation. It was 
justified to perform every test again on a machine with only one Intel Xeon processor, 
because the results of the previous parts showed an overhead of about 17% when running 3 
virtual machines, in comparison with the execution time when running only one virtual 
machine. Those new results actually show a better CPU utilization when running 3 virtual 
machines than when running only one (negative overhead).  

The execution time is actually better than with two Intel Xeon E5520 processors with 
hyperthreading enabled. This confirms that for now VMware ESXi doesn't correctly 
support two Intel Xeon E5520 processors with hyperthreading on the same platform.  
Those results also show a high predictability (no deviation was observed). So here again, 
the test leads to the conclusion that ESXi doesn't add any significant indeterminism on a 
long execution of CPU-bound programs in 3 virtual machines.  
Note: the same result has also been obtained without enabling the "VMI paravirtualization 
support" for the virtual machine in ESXi.  

Note: similar results have also been obtained with 2 processors without hyperthreading, but 
slightly better: The execution time is about 91 s, instead of 109.5 s.  

Finally the same test with 10 virtual machines is performed. The expected execution time 
(without overhead in comparison to the execution time in only one virtual machine) is: (see 
figure 3-7) 

4.5892 * (10 * 8) + 0.6509 = 367.8 s 

The results are a mean execution time of 368.0 s, a standard deviation of 1.7 s, and no 
observed preference for some virtual machines. They show that:  

• No overhead has been introduced for the scheduling of 10 virtual machines performing 
a long execution of CPU-bound programs (in comparison to the execution time in only 
one virtual machine).  

• The preference for some virtual machines may have been a consequence of the bad 
handling of our two processors with hyperthreading.  
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• The global standard deviation still remains very small (1.7 seconds in comparison with 
a mean execution time of 368 seconds). We can conclude that ESXi doesn't add any 
significant indeterminism on a long execution of CPU-bound programs.  

Note: the same result has also been obtained without enabling the "VMI paravirtualization 
support" for the virtual machine in ESXi.  

Note: similar results have also been obtained with 2 processors without hyperthreading, but 
slightly better: The execution time is about 310 s, instead of 368.0 s. 

The results of the four parts of this test are satisfactory, except the unpredictable handling 
of two Intel Xeon E5520 processors with hyperthreading.  

3.5.1.1.2 Overhead on system calls 
This test aims to measure the approximate overhead when performing system calls. We 
compared the execution time of a test program on following systems:  

• A system without virtualization (the one used for the previous test, with Fedora Core 
11); 

• A system with VMware ESXi (the one used for the previous test). 

The hardware platform with only one Intel Xeon Processor is still used. Again, a note 
indicates the result with two processors without hyperthreading.  

As described in appendix A Implementing full virtualization, system calls can induce 
overhead while making the guest enter the kernel mode, which has to be handled by the 
hypervisor. The document Performance of VMware VMI [VV12] describes a microbenchmark 
called "getppid" stressing the syscall entry and exit path, thus being able to measure the 
system call overhead.  

This test program is similar to the one used for the previous test, but on each iteration of the 
loop, it issues a getppid system call (returns the process ID of the parent of the calling 
process). Structure: (the full implementation is available on the CD-ROM:  
/eval/cpu/overhead/sysc_mmu/) 

create T threads executing 
{ 
 for (i = 0; i < K thousand; i++) 
  getppid(); 
} 
wait for the end of each thread; 
display the execution time; 

Like for the previous test, we assume that the way the results will be biased by imperfections 
already described is negligible. 
The test was run with K = 100 000, different number of threads (T) and 5 times for each 
value of T. Figure 3-8 shows the results. The measured standard deviation was the same on 
both platforms (max. 0.84 s).  
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Figure 3-8: Overhead on system calls 

Those results show that:  

• VMware ESXi brings an improvement of about 20 % on this microbenchmark running 
as many system calls as possible. The most plausible explanation would be that VMI 
paravirtualization is the cause of this improvement (as explained in chapter 2.1.2.2 
Virtualization Techniques, paravirtualization can lead to a performance better than 
native). But following tests were made on the configuration of the virtual machine in 
ESXi:  
• The parameter "support VMI Paravirtualization" can be set to disabled or enabled, it 

has actually no influence on the execution time. The assumption was wrong.  
• Setting the parameter "CPU/MMU-Virtualization" to "Automatic", "Intel VT-x/AMD-V 

for the virtualization of the instruction set and software for the virtualization of the 
MMU" or "Intel VT-x/AMD-V for the virtualization of the instruction set and Intel 
EPT/AMD RVI for the virtualization of the MMU" has no influence on the execution 
time either.  

• Setting this parameter to "software for the virtualization of the instruction set and the 
MMU" leads to a longer execution time (about 120 % overhead) 

 All this just proves that the improvement has nothing to do with instruction set 
virtualization and VMI paravirtualization. But it doesn't prove that Intel EPT is 
responsible for this improvement, just that without it, things get worse. We can't explain 
why virtualization leads to an improvement of system call performance in this case.  

• ESXi doesn't add any significant indeterminism on a long execution of this 
microbenchmark.  

Performing the same test on several virtual machines is not relevant here, because: 

• This microbenchmark is CPU bound: we can assume that the implementation of the 
Linux getppid system call doesn't heavily access the RAM. After this system call has 
been executed once, its result or the data needed to perform it should remain in cache 
memory.  
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• We now already know the behaviour of ESXi when running long CPU-bound 
applications. 

The results of this test are more than satisfactory, because of this unexpected 
improvement.  

Note: with 2 processors without hyperthreading, this improvement hasn't been observed. An 
overhead (max. 9 %) has been observed instead, which is still acceptable, since the 
predictability stayed very high.  

3.5.1.1.3 MMU Performance 
This test aims to measure the approximate overhead when heavily using the MMU1. The Intel 
Xeon E5520 Processor has the Intel EPT functionality (hardware support for MMU 
virtualization, contained in the Intel VT-x technology. [C14] We compared the execution time 
of a test program on following systems:  

• A system without virtualization (the one used for the previous test, with Fedora Core 
11); 

• A system with VMware ESXi (the one used for the previous test). 

The hardware platform with only one Intel Xeon Processor is still used. Again, a note 
indicates the result with two processors without hyperthreading.  

The Linux fork instruction makes a copy of the calling process that differs from it only in its 
identifier and allocated resources (see the fork manual page). Its implementation uses the 
copy on write technique (both processes will share the same memory pages until one of both 
is modified) [C8]. Thus a simple call to fork doesn't need a big access to the memory; it just 
uses the MMU, because one more address space is created. The document Performance of 
VMware VMI [VV12] describes a microbenchmark called "nforkwait" stressing the MMU. It 
makes it possible to measure how good the virtualization of the MMU achieved in ESXi is.  

This test program is similar to the one used for the previous test, but on each iteration of the 
loop, it creates a new process (with a fork system call) and waits for its termination (with a 
waitpid system call). It's also an implementation of the "fw" (fork-wait) test program used by 
VMware to evaluate the performance of Intel EPT Hardware Assist on an Intel Xeon. [VV13] 

Structure of the test program: (the full implementation is available on the CD-ROM: 
/eval/cpu/overhead/sysc_mmu/) 

create T threads executing 
{ 
 for (i = 0; i < K thousand; i++) 
 { 
  fork(); 
  code of the child process 
  { 
   exit(0); // terminate 
  } 

                                                 
1 Memory Management Unit: hardware component (integrated into every Intel x86 processor since 
Intel 80386 [C3]) responsible for translating virtual addresses (one virtual address space per process, 
the word "virtual" has nothing to do with virtualization here) into physical addresses (one physical 
address space per machine) [C5]. With virtualization, one MMU per virtual machine has to be 
emulated if the hardware platform doesn't offer any support (e.g. Intel EPT [VV13] or AMD RVI 
[VV14]).  
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  code of the parent process 
  { 
   wait for the termination of the child; 
  } 
 }  
} 
wait for the end of each thread; 
display the execution time; 

Like for the previous test, we assume that the way the results will be biased by imperfections 
already described is negligible. 
In this test we don't expect the execution time to scale with the number of threads like for the 
previous tests, since there is only one MMU per microprocessor (not one per execution unit).  

The test was run with K = 10, different numbers of threads (T) and 5 times for each value of 
T. Here are the results: 
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Figure 3-9: Overhead on MMU usage 

The test should have been run with a bigger K, so that the execution time is greater than 30 
seconds on both platforms and the results are more precise (as explained in chapter 
3.5.1.1.1 Overhead on CPU-Bound applications), but the execution time would then have 
been huge on the platform using ESXi.  

Those results show a huge overhead. Contrary to what one might expect, the "CPU/MMU-
Virtualization" parameter (allowing to choose between a software-assisted MMU virtualization 
and a hardware-assisted one) has no influence on the result.  

Finally VMI paravirtualization support has been disabled and much better results have been 
obtained: (this time the test has been run with K = 100)  
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Number of 
threads 

Execution time 
(without virtualization) 

Execution time 
(over VMware ESXi) 

Overhead 

1 29.9 ± 0.5 s (σX = 0.55 s) 51.1 ± 0.5 s (σX = 0.55 s) 71 % 

2 34.9 ± 0.5 s (σX = 0.55 s) 63.3 ± 0.5 s (σX = 0.45 s) 81 % 

4 54.1 ± 0.5 s (σX = 0.55 s) 104.5 ± 0.5 s (σX = 0.71 s) 93 % 

8 134.5 ± 0.5 s (σX = 1.2 s) 246.5 ± 0.5 s (σX = 0.71 s) 83 % 

12 239.3 ± 0.5 s (σX = 1.9 s) 424.7 ± 0.5 s (σX = 1.8 s) 77 % 

16 367.5 ± 0.5 s (σX = 2.2 s) 642.1 ± 0.5 s (σX = 4.0 s) 75 % 

Table 3-6: Overhead on MMU usage (without VMI paravirtualization) 
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Figure 3-10: Overhead on MMU usage (without VMI paravirtualization) 

Those results show that:  

• As expected, the execution time doesn't scale well with the number of threads 
(execution time is not proportional to the number of threads), because there is only one 
MMU per processor, which acts as a bottleneck. The curves seem to be polynomial.  

• The overhead is now reasonable but still not negligible. It's important to note that the 
overhead seems to have a maximum, which is about 93 %. 

• ESXi doesn't add any significant indeterminism on a long execution of this 
microbenchmark. (A standard deviation of 4 seconds is actually still small in 
comparison to an execution time of 642 seconds.) 

The important conclusions of this test are:  

• VMI paravirtualization shouldn't be used on this platform; 

• Even if ESXi generates a significant overhead on MMU virtualization, this overhead has 
a maximum and no significant indeterminism is created. Therefore ESXi still seems to 
be a good candidate for this project.   
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Note: with 2 processors without hyperthreading, two MMUs are available, reducing the 
bottleneck. This is why the maximum overhead observed is only 38 %.  

3.5.1.1.4 CPU time distribution 
As shown in chapter 3.5.1.1.1 Overhead on CPU-Bound applications, ESXi distributes CPU 
time equally. This test aims to answer the following question: does "equally" means "equally 
among virtual machines"? 

During a certain time frame (relatively short for a human being and relatively long for a 
microprocessor, usually between 100 milliseconds and a few seconds) each virtual machine 
needs to execute a certain number of instructions1. Depending on how many instructions the 
CPU can execute in this time frame, the need of a virtual machine corresponds to a certain 
amount of CPU time, or fraction of the CPU. If the total CPU need (sum of the needs of all 
the virtual machines) is greater than 100 % (CPU overloaded), the hypervisor has to decide 
how to distribute the CPU time (fairly). Classical strategies for a fair CPU time distribution 
are:  

• Distribute CPU time equally among virtual machines means that when the CPU is 
overloaded, every virtual machine gets the same amount of CPU time, except the ones 
which don't need that much, for example:  

CPU time request (need) CPU time allocation 
 

VM 1 VM 2 VM 3 VM 4 VM 1 VM 2 VM 3 VM 4 

Example 1 100 % 100 % 100 % 100 % 25 % 25 % 25 % 25 % 

Example 2 50 % 50 % 50 % 50 % 25 % 25 % 25 % 25 % 

Example 3 50 % 60 % 70 % 80 % 25 % 25 % 25 % 25 % 

Example 4 10 % 30 % 40 % 60 % 10 % 30 % 30 % 30 % 

Table 3-7: Equal CPU time distribution among virtual machines 

 This scheduling strategy is a way similar to the fair-share scheduling described in the 
book Operating Systems [C7].  

• Distribute CPU time equally among threads means that when the CPU is overloaded, 
the amount of CPU time given to one virtual machine is proportional to its number of 
threads. For example on this hardware platform there are 8 execution units, and all 
created virtual machines are based on 8 virtual CPUs, so they also "see" 8 execution 
units. Normally if one virtual machine has 16 ready threads (waiting for one execution 
unit), the scheduler of its guest operating system will allow only 8 of them to run at the 
same time, thus this virtual machine is only requesting for 100 % of the CPU (8 
execution units), not 200 %. But we can imagine that, with paravirtualization (see 
chapter 2.1.2.2 Virtualization Techniques), the guest operating system indicates to the 
hypervisor its number of ready threads, i.e. its real need. The hypervisor could then 
give CPU time to virtual machines proportionally to their number of ready threads, so 
that each thread gets the same CPU time, for example:  

                                                 
1 We consider that all instructions have the same duration. It simplifies the problem and leads to the 
same result.  
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Number of ready threads CPU time allocation 
 

VM 1 VM 2 VM 3 VM 4 VM 1 VM 2 VM 3 VM 4 

Example 1 8 8 8 8 25 % 25 % 25 % 25 % 

Example 2 16 16 16 16 25 % 25 % 25 % 25 % 

Example 3 8 8 16 32 12.5 % 12.5 % 25 % 50 % 

Table 3-8: Equal CPU time distribution among threads 

• Distributing CPU time among virtual machines proportionally to their needs:  
CPU time request CPU time allocation 

 
VM 1 VM 2 VM 3 VM 4 VM 1 VM 2 VM 3 VM 4 

Example 1 100 % 100 % 100 % 100 % 25 % 25 % 25 % 25 % 

Example 2 50 % 50 % 50 % 50 % 25 % 25 % 25 % 25 % 

Example 3 50 % 60 % 70 % 80 % 19.2 % 23.1 % 26.9 % 30.8 % 

Example 4 10 % 30 % 40 % 60 % 7.1 % 21.4 % 28.6 % 42.9 % 

Table 3-9: Proportional CPU time distribution among virtual machines 

Those three strategies can be considered as fair, but in our project an equal CPU time 
distribution among virtual machines would be preferable. As you can see in the previous 
examples, this strategy is the only one guaranteeing that a virtual machine gets a 
reasonable minimal amount of CPU time (25 % in this example) if it needs it.  

To find out which strategy ESXi implements, several tests have to be run.  

Part 1 
Two virtual machines are created (A and B). The hardware platform with only one Intel Xeon 
processor is used again (8 execution units). Virtual machine A will run the test program 
presented in the first part of chapter 3.5.1.1.1 Overhead on CPU-Bound applications with M = 
10 000 (ten thousand iterations per thread) and T = TA = 8 (8 threads). Virtual machine B will 
run the same program with M = 10 000 and T = TB = 16.  

Let's define following variables and constants:  

• I: number of CPU instructions in one iteration of the loop. 

• yX(t): number of instructions per second the virtual machine X can execute at time t.  

• Y: number of instructions per second the processor is able to execute.  

• uX: time needed to execute the program of the virtual machine X.  
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Expected execution times for each strategy:  

• ESXi distributes CPU time equally among threads: (assumption) 

  
 Let's determine which virtual machine finishes first:  

  
 So if both programs finish at the same time, this means that ESXi distributes CPU time 
equally among threads.  

 
Figure 3-11: Equal CPU time distribution among threads 

• ESXi distributes CPU time equally among virtual machines: (assumption) 
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 Let's determine which virtual machine finishes first: 

  
 Let's determine uB:  

  

  

  

 
Figure 3-12: Equal CPU time distribution among virtual machines 
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• ESXi distributes CPU time proportionally among virtual machines: (assumption) 

 Since both virtual machines have at least 8 threads, they both request 100 % of the 
CPU time. Thus both of them will get the same amount of CPU time (50 %): 

  
Like for the previous strategy, A will finish first and B will need 50 % more time. So if 
the program on virtual machine B needs 50 % more time that the one on virtual 
machine A, this means that ESXi distributes CPU time either equally or proportionally 
among virtual machines. 

This experiment showed that uB = 1.5 x uA: ESXi distributes CPU time either equally or 
proportionally (to what they need) among virtual machines.  
The next experiment should decide between equal and proportional distribution.  

Part 2 
This test is the same as before, but with TA = 4 and TB = 16.  

Expected execution times for each strategy:  

• ESXi distributes CPU time equally among virtual machines: (assumption) 

 Like for the previous test, A finishes first and:  

  

 
Figure 3-13: Equal CPU time distribution among virtual machines 
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• ESXi distributes CPU time proportionally among virtual machines: (assumption) 

• E: number of available execution units on the hardware platform. (= 8) 
• eA(t): number of execution units wanted by A at time t.  

  
 Let's determine which virtual machine finishes first: 

  
 Let's determine uB: 
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Figure 3-14: Proportional CPU time distribution among virtual machines 

The same test has also been done with TA = 4 and TB = 8. Here are the results:  

 Test 1 (TA = 4, TB = 16) Test 2 (TA = 4, TB = 8)

Expected uB/uA if equal distribution 2.5 1.5 

Expected uB/uA if prop. distribution 1.67 1 

Observed uB/uA 2.05 1.28 

Table 3-10: CPU time distribution 

Note: similar results have also been obtained with 2 processors without hyperthreading.  

There are at this point two possible explanations:  

• VMware implemented a scheduling strategy leading to a hybrid CPU time distribution 
(between equal distribution and proportional distribution). However VMware claims to 
implement a scheduler distributing CPU time equally among virtual machines (if no 
CPU reservation or limit is set) in The CPU Scheduler in VMware ESX 4. [VV21] The 
author names it Proportional-Share Based Algorithm (not to mix up with distributing 
CPU time among virtual machines proportionally to their number of threads).  

• The result is biased by some cache effects or scheduling overhead.  

Part 3 
This test aims to quantify the guaranteed amount of CPU time for a virtual machine. 

With an equal distribution of the CPU time among virtual machines, the guaranteed amount 
of CPU time for a virtual machine only depends on the number of virtual machines, so that if 
there are 4 virtual machines, one of them has the guaranty to get 25 % of the CPU if it needs 
it (i.e. two of the eight execution units):  
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Figure 3-15: Equal CPU time distribution among virtual machines 

A proportional distribution of the CPU time among virtual machines delivers less guaranty: if 
there are 4 virtual machines, three of them wanting all execution units, the last one wanting 
only 50 % of the CPU (4 execution units) will only get about 14 % of the CPU: (need / total 
need = 4 / (3 x 8 + 4) = 14.3 %) 
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Figure 3-16: Proportional CPU time distribution among virtual machines 

A proportional CPU time distribution gives advantage to virtual machines running a lot of 
threads, exactly like a normal Linux scheduler giving advantage to applications running a lot 
of threads. In this project, we are looking for a solution that is fair on the virtual machine 
level, not on the thread level, therefore an equal CPU time distribution is highly wanted.  

To measure the real curves of the ESXi scheduler, we use the execution time without 
virtualization as reference. For example, if the program with 4 threads gets run in 20 seconds 
without virtualization (reference time), and if it gets run in 30 seconds with virtualization 
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whereas a second virtual machine needs all execution units, then a virtual machine wanting 
4 execution units will obtain at least 33 % of the CPU time: 

(ref. time / exec. time) x percentage of CPU wanted = (20 / 30) x 50 % = 33.3 %.  

Each test has been done five times. Here are the results:  
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Figure 3-17: ESXi's CPU time distribution among virtual machines 

Those results show that the CPU time distribution done by ESXi it a slightly smoothed 
version of the equal distribution, nevertheless delivering following simple guarantees:  

• with 2 virtual machines, each virtual machine gets at least 37 % of the CPU if it needs 
it;  

• with 4 virtual machines, each virtual machine gets at least 22 % of the CPU if it needs 
it; 

• with 6 virtual machines, each virtual machine gets at least 14 % of the CPU if it needs 
it; 

• with 8 virtual machines, each virtual machine gets at least 10.5 % of the CPU if it needs 
it.  

