
PLT DrScheme: Programming Environment Manual

PLT (scheme@plt-scheme.org)

206.1
Released January 2004

Copyright notice

Copyright c©1996-2003 PLT

Permission to make digital/hard copies and/or distribute this documentation for any purpose is hereby
granted without fee, provided that the above copyright notice, author, and this permission notice appear in
all copies of this documentation.

Send us your Web links

If you use any parts or all of the PLT Scheme package (software, lecture notes) for one of your courses, for
your research, or for your work, we would like to know about it. Furthermore, if you use it and publicize the
fact on some Web page, we would like to link to that page. Please drop us a line at scheme@plt-scheme.org.
Evidence of interest helps the DrScheme Project to maintain the necessary intellectual and financial support.
We appreciate your help.

Thanks

This manual was typeset using LATEX, SLATEX, and tex2page. Some typesetting macros were originally
taken from Julian Smart’s Reference Manual for wxWindows 1.60: a portable C++ GUI toolkit.

This manual was typeset on February 9, 2004.

Contents

1 About DrScheme 1

2 Interface Essentials 2

2.1 Buttons . 2

2.2 The Editor . 3

2.3 The Interactions Window . 4

2.4 Errors . 4

2.5 Languages . 4

2.6 Executables . 8

2.7 Printed Results . 9

2.7.1 Constructor-style Output . 9

2.7.2 Quasiquote-style Output . 9

2.8 Input and Output . 10

2.9 XML . 11

2.10 Test Cases . 11

3 Interface Reference 13

3.1 Menus . 13

3.1.1 File . 13

3.1.2 Edit . 14

3.1.3 View . 14

3.1.4 Language . 15

3.1.5 Scheme . 15

3.1.6 Special . 16

3.1.7 Windows . 17

i

CONTENTS CONTENTS

3.1.8 Help . 17

3.2 Preferences . 17

3.3 Keyboard Shortcuts . 19

3.3.1 Moving Around . 19

3.3.2 Editing Operations . 20

3.3.3 File Operations . 21

3.3.4 Searching . 21

3.3.5 Miscellaneous . 21

3.3.6 Interactions . 21

3.4 DrScheme Files . 21

3.4.1 Program Files . 21

3.4.2 Backup and Autosave Files . 22

3.4.3 Preference Files . 22

4 Extending DrScheme 24

4.1 Teachpacks . 24

4.2 Tools . 25

4.3 Environment Variables . 25

5 Frequently Asked Questions 27

5.1 Supported Operating Systems and Installation . 27

5.2 Using DrScheme . 28

5.3 Memory and Performance . 30

5.4 Troubleshooting . 30

Index 32

ii

1. About DrScheme

DrScheme is a graphical environment for developing programs using the Scheme programming language.
DrScheme runs under Windows (95 and up), Mac OS, and Unix/X.

1

2. Interface Essentials

The DrScheme window has three parts: a row of buttons at the top, two editing panels in the middle, and
a status line at the bottom.

DrScheme

File Edit Show Language Scheme Windows Help menus
Untitled
(define ...) Save Check Syntax Step Execute Break buttons

;; square : number -> number

;; to produce the square of x
(define (square x)

(* x x))
definitions window

Welcome to DrScheme, version 200
Language: Beginning Student
> (square 2)

4

>

interactions window

5:2 Unlocked not running status line

The top editing panel, called the definitions window, is for defining Scheme programs. The above figure
shows a program that defines the function square.

The bottom panel, called the interactions window, is for evaluating Scheme expressions interactively. The
Language line in the interactions window indicates which primitives are available in the definitions and
interactions windows. In the above figure, the language is Beginning Student, which is the default language.

Clicking the Execute button evaluates the program in the definitions window, making the program’s defi-
nitions available in the interactions window. Given the definition of square as in the figure above, typing
(square 2) in the interactions window produces the result 4.

The status line at the bottom of DrScheme’s window provides information about the current line and position
of the editing caret, whether the current file can be modified, and whether DrScheme is currently evaluating
any expression. The recycling icon flashes while DrScheme is “recycling” internal resources, such as memory.

2.1 Buttons

The left end of the row of buttons in DrScheme contains a miniature button with the current file’s name.
Clicking the button opens a menu that shows the file’s full pathname. Selecting one of the menu entries
opens file starting in the corresponding directory.

2

2. Interface Essentials 2.2. The Editor

Below the filename button is a (define ...) button for a popup menu of names defined in the definitions
window. Selecting an item from the menu moves the blinking caret to the corresponding definition.

The Save button appears whenever the definitions window is modified. Clicking the button saves the contents
of the definitions window to a file. The current name of the file appears to the left of the Save button, but
a file-selection dialog appears if the file has never been saved before.

The Step button starts The Stepper, which shows the evaluation of a program as a series of small steps. Each
evaluation step replaces an expression in the program with an equivalent one using the evaluation rules of
DrScheme. For example, a step might replace (+ 1 2) with 3. These are the same rules used by DrScheme
to evaluate a program. Clicking Step opens a new window that contains the program from the definitions
window, plus three new buttons: Next, Previous, and Home. Clicking Next performs a single evaluation step,
clicking Previous retraces a single step, and clicking Home returns to the initial program. The Stepper works
only for programs using the Beginning Student language level.

Clicking the Check Syntax button annotates the program text in the definitions window. It add these
annotations:

• Syntactic Highlighting Imported variables and locally defined variables are highlighted with color
changes.

• Lexical Structure The lexical structure is shown with arrows overlaid on the program text. When
the mouse cursor passes over a variable, DrScheme draws an arrow from the binding location to the
variable, or from the binding location to every bound occurrance of the variable.

Additionally, control or right-button mouse clicking on a variable activates a popup menu that lets
you jump from binding location to bound location and vice versa, α-rename the variable, or tack the
arrows so they do not disappear.

• Tail Calls Any subexpression that is (syntactically) in tail-position with respsect to its enclosing
context is annotated by drawing a light purple arrow from the tail expression to its surrounding
expression.

• Require Annotations Control-clicking or right-button clicking (depending on the platform DrScheme
runs on) on the argument to require activates a popup menu that lets you open the file that contains
the required module.

Passing the mouse cursor over a require expression inside a module shows all of the variables that are
used from that require expression. Additionally, if no variables are used from that require expression,
it is colored like an unbound variable.

Also, passing the mouse cursor over a variable that is imported from a module shows the module that
it is imported from in a status line at the bottom of the frame.

The Execute button evaluates the program in the definitions window and resets the interactions window.

The Break button interrupts an evaluation, or beeps if DrScheme is not evaluating anything. For example,
after clicking Execute or entering an expression into the interactions window, click Break to cancel the
evaluation. Click the Break button once to try to interrupt the evaluation gracefully; click the button twice
to killing the evaluation immediately.

2.2 The Editor

DrScheme’s editor provides special support for managing parentheses in a program. When the blinking caret
is next to a parenthesis, DrScheme shades the region between the parenthesis and its matching parenthesis.

3

2.3. The Interactions Window 2. Interface Essentials

This feature is especially helpful when for balancing parentheses to complete an expression. Furthermore, if
you type a closing parenthesis “)” that should match an opening square bracket “[”, the editor automatically
converts the “)” into a “]”. DrScheme beeps whenever a closing parenthesis does not match an opening
parenthesis.

Although whitespace is not significant in Scheme, DrScheme encourages a particular format for Scheme
code. When you type Enter or Return, the editor inserts a new line and automatically indents it. To make
DrScheme re-indent an existing line, move the flashing caret to the line and hit the Tab key. (The caret can
be anywhere in the line.) You can re-indent an entire region by selecting the region and typing Tab.

2.3 The Interactions Window

The interactions window lets you type an expression after the > prompt for immediate evaluation. You
cannot modify any text before the last > prompt. To enter an expression, the flashing caret must appear
after the last prompt, and also after the space following the prompt.

When you type a complete expression and hit Enter or Return, DrScheme evaluates the expression and
prints the result. After printing the result, DrScheme creates a new prompt for another expression. Some
expressions return a special “void” value; DrScheme never prints void, but instead produces a new prompt
immediately.

If the expression following the current prompt is incomplete, then DrScheme will not try to evaluate it. In
that case, hitting Enter or Return produces a new, auto-indented line. You can force DrScheme to evaluate
the expression by typing alt-return or command-return (depending on your platform).

To copy the previous expression to the current prompt, type ESC-p (i.e., type Escape and then type p).
Type ESC-p multiple times to cycle back through old expressions. Type ESC-n to cycle forward through
old expressions.

Clicking the Execute button evaluates the program in the definitions window and makes the program’s
definitions available in the interactions window. Clicking Execute also resets the interactions window, erasing
all old interactions and removing old definitions from the interaction environment. Although Execute erases
old > prompts, ESC-p and ESC-n can still retrieve old expressions.

