TEWS &

The Embedded I/O Company TECHNOLOGIES

TIP6/75-SW-42

VxWorks Device Driver
48 TTL I/O Lines with Interrupts

Version 2.0.x

User Manual

Issue 2.0.0
July 2010

TEWS TECHNOLOGIES GmbH
Am Bahnhof 7 25469 Halstenbek, Germany
Phone: +49 (0) 4101 4058 0 Fax: +49 (0) 4101 4058 19
e-mail: inffo@tews.com www.tews.com

TIP675-SW-42

TEWS &

TECHNOLOGIES

This document contains information, which is

VxWorks Device Driver proprietary to TEWS TECHNOLOGIES GmbH. Any

48 TTL 1/O Lines with Interrupts
Supported Modules:

reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and

TIP675

complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.
TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.
©2002-2010 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0 First Issue September 12, 2002
1.1.0 IPAC Carrier Driver Support January 11, 2006
1.2.0 New Address TEWS TECHNOLOGIES LLC December 5, 2006
ChangelLog.txt added to file list, new error code for tip675DevCreate()
1.2.1 Carrier Driver description added June 24, 2008
2.0.0 SMP Support, IPAC carrier interface functions removed, return value July 26, 2010

for ioctl function changed

TIP675-SW-42 — VxWorks Device Driver Page 2 of 26

TEWS &

TECHNOLOGIES

Table of Contents

1 INTRODUGCTION et e e e e e et e et e et e e e e e e et e e e eennns 4
O R B oA ot B V2= PP UPPRTPRRN 4

A | O O T g T=] g B A=) SRR TUPPRTPRRN 5

2 INSTALLATION ..ttt et e e et e e et e e e et e e e et e e e e e e eean e 6
2.1 Include device driver in VXWOIKS PrOJECES ..ocviiiiiiieeiiiiiiiieee e e e s s st e e e e s s s sieae e e e e e s e snnnraneeneee s 6

2.2 SyStem reSoUrCe rEQUITEMENT ...icciii i iiiieieee e e e s sttt r e e e e e s e s st r e e e e e s s s st baeeeeeeessssntreareeeeesesssnrenneeeeens 6

3 /O SYSTEM FUNCTIONSttt e e e e e e e e e e e e e e e e e e aeanannn e eas 7
G TR I] o1 S5 V7 (S 7

I 1] o Y451 1= @ =T L =T | TS 9

4 7@ 1N [I [1 S 11
s oY o =T 1 PSR 11

A o] o 11 = (PR 13

7 T T Yox d I) TR ERPTP 15
4.3 1 FIO_TB75_READ ...oiiitiiie ittt ettt ettt ettt e s e nb et e s sttt e e s nnbb e e e e nnnreeas 17

4.3.2 FIO_TB75_WRITE ..ottt ettt ettt ettt st e s s st et e e s snba e e s nnbt e e e s nnneeeas 18

4.3.3 FIO_TB75_SET_DIR...iiiiiiiiiiiie ittt ettt e et st e e s s st e e e sttt e e s nnbeeeeennneeeas 19

4.3.4 FIO_TB75_INSTALL_ISF ... ettt s e e e e s snneeeas 20

4.35 FIO_TB75_REMOVE_ISF ...ttt ettt s 23

4.3.6 FIO_TB75_ENA_EXCLK .ttt e et e e s b e e e s nnneeeas 25

4.3.7 FIO_TBE75 _DIS_EXCLK ..iiiiiiiiiiiiiiie ettt sttt ettt et e e s st e e s sntsae e s snsaaeessnsaaeesnnseeeas 26

TIP675-SW-42 — VxWorks Device Driver Page 3 of 26

TEWS &

TECHNOLOGIES

1 Introduction

1.1 Device Driver

The TIP675-SW-42 VxWorks device driver software allows the operation of the TIP675 IP conforming
to the VxWorks I/0O system specification. This includes a device-independent basic I/O interface with
open(), close() and ioctl() functions.

The TIP675 driver includes the following functions:

reading the input register

writing the output register

programming direction of every I/O line

configure simultaneous update feature

connect interrupt callback functions to every 1/O line
Support for legacy and VxBus IPAC carrier driver
SMP Support

VVVVVVY

The TIP675-SW-42 supports the modules listed below:

TIP675-10 48 TTL I/O Lines with Interrupts IndustryPack® compatible

To get more information about the features and use of the supported devices it is recommended to
read the manuals listed below.

