
 Indexed Search Reference - doc_indexed_search Indexed Search Reference

Indexed Search Reference

Extension Key: doc_indexed_search

Language: en

Keywords: indexed search, reference, forDevelopers, forAdvanced

Copyright 2000-2008, TYPO3 Core Development Team, <info@typo3.org>

This document is published under the Open Content License

available from http://www.opencontent.org/opl.shtml

The content of this document is related to TYPO3

- a GNU/GPL CMS/Framework available from www.typo3.org

1

 Indexed Search Reference - doc_indexed_search Indexed Search Reference

Table of Contents
Indexed Search Reference...........................1

Introduction... 3

User manual... 5

Adminstration...7

Indexing configurations.......................................10

Configuration... 21

Technical details.. 23

Analysing the indexed data..................................25

Database Tables... 30

Known problems.. 33

2

 Indexed Search Reference - doc_indexed_search Introduction

Introduction
What does it do?
The Indexed Search Engine provides two major elements to TYPO3:

1. Indexing: An indexing engine which indexes TYPO3 pages on-the-fly as they are rendered by TYPO3's frontend. Indexing
a page means that all words from the page (or specifically defined areas on the page) are registered, counted, weighted
and finally inserted into a database table of words. Then another table will be filled with relation records between the
word table and the page. This is the basic idea.

2. Searching: A plugin you can insert on your website which allows website users to search for information on your
website. By searching the plugin first looks in the word-table if the word exist and if it does all pages which has a relation
to that word will be considered for the search result display. The search results are ordered based on factors like where on
the page the word was found or the frequency of the word on the page.

This is an example of how the search interface on a website looks:

3

 Indexed Search Reference - doc_indexed_search Introduction

Features of the indexer
The indexing engine has several features:

• HTML data priority: 1) <title>-data 2) <meta-keywords>, 3) <meta-description>, 4) <body>

• Indexing external files: Text formats like html and txt and doc, pdf by external programs (catdoc / pdftotext)

• Wordcounting and frequency used to rate results

• Exact, partially or metaphone search

• Searching freely for sentences (non-indexed).

• NOT case-sensitive in any ways though.

Features of the search frontend (the plugin)
The search interface has several options for advanced searching. Any of those can be disabled and/or preset with default
values:

• Searching whole word, part of word, sounds like, sentence

• Logical AND and OR search including syntactical recognition of AND, OR and NOT as logical keywords. Furthermore
sentences encapsulated in quotes will be recognized.

• Searching can be targeted at specific media, for instance searching only indexed PDF files, HTML-files, Word-files, TYPO3-
pages or everything

• The engine is language sensitive based on the multiple-language feature of TYPO3's CMS frontend.

• Searching can be performed in specific sections of the website.

• Results can be sorted descending or ascending and ordered by word frequency, weight, location relative to page top, page
modification date, page title, etc.

• The display of search results can be intelligently divided into sections based on the internal page hierarchy. Thus results
are primarily grouped by relation, then by hit-relevance.

This shows the full range of default options for “advanced search”:

Warning
The search frontend plugin is optimized for features, not speed. Especially it will be slow on a website with many pages in the
page tree because it traverses the whole tree each time to build a list of accessible pages. However you can circumvent this
by modifications to the search plugin so it does not check page access based on the id-list. But then you loose that feature of
course. Can't have both.

In any case; The indexing of pages and searching the indexed information are two different processes and therefore you can
easily use another frontend plugin for making searches in the same data for whatever reason you might have for discarding
the default search plugin.

4

 Indexed Search Reference - doc_indexed_search User manual

User manual
Adding the search plugin to a page
That is really easy:

1. Create a page called “Search” or something like that. This is where the search box will appear.

2. Then create a new content element on that page. From the Web>Page module you can do it like this:

3. Then select some plugin-type if you can. It doesn't matter if it's a guestbook or forum. Or if no plugins are available, just
select a “Regular text element” as in the top of the page.

4. Then make sure “Insert plugin” is selected (if not, select it and save the element, then you'll see the form below), enter a
title and select the “Plugin” type to be “Indexed search”:

5. Then select the root page of your website as the “Starting point” of the plugin content element:

5

 Indexed Search Reference - doc_indexed_search User manual

And that's it. Your frontend should now look like this:

The styles are most likely different from this, but that is controlled by the developer having administration access to the
system.

6

 Indexed Search Reference - doc_indexed_search Adminstration

Adminstration
Monitoring indexed content
The Indexed Search extension adds two backend modules, one as a global database-wide statistics module and a page
specific analysis module.

In the Web>Info module you can see an overview of how many instances are indexed per TYPO3-page. Look at this image:

As you can see most pages here are indexed only one time. However a few are indexed twice. This can happen for several
reasons and here the reason is most likely due to a user login or something related.

