
User Manual

Frama-C User Manual

Release Oxygen-20120901

Loïc Correnson, Pascal Cuoq, Florent Kirchner, Virgile Prevosto, Armand Puccetti, Julien
Signoles and Boris Yakobowski

CEA LIST, Software Safety Laboratory, Saclay, F-91191

c©2009-2012 CEA LIST

This work has been supported by the ANR project CAT (ANR-05-RNTL-00301) and by the
ANR project U3CAT (08-SEGI-021-01).

CONTENTS

Contents

Foreword 9

1 Introduction 11

1.1 About this document . 11

1.2 Outline . 11

2 Overview 13

2.1 What is Frama-C? . 13

2.2 Frama-C as a Static Analysis Tool . 13

2.2.1 Frama-C as a Lightweight Semantic-Extractor Tool 14

2.2.2 Frama-C for Formal Veri�cation of Critical Software 14

2.3 Frama-C as a Tool for C programs . 14

2.4 Frama-C as an Extensible Platform . 14

2.5 Frama-C as a Collaborative Platform . 15

2.6 Frama-C as a Development Platform . 15

2.7 Frama-C as an Educational Platform . 16

3 Getting Started 17

3.1 Installation . 17

3.2 One Framework, Four Executables . 18

3.3 Frama-C Command Line and General Options 19

3.3.1 Splitting a Frama-C Execution into Several Steps 19

3.3.2 Getting Help . 19

3.3.3 Frama-C Version . 20

3.3.4 Verbosity and Debugging Levels . 20

3.3.5 Getting time . 20

3.3.6 Inputs and Outputs of Source Code 20

3.4 Environment Variables . 21

3.4.1 Variable FRAMAC_LIB . 21

3.4.2 Variable FRAMAC_PLUGIN . 21

5

CONTENTS

3.4.3 Variable FRAMAC_SHARE . 21

3.5 Exit Status . 21

4 Setting Up Plug-ins 23

4.1 The Plug-in Taxonomy . 23

4.2 Installing Internal Plug-ins . 23

4.3 Installing External Plug-ins . 24

4.4 Loading Dynamic Plug-ins . 24

5 Preparing the Sources 25

5.1 Pre-processing the Source Files . 25

5.2 Merging the Source Code �les . 26

5.3 Normalizing the Source Code . 26

5.4 Warnings during normalization . 27

5.5 Testing the Source Code Preparation . 28

6 Platform-wide Analysis Options 29

6.1 Entry Point . 29

6.2 Feedback Options . 29

6.3 Customizing Analyzers . 30

7 Property Statuses 33

7.1 A Short Detour through Annotations . 33

7.2 Properties, and the Statuses Thereof . 34

7.3 Consolidating Property Statuses . 34

8 General Kernel Services 37

8.1 Projects . 37

8.1.1 Creating Projects . 37

8.1.2 Using Projects . 37

8.1.3 Saving and Loading Projects . 38

8.2 Dependencies between Analyses . 38

8.3 Journalisation . 39

9 Graphical User Interface 41

9.1 Frama-C Main Window . 41

9.2 Menu Bar . 43

9.3 Tool Bar . 44

10 Reporting Errors 45

6

CONTENTS

A Changes 49

Bibliography 51

List of Figures 53

Index 55

7

Foreword

This is the user manual of Frama-C1. The content of this document corresponds to the version
Oxygen-20120901 (September 18, 2012) of Frama-C. However the development of Frama-C is
still ongoing: features described here may still evolve in the future.

Acknowledgements

We gratefully thank all the people who contributed to this document: Patrick Baudin, Mickaël
Delahaye, Philippe Hermann, Benjamin Monate and Dillon Pariente.

1http://frama-c.com

9

http://frama-c.com

Chapter 1

Introduction

This is Frama-C's user manual. Frama-C is an open-source platform dedicated to the static
analysis of source code written in the C programming language. The Frama-C platform gathers
several static analysis techniques into a single collaborative framework.

This manual gives an overview of Frama-C for newcomers, and serves as a reference for ex-
perimented users. It only describes those platform features that are common to all analyzers.
Thus it does not cover the use of the analyzers provided in the Frama-C distribution (Value
Analysis, Slicing, . . .). Each of these analyses has its own speci�c documentation [7]. Fur-
thermore, a research paper [6] gives a synthetic view of the platform, its main and composite
analyses, and some of its industrial achievements, while the development of new analyzers is
described in the Plug-in Development Guide [9].

1.1 About this document

Appendix A references all the changes made to this document between successive Frama-C

releases.

In the index, page numbers written in bold italics (e.g. 1) reference the de�ning sections for
the corresponding entries while other numbers (e.g. 1) are less important references.

The most important paragraphs are displayed inside gray boxes like this one. A plug-in
developer must follow them very carefully.

1.2 Outline

The remainder of this manual is organized in several chapters.

Chapter 2 provides a general overview of the platform.

Chapter 3 describes the basic elements for starting the tool, in terms of installation and
commands.

Chapter 4 explains the basics of plug-in categories, installation, and usage.

Chapter 5 presents the options of the source code pre-processor.

Chapter 6 gives some general options for parameterizing analyzers.

11

CHAPTER 1. INTRODUCTION

Chapter 7 touches on the topic of code properties, and their validation by the platform.

Chapter 8 introduces the general services o�ered by the platform.

Chapter 9 gives a detailed description of the graphical user interface of Frama-C.

Chapter 10 explains how to report errors via the Frama-C's Bug Tracking System.

12

Chapter 2

Overview

2.1 What is Frama-C?

Frama-C is a platform dedicated to the static analysis of source code written in C. The Frama-

C platform gathers several static analysis techniques into a single collaborative extensible
framework. The collaborative approach of Frama-C allows static analyzers to build upon the
results already computed by other analyzers in the framework. Thanks to this approach,
Frama-C can provide a number of sophisticated tools such as a slicer [3], and a dependency
analyzer [7, Chap. 6].

2.2 Frama-C as a Static Analysis Tool

Static analysis of source code is the science of computing synthetic information about the
source code without executing it.

To most programmers, static analysis means measuring the source code with respect to various
metrics (examples are the number of comments per line of code and the depth of nested control
structures). This kind of syntactic analysis can be implemented in Frama-C but it is not the
focus of the project.

Others may be familiar with heuristic bug-�nding tools. These tools take more of an in-depth
look at the source code and try to pinpoint dangerous constructions and likely bugs (locations
in the code where an error might happen at run-time). These heuristic tools do not �nd all
such bugs, and sometimes they alert the user for constructions which are in fact not bugs.

Frama-C is closer to these heuristic tools than it is to software metrics tools, but it has two
important di�erences with them: it aims at being correct, that is, never to remain silent
for a location in the source code where an error can happen at run-time. And it allows its
user to manipulate functional speci�cations, and to prove that the source code satis�es these
speci�cations.

Frama-C is not the only correct static analyzer out there, but analyzers of the correct family
are less widely known and used. Software metrics tools do not guarantee anything about
the behavior of the program, only about the way it is written. Heuristic bug-�nding tools
can be very useful, but because they do not �nd all bugs, they can not be used to prove
the absence of bugs in a program. Frama-C on the other hand can guarantee that there are
no bugs in a program ("no bugs" meaning either no possibility of a run-time error, or even
no deviation from the functional speci�cation the program is supposed to adhere to). This

13

CHAPTER 2. OVERVIEW

of course requires more work from the user than heuristic bug-�nding tools usually do, but
some of the analyses provided by Frama-C require comparatively little intervention from the
user, and the collaborative approach proposed in Frama-C allows the user to get results about
complex semantic properties.

2.2.1 Frama-C as a Lightweight Semantic-Extractor Tool

Frama-C analyzers, by o�ering the possibility to extract semantic information from C code,
can help better understand a program source.

The C language has been in use for a long time, and numerous programs today make use of C
routines. This ubiquity is due to historical reasons, and to the fact that C is well adapted for
a signi�cant number of applications (e.g. embedded code). However, the C language exposes
many notoriously awkward constructs. Many Frama-C plug-ins are able to reveal what the
analyzed C code actually does. Equipped with Frama-C, you can for instance:

• observe sets of possible values for the variables of the program at each point of the
execution;

• slice the original program into simpli�ed ones;

• navigate the data�ow of the program, from de�nition to use or from use to de�nition.

2.2.2 Frama-C for Formal Veri�cation of Critical Software

Frama-C can verify that an implementation complies with a related set of formal speci�cations.

Speci�cations are written in a dedicated language, ACSL (ANSI/ISO C Speci�cation Lan-
guage) [2]. The speci�cations can be partial, concentrating on one aspect of the analyzed
program at a time.

