
Barr: See you in court
11
Debugging a GUI
25

Ganssle: Programming quips
38

VOLUME 22,
NUMBER 11

DECEMBER 2009

The Official Publication of The Embedded Systems Conferences and Embedded.com

1616

Intel® Core™ i7 Processors: Unmatched Performance

Extreme Engineering Solutions, Inc. (X-ES) unleashes the performance of the
Intel Core i7 processor for use in commercial, military, and aerospace
applications. The mobile Intel Core i7 processor delivers unmatched power
savings and processing performance.

Extreme Engineering Solutions offers an extensive product portfolio that
includes commercial and ruggedized single board computers, high-
performance processor modules, multipurpose I/O modules, backplanes,
enclosures, and fully integrated systems.

Call or visit our website today.

Copyright © 2009 Green Hills Software, Inc. Green Hills, the Green Hills logo, and INTEGRITY are trademarks of Green Hills Software, Inc.
in the U.S. and/or internationally. All other trdemarks are the property of their respective owners.

www.ghs.com

The NSA has certified INTEGRITY technology to EAL6+ and High
Robustness. INTEGRITY is the most secure real-time operating system
available and the first and only technology to have achieved this level.

High Robustness is a higher level of security than EAL6+. It includes 133
additional security mandates—over and above the 161 required for EAL6+.

When security is required, Green Hills Software’s INTEGRITY RTOS
ttechnology is the only option.

INTEGRITY RTOS has it.
No one else does.

One Low Price ... $69.99

One Debugger/ Programmer

Microchip’s PICkit 3 Debug Express (part number DV164131) incorporates in-circuit debugging technology to provide an extremely
affordable hardware debugger and programmer for the entire range of Microchip’s Flash Microcontrollers (MCUs) – from the smallest
8-bit PIC10 MCU, through all 16-bit dsPIC® DSCs to the largest 32-bit PIC32 MCU.

PICkit 3 runs under the popular MPLAB IDE, the free graphical integrated development environment software, complete with
programmer’s editor, software simulator and project manager. MPLAB IDE’s GUI promotes advanced debugging with a host of auxiliary
features, such as a segmented LCD Designer, a graphics display designer and a data monitor and control interface. Easily connected to the
PC with a USB interface, PICkit 3 is bundled with a demo board for fast learning and initial design prototyping. The two-wire interface
easily connects to the final designs for application tuning and quick in-circuit programming.

With rich features, free compilers fully integrated with MPLAB IDE and a suite of tutorials, Microchip PICkit 3 Debug Express delivers
substantial value at a remarkably low price.

For All PIC® Microcontrollers

A CD that includes:
– PICkit™ 3 User’s Guide
– A series of 12 lessons on PIC® MCUs

with C source code
– A debugging tutorial
– Microchip’s MPLAB® IDE software
– Free MPLAB C Compiler for all

PIC MCUs and dsPIC DSCs
– CCS compiler for the PIC18F45K20
– HI-TECH C® Compilers PRO for

PIC10/12/16/18/32 running in
Lite Mode

PICkit 3
debugger/
programmer

A 44-pin demo
board with a
PIC18F45K20
microcontroller

Serial
EEPRO

M
s

Analog
D

igital Signal
Controllers

M
icrocontrollers

www.microchip.com/usb

Th
e

M
ic

ro
ch

ip
 n

am
e

an
d

lo
go

, t
he

 M
ic

ro
ch

ip
 lo

go
, H

I-T
EC

H
 C

, M
PL

A
B,

 P
IC

 a
nd

 d
sP

IC
 a

re
 re

gi
st

er
ed

 tr
ad

em
ar

ks
 o

f M
ic

ro
ch

ip
 T

ec
hn

ol
og

y
In

co
rp

or
at

ed
 in

 th
e

U
SA

 a
nd

 in
 o

th
er

 c
ou

nt
rie

s.
PI

Ck
it

is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 M

ic
ro

ch
ip

 T
ec

hn
ol

og
y

In
co

rp
or

at
ed

 in
 th

e
U

SA
 a

nd
 in

 o
th

er

co
un

tr
ie

s.
Al

l o
th

er
 tr

ad
em

ar
ks

 m
en

tio
ne

d
he

re
in

 a
re

 p
ro

pe
rt

y
of

 th
ei

r r
es

pe
ct

iv
e

co
m

pa
ni

es
. ©

20
09

, M
ic

ro
ch

ip
 Te

ch
no

lo
gy

 In
c.

www.microchip.com/PICkit3

THE OFF IC IAL PUBL ICAT ION OF THE EMBEDDED SYSTEMS CONFERENCES AND EMBEDDED.COM

COLUMNS
barr code 11
The lawyers are coming!
BY MICHAEL BARR

The quality of a lot of embedded
software is abysmal. And lawyers
are on to it. If you don’t want your
source code to show up in court,
you better get your act together.

break points 38
Programming quotations
BY JACK G. GANSSLE

Jack Ganssle presents some of the best
programming-related quips for your
enjoyment and instruction.

DEPARTMENTS
#include 5
CPU vendor buys OS vendor,
Part II
BY RICHARD NASS

Cavium’s acquisition of MontaVista
is very similar to a deal that went
down not too long ago.

parity bit 7
tear down 34
marketplace 37
advertising index 37

IN PERSON
ESC Grenoble
December 1–3, 2009
www.design-reuse.com/ipesc09/

ESC Silicon Valley
April 26–29, 2010
www.embedded.com/esc/sv

ESC Chicago
June 8–9, 2010
http://esc-chicago.techinsightsevents.com/

ESC India
July 21–23, 2010
www.esc-india.com/

ESC Boston
September 20–23, 2010
www.embedded.com/esc/boston

ESC UK
October 12–14, 2010
www.embedded.co.uk

ONLINE
www.embedded.com

EMBEDDED SYSTEMS DESIGN (ISSN 1558-2493 print; ISSN 1558-2507 PDF-electronic) is published monthly with the exception of a combined July/August issue by
TechInsights, 600 Harrison Street, 5th floor, San Francisco, CA 94107, (415) 947-6000. Please direct advertising and editorial inquiries to this address. SUBSCRIPTION
RATE for the United States is $55 for 12 issues. Canadian/Mexican orders must be accompanied by payment in U.S. funds with additional postage of $6 per year. All other
foreign subscriptions must be prepaid in U.S. funds with additional postage of $15 per year for surface mail and $40 per year for airmail. POSTMASTER: Send all changes
to EMBEDDED SYSTEMS DESIGN, P.O. Box 3404, Northbrook, IL 60065-9468. For customer service, telephone toll-free (877) 676-9745. Please allow four to six weeks
for change of address to take effect. Periodicals postage paid at San Francisco, CA and additional mailing offices. EMBEDDED SYSTEMS DESIGN is a registered trade-
mark owned by the parent company, TechInsights. All material published in EMBEDDED SYSTEMS DESIGN is copyright © 2009 by TechInsights. All rights reserved.
Reproduction of material appearing in EMBEDDED SYSTEMS DESIGN is forbidden without permission.

Cover Feature:
Coordinated
debugging
of distributed
systems
BY ROLAND HÖLLER AND
PETER RÖSSLER
IEEE 1588 can be used to distribute
the debug process over the network.