At this point, ESXi is still suited to this project.  
To go further, ESXi provides the possibility to define a CPU reservation for each virtual 
machine. With this feature, you can assign for example 70 % of the CPU time to one virtual 
machine. This feature is not immediately needed for this project, since we will give the same 
importance to each virtual machine (we just want to use a virtualization technology to 
eliminate the risk that one application makes another one starve), but appendix B CPU 
reservation on VMware ESXi examines this feature and shows that it doesn't work when 
hyperthreading is enabled on our platform.  

3.5.1.1.5 Scheduling 
The hardware platform with only one Intel Xeon Processor is still used. We assume that the 
platform with 2 processors delivers similar results.  
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The idea of this test is simple but its precise implementation is not. The following program 
has to be launched:  

for (i = 0; i < 1 000 000 001; i++) 
{ 
 // calculate the elapsed time between the current iteration and 
 // the previous one:  
 newTime = currentTime(); 
 diff = newTime – oldTime; 
 oldTime = newTime; 
 
 save(diff); // save the result somewhere 
} 
display statistics; 

The main idea is: the elapsed time between two iterations should be constant, except when 
the process is de-scheduled (no execution unit is available for its execution). The goal is to 
evaluate the scheduling strategy1 of ESXi. If this program is running in a virtual machine, 
since it always "wants" to run, the virtual machine also does. The scheduler of ESXi has then 
to decide to give (or not) an execution unit to this virtual machine. This test is supposed to 
answer the following question: If a virtual machine wants an execution unit to run, how 
much time does it have to wait in the worst case?  

However following constraints make the exercise more complicated:  

• On a classical operating system, this process is not the only running one. So if the 
process is de-scheduled, it doesn't mean that the virtual machine has been de-
scheduled by the ESXi scheduler. The process could just have been de-scheduled by 
the scheduler of its operating system (guest operating system) to let another process 
run. Thus running our test in such environment wouldn't make any sense, we need to 
be sure that a de-scheduling of the test program means a de-scheduling of the virtual 
machine. Following solutions are suitable:  
• The program doesn't run on top of a (guest) operating system. The virtual machine 

just boots directly on this program. This solution needs a lot of effort to be 
implemented, because for example we need the program to be able to communicate 
with us to deliver the results, and we would have somehow to develop "drivers" for 
I/O.  

• The program runs on top of a monotasking operating system (e.g. MS-DOS). On 
such an operating system you have the guarantee that only one process is running 
at a time and that it can't be de-scheduled. However most monotasking operating 
systems are old now and their APIs (Application Programming Interfaces) are often 
very restrictive. This solution has been explored but not retained (see Appendix C 
Scheduling test on MS-DOS).  

• The program runs on top of a hard real-time operating system. The operating 
system must have a priority-driven scheduler (a process can only be de-scheduled if 
another one with a higher priority wants to run) and our test program must have the 
highest priority. This possibility seems to be the easiest one and it's the one we 
have chosen.  

• The save() function can't save the results anywhere, because if it accesses a device:  
• Each iteration would last much longer than it should, thus distorting the results. 

                                                 
1 Information on scheduling can be found in Operating Systems [C7] and Echtzeitsysteme [CR1].  
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• The process would be de-scheduled on each iteration because it has to wait for the 
device (interrupt-driven I/O strategy [C7]).  

• The process would be waiting for the device most of the time, thus it wouldn't always 
"want" to run, as already mentioned.  

• Even accessing the RAM isn't adapted because it would probably be a bottleneck 
(there are several execution units) and we wouldn't be able to monitor the real 
performance. Moreover performing a RAM access is much longer than executing an 
arithmetic instruction [C7].  

 The most suitable solution would be to store the results in a small structure (fitting in 
the L1 data cache). During the first iterations some cache misses will be encountered, 
until the structure entirely resides in the L1 data cache, thus slightly distorting the result 
at the beginning.1 

• The currentTime() function has to deliver a value varying fast enough to be 
different between two successive iterations. Considering the frequency of actual 
microprocessors, the precision of the clock used by this function must be a few 
nanoseconds.  

Several hard-real time operating systems suitable for this test are available for free:  

• RTLinux: it's complicated to find a Linux kernel that can be patched, find the correct 
patch adapted to a specific kernel version and perform the installation. Then the 
program has to be compiled and loaded as kernel module, which is not clearly 
documented if you have some assembler files (.s files). Therefore we didn't choose it, 
but documents [CR2] [CR3] [CR4] [CR5] may be interesting if you want to try it.  

• MiniRTL: small version of RTLinux designed to fit in a floppy disk. It's easier to install 
than RTLinux (the floppy disk image is already available) but it appeared to be unstable 
on our system (a lot of segmentation faults when starting and appearing at 
unpredictable moments). Therefore we didn't choose it, but the document [CR7] may 
be interesting if you want to try it.  

• Xenomai: very active project [CR8] where the Linux kernel is patched to run in user 
mode as a normal application with the lowest priority for Xenomai's hard real-time 
kernel. [CR9] Any application can then be run on top of the Linux kernel (not real-time) 
or directly on top of Xenomai's kernel (real-time). We chose this OS for this test.  

• RTAI: project based on the same principle as Xenomai. [CR10] 

We followed exactly the instructions of the document [CR11] to install a hard real-time 
operating system based on a Linux Debian Lenny on each (virtual or real) machine. The 
document [CR12] shows some examples for programming in a Xenomai environment. The 
document [CR13] is the official Xenomai API Documentation.  

The document Timekeeping in VMware Virtual Machines [VV10] describes in a very 
understandable way all the problems and solutions concerning time keeping on real and 
virtual machines. In particular it exposes all available hardware counters that could be used 
to implement the currentTime() function. The TSC (Time Stamp Counter) is adapted 
("fine-grained and convenient"), and we are not concerned by the drawbacks highlighted in 
the document:  

                                                 
1 Please note that every approximation made for this test will only make the results look worse than 
they really are. There is no way that the results look good if they aren't.  
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• we don't need to know exactly the frequency of the TSC, since we won't use it to keep 
time on a clock; 

• there is no reason for the hardware components or for the operating system to change 
(slow down) the pace of the TSC during the test, since this test will keep the 
microprocessor busy the whole time (the pace usually gets slowed down to save 
energy when the computer has "nothing" to do); 

• the TSC can be read in a virtual machine, since the implementation of the virtual TSC 
in ESXi "doesn't count cycles of code run on the virtual CPU but advances even when 
the virtual CPU is not running", which is what we need.  

An example of implementation using the PIT (Programmable Interval Timer) instead of the 
TSC is available in Appendix C Scheduling test on MS-DOS.  

The structure chosen to save the statistics is an array of 12 integers. On each iteration:  

• If the difference of time between the current iteration and the previous one is smaller 
than 10 ticks of the TSC, the first box of the array is incremented; 

• If the difference is between 10 and 100 ticks, the second box is incremented; 
• ... 
• If the difference is between 10k-1 and 10k, the kth box is incremented; 
• ... 
• If the difference is greater than 1011, the 12th box is incremented.  

The new algorithm looks like: (the full implementation is available on the CD-ROM: 
/eval/cpu/xenomai/) 

for (i = 0; i < 1 000 000 001; i++) 
{ 
 // calculate the elapsed time between the current iteration and 
 // the previous one:  
 newTime = rdtsc(); // Read TSC 
 diff = newTime – oldTime; 
 oldTime = newTime; 
 
 if (diff > 10^11) 
 { 
  Result[11]++; // 12th box 
 } 
 else if (diff > 10^10) 
 { 
  Result[10]++; 
 } 
 // ... 
 else if (diff > 10) 
 { 
  Result[1]++; 
 } 
 else 
 { 
  Result[0]++; 
 } 
} 
display Result; 
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Because of the conditional structure, the duration of an iteration is not constant, depending 
on which branch is taken. Fortunately it should converge (stabilize) pretty fast, because:  

• If one iteration i is long,  
• diff will be significant on iteration i+1,  
• so one of the first cases ("if, else if, else if, ...") will be taken at the end of iteration i+1,  
• thus making the execution time of the iteration i+1 shorter 
• and diff smaller on iteration i+2.  

In conclusion: the longer an iteration, the shorter the next one and vice versa.  

Without virtualization 
The test program was run five times on the platform running Xenomai without virtualization. 
The worst obtained results are:  

 
Table 3-11: Scheduling test on Xenomai without virtualization 

This table means that the elapsed time between two consecutive iterations of the loop:  

• has never been strictly lower than 10 ticks of the TSC timer; 
• has been 999 992 427 times between 10 and 99 ticks; 
• ... 

We can see that the interval between two iterations has always been smaller than 1 million 
ticks and has been higher than 10 000 ticks only 240 times in 10 billion. Those 240 times 
have probably been caused by cache misses at the beginning or by disturbing interrupts 
coming from devices (e.g. from one NIC). Even if the operating system waits before calling 
the handlers corresponding to those interrupts (because a high priority task is running), it has 
to write somewhere in its own data structures that an interrupt occurred and it has to 
acknowledge the interrupt on the device.  

When running this test several times, we can see that variation in the results is extremely 
low. This is because we use a real-time operating system. When running a real-time task on 
this system, all non real-time tasks are frozen. The system doesn't even react to the "Ctrl+C" 
combination: it isn't possible to stop the task anymore. That means that this operating system 
is exactly what we needed for this test: the only way to change the results is to add a 
virtualization layer (a hypervisor) under this operating system. We will be able to measure the 
influence of the hypervisor's scheduler.  

On most processors the TSC's frequency (ticks per seconds) is the processors' frequency 
(for some exceptions it can be a multiple). A program can easily be written to approximate 
the TSC's frequency and confirm it (see the implementation on the CD-ROM: 
/eval/cpu/tsc_freq/). On this hardware platform:  

• TSC's frequency = 2266 MHz; 
• 1 tick = 0.441 ns.  

So the interval between two instructions has always been smaller than 441 ms, and has 
been higher than 4.41 ms only 240 times in 10 billion. You might think that those 240 times in 

240 0 7 138 195 999 992 427 0 

[100K, 1M[ [10K, 100K[ [1K, 10K[ [100, 1K[ [10, 100[ [0, 10[ 

0 0 0 0 0 0 
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10 billion are negligible, but are they really? In fact the approximate execution time of one 
of those 240 iterations (between 100 000 and 999 999 ticks) is 10 000 times higher than the 
approximate execution time of one of the 999 992 427 shortest iterations (between 10 and 
100 ticks).  

That means that one execution time between 100 000 and 999 999 ticks has about 10 000 
times more importance than one between 10 and 100 ticks. Thus we have to define a 
coefficient called importance for each time range where: 

 

 
Table 3-12: Importance of each time range 

We now define the approximate influence of the whole population of one range on the 
execution time as:  

 
The approximate influence can also be normalized, so that the sum of all normalized 
influences is 1:  

 

10-3 10-4 10-5 10-6 10-7 10-8 Importance 

[100, 1M[ [10K, 100K[ [1K, 10K[ [100, 1K[ [10, 100[ [0, 10[ Time range 
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Thus the result of this test can be represented by the following:  

0,0
0E

+0
0

9,9
7E

-01

1,9
4E

-06

7,1
2E

-04

0,0
0E

+0
0

2,3
9E

-03

0,00

0,20

0,40

0,60

0,80

1,00

1,20

[0,
 10

[

[10
, 1

00
[

[10
0, 

1K
[

[1K
, 1

0K
[

[10
K, 1

00
K[

[10
0K

, 1
M[

 
Figure 3-18: Distribution of the normalized approximate influence without virtualization 

So we can conclude that the 240 times where the execution time between two iterations was 
greater than 100 000 ticks are negligible, since their approximate influence on the total 
execution time is only 0.239 %.  

As explained in chapter 2.1.3.2 Soft Real Time, a soft real-time system doesn't need a 
perfect predictability (predictability = 100 %). Thus we can accept on the virtualization layer a 
predictability of only 95 %. In this test, aiming to measure the latency implied by the 
scheduler of ESXi, this means that we can ignore the longest measurements whose total 
influence is lower as 5 %. For example in this case, we can ignore measurements in the 
range [100, ∞[, because the total influence of this range is:  

1.94 x 10-6 + 7.12 x 10-4 + 2.39 x 10-3 = 3 x 10-3 = 0.3 % 

This is the biggest range that can be ignored, because the next one ( [10, 100[ ) has an 
influence of 99.7 %. We can conclude that in this case (without virtualization and with 
Xenomai as operating system) the execution time between two iterations of the test 
program is in most cases shorter than 100 ticks (44.1 ns). The execution time can happen 
to be longer, but the impact on the whole execution time is about 0.3 %.  

This upper bound for the execution time can be formally defined as:  

 
and more generally: 

 
Note: do not forget that this value is just an order of magnitude, since the whole calculation 
is based on powers of 10.  

bound95% is an interesting indicator as it does not only guarantee that 95 % of the cases 
are under the bound, but also that the influence on the whole execution time of the 
exceeding cases is lower than 5 %.  



Design Diploma Thesis 

74 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT 

Appendix D Scheduling test on Fedora Core 11 shows the results of this test on Fedora Core 
11 without virtualization, thus proving that Fedora couldn't have been used as a reference 
system for this test.  

With one virtual machine 
The test has been run five times on one virtual machine running Xenomai. The worst results 
are:  

 
Table 3-13: Scheduling test on one virtual machine 
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Figure 3-19: Distribution of the normalized approximate influence (1 VM) 

Like without virtualization, bound95% = 100 ticks = 44.1 ns. The order of magnitude is still the 
same. We can conclude that ESXi doesn't generate any significant latency for the 
processor when running one virtual machine. (The virtual machine doesn't have to wait to 
get the possibility to run.) 

Moreover, the variation between the best and the worst case is very small. Thus it can be 
said that the way one virtual machine is scheduled by ESXi on the processor is very 
predictable.  
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With four virtual machines 
For this test, following virtual machines have been created:  

• 3 virtual machines with Fedora Core 11. Those virtual machines are not used to 
perform the measurements, but to make the processor busy. Each virtual machine 
executes the first part of chapter 3.5.1.1.1 Overhead on CPU-Bound applications, with 
T = 8. That means each virtual machine executes 8 CPU-bounded threads.  

• one virtual machine with Xenomai. This virtual machine is used to perform the 
measurements. It always wants to run, but it is in competition with the 3 other virtual 
machines, which also always want to run.  

We already proved in chapter 3.5.1.1.1 Overhead on CPU-Bound applications that on a long 
time of execution, each virtual machine gets the same amount of execution time. The 
following test allows us to evaluate the granularity of ESXi's scheduler.  

The worst case results are:  
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Figure 3-20: Distribution of the normalized approximate influence (4 VM) 

This time, bound95% = 1 billion ticks = 441 ms. It can seem huge, but actually it isn't: it is the 
same order of magnitude as that of a time-slice in a classical Linux kernel [C9]. The ESXi's 
scheduler's granularity1 has the same order of magnitude as a classical Linux 
scheduler's.  
Again, the variation between the best and the worst case is very small. Thus it can be said 
that the way one virtual machine is scheduled by ESXi on the processor is very 
predictable.  
Note: This test was also performed with 4 identical virtual machines, each of them running 
Xenomai and measuring the ESXi scheduler's performance. All machines were synchronized 
as described in the second part of chapter 3.5.1.1.1 Overhead on CPU-Bound applications. 
A very good result was obtained, probably because each virtual machine only needs 1 

                                                 
1 VMware doesn't give a lot of information about the implementation of its scheduler, but the 
scheduling strategy must be a sort of round-robin (time-slice scheduling). [CR1] [C7] 
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execution unit (8 are available on this hardware): bound95% = 100 ticks = 44.1 ns. Again, the 
observed variation around this result is very small.  

With eight virtual machines 
This test is the same as the previous one, except that 7 virtual machines with Fedora are 
making the processor busy instead of 3. (Again, each virtual machine with Fedora runs 8 
CPU-bounded threads.) 

Conclusions are the same as for the previous test, and bound95% = 1 billion ticks = 
441 ms.  

Note: Again, the test was also performed with 8 identical virtual machines. This time, it didn't 
make the result better: bound95% = 1 billion ticks = 441 ms. Moreover: 

• With only 7 identical virtual machines running, the result is still the same: bound95% = 1 
billion ticks = 441 ms. It may be explained as following: in this case, one execution unit 
is free, so the hypervisor has more "breathing space", but this execution unit has to 
share its L1 and L2 caches with the other execution unit of the same core [C16], which 
means it can lead to a performance loss if the free execution unit runs a different code 
(e.g. the code of the hypervisor).  

• With only 6 identical virtual machines running, we observed a small improvement: 
bound95% = 100 million ticks = 44.1 ms.  

Again, in all those cases, the predictability was very good.  

The parameter "vSphere Client / Configuration / Software / Advanced Settings / Cpu / 
Cpu.Quantum" probably represents the length of a time-slice for ESXi's scheduler (50 ms by 
default). In Comsoft's products, most threads are run with a normal priority, which means the 
Linux kernel gives them a time-slice of 100 ms. [C9] Distributing those threads in different 
virtual machines would make them alternate faster, since the time-slice given by ESXi is 
shorter. Thus ESXi could be a solution to reduce latency when requesting the processor 
and to improve reaction time.   

Improvement attempt 
Following changes have been tried, to improve the results when running 6 identical virtual 
machines: 

• Since each virtual machine executes only one thread, the number of virtual CPUs for 
each virtual machine (vSphere / Edit configuration / Hardware / CPUs) has been 
reduced to one (instead of 8). It could have brought improvement by making the 
scheduling easier, but bound95% fell back to 441 ms. Reducing the number of virtual 
CPU per virtual machine is not a good strategy in ESXi.  

• However we left one virtual CPU per virtual machine and tried to configure the CPU 
affinity (vSphere / Edit configuration / Resources / Advanced CPU) in different profiles:  
• The first virtual machine on the first execution unit, the second machine on the 

second unit, etc. leaving 2 execution units of the same core free. Again, bound95% = 
441ms. This time, the variation between the best case and the worst case was 
significant: poor predictability.  
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• With 4 virtual machines (A, B, C and D) sharing two cores, and each of both other 
ones (E and F) alone on one core. E and F displayed very good results: bound95% = 
100 ticks = 44.1 ns, whereas A, B, C and D displayed bound95% = 441 ms and a 
poor predictability. This configuration doesn't fulfil our needs, because we want 
the same performance for each virtual machine and a good predictability.  

 In conclusion, CPU affinity mustn't be used with ESXi.  

• We set it back to eight virtual CPUs per virtual machine, and changed the parameter 
concerning the hyperthreaded core sharing mode (vSphere / Edit configuration / 
Resources / Advanced CPU). This parameter allows to describe how virtual CPUs (of a 
virtual machine) share cores with other virtual CPUs (from the same virtual machine or 
from others). It's described in detail in the vSphere Administration Guide [VV19]. This 
parameter had no influence on the result. bound95% = 100 million ticks = 44.1 ms in all 
cases. So the default value ("Any", allowing all virtual CPUs from all virtual machines 
to share cores) should be kept.  

• We set the parameter Cpu.Quantum (assumed to be the time-slice, see previous part) 
to 10 ms instead of 50 ms. No improvement has been observed: bound95% = 100 
million ticks = 44.1 ms. Thus the default value should be kept, because reducing the 
time-slice may reduce the overall throughput of the system [C7].  

3.5.1.1.6 Conclusion 
The current version of ESXi (4.0.0, Update 1, Build 219382) shows a very good behaviour 
concerning the assignment of the microprocessor(s) to virtual machines. This is essential 
because without the microprocessor, a virtual machine can't even initiate or terminate an I/O 
access.   

During this test phase, ESXi showed following properties:  

• low overhead on CPU-bounded applications: max. 8%; 

• very good predictability during all tests; 

• 20 % improvement on system calls (negative overhead); 

• high overhead on MMU utilization, but limited: max. 93 %; 

• same order of magnitude as Linux for the time-slice, probably even shorter. 

Following parameters have to be set:  

• VMI paravirtualization: disabled; 

• CPU/MMU-Virtualization: automatic; 

• number of virtual CPUs per virtual machine: maximum; 

• CPU affinity: none; 

• hyperthreading core sharing mode: any; 

• Cpu.Quantum: 50 ms.  

However, following problems have to be taken into account:  

• ESXi is unpredictable when used with two Intel Xeon E5520 microprocessors if 
hyperthreading is enabled. Hyperthreading should be disabled from the BIOS for this 
configuration.  
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• The CPU reservation feature can't be used if hyperthreading is enabled (even with 
only one Intel Xeon E5520 processor).  

Note: Those problems may be solved in the future (as you can see in the version number, 
this release of ESXi is very recent).  

3.5.1.2 Main Memory 

The second most important aspect is the main memory. It's particularly important to observe 
the influence of virtualization on the throughput/bandwidth and on the latency.  