7

 Indexed Search Reference - doc_indexed_search Adminstration

The most interesting occurence is the page “References” which has more than 20 indexed instances available. The reason is
that this page holds multiple cached views due to some parameters which are used by a plugin on that page. Each instance
will be searchable as a unique search result.

Now imagine that you want to clear out all those instances of the “References” page to let them be re-indexed when viewed
again; Simply click the page “References” in the page tree to the left. Then you see this:

You can either click the red garbage bin (1) in order to clear all listed instances or alternatively pick out single instances by
clicking the local garbage bin (2).

Monitoring the global picture of indexed pages

By the Tools>Indexing module you can get statistics about the indexing engine. Currently they are sparse and very roughly
presented. This view needs some more work to be friendly and really useful.

“General statistics”

This shows that 217 pages are indexed, comprising 7000+ words and using 40.000 records in the relation table to glue things
together.

“List: TYPO3 Pages”
This view shows a list of indexed pages with all the technical details:

8

 Indexed Search Reference - doc_indexed_search Adminstration

9

 Indexed Search Reference - doc_indexed_search Indexing configurations

Indexing configurations
Setting up the “crawler” extension
Before you can work with “Indexing configurations” you must make sure you have set up the “crawler” extension and have a
cron-job running that will process the crawler queue as we fill it! For this, please refer to the documentation of the “crawler”
extension!

Generally about indexing configurations
Indexing configuration sets up indexing jobs that are performed by a cron-script independently of frontend requests. The
“crawler” extension is used as a service to perform the execution of queue entries that controls the indexing.

The Indexing configuration contains two parts

1. Definition of execution time and periodicality.

2. Definition of indexing type and settings.

Below you see what all Indexing Configurations have in common:

These settings are described in the context sensitive help so please refer to that for more information.

The “Session ID” requires a show introduction: When an indexing job is started it will set this value to a unique number which
is used as ID for that process and all indexed entries are tagged with it. When the processing of an indexing configuration is
done it will be reset to zero again.

Periodic indexing of the website (“Page tree”)
You can have the whole page tree indexed overnight using this indexing configuration of type “Page tree”:

10

 Indexed Search Reference - doc_indexed_search Indexing configurations

This defines that the page tree is to be crawled to a depth of 3 levels from the root point “Testsite”. For each page a
combination of parameters is calculated based on the “crawler” configurations for the “Re-index” processing instruction (See
“crawler” extension for more information) and those URLs are committed to the crawler log plus entries for all subpages to
the processed page (so that each of those pages are indexed as well.)

This is what the crawler log may look like after processing:

Here you can notice that the visited URLs have additional parameters added - those are combined based on the “crawler”
extensions configuration in Page TSconfig.

Also notice the special crawler log entries found in the “Storage folder”. These are the “meta-entries” which calls an indexed
search hook which in turn generates the URL entries and pushed them to the queue.

On the far right in this view you can see that noted as well, including the “set_id”:

11

 Indexed Search Reference - doc_indexed_search Indexing configurations

Finally, in the Web>Info, “Indexed search” you will see that these visited URLs were re-indexed:

Location: Indexing configurations for indexing of the page tree should be placed in a SysFolder since their location in the
page tree is not relevant to their function.

Periodic indexing of records (“Database Records”)
You can also use the Indexing Configuration to index single records.

Location: You must place the indexing configuration on the page where you want the search results to be displayed -
typically on the page where a plugin exists that can process the parameters pointing to the record. In the case below the
Indexing Configuration is placed on the same page as the frontend plugin (“Morbi diam enim...”) that can display the search
results:

The configuration record looks like this:

12

 Indexed Search Reference - doc_indexed_search Indexing configurations

If the records you want to index is not located on the page where the indexing configuration and fronend plugin is, then you
can point to the location. Notice how the field with “GET parameters” is used to define how the search results are shown -
this must correspond with what the plugin takes of parameters.

A fancy option is the “Index Records immediately when saved” - which will index records as they are saved through
“TCEmain”!

In the crawler log you will see the entries for record indexing like this:

After processing the Web>Info, “Indexed search” view will show this view:

Notice how the GET parameters are nicely added and how the “CfgUid” column contains the UID of the indexing configuration
/ the “set_id” of the processing.

In fact, if a record is removed its indexing entry will also be removed upon next indexing - simply because the “set_id” is used
to finally clear out old entries after a re-index!

Indexing External websites (“External URL”)
You can index external websites using Indexing Configurations. They can actually crawl an external URL! Configuration looks
like this:

13

 Indexed Search Reference - doc_indexed_search Indexing configurations

It pretty much explains itself how it works. The Context Sensitive Help will provide enough information to complete
configuration.

Location: You should place the Indexing Configuration on a “Not-in-menu” page in the root of the site for instance. The page
must be “searchable” since the external URL results are bound to a page in the page tree, namely the page where the
configuration is found.