Cover Feature:
Coordinated
debugging
of distributed
systems
BY ROLAND HÖLLER AND
PETER RÖSSLER
IEEE 1588 can be used to distribute
the debug process over the network.

1616

25
GUI testing—exposing
visual bugs
BY NIALL MURPHY
GUI testing traditionally meant finding the
most appropriate access point to inject test
cases. The challenge, however, is in making
the GUI tests repeatable. Here’s a home-
grown framework that allows test input to be
managed, replacing injectable test cases.

E M B E D D E D S Y S T E M S D E S I G N
VOLUME 22, NUMBER 11
DECEMBER 2009

www.mouser.com
Over A Million Products Online

The Newest
 Embedded Technologies

Experience Mouser’s time-to-market

advantage with no minimums and same-day

shipping of the newest products from more

than 390 leading suppliers.

(800) 346-6873

The Newest Products
 For Your Newest Designs

The ONLY New Catalog Every 90 Days

New Products from:

Joule-Thief™ Module

www.mouser.com/
adaptivenergy_joule-thief

TM

MiniCore™ RCM5600W Wi-Fi

Module

www.mouser.com/rabbit_
rcm5600w

ZICM2410P0 MeshConnect™

Module

www.mouser.com/celmesh

ZI

M

w

MRF24J40MB 2.4 GHz RF

Transceiver Module

www.mouser.com/
microchipmrf24j40mb

Iknow I’m a little late to the party
on this one, but I need to put
my two cents in here. When In-

tel made the acquisition of Wind Riv-
er, I was all over it, so it’s only fair
that I make a comment on what
looks to be a similar situation, Cavi-
um’s acquisition of MontaVista.

It’s a similar situation because it’s
a microprocessor vendor swallowing
up an operating system vendor. The
only difference is that it’s on a smaller
scale (a significantly smaller scale).
Intel reportedly paid somewhere in
the neighborhood of $800 million for
Wind, while Cavium paid (only) $50
million. The former was the largest
processor company purchasing the
largest embedded software vendor.
That’s not the case with Cavium-
MontaVista, but the similarities are
still there.

This acquisition could be good
for existing MontaVista customers, as
it gives them a great growth path to a
very high-end microprocessor. How-
ever, it’s doesn’t bode well for the mi-
croprocessor vendors (except for
Cavium, of course). MontaVista
claims that it will continue to sup-
port all the microprocessor vendors
that it currently works with, and it’s a
pretty long list.

Hmm. That sounds familiar. The
Wind folks made that same claim.
The jury is still out on Wind, but
they’re sticking to their story of sup-

porting all the necessary micro-
processors. Similarly, we’ll have to
wait and see if MontaVista holds true
to their word.

Cavium and MontaVista were
close partners before the acquisition,
and both claim they’ll work with the
other’s competitors. So, I ask the same
question I asked a few months ago:
why make this acquisition? And I
come to same conclusion—over time,
MontaVista will end the support for
Cavium’s competitors. It’s a natural
progression, as those competitors be-
gin toz lose trust in MontaVista.

Think about it. If you’re proces-
sor vendor X, why would you let
MontaVista in on your secrets, which
is required to continue support,
when there’s the possibility (a strong
possibility?) that those secrets will
find their way back to Cavium, your
competition? MontaVista will claim
that that won’t happen, but I’m not
sure if I’d be willing to take that bet if
I’m vendor X and there are alterna-
tives to MontaVista.

So, who’s next? It’s too late to buy
Embedded Alley, as they were ac-
quired by Mentor Graphics earlier in
the year (a very smart move, in my
opinion). That one was a little differ-
ent, as it was an OS vendor buying
another OS vendor. But there are still
plenty of operating system compa-
nies available. And there are lots of
processor companies who may feel
the need to join the club.

BY Richard Nass

Richard Nass is the
director of content/
media at TechInsights.
You may reach him at
rnass@techinsights.com.

Richard Nass
rnass@techinsights.com

Director of Content/Media,
TechInsights
Richard Nass
(201) 288-1904
rnass@techinsights.com

Managing Editor
Susan Rambo
srambo@techinsights.com

Contributing Editors
Michael Barr, John Canosa,
Jack W. Crenshaw, Jack G. Ganssle,
Dan Saks, Larry Mittag

Art Director
Debee Rommel
drommel@techinsights.com

European Correspondent
Colin Holland
colin.holland@techinsights.com

Embedded.com Site Editor
Bernard Cole
bccole@acm.org

Production Director
Donna Ambrosino
dambrosino@ubm-us.com

Subscription Customer Service
P.O. Box 2165, Skokie, IL 60076
(800) 577-5356 (toll free)
Fax: (847) 763-9606
embeddedsystemsdesign@halldata.com
www.customerserviceesp.com

Article Reprints, E-prints, and
Permissions
Mike O’Brien
Wright’s Reprints
(877) 652-5295 (toll free)
(281) 419-5725 ext.117
Fax: (281) 419-5712
www.wrightsreprints.com/reprints/index.cfm
?magid=2210

Publisher
David Blaza
(415) 947-6929
dblaza@techinsights.com

Editorial Review Board
Michael Barr, Jack W. Crenshaw,
Jack G. Ganssle, Bill Gatliff,
Nigel Jones, Niall Murphy, Dan Saks,
Miro Samek

Corporate—TechInsights
Paul Miller Chief Executive Officer
Aharon Shamash Chief Financial Officer
Felicia Hamerman Group Marketing Director
Randall Freeborn Chief Human Resources Officer
Harry Page Senior VP Professional Services,

Semiconductor Insights, Portelligent

Corporate—UBM LLC
Marie Myers Senior Vice President,

Manufacturing
Pat Nohilly Senior Vice President, Strategic

Development and Business
Administration

TM

CPU vendor buys OS vendor,
Part II

E M B E D D E D S Y S T E M S D E S I G N #include

www.embedded.com | embedded systems design | DECEMBER 2009 5

 Mouser and Mouser Electronics are registered trademarks of Mouser Electronics, Inc. Other products, logos, and company names mentioned herein, may be trademarks of their respective owners.

ouser Electronics is one of the fastest growing

global catalog and web-based distributors in the

electronics industry, Mouser is dedicated to supplying design

engineers with the most rapid introduction of the newest

products, leading-edge technologies, and world class customer

service. Focused on design engineers and buyers demanding

small to medium quantities of the latest products, Mouser

provides customer-focused distribution.

Rapid New Product Introduction

 Mouser delivers a time-to-market advantage to customers

with the industry’s only NEW 2,100+ page print catalog

published every 90 days, featuring

the newest products and

technologies. Continuous updates

are made to ensure the newest

products are added and end-of-

life products are removed from

the catalog, providing customers

with easy access to the newest

products and technologies.

E-Commerce
 Mouser.com is updated daily with new products and

technologies available for customers to browse and buy

online. The company’s website features OVER A MILLION

SEARCHABLE PRODUCTS, more than 900,000 downloadable

data sheets, 423+ supplier catalogs, and 1.5+ million cross-

referenced parts. The constant refinement to the site includes

technical design information, as well as numerous user-friendly

tools such as Project Manager with automatic reorder, BOM

import capabilities, automatic order confirmation, and live chat

in several languages.