In contrary to what one might think, following aspects are irrelevant:  

• Limitation of the amount of memory for each virtual machine: if the limit is reached, the 
guest operating system will use a swapping mechanism, which is not tolerated. 
Comsoft's current systems don't have any swap partition anyway, for performance 
reasons (when the system "swaps", it's too slow). Thus you have to guarantee that the 
amount of main memory needed by a virtual machine will never be higher than the 
available main memory. Why set a limitation if you can already guarantee that it won't 
be reached? We should rather pay attention to install enough main memory on the 
host.  

• Swapping performance of the hypervisor: in case you are not able to guarantee that the 
total amount of main memory needed by all virtual machines is lower than the available 
main memory, the hypervisor also has a swapping mechanism. But as explained, no 
swapping is tolerated in our project.  

The tests of this chapter were performed on the platform with two processors and without 
hyperthreading. 1 

To test the bandwidth and the latency of the main memory, test programs similar than those 
used in chapter 3.5.1.1 CPU Utilization are needed. The test programs have to access the 
main memory as often as possible. That means it has to execute the least instructions 
possible that don't access the main memory. It's quite a difficult programming exercise, since 
the following "natural" algorithm executes an already non-negligible amount of processor 
instructions not accessing the main memory (at least one conditional jump, even though 
recent processors are designed to optimise loops [C5]): 

for (;;) // infinite loop 
{ 
 temp = *mainMemoryAddress; 
} 

Moreover any modern compiler would notice that the temp variable is not even used and will 
remove the instruction inside the loop, considering it as being a good optimization. As a 
result the previous test program will probably not even access the main memory.  

LMBench is an open-source widely-used suite of microbenchmarks for CPU, main memory, 
file systems, etc. [C22] In his paper Carl Staelin (from HP Laboratories) describes how 
powerful and extensible LMBench is. [C23] One important advantage of LMBench over other 
microbenchmarks is that it doesn't focus on bandwidth but measures latency too. Several 
advanced mechanisms are used to provide results within 1 % accuracy.  

                                                 
1 This detail may be important, even when testing the main memory, because with two 
microprocessors, this hardware platform has a NUMA architecture (non uniform memory access): the 
path length from one processor to one memory slot is not constant. [C4] 
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The first problem mentioned (concerning the amount of processor instructions not accessing 
the main memory) is solved in LMBench by loop unrolling1. The second problem (concerning 
the compiler optimization) is solved by declaring the temp variable as volatile2 and 
involving it in a (useless) computation at the end of the loop.  

For more detail on LMBench, please refer Carl Staelin's article [C23], its documentation 
[C22] and its source code (properly documented). The document Memory hierarchy 
performance measurement of commercial dual-core desktop processors gives an example 
on using LMBench to perform memory performance measurements. [C24]  

We used the last available version of LMBench (3.0-a9) to compare the usage of the main 
memory between Fedora 11 32-bits without virtualization and Fedora 11 32-bits over 
VMware ESXi. Again the results of those tests are biased by the imperfection already 
described in chapter 3.5.1.1.1 Overhead on CPU-Bound applications (other small tasks are 
running, the system is disturbed by interrupts, etc.), but again we can reasonably consider 
that those effects are negligible. Moreover the recommendations displayed during the 
LMBench installation (e.g. the X server should be turned off) have been respected.  

We made a default configuration of LMBench during the installation process. Without 
virtualization, the installation process indicated a timing granularity of 50 ms after some 
measurements, which means it considers that running each test during only 50 ms will be 
enough to reach a good precision. Each test will be run 11 times and the median result will 
be delivered. [C23] On the system over ESXi, the timing granularity is 10 ms.  

All scripts written to automate the tests and display the results are available on the CD-ROM: 
/eval/ram/ . 

3.5.1.2.1 Memory Bandwidth 

Without virtualization 
This test uses the bw_mem microbenchmark. It measures the bandwidth when reading from 
or writing into an array. [C25] The array size can be specified and this test has been run five 
times for several array sizes. To run this test yourself, type one of the following commands:  

$ ./run.sh bw_rd_profile 
$ ./run.sh bw_wr_profile 

To display the results, type one of the following commands:  
$ ./display.sh bw_rd_profile 
$ ./display.sh bw_wr_profile 

                                                 
1 Loop unrolling is the replacement of a loop by a sequence of identical iterations. [C4] 
2 volatile is a C++ keyword telling the compiler not to make any assumption concerning the value 
of a variable, but to act as if its value could be modified at any time by an external agent.  
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Figure 3-21: Read-bandwidth without virtualization 

 
Figure 3-22: Write-bandwidth without virtualization 

Figures 3-21 and 3-22 show the results. As we can see, the bandwidth is higher for array 
sizes shorter than 8 MB since the array fits in the L3 cache (see chapter 3.5 Evaluation). For 
larger arrays the test program actually accesses the main memory:  

• Mean read-bandwidth: about 7400 MB/s; 

• Mean write-bandwidth: about 4200 MB/s.   

We tried to run the same test again while disturbing it with 6 other processes doing exactly 
the same (also running bw_mem). To run this test yourself, type one of both following 
commands:  

$ ./run.sh bw_rd_disturb_profile 
$ ./run.sh bw_wr_disturb_profile 
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To display the results, type one of both following commands:  
$ ./display.sh bw_rd_disturb_profile 
$ ./display.sh bw_wr_disturb_profile 

 
Figure 3-23: Disturbed read-bandwidth without virtualization 

 
Figure 3-24: Disturbed write-bandwidth without virtualization 

Figures 3-23 and 3-24 show the results. As we can see, the results are the same: it didn't 
reduce the bandwidth, whereas 7 execution units of 8 were accessing the most often 
possible the main memory. Actually the write-bandwidth with an array size of 1 MB for 
example has even been improved, probably due to some synergetic effects. [C6] 

We can already conclude that on this architecture the access to the memory hierarchy 
(caches + main memory) is not a bottleneck.  
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Note: No more than seven instances of the test program should be run at the same time, 
otherwise the results will be skewed by the scheduling and won't mean anything. The 
processor is needed to initiate any access to any resource, therefore you need it during the 
whole test to measure the access to the tested resource (here the main memory).  

Over ESXi 
The exact same sequence of tests was run in a virtual machine. Each disturbing instance of 
the test program was run in its own virtual machine (which means seven virtual machines 
were needed to run the second part of those tests). Therefore the commands  

$ ./run.sh bw_rd_disturb_profile 
$ ./run.sh bw_wr_disturb_profile 

can no longer be used. Each disturbing instance has to be launched in a separate virtual 
machine by means of one of these commands:  

$ ./busyram.sh <size> rd 
$ ./busyram.sh <size> wr 

 
Figure 3-25: Read-bandwidth over ESXi 
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Figure 3-26: Write-bandwidth over ESXi 

 
Figure 3-27: Disturbed read-bandwidth over ESXi 



Design Diploma Thesis 

84 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT 

 
Figure 3-28: Disturbed write-bandwidth over ESXi 

Figures 3-25 and 3-26 show a loss of performance concerning the caches but no loss 
concerning the main memory: 

• Mean read-bandwidth: about 7000 MB/s (5 % overhead); 

• Mean write-bandwidth: about 4700 MB/s (12 % improvement).   

Figures 3-27 and 3-28 show that the cache bandwidth can be slightly disturbed but again, the 
bandwidth when accessing the main memory is not reduced by the presence of the 
disturbing instances of the test program.  

ESXi shows native performances concerning the memory bandwidth.  

3.5.1.2.2 Memory Latency 

Without virtualization 
This test uses the lat_mem_rd microbenchmark. It first allocates an array and then performs 
a latency test. The test is run for several array sizes (X-axis). The latency test works as 
follows: the microbenchmark starts at the end of the array, and reads backwards through the 
array. It is implemented in such a manner that the array accesses are dependant on one 
another, forcing the processor to really read the array (no optimization is possible). [C25] The 
duration of one test is the timing granularity (50 ms in this case, see chapter 3.5.1.2 Main 
Memory). If the microbenchmark is able to perform one million loads during those 50 ms, 
then the mean load duration (or mean latency over this short period of 50 ms) is 50 ns (Y-
axis).  

The microbenchmark considers the allocated array as an array of bytes. It doesn't 
necessarily read every byte backwards but actually every Nth byte. N is called the stride size. 
With a stride size of 1, every byte of the array is read. The test has been run with different 
stride sizes (several curves).  
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Varying the array size helps to determine the different cache size. Each curve of the figure 
3-29 for example has four plateaus:  

• The first one ends with an array size of 32 kB, indicating that any array smaller than 32 
kB fits in the L1 data cache, offering a small latency of 1.7 ns. The size of the L1 data 
cache is probably 32 kB. This is actually the case (see chapter 3.5 Evaluation).  

• The second plateau indicates a 256 kB long L2 data cache, where the array is too long 
to fit in the L1 data cache but short enough to fit in the L2 data cache.  

• The third plateau indicates an 8 MB long L3 cache.  

• The last plateau represents the main memory latency.  

Varying the stride size helps to determine the cache line size. For example the last plateau in 
figure 3-29 is more or less high (different latencies) depending on the stride size. A L3 cache 
line size of 256 bytes would be an explanation: when reading a byte in the main memory, a 
block of 256 bytes is actually fetched from the main memory and copied into a cache line of 
the L3 cache. If the stride size is bigger than or equal to 256 bytes, a block has to be fetched 
on each byte to be read. If the stride size is 128 bytes, one fetched block delivers two 
"interesting bytes", thus reducing the amount of main memory accesses and the mean 
latency displayed on the curve. We can conclude that:  

• the L1 cache line size is 64 bytes; 

• the L2 cache line size is 256 bytes; 

• the L3 cache line size is 256 bytes. 

Of course the most interesting values for this chapter are the values where the caches are 
not involved: i.e. the last plateau (corresponding to the main memory) where stride size is 
greater than or equal to 256 bytes.  

To run this test yourself and display the results, type the following commands:  
$ ./run.sh lat_rd_profile 
$ ./display.sh lat_rd_profile 

 
Figure 3-29: Read-latency without virtualization 
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Figure 3-29 shows the results. As we can see, the latency when reading a byte from the 
main memory is about 100 ns.  

We tried to run the same test again while disturbing it with 6 other processes running 
bw_mem the whole time, to access the main memory as often as possible and disturb the 
process measuring the latency. We didn't expect any difference in the result, since we prove 
in the memory bandwidth test (see chapter 3.5.1.2.1 Memory Bandwidth) that memory 
access is not a bottleneck. To run this test yourself and display the results, type the following 
commands:  

$ ./run.sh lat_rd_disturb_profile 
$ ./display.sh lat_rd_disturb_profile 

The obtained curves were almost the same as without perturbation.  

Over ESXi 
The exact same sequence of tests was run in a virtual machine. Each disturbing instance of 
the test program was run in its own virtual machine (which means seven virtual machines 
were needed to run the second part of those tests). Therefore the command  

$ ./run.sh lat_rd_disturb_profile 

can no longer be used. Each disturbing instance has to be launched in a separate virtual 
machine by means of the following command:  

$ ./busyram.sh 1024m rd 

The obtained curves were almost identical as without virtualization. ESXi shows native 
performances concerning the memory latency.  

3.5.1.2.3 Conclusion 
ESXi shows native performances concerning memory bandwidth and latency. They are 
constant, predictable and independent of the number of running threads or virtual 
machines.  

3.5.1.3 Hard Disk Drive 

In order to test the performances when accessing the hard disk drive, a test program has 
been developed. This test program measures the throughput/bandwidth and the latency 
when writing into a file (on a hard disk drive), with a precision of 50 ms. To achieve this, the 
program periodically appends a "block" (e.g. 2 bytes) at the end of the output file and it can 
be detected if the program "freezes" more than 50 ms when trying to access the file.  

Here is its algorithm: (the full implementation is available on the CD-ROM: 
/eval/hdd/write/) 

thread // statistic thread 
{ 
 latency = 0; 
 do every 50 ms during 30 seconds 
 { 
  if (elapsedTime % 1000 ms == 0) // every second 
  { 
   perform and save throughput over the last second in RAM; 
  } 
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  if (elapsedTime % 200 ms == 0) // every 200 ms 
  { 
   perform and save throughput over the last 200 ms in RAM; 
  } 
   
  // every 50 ms: 
  perform and save throughput over the last 50 ms in RAM; 
  if (throughput == 0) 
  { 
   latency += 50 ms; 
  } 
  else 
  { 
   save latency in RAM; 
   latency = 0; 
  } 
 } 
 make main thread exit its infinite loop; 
} 
 
thread // main thread 
{ 
 create and open the file; 
 create statistic thread; 
  
 for (;;) // infinite loop 
 { 
  write(block, file); 
  if (option –l) flush user-space buffer; 
  if (option –s) force write on the device; 
 
  send information to statistic thread so that it can perform 
   throughput and latency measurement; 
 } 
 
 display mean throughput; 
 display Bound_95%; 
 save results of statistic thread into a file; 
} 

A standard program (like this one) doesn't directly access the hard disk drive when writing:  

• The write() function is provided by a library. To reduce the number of switches 
between user-mode and kernel-mode, this library creates a buffer (one per application): 
the user-space buffer. When calling write(), the buffer is just filled, and the function 
returns. When this buffer is full enough, the next call to write() will actually trigger a 
switch to kernel-mode and the kernel will take all data from this buffer.  

• The kernel doesn't directly write on the hard disk drive. It fills on its turn its own buffer 
(one per hard disk drive). When the buffer is full enough or after a certain timeout (it 
depends on the hard disk scheduling strategy), it sends all the data to the hard disk 
drive in a particular order, to optimize the movements of the hard disk and to reach a 
high throughput.  



Design Diploma Thesis 

88 Diploma Thesis-RT&Virtualization-V1.0/30.04.2010 © KIT and COMSOFT 

 
Figure 3-30: Path from application to hard disk drive 

More information on disk scheduling and buffering can be found in Operating Systems [C7].  

Note: On figure 3-30, the hard disk drive is just an abstraction because:  

• nowadays, most hard disk drives have on their turn one or several caches to optimize 
write and read operations themselves;  

• the RAID-controllers of our platform have a cache, again for the same purpose (see 
chapter 3.5 Evaluation). 

 
Figure 3-31: Hard disk drive abstraction 

I/O-Scheduler und RAID-Performance [C26] is a very interesting article on the influence of 
RAID on disk scheduling.  

The kernel normally uses Direct Memory Access (DMA), a technique allowing a device to 
access directly the main memory in order to perform the whole transfer without the need of 
the CPU (the CPU is needed to start and to terminate the transfer). This technique is usually 
problematic with virtualization, because when starting the transfer, the virtual CPU gives an 
address from the virtual main memory to the virtual device, making the use of DMA (which is 
a physical optimization) very difficult. Intel VT-d offers a hardware support for this purpose 
[V5] and our test program will allow us to measure its performance when used by ESXi.  

The test program has different options (type ./hdd -h to get the complete list). The most 
important are:   

• -k: disables kernel buffering (no kernel-space buffer will be used); 
• -u: disables user-level buffering (no user-space buffer will be used); 
• -l: flushes the user-level buffer after each written block (data is forced to leave the 

user-space buffer, if any); 
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• -s: forces physical write after each block (data is forced to leave both user-space and 
kernel-space buffers);1 

• -b: specifies the size of the blocks (in bytes) to be written into the file on each iteration.  

This test program has been run in the following context:  

• the file is created on an ext3 partition of 100 GB with a block size of 4096 bytes; 
• the ext3 partition was created on a RAID 5 group based on 4 hard disk drives 

connected to the same hardware RAID channel (see figure 3-4). This partition was 
dedicated to the test: the operating system, the virtualization layer if any and the test 
program were located on another RAID group connected to the other RAID controller 
(see figure 3-4) to avoid as many side effects as possible.  

The different options can be combined together and after some tests, their compatibility with 
each other has been determined:  

 
Table 3-14: Compatibility and dependency between the options 

Tests showed that the options -u and -l are equivalent when the block size (specified with 
the option -b) is small (a few bytes), whereas -u alone has no effect when the block size is 
bigger (a few kilobytes). Therefore -l is more efficient.  

In this context, -kl only works when the block size is a multiple of 512 bytes (device's block 
size).2 

Note: We used RAID 5 because it's the method usually used by Comsoft to ensure data 
redundancy.  

                                                 
1 The implementation uses the fsync() function. It isn't clear in the documentation if this function 
forces the data to leave the hardware buffers too. It seems to depend on the implementation of the 
driver.  
2 For information, the implementation of the option -k uses the O_DIRECT flag of the open() 
function.  

√  √ √ √ -s 

√ √  √ √ -l 

√ √ =  x -u 

√ √ √ x  -k 

No option -s -l -u -k  

When the option -k is used, 
using the option -s or not  
influences the result. 

When the option -k is used, 
you cannot use the -u 
option. 

When the option -l is used, 
using the option -u has no 
influence on the result. 
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3.5.1.3.1 Maximum throughput on a long execution time 

Without virtualization 
Of course the maximum throughput is reached when all optimizations are enabled (no option 
used for the test program) and when the block size is big enough. We reached it with a block 
size greater than or equal to 64 bytes. You can run the test yourself and display the results 
with the following commands:  

$ ./hdd –b 64 –f <filepath_leading_to_the_test_partition> 
$ ./display.sh throughput 

Again, like for the previous tests (CPU and main memory tests), we consider this test to be 
precise enough, since the load of the CPU when the test program is not running is lower than 
1 %. Moreover, the time precision we are dealing with is much lower than for the previous 
tests (milliseconds instead of nanoseconds).  

The test was run several times over Fedora 11 without virtualization layer. Figure 3-32 shows 
the results of one execution:  

• The yellow curve represents the measurement of the throughput with a period of 50 
ms.  

• The red one with a period of 200 ms.  
• The blue one with a period of one second.  

 
Figure 3-32: Disk throughput without virtualization 

As we can see, the throughput is very high at the beginning: the computer doesn't access the 
hard disk at this time but is just filling the buffers located in the main memory. After less than 
four seconds, the operating system considers the buffers to be full and starts to access the 
hard disk drive or, at least, to communicate with the RAID controller. After ten seconds, the 
program stops because the file reached its maximum size of 2 GB.  

We are sure that the operating system is sending the data to the RAID controller during the 
last six seconds because the main memory allocation stops growing (visible with the htop 
command) and is smaller than 1 GB. Moreover no execution unit is fully used during the 
execution, confirming that the RAID group is well and truly the bottleneck in this transfer.  
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During the last six seconds, the throughput varies around 175 MB/s. The mean throughput 
for the whole exchange is about 200 MB/s (varying between 190 and 210 MB/s).  

Over ESXi 
The same test was run over ESXi. We then have an additional layer: a virtual hard disk drive 
have been created on the real one, by means of the vSphere Client. This operation actually 
creates a VMFS partition (Virtual Machine File System) on the physical hard disk. The default 
parameters have been used:  

• Max. file size: 256 GB, block size: 1 MB; 
• VMFS version: 3.33 

The virtual hard disk has a size of 100 GB and an ext3 partition similar to the one used for 
the previous test was created with the guest operating system, taking up all of the available 
space.  

When creating the virtual hard disk drive, several types of (virtual) SCSI controllers are 
available: [VV19] 

• LSI Logic SAS; 
• Bus Logic Parallel;  
• LSI Logic Parallel (by default); 
• Paravirtualization.  

At first glance, LSI Logic SAS seems more adapted to our situation because we have SAS 
hard disk drives (Serial Attached SCSI).  

Again, the test was run several times with a block size of 64 bytes. Here are the results:  

Controller type Throughput after 4 
seconds 

Note 

LSI Logic SAS ≈ 150 MB/s (85 %) See figure 3-33. Increasing the block size doesn't improve 
the result.  

Bus Logic Parallel ≈ 7 MB/s (4 %) Increasing the block size doesn't improve the result.  

LSI Logic Parallel ≈ 150 MB/s (85 %) Increasing the block size doesn't improve the result. 

Paravirtualization ≈ 150 MB/s (85 %) Increasing the block size doesn't improve the result. 

Table 3-15: Disk throughput over ESXi 
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Figure 3-33: Disk throughput with LSI Logic SAS virtual controller 

The controller type Bus Logic Parallel can already be excluded, because of its poor 
performance.  

We also exclude the controller type Paravirtualization, because the guest operating system 
can't be used on such a virtual drive: a kernel module (pvscsi) has to be loaded into the 
guest kernel so that the virtual drive can be used. Therefore a virtual machine can't boot on 
this virtual drive because the guest kernel is not started yet. We need predictability for all 
communications with the hard disk drives and thus we have to find a solution valid for the 
drive where the guest operating system is installed too. More details on this controller type 
are available in the document Configuring disks to use VMware Paravirtual SCSI adapters 
[VV24].  