The most structured sections of your existing design documents can also be considered as
formal speci�cations. For instance, the list of global variables that a function is supposed to
read or write to is a formal speci�cation. Frama-C can compute this information automatically
from the source code of the function, allowing you to verify that the code satis�es this part
of the design document, faster and with less risks than by code review.

2.3 Frama-C as a Tool for C programs

The C source code analyzed by Frama-C is assumed to follow the C99 ISO standard. C

comments may contain ACSL annotations [2] used as speci�cations to be interpreted by Frama-

C. The subset of ACSL currently interpreted in Frama-C is described in [1].

Each analyzer may de�ne the subsets of C and ACSL that it understands, as well as introduce
speci�c limitations and hypotheses. Please refer to each plug-in's documentation.

2.4 Frama-C as an Extensible Platform

Frama-C is is organized into a modular architecture (comparable to that of the Gimp or Eclipse):
each analyzer comes in the form of a plug-in and is connected to the platform itself, or kernel,
which provides common functionalities and collaborative data structures.

14

2.5. FRAMA-C AS A COLLABORATIVE PLATFORM

Several ready-to-use analyses are included in the Frama-C distribution. This manual covers
the set of features common to all plug-ins. It does not cover use of the plug-ins that come in
the Frama-C distribution (Value Analysis, Functional Dependencies, Functional Veri�cation,
Slicing, etc). Each of these analyses has its own speci�c documentation [7, 4, 3].

Additional plug-ins can be provided by third-party developers and installed separately from
the kernel.

2.5 Frama-C as a Collaborative Platform

Frama-C's analyzers collaborate with each other. Each plug-in may interact with other plug-
ins of his choosing. The kernel centralizes information and conducts the analysis. This makes
for robustness in the development of Frama-C while allowing a wide functionality spectrum.
For instance, the Slicing plug-in uses the results of the Value Analysis plug-in and of the
Functional Dependencies plug-in.

Analyzers may also exchange information through ACSL annotations [2]. A plug-in that needs
to make an assumption about the behavior of the program may express this assumption as an
ACSL property. Because ACSL is the lingua franca of all plug-ins, another plug-in can later
be used to establish the property.

With Frama-C, it will be possible to take advantage of the complementarity of existing analysis
approaches. It will be possible to apply the most sophisticated techniques only on those
parts of the analyzed program that require them. The low-level constructs can for instance
e�ectively be hidden from them by high-level speci�cations, veri�ed by other, adapted plug-
ins. Note that the sound collaboration of plug-ins on di�erent parts of a same program that
require di�erent modelizations of C is work in progress. At this time, a safe restriction for
using plug-in collaboration is to limit the analyzed program and annotations to those C and
ACSL constructs that are understood by all involved plug-ins.

2.6 Frama-C as a Development Platform

Frama-C may be used for developing new analyses. The collaborative and extensible approach
of Frama-C allows powerful plug-ins to be written with relatively little e�ort.

There are a number of reasons for a user of Frama-C also to be interested in writing his/her
own plug-in:

• a custom plug-in can emit very speci�c queries for the existing plug-ins, and in this way
obtain information which is not easily available through the normal user interface;

• a custom plug-in has more latitude for �nely tuning the behavior of the existing analyses;

• some analyses may o�er speci�c opportunities for extension.

If you are a researcher in the �eld of static analysis, using Frama-C as a testbed for your
ideas is a choice to consider. You may bene�t from the ready-made parser for C programs
with ACSL annotations. The results of existing analyses may simplify the problems that are
orthogonal to those you want to consider (in particular, the Value Analysis provides sets of
possible targets of every pointer in the analyzed C program). And lastly, being available as a
Frama-C plug-in increases your work's visibility among existing industrial users of Frama-C.
The development of new plug-ins is described in the Plug-in Development Guide [9].

15

CHAPTER 2. OVERVIEW

2.7 Frama-C as an Educational Platform

Frama-C is already being used as parts of courses on formal veri�cation, program speci�cation,
static analysis, and abstract interpretation, with audiences ranging from Master's students to
active professionals, in institutions world-wide. Frama-C is part of the curriculum at several
universities in France, Germany, Portugal, or Russia; at schools such as Ecole Polytechnique,
ENSIIE, ENSMA, or ENSI Bourges; and as part of continuing education units at CNAM, or
at Fraunhofer FIRST.

If you are a teacher in the extended �eld of software safety, using Frama-C as a support for
your course and lab work is a choice to consider. You may bene�t from a clean, focused
interface, a choice of techniques to illustrate, and a in-tool pedagogical presentation of their
abstract values at all program points. A number of course materials are also available on the
web, or upon simple inquiry to the Frama-C team.

16

Chapter 3

Getting Started

This chapter describes how to install Frama-C and what this installation provides.

3.1 Installation

The Frama-C platform is distributed as source code. Binaries are also available for popular
architectures. All distributions include the Frama-C kernel and a base set of open-source
plug-ins.

It is usually easier to install Frama-C from one of the binary distributions than from the
source distribution. The pre-compiled binaries include many of the required libraries and
other dependencies, whereas installing from source requires these dependencies already to
have been installed.

The dependencies of the Frama-C kernel are as follows. Each plug-in may de�ne its own set
of additional dependencies. Instructions for installing Frama-C from source may be found in
the �le INSTALL of the source distribution.

A C pre-processor is required for using Frama-C on C �les. By default, Frama-C tries to
use gcc -C -E I. as pre-processing command, but this command can be customized
(see Section 5.1). If you do not have any C pre-processor, you can only run Frama-C on
already pre-processed .i �le.

A Unix-like compilation environment is mandatory and shall have at least the tool GNU
make1 version 3.81 or higher, as well as various POSIX commands.

The OCaml compiler is required both for compiling Frama-C from source and for compiling
additional plug-ins. Version 3.10.2 or higher2 must be used.

Support for some plug-ins in native compilation mode (see Section 3.2) requires the so-
called native dynamic linking feature of OCaml. It is only available in the most recent
versions of OCaml (at least 3.11.0) and only on a subset of supported platforms.

Gtk-related packages: gtk+3 version 2.4 or higher, GtkSourceView4 version 2.x, Gnome-

Canvas5 version 2.x as well as LablGtk6 version 2.14 or higher are required for building

1http://www.gnu.org/software/make
2http://caml.inria.fr
3http://www.gtk.org
4http://projects.gnome.org/gtksourceview
5http://library.gnome.org/devel/libgnomecanvas
6http://wwwfun.kurims.kyoto-u.ac.jp/soft/lsl/lablgtk.html

17

http://www.gnu.org/software/make
http://caml.inria.fr
http://www.gtk.org
http://projects.gnome.org/gtksourceview
http://library.gnome.org/devel/libgnomecanvas
http://wwwfun.kurims.kyoto-u.ac.jp/soft/lsl/lablgtk.html

CHAPTER 3. GETTING STARTED

the Graphical User Interface (GUI) of Frama-C.

OcamlGraph package: Frama-C will make use of OcamlGraph7 if already installed in version
1.8 or higher. Otherwise, Frama-C will install a local and compatible version of this
package by itself. This dependency is thus non-mandatory for Frama-C.

Zarith package: Frama-C will make use of Zarith8 if installed. Otherwise, Frama-C will make
use of a functionally equivalent but less e�cient library.

3.2 One Framework, Four Executables

Frama-C installs four executables9, namely:

• frama-c: natively-compiled batch version;

• frama-c.byte: bytecode batch version;

• frama-c-gui: natively-compiled interactive version;

• frama-c-gui.byte: bytecode interactive version.

The di�erences between these versions are described below.

native-compiled vs bytecode: native executables contain machine code, while bytecode
executables contain machine-independent instructions which are run by a bytecode in-
terpreter.

The native-compiled version is usually ten times faster than the bytecode one. The
bytecode version supports dynamic loading on all architectures, and is able to provide
better debugging information. Use the native-compiled version unless you have a reason
to use the bytecode one.

batch vs interactive: The interactive version is a GUI that can be used to select the set of
�les to analyze, position options, launch analyses, browse the code and observe analysis
results at one's convenience (see Chapter 9 for details).

With the batch version, all settings and actions must be provided on the command-line.
This is not possible for all plug-ins, nor is it always easy for beginners. Modulo the
limited user interactions, the batch version allows the same analyses as the interactive
version10. A batch analysis session consists in launching Frama-C in a terminal. Results
are printed on the standard output.

The task of analysing some C code being iterative and error-prone, Frama-C provides
functionalities to set up an analysis project, observe preliminary results, and progress
until a complete and satisfactory analysis of the desired code is obtained.

7http://ocamlgraph.lri.fr
8http://forge.ocamlcore.org/projects/zarith
9On Windows OS, the usual extension .exe is added to each �le name.