Broad Product Line
 Mouser is the design engineer’s one-stop shop for all the

board-level components and associated development tools

necessary for total project design. The company’s broad-based

linecard consists of components across the board from more

than 390 industry-leading manufacturers of semiconductors,

optoelectronics, embedded modules, as well as passives,

interconnects, electromechanical, circuit protection devices,

enclosures, thermal management, and wire/cable products.

State-of-the-Art Warehouse Operations
 Mouser’s global corporate headquarters facility is based in

Texas, USA, and totals 432,000 sq. ft. encompassing offices,

call and data centers, as well as its state-of-the-art warehouse.

The wireless warehouse management system is streamlined

to nearly perfect pick-and-ship operations. These high-tech

capabilities and the efficient order fulfillment processes allow for

fast delivery with same-day shipping on most orders received by

8 p.m. CST.

 The 3,400 sq.

ft. data center

features a

pre-action fire

suppression

system, connections to multiple power sources, and a dedicated

fiber communications ring to ensure uninterrupted internet

operations – a core component of Mouser’s global sales

operations.

Worldwide Customer Service
 Mouser is dedicated to providing superior service and support

to customers worldwide. In addition to the United States

locations, Mouser has sales offices around the world, including

Singapore, Shanghai, and Hong Kong, as well as Germany, UK,

and Israel.

 Mouser believes in providing the best customer service–

regardless of the size of the customer or the size of the order.

Breaking packs and no minimum orders, including one-piece

shipping, is especially attractive to engineers working in the

earliest stages of the engineering design cycle.

The Newest Products

 For Your Newest Designs
www.mouser.com (800) 346-6873

M

While it is nice to see an article
on CAN, I’m not sure
whether it really lives up to

its title. (Hassane El-Khoury, “CAN in
30 minutes or less,” November 2009, p.
20, www.embedded.com/220900314)
Some CAN history, bit-timing and
tool screenshots, but not a single
example of where such tools are
found or how to setup CAN from
scratch with them.

Nonetheless, the author is ab-
solutely right when it comes to set-
ting up CAN for the first time:
while the protocol is robust, flexi-
ble, and with the Full/Enhanced
controllers takes hardly any effort
for your MCU, the initial design
can be very tricky. There are some
free implementations available
(Pelican, VSCP, CAN-Open, De-
viceNet), but when you want to do
something simple (where these
protocols simply don’t fit), where a
bus network like CAN seems ap-
propriate instead of Peer to peer
RS232 or maybe bus RS 485/422,
the very advantage CAN has in the
form of message-based communi-
cations, becomes a burden while
designing your app around it. Es-
pecially, as the author also points
out, when it comes to combining
the various incarnations of CAN (Ba-
sic, Full, enhanced).

—Dirk Buijsman
Lead Software Engineer

The article was good, but a small erra-
tum SPI—mentioned as “System Packet
Interface” is a network protocol. I guess
the author intends to print “Serial Pe-
ripheral Interface.”

—Raj Miriyala
Firmware Engineer

Thank you very much for this nice ar-
ticle. I would like to bring up a little
point that J1939 implementers will ap-
preciate. According to SAE spec, J1939
has to run at 250 kbit/sec. This makes

J1939 bit timing to 4 microseconds.
Since 1 bit is 8 to 25 time quanta, make
sure your oscillator can run at a perfect
frequency so that your CAN device can
meet the SAE spec.

—Umut Tezduyar
Software Engineer

Doctors and debugging
I was quite interested in Jack Ganssle’s
use of the medical diagnosis analogy
(Jack Ganssle, “Developing a good bed-

side manner,” October 2009, p. 38,
www.embedded.com/220100899). I
wrote the book Debugging, published
in 2002 and still selling well because it
extracts the essence of debugging,
which as you point out, is not restrict-
ed to hardware and software. I use
examples from medicine, car repair,
and plumbing, to name a few.

I came up with nine rules
(shown on the website debuggin-
grules.com in a free poster). I chal-
lenge anyone to prove that I’ve
included a rule you can ignore or
that I’ve omitted a rule. Your six
steps (and other important
things) are covered by my nine
rules, except for hypothesis—
fix—test sequence, with
which I respectfully disagree.
My rule #3: “Quit thinking
and look” means use your
hypothesis to decide where
to look next, not what fix to
try. Trying a fix before you
have seen the cause of the
bug is sometimes effective,
but often leads to a long
loop of misdirected fixes.
(There are examples in the
book.) The other rules are
equally important, in fact,
here they are:

• Understand the system

• Make it fail

• Quit thinking and look

• Divide and conquer

• Change one thing at a time

• Keep an audit trail

• Check the plug

• Get a fresh view

• If you didn’t fix it, it ain’t fixed
—Dave Agans

Engineer

CAN it be possible

parity bit

www.embedded.com | embedded systems design | DECEMBER 2009 7

When it comes to setting up CAN
for the first time: while the protocol
is robust, flexible, and with the
Full/Enhanced controllers takes
hardly any effort for your MCU, the
initial design can be very tricky.

!
!
!

>> Find out what else LabVIEW can do at ni.com/imagine/robotics 866 337 5041

©2009 National Instruments. All rights reserved. CompactRIO, LabVIEW, National Instruments, NI, and ni.com are trademarks of National Instruments.
Other product and company names listed are trademarks or trade names of their respective companies. 0176

NI LabVIEW
Limited Only by Your Imagination

PRODUCT PLATFORM

NI LabVIEW graphical
and textual programming

NI CompactRIO embedded
control hardware

NI LabVIEW Real-Time Module

NI LabVIEW FPGA Module

LabVIEW graphical programming

software and modular NI hardware, such

as CompactRIO and PXI, are helping

engineers develop fully autonomous

robotics systems, including unmanned

vehicles designed to compete in DARPA

Grand Challenge events.

RF

Medical

Robotics

Multicore

FPGA-based embedded
hardware for
drive-by-wire systems

Drivers for
hundreds of sensors

from LIDAR to GPS

Multicore algorithms
for real-time navigation
and control

Image processing and
acquisition libraries

Standard communication
including JAUS

and Ethernet support

Jack Ganssle responds: Also do check out
Steve Litt’s site, troubleshooters.com.

In Jack’s column “Developing a good
bedside manner,” he writes: “In other
cases, just as in medicine, one bug
may present a variety of odd effects.
Or a single symptom could stem from
a combination of bugs all interacting
in excruciating-complex, and hard to
diagnose, manners. I wonder if physi-
cians observe the infrequent symp-
toms we see, that appear in a system
once, go away for weeks, and then
randomly resurface?”

I liked being the Hero that caught
the elusive bug as much as anyone.
But do we really have to let
the bugs “go away for weeks”?
How much time and money
are spent chasing these bugs?
How much does it cost when
we fail to catch them? Are we
not smart people, with sys-
tems of our own design and
under our own control?

These bugs can be easily
captured, if we make proper
use of our software to help us.
The vast majority of embed-
ded systems can be “instrument” (in
software by the developer) to record
and then replay the software execu-
tion. The data rate of a proper imple-
mentation is surprising low (~2KB
per MHz of CPU clock). A rate that is
lower than typical instrumentation
approaches that pump out informa-
tion that we think will help us find
these bugs.

The record process saves the min-
imum data that is needed to capture
the exact execution process of the
software. Therefore the real-time exe-
cution is not being changed by the
analysis and debug processes.