Other controller types showed near-native performance.  

3.5.1.3.2 Throughput with several instances of the test program . 

Without virtualization 
The same test program was run, while other instances of the program were doing the same 
on the same partition. We expect the throughput of each instance to be divided by the 
number of instances. Only one instance gathers statistics. The "disturbing" instances are 
launched silently inside a loop with the following command:  

$ ./loop.sh –n –f <file> -b 64 
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The file name must be different for all instances. Here are the results without virtualization:  

Number of instances Throughput 

2 (one disturbing instance) 83.8 MB/s (σX = 1.2 MB/s), 47.8 % (of 175 MB/s) 

4 41.4 MB/s (σX = 0.6 MB/s), 23.7 % 

8 18.8 MB/s (σX = 0.9 MB/s), 10.7 % 

Table 3-16: Disk throughput without virtualization 

As we can see, the throughput scales well with the number of instances. We didn't observe 
any "warm-up phase" during the first seconds. Increasing the block size of all instances 
doesn't change the result. Though increasing block size of one instance gives it a small 
advantage on the others (slightly higher throughput).  

Over ESXi 
We did the same test over ESXi. First we launched all instances in the same virtual machine: 

Controller type Number of instances Throughput 

2 (one disturbing instance) 76.6 MB/s (σX = 4.7 MB/s), 51.1 % (of 150 MB/s) 

4 36.8 MB/s (σX = 2.2 MB/s), 24.5 % LSI Logic SAS 

8 18.8 MB/s (σX = 1.0 MB/s), 12.5 % 

2 69.2 MB/s (σX = 2.3 MB/s), 46.1 % 

4 34.4 MB/s (σX = 0.7 MB/s), 22.9 % LSI Logic Parallel 

8 16.3 MB/s (σX = 2.4 MB/s), 10.9 % 

Table 3-17: Disk throughput over ESXi 

The conclusions are the same as without virtualization: the throughput scales well with the 
number of instances. We didn't observe any "warm-up phase" during the first seconds. 
Increasing the block size of all instances doesn't change the result. Though increasing block 
size of one instance gives it a small advantage on the others (slightly higher throughput).  

Note that the standard deviation is a little bit higher than without virtualization but it stays 
reasonable. For example in the first line of the table 3-17 the deviation of 4.7 MB/s 
represents only 6 % of the throughput. Moreover a hard disk drive is not a device for which 
you can expect a low deviation because of the underlying (mechanical) technology.  

For the following test, we put the "disturbing" instances of the program in a second virtual 
machine. We expect ESXi to assign 50 % of the disk throughput to the measuring instance 
(alone in the first virtual machine) and to share the rest of the throughput among the 
disturbing instances (all in the second virtual machine).  

To do so, we created two virtual hard disk drives located on the tested RAID 5 group and 
assigned each virtual drive to one virtual machine. The virtual machines were using the same 
type of SCSI controller: we didn't mix because the result wouldn't be interpretable:  
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Controller type Number of instances Throughput 

2 (one disturbing instance) 68.8 MB/s (σX = 6.8 MB/s), 45.9 % (of 150 MB/s) 

4 72.5 MB/s (σX = 8.3 MB/s), 48.3 % LSI Logic SAS 

8 64.7 MB/s (σX = 3.7 MB/s), 43.1 % 

2 59.7 MB/s (σX = 8.0 MB/s), 39.8 % 

4 45.4 MB/s (σX = 8.6 MB/s), 30.3 % LSI Logic Parallel 

8 38.5 MB/s (σX = 3.0 MB/s), 25.7 % 

Table 3-18: Throughput sharing among virtual machines 

As we can see, LSI Logic SAS really makes a good isolation between virtual machines by 
sharing throughput based on virtual machines instead of processes: in this experiment, each 
machine is given 50 % of the throughput, independently from the number of processes trying 
to access the hard disk drive.  

Again, the deviation is higher than without virtualization but stays reasonable. Virtual 
machines using LSI Logic SAS as a virtual SCSI controller seem to be a good solution to 
isolate applications from each other. But we still need to analyse the latency of this 
solution when accessing the hard disk drive (see next chapter).  

The isolation provided by LSI Logic Parallel is not so good. We could have excluded this 
controller type now but we decided to evaluate its guarantees concerning latency.  

3.5.1.3.3 Latency . 
As explained, our test program is able to detect latencies of over 50 ms. This latency is the 
time between the moment when the program sends the block of data and the moment when 
the program can continue its execution (and send the next block). Between those two 
moments, the execution of the program is blocked.  

It delivers a graph and computes the bound95% indicator, presented in chapter 3.5.1.1.5 
Scheduling. Briefly, bound95% is the maximum observed latency, except if the number of 
occurrences of this latency is so low that it represents less than 5 % of the total execution 
time.  

Consider for example the figure 3-34 representing in a histogram the detected latency during 
the execution of the program (it's actually the worst case because we executed the test 
program several times). Note that latencies shorter than 50 ms were not detected and 
therefore are not represented on the graph. The execution time of the test program was 
exactly 12.15 seconds. A latency to access the hard disk between 550 and 600 ms has been 
observed once. To simplify, we consider that this access lasted 575 ms. But 575 ms 
represents only 4.7 % of 12.15 seconds (this percentage is called influence, see chapter 
3.5.1.1.5 Scheduling). We can ignore it, because it represents less than 5 %. Then a latency 
of 275 ms to access the hard disk has been observed once, representing 2.3 % of the 
execution time. We have to add to it the influences of all higher latencies: 

2.3 % + 4.7 % = 7 % > 5 % 

It can't be ignored anymore and the program concludes:  

• maximum latency = 600 ms; 
• bound95% = 300 ms.  
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Note: the execution of the program is limited to 30 seconds (it stops when the file size 
reaches 2 GB or after 30 seconds, whatever comes first). 5 % of 30 seconds is 1.5 second, 
which means that as soon as a latency longer than or equal to 1.5 second has been 
detected, bound95% = maximum latency. This is why this indicator can't hide latencies greater 
than 1.5 seconds (which is good, since it corresponds to the time granularity of Comsoft's 
soft real-time products, see chapter 2.1.1 Comsoft products) and is a fair indicator to 
compare solutions where maximum latencies are lower than 1.5 second. Briefly: the highest 
latency will be ignored if it happens rarely, except if it's greater than 1.5 second.  

Without virtualization 
Once again, the same test program has been used, with all optimizations (without any 
option) and with a block size of 64 bytes. You can run the test yourself and display the 
results with the following commands:  

$ ./hdd –b 64 –f <filepath_leading_to_the_test_partition> 
$ ./display.sh latency 

The worst case observed is bound95% = 50 ms (with a maximum latency of 150 ms).  

Over ESXi 
The same test has been done in a virtual machine, to measure the latency induced by ESXi. 
LSI Logic SAS showed native performance, whereas LSI Logic Parallel showed 
bound95% = 300 ms, with a maximum latency of 600 ms:  

 
Figure 3-34: Disk latency with LSI Logic Parallel virtual controller 

Therefore we decided to exclude LSI Logic Parallel, given the mediocre results for both 
latency and throughput isolation among virtual machines.  
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3.5.1.3.4 Latency with several instances of the test program 
For now and unless otherwise specified, the LSI Logic SAS virtual controller will be used.  

We now come to the main point of this thesis: the latency when several applications 
need to access the same hard disk drive.  
One of the best ways we found to precisely quantify this latency is to launch the following 
instances of the test program:  

• One measuring instance, gathering statistics. This instance should measure the time 
needed to really access the device (not only the buffers located in the main memory) 
and only to access it (without even trying to transfer a huge amount of data). Therefore 
the test program will transfer blocks of only one byte, force the data to leave the buffers 
after each transferred byte, and disable the kernel-space buffer:  
$ ./hdd –ks –b 1 –f <file> 

• Several disturbing instances, communicating the most possible with the device and 
disturbing the most possible the measuring instance. We already know that the highest 
throughput is reached when all optimizations are enabled and when the block size is 
greater than or equal to 64 bytes. We discovered that increasing this block size 
disturbs the measuring instance even more, and that a maximum is reached with a 
block size greater or equal to one kilobyte:  
$ ./loop.sh –b 1024 -f <file> 

Without virtualization 
We ran the tests over Fedora 11 without virtualization. The following table shows the results 
(worst cases observed):  

Number of disturbing 
instances 

bound95% Throughput of the measuring 
instance (for information) 

0 No latency detected 350 kB/s 

1 1.7 s 35 kB/s 

3 2.1 s 6 kB/s 

7 3.1 s 5 kB/s 

Table 3-19: Disk latency without virtualization 

Note: Do not compare the throughput of the measuring instance with the throughput 
observed in the previous tests! The throughput showed in the previous table is lower 
because we disabled a lot of optimizations and the transferred blocks are smaller.  

As we can see, the observed latency is very high (an application needing to send one byte 
to the hard disk drive may have to wait for 3.1 s) and we need ESXi to reduce it.  
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Figure 3-35: Latency with one disturbing instance (without virtualization) 

Over ESXi 
The test has been run over ESXi, with the following configuration:  

• the measuring instance is in one virtual machine; 
• the disturbing instances are together in a second virtual machine.  

We expect from the hypervisor a reduction of bound95% to an acceptable level. The following 
table shows the results (worst cases observed):  

Number of disturbing 
instances 

bound95% Throughput of the measuring 
instance (for information) 

0 No latency detected 263 kB/s 

1 400 ms 122 kB/s 

3 2.0 s 96 kB/s 

7 2.0 s 96 kB/s 

Table 3-20: Disk latency over ESXi 

Again we can see that a good isolation between virtual machines is ensured concerning the 
throughput but the results concerning the latency are still not satisfying although slightly 
better.  
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Figure 3-36: Latency with one disturbing instance (over ESXi) 

Note: ESXi also provides the possibility to link a virtual hard disk drive to a virtual IDE 
controller, but it didn't reduce the latency.  

3.5.1.3.5 Improvement attempt 
ESXi provides a long list of parameters that can be changed. Those parameters can be 
found in vSphere Client / Host configuration / Software / Advanced configuration. They are 
not documented. They are sorted into sections (Cpu, Disk, Scsi, ...) and each parameter 
comes with a short description:  

 
Figure 3-37: Advanced parameters in vSphere Client 
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We analysed the description of each parameter in the sections Disk and Scsi and tried to 
reduce or to increase the value of the following parameters:  

Reduced parameters Increased parameters 

Disk.SectorMaxDiff 

Disk.SchedQuantum 

Disk.SchedNumReqOutstanding 

Disk.SchedQControlVMSwitches

Disk.DelayOnBusy 

Disk.ResetLatency 

Disk.MaxResetLatency 

Disk.ResetPeriod 

Disk.DiskMaxIOSize 

Disk.SchedQControlSeqReqs 

Disk.QFullSampleSize 

Table 3-21: Parameters changed to reduce disk access latency 

We tried several combinations but it never had any effect on the latency, even after rebooting 
the host. (Some parameter changes only take effect after a reboot of the host platform)  

Then we decided to change the parameter Disk.BandwidthCap. This parameter is a 
limitation of the disk throughput/bandwidth (in kB/s) for all virtual machines. There is no way 
to set a different limitation for each virtual machine. The default and maximum value of this 
parameter is 232-2 kB/s ≈ 4 TB/s, in other words: no limitation. Setting a limitation and 
restarting the host (needed) improves immediately the results:  

Disk.BandwidthCap Number of disturbing 
instances 

bound95% Throughput of the measuring instance 
(for information) 

1 100 ms 80 kB/s 

3 250 ms 65 kB/s 
130 MB/s 

(87 % of 150 MB/s) 
7 350 ms 65 kB/s 

Table 3-22: Disk latency over ESXi with limitation of the disk bandwidth 

As you can see, limiting all virtual machines to 87 % of its maximal throughput and therefore 
limiting the disturbing virtual machine allows the measuring virtual machine to access the 
hard disk drive without being disturbed. It stops working if the limitation is greater than 87 %.  

We ran another test with the following instances:  

• one virtual machine running only one measuring instance; 
• three virtual machines, each of them running eight disturbing instances.  

We obtained a good result: bound95% = 600 ms. (Again, the test was run several times and 
this result is the worst case.) 

Finally we decided to run the same test again, but with the measuring instance being of the 
same type as the disturbing instance: all optimisations activated and a block size of 1 kB. 
This measuring instance can be launched with the following command:  

$ ./hdd –b 1024 -f <file> 

We discovered that in order to reach a good result, the limitation has to be set to 30 MB/s 
(20 % of 150 MB/s). We compared this result with the one obtained without virtualization 
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(running the measuring instance and the 24 disturbing instances on the same hardware 
platform):  

 Over ESXi Without virtualization

bound95% 1.0 s 3.0 s 

Throughput 30 MB/s 6 MB/s 

Table 3-23: Final disk latency test 

So we had reached an acceptable isolation between the virtual machines and a low 
enough disk access latency. However we had to sacrifice the maximum disk throughput of 
each virtual machine. The best practice is to limit the maximum throughput for all virtual 
machines so that throughput limitation x number of virtual machines = 80 % x mean 
throughput of ESXi.  

Concretely in our configuration (RAID 5 over four hard disks), the mean throughput reached 
by ESXi is 150 MB/s. Which means that:  

• with two virtual machines, the limitation has to be 60 MB/s (40 %); 
• with three virtual machines, the limitation has to be 40 MB/s (26.7 %); 
• with four virtual machines, the limitation has to be 30 MB/s (20 %). 

We didn't consider the case with more than four virtual machines because it isn't relevant for 
this project (see chapter 3 Design) but we can assume that the previous result scales well 
with a few more virtual machines.  

Note: Sacrificing the maximum throughput is not a problem in a real-time system, because it 
doesn't change the worst cases throughput, which is the throughput when all virtual 
machines want to access the hard disk drive. With four virtual machines, this worst case 
throughput is 30 MB/s. If 30 MB/s are enough for each machine, then there is no reason to 
bewail the loss of the maximum throughput (150 MB/s). It's actually an advantage: as 
explained in chapter 2.1.3.1 Hard Real Time, reducing the gap between the worst case and 
the best case improves the predictability of the system and makes it easier to test and 
dimension.  

3.5.1.3.6 Throughput and latency when reading 
Until now we only focused on the throughput and the latency when writing into a file. We can 
assume that the results obtained for writing are also valid for reading, but we need to check 
that the throughput when reading is greater than or equal to the throughput when writing, 
otherwise the throughput limitation (which applies for writing and for reading) must be even 
more restrictive.  

The test program developed for this test is similar to the previous one. Instead of writing into 
a file, the program creates a file with a size of 1 GB and fills it. As soon as the file is filled, the 
test begins: the program reads blocks sequentially from this file. The main available options 
are:  

• -k: disables kernel buffering (no kernel-space buffer will be used); 
• -u: disables user-level buffering (no user-space buffer will be used); 
• -b: specifies the size of the blocks (in bytes) to be read from the file on each iteration.  

Each read block is involved in a (useless) computation with the same technique as described 
in chapter 3.5.1.2 Main Memory, in order to be sure that the data are really read from the 
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hard disk drive and that the compiler doesn't "notice" that there is no need to read the data. 
The full implementation is available on the CD-ROM: /eval/hdd/read/ . 

Without virtualization 
Without virtualization, we reach the maximum throughput with a block size greater than or 
equal to 2 kB and with all optimizations enabled. This throughput is 215.8 MB/s and the 
standard deviation is 1 MB/s. No latency was detected. You can run the test yourself with the 
following command:  

$ ./hdd –b 2048 –f <file> 

Over ESXi 
Over ESXi, this throughput is 191.7 MB/s (89 %) and the standard deviation is still 1 MB/s. 
No latency was detected.  

ESXi shows near-native performance when reading from the hard-disk drive. Moreover the 
throughput for reading is higher, which means that the throughput limitation determined in 
chapter 3.5.1.3.5 Improvement attempt is restrictive enough.  

Appendix E Hard-disk latency reduction with ESXi presents a few other solutions explored in 
order to reduce the hard-disk latency.  

3.5.1.3.7 Conclusion 
ESXi solves Comsoft's main problem concerning the latency when several applications 
are accessing the hard-disk drive. To achieve this the LSI Logic SAS virtual SCSI controller 
has to be used and the advanced parameter Disk.BandwidthCap has to be set.  

3.5.1.4 Network. 

The test program designed to test the performances when communicating over the network 
is very similar to the one designed to test the performances when accessing the hard disk 
drive (see chapter 3.5.1.3 Hard Disk Drive): instead of reading from or writing into a file, a 
client sends TCP packets over the network and a server receives those packets.  

The full implementation of the client and the server is available on the CD-ROM: 
/eval/network/. You can run all tests yourself with the following commands:  

$ ./server –b <size of blocks to be read> -p <local TCP port> 
$ ./client –b <size of blocks to be sent> -i <IP of the server> 
 -p <remote TCP port> 

3.5.1.4.1 Without virtualization 
Two hardware platforms were connected with one Ethernet crossover cable. First we 
determined the maximal throughput, by running one client on the first platform and one 
server on the second platform. We reached a net TCP throughput of 114.5 MB/s 
(915.7 Mb/s) when:  

• the block size for the client application was greater than or equal to 128 bytes; 
• the block size for the server application was greater than or equal to 512 bytes.  

No latency was detected and the standard deviation of the mean throughput is negligible.  
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In this section, we want to consider not only the throughput and the latency but also the CPU 
usage (visible with the htop command). As a reference, we measured:  

• on the client side, a CPU usage of between 7 and 10 % of one execution unit when the 
block size is 4 kB (about 1 % of the whole CPU); 

• on the server side, a CPU usage of between 65 and 80 % of one execution unit when 
the block size is 4 kB (about 10 % of the whole CPU).  

Then we tested what happens when N clients on one side send data to N servers on the 
other side. Each client only communicates with one server at the same time, thus defining a 
client/server pair. Data flows are separated by means of different TCP ports. Here are the 
results:  

Number of instances on each side Net throughput bound95% 

2 57.5 MB/s (no deviation detected) No latency detected 

4 28.8 MB/s (σX = 6.1 MB/s) 50 ms 

8 14.4 MB/s (σX = 6.6 MB/s) 150 ms 

Table 3-24: Several applications using the same network interface 

As we can see, the network throughput assigned by Linux to each application is only 
predictable if less than two applications are using the same network interface. Nevertheless 
the latency stays reasonable.  

3.5.1.4.2 Over ESXi 
VMware has implemented in ESXi the concept of virtual switch. A virtual switch connects 
several virtual NICs to several physical NICs, with the following properties:  

• If several virtual NICs (typically from several virtual machines) are connected to the 
same virtual switch, they can exchange Ethernet data just like physical NICs connected 
to the same physical switch can.  

• If several physical NICs are (virtually) connected to the same virtual switch, data 
coming from virtual NICs and going outside (to the physical network) are distributed 
over the different physical NICs, either with load sharing or considering one physical 
NIC as being active and the others as being in standby mode (they will be used only if 
the active one fails).  

To create a virtual switch, click on "vSphere Client / Configuration / Network / Add 
network...".  

You can create up to 10 virtual NICs per virtual machine, which is enough for this project 
(see chapter 3 Design). Several types of virtual NIC are available: [VV27] 

• Flexible (default choice): it's an emulated version of the AMD 79C970 PCnet32 LANCE 
NIC, compatible with most operating systems. However if you installed the VMware 
Tools (guest additions for device paravirtualization) [VV23], the virtual NIC is used as a 
VMXNET adapter (the VMware adapter making use of paravirtualization) offering better 
performances, as soon as the VMware Tools are loaded. Therefore this adapter should 
deliver high performances and is also recognized by the (virtual) BIOS, allowing 
network boot.  
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• E1000: it's an emulated version of the Intel 82545EM Gigabit Ethernet NIC, compatible 
with most newer operating systems. VMware Tools are not needed and this adapter 
allows network boot.  

• VMXNET 2 (enhanced): it's an improved version of the VMXNET adapter, supporting 
features such as jumbo frames and hardware offloads (see chapter 3.4.1 VMware 
Infrastructure). VMware Tools are needed and therefore network boot is not supported.  

• VMXNET 3: it's the latest generation of VMware devices using paravirtualization. It 
supports all features already offered by VMXNET 2 and adds several new features. 
VMware Tools are needed and therefore network boot is not supported.  

Note: The network boot feature (PXE) is not needed by Comsoft products for the moment.  

We evaluate in this chapter the properties of each type of virtual network adapter.   