This is how the crawler log looks immediately after the crawling has begun:

The initial entry is “http://typo3.org/” which is already processed. When this process was executed it added entries for all
found subpages to the queue as well. When their execution time comes the crawler will request those URLs as well and if
subpages are found on them, entries for those subpages are added until the configured depth is reached.

After a few minutes you see more entries processed like this:

In Web>Info, “Indexed search” the indexed entries looks like this:

14

 Indexed Search Reference - doc_indexed_search Indexing configurations

Indexing directories of files (“Filepath on server”)
You can also have directories of files on your server indexed periodically, using the type “Filepath on server”.

Again, the options are either easy to understand or your can read more about them in the Context Sensitive Help.

Location: The Indexed Search configuration should be located on a not-in-menu page, just like the “External URL” type
required. Same reasons; results are bound to a page in the page tree.

The process of indexing a directory of files is the same as for the external URL: For each directory a) all files are indexed and
b) all sub-directories added to the crawler queue for later processing. This is shown in the crawler log:

When processing is done the result is shown in the Web>Info, “Indexed search”:

15

 Indexed Search Reference - doc_indexed_search Indexing configurations

Showing the search results
By default the search results are shown with no distinction between those from local TYPO3 pages, records indexed, the file
path and external URLs. Only division follows that of the page on which the result is found:

However, you can configure to have a division of the search results into categories following the indexing configurations:

16

 Indexed Search Reference - doc_indexed_search Indexing configurations

To obtain this categorization you must set TypoScript configuration in the Setup field like this:

plugin.tx_indexedsearch.search.defaultFreeIndexUidList = 0,6,7,8
plugin.tx_indexedsearch.blind.freeIndexUid = 0

The “defaultFreeIndexUidList” is uid numbers of indexing configurations to show in the categorization! The order determines
which are shown in top. Changing it could bring results from TYPO3.org and TYPO3.com in top:

17

 Indexed Search Reference - doc_indexed_search Indexing configurations

The categorization happens when the “Category” selector in the “Advanced” search form is set like this:

(Notice, you can preset this value from TypoScript as well!)

Searching a specific category from URL

If you want search forms on the site to make look up directly in results belonging to one or more indexing configurations you
can use a set or GET variables like these, here using UID values 7 and 8 since they look up in TYPO3.org and TYPO3.com
results:

index.php?id=78&tx_indexedsearch[sword]=level&tx_indexedsearch[_freeIndexUid]=7,8

Grouping more indexing configurations in one search category
You might find that you want to group the results from multiple indexing configurations in the same category. For instance, I
have an indexing configuration for both “TYPO3.org” and “TYPO3.com” but I want all search results to appear under the
category “External URLs”. This can be done by creating a special type of indexing configuration which only points to other
indexing configurations:

18

 Indexed Search Reference - doc_indexed_search Indexing configurations

This indexing configuration is not used during indexing but during searching. So a reconfiguration of the TypoScript to use uid
9 instead of 7,8 will yield this result:

TypoScript:

plugin.tx_indexedsearch.search.defaultFreeIndexUidList = 9,6,0

19

 Indexed Search Reference - doc_indexed_search Indexing configurations

Disable frontend initiated indexing
If you choose to index your site using Indexing Configurations you can disable indexing through the user requests in the
frontend. This is easily done via the configuration of the Indexed Search extension in the Extension Manager:

Indexing files on pages separately
If enabled, links to local files found on pages will initiate indexing of those external files. However, this often has the
unpleasant effect that too many files are indexed during the same page request. Using the crawler extension you can
configure the indexer to add a queue entry instead of immediate indexing of external files. Thus the indexing will happen
outside the frontend user request, using the cronscript!

This behaviour is configured in the extension managers configuration for “Indexed search”:

20

 Indexed Search Reference - doc_indexed_search Configuration

Configuration
General
The most basic requirement for the search engine to work is that pages are getting indexed. That will not happen by just
installing the plugin! You will have to set up in TypoScript that a certain page should be indexed. That is needed for several
good reasons. First of all not all sites in a TYPO3 database might need indexing. So therefore we disable it on a per-site basis.
Secondly a single site may have frames and in that case we need only index the page-object which actually shows the page
content.

Lets say that you have a PAGE object called "page" (that is pretty typical), then you will have to set this config-option:

page.config.index_enable = 1

When this option is set you should begin to see your pages being indexed when they are shown next time. Remember that
only cached pages are indexed!

This is documented in TSref in the CONFIG section. Please look there for further options. For instance indexing of external
media can also be enabled there.

Languages
The plugin supports all system languages in TYPO3. Translation is done using the typo3.org tools.

