EMBEDDED IMAGE PROCESSING ON
THE TMS320C6000™ DSP

Examples in Code Composer Studio™ and MATLAB

EMBEDDED IMAGE PROCESSING ON
THE TMS320C6000™ DSP

Examples in Code Composer Studio™ and MATLAB

Shehrzad Qureshi

Shehrzad Qureshi
Labceyte Inc., Palo Alto, CA
USA

Embedded Image Processing on the TMS320C6000™ DSP
Examples in Code Composer Studio™ and MATLAB

Library of Congress Cataloging-in-Publication Data

A C.I.P. Catalogue record for this book is available
from the Library of Congress.

ISBN 0-387-25280-0 e-ISBN 0-387-25281-9 Printed on acid-free paper.
ISBN 978-0387-25280-3

© 2005 Springer Science+Business Media, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without
the written permission of the publisher (Springer Sciencet+Business Media, Inc., 233 Spring
Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now
know or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms,
even if the are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

Printed in the United States of America.
987654321 SPIN 11055570

springeronline.com

TRADEMARKS

The following list includes commercial and intellectual trademarks
belonging to holders whose products are mentioned in this book. Omissions
from this list are inadvertent,

Texas Instruments, TI, Code Composer Studio, RTDX, TMS320C6000,
C6000, C62x, C64x, C67x, DSP/BIOS and VelociTl are registered
trademarks of Texas Instruments Incorporated.

MATLAB is a registered trademark of The MathWorks, Inc.

ActiveX, DirectDraw, DirectX, MSDN, Visual Basic, Win32, Windows, and
Visual Studio are trademarks of Microsoft.

Intel, MMX, Pentium, and VTune are trademarks or registered trademarks of
Intel Corporation or its subsidiaries in the United States and other countries.

DISCLAIMER

Product information contained in this book is primarily based on technical
reports and documentation and publicly available information received from
sources believed to be reliable. However, neither the author nor the publisher
guarantees the accuracy and completeness of information published herein.
Neither the publisher nor the author shall be responsible for any errors,
omissions, or damages arising out of use of this information. No information
provided in this book is intended to be or shall be construed to be an
endorsement, certification, approval, recommendation, or rejection of any
particular supplier, product, application, or service.

CD-ROM DISCLAIMER

Copyright 2005, Springer. All Rights Reserved. This CD-ROM is
distributed by Springer with ABSOLUTELY NO SUPPORT and NO
WARRANTY from Springer. Use or reproduction of the information
provided on this CD-ROM for commercial gain is strictly prohibited.
Explicit permission is given for the reproduction and use of this information
in an instructional setting provided proper reference is given to the original
source.

The Author and Springer shall not be liable for damage in connection with,
or arising out of, the furnishing, performance or use of this CD-ROM.

Dedication

To my family, for instilling in
me the work ethic that made
this book possible, and Lubna,
Sor her continued support.

Contents

Preface

Acknowledgements

1. Introduction

1.1
1.2.
1.3
1.4
1.5
1.6
1.7

2. Tools
2.1.
2.1.1
2.1.2
2.1.3

2.2
221
222
223
224
225

Structure and Organization of the Book
Prerequisites

Conventions and Nomenclature
CD-ROM

The Representation of Digital Images
DSP Chips and Image Processing
Useful Internet Resources

The TMS320C6000 Line of DSPs
VLIW and VelociTl
Fixed-Point versus Floating-Point
TI DSP Development Tools
(C6701 EVM & C6416 DSK)

TI Software Development Tools
EVM support libraries
Chip Support Library
DSP/BIOS
FastRTS
DSPLIB and IMGLIB

Xiii

Xvii

—— — st
~N QN L WO O WM —

*]
—

25
26
28
28
29
29
29

23
24

24.1
242
243

Contents

MATLAB
Visual Studio .NET 2003
Microsoft Foundation Classes (MFC)
GDI+
Intel Integrated Performance Primitives (IPP)

3. Spatial Processing Techniques

3.1

3.2

321

3.2.2 TIC67xx Implementation and MATLAB Support Files

Spatial Transform Functions and the Image
Histogram
Contrast Stretching

MATLAB Implementation

33 Window/Level
3.3.1 MATLAB Implementation
3.3.2 A Window/Level Demo Application Built
Using Visual Studio .NET 2003
3.3.3 Window/Level on the TI C6x EVM
34 Histogram Equalization
3.4.1 Histogram Specification
34.2 MATLAB Implementation
3.4.3 Histogram Specification on the TI C6x EVM
4. Image Filtering
4.1 Image Enhancement via Spatial Filtering
4.1.1 Image Noise
4.1.2 2D Convolution, Low-Pass and High-Pass Filters
4.1.3 Fast Convolution in the Frequency Domain
4.1.4 Implementation Issues
42 Linear Filtering of Images in MATLAB
4.3 Linear Filtering of Images on the TI C62xx/C67xx
4.3.1 2D Filtering Using the IMGLIB Library
432 Low-Pass Filtering Using DSPLIB
4.3.3 Low-Pass Filtering with DSPLIB and Paging
434 Low-Pass Filtering with DSPLIB and Paging via DMA
4.3.5 Full 2D Filtering with DSPLIB and DMA
4.4 Linear Filtering of Images on the TI C64x
44.1 Low-Pass Filtering with a 3x3 Kernel Using IMGLIB
442 A Memory-Optimized 2D Low-Pass Filter
4.5 Non-linear Filtering of Images
4.5.1 Image Fidelity Criteria and Various Metrics
4.5.2 The Median Filter
4.5.3 Non-Linear Filtering of Images in MATLAB
4.54 Visual Studio .NET 2003 Median Filtering Application

30
30
31
33
34

37

37
40
45
47
59
63

68
77
82
87
90
94

103
103
106
109
111
114
116
118
120
124
128
132
138
139
141
146
152
152
155
159
166

Embedded Image Processing on the TMS320C6000 DSP

4.5.4.1 Generating Noise with the Standard C Library
4.5.4.2 Profiling Code in Visual Studio .NET 2003
4543 Various Median Filter C/C++ Implementations