2.4 Errors

Whenever DrScheme encounters an error while evaluating an expression, it prints an error message in the
interactions window and highlights the expression that triggered the error. The highlighted expression might
be in the definitions window, or it might be after an old prompt in the interactions window.

For certain kinds of errors, DrScheme turns a portion of the error message into a hyperlink. Click the
hyperlink to get help regarding a function or keyword related to the error.

2.5 Languages

DrScheme supports multiple dialects of Scheme. The name of the current evaluation language always ap-
pears in in the top of the interactions window. To choose a different language, select the Language|Choose
Language... menu item. After changing the language, click Execute to reset the language in the interactions
window.

Five of DrScheme’s languages are specifically designed for teaching:

4

2. Interface Essentials 2.5. Languages

• Beginning Student is a small version of Scheme that is tailored for beginning computer science students.

• Beginning Student with List Abbreviations is an extension to Beginning Student that prints lists with
list instead of cons, and accepts quasiquoted input.

• Intermediate Student adds local bindings and higher-order functions.

• Intermediate Student with Lambda adds anonymous functions.

• Advanced Student adds mutable state.

The teaching languages different from conventional Scheme in a number of ways, described below.

DrScheme also supports several languages for experienced programmers:

• Standard (R5RS) contains those primitives and syntax defined in the R5RS Scheme standard. See the
Revised5 Report on the Algorithmic Language Scheme for details.

• PLT Textual (MzScheme) extends R5RS with exceptions, threads, objects, modules, components, regu-
lar expressions, TCP support, filesystem utilities, and process control operations. See PLT MzScheme:
Language Manual for details.

• PLT Graphical (MrEd) extends MzScheme with a graphical toolbox for creating GUI applications
(with special support for editor applications, hence the Ed in MrEd). See also PLT MrEd: Graphical
Toolbox Manual .

• PLT Pretty Big extends MrEd with the forms of the Advanced Student teaching language, and more.1

It is useful as a step past Advanced Student, or for implementing MrEd programs with a richer base
syntax and set of primitives.

Note that there some forms (for example, define-struct) that appear in both Advanced and MrEd,
but with slightly different semantics. In all such cases, the PLT Pretty Big language uses the forms
from the MrEd language (In the case of define-struct, Advanced implicitly uses a very permissive
inspector (see inspectors for details) and MrEd uses the current inspector).

• module requires that the definitions window contain only a single module declaration, as defined in
PLT MzScheme: Language Manual . The module explicitly declares the language for the module’s
body.

The Language|Choose Language... dialog contains a Show Details button for configuring certain details of
the language specification. (Each option corresponds to one of the lines in the language table, but only a
few of the lines in the figure have an option in the dialog.) Whenever the selected options do not match the
default language specification, a Custom indicator appears next to the language-selection control at the top
of the dialog.

The teaching languages differ from conventional Scheme in a number of ways:

• Case-sensitive identifiers and symbols — In a case-sensitive language, the variable names x and X
are distinct, and the symbols ’x and ’X are also distinct. In a case-insensitive language, x and X are
equivalent and ’x and ’X represent the same value. The teaching languages are case-sensitive by default,
and other languages are usually case-insensitive. Case-sensitivity can be adjusted through the detail
section of the language-selection dialog.

1More precisely, Pretty Big is MrEd extended with the following MzLib libraries (see PLT MzLib: Libraries Manual): etc.ss,
file.ss, list.ss, class.ss, unit.ss, unitsig.ss, include.ss, defmacro.ss, pretty.ss, string.ss, thread.ss, math.ss, match.ss, and shared.ss.

5

2.5. Languages 2. Interface Essentials

• All numbers are exact unless #i is specified — In the Beginning Student through Intermediate Student
with Lambda languages, numbers containing a decimal point are interpreted as exact numbers. This
interpretation allows students to use familar decimal notation without inadvertently triggering inexact
arithmetic. Exact numbers with decimal representations are also printed in decimal. Inexact inputs
and results are explicitly marked with #i.

• Procedures must take at least one argument — In the Beginning Student through Intermediate Student
languages, defined procedures must consume at least one argument. Since the languages have no side-
effects, zero-argument functions are not useful, and rejecting such function definitions helps detect
confusing syntactic mistakes.

• Identifier required at function call position — In the Beginning Student through Intermediate Student
languages, procedure calls must be of the form (identifier ...). This restriction helps detect confusing
misuses of parentheses, such as (1) or ((+ 3 4)), which is a common mistake among beginners who
are used to the optional parentheses of algebra.

• Top-level required at function call position — In the Beginning Student languages, procedure calls
must be of the form (top-level-identifier ...), and the number of actual arguments must match the
number of formal arguments if top-level-identifier is defined. This restriction helps detect confusing
misuses of parentheses, such as (x) where x is a function argument. DrScheme can detect such mistakes
syntactically because Beginning Student does not support higher-order procedures.

• Primitive and defined functions allowed only in function call position — In Beginning Student lan-
guages, the name of a primitive operator or of a defined function can be used only after the
open-parenthesis of a function call (except where teachpack extensions allow otherwise, as in the
convert-gui extension). Incorrect uses of primitives trigger a syntax error. Incorrect uses of defined
names trigger a run-time error. DrScheme can detect such mistakes because Beginning Student does
not support higher-order procedures.

• lambda allowed only in definitions — In the Beginning Student through Intermediate Student lan-
guages, lambda (or case-lambda) may appear only in a definition, and only as the value of the defined
variable.

• Free variables are not allowed — In the Beginning Student through Advanced Student languages,
every variable referenced in the definitions window must be defined, pre-defined, or the name of a local
function argument.

• quote works only on symbols, quasiquote diallowed — In the Beginning Student language, quote
and ’ can specify only symbols. This restriction avoids the need to explain to beginners why 1 and ’1
are equivalent in standard Scheme. In addition, quasiquote, ‘, unquote, ,, unquote-splicing, and
,@ are disallowed.

• Unmatched cond/case is an error — In the Beginning Student through Advanced Student languages,
falling through a cond or case expression without matching a clause signals a run-time error. This
convention helps detect syntactic and logical errors in programs.

• Conditional values must be true or false — In the Beginning Student through Advanced Student
languages, an expression whose value is treated as a boolean must return an actual boolean, true or
false. This restriction, which applies to if, cond, and, or, nand, and nor expressions, helps detect
errors where a boolean function application is omitted.

• +, *, and / take at least two arguments — In the Beginning Student through Advanced Student
languages, mathematical operators that are infix in algebra notation require at least two arguments in
DrScheme. This restriction helps detect missing arguments to an operator.

• and, or, nand, and nor require at least 2 expressions — In the Beginning Student through Advanced
Student languages, the boolean combination forms require at least two sub-expressions. This restriction
helps detect missing or ill-formed sub-expressions in a Boolean expression.

6

2. Interface Essentials 2.5. Languages

• set! disallowed on arguments — In the Advanced Student language, set! cannot be used to mutate vari-
ables bound by lambda. This restriction ensures that the substitution model of function application
is consistent with DrScheme’s evaluation.

• Improper lists disallowed — A proper list is either an empty list or a list created by consing onto
a proper list. In the Beginning Student through Advanced Student languages, cons constructs only
proper lists, signaling an error if the second argument is not a proper list. Since beginning students
do not need improper lists, this restriction help detect logical errors in recursive functions.

• Dot is diallowed — In the Beginning Student through Advanced Student languages, a delimitted
period is disallowed, (e.g., as an improper-list constructor in a quoted form, or for defining multi-arity
procedures).

• Keywords disallowed as variable names — In the Beginning Student through Advanced Student lan-
guages, all syntactic form names are keywords that cannot be used as variable names.

• Re-definitions are disallowed — In the Beginning Student through Advanced Student languages, top-
level names can never be re-defined.

• Function definitions are allowed only in the definitions window — In the Beginning Student languages,
function definitions are not allowed in the interactions window.

The teaching languages also deviate from traditional Scheme in printing values. Different printing formats
can be selected for any language through the detail section of language-selection dialog.

• Constructor-style output — See drscheme:sec:printing:cons.

• Quasiquote-style output — See drscheme:sec:printing:quasi.

• Rational number printing – In the teaching languages, all numbers that have a finite decimal expansion
are printed in decimal form. For those numbers that do not have a finite decimal expansion (such as
4/3) DrScheme gives you a choice. It either prints them as mixed fractions or as repeating decimals,
where the repeating portion of the decimal expansion is shown with an overbar. In addition, DrScheme
only shows the first 25 digits of the number’s decimal expansion. If there are more digits, the number
appears with an ellipses at the end. Click the ellipses to see the next 25 digits of the expansion.

This setting only controls the initial display of a number. Right-clicking or control-clicking on the
number lets you change from the fraction representation to the decimal representation.