If you want to use eg. danish language that will automatically be used if this option is set in your template (the value is the
internal language key):

config.language = dk

TypoScript
[Still missing the major parts here. Just use the object browser for now since that includes all options]

Property: Data type: Description: Default:

templateFile resource The template file, see examples in typo3/sysext/indexed_search/pi/.

show.forbiddenRecords boolean Explicitely display search hits although the visitor has no access to it.
Notice: This behavior was different in TYPO3 < 4.0.

show.resultNumber boolean Display the numbers of search results.
Notice: This behavior was different in TYPO3 < 4.0.

show.advancedSearchLink boolean Display the link to the advanced search page. 1

search.rootPidList list of int A list of integer which should be root-pages to search from. Thus you
can search multiple branches of the page tree by setting this property
to a list of page id numbers.
If this value is set to less than zero (eg. -1) searching will happen in
ALL of the page tree with no regard to branches at all.

Notice that by “root-page” we mean a website root defined by
a TypoScript Template! If you just want to search in branches of your
site, use the possibility of searching in levels.

The current root-
page id

search.detect_sys_domain_
records

boolean If set, then the search results are linked to the proper domains where
they are found.

search.detect_sys_domain_
records.target

string Target for external URLs.

search.mediaList string Restrict the file type list when searching for files.

search.defaultFreeIndexUid
List

string List of Indexing Configuration Uids to show as categories in search
form. The order determines the order displayed in the search result.

21

 Indexed Search Reference - doc_indexed_search Configuration

Property: Data type: Description: Default:

search.exactCount boolean Force permission check for every record while displaying search
results. Otherwise, records are only checked up to the current result
page, and this might cause that the result counter does not print the
exact number of search hits.
By enabling this setting, the loop is not stopped, which causes an
exact result count at the cost of an (obvious) slowdown caused by this
overhead.

See property "show.forbiddenRecords" for more information.

search.skipExtendToSubpa
gesChecking

boolean If set to false (default), on each search the complete page tree will be
transversed to check which pages are accessible, so that the
extendToSubpages can be considered. This will work with a limited
number of page-ids (which means most sites), but will result in slow
performance on huge page trees.

If set to true, then the final result rows are joined with the pages
table to select pages that are currently accessible. This will speed up
searching in very huge page trees, but on the other hand
extendToSubpages will NOT be taken into account!

false

specConfs.[pid] - “specConfs” is an array of objects with properties that can customize
certain behaviours of the display of a result row depending on it's
position in the rootline. For instance you can define that all results
which links to pages in a branch from page id 123 should have
another page icon displayed. Of you can add a suffix to the class
names so you can style that section differently.

Examples:
If a page “Contact” is found in a search for “address” and that
“Contact” page is in the rootline “Frontpage [ID=23] > About us
[ID=45] > Contact [ID=77]” then you should set the pid value to
either “77” or “45”. If “45” then all subpages including the “About us”
page will have similar configuration.
If the pid value is set to 0 (zero) it will apply to all pages.

Please see the options below.

specConfs.[pid].pageIcon ->IMAGE cObject Alternative page icon.

specConfs.[pid].CSSsuffix string A string that will be appended to the class-names of all the class-
attributes used within the result row presentation. The prefix will be
like this:

Example:
If “...CSSsuffix = doc” then eg. the class name “tx-indexedsearch-title”
will be “tx-indexedsearch-title -doc”

whatis_stdWrap ->stdWrap Parse input through the stdWrap function
[tsref:plugin.tx_indexedsearch]

22

 Indexed Search Reference - doc_indexed_search Technical details

Technical details
HTML content
HTML content is weighted by the indexing engine in this order:

1. <title>-data

2. <meta-keywords>

3. <meta-description>

4. <body>

In addition you can insert markers as HTML comments which define which part of the body-text to include or exclude in the
indexing:

The marker is <!--TYPO3SEARCH_begin--> or <!--TYPO3SEARCH_end-->

Rules:

1. If there is no marker at all, everything is included.

2. If the first found marker is an “end” marker, the previous content until that point is included and the preceeding code until
next “begin” marker is excluded.

3. If the first found marker is a “begin” marker, the previous content until that point is excluded and preceeding content until
next “end” marker is included.

Use of hashes
The hashes used are md5 hashes where the first 7 chars are converted into an integer which is used as the hash in the
database. This is done in order to save space in the database, thus using only 4 bytes and not a varchar of 32 bytes. It's
estimated that a hash of 7 chars (32) is sufficient (originally 8, but at some point PHP changed behavior with hexdec-function
so that where originally a 32 bit value was input half the values would be negative, they were suddenly positive all of them.
That would require a similar change of the fields in the database. To cut it simple, the length was reduced to 7, all being
positive then).

How pages are indexed
First of all a page must be cachable. For pages where the cache is disabled, no indexing will occur.

The “phash” is a unique identification of a “page” with regard to the indexer. So an entry in the index_phash table equals 1
resultrow in the search-results (called a phash-row).