TIP675 User manual

TIP675 Engineering Manual

CARRIER-SW-42 IPAC Carrier User Manual

TIP675-SW-42 — VxWorks Device Driver Page 4 of 26

TEWS &

TECHNOLOGIES

1.2 IPAC Carrier Driver

IndustryPack (IPAC) carrier boards have different implementations of the system to IndustryPack bus
bridge logic, different implementations of interrupt and error handling and so on. Also, the different
byte ordering (big-endian versus little-endian) of CPU boards might cause problems when accessing
the IndustryPack I/O and memory spaces.

To simplify the implementation of IPAC device drivers which shall work with any supported carrier
board, TEWS TECHNOLOGIES has designed a so called Carrier Driver that hides all differences of
different carrier boards under a well defined interface.

The TEWS TECHNOLOGIES IPAC Carrier Driver CARRIER-SW-42 is part of this TIP675-SW-42
distribution. It is located in the directory /CARRIER-SW-42/" on the corresponding distribution media.

This IPAC Device Driver requires a properly installed IPAC Carrier Driver. Due to the design of the
Carrier Driver, it is sufficient to install the IPAC Carrier Driver once, even if multiple IPAC Device
Drivers are used.

Please refer to the CARRIER-SW-42 User Manual for a detailed description on how to install and
setup the CARRIER-SW-42 device driver, and for a description of the TEWS TECHNOLOGIES IPAC
Carrier Driver concept.

TIP675-SW-42 — VxWorks Device Driver Page 5 of 26

TEWS &

TECHNOLOGIES

2 Installation

The following files and directories are located on the distribution media:

Directory path “./TIP675-SW-42/".

tip675drv.c TIP675 device driver source

tip675def.h TIP675 driver include file

tip675.h TIP675 include file for driver and application
tip675exa.c Example application

Carrier driver interface definitions
PDF copy of this manual
Release information

Release history

include/ipac_carrier.h
TIP675-SW-42-2.0.0.pdf
Release.txt
ChangelLog.txt

2.1 Include device driver in VxXWorks projects

For including the TIP675-SW-42 device driver into a VxWorks project (e.g. Tornado IDE or
Workbench) follow the steps below:

(1) Copy the files from the distribution media into a subdirectory in your project path.
(For example: TIP675)

(2) Add the device drivers C-files to your project.

(3) Now the driver is included in the project and will be built with the project.

For a more detailed description of the project facility please refer to your VxWorks User’s
Guide (e.g. Tornado, Workbench, etc.)

2.2 System resource requirement

The table gives an overview over the system resources that will be needed by the driver.

Resource Driver requirement Devices requirement
Memory <1KB <1KB
Stack <1KB <1KB
Semaphores

Memory and Stack usage may differ from system to system, depending on the used compiler
and its setup.

The following formula shows the way to calculate the common requirements of the driver and devices.

<total requirement> = <driver requirement> + (<number of devices> * <device requirement>)

The maximum usage of some resources is limited by adjustable parameters. If the application
and driver exceed these limits, increase the according values in your project.

TIP675-SW-42 — VxWorks Device Driver Page 6 of 26

TEWS &

TECHNOLOGIES

31/0 system functions

This chapter describes the driver-level interface to the 1/0 system. The purpose of these functions is to
install the driver in the 1/O system, add and initialize devices.

3.1 tip675Drv()

NAME

tip675Drv() - installs the TIP675 driver in the I/O system

SYNOPSIS

#include “tip675.h”

STATUS tip675Drv(void)

DESCRIPTION

This function initializes the TIP675 driver and installs it in the I/O system.

The call of this function is the first thing the user has to do before adding any device to the
system or performing any I/O request.

EXAMPLE

#i nclude "tip675.h"
status = tip675Drv();

if (status == ERROR)

{

[* Error handling */
}
RETURNS

OK or ERROR. If the function fails, an error code will be stored in errno.

TIP675-SW-42 — VxWorks Device Driver Page 7 of 26

TEWS &

TECHNOLOGIES

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).

SEE ALSO

VxWorks Programmer’s Guide: 1/0 System

TIP675-SW-42 — VxWorks Device Driver Page 8 of 26

TEWS &

TECHNOLOGIES

3.2 tip675DevCreate()

NAME

tip675DevCreate() — Add a TIP675 device to the VxWorks system

SYNOPSIS

#include “tip675.h”

STATUS tip675DevCreate

(
char *name,
int devldx,
int funcType,
void *pParam

)

DESCRIPTION

This routine adds a TIP675 device to the VxWorks system. The device hardware will be setup and
prepared for use.