4.5.5 Median Filtering on the TI C6416 DSK
4.6 Adaptive Filtering
4.6.1 The Minimal Mean Square Error Filter
4.6.2 Other Adaptive Filters
4.6.3 Adaptive Image Filtering in MATLAB
4.6.4 An MMSE Adaptive Filter Using the Intel IPP Library
4.6.5 MMSE Filtering on the C6416
5. Edge Detection and Segmentation
5.1 Edge Detection
5.1.1 Edge Detection in MATLAB
5.1.2 An Interactive Edge Detection Application with
MATLAB, Link for Code Composer Studio, and RTDX
5.1.2.1 DSP/BIOS
5122 C6416 DSK Target
5.1.23 C6701 EVM Target
5.1.2.4 Host MATLAB Application
5.1.2.5 Ideas for Further Improvement
52 Segmentation
5.2.1 Thresholding
5.2.2 Autonomous Threshold Detection Algorithms
5.2.3 Adaptive Thresholding
524 MATLAB Implementation
5.2.5 RTDX Interactive Segmentation Application with
Visual Studio and the TI C6416
5.2.5.1 C6416 DSK Implementation
5.2.5.2 Visual Studio .NET 2003 Host Application
6. Wavelets
6.1 Mathematical Preliminaries
6.1.1 Quadrature Mirror Filters and Implementing the
2D DWT in MATLAB
6.1.2 The Wavelet Toolbox
6.1.3 Other Wavelet Software Libraries
6.1.4 Implementing the 2D DWT on the C6416 DSK
with IMGLIB
6.14.1 Single-Level 2D DWT
6.14.2 Multi-Level 2D DWT
6.1.43 Multi-Level 2D DWT with DMA
6.2 Wavelet-Based Edge Detection

Xi

167
169
171
179
183
185
187
190
194
198

211
212
219

225
229
232
236
240
245
246
248
249
254
257

261
262
269

281
282

287
296
299

299
301
305
309
313

Xii Contents

6.2.1 The Undecimated Wavelet Transform
6.2.2 Edge Detection with the Undecimated
Wavelet Transform
6.2.3 Multiscale Edge Detection on the
C6701 EVM and C6416 DSK
6.2.3.1 Standalone Multiscale Edge Detector (C6701 EVM)

6.2.3.2 HPI Interactive Multiscale Edge Detector Application

with Visual Studio and the TI C6701 EVM
6.2.3.2.1 C6701 EVM Target
6.2.3.2.2 Visual Studio .NET 2003 Host Application
6.2.3.3 Standalone Multiscale Edge Detector (C6416 DSK)
6.3 Wavelet Denoising
6.3.1 Wavelet Denoising in MATLAB
6.3.2 Wavelet Denoising on the C6x
6.3.2.1 D4 DWT and IDWT functions on the C6416
6.3.2.2 A C6416 Wavelet Denoising Implementation

Appendix A Putting it Together: A Streaming Video
Application
Al Creation and Debugging of MEX-files
in Visual Studio .NET 2003
A.1.1 The import_grayscale_image MEX-file
A.1.2 A MEX-file for HPI communication between
MATLAB and the C6x EVM
A2 The C6701 EVM Program
A3 MATLAB GUI
A4. Ideas for Further Improvement

Appendix B Code Optimization
B.1 Intrinsics and Packed Data Processing
B.1.1 Packed Data Processing
B.1.2 Optimization of the Center of Mass Calculation
on the C64x Using Intrinsics
B.2 Intrinsics and the Undecimated Wavelet Transform
B.3 Convolution and the DWT

Index

316

317

323
323

329
331
334
341
347
352
359
362
374

379

382
385

390
393
396
398

401
404
405

408
415
418

425

Preface

The question might reasonably be asked when first picking up this book
— why yet another image processing text when there are already so many of
them? While most image processing books focus on either theory or
implementation, this book is different because it is geared towards embedded
image processing, and more specifically the development of efficient image
processing algorithms running on the Texas Instruments (TI)
TMS3206000™ Digital Signal Processor (DSP) platform. The reason why I
wrote this book is that when I first started to search for material covering the
TMS3206000 platform, I noticed that there was little focus on image
processing, even though imaging is an important market base that TI targets
with this particular DSP family. To be sure, there are plenty of books that
explain how to implement one-dimensional signal processing algorithms,
like the type found in digital communications and audio processing
applications. And while I found a chapter here or there, or a lingering section
that mentioned some of the techniques germane to image processing, I felt
that a significant portion of the market was not being sufficiently addressed.
For reasons that will hopefully become apparent as you read this book,
image processing presents its own unique challenges and it is my sincere
hope that you find this book helpful in your embedded image processing
endeavors.

For a myriad of reasons, implementing data intensive processing
routines, such as the kind typified by image processing algorithms, on
embedded platforms presents numerous issues and challenges that
developers who travel in the “workstation” or “desktop” realm (i.e. UNIX or
Wintel platforms) typically do not need to concern themselves with. To
illustrate just a few of these issues, consider the task of implementing an

xiv Preface

efficient two-dimensional Discrete Wavelet Transform (DWT) on a DSP, a
topic covered extensively in Chapter 6 of this book. Such an algorithm might
be needed in a digital camera to save images in the JPEG-2000 format or in
a software-based MPEG4 system — wavelet coding of images has in the past
few years supplanted the discrete cosine transform as the transform of choice
for state-of-the-art image compression.

The DWT, like many other similar transforms commonly encountered in
signal and image processing, is a separable transform. This means that the
two-dimensional (2D) form of the transform is computed by generalizing the
one-dimensional (1D) form of it — in other words, by first performing the 1D
transform along one dimension (for example, each of the individual rows in
the image), and then rerunning the transform on the output of the first
transform in the orthogonal direction (i.e., the columns of the transformed
rows). A software implementation of a 2D separable transform is relatively
straightforward, if a routine exists that performs the 1D transform on a
vector of data. Such code would most likely march down each row, invoking
the aforementioned routine for each row of image data, thus resulting in a
matrix of row-transformed coefficients. This temporary image result could
then be transposed (the rows become the columns and vice-versa), and the
same process run again, except this time as the algorithm marches down the
row dimension, the columns are now transformed. Lastly, a second
transposition reshuffles the image pixels back to their original orientation,
and the end result is the 2D transform. Both the 2D DWT and the 2D Fast
Fourier Transform (FFT) can be computed in such a manner.