A phash is a combination of the page-id, type, sys_language id, gr_list, MP and the cHash parameters of the page (function
setT3Hashes()). If the phash is made for EXTERNAL media (item_type > 0) then it's a combination of the absolute filename
hashes with any “subpage” indication, for instance if a PDF-document is splitted into subsections.

So for external media there is one phash-row for each file (except PDF-files where there may be more). But for TYPO3-pages
there can be more phash-rows matching one single page. Obviously the type-parameter would normally always be only one,
namely the type-number of the content page. And the cHash may be of importance for the result as well with regard to
plugins using that. For instance a message board may make pages cachable by using the cHash params. If so, each cached
page will also be indexed. Thus many phash-rows for a single page-id.

But the most tricky reason for having multiple phash-rows for a single TYPO3-page id is if the gr_list is set! This works like
this: If a page has exactly the same content both with and without logins, then it's stored only once! If the page-content
differs whether a user is logged in or not - it may even do so based on the fe_groups! - then it's indexed as many times as
the content differs. The phash is of course different, but the phash_grouping value is the same.

The table index_grlist will always hold one record per phash-row (of item_type=0, that is TYPO3 pages). But it may also hold
many more records. These point to the phash-row in question in the case of other gr_list combinations which actually had the
SAME content - and thus refers to the same phash-row.

External media
External media (pdf, doc, html, txt) is tricky. External media is always detected as links to local files in the content of a TYPO3

23

 Indexed Search Reference - doc_indexed_search Technical details

page which is being indexed. But external media can the linked to from more than one page. So the index_section table may
hold many entries for a single external phash-record, one for each position it's found. Also it's important to notice that
external media is only indexed or updated if a “parent” TYPO3 page is re-indexed. Only then will the links to the external files
be found. In a searching operation external media will be listed only once (grouping by phash), but say two TYPO3 pages are
linking to the document, then only one of them will be shown as the path where the link can be found. However if both
TYPO3 pages are not available, then the document will not be shown.

Access restricted pages
A TYPO3 page will always be available in the search result only if there is access to the page. This is secured in the final result
query. Whether extendToSubpages is taken into account depends on the join_pages-flag (see above). But the page will only
be listed if the user has access.

However a page may be indexed more than once if the content differs from usergroup to usergroup or just without login. Still
the result display will display only one occurrence, because similar pages (determined based on phash_grouping) will be
detected.

The tricky scenario:

Say that a page has a content element with some secret information visible for only one usergroup. The page as a whole will
be visible for all users. The page will be indexed twice - both without login and with login because page content differs. The
problem is that if a search is conducted and matching one of the secret words in the access restricted section, then the page
will be in the search result even if the user is not logged in!

The best solution to this problem is to allow the result to be listed anyway, but then HIDE the resume if the index_grlist table
cannot confirm positively that the combination of usergroups of the user has access to the result. So the result is there, but
no resume shown (The resume might contain hidden text).

External media

Equally for external media they are linked from a TYPO3 page. When an external media is selected we can be sure that the
page linking to it can be selected. But we cannot be sure that the link was in a section accessible for the user. Similarly we
should make a lookup in the index_grlist table selecting the phash/gr_list by the phash_t3-value of the section record for the
search-result. If this is not available we should not display a link to the document and not show resume, but rather link to the
page, from which the user can see the real link to the document.

Note:

These tricky scenarios exist only if the content on a page differs based on login. It does not affect situations with access
restriction to the page as a whole. A general lesson from this is to reduce the number of hidden content elements! Instead
use hidden pages. Better, more reliable.

24

 Indexed Search Reference - doc_indexed_search Analysing the indexed data

Analysing the indexed data
The indexer is constructed to work with TYPO3's page structure. Opposite to a crawler which simply indexes all the pages it
can find, the TYPO3 indexer MUST take the following into account:

• Only cached pages can be indexed.
Pages with dynamic content - such as search pages etc - should supply their own search engine for lookup in specific
tables. Another option is to selectively allow certain of those “dynamic” pages to be cached anyways (see the
cHashParams concept used by some plugins)

• Pages in more than one language must be indexed separately as “different pages”.

• Pages with messageboards may have multiple indexed versions based on what is displayed on the page: The overview or
a single messageboard item? This is determined by the cHashParams value.

• Pages with access restricted to must be observed!

• Because pages can contain different content whether a user is logged in or not and even based on which groups he is a
member of, a single page (identified by the combination of id/type/language/cHashParams) may even be available in more
than one indexed version based on the user-groups. But while the same page may have different content based on the
user-groups (and so must be indexed once for each) such pages may just as well present the SAME content regardless of
usergroups! This is the very most tricky thing.