Performance 
In this part we measured the performance of each network adapter type, separately for the 
client application and for the server application. To do so we created one virtual machine on 
one hardware platform and connected it to another platform not using virtualization:  

 
Figure 3-38: Structure of the overhead tests 

The application running without virtualization (the server when testing the client, the client 
when testing the server) uses a block size of 4 kB to make sure it isn't a bottleneck. The 
following table shows the most relevant results:  

Virtual adapter type Tested application Block size Net throughput 
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Virtual adapter type Tested application Block size Net throughput 

Server ≥ 512 bytes 113.1 MB/s (σX = 1.1 MB/s)
Flexible with VMware Tools 

Client ≥ 128 bytes 112.3 MB/s (σX = 1.0 MB/s)

Server ≥ 512 bytes 105.4 MB/s (σX = 6.7 MB/s)

128 bytes 92.8 MB/s E1000 
Client 

≥ 256 bytes 111.2 MB/s (σX = 4.0 MB/s)

Server ≥ 512 bytes 109.9 MB/s (σX = 0.8 MB/s)

128 bytes 106.4 MB/s VMXNET 2 (enhanced) 
Client 

≥ 256 bytes 113.4 MB/s (σX = 1.2 MB/s)

Server ≥ 512 bytes 111.0 MB/s (σX = 0.7 MB/s)

128 bytes 102.5 MB/s VMXNET 3 
Client 

≥ 256 bytes 113.9 MB/s (σX = 0.7 MB/s)

Table 3-25: Network performance of ESXi 

Note: In all cases, no latency was detected.  

At this point, we can exclude the Flexible adapter when used without VMware Tools, 
because of its poor performance. All other adapters showed near-native performance with 
a good predictability.  

CPU Usage 
This test was performed like the previous one, but we measured the CPU usage during the 
data transfer. To do so, we installed vSphere Management Assistant, a special virtual 
machine provided by VMware for free. [VV27] This virtual machine provides a tool called 
esxtop, similar to top, displaying the resource utilization on the host (see the manual of 
esxtop and the document Using esxtop [VV20]). The CPU usage is visible on the line 
containing "PCPU UTIL". A block size of 4 kB was used. The following table shows the 
results:  

Virtual adapter type Tested application CPU usage (% of the whole CPU) 

Client ≈ 12 % 
Flexible with VMware Tools 

Server ≈ 12 % 

Client ≈ 14 % 
E1000 

Server ≈ 17 % 

Client ≈ 12 % 
VMXNET 2 (enhanced) 

Server ≈ 18 % 

Client ≈ 12 % 
VMXNET 3 

Server ≈ 18 % 

Table 3-26: CPU usage for networking over ESXi 
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There is no significant difference between the different adapter types concerning the CPU 
usage. As already shown, the CPU usage of the client application without virtualization was 
only 1 % and the CPU usage of the server application without virtualization was 10 %. Of 
course the CPU usage with virtualization is higher but we are not able to say at this point if 
it's acceptable or not: life-size tests with Comsoft products have to be made.  

Isolation 
The goal of this test is to determine how ESXi assigns the network throughput to several 
virtual machines using the same physical NIC. For example the following figure shows the 
structure of the test when testing the isolation of three clients using the same physical 
interface. On the side without virtualization, three different NICs are used to make sure that 
this side is not a bottleneck. All instances of the test program used a block size of 4 kB.  

 
Figure 3-39: Structure of the isolation test between three clients 

The following table shows the most relevant results:  

Virtual adapter type Tested isolation Net throughput bound95% 

Flexible with VMware Tools 2 clients 57.4 MB/s (σX = 21.6 MB/s) No latency detected

2 clients 58.1 MB/s (σX = 0.9 MB/s) 50 ms 

2 servers 57.4 MB/s (σX = 2.1 MB/s) No latency detected

3 clients 38.3 MB/s (σX = 0.7 MB/s) No latency detected

3 servers 38.3 MB/s (σX = 9.7 MB/s) 50 ms 

6 clients 19.9 MB/s (σX = 2.7 MB/s) 100 ms 

E1000 

6 servers 19.2 MB/s (σX = 7.7 MB/s) 100 ms 

2 clients 57.4 MB/s (σX = 1.1 MB/s) 50 ms 

2 servers 57.4 MB/s (σX = 1.7 MB/s) No latency detected
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VMXNET 2 (enhanced) 
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Virtual adapter type Tested isolation Net throughput bound95% 

2 clients 113.1 MB/s (σX = 1.9 MB/s) 50 ms 

2 servers 113.1 MB/s (σX = 2.3 MB/s) No latency detected

3 clients 113.1 MB/s (σX = 15.5 MB/s) 50 ms 

3 servers 113.1 MB/s (σX = 0.4 MB/s) 50 ms 

6 clients 113.1 MB/s (σX = 13.6 MB/s) 1.2 s 

VMXNET 3 

6 servers 113.1 MB/s (σX = 8.8 MB/s) 100 ms 

Table 3-27: Networking isolation with ESXi 

As we can see, E1000 offers the best results. The throughput with Flexible has a big 
deviation, which means a bad isolation among virtual machines. The latency and the 
standard deviation of the throughput with VMXNET 2 and 3 is higher than with E1000.  

Moreover the deviation with E1000 is sometimes also not negligible but as we can see, it 
only happens when the virtual machines are receiving TCP packets, not when they are 
sending. It also only happens when more than two virtual machines are connected to the 
same physical NIC. In all cases the latency stays very low.  

If this leads to problems when life-size tests with Comsoft products are made, they can be 
solved by one of the following means:  

• The solution has to be designed so that at most two virtual machines are connected to 
one physical NIC: it may of course increase the number of NICs needed.  

• Traffic shaping has to be configured either in the guest operating systems or on the 
physical switches.  

Note: ESXi gives the possibility to set up some traffic shaping, but it only applies to outgoing 
traffic. [VV7] [VV28] No advanced option similar to Disk.BandwidthCap (see chapter 3.5.1.3.5 
Improvement attempt) for the network bandwidth was found.  

Communication over the virtual network 
We tested the communication between two virtual machines of the same hardware platform. 
The following figure shows the structure of this test:  

 
Figure 3-40: Test of the communication over the virtual network 
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A block size of 4 kB has been used on both sides. This table shows the results:  

Virtual adapter type Net throughput bound95% CPU usage (% of the whole CPU)

E1000 124.4 MB/s (σX = 1.6 MB/s) 50 ms 21 % 

VMXNET 2 (enhanced) 160.3 MB/s (σX = 4.8 MB/s) 50 ms 18 % 

VMXNET 3 129.8 MB/s (σX = 9.7 MB/s) 100 ms 19 % 

Table 3-28: Communication over the virtual network 

E1000 offers the best predictability and latency with a CPU usage equivalent to the other 
adapter types.  

Even though E1000 has the lowest throughput, this throughput is still better than the 
native one (throughput while communicating over a physical network). This improvement 
was expected (see chapter 2.1.2.1 Reasons).  

3.5.1.4.3 Conclusion 
ESXi guarantees a short latency to guest operating systems using network adapters. It 
provides a good throughput isolation with a high predictability, except when three or 
more virtual machines receive TCP packets from the same overloaded physical NIC. In case 
this turns out to be a problem during the life-sized tests, solutions have been proposed.  

To reach those results, the E1000 virtual NIC has to be used.  

3.5.1.5 Human-Computer Interface 

Of course screen, keyboard and mouse have to be virtualized too (into virtual screen, virtual 
keyboard and virtual mouse), in order to provide each virtual machine with a human-
computer interface. This is usually implemented as follows:  

• the host's graphical interface provides the possibility to open a window for each virtual 
machine, representing its virtual screen; 

• when one of these windows is focused, all actions on the physical mouse or on the 
physical keyboard are transmitted to the corresponding virtual machine, as if these 
actions were done on the virtual mouse or the virtual keyboard.  

This is how KVM and VirtualBox work, for example, but it isn't exactly the way ESXi works: 
ESXi is designed to be as thin as possible. Therefore the interface displayed on the screen of 
the host is just a semi-graphical interface (a.k.a. color text mode) and the mouse is not 
supported. With ESXi, the virtual machines' interfaces are not displayed on the host but on 
the management computer running vSphere Client over Microsoft Windows.  

The human-computer interface is subject to the "real-time" requirement 2.3.1.1.4.(10), 
limiting its reaction time. However this requirement is reasonably not to be understood as 
needing a detailed proof but rather as an indication that the interface must react pretty 
quickly and never freeze or give the impression of freezing.  

vSphere Client 
The vSphere Client interface works fine but has several disadvantages. First of all it can be 
slow: when moving the mouse and/or a window in the guest operating system, you might 
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notice a refresh frequency of less than 15 images per second, which can be very 
uncomfortable when working on the system during several hours. The interface may seem to 
lag behind, giving the overall impression that the system is slow. The problem is drastically 
reduced if you connect the management computer directly or through a gigabit network to 
the host.  

When the interface of one virtual machine hasn't been used during several days, it can be 
extremely slow when used again. This problem disappears after about 20 seconds of 
use and is probably due to some long-term scheduling policy concerning the graphical 
interface.  

Another disadvantage is that when a virtual machine is overloaded, the graphical interface 
(which probably has a very low priority) gets even slower. The installation of VMware Tools 
(guest additions for device paravirtualization) [VV23] doesn't reduce the problem.  

The last disadvantage is that vSphere Client is a Windows application. We can imagine that 
a solution to automate the installation of ESXi could be developed by Comsoft by means of 
the different APIs provided by VMware. vSphere Client wouldn't be needed to configure the 
virtualization layer anymore, except for the human-computer interface of each virtual 
machine. It would then be preferable to find another solution running on Linux, so that 
Comsoft doesn't have to deliver any Windows workstations. The following parts present a 
few Linux solutions.  

X11-Forwarding 
X11-Forwarding corresponds to the use of "ssh -X" or "ssh -Y" (see the manual of the 
ssh command) under Linux to establish a connection to one guest from a Linux workstation. 
This technique is very effective, even if the workstation is not connected to the server over a 
"fast" connection (crossover or gigabit). Two problems remain:  

• This solution doesn't allow viewing of the guest's desktop (XFCE desktop).  

• This solution only works once the guest operating system is installed and configured.  

VNC on the guest 
Virtual Network Computing (VNC) is a well known platform-independent system to remotely 
control another computer. It transfers the keyboard events, the mouse events and the screen 
changes over the network. A VNC server has to be started on the guest operating system 
(see the manual of vncserver and vncviewer under Linux). NX is also a very powerful 
alternative (only for a remote access to an X11 server).  

This solution allows the visualization of the guest's desktop but, again, only works once the 
guest operating system is installed and configured.  

VNC on the host 
This is how the vSphere Client display works: it uses a VNC connection to the host. It is 
possible to visualize each guest from another VNC client (e.g. TinyVNC under Linux). To 
enable the VNC access to the virtual machine "VM1":  

• Shut down the virtual machine.  
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• You need to edit the file VM1.vmx . One possibility to do so:  
• Do a right click on the datastore in vSphere Client / Host Configuration / Storage, 

and choose "Explore datastore...". Find the file and download it.  
• Append the following lines at the end of the file:  
remotedisplay.vnc.port="5900" 
remotedisplay.vnc.enabled="true" 
remotedisplay.vnc.password = "password" 

• Upload the file into the datastore.  

• Start the virtual machine.  

You can now access the virtual machine from a Linux workstation with the following 
command:  

$ vncviewer <IP_of_the_host>:5900 

You will have to choose a different port for each virtual machine.  

This method allows to monitor a virtual machine, even before it boots any operating system, 
which means that the virtual BIOS for example is accessible with this method. Surprisingly it 
does not suffer from the performance disadvantages of vSphere Client and the display is 
quite flowing.  

Conclusion 
Different methods exist to control and monitor a guest. Some are less efficient but don't 
require the guest operating system to be started, whereas some others are more efficient 
and convenient. No Windows workstation is required to monitor and act inside a virtual 
machine, since Linux alternatives exist.  

3.5.1.6 Conclusion 

ESXi showed a good isolation between virtual machines, a high predictability and low 
latencies in comparison to the time granularity of Comsoft products (see chapter 2.1.1 
Comsoft products). Therefore ESXi can be a solution to the problem exposed by Comsoft. 
Questions concerning the sizing of the system still remain: Are 12 GB RAM enough? Is the 
now lower hard-disk throughput enough? etc. Those questions can only be answered by life-
sized tests (see chapter 5 Verification and Validation).  

All tests exposed in this chapter (3.5.1 VMware ESXi) can constitute a reference for testing 
any other virtualization product or even an operating system.  
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3.5.2 KVM      . 

When testing KVM, Hyperthreading was activated in the BIOS of both platforms, in 
contrary to most of the CPU tests performed on ESXi. Therefore each hardware platform has 
16 execution units.  

The tests presented in chapter 3.5.1 VMware ESXi have of course been used to evaluate 
KVM too. The document Getting started with virtualization [VK1] gives some details on the 
installation of KVM on Fedora.  

3.5.2.1 CPU Utilization 

3.5.2.1.1 Overhead on CPU-Bounded applications 
This test aims to measure the approximate overhead when running a CPU-bounded [C8] 
program (with little or no memory and I/O access) over the hypervisor. We compared the 
execution time of a CPU-bounded program [C8] on following systems:  

• A system with simply a standard installation of Fedora Core 11 32-bits (i386) [C17], 
without virtualization. This Linux distribution is the most recent one delivered by 
Comsoft to its customers.  

• A system with KVM 0.12.2 [VK3] over a standard installation of Fedora Core 11 64-bits 
(a 64-bits host kernel is needed for a complete use of KVM). Here are the relevant 
parameters for this test:  
• 10 identical virtual machines are created, with following parameters: 

• OS type: Linux; 
• Version: Fedora 11; 
• CPUs: 16 (maximum value), this means that the guest operating system will have 

the feeling that it's working with 16 execution units and will be able to run 16 
threads in parallel. 

• Virt Type: kvm.  
• Architecture: x86_64.  

• A standard installation of Fedora Core 11 32-bits is performed on each virtual 
machine.  

Part 1 
The test was run with M = 10 000 (number of iterations for each thread), different numbers of 
threads (T) and 5 times for each value of T. The structure of the test program can be found in 
chapter 3.5.1.1.1 Overhead on CPU-Bound applications. The following figure shows the 
results: 
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Figure 3-41: Overhead on CPU-Bounded applications (1 VM) 

These results are similar to those obtained with ESXi, except for the following differences:  

• The virtual machine is able to use the 16 available execution units. However the curves 
aren't perfectly horizontal for T ≤ 16.  

• The maximum overhead caused by KVM on a long execution of a CPU-bounded 
program in one virtual machine is about 12 % (5 % with ESXi) and appears when 
16 (Linux) threads have to be scheduled.  

The standard deviation didn't seem to be increased because of KVM. KVM doesn't add any 
significant indeterminism on a long execution of a CPU-bounded program in one 
virtual machine.   

Part 2 
In the second part of this test, the test program is run simultaneously in 3 virtual machines, 
with T = 8 and M = 10 000. This makes a total of 24 threads. The structure of the test 
program can be found in Part 2 of chapter 3.5.1.1.1 Overhead on CPU-Bound applications 

The expected execution time (without overhead in comparison to the previous results with 
virtualization) is: (see figure 3-41) 

 2.2865 * 24 + 3.9385 = 63.9 s 
The results are a mean execution time of 67.6 s and a standard deviation of 2.4 s. They 
show that:   

• The mean overhead induced by KVM on a long execution of CPU-bounded programs 
in 3 virtual machines is 5.8 % (in comparison to the result with only one virtual 
machine), which is low (even though there was no overhead with ESXi on 8 execution 
units).  

• The standard deviation is slightly increased because of KVM, but only represents 3.6 % 
of the whole execution time, which is acceptable. (ESXi didn't increase the 
indeterminism at this stage.)  
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Part 3 
In the third step, the same test is performed with 10 virtual machines. The expected 
execution time (without overhead in comparison to the execution time with only one virtual 
machine) is: (see figure 3-41) 

2.2865 * (10 * 8) + 3.9385 = 186.9 s 

Here are the results:  

Execution time (± 0.5 s) / VM N° Per test (s)  

1 2 3 4 5 6 7 8 9 10 Mean σX 

1 235.5  233.5 237.5  237.5  234.5 225.5 235.5 237.5 237.5 236.5 235.1 3.7 

2 260.5  263.5 260.5  259.5  252.5 253.5 260.5 257.5 262.5 266.5 259.7 4.3 

3 272.5  266.5 273.5  279.5  270.5 265.5 270.5 265.5 271.5 267.5 270.3 4.3 

4 256.5  258.5 253.5  262.5  252.5 257.5 249.5 261.5 256.5 262.5 257.1 4.4 Te
st

 N
° 

5 239.5  245.5 243.5  242.5  230.5 231.5 234.5 243.5 244.5 247.5 240.3 6.1 

M
ea

n 252.9 253.5 253.7 256.3 248.1 256.7 250.1 253.1 254.5 256.1 

Pe
r V

M
 (s

) 

σ X
 15.3 13.8 14.2 16.8 16.1 17.3 15.7 12.0 13.7 13.6 

Result:  
252.5 s 
(σX = 13.8 s) 

 35 % 
overhead 

Table 3-29: Overhead on CPU-Bounded applications (10 VMs) 

Those results show that:  

• The mean overhead induced by KVM on a long execution of CPU-bounded programs 
in 10 virtual machines is 35 % (in comparison to the execution time without 
virtualization), which is high. (ESXi didn't induce any overhead with 8 execution units.) 

• The standard deviation per virtual machine is higher but still represents only 5.5 % 
of the total execution time. It's acceptable.  

KVM doesn't scale well with the number of virtual machines, but we only plan to create 
three virtual machines per host in this project (see chapter 1 Introduction).  

The results of the three parts of this test are satisfactory, even if the results are not as good 
as with ESXi.  

3.5.2.1.2 Overhead on system calls 
This test has been described in chapter 3.5.1.1.2 Overhead on system calls. The test was 
run with K = 100 000, different numbers of threads (T) and 5 times for each value of T. The 
following figure shows the results. The measured standard deviation was the same on both 
platforms (max. 2.4 s).   
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Figure 3-42: Overhead on system calls 

Those results show that:  

KVM brings an improvement of about 26 % on this microbenchmark running as many 
system calls as possible. (We observed an overhead of 9 % with ESXi using 8 
execution units. However a similar improvement has been observed using 16 execution 
units.) 

• KVM doesn't add any significant indeterminism on a long execution of this 
microbenchmark.  

The results of this test are more than satisfactory, because of the significant improvement 
observed.  
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3.5.2.1.3 MMU Performance 
This test has been described in chapter 3.5.1.1.3 MMU Performance. It was run with K = 10 
(number of iterations per thread). Here are the results for KVM:  

y = 0,2578x2 + 8,4353x - 0,7628
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Figure 3-43: Overhead on MMU usage 

Those results show a huge overhead (between 230 % and 540 %). (The observed overhead 
with ESXi over 8 execution units was 38 %.) We tried to reduce it by making the following 
changes:  

• With "Architecture = i686", the results stay unchanged.  

• With "Virt Type = qemu" and "Architecture = x86_64", following problems appear:  
• If the RAM allocated to one virtual machine is greater than 4079 MB, it can't start 

and the error notification "could not query memory balloon allocation" is displayed.  
• The virtual machine often freezes and has to be rebooted. It seems unstable, even 

when ACPI and/or APIC in the guest is disabled (by means of options passed to the 
guest kernel in the GRUB menu).  

• The virtual machine seems extremely slow.  

• With "Virt Type = qemu" and "Architecture = i686", following problems appear:  
• The guest Linux freezes when trying to detect the available execution units (at the 

very beginning of the boot process), even with ACPI and/or APIC disabled in the 
guest.  

• Before freezing, the virtual machine seems extremely slow.  

Even the standard deviation is high: with two threads, it represents more than 12 % of the 
whole execution time. However we decided to continue testing KVM.  
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3.5.2.1.4 CPU time distribution 
The goals and details of this series of tests are explained in chapter 3.5.1.1.4 CPU time 
distribution.  

Part 1 
First we ran the test presented in Part 1 of chapter 3.5.1.1.4 CPU time distribution, with 
M = 10 000 (number of iterations per thread), TA = 8 (number of threads in the first virtual 
machine) and TB = 16 (second virtual machine). This time 16 execution units are available.  

With similar calculations, we can deduce that:  

• if KVM distributes the CPU time equally among threads, uA = uB is to be expected (see 
figure 3-44); 

• if KVM distributes the CPU time among virtual machines equally or proportionally (to 
their needs), uB = 1.5 x uA is to be expected (see figure 3-45).  