This implementation strategy has the benefit of being fairly easy to
understand. The problem is that it is also terribly inefficient. The two
transposition operations consume processor cycles, and moreover lead to
increased memory consumption, because matrix transposition requires a
scratch array. On typical desktop platforms, with their comparatively huge
memory footprint and multi-gigahertz clock frequencies, who cares? On
these platforms, it is oftentimes possible to get away with such first-cut
implementations, and still obtain more than acceptable performance. Of
course, this is not always going to be the case but the name of the game in
developing efficient code is to optimize only if needed, and only where
needed. Thus if the initial implementation is fast enough to meet the desired
specifications, there is little to gain from making algorithmic and subsequent
low-level optimizations.

The contrast is quite stark in the embedded DSP world however;
embedded DSP cores increasingly find their way into real-time systems,
with hard deadlines that must be met. And if the system happens to not be
real-time, they are quite often memory and/or resource constrained, perhaps
to keep costs and power consumption down to acceptable levels (consider,

Embedded Image Processing on the TMS320C6000 DSP XV

for example, a camera cell-phone). As a consequence, the situation here is
that there is typically far less leeway — the clock speeds are somewhat
slower, and memory inefficiencies tend to have an amplified effect on
performance. Hence memory, and especially fast on-chip memory (which
comes at a premium) absolutely must be managed correctly. With respect to
the 2D DWT example, the “canonical” form of the algorithm as just
described can be altered so that it produces identical output, but does not
require the use of a matrix transposition. Such an optimization is described
in Chapter 6. As one would expect, as these types of optimizations are
incorporated into an algorithm, its essential nature tends to become clouded
with the details of the tricks played to coax more performance out of an
implementation. But that is the price one pays for speed — clarity suffers, at
least with respect to a “reference” implementation.

And it only gets more involved as the design process continues. Images
of any reasonable size will not fit in on-chip RAM, which has just been
identified as a rate-limiting factor in algorithm performance. Because the
latencies involved with accessing off-chip RAM are so severe, an optimal
2D DWT transform should incorporate strategies to circumvent this
problem. This optimization exploits spatial locality by shuttling blocks of
data between internal and external RAM. For example, as individual rows or
a contiguous block of an image is needed, they should be copied into internal
RAM, transformed, and then sent back out to external RAM., This process
would then continue to the next block, until the entire image has been
transformed. A likely response from seasoned C/C++ developers would
probably be to use the venerable memcpy function to perform these block
memory copies. As it turns out, in the fully optimized case one should use
Direct Memory Access (DMA) to increase the speed of the block memory
copy, which has the added benefit of freeing the processor for other duties.
Taking matters to the extreme, yet another optimization may very well entail
interleaving the data transfer and data processing. First, one might set up the
DMA transfer, and then process a block of data while the DMA transfer is
occurring in the background. Then, when the background DMA transfer
completes, process this new set of data while simultaneously sending the
just processed block of data back out to off-chip memory, again via DMA.
This procedure would continue until all image blocks have been processed.

As is evident from this description, what was once a reasonably
straightforward algorithm implementation has quickly become obfuscated
with a myriad of memory usage concerns. And memory is not the end of this
story! Many DSPs are “fixed-point” devices, processors where floating-point
calculations are to be avoided because they must be implemented in
software. Developing fixed-point algorithm implementations, where any
floating-point calculations are carried out using integer representations of

xvi Preface

numbers and the decimal point is managed by the programmer, opens up a
whole new can of worms. The algorithm developer must now contend with a
slew of new issues, such as proper data scaling, quantization effects of filter
coefficients, saturation and overflow, to name just a few. So not only has our
optimized 2D DWT algorithm been tweaked so that it no longer requires
matrix transpositions and is memory efficient through the usage of DMA
block memory copies, but any floating-point data is now treated as bit-
shifted integer numbers that must be managed by the programmer.

And even still, there are many other issues that the preceding discussion
omits, for example the inclusion of assembly language, vendor-specific
compiler intrinsics, and a real-time operating system, but the general idea
should now be clear. Even just a few of these issues can turn a
straightforward image processing algorithm into a fairly complicated
implementation. Taken together and all at once, these concerns may seem
overwhelming to the uninitiated. Bridging this gap, between the desktop or
workstation arena and the embedded world, is this book’s raison d’etre.
Developers must fully understand not only the strengths and weaknesses of
the underlying technology, but also the algorithms and applications to the
fullest extent in order to implement them on a DSP architecture in a highly-
optimized form. I come from an image processing background, having
developed numerous production-quality algorithms and software spanning
the gamut of environments — from embedded DSPs to dual Pentium and SGI
workstations — and my primary goal is to ease the transition to the embedded
DSP world, which as evidenced by this case study presents itself with a set
of very unique challenges.

Another motivation for my writing this book, aside from the fact that
there is not currently a book on the market covering embedded image
processing, is to shed some light on the “black magic” that seems to
accompany embedded DSP development. In comparison to developing non-
embedded software, during the development of the software that
accompanies this book I was continually stymied by one annoyance or
another. Certain operations that would work with one DSP development
platform seemingly would not work on another, and vice-versa. Or some
simple examples from the TI online help tutorial would not work without
certain modifications made to linker files, build settings, or the source code.
There were so many issues that to be truthfully honest | have lost track of
many of them. I hope that reading this book and using the code and projects
that are on the CD-ROM will help you in that ever important, yet elusive,
quest for “time to market.”

Shehrzad Qureshi
shehrzad_q@hotmail.com

Acknowledgments

There are many fine people who had a hand in this work, and I would
like to acknowledge their effort and support. First and foremost, my soon-to-
be wife, Lubna, provided invaluable feedback with regards to the
composition of the book and spent countless hours reviewing drafts of the
material. Without her constant encouragement and total understanding, it is
doubtful this book would have ever seen the light of day and for that, I am
forever grateful. 1 have also been blessed to have had the pleasure of
working with many brilliant engineers and scientists at various employment
stops along the way, and without them to learn from [could never have
developed my love of algorithms and programming. I thank Steve Ling and
others at Texas Instruments for their generosity in lending DSP development
boards that made this book possible, as well as Cathy Wicks for her help
along the way. I sincerely appreciate the support extended to me by the folks
at The MathWorks, in particular Courtney Esposito who disseminated early
drafts of the manuscript for technical review. Finally, I would like to thank
Springer for their continued support in this endeavor, especially Melissa
Guasch, Deborah Doherty, and Alex Greene for their help in the final
preparation of the manuscript.