10For a single analysis project. Multiple projects can only be handled in the interactive version or program-

matically. See Section 8.1

18

http://ocamlgraph.lri.fr
http://forge.ocamlcore.org/projects/zarith

3.3. FRAMA-C COMMAND LINE AND GENERAL OPTIONS

3.3 Frama-C Command Line and General Options

The batch and interactive versions of Frama-C obey a number of command-line options. Any
option that exists in these two modes has the same meaning in both. For instance, the
batch version can be made to launch the value analysis on the foo.c �le with the command
frama-c -val foo.c. Although the GUI allows to select �les and to launch the value analysis
interactively, the command frama-c-gui -val foo.c can be used to launch the value analysis
on the �le foo.c and immediately start displaying the results in the GUI.

Any option requiring an argument may use the following format:

-option_name value

If the option's argument is a string (that is, neither an integer nor a �oat, etc), the following
format is also possible:

-option_name=value.

This last format must be used when value starts with a minus sign.

Most parameterless options have an opposite option, often written by pre�xing the option
name with no-. For instance, the option -unicode for using the Unicode character set in
messages has an opposite option -no-unicode for limiting the messages to ACSII. Plug-
ins options with a name of the form -<plug-in name>-<option name> have their opposite
option named -<plug-in name>-no-<option name>. For instance, the opposite of option
-ltl-acceptance is -ltl-no-acceptance.

3.3.1 Splitting a Frama-C Execution into Several Steps

By default, Frama-C parses its command line in an unspeci�ed order and runs its actions
according to the read options. To enforce an order of execution, you have to use the option
-then: Frama-C parses its command line until the option -then and runs its actions accord-
ingly, then it parses its command line from this option to the end (or to the next occurrence
of -then) and runs its actions according to the read options. Note that this second run starts
with the results of the �rst one.

Consider for instance the following command.

$ frama -c -val -ulevel 4 file.c - then -ulevel 5

It �rst runs the value analysis plug-in (option -val, [7]) with an unrolling level of 4 (option
-ulevel, Section 5.3). Then it re-runs the value analysis plug-in (option -val is still set)
with an unrolling level of 5.

It is also possible to specify a project (see Section 8.1) on which the actions applied thanks
to the option -then-on. Consider for instance the following command.

$ frama -c -semantic -const -fold main file.c - then -on propagated -val

It �rst propagates constants in function main of file.c (option -semantic-const-fold)
which generates a new project called propagated. Then it runs the value analysis plug-in on
this new project.

3.3.2 Getting Help

The options of the Frama-C kernel, i.e. those which are not speci�c to any plug-in, can be
printed out through either the option -kernel-help or -kernel-h.

19

CHAPTER 3. GETTING STARTED

The options of a plug-in are displayed by using either the option -<plug-in shortname>-help

or -<plug-in shortname>-h.

Furthermore, either the option -help or -h or --help lists all available plug-ins and their
short names.

3.3.3 Frama-C Version

The current version of the Frama-C kernel can be obtained with the option -version. This
option also prints the di�erent paths where Frama-C searches objects when required.

3.3.4 Verbosity and Debugging Levels

The Frama-C kernel and plug-ins usually output messages either in the GUI or in the console.
Their levels of verbosity may be set by using the option -verbose <level>. By default, this
level is 1. Setting it to 0 limits the output to warnings and error messages, while setting it
to a number greater than 1 displays additional informative message (progress of the analyses,
etc).

In the same fashion, debugging messages may be printed by using the option -debug <level>.
By default, this level is 0: no debugging message is printed. By contrast with standard
messages, debugging messages may refer to the internals of the analyzer, and may not be
understandable by non-developers.

The option -quiet is a shortcut for -verbose 0 -debug 0.

In the same way that -verbose (resp. -debug) sets the level of verbosity (resp. debugging),
the options -kernel-verbose (resp. -kernel-debug) and -<plug-in shortname>-verbose

(resp. -<plug-in shortname>-debug) set the level of verbosity (resp. debugging) of the
kernel and particular plug-ins. When both the global level of verbosity (resp. debug-
ging) and a speci�c one are modi�ed, the speci�c one applies. For instance, -verbose 0

-slicing-verbose 1 runs Frama-C quietly except for the slicing plug-in.

3.3.5 Getting time

The option -time <file> appends user time and date to the given log <file> at exit.

3.3.6 Inputs and Outputs of Source Code

The following options deal with the output of analyzed source code:

-print causes Frama-C's representation for the analyzed source �les to be printed as a single
C program (see Section 5.3).

-ocode <file name> redirects all output code of the current project to the designated �le.

-keep-comments keeps C comments in-lined in the code.

A series of dedicated options deal with the display of �oating-point and integer numbers:

-float-hex displays �oating-point numbers as hexadecimal

20

3.4. ENVIRONMENT VARIABLES

-float-normal displays �oating-point numbers with an internal routine

-float-relative displays intervals of �oating-point numbers as [lower bound ++ width]

-big-ints-hex <max> print all integers greater than max (in absolute value) using hexadec-
imal notation

3.4 Environment Variables

Di�erent environment variables may be set to customize Frama-C.

3.4.1 Variable FRAMAC_LIB

External plug-ins (see Section 4.3) or scripts (see Section 4.4) are compiled against the Frama-

C compiled library. The Frama-C option -print-lib-path prints the path to this library.

The default path to this library may be set when con�guring Frama-C by using the configure
option --libdir. Once Frama-C is installed, you can also set the environment variable
FRAMAC_LIB to change this path.

3.4.2 Variable FRAMAC_PLUGIN

Dynamic plug-ins (see Section 4.4) are searched for in a default directory. The Frama-C

option -print-plugin-path prints the path to this directory. It can be changed by setting
the environment variable FRAMAC_PLUGIN.

3.4.3 Variable FRAMAC_SHARE

Frama-C looks for all its other data (installed manuals, con�guration �les, C modelization
libraries, etc) in a single directory. The Frama-C option -print-share-path prints this path.

The default path to this library may be set when con�guring Frama-C by using the configure
option --datarootdir. Once Frama-C is installed, you can also set the environment variable
FRAMAC_SHARE to change this path.

A Frama-C plug-in may have its own share directory (default is `frama-c -print-share-path

`/<plug-in shortname>). If the plug-in is not installed in the standard way, you can set this
share directory by using the option -<plug-in shortname>-share.

3.5 Exit Status

When exiting, Frama-C has one of the following status:

0 Frama-C exits normally without any error;

1 Frama-C exits because of invalid user input;

2 Frama-C exits because the user kills it (usually via Ctrl-C);

3 Frama-C exits because the user tries to use an unimplemented feature. Please report a
�feature request� on the Bug Tracking System (see Chapter 10);

21

CHAPTER 3. GETTING STARTED

4,5,6 Frama-C exits on an internal error. Please report a �bug report� on the Bug Tracking
System (see Chapter 10);

125 Frama-C exits abnormally on an unknown error. Please report a �bug report� on the Bug
Tracking System (see Chapter 10).

22

Chapter 4

Setting Up Plug-ins

The Frama-C platform has been designed to support third-party plug-ins. In the present
chapter, we present how to con�gure, compile, install, run and update such extensions. This
chapter does not deal with the development of new plug-ins (see the Plug-in Development

Guide [9]). Neither does it deal with usage of plug-ins, which is the purpose of individual
plug-in documentation (see e.g. [7, 4, 3]).

4.1 The Plug-in Taxonomy

It is possible to distinguish 2 × 2 kinds of plug-ins: internal vs external plug-ins and static
vs dynamic plug-ins. These di�erent kinds are explained below.

Internal vs external : internal plug-ins are those distributed within the Frama-C kernel
while external plug-ins are those distributed independently of the Frama-C kernel. They
only di�er in the way they are installed (see Sections 4.2 and 4.3).

Static vs dynamic: static plug-ins are statically linked into a Frama-C executable (see Sec-
tion 3.2) while dynamic plug-ins are loaded by an executable when it is run. Despite
only being available on some environments (see Section 3.1), dynamic plug-ins are more
�exible as explained in Section 4.4.

4.2 Installing Internal Plug-ins

Internal plug-ins are automatically installed with the Frama-C kernel.

If you use a source distribution of Frama-C, it is possible to disable (resp. force) the in-
stallation of a plug-in of name <plug-in name> by passing the configure script the option
--disable-<plug-in name> (resp. --enable-<plug-in name>). Disabling a plug-in means
it is neither compiled nor installed. Forcing the compilation and installation of a plug-in
against configure's autodetection-based default may cause the entire Frama-C con�guration
to fail. You can also use the option --with-no-plugin in order to disable all plug-ins.