• write output — Prints values with write.

• Show sharing in values — Prints interaction results using the shared syntax, which exposes shared
structure within a value. For example, the list created by (let ([lt (list 0)]) (list lt lt)) prints
as

(shared ((-1- (list 0))) (list -1- -1-))

instead of

(list (list 0) (list 0)).

7

2.6. Executables 2. Interface Essentials

2.6 Executables

DrScheme’s Create Executable... menu lets you create an executable for your program that you can start
without first starting DrScheme. To create an executable, first save your program to a file and set the
language and teachpacks. Click Execute, just to make sure that the program is working as you expect.
Beware, the executable you create will not have a read-eval-print-loop, so be sure to have an expression that
starts your program running in the definitions window before creating the executable.

Once you are satisfied with your program, choose the Create Executable... menu item from the Scheme menu.
Choose a place to save the executable. You will be able to start the saved executable in the same way that
you start any other program on your computer.

An executable created by Create Executable... is either a launcher executable or a stand-alone executable,
and it uses either a graphical (MrEd) or textual (MzScheme) engine. For programs implemented with
certain languages, Create Executable... will prompt you to choose the executable type and engine, while
other languages support only one type or engine.

Each type has advantages and disadvantages:

• A launcher executable tends to be small, and it uses the latest version of your program source file when
it starts. It also accesses library files from your DrScheme installation when it runs. Since a launcher
executable contains specific paths to access those files, launchers usually cannot be moved from one
machine to another.

• A stand-alone executable tends to be large, because it embeds a copy of your program at the time that
it is created, as well as any library that your code uses. When the executable is started, it uses the
embedded copies and does not need your original source file or your DrScheme installation. It may,
however, require DLLs or framework libraries installed on your machine, depending on your operating
system:

– Windows — The executable requires the following DLLs: libmzsch[vers].dll, libmzgc[vers].dll,
and (for executables using the MrEd engine) libmred[vers].dll, where [vers] is based on the current
version number. These DLLs are normally installed in the system directory.

– Mac OS X — The executable requires the PLT MzScheme framework, which is normally in-
stalled in /Library/Frameworks. When using the MrEd engine, the executable also requires the
PLT MrEd framework from the same location.

To move the “stand-alone” executable to another machine, the DLLs or frameworks that it uses must
also be copied to the other machine.

You can download these DLLs or frameworks as a separate package from

http://www.plt-scheme.org/software/dynamic-libraries/

or you can just copy them into the places manually.

DrScheme may also ask you to choose a base executable. The choices are MrEd and MzScheme. MzScheme
exectables are smaller, but have no graphical libraries. Also, under Mac OS X, executables created with
MzScheme as the base can only be run from the commandline. Using the MrEd base executable means that
your executable can also be launched from the finder.

Tip: Disable debugging in the language dialog before creating your launcher. With debugging enabled, you
will see a stack trace with error messages, but your program will run more slowly. To disable debugging,
open the language dialog, click the Show Details button, and click the No debugging or profiling check box, if
it is available.

8

2. Interface Essentials 2.7. Printed Results

Input Expression Constructor output write output
(cons 1 2) (cons 1 2) (1 . 2)
(list 1 2) (list 1 2) (1 2)
’(1 2) (list 1 2) (1 2)

(vector 1 2 3) (vector 1 2 3) #(1 2 3)
(box 1) (box 1) #&1

(lambda (x) x) (lambda (a) ...) #<procedure>
’sym ’sym sym

(make-s 1 2) (make-s 1 2) #<structure:s>
’() empty ()
#t true #t
#f false #f

add1 add1 #<primitive:add1>
(list (void)) (list (void)) (#<void>)

(make-weak-box 1) (make-weak-box 1) #<weak-box>
(delay 1) (delay ...) #<promise>

(regexp "a") (regexp ...) #<regexp>

Figure 2.1: Comparison of constructor-style output to write

2.7 Printed Results

This section describes the different formats that DrScheme uses for printing results in the interactions
window. Each of the different settings here also apply to the print primitive. That is, printing in the
interactions window is identical to output produced by the print primitive.

2.7.1 Constructor-style Output

DrScheme’s constructor-style output treats cons, vector, and similar primitives as value constructors, rather
than functions. It also treats list as shorthand for multiple cons’s ending with the empty list. Constructor-
style printing is valuable for beginning computer science students, because output values look the same as
input values.

Results printed in DrScheme’s interactions window using constructor-style printing look different than results
printed in traditional Scheme implementations, which use write to print results. The table in Figure 2.1
shows the differences between values printed in constructor style and values printed with write.

2.7.2 Quasiquote-style Output

Constructor-style output is inconvenient for printing S-expression results that represent programs. For
example, the value ’(lambda (x) (lambda (y) (+ x y))) prints as

(list ’lambda (list ’x) (list ’lambda (list ’y) (list ’+ ’x ’y)))

with constructor-style printing.

DrScheme’s quasiquote-style output combines the input–output invariance of constructor-style printing with
the S-expression readability of write. It uses quasiquote to print lists, and uses unquote to escape back to
constructor style printing for non-lists and non-symbols.

With quasiquote-style printing, the above example prints as:

9

2.8. Input and Output 2. Interface Essentials

‘(lambda (x) (lambda (y) (+ x y)))

This example:

(list ’lambda (list ’x) (box ’(lambda (y) (+ x y))))

in quasiquote-style printing prints as:

‘(lambda (x) ,(box ‘(lambda (y) (+ x y))))

2.8 Input and Output

Many Scheme programs avoid explicit input and output operations, obtaining input via direct function calls
in the interactions window, and producing output by returning values. Other Scheme programs explicitly
print output for the user during evaluation using write or display, or explicitly request input from the user
using read or read-char.

Explicit input and output appear in the interactions window, but within special boxes that separate explicit
I/O from normal expressions and results. For example, evaluating

> (read)

in the interactions window produces a special box for entering input:

(The underscore indicates the location of the flashing caret.) Type an number into the box and hit Enter,
and that number becomes the result of the (read) expression. If you type 5, the overall interaction appears
as follows:

> (read)

5
5
>

The mouse cursor becomes a watch whenever DrScheme is evaluating expression, but you can still use the
mouse to move the selection in an input box.

Output goes to the same box as input. If you execute the program

(define v (read))
(display v)
v

and provide the input S-expression (1 2), the interactions window ultimately appears as follows:

(1 2)
(1 2)
(cons 1 (cons 2 empty)))
>

In this example, display produces output immediately beneath the input you typed, but the final result
was printed outside the box because it is the result of the program, rather than explicit output. (The above

10

2. Interface Essentials 2.9. XML

example assumes constructor-style printing. With traditional value printing, the final line outside the box
would be (1 2).)

Entering the same program line-by-line in the interactions window produces a different-looking result:

> (define v (read))

(1 2)
> (display v)

(1 2)
> v
(cons 1 (cons 2 empty))
>

Although it is the same program as before, entering the program expression-by-expression demonstrates how
each prompt creates its own I/O box.

2.9 XML

DrScheme has special support for XML concrete syntax. The Special menu’s Insert XML Box menu inserts
an embedded editor into your program. In that embedded editor, you type XML’s concrete syntax. When
a program containing an XML box is evaluated, the XML box is translated into an x-expression (or xexpr).
Xexprs are s-expression representation for XML expressions. Each xexpr is a list whose first element is a
symbol naming the tag, second element is an association list representing attributes and remaining elements
are the nested XML expressions.

XML boxes have two modes for handling whitespace. In one mode, all whitespace is left intact in the
resulting xexpr. In the other mode, any tag that only contains nested XML expressions and whitespace has
the whitespace removed. You can toggle between these modes by right-clicking or control-clicking on the
top portion of the XML box.

In addition to containing XML text, XML boxes can also contain Scheme boxes. Scheme boxes contain
Scheme expressions. These expressions are evaluated and their contents are placed into the containing XML
box’s xexpr. There are two varieties of Scheme box: the standard Scheme box and the splicing Scheme box.
The standard Scheme box inserts its value into the containing xexpr. The contents of the splice box must
evaluate to a list and the elements of the list are “flattened” into the containing xexpr. Right-clicking or
control-clicking on the top of a Scheme box opens a menu to toggle the box between a Scheme box and a
Scheme splice box.

2.10 Test Cases

DrScheme also includes support for creating test cases as part of the program text. This support is designed
as an aid for students building tests as part of the How to Design Programs design recipes.

Test cases in DrScheme are written in special boxes. To create one, choose Insert Test Case from the Scheme
menu in the DrScheme window. The test cases consists of three editable areas. From the top, the first is a
comment that names the test case. The second is an expression to test. The third is the expected result.
Below the execpted result is a light-blue box that will contain the actual result of the expression to be tested.
Clicking on the triangle in the top-right hides the expression to test and the expected and actual results.