Chapter 1
INTRODUCTION

When engineers or scientists refer to an image, they are typically
speaking of an optical representation of a scene acquired using a device
consisting of elements excited by some light source. When this scene is
illuminated by a light source, these elements subsequently emit electrical
signals that are digitized to form a set of “picture elements” or pixels.
Together these pixels make up a digital image. Many of these devices are
now driven by Digital Signal Processors, for reasons explained in 1.6. The
imaging device may take the form of a camera, where a photographic image
is created when the objects in the scene are illuminated by a natural light
source such as the sun, or an artificial light source, such as a flash. Another
example is an x-ray camera, in which case the “scene” is typically some
portion of the human body or a dense object (e.g., luggage in an airport
security system), with the light source consisting of x-ray beams. There are
many other examples, some of which do not typically correspond to what
most people think of as an image. For example, in the life sciences and
biomedical fields there are numerous devices and instruments that can be
thought of as cameras in some sense, where the acquisition detectors are
photodiodes excited by some type of infrared light. This book describes
image processing algorithms that operate on all sorts of images, and provides
numerous implementations of such algorithms targeting the Texas
Instruments (TT) TMS320C6000™ DSP platform. Prior to embarking on this
journey, this first chapter introduces the structure of the book and the
representation of digital images, and the second chapter provides
background information on the tools used to develop image processing
algorithms.

2 Chapter 1

1.1 STRUCTURE AND ORGANIZATION OF THE BOOK

Because the whole thrust of this book are efficient implementations of
image processing algorithms running on embedded DSP systems, it is not
sufficient to simply present an algorithm and describe a first-cut
implementation that merely produces the correct output. The primary goal is
efficient algorithm implementations, while a secondary goal is to learn how
to utilize the appropriate TI technologies that aid in the development and
debugging of code that can be used in real-world applications. Achieving
these goals takes time, and as such we are somewhat constrained by space.
As a result, this book is not intended to be a complete coverage of image
processing theory and first principles, for that the reader is referred to [1] or
[2]. However, what you will find is that while such books may give you the
mathematical and background knowledge for understanding how various
image processing algorithms work in an abstract sense, the transition from
theory to implementation is a jump that deserves more attention than is
typically given. In particular, taking a description of an image processing
algorithm and coding an efficient implementation in the C language on an
embedded fixed-point and resource-constrained DSP is not for the faint of
heart. Nowadays, given the proliferation of a variety of excellent “rapid-
generation” high-level technical computing environments like MATLAB®
(especially when coupled with the Image Processing Toolbox) and various
software libraries like the Intel® Integrated Performance Primitives, it is not
overtly difficult to put together a working image processing prototype in
fairly short order. We will use both of the aforementioned software packages
in our quest for embedded DSP image processing, but bear in mind that it is
a windy road.

The meat of this book is split amongst Chapters 3-6, with some ancillary
material appearing in the two appendices. This chapter contains introductory
material and Chapter 2 is important background information on the various
tools employed throughout the rest of the book. Chapters 3-6 roughly cover
four general categories of image processing algorithms:

1. Chapter 3: image enhancement via spatial processing techniques
(point-processing).

2. Chapter 4: image filtering (linear, non-linear, and adaptive).

3. Chapter 5: image analysis (edge-detection and segmentation).

4. Chapter 6: wavelets (with applications to edge detection and image
enhancement).

Due to the challenging nature of embedded development, the strategy is
to start off simple and then progressively delve deeper and deeper into the

Introduction 3

intricate implementation details, with the end game always being an efficient
algorithm running on the DSP. The book follows a “cookbook” style, where
an image processing algorithm is first introduced in its theoretical context.
While this is first and foremost a practitioner’s book, it goes without saying
that a solid understanding of the theoretical underpinnings of any algorithm
is critical to achieving a good implementation on a DSP. After the
theoretical groundwork has been laid, examples in MATLAB are used to
drive home the core concepts behind the algorithm in question, without
encumbering the reader with the details that inevitably will follow.
Depending on the situation, it may be the case that the MATLAB code is
ported to C/C++ using Visual Studio .NET 2003. These Windows
applications allow for interactive visualization and prove invaluable as
parallel debugging aids, helping to answer the often posed question “Why
doesn’t my C code work right on my DSP, when it works just fine on the
PC?” And of course, because this book is primarily targeted at those who are
implementing embedded image processing algorithms, each algorithm is
accompanied by an implementation tested and debugged on either the C6701
Evaluation Module (EVM) or C6416 DSP Starter Kit (DSK). Both of these
DSP platforms are introduced in 2.1.3. It should be noted that majority of the
TI image-processing implementations that accompany this book use the
C6416 DSK, as it contains a more recent DSP and TI appears to be phasing
out the EVM platform.

1.2. PREREQUISITES

In order to get the most out of this book, it is expected that the reader is
reasonably fluent in the C language and has had some exposure to
MATLAB, C++, and the TI development environment. If the reader is
completely new to embedded development on the TI DSP platform, but does
have some experience using Microsoft Visual Studio or a similar integrated
development environment (IDE), it should not be too difficult to pick up
Code Composer Studio™ (CCStudio). CCStudio is heavily featured in this
book and is TI’s answer to Visual Studio. While one can always fall back to
command-line compilation and makefiles, CCStudio incorporates many
advanced features that make programming and debugging such a joy, as
compared to the days of gdb, gcc, vi, and emacs.

One does not need to be an expert C++ programmer in order to make
sense of the Visual Studio projects discussed in the book. The use of C++ is
purposely avoided on the DSP, however it is the language of choice for
many programmers building scientific and engineering applications on
Windows and UNIX workstations. For high-performance, non-embedded

4 Chapter 1

image processing, I would hasten to add that it is the only choice, perhaps
leaving room for some assembly if need be. Nevertheless, I have eschewed
many cutting-edge C++ features — about the most exotic C++ code one will
encounter is the use of namespaces and perhaps a sprinkling of the Standard
Template Library (STL). An understanding of what a class and method are,
along with some C++ basics such as exception handling and the standard
C++ library is all that is required, C++-wise.

The source code for all Visual Studio projects utilize Microsoft
Foundation Classes (MFC) and GDI+ for their GUI components (see 2.4).
For the most part, the layout of the code is structured such that one need not
be a Windows programming guru in order to understand what is going on in
these test applications. Those that are not interested in this aspect of
development can ignore MFC and GDI+ and simply treat that portion of the
software as a black box. Any in-depth reference information regarding
Microsoft technologies can always be found in the Microsoft Developer’s
Network (MSDN)’.