Internal dynamic plug-ins may be linked statically. This is achieved by passing configure

the option --with-<plug-in name>-static. It is also possible to force all dynamic plug-ins
to be linked statically with the option --with-all-static. This option is set by default on
systems that do not support native dynamic loading.

23

CHAPTER 4. SETTING UP PLUG-INS

4.3 Installing External Plug-ins

To install an external plug-in, Frama-C itself must be properly installed �rst. In particu-
lar, frama-c -print-share-path and must return the share directory of Frama-C (see Sec-
tion 3.4.3), while frama-c -print-lib-path must return the directory where the Frama-C

compiled library is installed (see Section 3.4.1).

The standard way for installing an external plug-in from source is to run the sequence of
commands make && make install, possibly preceded by ./configure. Please refer to each
plug-in's documentation for installation instructions.

External plug-ins are always dynamic plug-ins by default. On systems where native dynamic
linking is not supported, a new executable, called frama-c-<plug-in name>1, is automatically
generated when an external plug-in is compiled. This executable contains the Frama-C kernel,
all the static plug-ins previously installed and the external plug-in. On systems where native
dynamic linking is available, this executable is not necessary for normal use but it may be
generated with the command make static.

External dynamic plug-ins may be con�gured and compiled at the same time as the Frama-C

kernel by using the option --enable-external=<path-to-plugin> . This option may be
passed several times.

4.4 Loading Dynamic Plug-ins

At launch, Frama-C loads all dynamic plug-ins it �nds if the option -dynlink is set. That is the
normal behavior: you have to use its opposite form -no-dynlink in order not to not load any
dynamic plug-in. When loading dynamic plug-ins, Frama-C searches for them in directories
indicated by frama-c -print-plugin-path (see Section 3.4.2). Frama-C can locate plug-ins
in additional directories by using the option -add-path <paths>. Yet another solution to load
a dynamic plug-in is to set the -load-module <files> or -load-script <files> options,
using in both cases a comma-separated list of �le names without any extension. The former
option loads the speci�ed OCaml object �les into the Frama-C runtime, while the latter tries
to compile the source �les before linking them to the Frama-C runtime.

In general, dynamic plug-ins must be compiled with the very same OCaml compiler than
Frama-C was, and against a consistent Frama-C installation. Loading will fail and a warning
will be emitted at launch if this is not the case.
The -load-script option requires the OCaml compiler that was used to compile Frama-C

to be available and the Frama-C compiled library to be found (see Section 3.4.1).

1With the extension .exe on Windows OS

24

Chapter 5

Preparing the Sources

This chapter explains how to specify the source �les that form the basis of an analysis project,
and describes options that in�uence parsing.

5.1 Pre-processing the Source Files

The list of �les to analyze must be provided on the command line, or chosen interactively in
the GUI. Files with the su�x .i are assumed to be already pre-processed C �les. Frama-C

pre-processes the other �les with the following command.

$ gcc -C -E -I .

The option -cpp-command may be used to change the default pre-processing command. If
patterns %1 and %2 do not appear in the provided command, the pre-processor is invoked in
the following way.

<cmd> -o <output file> <input file>

In this command, <output file> is chosen by Frama-C while <input file> is one of the
�lenames provided by the user. It is also possible to use the patterns %1 and %2 in the
command as place-holders for the input �les and the output �le respectively. Here are some
examples for using this option.

$ frama -c -cpp -command 'gcc -C -E -I. -x c' file1.src file2.i

$ frama -c -cpp -command 'gcc -C -E -I. -o %2 %1' file1.c file2.i

$ frama -c -cpp -command 'cp %1 %2' file1.c file2.i

$ frama -c -cpp -command ' ca t %1 > %2' file1.c file2.i

$ frama -c -cpp -command 'CL.exe /C /E %1 > %2' file1.c file2.i

Additionally the option -cpp-extra-args allows the user to extend the pre-processing com-
mand.

By default, ACSL annotations are not pre-processed. Pre-processing them requires using gcc

as pre-processor and putting the option -pp-annot on the Frama-C command line.

Note that ACSL annotations are pre-processed separately from the C code, and that argu-
ments given as -cpp-extra-args are not given to the second pass of pre-processing. Instead,
-pp-annot relies on the ability of gcc to output all macros de�nitions (including those given
with -D) in the pre-processed �le. In particular, -cpp-extra-args must be used if you are
including header �les who behave di�erently depending on the number of times they are
included.

25

CHAPTER 5. PREPARING THE SOURCES

An experimental incomplete speci�c C standard library is bundled with Frama-C and in-
stalled in the sub-directory libc of the directory D printed by frama-c -print-share-path.
It contains standard C headers, some ACSL speci�cations and de�nitions for some library
functions. To use these headers instead of the standard library ones, you may use the
following command:

$ frama -c -cpp -extra -args='-ID/libc -nostdinc ' D/libc/fc_runtime.c <input file >

Note that this standard library is customized for 32 bits little endian architecture. For other
con�gurations you have to manually edit the �le D/libc/__fc_machdep.h.

5.2 Merging the Source Code �les

After pre-processing, Frama-C parses, type-checks and links the source code. It also performs
these operations for the ACSL annotations optionally present in the program. Together, these
steps form the merging phase of the creation of an analysis project.

Frama-C aborts whenever any error occurs during one of these steps. However users can use
the option -continue-annot-error in order to continue after emiting a warning when an
ACSL annotation fails to type-check.

5.3 Normalizing the Source Code

After merging the project �les, Frama-C performs a number of local code transformations in
the normalization phase. These transformations aim at making further work easier for the
analyzers. Analyses usually take place on the normalized version of the source code. The
normalized version may be printed by using the option -print (see Section 3.3.6).

Normalization gives a program which is semantically equivalent to the original one, except
for one point. Namely, when the speci�cation of a function f that is only declared and has no
ACSL assigns clause is required by some analysis, Frama-C generates some assigns clause
based on the prototype of f (the form of this clause is left unspeci�ed). Indeed, as mentioned
in the ACSL manual [2], assuming that f can write to any location in the memory would
amount to stop any semantical analysis at the �rst call to f, since nothing would be known
on the memory state afterwards. The user is invited to check that the generated clause makes
sense, and to provide an explicit assigns clause if this is not the case.

The following options allow to customize the normalization process.

-allow-duplication allows the duplication of small blocks of code during normalization of
loops and tests. This is set by default and the option is mainly found in its opposite
form, -no-allow-duplication which forces Frama-C to use labels and gotos instead.
Note that bigger blocks and blocks with a non-trivial control �ow are never duplicated.
Option -ulevel (see below) is not a�ected by this option and always duplicates the
loop body.

-annot forces Frama-C to interpret ACSL annotations. This option is set by default, and
is only found in its opposite form -no-annot, which prevents interpretation of ACSL

annotations.

-collapse-call-cast allows, in some cases, the value returned by a function call to be
implicitly cast to the type of the value it is assigned to (if such a conversion is au-
thorized by C standard). Otherwise, a temporary variable separates the call and the

26

5.4. WARNINGS DURING NORMALIZATION

cast. The default is to have implicit casts for function calls, so the opposite form
-no-collapse-call-cast is more useful.

-constfold performs a syntactic folding of constant expressions. For instance, the expression
1+2 is replaced by 3.

-continue-annot-error just emits a warning and discards the annotation when it fails to
type-check, instead of generating an error (errors in C are still fatal).

-force-rl-arg-eval forces right to left evaluation order of function arguments. C standard
does not enforce any evaluation order, and the default is thus to leave it unspeci�ed.

-keep-switch preserves switch statements in the source code. Without this option, they
are transformed into if statements. An experimental plug-in may forget the treatment
of the switch construct and require this option not to be used. Other plug-ins may
prefer this option to be used because it better preserves the structure of the original
program.

-keep-unused-specified-functions does not remove from the AST uncalled function pro-
totypes that have ACSL contracts. This option is set by default. So you mostly use the
opposite form, namely -remove-unused-specified-functions.

-machdep <machine architecture name> de�nes the target platform. The default value is
a x86-32bits platform. Analyzers may take into account the endianness of the target,
the size and alignment of elementary data types, and other architecture/compilation
parameters. The -machdep option provides a way to de�ne all these parameters consis-
tently in a single step.

The list of supported platforms can be obtained by typing:

$ frama -c -machdep help

-simplify-cfg allows Frama-C to remove break, continue and switch statements. This op-
tion is automatically set by some plug-ins that cannot handle these kinds of statements.
This option is set by default.

-ulevel <n> unrolls all loops n times. This is a purely syntactic operation. Loops can
be unrolled individually, by inserting the UNROLL pragma just before the loop state-
ment. Do not confuse this option with plug-in-speci�c options that may also be called
�unrolling� [7]. Below is a typical example of use.