Understanding these complex scenarios...
The best thing to do is to grab an example. Please refer to the picture below while reading the bulletlist here:

1. The overview in general shows one line per “phash-row” (a single row from the index_phash table). Such a row
represents a single hit in a searching session. In other words, each line with grayish background in the overview may be a
search-hit. The columns of these rows are:

• Title: The search-result title.

• [icon]: Click here to remove the indexed information for this entry (will be re-indexed on the next hit).

• pHash: The “id” of the search row. The hash is calculated based on id/type/language/MP/cHashParams/gr_list of
the page when indexed. For external media this is based on filepath/page-interval (for PDF's only)

• cHash: Calculated based on the actual content which was indexed.

• rl-012: This is the rootline ids for level 0,1,2. Used when searching in certain sections. For instance a search-
operation may select all pages with rl1=123 which will result in a search within pages which exist ONLY in the
branch of the website where the level1-page has uid=123.

• pid.t.l: This is the page-id / type-number / sys_language uid

• Size: How many bytes the indexed page consumed

• grlist: This is the gr_list of the user which initiated the indexing operation.

• cHashParams: Additional parameters which are identifying the page in addition to the id/type number which
usually does that.

1. The page “Content elements” has one indexed version. The page-id of the root-page is “1” and the page on level-1 in the
rootline had the uid “2”. Notice how all subpages to “Content elements” has the exact same rl0 and rl1 value. Where the
page “Content elements” does NOT have a value for rl2 so does all the subpages (because they ARE the level 2
themselves!). Furthermore the page has the page-id “2”, a type-value of “0” and is indexed with the default language “0”.
The size was 10.6 KB and the user who initiated the indexing operation was a member of the groups 0,-2,1 (which is
effectively fe_group “1”, because 0 and -2 is pseudogroups).

2. On the page “Special content” there must have been a link to a local PDF and Word file, since those two are indexed in
relation to this page. The PDF-file is located in the path “uploads/media/tsref_onepage.pdf” relative to the website. Notice
that the PDF file is actually indexed three times, one time per page. This is of course configurable. Each indexed section of
the PDF-file has the potential to show up as a search-result row of course (because the phash is different per indexed
part). The whole point with this is that a large PDF file might contain so much information that it might match all too
many search-queries. So breaking a PDF-file down into smaller parts makes it possible for us to indicate exactly WHERE in
the PDF-file the search word was found!

3. Looking at the word file (and the PDF-file as well) we see that they are found on BOTH the page “Special content” and on
the page “ISEARCH example”. But looking at the phash values (for the word-file it is “268192666”) it is the SAME value in
both cases. So this means, that the Word and PDF file is indexed only once - when it is first discovered! Later when

25

 Indexed Search Reference - doc_indexed_search Analysing the indexed data

another page is indexed and a link to the same document appears, then the document is not indexed as another
document, but rather an entry in the index_section table is made indicating that this result row is also found available
(linked to) from another page/section.
Say you are doing a search in the section from “Content elements” and outwards in the page tree. The word-document is
matched in the search, but it will appear only once in the search result. Now, if one of the two pages where the Word
document was either hidden or access restricted the word-document would still be matched (because one of the pages is
accessible for the user). But if BOTH pages with the link to the word document is not accessible for the user doing the
search, then the word document will not be included in the search result.

4. Here we can see that the pages “Special content”, “Advanced” and “Menu/Sitemap” is indexed twice each. The reason is
that those three pages has had different content depending on whether or not a user was logged in!
In the case of the page “Special content” the reason is that the page contained a content element which was visible for
users which was a member of group number #1. Therefore the page was different in the two cases.
The page “Advanced” has a user-login form and that form looks different whether a user is logged in or not.
Finally the page “Menu/Sitemap” apparently changed. There reason was that this page includes a sitemap and that
sitemap displayed some extra pages when the logged in users hit the page and so the content was not the same as
without login.
Another thing which is interesting is that two different users must have visited those pages. We can see that because the
page “Special content” was apparently indexed with the usergroup combination “1,2”. Later another user hit the page but
only a member of group “1”. However the page content was the SAME. And because those two users saw the very same
page, it was not indexed a third time, but it was instead noted down that a user with membership of only group “1” did
also see this same page. That comparison was based on the cHash (contentHash) which is a hash-value based on the
actual content being indexed. So when the user with group “1” only came to the page, the indexer engine realize that the
page as it looked has already been indexed because another phash-row with that content hash was already available.

5. These pages does not contain any tricks it appears. According to the grlist's both users with membership of group “1,2”
and group “1” only as well as surfers who did not at all login (“0,-1” is the pseudo-group for no login) as visited the page.
And because only one indexed version exist the page must have had the same content to present all users regardless of
their login-status.
The reason why the page “Your own scripts” does not contain a grlist value “0,-2,1,2” as the others do is simply because
no user with that combination of usergroups has ever visited the page!

6. txt and html documents can also be indexed as external media. In the case of HTML-documents the documents <title> is
detected and used.