Lastly, a few words regarding mathematics, and specifically signal
processing. In this book, wherever image processing theory is presented, it is
just enough so that the reader is not forced to delve into an algorithm without
at least the basics in hand. Mainly this is due to space constraints, as the
more theory that is covered, the fewer algorithms that can fit into a book of
this size. When it comes right down to it, in many respects image processing
is essentially one-dimensional signal processing extended to two
dimensions. In fact, it is often treated as an offshoot of one-dimensional
signal processing. Unfortunately, there is not enough space to thoroughly
cover the basics of one-dimensional DSP applications and so while some
signal processing theory is covered, the reader will gain more from this book
if they have an understanding of basic signal processing topics such as
convolution, sampling theory, and digital filtering. Texts covering such one-
dimensional signal processing algorithms with applications to the same TI
DSP development environments utilized in this book include [4-6].

1.3 CONVENTIONS AND NOMENCLATURE

Many of the featured image processing algorithms are initially illustrated
in pseudo-code form. The “language” used in the pseudo-code to describe
the algorithms is not formal by any means, although it does resemble
procedural languages like C/C++ or Pascal. For these pseudo-code listings, [
have taken the liberty of loosely defining looping constructs and high-level
assignment operators whose definitions should be self-explanatory from the

Introduction 5

context in which they appear. The pseudo-code also assumes zero-based
indexing into arrays, a la C/C++.

Any reference to variables, functions, methods, or pathnames appear in a
non-proportional Courier font, so that they stand out from the surrounding
text. In various parts of the book, code listings are given and these listings
use a 10-point non-proportional font so they are highlighted from the rest of
the text. This same font is used wherever any code snippets are needed.
Cascading menu selections are denoted using the pipe symbol and a bold-
faced font, for example File|Save is the “Save” option under the “File” main
menu.

With any engineering discipline, there is unfortunately a propensity of
acronyms, abbreviations, and terminology that may seem daunting at first.
While in most cases the first instance of an acronym or abbreviation is
accompanied by its full name, in lieu of a glossary the following is a list of
common lingo and jargon the reader should be familiar with:

o C6x: refers to the TMS320C6000 family of DSPs, formally introduced
in 2.1. The embedded image processing algorithms implemented in
this book target this family of DSPs. C6x is short-hand for the C62x,
C67x, and C64x DSPs.

¢ IDE: integrated development environment. The burgeoning popularity
of IDEs can be attributed in part to the success of Microsoft Visual
Studio and earlier, Borland’s Turbo C and Turbo Pascal build systems.
IDEs combine advanced source code editors, compilers, linkers, and
debugging tools to form a complete build system. In this book we
utilize three IDEs (MATLAB, CCStudio, and Visual Studio), although
MATLAB is somewhat different in that it is an interpreted language
that does not require compilation or a separate linking step.

¢ TI: Texas Instruments, the makers of the C6x DSPs.

e CCStudio: abbreviation for the Code Composer Studio IDE, TI’s
flagship development environment for their DSP products.

o M-file: a collection of MATLAB functions, analogous to a C/C++
module or source file.

o MEX-file: MATLAB callable C/C++ and FORTRAN programs. The
use and development of MEX-files written in C/C++ is discussed in
Appendix A.

¢ toolbox: add-on, application-specific solutions for MATLAB that
contain a family of related M-files and possibly MEX-files. In this
book, the Image Processing Toolbox, Wavelet Toolbox, and Link for
Code Composer Studio are all used. For further information on
MATLAB toolboxes, see [7].

6 Chapter 1

o host: refers to the PC where CCStudio is running. The host PC is
connected to a TI DSP development board via USB, PCI, or parallel
port.

e EVM: an abbreviation for evaluation module, introduced in 2.1.3. The
EVM is a PCI board with a TI DSP and associated peripherals used to
develop DSP applications. All EVM code in this book was tested and
debugged on an EVM containing a single C6701 DSP, and this
product is referred to in the text as the C6701 EVM.

e DSK: refers to a “DSP starter kit”, also introduced in 2.1.3. The DSK
is an external board with a TI DSP and associated peripherals,
connected to a host PC either via USB or parallel port (see Figure 2-4).
All DSK code in this book was tested and debugged on a DSK with a
C6416 DSP, and this product is referred to in the text as the C6416
DSK.

o target: refers to the DSP development board, either an EVM or DSK.

Finally, a few words regarding the references to TI documentation — the
amount of TI documentation is literally enormous, and unfortunately it is
currently not located in its entirety in a central repository akin to MSDN.
Each TI document has an associated “literature number”, which
accompanies each reference in this book. The literature number is prefixed
with a four-letter acronym — either SPRU for a user manual or SPRA for an
application report. Some of these PDFs are included with the stock
CCStudio install, but all of them can be downloaded from www.ti.com. For
example, a reference to SPRU653.pdf (user manual 653) can be downloaded
by entering “SPRU653” in the keyword search field on the TI web-site, if it
is not already found within the docs\pdf subdirectory underneath the TI
install directory (typically C: \TI).

1.4 CD-ROM

All the source code and project files described in Chapters 3-6 and the
two appendices are included on the accompanying CD-ROM. Furthermore,
most of the raw data — images and in one case, video — can also be found on
the CD-ROM. The CD is organized according to chapter, and the top-level
README. txt file and chapter-specific README . txt files describe their
contents more thoroughly.

The host PC used to build, test, and debug the DSP projects included on
the CD-ROM had two versions of CCStudio installed, one for the C6701
EVM and another for the C6416 DSK. As a result, chances are that the
projects will not build on your machine without modifications made to the

Introduction 7

CCStudio project files. The default install directory for CCStudio is C: \T1I,
and as the DSP projects reference numerous include files and TI libraries,
you will most likely need to point CCStudio to the correct directories on
your machine (the actual filenames for the static libraries and header files
should remain the same). There are two ways of going about this. One way
is to copy the project directory onto the local hard drive, and then open the
project in CCStudio. CCStudio will then complain that it cannot find certain
entities referenced in the .pjt (CCStudio project) file. CCStudio then
prompts for the location of the various files referenced within the project
which it is unable to locate. This procedure is tedious and time-consuming
and an alternate means of accomplishing the same thing is to directly edit the
.pjt file, which is nothing more than an ASCII text file. Listing 1-1 shows
the contents of the contrast stretch.pjt CCStudio (version 2.20)
project file, as included on the CD-ROM. The lines in bold are the ones that
need to be tailored according to your specific installation.