To run the test cases, simply click execute. The top-right corner of the test case will change to either be a
check box or a red X, indicating success or failure of the test case.

11

2.10. Test Cases 2. Interface Essentials

To disable all of the test cases in the definitions window, choose the Disable All Test Cases menu item in the
Scheme menu.

12

3. Interface Reference

3.1 Menus

3.1.1 File

• New Creates a new DrScheme window.

• Open... Opens a find-file dialog for choosing a file to load into a definitions window.

• Open Recent Lists recently opened files. Choosing one of them opens that file for editing.

• Install PLT File... Opens a dialog asking for the location of the PLT file (either on the local disk or on
the web) and installs the contents of the PLT file.

• Revert Re-loads the file that is currently in the definitions window. All changes since the file was last
saved will be lost.

• Save Definitions Saves the program in the definitions window. If the program has never been saved
before, a save-file dialog appears.

• Save Definitions As... Opens a save-file dialog for choosing a destination file to save the program in the
definitions window. Subsequent saves write to the newly-selected file.

• Save Other Contains these sub-items

– Save Definitions As Text... Like Save Definitions As..., but the file is saved in plain-text format (see
drscheme-file-formats). Subsequent saves also write in plain-text format.

– Save Interactions Saves the contents of the interactions window to a file. If the interaction constants
have never been saved before, a save-file dialog appears.

– Save Interactions As... Opens a save-file dialog for choosing a destination file to save the contents
of the interactions window. Subsequent saves write to the newly-selected file.

– Save Interactions As Text... Like Save Interactions As..., but the file is saved in plain-text format
(see drscheme-file-formats). Subsequent saves are write in plain-text format.

• Log Definitions and Interactions... Starts a running of log of the text in the interactions and definitions
windows, organized by executions. In a directory of your choosing, DrScheme saves files with the
names 01-definitions, 01-interactions, 02-definitions, 02-interactions, etc as you execute and interact
with various programs.

• Print Definitions... Opens a dialog for printing the current program in the definitions window.

• Print Interactions... Opens a dialog for printing the contents of the interactions window.

• Search in Files... Opens a dialog where you can specify the parameters of a multi-file search. The
results of the search are displayed in a separate window.

• Close Closes this DrScheme window. If this window is the only open DrScheme window, DrScheme
quits.

• Quit or Exit Exits DrScheme (under Mac OS X this menu item is in the apple menu).

13

3.1. Menus 3. Interface Reference

3.1.2 Edit

All Edit menu items operate on either the definitions or interactions window, depending on the location of
the selection or blinking caret. Each window maintains its own Undo and Redo history.

• Undo Reverses an editing action. Each window maintains a history of actions, so multiple Undo
operations can reverse multiple editing actions.

• Redo Reverses an Undo action. Each window (and boxed-subwindow) maintains its own history of
Undo actions, so multiple Redo operations can reverse multiple Undo actions.

• Cut Copies the selected text to the clipboard and deletes it from the window.

• Copy Copies the selected text to the clipboard.

• Paste Pastes the current clipboard contents into the window.

• Delete or Clear Deletes the selected text.

• Select All Highlights the entire text of the buffer.

• Wrap Text Toggles between wrapped text and unwrapped text in the window.

• Find Opens a search dialog or, depending on the preferences, an interactive searching window attached
to the frame.

• Find Again Finds the next occurrence of the text that was last searched for.

• Replace & Find Again Replaces the selection with the replace string (if it matches the find string) and
finds the next occurrence of the text that was last searched for.

• Keybindings Shows all of the keybindings available in the current window.

• Preferences... opens the preferences dialog. See section 3.2 (In Mac OS X, this menu item is under the
apple menu)

3.1.3 View

One each of the following show/hide pairs of menu items appears at any time.

• Show Definitions Shows the definitions window.

• Hide Definitions Hides the definitions window.

• Show Interactions Shows interactions window.

• Hide Interactions Hides interactions window.

• Show Program Contour Shows a “20,000 foot” overview window along the edge of the DrScheme window.
Each pixel in this window corresponds to a letter in the program text.

• Hide Program Contour Hides the contour window.

• Show Profile Shows the current profiling report. This menu is only useful if you have enabled profiling
in the Language dialog. Profiling does not apply to all languages. When it does, the checkbox that
enables it is in the details portion of the dialog.

• Hide Profile Hides any profiling information currently displayed in the DrScheme window.

14

3. Interface Reference 3.1. Menus

• Split Splits the current window in half to allow for two different portions of the current window to be
visible simultaneously.

• Collapse

If the window has been split before, this menu item becomes enabled, allowing you to collapse the split
window.

Note: whenever a program is executed, the interactions window is made visible if it is hidden.

3.1.4 Language

• Choose Language Opens a dialog for selecting the current evaluation language. Click Execute to make the
language active in the interactions window. See section 2.5 for more information about the languages.

• Add Teachpack... Opens a find-file dialog for choosing a teachpack to extend the current language.
Click Execute to make the teachpack available in the interactions windows. See extending-drscheme
for information on creating teachpacks.

• Clear All Teachpacks Clears all of the current teachpacks. Click Execute to clear the teachpack from
the interactions window.

In addition to the above menus, there is a menu item for each teachpack that clears only that one teachpack.

3.1.5 Scheme

• Execute Resets the interactions window and executes the program in the definitions window.

• Break Breaks the current evaluation.

• Kill Terminates the current evaluation.

• Clear Error Highlight Removes the red background that signals the source location of an error.

• Create Executable... Creates a separate launcher for running your program. See sec:executables for
more info.

• Create Servlet... Creates a servlet with the contents of the current definitions window, for use in the
web server.

• Module Browser... Prompts for a file and then opens a window showing the module import structure
for the module import DAG starting at the selected module.

The module browser window contains a square for each module. The squares are colored based on the
number of lines of code in the module. If a module has more lines of code, it gets a darker color.

In addition, for each normal import, a blue line drawn is from the module to the importing module.
Similarly, purple lines are drawn for each for-syntax import. In the initial module layout, modules
to the left import modules to the right, but since modules can be moved around interactively, that
property might not be preserved.

To open the file corresponding to the module, right click on the box for that module (control-click
under Mac OS).

• Reindent Indents the selected text according to the standard Scheme formatting conventions. (Pressing
the Tab key has the same effect.)

• Reindent All Indents all of the text in either the definitions or interactions window, depending on the
location of the selection or blinking caret.

15

3.1. Menus 3. Interface Reference

• Comment Out with Semicolons Puts “;” characters at each of the the beginning of each selected line of
text.

• Comment Out with a Box Boxes the selected text with a comment box.

• Uncomment Removes all “;” characters at the start of each selected line of text or removes a comment
box around the text. Uncommenting only removes a “;” if it appears at the start of a line and it only
removes the first “;” on each line.

• Disable All Test Cases Creates a new test case box (see section 2.10)

3.1.6 Special

• Insert Comment Box Inserts a box that is ignored by DrScheme; use it to put comments to people
reading your program.

• Insert Image... Opens a find-file dialog for selecting an image file in GIF, BMP, XBM, or XPM format.
The image is treated as a value.

• Insert Fraction... OPENS a dialog prompting for a mixed-notation fraction and inserts that into the
current editor.

• Insert Large Letters... Opens a dialog asking for a line of text and inserts a large version of that (made
with semicolons and spaces) into the current editor.

• Insert Lambda Inserts the symbol λ into the program. This has the same behavior as if lambda were
typed at this point, except that the λ symbol is implicitly delimited from neighboring characters.

• Insert Delta (define) Inserts the symbol δ into the program. This has the same behavior as if define
were typed at this point, except that the δ symbol is implicitly delimited from neighboring characters.

• Insert Java Comment Box Inserts a box that is ignored by DrScheme, unlike the Insert Comment Box
menu item, this is designed for the ProfessorJ language levels. See the ProfessorJ Beginner Language,
ProfessorJ Intermediate Language, and ProfessorJ Advanced Language manuals for details.

• Insert Java Interactions Box Inserts a box that will act like an interactions window for Java. This box
will accept one Java statement or expression per line, and should only appear at the top level.

This is intended for use in the ProfessorJ language levels. See the ProfessorJ Beginner Language,
ProfessorJ Intermediate Language, and ProfessorJ Advanced Language manuals for details.

• Insert XML Box

This menu item inserts an XML box. XML boxes must contain XML’s concrete syntax and
they evaluate to x-expressions, which are s-expressions representing the XML expression. See also
drscheme:sec:xml.

• Insert Scheme Box

Inserts a Scheme box. These boxes contain Scheme code and are meant to be inside XML boxes. See
also drscheme:sec:xml.