/∗@ loop pragma UNROLL 10; ∗/
f o r (i = 0; i < 9; i ++) ...

Passing a negative argument to -ulevel will disable unrolling, even in case of UNROLL
pragma

5.4 Warnings during normalization

Two options can be used to in�uence the warnings that are emitted by Frama-C during the
normalization phase.

-warn-decimal-float <freq> warns when �oating-point constants in the program cannot
be exactly represented; freq must be one of none, once or all. Defaults to once.

27

CHAPTER 5. PREPARING THE SOURCES

-warn-undeclared-callee emits a warning each time a call to a function that has not been
declared previously is found. This is invalid in C90 or in C99, but could be valid K&R
code. Option -no-warn-undeclared-callee disables this warning.

Beware that parsing is still not guaranteed to succeed, regardless of the emission of
the warning. Upon encountering a call to an undeclared function, Frama-C attempts
to continue its parsing phase by inferring a prototype corresponding to the type of the
arguments at the call (modulo default argument promotions). If the real declaration
does not match the inferred prototype, parsing will later end with an error.

5.5 Testing the Source Code Preparation

If the steps up to normalization succeed, the project is then ready for analysis by any Frama-

C plug-in. It is possible to test that the source code preparation itself succeeds, by running
Frama-C without any option.

$ frama -c <input files >

If you need to use other options for pre-processing or normalizing the source code, you can
use the option -type-check for the same purpose. For instance:

frama -c -cpp -command 'gcc -C -E -I. -x c' -type -check file1.src file2.i

28

Chapter 6

Platform-wide Analysis Options

The options described in this chapter provide each analysis with common hypotheses that
in�uence directly their behavior. For this reason, the user must understand them and the
interpretation the relevant plug-ins have of them. Please refer to individual plug-in documen-
tations (e.g. [7, 3, 4]) for speci�c options.

6.1 Entry Point

The following options de�ne the entry point of the program and related initial conditions.

-main <function_name> speci�es that all analyzers should treat the function function_name
as the entry point of the program.

-lib-entry indicates that analyzers should not assume globals to have their initial values at
the beginning of the analysis. This option, together with the speci�cation of an entry
point f, can be used to analyze the function f outside of a calling context, even if it is
not the actual entry point of the analyzed code.

6.2 Feedback Options

All Frama-C plug-ins de�ne the following set of common options.

-<plug-in shortname>-help (or -<plug-in shortname>-h) prints out the list of options of
the given plug-in.

-<plug-in shortname>-verbose <n> sets the level of verbosity to some positive integer n.
A value of 0 means no information messages. Default is 1.

-<plug-in shortname>-debug <n> sets the debug level to a positive integer n. The higher
this number, the more debug messages are printed. Debug messages do not have to be
understandable by the end user. This option's default is 0 (no debugging message).

29

CHAPTER 6. PLATFORM-WIDE ANALYSIS OPTIONS

6.3 Customizing Analyzers

The descriptions of the analysis options follow. For the �rst two, the description comes from
the Value Analysis manual [7]. Note that these options are very likely to be modi�ed in future
versions of Frama-C.

-absolute-valid-range m-M speci�es that the only valid absolute addresses (for reading or
writing) are those comprised between m and M inclusive. This option currently allows to
specify only a single interval, although it could be improved to allow several intervals
in a future version.

-no-overflow instructs the analyzer to assume that integers are not bounded and that the
analyzed program's arithmetic is exactly that of mathematical integers. This option
should only be used for codes that do not depend on speci�c sizes for integer types
and do not rely on over�ows. For instance, the following program is analyzed as �non-
terminating� in this mode.

vo i d main(vo i d) {

i n t x=1;

wh i l e (x++);

r e t u r n ;

}

The option -no-overflow should only be activated when it is guaranteed that the sizes
of integer types do not change the concrete semantics of the analyzed code. Beware:
voluntary over�ows that are a deliberate part of the implemented algorithm are easy
enough to recognize and to trust during a code review. Unwanted over�ows, on the other
hand, are rather di�cult to spot using a code review. The next example illustrates this
di�culty.

Consider the function abs that computes the absolute value of its int argument:

i n t abs(i n t x) {

i f (x<0) x = -x;

r e t u r n x;

}

With the -no-overflow option, the result of this function is a positive integer, for what-
ever integer passed to it as an argument. This property is not true for a conventional ar-
chitecture, where abs(MININT) over�ows and returns MININT. Without the -no-overflow

option, on the other hand, the value analysis detects that the value returned by this
function abs may not be a positive integer if MININT is among the arguments.

The option -no-overflow may be modi�ed or suppressed in a later version of the plug-in.

-unsafe-arrays can be used when the source code manipulates arrays within structures in
a non-standard way. With this option, accessing indexes that are out of bounds will
instead access the remainder of the struct. For example, the code below will overwrite
the �elds a and c of v.

s t r u c t s {

i n t a;

i n t b[2];

i n t c;

};

vo i d main(s t r u c t s v) {

v.b[-1] = 1;

v.b[2] = 4;

}

30

6.3. CUSTOMIZING ANALYZERS

The opposite option, called -safe-arrays, is set by default. With -safe-arrays, the
two accesses to v are considered invalid. Accessing v.b[-2] or v.b[3] remains incorrect,
regardless of the value of the option.

-unspecified-access may be used to check when the evaluation of an expression depends
on the order in which its sub-expressions are evaluated. For instance, This occurs with
the following piece of code.

i n t i , j , *p;

i = 1;

p = & i ;

j = i ++ + (*p)++;

In this code, it is unclear in which order the elements of the right-hand side of the
last assignment are evaluated. Indeed, the variable j can get any value as i and p are
aliased. The -unspecified-access option warns against such ambiguous situations.
More precisely, -unspecified-access detects potential concurrent write accesses (or
a write access and a read access) over the same location that are not separated by a
sequence point. Note however that this option does not warn against such accesses if
they occur in an inner function call, such as in the following example:

i n t x;

i n t f () { r e t u r n x++; }

i n t g() { r e t u r n f () + x++; }

Here, the x might be incremented by g before or after the call to f, but since the two
write accesses occur in di�erent functions, -unspecified-access does not detect that.

31

Chapter 7

Property Statuses

This chapter touches on the topic of program properties, and their validation by either stan-
dalone or cooperating Frama-C plug-ins. The theoretical foundation of this chapter is described
in a research paper [5].

7.1 A Short Detour through Annotations

Frama-C supports writing code annotations with the ACSL language [2]. The purpose of
annotations is to formally specify the properties of C code: Frama-C plug-ins can rely on
them to demonstrate that an implementation respects its speci�cation.

Annotations can originate from a number of di�erent sources:

the user who writes his own annotations: an engineer writing code speci�cations is the
prevalent scenario here;

some plug-ins may generate code annotations. These annotations can, for instance, indicate
that a variable needs to be within a safe range to guarantee no runtime errors are
triggered (cf the RTE plug-in [8]).

the kernel of Frama-C, that attempts to generate as precise an annotation as it can, when
none is present.

Of particular interest is the case of unannotated function prototypesa: the ACSL speci�cation
states that a construct of that kind �potentially modi�es everything� [2, Sec. 2.3.5]. For the
sake of precision and conciseness, the Frama-C kernel breaks this speci�cation, and generates
a function contract with clauses that relate its formal parameters to its resultsb. This
behavior might be incorrect � for instance because it does not consider functions that can
modify globals. While convenient in a wide range of cases, this can be averted by writing a
custom function contract for the contentious prototypes.

aA function prototype is a function declaration that provides argument types and return type, but lacks

a body.
bResults here include the return value, and the formal modi�able parameters.

The rest of this chapter will examine the treatment plug-ins can make of code annotations,
and in particular what kind of information can be attached to them.

33

CHAPTER 7. PROPERTY STATUSES

7.2 Properties, and the Statuses Thereof

A property is a logical statement bound to a precise code location. A property might originate
from:

• an ACSL code annotation � e.g. assert p[i] * p[i] <= INT_MAX. Recall from the
previous section that annotations can either be written by the user, or generated by the
Frama-C plug-ins or kernel;

• a plugin-dependent meta-information � such as the memory model assumptions.

Consider a program point i, and call T the set of traces that run through i. More precisely,
we only consider the traces that are coming from the program entry point1 (see option -main

in chapter 6). A logical property P is valid at i if it is valid on all t ∈ T . Conversely, any
trace u that does not validate P , stops at i: properties are blocking.

As an example, a property might consist in a statement p[i]×p[i] ≤ 2147483647 at a program
point i. A trace where p[i] = 46341 at i will invalidate this property, and will stop short of
reaching any instruction succeeding i.