Listing 1-1: The contents of an example CCStudio project file from Chapter
3, contrast_stretch.pjt. If the default options are chosen during
CCStudio installation, the bold-faced directories should be changed to
C:\TI - otherwise change them to whatever happens to be on your build
machine.

CPUFamily=TMS320C67XX

Tool="Compiler”

Tool="DspBiosBuilder”

Tool="Linker”

Config="Debug”

Config="Release”

[Source Files]

Source="C:\TIC6701EVM\ c6000\cgtools\lib\rts6701.lib”
Source="C:\TIC6701EVM\ c6200\imglib\lib\img62x.lib”
Source="C:\TIC6701EVM\ myprojects\ evméx\lib\evm6x.lib”
Source="C:\TIC6701EVM\myprojects\evmc67_lib\Dsp\Lib\devlib\De
v6x.lib”
Source="C:\TIC6701EVM\myprojects\evmc67_lib\Dsp\Lib\drivers\D
rv6X.lib”

Source="contrast_stretch.c”

Source="contrast_stretch.cmd”

[Compiler” Settings: ”Debug”]
Options=-g -q -fr”.\Debug”
-1 ?C:\TIC6701EVM \ myprojects\evm6x\dsp\include”

8 Chapter 1
-1 "C:\TIC6701EVM\c6200\imglib\include” -d”_DEBUG” -mv6700

[”Compiler” Settings: "Release”]

Options=-q -03 -fr”.\Release”

-1 ?C:\TIC6701EVM \myprojects\evm6x\dsp\include”
-1 ?C:\TIC6701EVM\c6200\imglib\include” -mv6700

[’ DspBiosBuilder” Settings: ”Debug”)
Options=-v6x

[’DspBiosBuilder” Settings: "Release”]
Options=-v6x

[’Linker” Settings: "Debug”|
Options=-q -¢ -m”.\Debug\contrast_stretch.map”
-0”.\Debug\contrast_stretch.out” -w -x

["Linker” Settings: ”Release”]
Options=-q -c -m”.“Release“contrast_stretch.map”
-0”.\Release\ contrast_stretch.out” -w -x

Upon opening one of these projects, if CCStudio displays an error dialog
with the message “Build Tools not installed”, verify that the project
directory is valid. If that does not correct the issue, then the problem is most
likely the CPUFamily setting at the beginning of the .pjt file. Chances
are that there is a mismatch between the current CCStudio DSP
configuration and whatever is defined in the project file. This setting can be
changed to whatever is appropriate (i.e. TMS320C64XX), although this
modification is fraught with peril. At this point, it would be best to re-create
the project from scratch, using the provided project file as a template. See
[8] for more details on CCStudio project management and creation.

Some of the Visual Studio .NET 2003 projects on the CD-ROM may also
need to be modified in a similar fashion, depending on where the Intel
Integrated Performance Primitives Library and CCStudio have been
installed. In this case, direct modification of the .vcproj (Visual Studio
project) file is not recommended, as the format of these text files is not as
simple as .pjt files. Instead, modify the include and library path
specifications from within the project properties dialog within Visual Studio,
via the Project|Properties menu selection.

Introduction 9
1.5 THE REPRESENTATION OF DIGITAL IMAGES

Except for a single example in 3.4, this book deals entirely with digital
monochrome (black-and-white) images, oftentimes referred to as “intensity”
images, or “gray-scale” images. A monochrome digital image can be thought
of as a discretized two-dimensional function, where each point represents the
light intensity at a particular spatial coordinate. These spatial coordinates are
usually represented in a Cartesian system as a pair of positive integer values,
typically denotes in this book as (ij) or (x,y). The spatial coordinate system
favored in this book is one where the first integer i or x is the row position
and the second integer j or y is the column position, and the origin is the
upper left corner of the image. Taken together, the discrete image function
fij) returns the pixel at the /™ row and /® column. Depending on the
language, the tuples (ij) or (x,y) may be zero-based (C/C++) or one-based
(MATLAB) language. A digital image is usually represented as a matrix of
values, and for example in MATLAB you have

) 702 £03) - FOLN)
76.))= f2.1) f(?,z) f(?,?,) f(2.,)

f@) f(M2) f(M3) - f(M.N)

The number of rows in the above image is M and the number of columns
is N — these variable names show up repeatedly throughout the MATLAB
code in this book. In the C code, the preprocessor symbols X SIZE and
Y SIZE refer to the number of rows and number of columns, respectively.

In the C and C++ languages, we represent an image as an array of two
dimensions, and since both C and C++ use zero-based indices and brackets
to specify a pointer dereference, the C/C++ equivalent to the above image
matrix is

J101[0] 1010 s1R] - SIO)IN-1]
JI[0] S Aamer - N -1

fi.))= : . _ .
AIM-1[0] AAM-1 AM-1[2] - fIM-1[N-1]

As explained in 3.2.2, for performance reasons we usually do not store
images in the above fashion when coding image processing algorithms in

10 Chapter 1

C/C++. Very often, the image matrix is “flattened” and stored as a one-
dimensional array. There are two prevalent ordering schemes for storing
flattened 2D matrices, row-major and column-major. In row-major ordering,
the matrix is stored as an array of rows, and this is the format used in C/C++
when defining 2D arrays. In the column-major format, which MATLAB and
FORTRAN use, the matrix is ordered as an array of columns. Table 1-1
illustrates both of these formats, for the above example image matrix.

Table 1-1. Flattening an image matrix (with M columns and N rows) into a one-dimensional

array.
row-major column-major
J10][0] S10IE0]
J10I(1] S11[0]
S1012] S12110]

SIO][A-1] S[M-1][0]
SI0] J1oJ(1]
s S0
Szl S

SONNT FIMA

SIMIN-T IV

The individual pixels in digital monochrome images take on a finite
range of values. Typically, the pixel values f{7,j) are such that

0 < fli,) <2°®

where “bpp” is bits-per-pixel. An individual pixel value f{7,j) goes by many
commonly used names including: “gray-level intensity”, “pixel intensity”, or
sometimes simply “pixel”. In this book, we largely deal with monochrome 8
bpp images, with pixel intensities ranging in value from 0 to 255. These

types of images are sometimes referred to as 8-bit images.