 
Figure 3-44: Equal CPU time distribution among threads 
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Figure 3-45: Equal or proportional CPU time distribution among virtual machines 

The result of this test is uB = 1.39 x uA, which doesn't allow us to determine the used 
scheduling strategy. This is probably due to the overhead induced by KVM, which distorts the 
result.  

Part 2 
We decided to draw the curves defined in Part 3 of chapter 3.5.1.1.4 CPU time distribution, 
to visually identify the scheduling strategy of KVM. Figure 3-46 shows the result:  
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Figure 3-46: KVM's CPU time distribution among virtual machines 
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The CPU time distribution done by KVM looks like a distribution among virtual machines 
proportionally to their needs (see figure 3-16) distorted by a non-negligible overhead. As 
explained, this CPU time distribution delivers few guarantees and a bad isolation between 
virtual machines.  

3.5.2.2 Conclusion 

We decided to stop the evaluation of KVM at this point. KVM may be a good virtualization 
product but it isn't currently adapted to our project. It added significant indeterminism on 
some microbenchmarks and provides a poor isolation between virtual machines concerning 
the CPU distribution.  
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4 Implementation 

4.1 Architecture 
Figure 4-1 shows the architecture of our implementation.  

 
Figure 4-1: Architecture of the implemented solution 

Hardware platforms 
The solution is based on two servers (HP ProLiant DL380 G6) running a virtualization 
product (ESXi), as anticipated during the design phase (see chapter 3 Design). At least one 
external workstation is needed to administrate ESXi and display the virtual machines' human-
computer interfaces (see chapter 3.5.1.5 Human-Computer Interface). For testing purposes 
we decided to use two such management workstations ("Linux Workstation" and "Windows 
Workstation"). 

In order to test our solution, a test partner is needed, representing the solution of another 
airport/country. Therefore this hardware platform is not part of our solution.  
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Physical networks 
The networks "AIDA-NG ILAN", "CADAS-ATS ILAN", "ELAN" and "CADAS-IMS ILAN" are 
similar to what was anticipated during the design phase, but "AIDA-NG ILAN" and "ELAN" 
share the same switches. Comsoft often makes this simplification and separates both 
networks on level 2 (Ethernet level) with different VLAN-IDs.1  

The physical NICs used to communicate with other airports/countries (see "WAN" in chapter 
3 Design) are not used here. They are normally connected to Comsoft devices named SNL 
Boards (Serial Network Link), converting Ethernet lines to serial lines (e.g. V.24) and vice 
versa.  

Our test partner is connected to our solution over the ELAN, instead of using SNL Boards. 
This is how Comsoft usually tests the performances of its systems.  

The management workstations are connected to the servers over the Comsoft's internal 
network. This allows us to test the speed of the different human-computer interfaces over a 
slower network.  

Virtual networks 
The virtualization product used in our solution is VMware ESXi, and the virtual networks are 
implemented by means of virtual switches. As explained in chapter 3.2 New design, a 
classical solution uses a Linux bonding interface in a hot-standby mode, so that if one 
network link fails, the second one is used, as shown in figure 4-2.  

 
Figure 4-2: Redundancy with Linux bonding 

The natural way to implement the same mechanism over a virtualization product would be to 
let Linux deal with bonding as usual and just map one virtual NIC to one physical NIC. 
However it can't work with ESXi because of the virtual switches: a virtual link can't fail 
(except if an administrator disables it manually in vSphere Client). Therefore the bonding 
interface can't detect that the physical link failed, as shown in figure 4-3.  

                                                 
1 The redundant link between the two switches is then called a redundant trunk link.  
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Figure 4-3: Linux bonding and VMware ESXi 

The correct solution is to let ESXi do this work (hot-standby) instead of Linux, as shown in 
figure 4-4 and as explained in chapters 3.2 New design and 3.5.1.4.2 Over ESXi.  

 
Figure 4-4: ESXi's hot-standby mode 
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4.2 Details 

Hardware platforms 
Except for the points mentioned below, the hardware platforms supporting the hypervisor are 
as described in chapter 3.5 Evaluation.  

Hyperthreading was disabled in the BIOS. A firmware upgrade of the platform was made with 
HP Firmware Update CD 8.70 (latest available version on 2010-02-04).  

We only created one RAID 5 group on three hard-disk drives: A1, A2 and A3 (see figure 3-4). 
All other drives are unnecessary and could have been removed. Appendix F Hard-disk space 
needed for the project shows why three hard-disk drives are sufficient for this project.  

Physical networks 
Both Gigabit switches are Cisco WS-C3560G-24TS-S. [N3] [N4] The configuration files of 
these switches are available on the CD-ROM: /impl/cisco/ . The procedure for 
configuring Cisco switches can be found in Comsoft's LAN Installation Guide. [A19] 

Hypervisor 
ESXi 4.0.0 Update 1 Build 208167 (last available version on 2010-03-23) was installed on 
both hardware platforms and all available patches have been applied with the Host Update 
Utility. The version of ESXi is then "Build 219382". Its configuration is based on the 
conclusions of chapter 3.5.1 VMware ESXi, except for the disk bandwidth limitation, as 
described below.  

Based on chapter 3.5.1.3 Hard Disk Drive, we measured the maximum write throughput in 
one virtual machine on a RAID 5 group over three hard disk drives. The result is about 
100 MB/s. Since three virtual machines have to be created on each hardware platform, the 
parameter Disk.BandwidthCap should have been set to 27 306 kB/s.1 However we 
observed that the virtual machines didn't run the installation of their guest operating system 
(this procedure writes heavily on the hard-disk) at the same speed as each other, indicating 
that the limitation wasn't restrictive enough. We decided to set this limitation to 20 000 kB/s. 
This fixed the problem. Chapter 5.1 Hard disk latency shows that this setting brings reliable 
results.  

In contrary to chapter 3.5.1 VMware ESXi, a free license has been used for this 
implementation. This free version of ESXi happens to come with a new limitation: a virtual 
machine can only use 4 execution units (8 are available on each hardware platform). If you 
try to assign more than 4 execution units to one virtual machine, ESXi refuses to start it.  

This limitation is just a commercial limitation. It shouldn't change the results of chapter 
3.5.1.1 CPU Utilization concerning the predictability of ESXi. Moreover it doesn't 
fundamentally reduce the performance of the system: as explained in chapter 2.1.3.1 Hard 
Real Time, the worst case is the only important indicator in a real time system. Without 
limitation of ESXi and with three virtual machines, a virtual machine would get, if it needs it, 8 
execution units in the best case and 2.67 in the worst case. With a free license, the worst 
case stays the same but the best case is only 4 execution units. If all three virtual machines 
need to execute several threads at the same time, the 8 available execution units will be 
used: there is no waste.  

                                                 
1 100 MB/s x 80 % / 3 = 27 306 kB/s 
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However chapter 3.5.1.1.5 Scheduling demonstrated that reducing the number of virtual 
CPUs of each virtual machine may lead to a longer latency for a virtual machine to get an 
execution unit. So if the latency tests fail for this implementation (see chapter 5.1 Hard disk 
latency), it may mean that the CPU latency is too long and the full version of ESXi will have 
to be tried.  

The virtual machines must be automatically started when ESXi starts, so that this part of the 
solution easily starts up after a power failure. Following parameters have been set in 
vSphere Client / Configuration / Software / Virtual Machine Startup-Shutdown:  

• Allow virtual machines to start and stop automatically with the system: yes; 
• Default Startup Delay: 0 seconds; 
• For each virtual machine:  

• Any Order; 
• Startup Delay: 0 seconds.  

The complete configuration of ESXi can be found on the CD-ROM: 
/impl/esxi/esxi1.txt and /impl/esxi/esxi2.txt .  

Virtual machines 
Their configuration is based on the conclusions of chapter 3.5.1 VMware ESXi, except for the 
assigned main memory, as described below.  

Chapter 3.5.1.2 Main Memory explains that there is no reason to limit the amount of main 
memory usable by a virtual machine, because 12 GB are available and all Comsoft products 
need less than 4 GB.1 However if each virtual machine is allowed to use 12 GB of main 
memory, the Linux guest operating system will see a lot of unused main memory and feel 
free to use it to buffer I/O operations.  

One day we noticed that the virtual machine "CADAS-ATS 1" was using 6 GB of main 
memory. We decided then to limit each virtual machine to 3.9 GB RAM. We now have the 
guarantee that the system will never swap, because:  

• our guest operating systems have no swap partition; 
• 3.9 x 3 < 12 GB: the hypervisor has no reason to swap.  

By default, 4 MB video-RAM are assigned to each virtual machine. It may not be enough to 
start the virtual machine. We recommend to set the maximum value: 128 MB. This can be 
configured in vSphere Client / Virtual machine configuration / Hardware / Graphic card.  

The configuration of each virtual machine can be found on the CD-ROM: /impl/esxi/ . 

Virtual networks 
Figure 4-5 shows the configuration of the virtual networks on the first hardware platform. The 
configuration of the second platform is similar.  

                                                 
1 4 GB/VM x 3 VM = 12 GB 
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Figure 4-5: Virtual networks 

Guest operating system and CCMS 
The guest operating system of each virtual machine is a Fedora 11 32-bits installed by 
means of the following media:  

• Comsoft's Fedora 11 i386 DVD 2010-01-28; 
• Comsoft's Kickstart CD built from CCMS R09.2 V2.0.2816.  

The version R09.2 V2.0.2816 of CCMS has been installed (see chapter 2.1.1 Comsoft 
products). In order to be able to start the X server, following platform-dependant lines had to 
be removed from /etc/X11/xorg.conf : 

Section "Device" 
 Identifier "default" 
 Driver "ati" 
 ChipID 0x515a 
EndSection 

The CCMS configuration can be found on the CD-ROM: /impl/ccms/ .  

AIDA-NG 
The version R09.2 V2.77.0002 of AIDA-NG was installed. Its configuration can be found on 
the CD-ROM:  

• configuration of the solution: /impl/aida/aida.* ;  
• configuration of the communication partner: /impl/aida/partner.* .  

CADAS-ATS 
The version V1.5.00.0014 of CADAS-ATS was installed. Its configuration can be found on 
the CD-ROM: /impl/cadas/cadas.* . 
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CADAS-IMS 
The installed CADAS-IMS is based on the following components:  

• main modules: V2.1.09.0006 (Fiji Project); 
• map server: V2.1.10.0005 (Zimbabwe Project); 
• CCMS High Availability: V1.3.78.  

A basic configuration was set up.  

4.3 Compliance with the requirements 
With this implementation, following requirements are fulfilled:  

Requirement Summary Justification of the compliance 

2.3.1.1.1.(2) Synchronisation with NTP servers.  - Each virtual machine can use NTP 
independently from the others. [VV10] 

2.3.1.1.2.(4) 
2.3.1.1.2.(6) 
2.3.1.1.2.(8)  

Automatic switchover upon detection 
of a fault.  

- If one (or several) subsystem or virtual 
machine fails, the system detects it and 
reacts as if there were no virtualization.  

- Possibilities and configurability of the 
system are unchanged. 

2.3.1.1.7.(1) 2 AFTN/AMHS servers in main/hot 
standby configuration. RAID 1 or 5.  

- RAID 5 on both hardware platforms.  

2.3.1.1.7.(2)  UPS with a capacity of one hour. - The power consumption is lower than in a 
traditional solution (see G Savings due to 
the project).  

2.3.1.2.(1) Use of HP ProLiant DL380 G6.  - More RAM, 2 processors and more NICs.  

2.3.1.2.(3) 
2.3.1.2.(4)  

Usual guest operating system 
without recompilation of the kernel.  

- Fedora Core 11 32-bits usually delivered 
by Comsoft.  

2.3.1.2.(5)  No software modification except on 
configuration components.  

- The CCMS and CNMS may need to be 
extended.  

2.3.1.2.(6)  Extensive support for new 
components.  

- VMware ESXi benefits from a large 
support (see chapter 3.4.1 VMware 
Infrastructure).  

2.3.2.(1)  
2.3.2.(2) 

Savings on purchase, energy 
consumption, assistance and 
maintenance.  

- See appendix G Savings due to the 
project.  

2.3.3.(2) Version of each software element 
mentioned.  

- See previous parts of chapter 4 
Implementation.  

Table 4-1: Fulfilled requirements 

Note: The compliance of this implementation with some requirements is based on the fact 
that the current Comsoft solutions also fulfil these requirements. 
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Some modifications would be needed to completely fulfil the following requirements:  

Requirement Summary Lack 

2.3.1.1.2.(1) 
2.3.1.1.2.(2) 
2.3.1.1.2.(3) 
2.3.1.1.2.(10)  

Monitor and log the health state of all 
system components.  

- The CNMS should be extended to be able 
to monitor and log the health of VMware 
ESXi.  

2.3.1.1.3.(3)  Values in the offer based on existing 
operational systems.  

- No operational system using virtualization 
exists yet.   

2.3.1.1.3.(6) Detail the procedure for rapid system 
re-installation. 

- At least the CCMS Administrator's Guide 
[A14] shall be updated.  

Table 4-2: Requirements not fully fulfilled yet 
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5 Verification and Validation 

5.1 Hard disk latency 
This test aims to easily verify that the problem exposed in chapter 2.1.1 Comsoft products, 
which is the reason of this study, has been solved. The RSS shouldn't be disturbed by an 
application running in another virtual machine, even if this application uses the hard disk 
intensively.  

Part 1 
Appendix H Health of an AIDA-NG Recording Sub-System shows the different ways of 
detecting when an RSS suffers from hard disk latencies.  

Several instances of the test program presented in chapter 3.5.1.3 Hard Disk Drive have 
been run in the same virtual machine as RSS 1 (AIDA-NG 1) with the following command:  

./loop.sh –f /tmp/test<N> 

At the same time, a message generator generating 50 AFTN messages per second and a 
traffic monitor have been started:  

 
Figure 5-1: Message generator and traffic monitor 

The consequences were:  

• With one instance, the RSS displayed some difficulties in rsdb1times.txt; 
• With five instances, some manager warnings were generated and the traffic monitor 

froze; 
• With 20 instances, the RSS went to maintenance.  

Note: 20 instances not only make the hard disk busy but also use 100 % of the guest CPU.  

We now have found a set of applications that makes the RSS crash. The goal of the next 
part is to check that if this set of applications is run in another virtual machine, the RSS 
doesn't crash.  

Part 2 
We ran at the same time:  

• 30 instances in the virtual machine CADAS-ATS 1;  
• 30 instances in the virtual machine CADAS-IMS 1.  
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RSS 1 didn't show any problem and the traffic monitor stayed fluid, which means that even 
the graphical interface had no problem: two virtual machines were overloaded but the 
server wasn't.   
Comsoft's problem is solved.  

5.2 Test scripts 
In this chapter tests are run in order to prove that the remaining requirements are fulfilled. 
These test scripts are adapted from the official Comsoft test scripts. [A20] [A21] 

Requirement 2.3.1.1.2.(5): (CSS-)Switchover in less than ten seconds.  

Test description The duration of a switchover depends on the number of external lines (SNL 
boards). This test compares the duration of a switchover with no external line on 
our solution with the duration of a switchover on a classical solution (without 
virtualization) with no external line.  

Prerequisites None. 

Procedure Expected Results/Observations 

1) Make sure than both AIDA-NG machines have a 
satisfying time synchronisation with NTP: open a 
diagnosis dialog in an OSS and go to 
/System/Supervision/Ntpd/. 

The values in the column "Deviation 
(ms)" are lower than 10.  

2) Perform five switchovers.  

3) Open an event retrieval dialog and look for the events 
"CORE: OPERATIONAL-" and "OPERATOR: INITIATED 
CORE SWITCHOVER".  

The time difference between two 
events gives the duration of a 
switchover.  

4) Perform steps 1 to 3 on a classical solution.   

Results On both solutions, the duration of a switchover is 1.2 seconds (varying between 
1.1 and 1.3 seconds).  

Comments No difference between our solution and a classical one. Since a classical solution 
fulfils this requirement, our solution fulfils this requirement.  

 

Requirement 2.3.1.1.2.(7): Pending messages restored in less than five minutes.  

Test description Pending message lists (PML) are filled and a switchover is performed.   

Prerequisites - An AFTN message generator exists: its messages are routed to the AFTN 
mailbox.  

- An AMHS message generator exists: its messages are routed to a 
disconnected P3 LA (communication partner).  

- The legacy PML maximum size is 20 MB.  
- The X.400 PML maximum size is 20 MB.  

Procedure Expected Results/Observations 

1) Launch the AFTN message generator until the legacy 
PML length is excessive: open an event monitor.  

An event "ROUTING: PML LENGTH 
EXCESSIVE" occurs.   
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2) Launch the AMHS message generator until the X.400 
PML length is excessive: open an event monitor. 

An event "X.400: PML LENGTH 
EXCESSIVE" occurs.  

3) Perform five switchovers.   

4) Open an event retrieval dialog and look for the events 
"CORE: OPERATIONAL+" and "OPERATOR: INITIATED 
CORE SWITCHOVER".  

The time difference between two 
events gives the duration of the 
restoration.  

Results The duration of the restoration is 4.4 seconds (varying between 3.8 and 5.0 
seconds).  

Comments Our solution fulfils this requirement.  

 

Requirement 2.3.1.1.2.(9): Re-initialisation in less than ten minutes.   

Test description Time needed to completely start a server and its software components.    

Prerequisites - One of the servers is powered off.  
- The virtual machines of the other server are used to monitor the status of 

AIDA-NG (by means of an OSS), CADAS-ATS (by means of an 
Administration Terminal) and CADAS-IMS (by means of the Pacemaker 
Management GUI).  

Procedure Expected Results/Observations 

1) Start a stopwatch and power on the server.  

2) When the status of AIDA-NG, CADAS-ATS and CADAS-
IMS are all green, stop the stopwatch.  

The elapsed time gives the duration of 
the re-initialisation. 

3) Perform steps 1 and 2 five times.   

Results The duration of the re-initialisation is 5 min 55 s (+/- 10 s). AIDA-NG is the 
system which needs most time to re-initialise.  

Comments Our solution fulfils this requirement.  

 

Requirement 2.3.1.1.4.(1), 2.3.1.1.4.(2), 2.3.1.1.4.(3), 2.3.1.1.4.(4), 2.3.1.1.4.(8), 2.3.1.1.4.(9):  
- Average message input rate of 20 messages per second.  
- Either 20 AFTN messages or 20 AMHS messages or a mixed message input. 
- Any combination of addresses.  
- Average message text size of 1 500 bytes, minimum message text size of 100 

bytes, maximum message text size of 15 000 bytes.  
- Input-output ratio of 1:2.  
- No accumulation within the system.  
- These requirements concern only AIDA-NG. CADAS-IMS is not necessarily 

designed to handle this throughput.  
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Test description - A communication partner sends 20 AFTN messages and 20 AMHS messages 
per second to AIDA-NG over TCP. (4 different destination addresses for 
AFTN and for AMHS) 

- The message sizes are: 25 % x 100 bytes; 5 % x 15 000 bytes; 20 % x 1 000 
bytes; 50 % x 1050 bytes. 

- AIDA-NG sends two copies of each message back to the communication 
partner over TCP.  

- A copy of all messages is also sent to CADAS-ATS (even if this isn't part of 
the requirement).  

- A copy of the AFTN messages which have a length of 1 000 bytes is also sent 
to CADAS-IMS (even if this isn't part of the requirement). CADAS-IMS then 
receives 4 messages per second. CADAS-IMS doesn't support AMHS.  

Prerequisites - Appropriate message generators on the communication partner.  
- Appropriate routing entries are configured on both sides.  
- Appropriate message sinks are configured on both sides.   

Procedure Expected Results/Observations 

1) Start all message generators on the communication partner. 
After one full minute, stop them.  

 

2) Check via statistics (/Routing/LA/) on the communication 
partner that the specified load has been sent (1 200 AFTN 
messages and 1 200 AMHS messages) and received (2 400 
AFTN messages and 2 400 AMHS messages).  

 

3) Run the load again during at least one hour and check via 
statistics (/Routing/LA/) on the tested AIDA-NG that the 
system is not building queues.  

The column "pending messages" 
doesn't grow.  

Results Passed.   

Comments Our solution fulfils these requirements. Note that the maximum incoming 
throughput of our CADAS-IMS is 8 messages per second. It isn't possible to 
cover all possibilities (all combinations of addresses, etc.) but this test was more 
severe than the requirements (total of 40 messages per second instead of 20). 

 

Requirement 2.3.1.1.4.(6): Message transfer time within the system shorter than one second.   

Test description Same as the previous test.   