This function must be called before performing any I/O request to this device.

PARAMETER

name
This string specifies the name of the device that will be used to identify the device, for example
for open() calls.

devldx

This index number specifies the desired device instance beginning by 0. This parameter is O for
the first TIP675 in the system, 1 for the second TIP675 and so forth. The order of TIP675
modules depends on the search order of the IPAC carrier driver.

funcType
This parameter is unused and should be set to 0.

pParam
This parameter is unused and should be set to NULL.

TIP675-SW-42 — VxWorks Device Driver Page 9 of 26

TEWS &

TECHNOLOGIES

EXAMPLE

#i nclude "tip675.h"

STATUS result;

2
Create the device "/tip675/0" for the first TIP675 nodul e
___ * |

result = tip675DevCreate("/tip675/0", 0, O, NULL);

if (result == ERROR)

{

/* Error occurred when creating the device */

}..

RETURNS

OK or ERROR. If the function fails, an error code will be stored in errno.

ERROR CODES

The error codes can be read with the function errnoGet().

Error code Description

S ioLib_NO_DRIVER Driver not installed, call tip675Drv() first.

S tip675Drv_IARG The parameter devldx is out of range

S_tip675Drv_EXISTS The TIP675 device specified by the parameter devidx has
been created already.

ENXIO No TIP675 module found for the specified parameter

devldx. If this error occurred for parameter devldx=0, no
TIP675 module at all was recognized.

SEE ALSO

VxWorks Programmer’s Guide: 1/O System

TIP675-SW-42 — VxWorks Device Driver Page 10 of 26

TEWS &

TECHNOLOGIES

41/0 Functions
4.1 open|()

NAME

open() - open a device or file.

SYNOPSIS

int open

(
const char *name,
int flags,
int mode

)

DESCRIPTION

Before 1/0 can be performed to the TIP675 device, a file descriptor must be opened by invoking the
basic 1/0O function open().

PARAMETER

name

Specifies the device which shall be opened, the name specified in tip675DevCreate() must be
used

flags
Not used

mode
Not used

TIP675-SW-42 — VxWorks Device Driver Page 11 of 26

TEWS &

TECHNOLOGIES

EXAMPLE

int fd,

fd = open("/tip675/0", 0, 0);

if (fd == ERROR)

{

/* Handl e error */
}
RETURNS

A device descriptor number or ERROR. If the function fails, an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).

SEE ALSO

ioLib, basic I/O routine - open()

TIP675-SW-42 — VxWorks Device Driver Page 12 of 26

4.2 close()

NAME

close() — close a device or file

SYNOPSIS

int close

(
)

int fd

DESCRIPTION

This function closes opened devices.

PARAMETER

fd

TEWS &

TECHNOLOGIES

This file descriptor specifies the device to be closed. The file descriptor has been returned by

the open() function.

EXAMPLE

i nt fd;
STATUS result;

result = close(fd);

if (result == ERROR)
{

/* Handl e error */

TIP675-SW-42 — VxWorks Device Driver

Page 13 of 26

TEWS &

TECHNOLOGIES

RETURNS

OK or ERROR. If the function fails, an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).

SEE ALSO

ioLib, basic I/O routine - close()

TIP675-SW-42 — VxWorks Device Driver Page 14 of 26

4.3 ioctl()

NAME

ioctl() - performs an 1/O control function.

SYNOPSIS

#include “tip675.h”

int ioctl

(
int fd,
int request,
int arg

)

DESCRIPTION

TEWS &

TECHNOLOGIES

Special 1/0 operations that do not fit to the standard basic I/O calls will be performed by calling the
ioctl function with a specific function code and an optional function dependent argument.

For details of supported ioctl functions see VxWorks Reference Manual: VxWorks Programmer’s

Guide: 1/0O system.