The replay process recreates the
recorded execution with the bugs.
Complete analysis and debugging
takes place in the replay process with-

out changing the recreated execution
of the software.

So what’s the big disadvantage?
It requires a change in the typical

embedded mindset!
—Robert Coker

Former Embedded Systems Engineer

ARM wrestling
Rich Nass says “it’s likely that there
will be no clear cut winner” (Richard
Nass, “15 billion sockets up for grabs,”
November 2009, p.5, www.embedded.
com/220900316). It’s clear to me . . .
ARM WINS.

—Leandro Gentili
Software Engineer

(ARM == less performance) ??? I do
not think so. The ARM architecture
appears to be dominating the small
device space by a pretty decent mar-
gin too!

— Ken Wada
Sr. Embedded Systems Consultant

DO-178B
To set the record straight on DO-
178B: Aviation incidents caused by
software systems are thankfully rare,
even given the exponential growth of
software density in aircraft systems—
perhaps this is a consequence of pre-
scriptive standards (guidelines) such
as DO-178B, and their enforcement
by certification authorities (e.g., FAA
Designated Engineering Representa-

tives). A major criticism here (Jack
Ganssle, “Software for dependable sys-
tems,” November 2009, p. 37, www.em-
bedded.com/220900315) of the book
Software for Dependable Systems is it
is not prescriptive enough!

DO-178B is far from perfect, but
it has known strengths, such as its
bias toward requirements and their
satisfaction. The guideline contains
more than 60 objectives. Many people
concentrate on a select number of
code-based objectives (e.g. MC/DC
coverage), but this is a gross misinter-
pretation and misrepresentation of
DO-178B.

DO-178B is limited in scope, and
it fails to address the holistic
system aspects of safety. Still,
this article falls into a similar
trap, with too much emphasis
latterly on coding languages
(such as Ada and SPARK). Note:
systems containing perfectly
functioning code have con-
tributed to fatal accidents (such
as Cali, Colombia).

In terms of safety, gazing at
the code is analogous to organ-
izing the deckchairs on the Ti-

tanic as you steam toward the Re-
quirements Iceberg—at least it keeps
you occupied.

The most pertinent statement in
the article is, “Finally, expertise is de-
manded.” Competence and profes-
sionalism should not be implicit or
assumed when the systems are high-
dependability. Interestingly, standard
IEC 61508 provides guidance on
competence assessment.

For interested readers, there is a
DO-178B group on LinkedIn.

—Martin Allen
Software Safety Specialist

www.embedded.com | embedded systems design | DECEMBER 2009 9

We welcome your feedback. Letters to the
editor may be edited. Send your comments to
Richard Nass at rnass@techinsights.com or
fill out one of our feedback forms online,
under the article you wish to discuss.

In terms of safety, gazing at the
code is analogous to organizing
the deckchairs on the Titanic as
you steam toward the
Requirements Iceberg—at least it
keeps you occupied.

!
!
!

for ARM, 8051 & XE166 Microcontrollers

Keil RL-ARM
and ARTX-166

highly optimised, royalty-free
middleware suites

keil.com/rtos

Keil PK51, PK166,
and MDK-ARM

support more than 1,700
microcontrollers

keil.com/dd

keil.com
1-800-348-8051

Microcontroller
Development Kits
C and C++ Compilers

Royalty-Free RTX RTOS

µVision Device
Database & IDE

µVision Debugger
& Analysis Tools

Complete Device Simulation

E
xa

m
p

le
s

an
d

 T
em

p
la

te
s

RTOS and Middleware
Components

RTX RTOS Source Code

TCPnet Networking Suite

Flash File System

USB Device Interface

CAN Interface

E
xa

m
p

le
s

an
d

 T
em

p
la

te
s

C and C++ Development Tools
• Best-in-class Keil and ARM compilers for small, fast code
• Genuine Keil µVision® IDE/Debugger/Simulator
• Fast development and verification using Device Simulation
• Easy device configuration with Device Database support
 for more than 1700 devices

RTOS and Middleware
• Easy implementation of complex applications
• Royalty-free RTX Real-Time Kernel
• TCP/IP Suite with Server Applications
• File System for ROM and Memory Cards
• Direct Support for USB and CAN interfaces

ULINK® USB Adapters
• JTAG, SWD & SWV support
• Debugging and Flash download
• ARM device support
• Data Trace for Cortex-M3
• ARM Instruction Trace (ULINKPro)
• 8 and 16-bit support (ULINK2)

Keil provides a wide range of evaluation
boards for 8, 16 and 32-bit devices

Evaluation Boards

A/D
Converter

Timer/
Counter

PWM

UART

I2C/SPI

I/O Parts

Interrupt
System

CPU

DMA

Ethernet SD/MMC
Interface

USB CAN

Real-Time
Clock

RAM

Flash
ROM

Debug
Channel

Debug
Run-Control

Development
Solutions

Download the
µVision4 Beta Version

keil.com/uv4

ucts liability with a firmware twist.
Unfortunately, the quality and relia-
bility of our collective firmware
leaves the door open to an ever-in-
creasing number of the latter.

THIS CODE STINKS!
At a recent Embedded Systems
Conference, I gave a popular free
talk titled “This Code Stinks! The
Worst Embedded Code Ever” in
which I used lousy code from real
products as a teaching tool. The ex-
ample code was gathered by a num-
ber of engineers from a broad swath
of companies over several years.2

Listing 1 shows just one exam-
ple of the bad code in that presenta-
tion. I don’t know if the snippet
contains any bugs, as most of the
other examples were found to. And
that’s a problem. Where are we sup-
posed to begin an analysis of the
code in Listing 1? What is this code
supposed to do when it works?
What range of input values is ap-
propriate to test? What are the cor-
rect output values for a given input?
Is this code responsible for handling
out-of-range inputs gracefully?

The original listing had no
comments on or around this line to

help. I eventually learned that this code computes the year,
with accounting for extra days in leap years, given the num-
ber of days since a known reference date (such as January 1,
1970). But I note that we still don’t know if it works in all
cases, despite it being present in an FDA-regulated medical
device. I note too that the Microsoft Zune Bug3 was buried
in a much better formatted snippet of code that performed
a very similar calculation.

Listing 2 contains another example, this time in C++,
with the bug-finding left as an exercise for the reader. You
can find the full set of slides from my talk online at
http://bit.ly/badcode.

TOTAL RECALL
Lest you think that the evidence from the presentation are

When I started writing
firmware and for years
afterward, few people

outside of the electronics design
community gave a thought to the
countless embedded systems
around them. At the time, I found
it difficult to explain to most
friends and relatives what exactly
it was that I did for a living. Yet
embedded software was all
around them at home and at
work—in their phones, anti-lock
brakes, laser printers, and many
other important products. But to
these folks, “software” was some-
thing you bought in a box at a
store and installed on the one
“computer” you owned.

Today, of course, there are
countless embedded systems
per person, and our health and
wellbeing are both greatly en-
riched by and increasingly de-
pendent upon proper func-
tioning of the firmware inside.
Consumers now notice them
and think of them as software
containers—if only because
they require frequent reboots
and upgrades. And there is no
let up in sight: several billion
more such devices are produced each year.1

Lawsuits are on the rise, too. In recent years, I’ve been
called into U.S. District Court (as an expert witness) in sev-
eral dozen lawsuits involving embedded software. I’ve met
others with similar experiences and become aware of many
other cases. Popular claims range from copyright theft and
patent and trade secret infringement to traditional prod-

The lawyers are coming!