Prerequisites Same as the previous test.   

Procedure Expected Results/Observations 

1) Run the load defined in the previous test.    

2) Check via a Traffic Transit Time Calculation dialog on the 
tested system that the transmission time for the AFTN 
messages received from the communication partner and 
sent back to it is lower than one second.  

The values "Transm. Unqueued / 
Maximum (ms)" and "Transm. Queued 
/ Maximum (ms)" are lower than 1000. 

3) Same verification for AMHS messages.   The value "Transm. Unqueued / 
Maximum (ms)" is lower than 1000. 
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Results The highest time is 459 ms. The average is lower than 50 ms.    

Comments Our solution fulfils this requirement.  

 

Requirement 2.3.1.1.4.(10).Part 1: AIDA-NG's graphical interface response time under 
average load lower than 500 ms.  

Test description Same as the previous test.   

Prerequisites Same as the previous test.   

Procedure Expected Results/Observations 

1) Run the load defined in the previous test.    

2) Browse in the graphical interface.  No noticeable response time.   

Results Passed.  

Comments Our solution fulfils this requirement.  

 

Requirement 2.3.1.1.4.(7), 2.3.1.1.4.(10).Part 2: Process a peak load which is three times the 
average load specified for previous tests. AIDA-NG's graphical interface 
response time lower than one second.  

Test description Same as the previous test, but:  
- All rates are multiplied by 2 (previous rates were already twice higher than the 

requirement).  
- No message sent to CADAS-IMS.   

Prerequisites Same as the previous test.   

Procedure Expected Results/Observations 

1) Start all message generators on the communication partner. 
After one full minute, stop them. 

 

2) Check via statistics (/Routing/LA/) on the communication 
partner that the specified load has been sent (2 400 AFTN 
messages and 2 400 AMHS messages) and received (4 800 
AFTN messages and 4 800 AMHS messages). 

 

3) Run the load again during at least one hour and check via 
statistics (/Routing/LA/) on the tested AIDA-NG that the 
system is not building queues. 

The column "pending messages" 
doesn't grow. 

4) Browse in the graphical interface during the test.  No noticeable response time.   

Results Passed.     

Comments Our solution fulfils these requirements.  
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Requirement 2.3.1.1.4.(5), 2.3.1.1.4.(6): Simultaneous transformation of 20 AFTN to AMHS 
messages per second and 20 AMHS to AFTN messages per second. Transfer 
time within the system shorter than one second.  

Test description - A communication partner sends 20 AFTN messages and 20 AMHS messages 
per second to AIDA-NG over TCP. Each message is 1 500 bytes long.  

- AIDA-NG converts each AFTN message into an AMHS message and sends it 
back to the communication partner.  

- AIDA-NG converts each AMHS message into an AFTN message and sends it 
back to the communication partner.  

Prerequisites Same as the previous test.   

Procedure Expected Results/Observations 

1) Start all message generators on the communication partner. 
After one full minute, stop them. 

 

2) Check via statistics (/Routing/LA/) on the communication 
partner that the specified load has been sent (2 400 AFTN 
messages and 2 400 AMHS messages) and received (4 800 
AFTN messages and 4 800 AMHS messages). 

 

3) Run the load again during at least one hour and check via 
statistics (/Routing/LA/) on the tested AIDA-NG that the 
system is not building queues. 

The column "pending messages" 
doesn't grow. 

4) Check via a Traffic Transit Time Calculation dialog on the 
tested system that the transmission time for the AMHS 
messages received from the communication partner and sent 
as AFTN messages back to it is lower than one second.  

The values "Transm. Unqueued / 
Maximum (ms)" and "Transm. 
Queued / Maximum (ms)" are 
lower than 1000. 

5) Same verification for the other direction. The value "Transm. Unqueued / 
Maximum (ms)" is lower than 
1000. 

Results The highest time is 229 ms. The average is lower than 60 ms. 

Comments Our solution fulfils these requirements.  

 

Requirement 2.3.1.1.5.(3): Automatic switchover upon detection of a fault. Pending messages 
are not lost.  
Note: the duration of a manual switchover when pending message lists are full 
has already been measured in a previous test for the requirement 2.3.1.1.2.(7) 
and is lower than 5 seconds.  

Test description Pending message lists (PML) are filled and the physical hardware platform where 
the operational CSS runs is powered off.   

Prerequisites - An AFTN message generator exists: its messages are routed to the AFTN 
mailbox.  

- An AMHS message generator exists: its messages are routed to a 
disconnected P3 LA (communication partner).  

- The legacy PML maximum size is 20 MB.  
- The X.400 PML maximum size is 20 MB.  
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Procedure Expected Results/Observations 

1) Launch the AFTN message generator until the legacy 
PML length is excessive: open an event monitor. Note 
the number of pending messages.  

An event "ROUTING: PML LENGTH 
EXCESSIVE" occurs.   

2) Launch the AMHS message generator until the X.400 
PML length is excessive: open an event monitor. Note 
the number of pending messages.  

An event "X.400: PML LENGTH 
EXCESSIVE" occurs.  

3) Open an OSS on the platform where the standby CSS 
is running.  

 

4) Remove the power cables of the hardware platform 
running the operational CSS.   

The standby CSS becomes operational 
after a few seconds and the number of 
pending messages is still the same.   

Results The opened OSS detected that the operational CSS was gone after 10 seconds 
(same as for a classical solution). No message has been lost.   

Comments Our solution fulfils this requirement.  

 

Requirement 2.3.1.1.6.(1): Capacity of CADAS-ATS servers to handle 50 terminals at the 
same time generating a total of 20 messages per second.  

Test description Starting 50 terminals to generate traffic would require a great number of 
workstations and technical experts. We used instead a configurable simulator 
("Test Client") already developed by Comsoft for this purpose.  

Prerequisites - 50 different users exist.  
- The test client is configured to make each user generate messages with a 

period of 2.5 seconds (stricter than the requirement).  

Procedure Expected Results/Observations 

1) Install the test client on one of the CADAS-ATS virtual 
machines.  

 

2) Start it and monitor the destination mailbox:  

$ java –jar testclientall.jar test.xml 

The number of pending messages is 
incremented by 1 200 every minute, as 
soon as all users are logged in (see the 
output of the test client).   

Results Passed.  

Comments Our solution fulfils this requirement. The file test.xml is available on the 
CD-ROM: /impl/cadas/test_cl/. 
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5.3 Untested compliance 
The compliance with the following requirements couldn't be tested within the given time:  

Requirement Summary Comments 

2.3.1.1.3.(1)  Availability 24 
hours per day and 
7 days per week.   

- No component of the solution needs to be regularly restarted. 
- However the solution should be tested during one month 

under real load.  

2.3.1.1.3.(2) Availability greater 
than 99.999 %.   

- The solution should be tested during one month under real 
load. 

2.3.1.1.3.(7)  Detail the MTBF 
and the MTTR.  

- No unexpected failure has been observed, so it was 
impossible to determine the MTBF.  

- The MTTR requires the determination of all types of failures 
to be repaired.  

- Those values could have been calculated if VMware 
published its own values concerning the availability of ESXi.  

Table 5-1: Unproven compliance 

The solution has been used and tested during one month (however not always under real 
load) and showed a high stability comparable to a classical solution (without virtualization). 
There is no reason to think that those requirements may not be fulfilled.  

5.4 Other requirements 
Following requirements are finally fulfilled:  

Requirement Summary Justification of the compliance 

2.3.1.1.8.(1) 
2.3.1.1.8.(2)  
2.3.3.(1) 

Demonstration of 
the compliance to 
the requirements 
and demonstration 
of the capabilities by 
a practical 
presentation 
including all major 
blocks of the 
solution. Traceability 
between each 
requirement and 
each justification.  

- All requirements are exposed in chapter 2.3 Requirements. 
- The compliance to each requirement has been shown in 

chapters 3.3 Compliance with the requirements, 4.3 
Compliance with the requirements and 5 Verification and 
Validation.  

- The requirements which are not fully fulfilled yet are listed 
in chapters 4.3 Compliance with the requirements and 5 
Verification and Validation.  

- The proof of the compliance is based on the complete 
evaluation of VMware ESXi in chapter 3.5.1 VMware ESXi. 

- The main blocks of the solution are presented in chapters 
3.2 New design and 4.1 Architecture.  

- A real solution has been built and tested.  

Table 5-2: Fulfilled requirements 
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6 Summary and Outlook 
Comsoft needed a solution for server consolidation with the possibility to distribute equally 
resources among its soft real-time applications and the guarantee that the time needed for 
an application to get a resource is limited. They ordered a study based on server 
virtualization.  

We solved their problem by designing and implementing a solution based on VMware ESXi. 
This solution provides a satisfying isolation between applications, high predictability and 
limited latencies, with low performance degradation. The validity of the solution has not only 
been tested but also proved by means of precise and strict statistic indicators. Moreover this 
study is solidly founded on a significant amount of external documents and sources. All 
aspects of this study are precisely documented and can be reproduced.  

Apart from its contribution to Comsoft, this study brings also a scientific contribution. It 
defines a series of indicators and tests which can be used to precisely evaluate predictability, 
performance and isolation of virtualization products in a soft real-time context. More generally 
this study can be used to evaluate any level of a computer system (e.g. an operating system 
or an application framework). We encourage anyone who wants to extend and reuse this 
methodology.  

The implemented solution fulfils almost all requirements (availability, mean time between 
failures and mean time to repair still have to be determined) and could be sold. The next 
steps for Comsoft are as follows:  

• The application monitoring the health of the systems (CNMS) should be extended to 
monitor the health of the virtualization layer.  

• Installation procedures have to be defined and the corresponding documentation has to 
be written. Maintenance procedures have to be updated.  

• A configuration tool for ESXi could be developed in order to replace vSphere Client, so 
that no Windows workstation has to be delivered.  

The current trend in virtualization is to improve mean performance by implementing more 
and more optimizations, thus reducing the predictability of the hypervisors and their 
schedulers. This may represent a danger for Comsoft since VMware ESXi may become less 
predictable in the future. The tests defined in this study should be rerun after each major 
change in ESXi.  

At the same time, Comsoft may re-evaluate other virtualization products: they may also 
become valid in the future.  

Finally, care has to be taken not to consider VMware ESXi as the best virtualization solution 
on the market. Several other products have been excluded at the beginning of this study due 
to requirements specific to Comsoft. Their predictability or real-time properties may be 
actually better than ESXi.  
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Appendix A Implementing full virtualization 
This appendix gives an overview of the different techniques used to implement a full 
virtualization product and their respective complexities.  
A hidden section ID 

Problem 
Nowadays, every architecture (except some embedded systems' architectures) generally 
offers at least two execution modes: kernel mode and user mode. Let's considerer first 
computers with only one execution unit (see chapter 3.5 Evaluation). On such a computer, 
only one execution path or code sequence can be run at a time. That means that if an 
application is running, the operating system is not: contrary to what one might think, a 
running application is not monitored by the operating system. But an application runs in 
user mode. In this execution mode, some processor instructions are forbidden (a protection 
fault exception will be thrown if an application tries to execute such an instruction). Those 
protected instructions can only be run in kernel mode. The operating system will get control 
of the computer back on following events:  

• interrupt: event triggered by a component1 (e.g. the keyboard indicates that a key was 
pressed) independently from the instruction being executed at that moment (the 
interrupt's cause is not the executed code). Moreover one timer can trigger periodically 
an interrupt to guaranty that the operating system is regularly in control (which means 
the operating system gets the execution unit).  

• exception: event that is the result of the (usually abnormal) execution of one instruction 
(e.g. division by zero or protection fault).  

• system call (a.k.a. syscall): special instruction used to jump to a service provided by the 
operating system. For instance if an application wants to write a character on a device, 
it cannot do it directly (it would throw a protection fault exception2) but has to perform a 
system call to let the operating system's kernel (running in kernel mode) do it. A system 
call could be considered as an instruction always throwing an exception, but since an 
exception is usually unwanted, we usually distinguish system calls from exceptions.  

When one of those three events happens, the processor performs following operations3:  

• the context of the running application (registers' content, stack, …) is saved; 
• the execution mode is set to kernel mode;  
• the processor jumps to the handler corresponding to this event (interrupt, exception or 

system call);  
• the handler (and thus the operating system) is run;  
• the processor jumps back to the application (or to another one, depending on the 

scheduling policy): the context of the application is restored and the execution mode is 
set to user mode.  

As you can see, the operating system's kernel runs in kernel mode and has full access to 
hardware. This is usually wanted: the role of the operating system is to decide which 
application receives which hardware resource and the operating system can assume it is the 
only decision-maker on board concerning the entire hardware.  

                                                 
1 Internal or external to the processor. 
2 The standard reaction of an operating system to such exception is the destruction of the application. 
3 You should be aware that this is a simplification to understand the principles. You can find more 
details on this topic in Operating Systems [C7] and Understanding the Linux Kernel [C8].  
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However this behaviour is not acceptable if several (guest) operating systems are running. In 
this configuration, the decision-maker is the hypervisor, which should be called each time a 
decision concerning hardware allocation to virtual machines has to be made.  

But how can this be achieved without modifying the guest operating system? 

Solution 1: Hardware Support 
We need a way to:  

• detect when a guest tries to access hardware while executing an instruction in kernel 
mode; 

• suspend the execution of this instruction; 
• put the hypervisor in control, so that it can perform some operations, decide whether 

the guest is allowed to perform this access or not, and resume the guest's execution or 
not, according to the hypervisor's scheduling policy.  

In other words, instructions which usually don't throw any exception if executed in kernel 
mode shall now throw an exception if executed by a guest, in order to make the processor 
jump to an exception handler set up by the hypervisor. Therefore two additional modes are 
needed:  

• guest mode: the code of a guest (virtual machine) is run in this mode; 
• hypervisor mode: the code of the hypervisor is run in this mode. 

This behaviour is also known as trap-and-emulate. [V6] 
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Figure A-1: Relations between the newly defined modes and exceptions 

Solutions based on this model have been developed:  

• Intel developed Intel VT-x, the virtualization technology on the x86 platform. [V9] 
• AMD developed AMD-V (AMD Virtualization).  

In the Intel solution, the processor support for virtualization is called VMX (Virtual Machine 
eXtension). The hypervisor is called Virtual Machine Monitor. The hypervisor mode is called 
VMX root operation and the guest mode is called VMX non-root operation. Transitions 
between those modes are called VMX transitions:  

• a VMX transition from the VMX non-root operation to the VMX root operation is a VM 
exit; 

• a VMX transition from the VMX non-root operation to the VMX root operation is a VM 
entry. 

Some instructions, if executed in VMX non-root operation (i.e. executed by a guest) will 
trigger a VM exit, allowing the Virtual Machine Monitor to control hardware resources.  

There is no way for software (e.g. no special instruction or register) to know if it is being 
executed in VMX non-root operation or in VMX root operation. Thus an operating system 
can't know if it is being executed on a virtual machine. You will see in part Solution 2: 
Protection Ring 1 that this is an important point.  

More details can be found in the Intel documentation [C2] or in Intel® Virtualization 
Technology: Hardware support for efficient processor virtualization [V5]. 
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Solution 2: Protection Ring 1 
Hardware support for virtualization doesn't exist on every computer and is actually quite new 
on the x86 architecture (Intel-VT is available since 2005 [V9]).  

In this architecture, kernel mode and user mode are implemented by means of four privilege 
levels (a.k.a. protection rings). An operating system should run in the highest privilege level 
(ring 0, representing the kernel mode) whereas code not to be trusted (e.g. applications) 
should run in the lowest privilege level (ring 3, representing the user mode). Privilege levels 
are not only assigned to code segments, but also to data segments and devices. Following 
rules apply:  

• A program (i.e. a peace of code) can only access data and devices from its own ring or 
from a ring with lower privilege. Thus an application cannot access the operating 
system's data objects. 

• A program can only call another program from its own ring or from a ring with more 
privilege. Thus a program can only call one that is more trusted. That is why an 
application can ask for a service from the operating system's kernel by means of a 
system call.  

• Anything that goes against those rules triggers a General Protection Fault exception.  

 
Figure A-2: Intel's Protection Rings (from the Intel Documentation [C1]) 

More details on the privilege levels on the x86 architecture can be found in the Intel 
Documentation [C1].  

It follows from the previous rules that the operating system's kernel has access to the entire 
hardware. Running applications in the protection ring 3 (user mode) and assigning protection 
rings 0, 1 or 2 to devices ensure that no application will be able to directly access the 
hardware.  

Whereas protection rings 1 and 2 should be used for device drivers, most operating systems 
only use rings 0 and 3 to implement kernel and user modes. One idea to achieve 
virtualization was to move the guest kernel's code into protection ring 1 (which is not used) 
and to put the hypervisor's code and devices which have to be shared among virtual 
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machines in protection ring 0. Thus each time a guest's kernel tries to access a device under 
control of the hypervisor, a General Protection Fault exception is thrown and the processor 
jumps to the corresponding exception's handler of the hypervisor.  

Although this solution seems perfect and we think we might have solved the problem 
exposed in part Problem, it is not. It is possible for any application to know in which 
protection level it is being executed: the instruction or register indicating the current 
protection level is not protected.1 A guest kernel running the following code (C++) in a virtual 
machine will crash:  

// Crashes if the condition is false:  
assert(myRing == 0); 

The main difference between this solution and the previous one (hardware support) is that in 
this solution, the guest can know if it is running in a virtual machine or not. This contradicts 
one of the formal requirements for virtualizable architectures from Gerald J. Popek and 
Robert P. Goldberg:  

"Any program run under the VMM should exhibit an effect identical with that 
demonstrated if the program had been run on the original machine directly, with 
the possible exception of differences caused by the availability of system 
resources and differences caused by timing dependencies." [V2] 

And this problem is real since common operating systems (e.g. Linux and Windows) actually 
make use of such problematic instructions. Thus the solution presented in this chapter 
("protection ring 1") is not a valid solution.  

Interesting information on this topic can be found in: 

• Analysis of the Intel Pentium’s Ability to Support a Secure Virtual Machine Monitor [V3];  
• Running multiple operating systems concurrently on an IA32 PC using virtualization 

techniques [V4];  
• Intel® Virtualization Technology: Hardware support for efficient processor virtualization 

[V5]; 
• A Hardware Architecture for Implementing Protection Rings [C10];  
• Das Virtualisierungs-Buch [V1]. 

Note: The hypervisor mode created in the hardware support solution is often referred as "ring 
-1", in comparison to the four existing protection rings presented in this chapter.  