PARAMETER

fd

This file descriptor specifies the device to be used. The file descriptor has been returned by the

open() function.

request

This argument specifies the function that shall be executed. Following functions are defined:

Function

Description

FIO_T675_READ

Read from input buffer

FIO_T675_WRITE

Write to output buffer

FIO_T675_SET_DIR

Set direction of I/O lines

FIO_T675_INSTALL_ISF

Install user supplied 1/O service function at
specified 1/O line

FIO_T675_REMOVE_ISF

Remove user supplied I/O service function from
specified 1/O line

FIO_T675_ENA_EXCLK

Enable simultaneous update feature

FIO_T675_DIS_EXCLK

Disable simultaneous update feature

TIP675-SW-42 — VxWorks Device Driver

Page 15 of 26

TEWS &

TECHNOLOGIES

arg
This parameter depends on the selected function (request). How to use this parameter is
described below with the function.

RETURNS

OK or ERROR. If the function fails, an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).
Function specific error codes will be described with the function.

SEE ALSO

ioLib, basic 1/O routine - ioctl()

TIP675-SW-42 — VxWorks Device Driver Page 16 of 26

TEWS &

TECHNOLOGIES

4.3.1 FIO_T675_READ

This function reads the current contents of the input registers of the TIP675 associated with the device
descriptor fd into the read buffer of type T675_READ_STR.

The function specific control parameter arg is a pointer to a T675_READ_STR structure.

typedef struct

{
unsigned short in_1 16;
unsigned short in_17_32;
unsigned short in_33_48;

} T675_READ_STR;

in_1 16
Returns the contents of the input register for I/O-line 1 up to 16. (Line 1 is assigned to bit 0O, line
2 to bit 1 and so on.)

in_17 32
Returns the contents of the input register for I/O-line 17 up to 32. (Line 17 is assigned to bit 0,
line 18 to bit 1 and so on.)

in_33_48

Returns the contents of the input register for I/O-line 33 up to 48. (Line 33 is assigned to bit 0,
line 34 to bit 1 and so on.)

EXAMPLE

#i ncl ude "tip675. h"

i nt fd;

i nt retval ;

T675_READ_STR r Buf ;

2
read the input registers of the device associated with fd
___ * |

retval = ioctl (fd, FIO T675 READ, (int)& Buf);

if (retval == K

{

printf(“Input 1-16: 9%94X\n”, rBuf.in_1 16);
printf(“Input 17-32: 9%94X\n”", rBuf.in_17_32);
printf(“Input 33-48: %4X\n”, rBuf.in_33 48);

TIP675-SW-42 — VxWorks Device Driver Page 17 of 26

TEWS &

TECHNOLOGIES

4.3.2 FIO_T675 WRITE

This function writes to the output registers of the TIP675 associated with the device descriptor fd from
a write buffer of type T675_WRITE_STR.

The function specific control parameter arg is a pointer to a T675 WRITE_STR structure.

typedef struct

{
unsigned short out 1 16;
unsigned short out 17 _32;
unsigned short out 33 48;

} T675_WRITE_STR;

out 1 16
Specifies the output value that will be written into the output register for I/O-lines 1 up to 16
(Line 1 is assigned to bit 0, line 2 to bit 1 and so on).

out 17 32
Specifies the output value that will be written into the output register for 1/0-lines 17 up to 32
(Line 17 is assigned to bit O, line 18 to bit 1 and so on).

out_33_48

Specifies the output value that will be written into the output register for 1/0-lines 33 up to 48
(Line 33 is assigned to bit 0, line 34 to bit 1 and so on).

EXAMPLE

#i ncl ude "tip675. h"
i nt fd;

i nt retval

T675_WRI TE_STR wBuf ;

wite to the output registers
wBuf.out 1 16 = 0x9abc;
wBuf . out _17 32 = 0x5678;
wBuf . out 33 48 = 0x1234;
retval = ioctl(fd, FIO T675 WRITE, (int)&wBuf);
if (retval == ERROR)

{

/* handl e function specific error conditions */

TIP675-SW-42 — VxWorks Device Driver Page 18 of 26

TEWS &

4.3.3 FIO_T675_SET DIR

With this ioctl function, each of the 48 1/O lines may be individually set as input or output. After driver
startup, all I/O lines are set to be inputs. To enable a certain output line, set the corresponding bit in
the mask to 1.

The function specific control parameter arg is a pointer to a T675_DIRECTION_STR structure.

typedef struct

{
unsigned short dir 1 16;
unsigned short dir_17_32;
unsigned short dir_33 48;

} T675_DIRECTION_STR;

dir_1 16
Specifies the line direction for I/O-lines 1 up to 16 (Line 1 is assigned to bit 0, line 2 to bit 1 and
SO on).

dir_17 32
Specifies the line direction for I/O-lines 17 up to 32 (Line 17 is assigned to bit 0, line 18 to bit 1
and so on).

dir_33 48
Specifies the line direction for I/O-lines 33 up to 48 (Line 33 is assigned to bit 0, line 34 to bit 1
and so on).