• Insert Scheme Splice Box

Inserts a Scheme splice box. These boxes are intended to be inside XML boxes. The Scheme ex-
pression inside must evaluate to a list and that list is spliced into the containing XML box. See also
drscheme:sec:xml.

• Insert Test Case Creates a new test case box (see section 2.10)

16

3. Interface Reference 3.2. Preferences

3.1.7 Windows

• Bring Frame to Front...

Opens a window that lists all of the opened DrScheme frames. Selecting one of them brings the window
to the front.

• Most Recent Window Toggles between the currently focused window and the one that most recently
had the focus.

Additionally, after the above menu items, this menu contains an entry for each window in DrScheme. Se-
lecting a menu item brings the corresponding window to the front.

3.1.8 Help

• Help Desk Opens the Help Desk. This is the clearing house for all documentation about DrScheme and
its language.

• About DrScheme... Shows the credits for DrScheme.

• Check for Updates...

Opens an internet connection to check if there have been any updates to various installed DrScheme
packages.

• Related Web Sites

This submenu has a list of related web sites. Choosing one of them sends a message to an external
browser to visit the web site.

• Tool Web Sites

This submenu has a list of web sites for the add-on tools in your DrScheme. Choosing one of them
sends a message to an external browser to visit the web site.

• Interact with DrScheme in English

This and the related menu items at the end of the Help menu switch DrScheme’s interface (natural)
language.

3.2 Preferences

The preferences dialog comprises several panels:

• Font

This panel controls the main font used by DrScheme.

• Syntax Coloring

The Syntax Coloring panel has several subpanels that enable you to configure the colors that DrScheme
uses for its online coloring and for Check Syntax.

• Editing

The Editing panel consists of several sub-panels:

– Indenting
This panel controls which keywords DrScheme recognizes for indenting, and how each keyword is
treated.

17

3.2. Preferences 3. Interface Reference

– General
∗ Number of recent items — controls the length of the Open Recent menu (in the File menu).
∗ Auto-save files — If checked, the editor generates autosave files (see drscheme-autosave-files)

for files that have not been saved after five minutes.
∗ Backup files — If checked, when saving a file for the first time in each editing session, the

original copy of the file is copied to a backup file in the same directory. The backup files have
the same name as the original, except that they end in either .bak or ∼.

∗ Map delete to backspace — If checked, the editor treats the Delete key like the Backspace key.
∗ Show status-line — If checked, DrScheme shows a status line at the bottom of each window.
∗ Count column numbers from one — If checked, the status line’s column counter counts from

one. Otherwise, it counts from zero.
∗ Display line numbers in buffer; not character offsets — If checked, the status line shows a

line:column display for the current selection rather than the character offset into the text.
∗ Wrap words in editor buffers — If checked, DrScheme editors auto-wrap text lines by default.

Changing this preference affects new windows only.
∗ Use separate dialog for searching — If checked, then selecting the Find menu item opens a

separate dialog for searching and replacing. Otherwise, selecting Find opens an interactive
search-and-replace panel at the bottom of a DrScheme window.

∗ Reuse existing frames when opening new files — If checked, new files are opened in the same
DrScheme window, rather than creating a new DrScheme window for each new file.

∗ Enable keybindings in menus — If checked, some DrScheme menu items have keybindings.
Otherwise, no menu items have key bindings. This preference is designed for people who
are comfortable editing in Emacs and find the standard menu keybindings interfere with the
Emacs keybindings.

∗ Color syntax interactively — If checked, DrScheme colors your syntax as you type.
∗ Automatically print to postscript file — If checked, printing will automatically save postscript

files. If not, printing will use the standard printing mechanisms for your computer.
– Scheme

∗ Highlight between matching parens — If checked, the editor marks the region between matching
parenthesis with a gray background (in color) or a stipple pattern (in monochrome) when the
flashing caret is next to a parenthesis.

∗ Correct parens — If checked, the editor automatically converts a typed “)” to “]” to match
“[”, or it converts a typed “]” to “)” to match “(“.

∗ Flash paren match — If checked, typing a closing parenthesis, square bracket, or quotation
mark flashes the matching open parenthesis/bracket/quote.

∗ Parenthesis highlight color – configures the color used to highlight matching parenthesis.

• Warnings

– Ask before changing save format — If checked, DrScheme consults the user before saving a file in
non-text format (see drscheme-file-formats).

– Verify exit — If checked, DrScheme consults the user before exiting.
– Only warn once when executions and interactions are not synchronized — If checked, DrScheme warns

the user on the first interaction after the definitions window, language, or teachpack is changed
without a corresponding click on Execute. Otherwise, the warning appears on every interaction.

– Ask about clearing test coverage — If checked, when test coverage annotations are displayed
DrScheme prompts about removing them. This setting only applies to the PLT languages.
DrScheme never asks in the teaching languages.

• Profiling

This preference panel configures the profiling report. The band of color shows the range of colors that
profiled functions take on. Colors near the right are used for code that is not invoked often and colors
on the right are used for code that is invoked often.
If you are interested in more detail at the low end, choose the “Square root” check box. If you are
interested in more detail at the upper end, choose the “Square” check box.

18

3. Interface Reference 3.3. Keyboard Shortcuts

• Browser

The Use Help Desk browser for external URLs check box determines if Help Desk visits urls that lead
out of our documentation in the platform-specific browser, or with Help Desk itself.

This preferences panel also allows you to configure your HTTP proxy. Contact your system adminis-
trator for details.

3.3 Keyboard Shortcuts

Most key presses simply insert a character into the editor (“a”, “3”, “(”, etc.). Other keys and key combina-
tions act as keyboard shortcuts that move the blinking caret, delete a line, copy the selection, etc. Keyboard
shortcuts are usually trigger by key combinations using the Control, Meta, or Command key.

C-key = This means press the Control key, hold it down and then press key and then release them both.
For example: C-e (Control-E) moves the blinking caret to the end of the current line.

M-key = Same as C-key , except with the Meta key. Depending on your keyboard, Meta may be called
“Left”, “Right” or have a diamond symbol, but it’s usually on the bottom row next to the space bar. M-key
can also be performed as a two-character sequence: first, strike and release the Escape key, then strike key .
Under Windows and Mac OS, Meta is only available through the Escape key.

DEL = The Delete key.

SPACE = The Space bar.

Note: On most keyboards, “<” and “>” are shifted characters. So, to get M->, you actually have to type
Meta-Shift->. That is, press and hold down both the Meta and Shift keys, and then strike “>”.

Note: Many of the key bindings can also be done with menu items.

Under Windows, some of these keybindings are actually standard menu items. Those keybindings will behave
according to the menus, unless the Enable keybindings in menus preference is unchecked.

If you are most familiar with Emacs-style key bindings, you should uncheck the Enable keybindings in menus
preference. Many of the keybindings below are inspired by Emacs.

3.3.1 Moving Around

• C-f move forward one character

• C-b move backward one character

• M-f move forward one word

• M-b move backward one word

• C-v move forward one page

• M-v move backward one page

• M-< move to beginning of file

• M-> move to end of file

• C-a move to beginning of line (left)

• C-e move to end of line (right)

19

3.3. Keyboard Shortcuts 3. Interface Reference

• C-n move to next line (down)

• C-p move to previous line (up)

• M-C-f move forward one S-expression

• M-C-b move backward one S-expression

• M-C-u move up out of an S-expression

• M-C-d move down into a nested S-expression

• M-C-SPACE select forward S-expression

• M-C-p match parentheses backward

• M-C-left move backwards to the nearest editor box

• A-C-left move backwards to the nearest editor box

• M-C-right move forward to the nearest editor box

• A-C-right move forward to the nearest editor box

• M-C-up move up out of an embedded editor

• A-C-up move up out of an embedded editor

• M-C-down move down into an embedded editor

• A-C-down move down into an embedded editor

3.3.2 Editing Operations

• C-d delete forward one character

• C-h delete backward one character

• M-d delete forward one word

• M-DEL delete backward one word

• C-k delete forward to end of line

• M-C-k delete forward one S-expression

• M-w copy selection to clipboard

• C-w delete selection to clipboard (cut)

• C-y paste from clipboard (yank)

• C-t transpose characters

• M-t transpose words

• M-C-t transpose sexpressions

• M-C-m toggle dark green marking of matching parenthesis

• M-C-k cut complete sexpression

• M-(wrap selection in parentheses

20

3. Interface Reference 3.4. DrScheme Files

• M-[wrap selection in square brackets

• M-{ wrap selection in curly brackets

• M-S-L wrap selection in (lambda () ...) and put the insertion point in the arglist of the lambda

• C- undo

• C-+ redo

• C-x u undo

• M-o toggle overwrite mode

3.3.3 File Operations

• C-x C-s save file

• C-x C-w save file under new name

3.3.4 Searching

• C-s search for string forward

• C-r search for string backward

3.3.5 Miscellaneous

• f5 Execute

3.3.6 Interactions

The interactions window has all of the same keyboard shortcuts as the definitions window plus a few more:

• M-p bring the previously executed expression down to the prompt.