By Michael Barr barr code

www.embedded.com | embedded systems design | DECEMBER 2009 11

Michael Barr is the author of three books and over
50 articles about embedded systems design, as
well as a former editor in chief of this magazine.
Michael is also a popular speaker at the
Embedded Systems Conference and the founder of
embedded systems consultancy Netrino. You may
reach him at mbarr@netrino.com or read more by
him at www.embeddedgurus.net/barr-code.

The quality of a lot of embedded
software is abysmal. And
lawyers are on to it. If you
don’t want your source code to
show up in court, you better
get your act together.

!
!
!

exceptions to the norm found because I and other engineers
were on the prowl for bad code, consider just a couple of ex-
amples stemming from the more obvious embedded software
failures.

First, recall the Patriot Missile failure in Dhahran, Saudi
Arabia during the first Gulf War. Twenty-eight U.S. soldiers
were killed when a Scud missile was not shot down due to im-
proper tracking by the Patriot Missile battery protecting a mil-
itary base. A report from the U.S. Government Accountability
Office examined the events leading to the failure and conclud-
ed the problem was partly in the requirements: the govern-
ment didn’t tell the designer it would need to “operate contin-
uously for long periods of time.” Huh!? “At the time of the
incident, the battery had been operating continuously for over
100 hours”.5, 6

Now consider a more recent example. GPS-maker Garmin
announced a “free, mandatory GPS software update to correct
a software issue that has been discovered to cause select GPS
devices to repeatedly attempt to update GPS firmware and
then either shut down or no longer acquire GPS satellite sig-
nals.” This sounds to me like a bug in their bootstrap loader
(a.k.a., bootloader). Many Garmin GPS units are named as af-
fected, including members of the popular nüvi product
family.7

Or consider what a consumer had to say about his Cele-
stron SkyScout Personal Planetarium recently in a forum at
Amazon.com: “I’m downloading the second firmware update
release since I’ve had my SkyScout . . . about 3 weeks. Each re-
lease is making the device more stable.”

Finally, consider these quotes from the recent recall of a
device regulated by the U.S. Food and Drug Administra-
tion—an AED (automatic external defibrillator):

• “Units serviced in 2007 and upgraded with software ver-
sion 02.06.00 have a remote possibility of shut down
during use in cold environmental conditions. There are
no known injuries or deaths associated with this issue.
The units will be updated with the current version of
software.”

• “All of the recalled units will be upgraded with software
that corrects [another] unexpected shutdown problem.
In the meantime . . . it is vital to follow the step 1-2-3 op-
erating procedure which directs attachment of the pads
after the device has been turned on. This procedure is de-
scribed on the back of your device and also in the Quick
Reference material inside the AED 10 case. Some pages in
the user’s manual may erroneously describe or show il-
lustrations of [a different] operating procedure . . . Please
disregard these erroneous instructions.”

At least one death was reported at a time when the
second type of unexpected software shutdown occurred.

Are bugs in the embedded software to blame for that too?
If not, how did the User’s Manual come to be out of sync
with the firmware in a process-driven FDA-regulated envi-
ronment?

Given the above, is it not appropriate to wonder if the
unexplained loss of Air France 447 over the Atlantic Ocean

earlier this year was firmware-related? An abrupt
650-ft. dive an Airbus A330 flight experienced in Oc-
tober 2006 may offer clues to the loss of Air France
447. Authorities have blamed a pair of simultaneous
computer failures for that event in the fly-by-wire
A330. First, one of three redundant air data inertial
reference units began giving bad data. Then, a voting
algorithm intended to handle precisely such a failure
in one unit by relying only on the other two failed to
work as designed; the flight computer instead made
decisions only on the basis of the one failed unit!
“More than 100 of the 300 people on board were
hurt, with broken bones, neck and spinal injuries,
and severe lacerations splattering blood throughout
the cabin.”8 A lawsuit is pending.

TAKE A DEEP BREATH
Firmware bugs seem to be everywhere these days. So
much so that firmware source-code analysis is even

barr code

12 DECEMBER 2009 | embedded systems design | www.embedded.com

Listing 1 A single line of unintelligible mystery code.

y = (x + 305) / 146097 * 400 + (x + 305) % 146097 / 36524 * 100 + (x + 305) % 146097 % 36524

/ 1461 * 4 + (x + 305) % 146097 % 36524 % 1461 / 365;

Listing 2 Find the bug in this code snippet.4

bool Probe::getParam(uint32_t param_id, int32_t idx)

{

int32_t val = 0;

int32_t ret = 0;

ret = m_pParam->readParam(param_id, idx, &val);

if (!ret)

{

logMsg(“attempt to read parameter failed\n”);

exit(1);

}

else …

barr code

14 DECEMBER 2009 | embedded systems design | www.embedded.com

entering the courtroom in criminal
cases involving data collection devices
with software inside. Consider the
precedent-setting case of the Alcotest
7110. After a two-year legal fight, sev-
en defendants in New Jersey drunk
driving cases successfully won the
right to have their experts review the
source code for the Alcotest firmware.9

The state and the defendants both
ultimately produced expert reports
evaluating the quality of the firmware
source code. Although each side’s ex-
perts reached divergent opinions as to
the overall code quality, several facts
seem to have emerged as a result of
the analysis:

• Of the available 12 bits of analog-
to-digital converter precision, just
4 bits (most-significant) are used
in the actual calculation. This
sorts each raw blood-alcohol read-
ing into one of 16 buckets. (I won-
der how they biased the rounding
on that.)

• Out of range A/D readings are
forced to the high or low limit.
This must happen with at least 32
consecutive readings before any
flags are raised.

• There is no feedback mechanism
for the software to ensure that ac-
tuated devices, such as an air
pump and infrared sensor, are ac-
tually on or off when they are sup-
posed to be.

• The software first averages the ini-
tial two readings. It then averages
the third reading with that aver-
age. Then the fourth reading is av-
eraged in, and so on. No com-
ments or documentation explains
the use of this formula, which
causes the final reading to have a
weight of 0.5 in the “average” and
the one before that to have a
weight of 0.25, and so forth.

• Out of range averages are forced
to the high or low limit, too.

• Static analysis with lint produced
over 19,000 warnings about the
code (that’s about three errors for
every five lines of source code).

What would you infer about the re-
liability of a defendant’s blood-alcohol
reading if you were on that jury? If
you’re so inclined, you can read the full
expert reports for yourself.10

A BETTER WAY
Don’t let your firmware source code
end up in court! Adopt a coding stan-
dard that will prevent bugs and start
following it; don’t wait a day. Run lint
and other static analysis and code
complexity tools yourself, rather than
waiting for an expert witness to do it
for you. Make peer code reviews a reg-
ular part of every working day on your
team. And establish a testing environ-
ment and regimen that allows for re-
gression testing at the unit and system
level. These best practices won’t ensure
perfect quality, but they will show you
tried your best.