EXAMPLE

#i ncl ude "tip675. h"

i nt fd;

i nt retval ;

T675_DI RECTI ON_STR dBuf ;

2

Set direction: Line 1-24 — output
Li ne 25-32 — input

__________________________________ * [
dBuf.out 1 16 = OxFFFF;

dBuf . out 17 32 = OxO00FF;

dBuf . out 33 48 = 0x0000;

retval = ioctl(fd, FIO T675 SET DIR (int)&dBuf);
if (retval == ERROR)

{

/* handl e function specific error conditions */

TIP675-SW-42 — VxWorks Device Driver Page 19 of 26

TEWS &

4.3.4 FIO_T675 INSTALL_ISF

This ioctl function connects a user supplied function to an interrupt at the specified 1/O line. Each time
an interrupt occurred with the specified transition at the specified 1/O line, this function will be called.
Only one callback function can be installed per I/O line and transition at the same time.

The callback function will be invoked in supervisor mode at interrupt level. Be sure that only
suitable system functions will be called and no wait conditions do occur.

The function specific control parameter arg is a pointer to a T675_INSTALL_ISF_STR structure

typedef struct

{
unsigned short io_line;
unsigned short edge;
unsigned long arg;
VOIDFUNCPTR funcPtr;

} T675_INSTALL_ISF_STR;

io_line
Specifies the 1/0O-line at which the callback function will be installed. Valid 1/O lines are in range
from 1 to 48.

edge

Specifies the transition (positive, negative) at which the callback function will be installed.
Valid values are:

Value Description
T675_POS_EDGE An interrupt will be generated on a Low to High transition
T675 NEG_EDGE An interrupt will be generated on a High to Low transition
arg
This user defined argument will be passed in the 4" argument to the user supplied callback
function. This argument could be a semaphore ID, a message ID or something like that.
funcPtr

This parameter contains a pointer to a function to be called if the interrupt at the connected I/O
line occurred. The routine is invoked in supervisor mode at interrupt level. A proper C
environment is established, the necessary registers saved, and the stack is set up.

The function prototype of the callback function has the following arguments described below.

void callback

(
unsigned long base,
unsigned long line_info,
T675_READ_STR *inBuf,
unsigned long arg

)i

TIP675-SW-42 — VxWorks Device Driver Page 20 of 26

TEWS &

TECHNOLOGIES

base

Base address of the modules I/O space. This argument is available for compatibility purposes
only and it is not recommended to be used.

line_info
The lower 16-bit contains the number of the 1/0-line (1...48) at which the event occurred. The
upper 16-bit contains a flag which specifies the transition on which this interrupt was generated.
The corresponding macros are the same as used for the parameter edge in the
T675_INSTALL_ISF_STR structure. Please note these flags are left shifted by 16 bits.

inBuf

This argument is a pointer to a read buffer of type T675_READ_STR. The buffer is filled with
the contents of the line input registers directly on entrance of the drivers interrupt service
routine. The read buffer is placed on the interrupt stack and only available in the interrupt
context.

Due to the fact that the input registers aren't latched, the input buffer doesn't reflect the state of
the input lines at the moment of the transition. The read is delayed by the interrupts latency
which depends on the system performance and other functions which may block the interrupt

processing.
arg
User supplied argument.
EXAMPLE
#i ncl ude "tip675. h"
[e e e e
CALLBACK FUNCTI ON (| NTERRUPT)
_____________________________ * [
static void call back
(
unsi gned | ong base,
unsi gned long line_info,
T675_READ_STR *pval ue,
unsi gned long arg
)
{
int |ine;
line =line_info & Oxffff; /* mask |ower 16 bit */
if (((line_info>>16) & T675 POS EDGE) != 0)
{
/* yes, this was a rising edge */
}
/* do whatever necessary to handle this interrupt */
}

TIP675-SW-42 — VxWorks Device Driver Page 21 of 26

TEWS &

TECHNOLOGIES

[® e e e
USER APPLI CATI ON
________________ * |

i nt fd;

i nt retval ;

T675_I NSTALL_I SF_STR | sf Par;

Install a callback function for line 12 interrupts. The
function will be called if a rising edge occurred. The
user argument is not used (0).