1.6 DSP CHIPS AND IMAGE PROCESSING

For the most part, image processing algorithms are characterized by
repetitively performing the same operation on a group of pixels. For
example, some common arithmetic image operations involve a single image
and a single scalar, as in the case of a scalar multiply:

Introduction 11

gy = afixy)

The above expression translates in code to multiplying each pixel in the
image f by the constant ¢. Bilinear operations are pixel-wise operations that
assume images are of the same size, for example:

gxy) =fixy) + f2(x,y)
8.y = filxy) —f2(x.y)
8y =fi(x.y) * f2(x.y)
gxy) =fixy) 1 f2(x.)

Another very common category of image processing algorithms are mask
or filter operations, where each pixel f(x,y) is replaced by some function of
f(x,y)’s neighboring pixels. This digital filtering operation is of critical
importance, and this class of algorithms is introduced in Chapter 4. Filtering
a signal, either one-dimensional or multi-dimensional, involves repeated
multiply-accumulate, or MAC, operations. The MAC operation takes three
inputs, yields a single output, and is described as

MAC=(axb)+c

As described in 2.1.2, in fixed-point architectures a, b, and ¢ are integer
values whereas with floating-point architectures those three are either single-
precision or double-precision quantities. The MAC operation is of such
importance that is has even yielded its own benchmark, the M-MAC, or
million of multiply-accumulate operations per second (other benchmarks
include MIPS, or million of instructions per second and MFLOPS, or million
of floating-point instructions per second). Digitally filtering an image
involves repeatedly performing the MAC operation on each pixel while
sliding a mask across the image, as described in Chapter 4.

All of the above operations have one overriding characteristic that stands
out among all others — they involve repetitive numerical computations
requiring a high memory bandwidth. In short, image processing is both very
compute- and data-intensive. In addition, image processing applications are
increasingly finding themselves in embedded systems, oftentimes in settings
where real-time deadlines must be met. With respect to embedded systems,
consider the digital camera or camera cell phone. Such a device requires a
computing brain that performs the numerical tasks described above highly
efficiently, while at the same time minimizing power, memory use, and in
the case of high-volume products, cost. Add to these real-time constraints,
like the type one may encounter in surveillance systems or medical devices
such as ultrasound or computer-aided surgery, and all of a sudden you now

12 Chapter 1

find yourself in a setting where it is very likely that a general purpose
processor (GPP) is not the appropriate choice. GPPs are designed to perform
a diverse range of computing tasks (many of them not numerically oriented)
and typically run heavy-weight operating systems definitely not suited for
embedded and especially real-time systems.

Digital Signal Processors arrived on the scene in the early 1980s to
address the need to process continuous data streams in real-time. Initially
they were largely used in 1D signal processing applications like various
telecommunication and audio applications, and today this largely remains
the case. However, the rise of multimedia in the 1990s coincided with an
increasing need to process images and video data streams, quite often in
settings where a GPP was not going to be used. There has been a clear
divergence in the evolution of DSPs and GPPs, although every manufacturer
of GPPs, from Intel to SUN to AMD, has introduced DSP extensions to their
processors. But the fact remains that by and large, DSP applications differ
from their GPP counterparts in that they are most always characterized by
relatively small programs (especially when compared to behemoths like
databases, your typical web browser, or word processor) that entail intensive
arithmetic processing, in particular the MAC operation that forms the
building block of many a DSP algorithm. There is typically less logic
involved in DSP programs, where logic refers to branching and control
instructions. Rather, what you find is that DSP applications are dominated
by tightly coded critical loops. DSPs are architected such that they maximize
the performance of these critical loops, sometimes to the detriment of other
more logic-oriented computing tasks. A DSP is thus the best choice for high-
performance image processing, where the algorithms largely consist of
repetitive numerical computations operating on pixels or groups of pixels,
and where such processing must take place in a low-cost, low-power,
embedded, and possibly real-time, system.

There are further unique architectural characteristics of DSPs that give
them an edge in signal and image processing algorithms, including zero
overhead loops, specialized I/O support, unique memory structures
characterized by multiple memory banks and buses, saturated arithmetic, and
others. In particular, there are certain vector operations that enable a huge
boost in computational horsepower. These so-called SIMD (single
instruction, multiple data) instructions, designed to exploit instruction level
parallelism, crop up throughout this book and are covered in Appendix B.
The C64x DSP, discussed in the next chapter, is particularly well suited for
image processing applications as it is a high-speed DSP with numerous
instructions that map very well to the efficient manipulation of 8-bit or 16-
bit pixels. For a more thorough discussion of DSP architectures and the
history of the evolution of DSPs, the reader is referred to [9].

Introduction 13

1.7 USEFUL INTERNET RESOURCES

There are a number of very useful web-sites pertaining to C6x
development, and will leave the appropriate Internet search as an exercise
for the reader. That being said, there is one resource above all others that
anyone serious about C6x development should be aware of, and that is the
Yahoo! group “c6x” (groups.yahoo.com/group/c6x/). This discussion forum
is very active, and there are a few expert individuals who actively monitor
the postings and are always giving their expert advice on a wide variety of
topics pertaining to C6x DSP development.

In addition, the following USENET newsgroups are also important
resources that should never be overlooked during an Internet search:

e comp.dsp: discussions on signal processing and some image
processing applications, as well as general DSP development.

¢ comp.soft-sys.matlab: MATLAB-related programming.

¢ sci.image.processing: image processing algorithms.

The MathWorks also maintains the MATLAB Central File Exchange
(www.mathworks.com/matlabcentral/fileexchange/), a very handy repository
of user-contributed M-files. This site should be your first stop when
searching for a particular MATLAB-based algorithm implementation.
Finally, for Windows-related programming issues the following web-sites
are highly recommended: www.codeproject.com and www.codeguru.com.

REFERENCES

. Gonzalez, R., and Woods, R., Digital Image Processing (Addison-Wesley, 1992).

Russ, J., The Image Processing Handbook (CRC Press, 1999).

. Microsoft Developer Network, http://www.microsoft.msdn.com

. Chassaing, R., DSP Applications Using C and the TMS320C6x DSK, (Wiley, 2002).