I’ll have more to say about keeping
bugs out of embedded software in my
next few columns. Meanwhile, try not
to think about all the firmware upon
which your life depends. ■

ENDNOTES:
1. www.vdcresearch.com/_documents/press-

release/press-attachment-1503.pdf

2. Minor details, including variable names
and function names, were changed as
needed to hide the specifics of applica-
tions, companies, or programmers.

3. http://bit-player.org/2009/the-zune-bug

4. Hint: This code was embedded in a piece
of factory automation equipment.

5. GAO’s report can be found at www.fas.org/
spp/starwars/gao/im92026.htm.

6. In fact, soldiers in Israel had previously
discovered that the Patriot Missile soft-
ware’s ability to track an incoming missile
degraded in just eight hours, and they
had a software upgrade to fix it.

7. http://garmin.blogs.com/my_weblog/
2009/06/ask-garmin-free-mandatory-gps-
software-available-now.html

8. www.time.com/time/world/arti-
cle/0,8599,1902421,00.html

9. www.dwi.com/new-jersey/state-v-chun

10. Full expert findings reports:
www.dwi.com/new-jersey/base-one-find-
ings (defendants) and www.dwi.com/new-
jersey/new-jersey/code-review (state).

1.888.9LIGHT1 | www.arrownac.com/cree

Arrow and Cree have built an intuitive, information-packed website to
help you design the optimal Cree LEDs into your solid-state lighting
applications. Get the facts you need to know, and then select the
right Cree LEDs for your lighting-class, architectural, and general
illumination designs. With Arrow’s world-class support, you can rest
assured you’re choosing the best products and benefiting from
unrivaled services, solutions, and technical know-how.

Visit our site, and learn all about:

•	 New	Cree	LEDs
•	 Solutions	that	will	get	you	to	market	fast
•	 Relevant	white	papers	and	other	technical	papers
•	 Training	opportunities
•	 Related	design	tools

Our site also allows you to access Cree’s Product Characterization Tool to:

•	 Compare	up	to	three	LED	models	simultaneously
•	 Calculate	lumens	per	dollar	and	other	valuations
•	 Identify	the	best	Cree	LEDs	for	your	design

Download the
Cree Lighting Design Guide!

Go to www.arrownac.com/cree to learn about

designing high-power LEDs into luminaires.

Everything You Need to
Design—in Cree LEDs

1
Subject to change without notice.

www.arrownac.com/cree

A
p

p
li
ca

ti
o
n

N
o
te

:
C

L
D

-A
P

1
5

.0
0

0

LED Luminaire Design Guide

This application note provides guidelines for the process of

designing high-power LEDs into luminaires. This document

uses an indoor luminaire design as an example, but the

process described can be applied to the design of any LED

luminaire.

Lighting-class LEDs are now available that deliver the

brightness, efficacy, lifetime, color temperatures, and

white-point stability required for general illumination. As

a result, these LEDs are being designed into most general

lighting applications, including roadway, parking area, and

indoor directional lighting. LED-based luminaires reduce

total-cost-of-ownership (TCO) in these applications through

maintenance avoidance (since LEDs last much longer than

traditional lamps) and reduced energy costs.

There are over 20 billion light fixtures using incandescent,

halogen, or fluorescent lamps worldwide. Many of these fixtures are being used for directional light applications but

are based on lamps that put out light in all directions. The United States Department of Energy (DOE) states that

recessed downlights are the most common installed luminaire type in new residential construction1. In addition,

the DOE reports that downlights using non-reflector lamps are typically only 50% efficient, meaning half the light

produced by the lamp is wasted inside the fixture.

In contrast, lighting-class LEDs offer efficient, directional light that lasts at least 50,000 hours. Indoor luminaires

designed to take advantage of all the benefits of lighting-class LEDs can:

Exceed the efficacy of any incandescent and halogen luminaire

Match the performance of even the best CFL (compact fluorescent) recessed downlights

Provide a lifetime five to fifty times longer than these lamps before requiring maintenance

Reduce the environmental impact of light: no mercury, less power-plant pollution, and less landfill waste

Table of Contents

1 U.S. Department of Energy, Energy Efficiency and Renewable Energy. LED Application Series: Recessed Downlights.

•
•
•
•

Design Approach ..
..

... 2

Design Process..
..

...... 3

1. Define Lighting Requirements ..
........................... 4

2. Define Design Goals..
... 5

3. Estimate Efficiencies of the Optical, Thermal & Electrical Systems 6

4. Calculate Number of LEDs Needed..
..................... 9

5. Consider All Design Possibilities & Choose the Best... 10

6. Final Steps..
..

......... 15

Where to Get Help ..
..

. 16

Visit www.arrownac.com/cree to get started now.

CreateCreate
with Arrow and Cree

Imagine a world without a global notion of time. Now try to find out
the flight direction of an airplane with the following information:
There’s an e-mail from Alice that she saw the plane about two hours
after sunrise and another e-mail from Bob that he saw the plane
about three hours after sunrise. So Alice and Bob tell us when they
saw the plane, at least from their point of view. If they are nice, they
might give us some additional information, namely their location at
the moment of the observation. But, unfortunately embedded sys-
tems are usually not that nice.

IEEE 1588 can be used to distribute the debug process over the network.

BY ROLAND HÖLLER AND PETER RÖSSLER

Now imagine a distributed system
built of networked embedded nodes.
When a problem arises with the dis-
tributed application, the designer in-
vokes a debugger to find out the faulty
system behavior. In detail, the designer
traces the execution of two nodes A
and B simultaneously. The situation is
similar to the plane-tracking scenario.
Obviously, a systemwide notion of

time would be helpful, which leads us
to an important aspect in distributed
debugging.

STATE-OF-THE-ART EMBEDDED
SYSTEMS DEBUGGING
To alleviate the difficulty of debugging
of modern microcontrollers and com-
plex system on chips (SoCs), support
for test and debugging is routinely

feature

16 DECEMBER 2009 | embedded systems design | www.embedded.com

Coordinated
debugging of

distributed systems

cover feature

It’s More Than Just a Scope

Now you can have it all with the Mixed Signal Oscilloscope Series from Tektronix. With as many as 20
channels for analyzing analog and digital signals, you can simultaneously monitor many points of your
design. And with automated decode for both parallel and serial buses, you can instantly see what all
those bits mean. Use Wave Inspector® to speed through your entire waveform in seconds or to auto-
matically search for an event you specify, even serial packet content. It’s the complete, all-in-one solution
to debug today’s complex designs – fast. And with the addition of the NEW MSO3000 Series, the family
just got better. See for yourself. View the virtual product demo.

© 2009 Tektronix, Inc. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. TEKTRONIX and the Tektronix logo are registered trademarks and Wave Inspector is a trademark of Tektronix, Inc.

See the family in action. View the virtual product demo: www.tektronix.com/thesolution

Analyze analog
and digital signals
with the NEW
MSO3000 Series.