___ * |
IsfPar.io line = 12;
| sf Par. edge = T675_POS_EDGE;
| sf Par. funcPtr = call back;
| sfPar.arg = O;
retval = ioctl(fd, FIO T675 I NSTALL_ I SF, (int)&l sfPar);
if (retval == ERROR)
{
/* handl e function specific error conditions */
}
ERRORS CODES
S t675Drv_ILINE Specified I/O line out of range.
S t675Drv_IPARAM No valid transition parameter
S _t675Drv_BUSY This 1/O line and edge combination is already occupied. Call the
ioctl function FIO_T675_REMOVE_ISF to remove the previous
installed callback function.

TIP675-SW-42 — VxWorks Device Driver Page 22 of 26

TEWS &

TECHNOLOGIES

4.3.5 FIO_T675_REMOVE_ISF

This ioctl function removes a previously installed callback function from a specified 1/0O line and
transition edge.

The function specific control parameter arg is a pointer to a T675_INSTALL _ISF_STR structure.

typedef struct

{
unsigned short io_line;
unsigned short edge;

} T675_REMOVE_ISF_STR;

io_line
Specifies the 1/0-line number from which the callback function shall be removed.
Valid I/O lines are in range from 1 to 48.

edge

Specifies the transition edge from which the callback function shall be removed.
Valid values are:

Value Description
T675_POS_EDGE Rising edge (low to high transition)
T675 NEG_EDGE Falling edge (high to low transition)

EXAMPLE

#i nclude "tip675.h"

i nt fd;

i nt retval ;

T675_REMOVE_| SF_STR Rsf Par ;

2
Renmove user supplied callback function fromI/Oline 24

RsfPar.io |line = 24;
Rsf Par . edge = T675_POS_EDCE;

retval = ioctl(fd, FIO T675 REMOVE | SF, (int)&RsfPar);
if (retval == ERROR)
{

/* handl e function specific error conditions */

TIP675-SW-42 — VxWorks Device Driver Page 23 of 26

TEWS &

TECHNOLOGIES

ERROR CODES

S t675Drv_ILINE Specified I/O line out of range.
S t675Drv_IPARAM No valid transition parameter

TIP675-SW-42 — VxWorks Device Driver Page 24 of 26

TEWS &

TECHNOLOGIES
4.3.6 FIO_T675_ENA_EXCLK
This ioctl function enables the simultaneous update feature of the TIP675. Setting the ioctl argument
arg to T675_POS_EDGE will cause the inputs and outputs to be latched on the rising edge of the
external clock, while setting arg to T675_NEG_EDGE will latch the inputs and outputs on the falling
edge.
EXAMPLE

#include "tip675.h"

i nt fd;
i nt retval ;
| o e e e e e e e e e e me e ee e
Enabl e si nul taneous update on falling edge
__ * [
retval = ioctl(fd, FIOT675_ENA EXCLK, T675_NEG EDGE);
if (retval == ERROR) {

/* handl e function specific error conditions */

TIP675-SW-42 — VxWorks Device Driver Page 25 of 26

TEWS &

TECHNOLOGIES

4.3.7 FIO_T675_DIS_EXCLK

This ioctl function disables the simultaneous update feature of the TIP675. After driver startup the
simultaneous update feature is disabled.

The optional argument arg shall be set to 0.

EXAMPLE

#include "tip675.h"

i nt fd;

i nt retval ;

/2
Di sabl e si nul taneous update of inputs and outputs
___ * |

retval = ioctl(fd, FIO T675 D S EXCLK, 0);

if (retval == ERROR)

{

/* handl e function specific error conditions */

TIP675-SW-42 — VxWorks Device Driver Page 26 of 26

	1	Introduction
	1.1	Device Driver
	1.2	IPAC Carrier Driver

	2	Installation
	2.1	Include device driver in VxWorks projects
	2.2	System resource requirement

	3	I/O system functions
	3.1	tip675Drv()
	3.2	tip675DevCreate()

	4	I/O Functions
	4.1	open()
	4.2	close()
	4.3	 ioctl()
	4.3.1	FIO_T675_READ
	4.3.2	FIO_T675_WRITE
	4.3.3	FIO_T675_SET_DIR
	4.3.4	FIO_T675_INSTALL_ISF
	4.3.5	FIO_T675_REMOVE_ISF
	4.3.6	FIO_T675_ENA_EXCLK
	4.3.7	FIO_T675_DIS_EXCLK