• M-n bring the expression after the current expression in the expression history down to the prompt.

3.4 DrScheme Files

3.4.1 Program Files

The standard extension for a Scheme program file is .scm. The extensions .ss and .sch are also acceptable.

DrScheme’s editor can saves a program file in two different formats:

• Plain-text format — All text editors can read this format. DrScheme saves a program in plain-text
format by default, unless the program contains images or text boxes. (Plain-text format does not
preserve images or text boxes.)

Plain-text format is platform-specific because different platforms have different newline conventions.
However, most tools for moving files across platforms support a “text” transfer mode that adjusts
newlines correctly.

21

3.4. DrScheme Files 3. Interface Reference

• Multimedia format — This format is specific to DrScheme, and no other editor recognizes it. DrScheme
saves a program in multimedia format by default when the program contains images, text boxes, or
formatted text.

Multimedia format is platform-independent. Use a “binary” transfer mode when moving multimedia-
format files across platforms. (Using “text” mode may corrupt the file.)

3.4.2 Backup and Autosave Files

When you modify an existing file in DrScheme and save it, DrScheme copies the old version of the file to a
special backup file if no backup file exists. The backup file is saved in the same directory as the original file,
and the backup file’s name is generated from the original file’s name:

• Under Unix and Mac OS, a tilde (∼) is added to the end of the file’s name.

• Under Windows, the file’s extension is replaced with .bak.

When a file in an active DrScheme editor is modified but not saved, DrScheme saves the file to a special
autosave file after five minutes (in case of a power failure or catastrophic error). If the file is later saved, or
if the user exists DrScheme without saving the file, the autosave file is removed. The autosave file is saved
in the same directory as the original file, and the autosave file’s name is generated from the original file’s
name:

• Under Unix and Mac OS, a pound sign (#) is added to the start and end of the file’s name, then a
number is added after the ending pound sign, and then one more pound sign is appended to the name.
The number is selected to make the autosave filename unique.

• Under Windows, the file’s extension is replaced with a number to make the autosave filename unique.

3.4.3 Preference Files

On start-up, DrScheme reads configuration information from a preferences file. The name and location of
the preferences file depends on the platform and user:1

• Under Unix, preferences are stored in .plt-prefs.ss in the user’s home directory.

• Under Windows, if the HOMEDRIVE and HOMEPATH environment variables are defined, preferences
are stored in %HOMEDRIVE%\%HOMEPATH%\plt-prefs.ss, otherwise preferences are stored in
plt-prefs.ss in the directory containing the MrEd executable.

Windows NT, XP, 2000: When DrScheme is launched under Windows NT, XP, or 2000 and
HOMEDRIVE and HOMEPATH are not set, Windows automatically sets the variables to indicate
the root directory of the main disk. Therefore, when HOMEDRIVE and HOMEPATH are not set, the
preferences file plt-prefs.ss is saved in the root directory of the main disk.

• Under Mac OS X, preferences are stored in .plt-prefs.ss in the user’s preferences folder. Under Mac
OS Classic, preferences are stored in plt-prefs.ss in the system preferences folder.

A lock file is used while modifying the preferences file, in the same directory as the preferences file. Under
Windows and Mac OS Classic, the lock file is named .LOCKplt-prefs.ss, and on other platforms, it is
.LOCK.plt-prefs.ss.

1The MzScheme procedure find-system-path returns the platform-specific path when given the argument ’pref-file.

22

3. Interface Reference 3.4. DrScheme Files

If the user-specific preferences file does not exist, and the file plt-prefs.ss in the defaults collection does exist,
then it is used for the initial preference settings. (See Library Collections and MzLib, §16 in PLT MzScheme:
Language Manual for more information about collections.) This file thus allows site-specific configuration
for preference defaults. To set up such a configuration, start DrScheme and configure the preferences to
your liking. Then, exit DrScheme and copy your preferences file into the defaults collection as plt-prefs.ss.
Afterward, users have no preferences will get the preference settings you chose.

23

4. Extending DrScheme

DrScheme supports two forms of extension to the programming environment:

• A teachpack extends the set of procedures that are built into a language in DrScheme. For example,
a teachpack might extend the Beginning Student language with a procedure for playing sounds.

Teachpacks are particularly useful in a classroom setting, where an instructor can provide a teachpack
that is designed for a specific exercise. To use the teachpack, each student must download the teachpack
file and select it through the Language|Add Teachpack... menu item.

• A tool extends the set of utilities within the DrScheme environment. For example, DrScheme’s Check
Syntax button starts a syntax-checking tool, and the Analyze button starts the MrSpidey tool.

4.1 Teachpacks

Teachpacks are designed to supplement student programs with code that is beyond the teaching languages
(Beginning Student, Intermediate Student, Advanced Student). For example, to enable students to play
hangman, we supply a teachpack that

• implements the random choosing of a word

• maintains the state variable of how many guesses have gone wrong

• manages the GUI.

All these tasks are beyond students in the third week and/or impose memorization of currently useless
knowledge on students. The essence of the hangman game, however, is not. The use of teachpacks enables
the students to implement the interesting part of this exercise and still be able to enjoy today’s graphics
without the useless memorization.

A single Scheme source file defines a teachpack (although the file may access other files via require). The
file must contain a module, according to the naming convention laid out in the MzScheme manual (the name
of the file must be the name of the module, with an additional .scm or .ss extension on the filename).
Each exported syntax definition or value definition from the module is provided as a new primitive form or
primtive operation to the user, respectively.

As an example example, the following teachpack provides a lazy cons implementation. To test it, be sure to
save it in a file named lazycons.scm.

(module lazycons mzscheme
(provide (rename :lcons lcons) lcar lcdr)

(define-struct lcons (hd tl))

24

4. Extending DrScheme 4.2. Tools

(define-syntax (:lcons stx)
(syntax-case stx ()

[(hd-exp tl-exp)
(syntax (make-lcons

(delay hd-exp)
(delay tl-exp)))]))

(define (lcar lcons) (force (lcons-hd lcons)))
(define (lcdr lcons) (force (lcons-tl lcons))))

Then, in this program:

(define (lmap f l)
(lcons
(f (lcar l))
(lmap f (lcdr l))))

(define all-nums (lcons 1 (lmap add1 all-nums)))

the list all-nums is bound to an infinite list of ascending numbers.

For more examples, see the htdp directory of the teachpack directory in the PLT installation.

4.2 Tools

A separate manual describes the mechanism for defining a tool. See PLT Tools: DrScheme Extension
Manual .

4.3 Environment Variables

This section lists the environment variables that affect DrScheme’s behavior. See the MzScheme manual,
§15.4 in PLT MzScheme: Language Manual for general information about environment variables.

• PLTNOTOOLS When this environment variable is set, DrScheme doesn’t load any tools.

• PLTONLYTOOL When this environment variable is set, DrScheme only loads the tools in the
collection named by the value of the environment variable. If the variable is bound to a parenthesized
list of collections, only the tools in those collections are loaded (The contents of the environment
variable are read and expected to be a single symbol or a list of symbols).

• PLTDRCM When this environment variable is set, DrScheme installs the compilation manager before
starting up, which means that the .zo files are automatically kept up to date, as DrScheme’s (or a tools)
source is modified.

If the variable is set to trace then CM’s output is traced, using the manager-trace-handler procedure
from the CM library.

• PLTHDCM When this environment variable is set, Help Desk installs the compilation manager before
starting up (but only in standalone mode), which means that the .zo files are automatically kept up
to date, as Help Desk’s source is modified.

If the variable is set to trace then CM’s output is traced, using the manager-trace-handler procedure
from the CM library.

25

4.3. Environment Variables 4. Extending DrScheme

• PLTDRDEBUG When this environment variable is set, DrScheme starts up with errortrace enabled.
If the variable is set to profile, DrScheme also records profiling information about itself.

• PLTDRTESTS When this environment variable is set, DrScheme installs a special button in the
button bar that starts the test suite. (This is only available in the source distribution)

• PLTSTRINGCONSTANTS When this environment variable is set, DrScheme prints out the string
constants that have not yet been translated. If it is set to a particular language (corresponding to
one of the files in plt/collects/string-constants) it only shows the unset string constants matching that
language.

This environment variable must be set when .zo files are made. To ensure that you see its output
properly, run setup-plt with the -c option, set the environment variable, and then run setup-plt again.

26

5. Frequently Asked Questions

5.1 Supported Operating Systems and Installation

Where can I get DrScheme and/or documentation?