Mixed Signal Oscilloscope Series
 Features 4000 Series New! 3000 Series 2000 Series

Bandwidth 1 GHz, 500 MHz, 350 MHz 500 MHz, 300 MHz, 100 MHz 200 MHz, 100 MHz

Analog Channels 4 2 or 4 2 or 4

Digital Channels 16 (MSO Series) 16 (MSO Series) 16 (MSO Series)

Record Length 10 M points 5 M points 1 M points

Display 10.4" 9" 7"

Serial and Parallel Bus Analysis I2C, SPI, CAN, LIN, FlexRay, RS-232, Audio, Parallel I2C, SPI, CAN, LIN, RS-232, Audio, Parallel I2C, SPI, CAN, LIN, RS-232, Parallel

Optional Analysis Packages Power Analysis, HDTV and Custom Video Power Analysis, HDTV and Custom Video –

The all-in-one solution for mixed signal debug.

cover feature

www.embedded.com | embedded systems design | DECEMBER 2009 19

built into silicon. Today, many debug-
ging approaches rely on offline debug-
ging based on trace buffers added to
the CPU to reduce intrusiveness
by the debug system. Leading
processor-core vendors offer on-
chip trace solutions.

However, existing debugging
and test tools are mainly focused
toward single nodes with one or
more CPUs on-board or on-chip
(SoC) by using auxiliary debug in-
terfaces like JTAG or a simple
UART. The problem of these ap-
proaches is that they entirely neg-
lect the distributed nature of many ap-
plications since to connect a
monitoring computer directly to each
node is impractical, especially if the
nodes are already embedded in their
place of installation (see Figure 1a).

Wouldn’t it be nice to precisely co-
ordinate debug, test, trace, and replay
activities across the entire distributed
system without the use of any auxiliary
interface or special cabling? Moreover,
it would be helpful if only a single de-
bugging master and monitoring com-

puter is attached to the network, used
to issue debugging, test, or monitoring
actions. Such an approach that greatly

simplifies debugging and testing of
distributed systems is shown in
Figure 1b.

A NEW SOLUTION FOR
DISTRIBUTED DEBUGGING
In the following example, a distributed
system is assumed that contains a plu-
rality of nodes, where every node is a
self-contained processing unit with pe-
ripherals or, in other words, an em-
bedded system. The nodes are con-
nected via a network (for example,

Ethernet) and exchange data to jointly
perform their application tasks. No re-
strictions shall apply to the underlying

network technology, be it wire-
less or cable-bound, shared, or
switched. Today, such setups are
deployed in automotive applica-
tions, industrial, and building
automation, as well as machine
and plant control, to name a few.

As already mentioned, a
global notion of time is a key el-
ement for distributed debug-
ging. Therefore the proposed so-
lution for distributed debugging

implements a mechanism to synchro-
nize the local clocks contained in the
network nodes. The clock synchro-
nization mechanism can be imple-
mented either in software or in hard-
ware. The latter option, however,
provides a better accuracy. If, for ex-
ample, the IEEE 1588 clock synchro-
nization standard is applied to a
100 Mbit/s Ethernet network, the
clock synchronization mechanism can
be implemented in hardware right
above the physical layer, which allows

Comparison between a traditional approach to debug distributed systems (a) and the proposed new solution (b).

Figure 1

a) b)

Node 1 Node 2 Node n

Shared or switched network Shared or switched network

…

Node 1 Node 2 Node n

…
JTAG

debugger
JTAG

debugger
JTAG

debugger

Monitoring
computer 1

Monitoring
computer 2

Monitoring
computer n

Issues debug and
test commands

to Node 1

Issues debug and
test commands

to Node 2

Issues debug and
test commands

to Node n

HW
support

HW
support

HW
support

Monitoring
computer

Issues debug
and

test commands
to all nodes

without using
an auxiliary
interface

Wouldn’t it be nice to precisely
coordinate debug, test, trace, and
replay activities across the entire
distributed system without the
use of any auxiliary interface or
special cabling?

!
!
!

cover feature

20 DECEMBER 2009 | embedded systems design | www.embedded.com

synchronization of the local clocks
with a precision of about 10 ns. This
enables systemwide debugging of
multiple nodes at the CPU instruc-
tion level, assuming CPU clock rates
up to 100 MHz. If the network pro-
vides an implicit clock synchroniza-
tion mechanism, such as time-trig-
gered protocols like TTP or FlexRay,
this clock can be used for debugging
purposes.

Besides the clock synchronization
mechanism, the second key element in
the proposed approach for distributed
debugging is the usage of the already
existing network to transfer debugging
data. During normal operation, the
network does not exhibit any addi-
tional traffic. Even the clock synchro-
nization, although typically not show-
ing higher traffic than one short
message per second (in case of IEEE
1588), can be turned off if not needed.
The nodes jointly perform their appli-
cation tasks (its normal operation)
without the need of interaction. To en-
able debugging and testing, a debug-
ging master or monitoring computer
running a debugging program, has to
be connected to the network. First,
clock synchronization will be activated
to enable the common notion of time.
During a debugging session, the de-
bugging master transfers messages
containing debugging commands to
one or multiple nodes. Each node re-
sponds to the received messages and
performs the intended tasks.

In an integrated approach, dedi-
cated hardware units are added to each
node that facilitate test, replay, moni-
toring, fault injection, or debug ac-
tions in the target embedded system
(see Figure 2). All these local actions
are controlled by an offload-engine
without having the node’s application
CPUs to run a single line of additional
debugging or test-related code.

Although the proposed solution is
aimed for an implementation on
hardware level, it’s also possible to
implement it in software. This would
allow a less expensive implementation

as no special chip has to be designed
but comes with some restrictions and
drawbacks. The major drawback is
the intrusiveness of the software ap-
proach since the debugging software
task can significantly change the sys-
tem behavior.

BENEFITS OF THE SOLUTION
An unprecedented coordination of the
plurality of nodes in the distributed
system is reached by deriving the trig-
gers for trace, debugging, or any other
activities from the synchronized clocks
as well as to enable cross-triggering
between the hardware support units of
the nodes. This enables complex test
or debug scenarios where the sequence
of events can be made independent of
network packet delays even if the
nodes are distributed in space.

An informal collection of some
possible scenarios that would greatly
disburden the task of testing and de-
bugging in a distributed system could
mention:

• Start and stop of code execution

• Activation of breakpoints

• Trace and display of register
contents

• Trace of internal bus activity

• Synchronous replay (such as previ-
ously recorded data from sensor
interfaces)

• Single stepping

• Start and stop of online as well
as offline tests or maintenance
activities

• Injection of faults

• Precise performance analysis

These actions can be executed on a
single node, multiple nodes, or all
nodes of the distributed system in a
coordinated manner.

IMPLEMENTATION DETAILS
In the proposed solution several units
are to be added to an embedded net-
work node, typically and most effec-
tively on chip level, to keep the task of
debugging in the background and to
minimize or cancel the probe effect.
This location is also best for the clock
synchronization mechanism. A node
constructed according to the presented
new solution thus contains a clock
unit, a test unit, a replay unit, a moni-
toring unit, a fault injection unit, a de-
bug unit, and an offload-engine, which
controls the aforementioned units.
The units are connected to the offload-
engine via a dedicated on-chip debug
bus, which is separated by the system
bus for the application CPUs. Further-
more, a network interface is connected
to the application CPUs (see Figure 2).

The network interface has a built-
in filter that detects incoming mes-
sages that contain debugging com-
mands or clock synchronization
information and directs those mes-
sages to the offload engine. Other mes-
sages are forwarded to the application
CPUs, which are unaware of the filter-
ing mechanism. Regarding transmis-
sion the network interface has the abil-
ity to insert packets containing
information related to debug and test
from the offload engine into the trans-
mit buffers during idle times of the
network.