26

 Indexed Search Reference - doc_indexed_search Analysing the indexed data

On the image below we are looking at another scenario. In this case the cHashParams is obviously used by the plugin
“tt_board”. The plugin has been constructed so intelligently that it links to the messages in the message board without
disabling the normal page-cache but rather sending the tt_board_uid parameter along with a so called “cHash”. If this is
combined correctly the caching engine allows the page to be cached. Not only does this mean a quicker display of pages in
the message board - it also means we can index the page!

27

 Indexed Search Reference - doc_indexed_search Analysing the indexed data

As you see the main board page showing the list of messages/threads (“Sourcream and Oni...”) is indexed without any values
for the parameter tt_board_uid (the cHashParams field is blank). Then it has also been indexed one time for each display of a
message. In a search result any of these five rows may appear as an independent result row - after all they are to be
regarded as a single page with unique content, despite sharing the same page-id!

Another interesting thing is that while the main page has inherited the page title for the search-result (“Sourcream and ...”)
each of the indexed pages with a message has got another title - namely the subject line of the message shown! Thus a
search matching three of these five pages will not shown three similar page-titles but a unique page title relative to the actual
content on the page. It is the tt_board plugin that sets the page-title itself by an API-call.

The only glitch here is that the tt_board plugin has falsely allowed the main page to be cached twice. See the first and last
phash-row. The last row has got the parameter “&tt_board_uid= “ sent and the tt_board plugin should not have allowed
that! Because looking at the content hash of the first and last we realize that it's the SAME hash (84186444) and therefore
the SAME content! However being two separate result rows they will both be displayed in the search result as separate hits.
The responsibility for this lies with the plugin. However such occurrences can be automatically filtered out during the search
result display. But it's better to avoid this kind of stuff.

The last example below has three main issues to discuss:

1. The page “Other languages” is apparently available in three languages. Which ones are not possible to determine unless
we know the value from the sys_languages table. In this case the default language (zero - 0) is english and the language
with id 1 and id 2 is danish and german versions of the page.
When a search is conducted each page may turn up as a result page but with a little flag telling if the page was found in
another language than the main language on the website (see second illustration hereafter)

2. If there is no phash-rows found for a page this can mean three things:

1. Either the page is not cached. In this case both the tt_products and tt_news plugins apparently disables the caching of
the page thereby disabling any indexing of the pages. Searching in news and products must be done with a searching
function looking up directly in the news and products tables.

2. In the case with other pages the reason may be that the pages has never been visited and therefore not indexed yet!
Indexing of pages in TYPO3 happens during the rendering of the page - there is currently no “crawler” to assist this
job.

3. Finally the reason for a page not being indexed can be the combination of 1 and 2: That the page has never been
visited. And if it was visited, the cache would have been disabled.

3. These numbers just tells us that:

• the page “Lists” was indexed once by a user with membership of group 1 and 2.

• the page “Addresses” was also indexed by a user with membership of group 1 and 2 but has since been visited
by a user without login. Both instances yielded a similar page and it was therefore not indexed twice.
This raises the question about the page “Lists”: Is that access-restricted for users without login or has a user
without login just never visited that page since no “0,-1” grlist has been detected? Both could be the answer. On
pages which has access-restriction (or a whole section in an intranet) such pages would obviously not have been
indexed by no-login users. However in this case nothing indicates that the page should be hidden for non-login
users and so we must conclude that the page has simply not yet been visited by a no-login user - otherwise it
would look like the page “Addresses” having also the “0,-1” list detected.

• The “Guestbook” page was indexed by a user without login only.

28

 Indexed Search Reference - doc_indexed_search Analysing the indexed data

29

Illustration 1A seach result showing how localized versions of a page are
displayed.

 Indexed Search Reference - doc_indexed_search Database Tables

Database Tables
index_phash
This table contains references to TYPO3 pages or external documents. The fields are like this:

phash 7md5/int hash. It's an integer based on a 7-char md5-hash.

This is a unique representation of the 'page' indexed.

For TYPO3 pages this is a serialization of id,type,gr_list (see later), MP and
cHashParams (which enables 'subcaching' with extra parameters). This concept is also
used for TYPO3 caching (although the caching hash includes the all-array and thus
takes the template into account, which this hash does not! It's expected that template
changes through conditions would not seriously alter the page content)

For external media this is a serialization of 1) unique filename id, 2) any subpage
indication (parallel to cHashParams). gr_list is NOT taken into consideration here!

phash_grouping 7md5/int hash.

This is a non-unique hash exactly like phash, but WITHOUT the gr_list and (in
addition) for external media without subpage indication. Thus this field will indicate a
'unique' page (or file) while this page may exist twice or more due to gr_list. Use this
field to GROUP BY the search so you get only one hit per page when selecting with
gr_list in mind.