DrScheme is available for download at

http://www.drscheme.org/

Some documentation is provided with DrScheme, accessible through Help Desk. Other documentation is
provided online in HTML format and is also available for download in Adobe PDF format at

http://download.plt-scheme.org/doc/

How much does DrScheme cost?

DrScheme is absolutely free for anyone to use. However, there are restrictions on the way that DrScheme
can modified and redistributed. Please read the GNU Library General Public License in the distribution for
details.

What operating systems are supported for DrScheme?

Windows (95 and up), Mac OS X, and Unix with the X Window System.

How much memory is needed to run DrScheme?

To run DrScheme comfortably, your machine should have at least 128 MB of RAM.

I don’t have that much memory. Are there any other PLT options?

MrEd is PLT’s raw graphical Scheme implementation (used to execute DrScheme). MrEd provides a minimal
read-eval-print loop, but MrEd does not provide DrScheme’s various languages, and error messages in MrEd
do not provide a source code location.

MzScheme is PLT’s Scheme implementation. The language is the same as MrEd without graphics. MzScheme
provides little programming support, so its memory requirements are minimal (a few MB usually suffices).

The standard DrScheme distribution includes all of the above programs. MzScheme distributions can be
downloaded through

http://www.plt-scheme.org/software/mzscheme/

27

5.2. Using DrScheme 5. Frequently Asked Questions

Does DrScheme run under Mac OS versions earlier than Mac OS X?

No.

Does DrScheme run under DOS or Windows 3.1?

No.

Does MzScheme (PLT’s text-only Scheme) run under DOS or Windows 3.1?

No.

How do I install DrScheme?

Obtain a DrScheme distribution from the above address. For Windows, the distribution is an installer
program; running this program installs DrScheme. For MacOS, the distributiton is a disk image containing
a meta-package (mpkg) installer. For Unix/X, the distribution is a self-extracting shell program; running it
will unpack and install the archive, and can help in setting up some standard links. In all cases, the final
download page provides detailed, platform-specific installation instructions.

How large is the distribution archive?

Distribution archives vary in sizes. From the download page, select your platform and click the download
button — the next screen will have download links as well as the file size at the top of the page.

How much disk space does DrScheme consume?

Around 35 MB in its normal configuration, not including the optional documentation.

5.2 Using DrScheme

How do I find general help for DrScheme?

Select Help Desk in DrScheme’s Help menu.

How can I get my browser to find Help Desk when it’s configured to use a Web proxy?

Help Desk uses a Web server running on the machine running DrScheme. A Web proxy does not know about
that server. In your browser options, have the browser ignore the proxy for the address 127.0.0.1.

How do I run MrFlow, DrScheme’s program analyzer (and the successor to MrSpidey)?

MrFlow is distributed separately from the standard DrScheme distribution. Download MrFlow from

http://www.plt-scheme.org/software/mrflow/

What happened to the Analyze button?

Starting with version 51, PLT distributes DrScheme without the analysis tool. See the previous answer for
information about obtaining MrFlow.

28

5. Frequently Asked Questions 5.2. Using DrScheme

How do I customize DrScheme?

The Edit menu contains a Preferences item that opens the preferences dialog.

How do I turn off parenthesis-flashing and the gray background behind expressions?

Use the Edit|Preferences menu item.

What are the key bindings in DrScheme?

Some basic key bindings are listed in the DrScheme manual, which is accessible via the Help button in
DrScheme. See also the Keybindings menu item in the Edit menu.

Can I change the key bindings in DrScheme?

Technically, yes, but that requires in-depth information about the way that DrScheme is implemented. (The
necessary information is part of the MrEd toolbox manual.) DrScheme currently provides no simple way to
adjust the keyboard mappings, other than to set the behavior of the Delete key (via the preferences dialog).

What do those yellow-and-black messages mean, and how do I get rid of them?

When text in the definitions window is modified, the current language is changed, or the current library is
changed, DrScheme pessimistically assumes that some definition has been changed. In this case, expressions
evaluated in the interaction window would use definitions that do not match those currently displayed in the
definitions windows. A yellow-and-black message warns you about this potential inconsistency, and suggests
that you resolve the inconsistency by clicking the Execute button. To suppress all but the first warning, see
the Warnings tab in the Preferences dialog.

Why can’t I type in the interaction window before the the current prompt?

To prevent accidental revisions of the interaction history, DrScheme disallows editing before the current
prompt. While old expressions cannot be edited in place, you can copy old expressions to the current
prompt by typing Esc-p. Alternatively, place the insertion caret at the end of any old expression in the
interactions window and type Enter or Return to copy the expression down to the current prompt.

Why doesn’t let work? (or letrec or lambda or set!, etc)

DrScheme is initially configured to use the “Beginning Student” teaching language. This language prevents
many common student errors, but will not evaluate all Scheme programs. To remedy this, choose a language
such as ’Standard’ or ’Pretty Big’.

Is there a DrScheme compiler?

Technically, DrScheme is a compiler as well as an interpreter. Each time the user loads a program or enters
expression in the interactions window, DrScheme compiles and then executes the program or expression.

PLT’s mzc transforms Scheme programs into C programs, and then uses a third-party C compiler to produce
executable code. Under Windows, either Microsoft Visual C or gcc (a free compiler from Cygnus Solutions)
works as the C compiler. Under MacOS, CodeWarrior works. Under Unix, most any compiler works.

For details, see the mzc documentation, available from:

http://download.plt-scheme.org/doc/

29

5.3. Memory and Performance 5. Frequently Asked Questions

Can I produce stand-alone executables from Scheme code?

To produce a standalone executable that only works for your particular installation of DrScheme, see
sec:executables.

In addition, the mzc compiler can be used to produce stand-alone executables. See the mzc documentation
for more information.

Can files saved in DrScheme be transferred between platforms?

DrScheme saves files in two formats: text and multimedia.

The text format is the usual platform-specific text format. Tools for moving files between platforms typically
support a “text” transfer mode that adjusts newlines and carriage returns in the test as appropriate.

The multimedia format, used for saving files that contain pictures or formatted text, is platform-
indepdendent. Although no other program is able to read DrScheme’s special format, a multimedia-format
file can be moved between different platforms (in “binary” mode) and DrScheme will read it correctly on
the destination platform.

5.3 Memory and Performance

Does DrScheme really require at least 128 MB of memory?

Yes.

Why do programs run more slowly in DrScheme than in other Scheme implementations (in-
cluding PLT’s own MzScheme)?

Programs run more slowly in DrScheme because DrScheme inserts extra checks into a program to provide
information about the location of run-time errors. For many languages, these checks can be disabled by
un-checking Debugging in the details portion of the language-selection dialog.

5.4 Troubleshooting

When I run DrScheme, it is very slow and the disk is constantly running. Why?

You do not have enough memory to run DrScheme. If DrScheme works well for a while, and then starts paging
(using the disk a lot), then your memory configuration is borderline for DrScheme. If DrScheme usually
works well and has only suddenly started this bad behavior, then perhaps you have written a program that
consumes an infinite amount of memory.

I think I found a bug. What should I do?

First, read this section to make sure your problem does not have a standard answer. If you need to, submit
a bug report using the form available from the home page of Help Desk. Alternatively, you may submit a
bug report using the Web at

http://bugs.plt-scheme.org/

30

5. Frequently Asked Questions 5.4. Troubleshooting

How do I send PLT a question?

If you have a question that is not answered in the documentation or this list of “Frequently Asked Questions”,
send mail to

scheme@plt-scheme.org

31

Index

∼, 18
(define ...) button, 2
.LOCK.plt-prefs.ss, 22
.LOCKplt-prefs.ss, 22
.bak, 18, 22
.plt-prefs.ss, 22
.sch, 21
.scm, 21
.ss, 21
/Library/Frameworks, 8
> prompt, 4

About DrScheme... menu item, 17
Add Teachpack... menu item, 15
Advanced Student language, 5
alpha renaming, 3
Ask about clearing test coverage preference, 18
Ask before changing save format preference, 18
Auto-save files preference, 18
Automatically print to postscript file preference,

18
autosave files, 22

backup files, 22
Backup files preference, 18
Beginning Student language, 4
Beginning Student language with List Abbrevia-

tions, 5
Break button, 3
Break menu item, 15
Bring Frame to Front... menu item, 17

changing keybindings, 29
Check for Updates... menu item, 17
Check Syntax, 3
Choose Language menu item, 15
Clear All Teachpacks menu item, 15
Clear Error Highlight menu item, 15
Clear menu item, 14
Close menu item, 13
Collapse menu item, 15
Color syntax interactively preference, 18
Comment Out with a Box menu item, 16
Comment Out with Semicolons menu item, 16
compiler, 29
configuration files, 22
constructor-style output, 9
Copy menu item, 14
Correct parens preference, 18