An important part of the interactions between Frama-C components (the plug-ins/the kernel)
rely on their capacity to emit a judgment on the validity of a property P at program point i.
In Frama-C nomenclature, this judgment is called a local property status. The �rst part of a
local status ranges over the following values:

• True when the property is true for all traces;

• False when there exists a trace that falsi�es the property;

• Maybe when the emitter e cannot decide the status of P .

As a second part of a local property status, an emitter can add a list of dependencies, which is
the set of properties whose validity may be necessary to establish the judgment. For instance,
when the WP plug-in [4] provides a demonstration of a Hoare triple {A} c {B}, it starts by
setting the status of B to �True�, and then adds to this status a dependency on property A.
In more formal terms, it corresponds to the judgment ` A ⇒ B: �for a trace to be valid in
B, it may be necessary for A to hold�. This information on the conditional validity of B is
provided as a guide for validation engineers, and should not be mistaken for the formal proof
of B, which only holds when all program properties are veri�ed � hence the local status.

7.3 Consolidating Property Statuses

Recall our previous example, where the WP plug-in sets the local status of a property B to
�True�, with a dependency on a property A. This might help another plug-in decide that the
validity of a third property C, that hinges upon B, now depends on A. When at last A is
proven by, say, the value analysis plug-in, the cooperative proofs of A, B, and C are marked

1Some plug-ins might consider all possible traces, which constitute a safe over-approximation of the intended

property.

34

7.3. CONSOLIDATING PROPERTY STATUSES

as completed. In formal terms, Frama-C has combined the judgments: ` A ⇒ B, ` B ⇒ C,
and ` A into proofs of ` B and ` C, by using the equivalent of a modus ponens inference:

` A ` A⇒ B

` B

Notice how, without the �nal ` A judgment, both proofs would be incomplete.

This short example illustrates how incremental the construction of program property proofs
can be. By consolidating property statuses into an easily readable display, Frama-C aims
at informing its users of the progress of this process, allowing them to track unresolved
dependencies, and selectively validate subsets of the program's properties.

As a result, a consolidated property status can either be a simple status:

� never_tried: when no status is available for the property.

� unknown: whenever the status is Maybe.

� surely_valid: when the status is True, and dependencies have the consolidated status
surely_valid or considered_valid.

� surely_invalid: when the status is False, and all dependencies have the consolidated
status surely_valid.

� inconsistent: when there exist two con�icting consolidated statuses for the same
property, for instance with values surely_valid and surely_invalid. This case may
also arise when an invalid cyclic proof is detected. This is symptomatic of an incoherent
axiomatization.

or an incomplete status:

� considered_valid: when there is no possible way to prove the property (e.g., the
post-condition of an external function). We assume this property will be validated by
external means.

� valid_under_hyp: when the local status is True but at least one of the dependencies
has consolidated status unknown. This is typical of proofs in progress.

� invalid_under_hyp: when the local status is False, but at least one of the depen-
dencies has status unknown. This is a telltale sign of a dead code property, or of an
erroneous annotation.

and �nally:

� unknown_but_dead: when the status is locally Maybe, but in a dead or incoherent
branch.

� valid_but_dead: when the status is locally True, but in a dead or incoherent branch.

� invalid_but_dead: when the status is locally False, but in a dead or incoherent
branch.

35

CHAPTER 7. PROPERTY STATUSES

The dependencies are meant as a guide to safety engineers. They are neither correct, nor
complete, and should not be relied on for formal assessment purposes. In particular, as long
as partial proofs exist (there are unknown or never_tried), there is no certainty with regards
to any other status (including surely_valid properties).

These consolidated statuses are displayed in the GUI (see section 9 for details), or in batch
mode by the report plug-in.

36

Chapter 8

General Kernel Services

This chapter presents some important services o�ered by the Frama-C platform.

8.1 Projects

A Frama-C project groups together one source code with the states (parameters, results, etc)
of the Frama-C kernel and analyzers.

In one Frama-C session, several projects may exist at the same time, while there is always one
and only one so-called current project in which analyses are performed. Thus projects help
to structure a code analysis session into well-de�ned entities. For instance, it is possible to
perform an analysis on the same code with di�erent parameters and to compare the obtained
results. It is also possible to extract a program p′ from an initial program p and to compare
the results of an analysis run separately on p and p′.

8.1.1 Creating Projects

A new project is created in the following cases:

• at initialization time, a default project is created; or

• via an explicit user action in the GUI; or

• a source code transforming analysis has been made. The analyzer then creates a new
project based on the original project and containing the modi�ed source code. A typical
example is code slicing which tries to simplify a program by preserving a speci�ed
behaviour.

8.1.2 Using Projects

The list of existing projects of a given session is visible in the graphical mode through the
Project menu (see Section 9.2). Among other actions on projects (duplicating, renaming,
removing, saving, etc), this menu allows the user to switch between di�erent projects during
the same session.

In batch mode, the only way to handle a multi-project session is through the command line
option -then-on (see Section 3.3.1).

37

CHAPTER 8. GENERAL KERNEL SERVICES

8.1.3 Saving and Loading Projects

A session can be saved to disk and reloaded by using the options -save <file> and -load

<file> respectively. Saving is performed when Frama-C exits without error. The same oper-
ations are available through the GUI.

When saving, all existing projects are dumped into an unique non-human-readable �le.

When loading, the following actions are done in sequence:

1. all the existing projects of the current session are deleted;

2. all the projects stored in the �le are loaded;

3. the saved current project is restored;

4. Frama-C is replayed with the parameters of the saved current project, except for those
parameters explicitly set in the current session.

Consider for instance the following command.

$ frama -c -load foo.sav -val

It loads all projects saved in the �le foo.sav. Then, it runs the value analysis in the new
current project if and only if it was not already computed at save time.

Recommendation 8.1 Saving the result of a time-consuming analysis before trying to use
it in di�erent settings may be a good idea.

Beware that all the existing projects are deleted, even if an error occurs when reading the
�le. We strongly recommend you save the existing projects before loading another project
�le.

Special Cases Options -help, -verbose, -debug (and their corresponding counterpart)
as well as -quiet and -unicode are not saved on disk.

8.2 Dependencies between Analyses

Usually analyses do have parameters (see Chapter 6). Whenever the values of these parameters
change, the results of the analyses may also change. In order to avoid displaying results that
are inconsistent with the current value of parameters, Frama-C automatically discards results
of an analysis when one of the analysis parameters changes.

Consider the two following commands.

$ frama -c -save foo.sav -ulevel 5 -absolute -valid -range 0-0x1000 -val foo.c

$ frama -c -load foo.sav

Frama-C runs the value analysis plug-in on the �le foo.c where loops are unrolled 5 times
(option -ulevel, see Section 5.3). To compute its result, the value analysis assumes the
memory range 0:0x1000 is addressable (option -absolute-valid-range, see Section 6.3).
Just after, Frama-C saves the results on �le foo.sav and exists.

At loading time, Frama-C knows that it is not necessary to redo the value analysis since the
parameters have not been changed.

Consider now the two following commands.

38

8.3. JOURNALISATION

$ frama -c -save foo.sav -ulevel 5 -absolute -valid -range 0-0x1000 -val foo.c

$ frama -c -load foo.sav -absolute -valid -range 0-0x2000

The �rst command produces the very same result than above. However, in the second (load)
command, Frama-C knows that one parameter has changed. Thus it discards the saved re-
sults of the value analysis and recomputes it on the same source code by using the parameters
-ulevel 5 -absolute-valid-range 0-0x2000 (and the default value of each other parame-
ter).

In the same fashion, results from an analysis A1 may well depend on results from another
analysis A2. Whenever the results from A2 change, Frama-C automatically discards results
from A1. For instance, slicing results depend on value analysis results; thus the slicing results
are discarded whenever the value analysis ones are.

8.3 Journalisation

Journalisation logs each operation that modi�es some parameters or results into a �le called
a journal . Observational operations like viewing the set of possibles values of a variable in
the GUI are not logged.

By default, the name of the journal is frama_c_journal.ml, but it can be modi�ed by using
the option -journal-name.

A journal is a valid Frama-C dynamic plug-in. Thus it can be loaded by using the option
-load-script (see Section 4.4). The journal replays the very same results as the ones com-
puted in the original session.

Journals are usually used for the three di�erent purposes described thereafter.

• Easily replay a given set of analysis operations in order to reach a certain state. Once
the �nal state is reached, further analyses can be performed normally. Beware that
journals may be source dependent and thus may not necessarily be reused on di�erent
source codes to perform the same analyses.

• Act as a macro language for plug-in developers. They can perform actions on the GUI
to generate a journal and then adapt it to perform a more general but similar task.