Currently a seach result does not either group or limit by this, but rather the result
display may group the result into logical units.

item_mtime Modification time:

For TYPO3 pages: the SYS_LASTCHANGED value

For external media: The filemtime() value.

Depending on config, if mtime hasn't changed compared to this value the file/page is
not indexed again.

tstamp time stamp of the indexing operation. You can configure min/max ages which are
checked with this timestamp.

A min-age defines how long an indexed page must be indexed before it's reconsidered
to index it again.

A max-age defines an absolute point at which re-indexing will occur (unless the
content has not changed according to an md5-hash)

cHashParams The cHashParams.

For TYPO3 pages: These are used to re-generate the actual url of the TYPO3 page in
question

For files this is an empty array. Not used.

item_type An integer indicating the content type,

0 is TYPO3 pages

1- external files like pdf (2), doc (3), html (1), txt (4) and so on. See the
class.indexer.php file

item_title Title:

For TYPO3 pages, the page title

For files, the basename of the file (no path)

item_description Short description of the item. Top information on the page. Used in search result.

data_page_id For TYPO3 pages: The id

data_page_type For TYPO3 pages: The type

data_filename For external files: The filepath (relative) or URL (not used yet)

30

 Indexed Search Reference - doc_indexed_search Database Tables

contentHash md5 hash of the content indexed. Before reindexing this is compared with the content
to be indexed and if it matches there is obviously no need for reindexing.

crdate The creation date of the INDEXING - not the page/file! (see item_crdate)

parsetime The parsetime of the indexing operation.

sys_language_uid Will contain the value of GLOBALS["TSFE"]->sys_language_uid, which tells us the
language of the page indexed.

item_crdate The creation date. For files only the modification date can be read from the files, so
here it will be the filemtime().

gr_list Contains the gr_list of the user initiating the indexing of the document.

index_section
Points out the section where an entry in index_phash belongs.

phash The phash of the indexed document.

phash_t3 The phash of the “parent” TYPO3 page of the indexed document.

If the “document” being indexed is a TYPO3 page, then phash and phash_t3 are the
same.

But if the document is an external file (PDF, Word etc) which are found as a LINK on a
TYPO3 page, then this phash_t3 points to the phash of that TYPO3 page. Normally it
goes like this when indexing: 1) The TYPO3 document is indexed (this has a phash-
value of course), then 2) if any external files are found on the page, they are indexed
as well AND their phash_t3 will become the phash of the TYPO3 page they were on.

The significance of this value is that indexed external files may have more than one
record in “index_section” (with the same phash), a record for each parent page where
a link to the document was found! There are details about this in the section of this
document that describes the complexities of indexing pages.

rl0 The id of the root-page of the site.

rl1 The id of the level-1 page (if any) of the indexed page.

rl2 The id of the level-2 page (if any) of the indexed page.

page_id The page id of the indexed page.

uniqid This is just an autoincremented unique, primary key. Generally not used (i think)

index_fulltext
For free text searching, eg with a sentence, in all content: title, description, keywords, body

phash The phash of the indexed document.

fulltextdata The total content stripped for any HTML codes.

Currently the MySQL FULLTEXT search is not used (something with MATCH ... AGAINST), but this will be added in the future.

index_grlist
This table will hold records related to a phash-row. Records in this table confirms that certain gr_lists would actually share the
same content as represented by phash-row - even though the phash-row may be indexed under another login. The table is
used during result-display to positively confirm if the current user may see the resume (which otherwise might contain secret
info). Please see discussion far above.

index_words, index_rel
Words-table and word-relation table. Almost self-explanatory. For the index_rel table some fields require explanation:

31

 Indexed Search Reference - doc_indexed_search Database Tables

count Number of occurrences on the page

first How close to the top (low number is better)

freq Frequency (please see source for the calculations. This is converted from some
floating point to an integer)

flags Bits, which describes the weight of the words:

8th bit (128) = word found in title,

7th bit (64) = word found in keywords,

6th bit (32) = word found in description,

Last 5 bits are not used yet, but if used they will enter the weight hierarchy. The
result rows are ordered by this value if the “Weight/Frequency” sorting is selected.
Thus results with a hit in the title, keywords or description are ranked higher in the
result list.

32

 Indexed Search Reference - doc_indexed_search Known problems

Known problems
• Currently the extension is under observation because instances of heavy server load/unstability has been reported. It is

not yet clear if THIS extension has anything to do with. So it's only under suspicion at this point until further data has
been collected. But for now it is adviced to be careful with the application of the extension for mission critical, high-load
environments.

• It's still uncertain how performance is under heavy load conditions and when MANY pages are indexed. Currently
benchmarks has been done only up to 2000 pages indexed/approx. 400.000 relation records. It is probably that some
parts has to be optimized for such scenarios.

33