Count column numbers from one preference, 18
Create Executable... menu item, 15
Create Servlet... menu item, 15
Cut menu item, 14

defaults
site-specific, 22

defaults, 23
definitions window, 2
Delete menu item, 14
Disable All Test Cases menu item, 16
disk requirements, 28
display, 10
Display line numbers in buffer; not character off-

sets preference, 18
DLLs, 8
documentation

downloading, 27
DrScheme

Environment Variables, 25
DrScheme Teachpacks, 24

editors, 3
Emacs keybindings, 19
Enable keybindings in menus preference, 18
error highlighting, 4
evaluating expressions, 4
Execute button, 4
Execute menu item, 15
execution speed, 30

file extensions, 21
filename button, 2
Find Again menu item, 14
Find menu item, 14, 18
Flash paren match preference, 18
flashing parenthesis matches, 3
font preference, 17
formatting Scheme code, 4
frequently asked questions, 27

graphical interface, 2
details, 13

gray highlight regions, 3

Help Desk, 28
Help Desk menu item, 17
Help menu item, 17
Hide Definitions menu item, 14
Hide Interactions menu item, 14

32

INDEX

Hide Profile menu item, 14
Hide Program Contour menu item, 14
Highlight between matching parens preference, 18

I/O, 10
Indenting preferences, 17
indenting Scheme code, 4
Insert Comment Box menu item, 16
Insert Delta (define) menu item, 16
Insert Fraction... menu item, 16
Insert Image... menu item, 16
Insert Java Comment Box menu item, 16
Insert Java Interactions Box menu item, 16
Insert Lambda menu item, 16
Insert Large Letters... menu item, 16
Insert Scheme Box menu item, 16
Insert Scheme Splice Box menu item, 16
Insert Test Case menu item, 16
Insert XML Box menu item, 16
Install PLT File... menu item, 13
installation instructions, 28
Interact with DrScheme in English menu item, 17
interactions window, 2, 4
Intermediate Student language, 5
Intermediate Student with Lambda language, 5

keybindings, 19
A-C-down, 20
A-C-left, 20
A-C-right, 20
A-C-up, 20
b, 21
C-+, 21
C- , 21
C-a, 19
C-b, 19
C-d, 20
C-e, 19
C-f, 19
C-h, 20
C-k, 20
C-n, 19
C-p, 20
C-r, 21
C-s, 21
C-t, 20
C-v, 19
C-w, 20
C-x C-s, 21
C-x C-w, 21
C-x u, 21
C-y, 20
copy selection to clipboard, 20
cut complete sexpression, 20

delete backward one character, 20
delete backward one word, 20
delete forward one character, 20
delete forward one S-expression, 20
delete forward one word, 20
delete forward to end of line, 20
delete selection to clipboard (cut), 20
Execute, 21
f5, 21
M-<, 19
M->, 19
M-(, 20
M-[, 20
M-{, 21
M-b, 19
M-C-b, 20
M-C-d, 20
M-C-down, 20
M-C-f, 20
M-C-k, 20
M-C-left, 20
M-C-m, 20
M-C-p, 20
M-C-right, 20
M-C-SPACE, 20
M-C-t, 20
M-C-u, 20
M-C-up, 20
M-d, 20
M-DEL, 20
M-f, 19
M-n, 21
M-o, 21
M-p, 21
M-S-L, 21
M-t, 20
M-v, 19
M-w, 20
match parentheses backward, 20
move backward one character, 19
move backward one page, 19
move backward one S-expression, 20
move backward one word, 19
move backwards to the nearest editor box, 20
move down into a nested S-expression, 20
move down into an embedded editor, 20
move forward one character, 19
move forward one page, 19
move forward one S-expression, 20
move forward one word, 19
move forward to the nearest editor box, 20
move to beginning of file, 19
move to beginning of line (left), 19

33

INDEX

move to end of file, 19
move to end of line (right), 19
move to next line (down), 19
move to previous line (up), 20
move up out of an embedded editor, 20
move up out of an S-expression, 20
paste from clipboard (yank), 20
redo, 21
save file, 21
save file under new name, 21
search for string backward, 21
search for string forward, 21
select forward S-expression, 20
toggle dark green marking of matching paren-

thesis, 20
toggle overwrite mode, 21
transpose characters, 20
transpose sexpressions, 20
transpose words, 20
undo, 21
wrap selection in curly brackets, 21
wrap selection in parentheses, 20
wrap selection in square brackets, 20
wrap selection in (lambda () ...) and put

the insertion point in the arglist of the
lambda, 21

Keybindings menu item, 14
keyboard shortcuts, 19
Kill menu item, 15

language levels, see languages
languages, 4

changing, 4
extending, 24

launcher executables, 8
libmred[vers].dll, 8
libmzgc[vers].dll, 8
libmzsch[vers].dll, 8
license, 27
Log Definitions and Interactions... menu item, 13

Map delete to backspace preference, 18
memory requirements, 27
menu items, 13
Module Browser... menu item, 15
module language, 5
Most Recent Window menu item, 17
MrFlow, 28
MrSpidey, 28
multimedia file format, 22

New menu item, 13
Number of recent items preference, 18
numbers

printing, 7

Only warn once when executions and interactions
are not synchronized preference, 18

Open Recent menu item, 13
Open... menu item, 13
output format, 9
overwrite mode, 21

Parenthesis highlight color preference, 18
Paste menu item, 14
plain-text file format, 21
PLT Graphical (MrEd) language, 5
PLT Pretty Big language, 5
PLT Textual (MzScheme) language, 5
plt-prefs.ss, 22, 23
PLT MrEd, 8
PLT MzScheme, 8
PLTDRCM, 25
PLTDRDEBUG, 26
PLTDRTESTS, 26
PLTHDCM, 25
PLTNOTOOLS, 25
PLTONLYTOOL, 25
PLTSTRINGCONSTANTS, 26
preference files, 22
preferences, 17

site-specific, 22
Preferences... menu item, 14
Print Definitions... menu item, 13
Print Interactions... menu item, 13
printing format, 9
proxy, 19, 28

quasiquote-style output, 9

R5RS, 5
read, 10
read-char, 10
read-eval-print loop, 9
recycling icon, 2
Redo menu item, 14
Reindent All menu item, 15
Reindent menu item, 15
Related Web Sites menu item, 17
Replace & Find Again menu item, 14
Reuse existing frames when opening new files pref-

erence, 18
Revert menu item, 13

Save button, 3
Save Definitions As Text... menu item, 13
Save Definitions As... menu item, 13
Save Definitions menu item, 13

34

INDEX

Save Interactions As Text... menu item, 13
Save Interactions As... menu item, 13
Save Interactions menu item, 13
Save Other menu item, 13
Search in Files... menu item, 13
Select All menu item, 14
Show Definitions menu item, 14
Show Interactions menu item, 14
Show Profile menu item, 14
Show Program Contour menu item, 14
Show status-line preference, 18
Split menu item, 15
stand-alone executables, 8, 30
status line, 2
Step button, 3
stepper, 3
storage requirements, 28
supported platforms, 27

tail calls, 3
Teachpacks

implementing, 24
Test Suite Window, 11
The Stepper, 3
Tool Web Sites menu item, 17
tools, 24

Uncomment menu item, 16
Undo menu item, 14
Use separate dialog for searching preference, 18

Verify exit preference, 18

Wrap Text menu item, 14
Wrap words in editor buffers preference, 18
write, 10

XML, 11

yellow and black messages, 29

35

	1 About DrScheme
	2 Interface Essentials
	2.1 Buttons
	2.2 The Editor
	2.3 The Interactions Window
	2.4 Errors
	2.5 Languages
	2.6 Executables
	2.7 Printed Results
	2.7.1 Constructor-style Output
	2.7.2 Quasiquote-style Output

	2.8 Input and Output
	2.9 XML
	2.10 Test Cases

	3 Interface Reference
	3.1 Menus
	3.1.1 File
	3.1.2 Edit
	3.1.3 View
	3.1.4 Language
	3.1.5 Scheme
	3.1.6 Special
	3.1.7 Windows
	3.1.8 Help

	3.2 Preferences
	3.3 Keyboard Shortcuts
	3.3.1 Moving Around
	3.3.2 Editing Operations
	3.3.3 File Operations
	3.3.4 Searching
	3.3.5 Miscellaneous
	3.3.6 Interactions

	3.4 DrScheme Files
	3.4.1 Program Files
	3.4.2 Backup and Autosave Files
	3.4.3 Preference Files

	4 Extending DrScheme
	4.1 Teachpacks
	4.2 Tools
	4.3 Environment Variables

	5 Frequently Asked Questions
	5.1 Supported Operating Systems and Installation
	5.2 Using DrScheme
	5.3 Memory and Performance
	5.4 Troubleshooting

	Index