. Dahnoun, N., Digital Signal Processing Implementation using the TMS320C6000 DSP

Platform (Prentice-Hall, 2000).

6. Tretter, S., Communication System Design Using DSP Algorithms, With Laboratory
Experiments for the TMS320C6701 and TMS320C671! (Kluwer Academic/Plenum,
2003).

7. http://www.mathworks.com/products/product_listing/index.html?alphadesc

. Texas Instruments, Code Composer Studio Getting Started Guide (SPRU509C).

9. Lapsley, P., Bier, J., Shoham, A, Lee, E., DSP Processor Fundamentals (Wiley, 1996).

DA WN -

(=5

Chapter 2
TOOLS

Even though this book has a narrow focus, it calls for a wide array of
tools, some hardware (DSP development boards) but mostly software. It is
the author’s strong belief that the development of embedded algorithms
should proceed from a high-level vantage point down to the low-level
environment, in a series of distinct, clearly defined milestones. The risk in
jumping headlong into the embedded environment is getting bogged down in
countless details and the inevitable unforeseen engineering challenges that
may or may not be directly related to the algorithm. Embedded development
is hard, and some may claim much harder than coding a web application,
GUI application, Java program, or most other software intended to run on a
desktop machine. Embedded developers are much closer to the hardware,
and usually have fewer computing resources available at their disposal. The
saving grace is that the programs typically running on an embedded DSP
system are of a much smaller footprint than a desktop or server application.
Nevertheless, when you are that much closer to the hardware there are many,
many issues that must be taken into account and hence the development
strategy put forth in this book — start with the background, prototype
whatever operation needs to be implemented, and slowly but surely work
your way down to the DSP.

Although this description of embedded image processing development
may appear to be characterized by fire and brimstone, in reality the overall
situation has gotten much better over the years. Ease of development is
proportional to the quality of the tools at your disposal, and in this chapter
all of the tools encountered in this book are formally introduced. These
include:

16 Chapter 2

e The TMS320C6000 line of DSPs, in particular the C6416 DSP Starter
Kit (DSK) and the C6701 Evaluation Module (EVM).

e MATLAB and the various toolboxes used in Chapters 3-6 to prototype
image processing algorithms.

e Visual Studio .NET 2003, and the libraries used to build image
processing applications that run on the various flavors of Microsoft
Windows.

A small amount of background information on the TI line of DSPs is
appropriate before jumping into the fray. Thus we first take a slight detour
into the land of computer architecture and computer arithmetic, before
getting down to business and describing the contents of our tool chest we use
throughout the rest of this book.

2.1. THE TMS320C6000 LINE OF DSPS

In 1997, Texas Instruments introduced the C6x generation of DSPs.
These chips were unique in that they were the first DSPs to embrace the
Very Long Instruction Word (VLIW) architecture’. This architectural aspect
of the DSP, deemed VelociTI™, enabled a degree of parallelism previously
unheard of in processors of its class and is the key to their high performance.
The first members of the C6x family were the fixed-point C62x (C6201,
C6211, etc.) and floating-point 67x (C6701, C6711, C6713, etc.) series.
These DSPs feature eight functional units (two multipliers and six arithmetic
logic units, or ALUs) and are capable of executing up to eight 32-bit
instructions per cycle. The C62x/C67x was followed in 2001 by the C64x
series of fixed-point DSPs, which represented a large step up in processor
speeds (scalable up to 1.1 GHz versus approximately 250-300 MHz for the
C62x/C67x at the time of this writing) and also introduced extensions to
VelociTl that have important ramifications on high-performance image
processing. Figure 1-1 shows block diagrams of both architectures,
illustrating their common roots.

What Figure 1-1 does not show are all of the associated peripherals and
interconnect structures that are equally important to understanding the
C6000 architecture. This relationship is shown in Figure 1-2 for the case of
the C62x/C67x DSP. Figure 1-2 shows a processor core surrounded by a
variety of peripherals and banks of memory with data shuttling across
separate program and data buses. The C6000 has a relatively simple memory
architecture, with a flat, byte-addressable 4 GB address space, split into
smaller sections mapped to different types of RAM (SDRAM or SBSRAM).
As shown in both Figures 1-1 and 1-2, there are actually two data paths in

Tools 17

the processor core, each containing four functional units. In the C62x/C67x,
each data path has 16 32-bit registers, while in the C64x this register file is
augmented with an additional 16 32-bit registers per data path. In addition,
the C64x features an enhanced multiplier that doubles the 16-bit multiply
rate of the C62x/C67x%. A full description of the entire C6x architecture is
covered in [1-5], so in this section we instead focus on explaining the
rationale and motivation behind VLIW and how it fits into the C6000
architecture, before moving to an important discussion on the difference
between fixed-point and floating-point architectures. We conclude the
section by introducing the two TI development environments used in this
book.

2.1.1 VLIW and VelociTI

In modern Complex Instruction Set Computer (CISC) processors and to
a lesser extent, Reduce Instruction Set Computer (RISC) processors, there is
an incredible amount of hardware complexity designed to exploit instruction
level parallelism (ILP). With sincere apologies for the multitude of
acronyms (at least you were warned!), the general concept is that deeply
pipelined and superscalar GPPs, with their branch prediction and out-of-
order execution, perform significant analysis on the instruction stream at
run-time, and then transform this instruction stream wherever possible to
keep the processor’s pipeline fully utilized. When the processor’s pipeline is
full, it completes an instruction with every clock cycle. As one might
imagine, this analysis is an extraordinarily difficult task, and while the
compiler does do some things to alleviate the burden on the CPU, the CPU is
very much in the loop with regards to optimizing the flow of instructions
through the pipeline.

With VLIW on the other hand, the onus is completely on the compiler,
and the processor relies on the compiler to provide it with a group of
instructions that are guaranteed to not have any dependencies among them.
Hence, the compiler, rather than the hardware, is the driving element behind
taking advantage of any ILP. The VLIW concept is an outgrowth of vector
processors, like the Cray supercomputers from the 1970s, which were based
on this idea of the exact same operation being performed on an array of data.
We can illustrate the rationale behind this concept, by considering at a very
high-level the steps any processor must take to execute an instruction
stream:

1. Fetch the next instruction.
2. Decode this instruction.
3. Execute this instruction.