Solution 3: Dynamic Recompilation 
Dynamic recompilation (or dynamic binary translation) is an optimization of emulation. The 
basic structure of an emulator is, as already mentioned in chapter 2.1.2.2 Virtualization 
Techniques, the same as an interpreter's. If you ignore interrupt handling, the code should 
look like this (C++):  

// also known as Program Counter: 
unsigned long instructionPointer = FIRST_INSTR_OF_THE_GUEST; 
 
for (;;) 
{ 
 // fetch the next instruction:  
 instruction i = fetch(instructionPointer); 
 

                                                 
1 More details in the Intel Documentation [C1] [C2].  
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 // execute it:  
 switch (i.opCode()) 
 { 
  case OP_CODE_1: // example: ADD 
   // implementation (updates instructionPointer) 
   break;  
 
  case OP_CODE_2: 
   // implementation (updates instructionPointer) 
   break; 
 
  // ... 
   
  case OP_CODE_N: 
   // implementation (updates instructionPointer) 
   break; 
 } 
} 

Since in our case, the architecture of the virtual machine is the same as the host's, we can 
execute each instruction directly on the host processor (there is no need to re-write an 
implementation for each instruction). Moreover, in this case we are developing a hypervisor 
which handles several guests. Thus the hypervisor should decide periodically which guest 
should be run, according to its scheduling policy: 

// also known as Program Counter: 
unsigned long instructionPointer[NB_GUESTS]; 
 
initialize(instructionPointer); 
 
int guestToRunNext = 0; 
 
for (;;) 
{ 
 // fetch the next instruction:  
 instruction i = fetch(instructionPointer[guestToRunNext]); 
 
 // execute i directly on the processor 
 // (updates instructionPointer[guestToRunNext]) 
 
 // decide which guest will run next: 
 guestToRunNext = scheduler(); 
} 

But as we said, some instructions are not safe and should be intercepted, to prevent the 
guest from directly accessing the hardware without the hypervisor's permission. We have to 
mix the two previous pieces of code: 

// also known as Program Counter: 
unsigned long instructionPointer[NB_GUESTS]; 
 
initialize(instructionPointer); 
 
int guestToRunNext = 0; 
 
for (;;) 
{ 
 // fetch the next instruction:  
 instruction i = fetch(instructionPointer[guestToRunNext]); 
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 // execute it:  
 switch (i.opCode()) 
 { 
  case OP_CODE_SAFE_1:  
  case OP_CODE_SAFE_2: 
  // ... 
  case OP_CODE_SAFE_N: 
   // execute i directly on the processor 

 // (updates instructionPointer[guestToRunNext]) 
   break; 
   
 
  case OP_CODE_UNSAFE_1: 
   // implementation  
   // (updates instructionPointer[guestToRunNext]) 
   break;  
 
  case OP_CODE_UNSAFE_2: 
   // implementation 
   // (updates instructionPointer[guestToRunNext]) 
   break; 
 
  // ... 
 
  case OP_CODE_UNSAFE_N: 
   // implementation 
   // (updates instructionPointer[guestToRunNext]) 
   break; 
 } 
 
 // decide which guest will run next: 
 guestToRunNext = scheduler(); 
} 

This version of the emulator now works without any hardware support and is a little more 
powerful than a normal emulator, since we don't emulate every instruction, but only the ones 
which are unsafe. Dynamic recompilation is an evolution of this principle: instead of fetching 
and executing each guest instruction one by one, it fetches instructions block by block to 
improve speed. Then the block is parsed and each unsafe instruction is replaced by a jump 
to one of the hypervisor's handlers. After those replacements, the whole block is considered 
as safe and can be run directly by the processor:  

// also known as Program Counter: 
unsigned long instructionPointer[NB_GUESTS]; 
instructionBuffer buffer[NB_GUESTS]; 
 
initialize(instructionPointer); 
 
int guestToRunNext = 0; 
 
for (;;) 
{ 
 // fetch the next instructions:  
 fetch(instructionPointer[guestToRunNext], &buffer[NB_GUESTS],  
       NB_INSTRUCTIONS_TO_BE_FETCHED); 
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 // parse and modify the buffer to make it safe: 
 // (the implementation of makeSafe() should consist of a  
 // "switch (opCode)" statement) 
 makeSafe(&buffer[NB_GUESTS]); 
 
 // execute it (updates instructionPointer[guestToRunNext]) 
  
 // decide which guest will run next: 
 guestToRunNext = scheduler(); 
} 

Of course the previous algorithm is a huge simplification of a real hypervisor based on 
dynamic recompilation. For instance, following aspects have been ignored:  

• When letting a block run, the hypervisor actually loses control and the processor won't 
jump back to the hypervisor by itself after having executed the block. The makeSafe() 
function has to add this "jump back" instruction at the end of each block before letting it 
run. 

• The hypervisor fetches several instructions (let's say 256) at a time (block by block), 
but we don't have the guarantee that those 256 instructions will be executed. The 10th 
instruction may be a conditional jump (if condition then jump) likely to jump to a 
place outside the block. First the makeSafe() function has to convert this instruction 
so that the control is not lost forever (if the processor jumps out of the block, the "jump 
back" instruction at the end of this block will never be executed and the hypervisor will 
never get control of the machine again). But then we face a performance problem: is a 
hypervisor parsing and converting 256 instructions in order to execute only ten of them 
efficient? 

This last problem, encountered while implementing a virtual processor (i.e. the part of the 
hypervisor's code responsible for executing guest's instructions), is in fact already well known 
concerning the implementation of a real microprocessor. One set of solutions is named 
Branch Prediction. You can find a lot of explanations concerning this issue as well as all the 
issues encountered when developing a modern (real or virtual) microprocessor in Computer 
Architecture [C4] and Mikrocontroller und Mikroprozessoren [C5].  

Once all those issues are solved by means of the same optimizations as those used in a real 
microprocessor or in a classical interpreter, a hypervisor using dynamic recompilation can be 
much faster than one fetching one instruction at a time.  

More details on dynamic recompilation for virtualization can be found in: 

• Running multiple operating systems concurrently on an IA32 PC using virtualization 
techniques [V4];  

• Introduction to Dynamic Recompilation [V50]; 
• An Emulator Writer's HOWTO for Static Binary Translation [V51]; 
• A Comparison of Software and Hardware Techniques for x86 Virtualization [V6]. 
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Comparison 
Keith Adams and Ole Agesen (from VMware) wrote an interesting paper in 2006 [V6] 
dispelling the myth that a hardware-driven solution is necessarily faster than a software-
driven one. At the time, Intel-VT and AMD-V solutions for hardware-supported virtualization 
were quite new (Intel-VT is available since 2005 [V9]) and they showed that: 

• "Software and hardware VMMs both perform well on compute-bound workloads" [V6], 
which means native performances (without virtualization) are almost reached, since: 
• a software VMM (using dynamic recompilation) doesn't need to modify this type of 

instructions, which are safe; 
• those instructions don't trigger any VM exit with a hardware VMM (using hardware 

support).  

• "For workloads that perform I/O, create processes, or switch contexts rapidly, software 
outperforms hardware" [V6], because: 
• "each guest page table write causes a VM exit" [V6] with a hardware VMM, which 

has a non-negligible cost; 
• mode switches are avoided with a software VMM by replacing unsafe instructions. 

• "In two workloads rich in system calls, the hardware VMM prevails" [V6], because:  
• system calls can be executed natively with a hardware VMM; 
• they have to be replaced when using a software VMM. 

This paper tends to show that at the time, a software VMM was lightly more efficient than a 
hardware one, though the authors hoped that the improvements announced by Intel and 
AMD may change this: AMD's "nested paging" and Intel's "EPT".  

"In both schemes, the VMM maintains a hardware-walked 'nested page table' 
that translates guest physical addresses to host physical addresses. This 
mapping allows the hardware to dynamically handle guest MMU operations, 
eliminating the need for VMM interposition." [V6] 

Hardware VMMs still have the advantage of being drastically simpler that software VMMs, 
thus reducing the number of potential bugs. Hybrid VMMs [V6] are VMMs trying to combine 
the advantages of both software and hardware VMMs. Paravirtualization (see chapter 2.1.2.2 
Virtualization Techniques) may also provide a good optimization for hardware VMMs.  
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Appendix B CPU reservation on VMware ESXi 
ESXi provides the possibility to define a CPU reservation for each virtual machine and for 
each pool (group of virtual machines). With this feature, you can assign for example 70 % of 
the CPU time to one virtual machine.  

Again, this feature was tested on two different platforms:  

• one with two Intel Xeon E5520 processors, with hyperthreading disabled; 
• one with one Intel Xeon E5520 processor, with hyperthreading enabled. 

Both platforms have 8 execution units, each unit having a frequency of 2 267 MHz. Thus 
ESXi considers that the total frequency is 8 x 2 267 = 18 136 MHz.  

To assign 70 % of the CPU time to one virtual machine, we have to define a CPU reservation 
of 70 % for this virtual machine. In ESXi however, CPU reservations are not defined with 
percentages but with MHz. So the reservation for this virtual machine will be 18 136 x 70 % = 
12 696 MHz.  

Note: Of course, the sum of all reservations can't be greater than 18 136 MHz.  

With one processor 
There is obviously a bug in vSphere Client (the configuration tool) or ESXi for this hardware 
platform, since the total CPU reservation is limited to 7 137 MHz instead of 18 136 MHz. 
Here are some different appearances of the bug:  

• The maximum value of the CPU reservation for a virtual machine (vSphere Client / 
Settings / Resources / CPU / Reservation) is 7 137 MHz whereas the maximum value 
of the limitation (vSphere Client / Settings / Resources / CPU / Limit) is 18 136 MHz.  

• The maximum value of the CPU reservation for a pool (vSphere Client / Settings / CPU 
Reservation) is 7 137 MHz. For the pools the maximum value of the limitation (vSphere 
Client / Settings / CPU Limit) is 7 137 MHz, which is not consistent with the previous 
point.  

• In the tab "resource distribution" of the host, the CPU speed is 7 137 MHz.  

• In "distribution of system resources" in the tab "configuration", you can configure the 
CPU reservation for ESXi. The default reservation is 227 MHz, but this value and the 
limitation can grow up to 9 066 MHz. If you choose 9 066 MHz, you get an error dialog 
displaying "vim.fault.InsufficientCpuResourcesFault".  

All those values are inconsistent. No document related to this problem has been found. We 
assigned 100 % of those 7 137 MHz to one virtual machine but we didn't observe any 
difference when running two virtual machines.  

Note: the same problem was observed:  

• with ESXi 4.0.0 Update 1, HP Customized, Build 208167 (special version for HP 
ProLiant) 

• with ESX 4.0.0 Update 1 Build 208167 (last available version on 2010-02-04); 
• with ESXi 3.5.0 Update 5 Build 207095 (last version of ESXi 3.5) 
• after a firmware upgrade of the platform with HP Firmware Update CD 8.70 (last 

available version on 2010-02-04) 
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With two processors 
With two processors without hyperthreading, the most disturbing part of the bug is gone:  

• The maximum value of the CPU reservation for a virtual machine (vSphere Client / 
Settings / Resources / CPU / Reservation) is 16 201 MHz and the maximum value of 
the limitation (vSphere Client / Settings / Resources / CPU / Limit) is 18 128 MHz. (This 
small difference is probably due to some resources being kept free for ESXi.) 

• For the pools the maximum value of the limitation (vSphere Client / Settings / CPU 
Limit) is 16 201 MHz too. 

• In the tab "resource distribution" of the host, the CPU speed is 16 201 MHz.  

• This time, the CPU reservation for ESXi can grow up to 18 133 MHz. Again, if you 
choose this value, you get an error dialog displaying 
"vim.fault.InsufficientCpuResourcesFault".  

We run the program described in the second part of chapter 3.5.1.1.1 Overhead on CPU-
Bound applications on two virtual machines (A and B), with M = 10 000 and T = 16, and we 
assigned 100 % of the CPU to virtual machine A. The application in virtual machine B 
needed exactly twice as much time as the application in virtual machine A, which means that 
virtual machine A really had 100 % of the CPU at the beginning, although both applications 
actually "started" at the same time:  

 
Figure B-1: CPU time distribution with a CPU reservation of 100 % for VM A.  

We didn't test the predictability of this feature.  
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Appendix C Scheduling test on MS-DOS 
The test exposed in chapter 3.5.1.1.5 Scheduling could have been developed on a 
monotasking system. Since this solution was explored and since it's hard to find 
documentation on this topic, this appendix exposes the different achieved steps for the 
interested reader.  

We installed FreeDOS (free alternative to MS-DOS) [CR14] and DJGPP (version of GCC for 
MS-DOS) [CR15].  

Test program 
This example gets the current time from the CMOS RTC and the three PIT counters [VV10] 
and displays it. Details on how to program those PIT counters can be found in documents 
[C19] and [C20].  

The assembly syntax used with GCC is called the AT&T syntax. The implementation of this 
example is available on the CD-ROM: /eval/cpu/msd_test/ . 

Conclusion 
If you try to implement the test described in chapter 3.5.1.1.5 Scheduling, you will see that 
the frequency of PIT-0 is high enough, but its length (16 bits) is too short (it rolls over in a few 
milliseconds). So to calculate the elapsed time between two iterations of a loop, you need to 
compare values coming not only from PIT-0 but also from another timer with a lower 
frequency.  

The CMOS RTC can't be used for this purpose because its frequency is too short: the time 
needed to make PIT-0 roll over is shorter than the CMOS RTC period. PIT-1 or PIT-2 could 
be used for this purpose, but are again too short. The only solution would be to use all of this 
at the same time:  

• PIT-0 to determine the elapsed time,  
• PIT-1 or PIT-2 to determine how many times PIT-0 rolled over, and 
• CMOS RTC to determine how many times PIT-1 or PIT-2 rolled over.  

It's possible but not convenient. This is why we chose the TSC timer to implement this test.  

Concerning MS-DOS, our opinion is that it isn't as convenient and as easy to configure as 
Linux (in particular for networking and communication). This is why we chose a real-time 
operating system based on Linux to implement this test.  
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Appendix D Scheduling test on Fedora Core 11 
Chapter 3.5.1.1.5 Scheduling presents a test to evaluate the scheduler of ESXi. As 
explained, it's important for this purpose to use a hard real-time operating system, because if 
the scheduler of the guest operating system isn't fully predictable, it isn't possible to evaluate 
the virtualization layer's scheduler.  

This appendix shows the results of this test program run on a Fedora Core 11 without 
virtualization, to prove that this operating system was not adapted for this purpose.  

When running the test 5 times, you can observe a significant difference between the best 
case and the worst case:  

 
Table D-1: Scheduling test on Fedora without virtualization, best case 
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Figure D-1: Distribution of the influence on Fedora without virtualization, best case 

 
Table D-2: Scheduling test on Fedora without virtualization, worst case 
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Figure D-2: Distribution of the influence on Fedora without virtualization, worst case 

On the best case, bound95% = 100 ticks = 44.1 ns, exactly the same as on Xenomai. In this 
case, the test process was obviously very rarely de-scheduled by the Linux scheduler.  

On the worst case, bound95% = 1 million ticks = 441 µs, which means that if a process wants 
to execute, it may have to wait for an execution up to 441 µs on this system. Of course this 
value is just an order of magnitude.  

The variation between the best case and the worst case is really significant, whereas both 
experiments have been made in the same conditions. How can later variations induced by 
the virtualization level be detected if the reference test is so unstable? 

Moving the mouse during the test for example can make the results even worse, which is not 
the case on Xenomai.  
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Appendix E Hard-disk latency reduction with ESXi 
Other solutions than the one exposed in chapter 3.5.1.3 Hard Disk Drive have been explored 
in order to reduce the latency and isolate the different virtual machines. This appendix gives 
an overview of the results.  

Distribution of the instances of the test program on different RAID 
channels 
We tested the throughput and the latency when distributing the different instances of the test 
program over two RAID 5 groups, both connected to the same RAID controller but each of 
them connected to one RAID channel. The goal of this test is to determine if the use of two 
different RAID channels delivers guarantees.  

Without virtualization, a high deviation of the writing throughput appeared when both 
channels were under high solicitation: we couldn't predict before launching the test program if 
the throughput would be 150 MB/s or 200 MB/s. However the observed latency stayed low: 
bound95% ≈ 250 ms.  

Over ESXi with two virtual machines, each of them using one different RAID group, the result 
was worse. When both channels were under high solicitation at the same time, one had a 
throughput of 142 MB/s and the other one only 20 MB/s, with a latency reaching 
3.6 seconds. We couldn't predict before launching the test program which one of both virtual 
machines would suffer from a low throughput. Applying the throughput limitations defined in 
chapter 3.5.1.3.5 Improvement attempt solved the problem.  

Therefore we prefer to consider that using different RAID channels of the same RAID 
controller doesn't deliver any guarantee.  

Distribution of the instances of the test program on different RAID 
controllers 
The same test has been run on different RAID controllers. This time we observed a perfect 
isolation and a low latency with and without virtualization.  

Using different RAID controllers is a good way to guarantee a low latency, but it isn't 
adapted to this project since we only have two RAID controllers and we need to isolate at 
least three Comsoft products on the same hardware platform. Comsoft could buy additional 
RAID controllers (on PCI boards) but the layout of HP ProLiant DL380 G6 servers makes it 
impossible to insert additional hard disk drives. (The existing hard disk slots can't be used for 
this purpose: they are already connected to the provided RAID controllers.) 

Based on the same principle, we could imagine using one distinct physical iSCSI device 
(Internet SCSI)1 per virtual machine or a similar technique. VMware ESXi provides the 
possibility to create a virtual hard disk drive on an iSCSI device. [VV3] However this solution 
hasn't been explored. An external scheduler for storage virtualization delivering latency 
guarantees could then be used, as described in chapter 2.2 Related Work.  

                                                 
1 Protocol for SCSI over TCP/IP.  
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VMDirectPath 
VMDirectPath (or Passthrough) allows guest operating systems to directly access an I/O 
device, bypassing the virtualization layer. It can of course improve performance, but it 
prevents several virtual machines from sharing the same hardware device. [VV25] 

To see the list of all devices supporting VMDirectPath, open vSphere Client / Configuration / 
Hardware / Advanced settings / Configure Passthrough : 

 
Figure E-1: VMDirectPath configuration dialog 

Almost all PCI devices are supported for Passthrough. However figure E-1 shows that the 
different RAID channels can't be assigned, but only the RAID controllers, which would 
prevent us from creating more than two virtual machines. It's actually even worse: the first 
RAID controller can't be assigned to a virtual machine, since ESXi is installed on it.  

More information about VMDirectPath can be found in Configuration Examples for 
VMDirectPath [VV25] and Configuring VMDirectPath [VV26].  
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Appendix F Hard-disk space needed for the project 
The following table details the hard-disk space needed for the project on one hardware 
platform:  

Product Partition Needed space Note 

/ 30 GB Software 

/boot 100 MB  

/var 30 GB Database: 100 days x 300 MB/day 
AIDA-NG 

Total 61 GB  

/ 30 GB Software 

/boot 100 MB  

/var 50 GB Database 
CADAS-ATS 

Total 81 GB  

/ 30 GB Software 

/boot 100 MB  

/shared 50 GB Database 

/var 5 GB  

CADAS-IMS 

Total 86 GB  

Total 228 GB  

Table F-1: Hard-disk space needed by Comsoft products 

With a RAID 5 group over three hard-disk drives of 140 GB, we theoretically obtain a total 
space of 280 GB. A few tests showed that the actual space is 270 GB.  

ESXi software needs less than 5 GB, but free space is needed in case the total main 
memory assigned to virtual machines is bigger than the physical available main memory. 
ESXi would use this space as a swap space. Even if we are sure that ESXi will never need to 
swap memory pages out (see chapter 3.5.1.2 Main Memory), ESXi will refuse to start a 
virtual machine if there is not enough free space on the hard-disk. If we assign the whole 
available main memory (12 GB) to all three virtual machines, a free space of 36 GB is 
needed.  

270 GB - 36 GB - 5 GB = 229 GB > 228 GB 
Conclusion: three hard-disk drives are sufficient for our project.  
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Appendix G Savings due to the project 
Note: This is an approximation. Some aspects (energy, postage, documentation writing, 
training, etc.) couldn't be taken into account.  

The web page http://egui.houston.hp.com/eGlue/eco/begin.do allows to calculate the price of 
a server. Without virtualization (see chapter 3.1 Existing design), six servers with the 
following configuration are usually purchased:  

• Model: HP DL380G6 E5520; 
• Number of processors: 1; 
• RAM: 4 GB (2 x 2 GB) PC3-10600R; 
• 1 PCI Express Card: HP NC364T 4Pt (Gigabit NIC); 
• DVD Optical Kit; 
• 3x HP 146GB 3G SAS 10K SFF DP ENT HDD; 
• 1 Redundant Power Supply. 

The price of such a server is 4 524 USD without service nor support, which makes a total of 
27 144 USD.  

For our project, only two servers are needed (see chapter 4 Implementation), with the same 
configuration except on following points:  

• Number of processors: 2; 
• RAM: 12 GB (6 x 2 GB) PC3-10600R; 
• 2 PCI Express Cards: HP NC364T 4Pt (Gigabit NIC). 

The price of such a server is 6 372 USD without service nor support, which makes a total of 
12 744 USD. The hardware costs for the servers have been divided by 2.1. Moreover the 
energy consumption of the whole solution will be lower.  

HP assistance contracts (Service and Support) are called Care Packs. One Care Pack 
concerns only one server, making the price of the assistance proportional to the number of 
servers. Our project divides the assistance costs by 3.  
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Appendix H Health of an AIDA-NG Recording Sub-
System 
Several indicators exist to know if an RSS suffers from high latencies.  

rsdb<N>times.txt 
Monitor the file /var/aida/db/rsdb<N>times.txt, N being the ID of the RSS:  

$ tail –f /var/aida/db/rsdb1times.txt 

This file is a developer log-file. When an RSS performs an operation on its database, it 
measures the time needed to do it. Except when the RSS starts, such an operation should 
never last longer than 500 ms. Otherwise such a line is appended at the end of the file:  

29.03.2010 17:37:00,743 : req getDiagData  reqSize 0 cnfSize 962 :  
→ 916[msec], # mbox msgs: 0 

Manager Warning 
When a RSS is having severe difficulties, it fails to regularly send alive indicators to its 
system manager (see chapter 2.1.1 Comsoft products), which triggers manager warnings, as 
shown in figure H-1. These warnings can be detected by means of an alarm.  

 
Figure H-1: Alive indicators missing 

Maintenance 
After five missing alive indicators, the RSS is switched off by its system manager (see 
chapter 2.1.1 Comsoft products). It is declared as being in maintenance:  

 
Figure H-2: RSS in maintenance 
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