• Debugging. In the GUI, a journal is always generated, even when an error occurs. The
output journal usually contains information about this error. Thus it provides an easy
way to reproduce the very same error. Consequently, it is advised to attach the journal
when reporting an error in the Frama-C BTS (see Chapter 10).

By default, a journal is generated upon exit of the session only whenever Frama-C crashes in
graphical mode. In all other cases, no journal is generated. This behavior may be customized
by using the option -journal-enable (resp. -journal-disable) that generates (resp. does
not generate) a journal upon exiting the session.

Special Cases Modi�cations of options -help, -verbose, -debug (and their corresponding
counterpart) as well as -quiet and -unicode are not written in the journal.

39

Chapter 9

Graphical User Interface

Running frama-c-gui or frama-c-gui.byte displays the Frama-C Graphical User Interface
(GUI).

9.1 Frama-C Main Window

Upon launching Frama-C in graphical mode on some C �les, the following main window is
displayed (�gure 9.1):

Figure 9.1: Initial View

From top to bottom, the window is made of several separate sub-parts.

The menu bar organizes the highest-level functions of the tool into structured categories.
Plug-ins may also add their own entries in the �Analyses� menu.

41

CHAPTER 9. GRAPHICAL USER INTERFACE

The toolbar gives access to the main functions of the tool. They are usually present in one
menu of the menu bar. Plug-ins may also add their own entries here.

The �le tree provides a tree-like structure of the source �les involved in the current analysis.
This tree lists all the global variables and functions each �le contains. Within a �le,
entries are sorted alphabetically, without taking capitalization into account. Functions
are underlined, to separate them from variables. Plug-ins may also display speci�c
information for each �le and/or function. Finally, the �Source �le� button o�ers some
options to �lter the elements of the �le tree:

• The �Hide variables� and �Hide functions� options o�er the possibility to hide the
non-desired entries from the tree.

• The �Flat mode� option �attens the tree, by removing the �lename level. Instead,
functions and globals are displayed together, as if they were in a big namespace.
This makes it easier to �nd a function whose only the name is known.

The normalized and original source code views display the source code of the current
selected element of the �le tree and its normalized code (see Section 5.3). Left-clicking
on an object (statement, left-value, etc) in the normalized source code view displays
information about it in the �Information� page of the Messages View and displays the
corresponding object of the original source view, while right-clicking on them opens a
contextual menu. Items of this menu depend on the kind of the selected object and on
plug-in availability.

Only the normalized source view is interactive: the original one is not.

The plug-ins view shows speci�c plug-in interfaces. The interface of each plug-in can be
collapsed.

The messages view contains by default four di�erent pages, namely:

the �Information� page which provides brief details on the currently selected object,
or informative messages from the plugins.

the �Messages� page shows most important messages, especially all alarms, that the
Frama-C kernel or plug-ins generate. Please refer to the speci�c documentation of
each plug-in in order to get the exact form of alarms. Alarms that have a location
in the original source can be double-clicked; this location will then be shown in the
original and normalized source code viewers.1

Beware that alarms are not stored in batch mode (to reduce memory consumption):
the �Messages� panel will remain empty if the GUI loads a �le saved in batch mode
(see Section 8.1.3). If you want to store these alarms in batch mode, use the
option -collect-messages.

the �Console� page displays messages to users in a textual way. This is the very same
output than the one shown in batch mode.

the �Properties� page displays the local and consolidated statuses of properties.

1Notice however that the location in the normalized source may not perfectly correspond, as more than

one normalized statement can correspond to a source location.

42

9.2. MENU BAR

9.2 Menu Bar

The menu bar is organised as follows:

The �le menu proposes items for managing the current session.

Item Source files changes the analyzed �les of the current project.

Item Reparse reloads the source �les of the current project from the disk, reparses
them, and restarts the analyses that have been con�gured.

Item Save session saves all the current projects into a �le. If the user has not yet
speci�ed such a �le, a dialog box is opened for selecting one.

Item Save session as saves all current projects into a �le chosen from a dialog box

Item Load Session opens a previously saved session.

This fully resets the current session (see Section 8.1.3).

Item Quit exits Frama-C without saving.

The project menu displays the existing projects, allowing you to set the current one. You
can also perform miscellaneous operations over projects (creating from scratch, dupli-
cating, renaming, removing, saving, etc).

The analyses menu provides items for con�guring and running plug-ins.

• Item Configure and run analyses opens the dialog box shown Figure 9.2, that
allows to set all Frama-C parameters and to re-run analyses according to changes.

Figure 9.2: The Analysis Con�guration Window

43

CHAPTER 9. GRAPHICAL USER INTERFACE

• Item Compile and run an ocaml script allows you to run an OCaml �le as a
dynamic plug-in (in a way similar to the option -load-script, see Section 4.4).

• Item Load and run an ocaml module allows you to run a pre-compiled OCaml �le
as a dynamic plug-in (in a way similar to the option -load-module, see Section 4.4).

• Other items are plug-in speci�c.

The debug menu is only visible in debugging mode and provides access to tools for helping
to debug Frama-C and their plug-ins.

The help menu provides help items.

9.3 Tool Bar

The tool bar o�ers a more accessible access to some frequently used functions of the menu
bar. Currently, the available buttons are, from left to right:

• The Quit button, that exits Frama-C.

• Four buttons New session, Reparse, Load Session and Save session, equivalent to
the corresponding entries in the File menu.

• Two navigation buttons, Back and Forward. They can be used to move within the
history of the functions that have been viewed.

• The Analyses button, equivalent to the one in the Analyses menu.

• A Stop button, which halts the running analyses and restores Frama-C in its latest valid
con�guration.

44

Chapter 10

Reporting Errors

If Frama-C crashes or behaves abnormally, you are invited to bug report via the Frama-C Bugs
Tracking System (BTS) located at http://bts.frama-c.com.

Opening a BTS account is required for such a task.

Bug reports can be marked as public or private. Public bug reports can be read by anyone
and are indexed by search engines. Private bug reports are only shown to Frama-C developers.

Reporting a new issue opens a webpage similar to the one shown in Figure 10.1. This page
also has a link to an advanced bugs reporting page that allows you to write a more detailed
report. The di�erent �elds of these forms shall be �lled in English1 as precisely as possible,
in order for the maintenance team to understand and track the problem down easily.

Below are some recommendations for this purpose2:

Category: select as appropriate.

Reproducibility: select as appropriate.

Severity: select the level of severity. Levels are shown in increasing order of severity.

Pro�le or Platform, OS and OS Version: enter your hardware and OS characteristics.

Product Version and Product Build this can be obtained with the command frama-c

-version, see Section 3.3.3.

Summary: give a brief one line description of the nature of your bug.

Description: �rst, explain the actual behavior, that is what you actually observe on your
system. Then, describe your expected behavior of Frama-C, that is the results you expect
instead. A �bug� is sometimes due to a misunderstanding of the tool's behaviour or a
misunderstanding of its results, so providing both behaviors is an essential part of the
report. Please do clearly separate both parts in the description.

Steps to reproduce: provide everything necessary for a maintainer to reproduce the bug:
input �les, commands used, sequence of actions, etc. If the bug appears through the
Frama-C GUI, it may be useful to attach the generated journal (see Section 8.3). Beware
that this journal does not replace nor contain the input �les, that must be added to
the bug report too (see below).

1French is also a possible language choice for private entries.
2You can also have a look at the associated Frama-C wiki: http://bts.frama-c.com/dokuwiki/doku.php?

id=mantis:frama-c:start.

45

http://bts.frama-c.com
http://bts.frama-c.com/dokuwiki/doku.php?id=mantis:frama-c:start
http://bts.frama-c.com/dokuwiki/doku.php?id=mantis:frama-c:start

CHAPTER 10. REPORTING ERRORS

Figure 10.1: The BTS Bugs Reporting Page

46

Additional Information: any extra information that might help the maintainer.

Industrial: set it to true if you have a maintenance contract with the Frama-C development
team.

Upload File: click on the Browse button to select a �le for uploading. Typically, this is an
archive that contains all �les necessary for reproducing your problem. It can include C
source �les, shell scripts to run Frama-C with your options and environment, a Frama-C

journal, etc. Please check the size of the archive in order to to keep it manageable: leave
out any object code or executable �les that can be easily rebuilt automatically (by a
shell script for instance).

View Status: set it to private if your bug should not be visible by others users. Only
yourself and the Frama-C developers will be able to see your bug report.

Report Stay: tick if this report shall remain open for further additions.

After submitting the report you will be noti�ed by e-mail about its progress and enter inter-
active mode on the BTS if necessary.

47

AppendixA

Changes

This chapter summarizes the changes in this documentation between each Frama-C release.
First we list changes of the last release.

Oxygen-20120901

• Analysis Option: better documentation of -unspecified-access

• Preparing the Sources: better documentation of -pp-annot

• Preparing the Sources: pragma UNROLL_LOOP is deprecated in favor of UNROLL

• Preparing the Sources: document new normalization options -warn-decimal-float,
-warn-undeclared-callee and -keep-unused-specified-functions

• General Kernel Services: document special cases of saving and journalisation.

• Getting Started: optional Zarith package.

• Getting Started: new option -<plug-in shortname>-share.

Nitrogen-20111001

• Overview: report on Frama-C' usage as an educational tool.

• Getting Started: exit status 127 is now 125 (127 and 126 are reserved by POSIX).

• Getting Started: update options for controlling display of �oating-point numbers

• Preparing the sources: document generation of assigns clause for function proto-
types without body and proper speci�cation

• Property Statuses: new chapter to document property statuses.

• GUI: document new interface elements.

49

APPENDIX A. CHANGES

Carbon-20110201

• Getting Started: exit status 5 is now 127; new exit status 5 and 6.

• GUI: document new options -collect-messages.

Carbon-20101201

• Getting Started: document new options -then and -then-on.

• Getting Started: option -obfuscate is no more a kernel option since the obfuscator
is now a plug-in.

Boron-20100401

• Preparing the Sources: document usage of the C standard library delivered with
Frama-C

• Graphical User Interface: simpli�ed and updated according to the new implemen-
tation

• Getting Started: document environment variables altogether

• Getting Started: document all the ways to getting help

• Getting Started: OcamlGraph 1.4 instead 1.3 will be used if previously installed

• Getting Started: GtkSourceView 2.x instead of 1.x is now required for building the
GUI

• Getting Started: documentation of the option -float-digits

• Preparing the Sources: documentation of the option -continue-annot-error

• Using plug-ins: new option -dynlink

• Journalisation: a journal is generated only whenever Frama-C crashes on the GUI

• Con�gure: new option --with-no-plugin

• Con�gure: option --with-all-static set by default when native dynamic loading is
not available

Beryllium-20090902

• First public release

50

BIBLIOGRAPHY

Bibliography

[1] Patrick Baudin, Pascal Cuoq, Jean-Christophe Filliâtre, Claude Marché, Benjamin
Monate, Yannick Moy, and Virgile Prevosto. ACSL: ANSI/ISO C Speci�cation Language.
Version 1.6 � Frama-C Oxygen implementation., September 2012.

[2] Patrick Baudin, Jean-Christophe Filliâtre, Claude Marché, Benjamin Monate, Yannick
Moy, and Virgile Prevosto. ACSL: ANSI/ISO C Speci�cation Language. Version 1.6,
September 2012.

[3] Patrick Baudin and Anne Pacalet. Slicing plug-in. http://frama-c.com/slicing.html.

[4] Loïc Correnson, Zaynah Dargaye, and Anne Pacalet. Frama-C's WP plug-in, October
2011. http://frama-c.com/download/frama-c-wp-manual.pdf.

[5] Loïc Correnson and Julien Signoles. Combining Analysis for C Program Veri�cation. In
Formal Methods for Industrial Critical Systems (FMICS), 2012.

[6] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and
Boris Yakobowski. Frama-C, A software Analysis Perspective. In Software Engineering
and Formal Methods (SEFM), October 2012. To appear.

[7] Pascal Cuoq and Virgile Prevosto. Frama-C's value analysis plug-in, November 2011.
http://frama-c.cea.fr/download/value-analysis.pdf.

[8] Philippe Herrmann. Annotation Generation: Frama-C's RTE plug-in, October 2011.
http://frama-c.com/download/frama-c-rte-manual.pdf.

[9] Julien Signoles, Loïc Correnson, and Virgile Prevosto. Frama-C Plug-in Development
Guide, September 2012.
http://frama-c.cea.fr/download/plugin-developer.pdf.

51

http://frama-c.com/slicing.html
http://frama-c.com/download/frama-c-wp-manual.pdf
http://frama-c.cea.fr/download/value-analysis.pdf
http://frama-c.com/download/frama-c-rte-manual.pdf
http://frama-c.cea.fr/download/plugin-developer.pdf

LIST OF FIGURES

List of Figures

9.1 Initial View . 41

9.2 The Analysis Con�guration Window . 43

10.1 The BTS Bugs Reporting Page . 46

53

INDEX

Index

-help,, 38
-verbose,, 38
-debug , 38
-quiet , 38
-unicode , 38

-absolute-valid-range, 30, 38
ACSL, 14, 15, 25, 26, 33, 34
-add-path, 24
-allow-duplication, 26
-annot, 26

Batch version, 18
-big-ints-hex, 21
Bytecode, 18

C pre-processor, 17
C99 ISO standard, 14
-collapse-call-cast, 26
-collect-messages, 42
-constfold, 27
-continue-annot-error, 26, 27
-cpp-command, 25
-cpp-extra-args, 25

--datarootdir, 21
-debug, 20, 39
-dynlink, 24

--enable-external, 24

-float-hex, 20
-float-normal, 21
-float-relative, 21
-force-rl-arg-eval, 27
frama-c, 18
frama-c-gui, 18, 41
frama-c-gui.byte, 18, 41
frama-c.byte, 18
FRAMAC_LIB, 21
FRAMAC_PLUGIN, 21
FRAMAC_SHARE, 21

GTK+, 17
GtkSourceView, 17

-h, 20
-help, 20, 39
--help, 20

Installation, 17
Interactive version, 18

Journal, 39
-journal-disable, 39
-journal-enable, 39
-journal-name, 39

-keep-comments, 20
-keep-switch, 27
-keep-unused-specified-functions, 27
-kernel-debug, 20
-kernel-h, 19
-kernel-help, 19
-kernel-verbose, 20

Lablgtk, 17
-lib-entry, 29
--libdir, 21
-load, 38, 38, 42
-load-module, 24, 44
-load-script, 24, 39, 44

-machdep, 27
-main, 29

Native-compiled, 17, 18

OCaml compiler, 17
OcamlGraph, 18
-ocode, 20
Options, 19
-overflow, 30

Plug-in
Dynamic, 23, 24, 44

55

INDEX

External, 23, 24
Internal, 23, 23
Static, 23, 24

-pp-annot, 25
Pragma

UNROLL, 27
-print, 20, 26
-print-lib-path, 21, 24
-print-plugin-path, 21, 24
-print-share-path, 21, 24
Project, 37

-quiet, 20, 39

-remove-unused-specified-functions, 27

-safe-arrays, 31
-save, 38, 38, 42
-semantic-const-fold, 19
-simplify-cfg, 27

-then, 19
-then-on, 19, 37
-time, 20
-type-check, 28

-ulevel, 19, 26, 27, 38
-unicode, 39
-unsafe-arrays, 30
-unspecified-access, 31

-val, 19
-verbose, 20, 39
-version, 20, 45

-warn-decimal-float, 27
-warn-undeclared-callee, 28
--with-all-static, 23
--with-no-plugin, 23

Zarith, 18

56

	Foreword
	Introduction
	About this document
	Outline

	Overview
	What is Frama-C?
	Frama-C as a Static Analysis Tool
	Frama-C as a Lightweight Semantic-Extractor Tool
	Frama-C for Formal Verification of Critical Software

	Frama-C as a Tool for C programs
	Frama-C as an Extensible Platform
	Frama-C as a Collaborative Platform
	Frama-C as a Development Platform
	Frama-C as an Educational Platform

	Getting Started
	Installation
	One Framework, Four Executables
	Frama-C Command Line and General Options
	Splitting a Frama-C Execution into Several Steps
	Getting Help
	Frama-C Version
	Verbosity and Debugging Levels
	Getting time
	Inputs and Outputs of Source Code

	Environment Variables
	Variable FRAMAC_LIB
	Variable FRAMAC_PLUGIN
	Variable FRAMAC_SHARE

	Exit Status

	Setting Up Plug-ins
	The Plug-in Taxonomy
	Installing Internal Plug-ins
	Installing External Plug-ins
	Loading Dynamic Plug-ins

	Preparing the Sources
	Pre-processing the Source Files
	Merging the Source Code files
	Normalizing the Source Code
	Warnings during normalization
	Testing the Source Code Preparation

	Platform-wide Analysis Options
	Entry Point
	Feedback Options
	Customizing Analyzers

	Property Statuses
	A Short Detour through Annotations
	Properties, and the Statuses Thereof
	Consolidating Property Statuses

	General Kernel Services
	Projects
	Creating Projects
	Using Projects
	Saving and Loading Projects

	Dependencies between Analyses
	Journalisation

	Graphical User Interface
	Frama-C Main Window
	Menu Bar
	Tool Bar

	Reporting Errors
	Changes
	Bibliography
	List of Figures
	Index