The offload engine comprises the
subsystem that is responsible for pro-
cessing messages for clock synchroniza-
tion and debugging. Its task is to read
incoming debugging and clock syn-
chronization packets and to transfer the
information to the corresponding unit
(clock, test, replay, monitoring, fault in-
jection, or debug unit). The perform-
ance of the offload engine can be signif-
icantly lower than the performance of
the application CPUs since the task of

This enables complex test
or debug scenarios where
the sequence of events
can be independent of net-
work packet delays even if
the nodes are distributed.

!
!
!

cover feature

22 DECEMBER 2009 | embedded systems design | www.embedded.com

forwarding messages to the units on the
debug bus is relatively simple and the
clock synchronization calculations are
only repeated at a low frequency.

The test unit’s task is to perform
self-test operations in the node and to
offer a network-enabled test access
port to the system, for example by im-
plementing JTAG ports to connect to
off-chip components. That way, a de-
vice contained on a node could be
configured through the TAP-master in
the test unit, which is, for example,
helpful for maintenance purposes.

To reproduce complex debugging
setups, it might be useful to replay cer-
tain data streams from peripheral
units. The task of the replay unit is to
record data from external units such as
GPIOs (general purpose input/out-
puts), UARTs (universal asynchronous
receiver/transmitters), and DACs (dig-
ital-to-analog converters) and to allow
playback at later times.

The monitoring unit is connected
to the system bus as a passive listener
and tracer. It records all or a filtered
subset of accesses to the main system
bus to allow a detailed history of trans-

actions to be transferred to the debug-
ging master for off-line debugging.

Fault injection is a method to assess
system capabilities like fault detection,
fault isolation, or recovery. In software
testing, fault injection is used to test

rarely reached parts of code. If required,
such functions can be supported and as
a consequence coordinated across the
entire distributed embedded system.

The debug unit is designed to con-
nect to the debugging interfaces of the
application CPUs. The unit’s functions
are for instance to halt the processors of
one chip, to single step through in-
structions, to add and remove break-
points, and to allow access to processor
internal registers. The use of a highly
synchronized time base from the clock
unit allows the debugging operator
computer to perform a coordinated
halt or single step of the complete dis-
tributed system or a remote reset after a
nonrecoverable crash of the node.

The application CPUs contained in
the nodes are the processing units that
perform the actual application task.
The (single or multiple) processors are
connected to peripheral units like sen-
sors and actuators as well as to the
communication controller. Due to the
nonintrusiveness of the debugging
functionality, the application CPUs are
unaware of any extra load caused by
commands sent from or received by
the debugging operator computer.

The software running on the oper-
ator computer is a crucial part, since
the hardware support alone does not
make much sense without any user in-
terface to operate and control debug-
ging and testing of the distributed sys-
tem. Currently, the operator software
is based on the well known tools GDB
(GNU Project Debugger) and Eclipse
to offer full state-of-the-art source-lev-
el debugging support for all nodes of a
distributed system according to the so-
lution we present in this article.

APPLICATION SCENARIOS
With respect to both CPU clock speed
and data throughput, real-time video
imaging applications where several
high-speed, high-resolution cameras
operating in an ensemble, intercon-
nected via 10 Gbit/s Ethernet, are
among the most challenging systems
to debug. A precisely coordinated ap-

Overview of a distributed system based on the proposed solution for
distributed debugging and details of the hardware support built into
the embedded nodes.

Figure 2

Shared or switched network

…

I/Os, memories,
sensors, actuators

Node CPUs

Clock
synchronization

Te
st

 s
tr

uc
tu

re
s

R
ep

la
y

M
on

ito
rin

g

Fa
ul

t i
nj

ec
tio

n

D
eb

ug
gi

ng

N
et

w
or

k
in

te
rf

ac
e

w
ith

of
flo

ad
 e

ng
in

e

I/Os, memories,
sensors, actuators

Node CPUs

Clock
synchronization

Te
st

 s
tr

uc
tu

re
s

R
ep

la
y

M
on

ito
rin

g

Fa
ul

t i
nj

ec
tio

n

D
eb

ug
gi

ng

N
et

w
or

k
in

te
rf

ac
e

w
ith

of
flo

ad
 e

ng
in

e

I/Os, memories,
sensors, actuators

Node CPUs

Clock
synchronization

Te
st

 s
tr

uc
tu

re
s

R
ep

la
y

M
on

ito
rin

g

Fa
ul

t i
nj

ec
tio

n

D
eb

ug
gi

ng

N
et

w
or

k
in

te
rf

ac
e

w
ith

of
flo

ad
 e

ng
in

e

Test/Replay/
Monitoring/

Fault Injection/
Debugging Operator

Computer

Network interface

A precisely coordinated
approach to debug and
test such systems [real-
time video imaging appli-
cations] is as innovative
as promising.

!
!
!

cover feature

www.embedded.com | embedded systems design | DECEMBER 2009 23

proach to debug and test such systems
is as innovative as promising.

In telecom applications, network
interconnect is increasingly moving
from circuit switched or time division
to internet-protocol–based solutions
often relying on Ethernet network tech-
nology. At the same time, requirements
for precisely retaining systemwide
2.048-MHz or 4.096-MHz sampling
rates have to be fulfilled. IEEE 1588
clock synchronization is therefore cur-
rently built into such systems in many
places. Including IEEE 1588 would, at
the same time, enable corresponding
coordination of test and debugging
support if taken into account.

Distributed systems are also ram-
pant in industrial automation. Here,
real time is often defined with respect
to time constants of mechanical sys-
tems such as motors, which typically
are in the range of several 1 µs. As Giga-
bit network bandwidth is also begin-
ning to break into this area, CPU clock
speeds and application complexity are
very likely to be increased accordingly.

Automotive systems have just started
to step to higher bandwidth—for exam-
ple, FlexRay communication technology
with 10 Mbit/s data rate. The predicted
shift from federated toward integrated
architectures will very likely further in-
crease complexity in those systems, as
multiprocessor break-by-wire chips are
already being designed both due to relia-
bility and performance reasons. A sys-
tematic approach to debugging and test,
precisely coordinated amongst the col-
laborating embedded control units
promises to greatly ease efforts during
system bring-up as well as maintenance.

UNPRECEDENTED INSIGHT
Testing and debugging of a distributed
system is known as a complex task. The
presented solution enables the develop-
er to gain control over all the nodes in a
distributed system in a coordinated, re-
producible, and, if required, a nonin-
trusive manner. The main difference to
existing approaches is the fact that the
proposed one takes the distributed

character of the system into account.
The combination of precisely synchro-
nized clocks with hardware support for
test, replay, fault-injection, monitoring,
and debugging allows for unprecedent-
ed insights in the execution flow of dis-
tributed systems. ■

Roland Höller and Peter Rössler are re-
sponsible for R&D projects at the Univer-

sity of Applied Sciences Technikum
Wien, Austria. They’ve worked many
years in the area of ESL design, FPGA
and digital ASIC design, PCB design as
well as clock synchronization and con-
trol networks. The work described herein
receives support by the City of Vienna,
Department MA27 (grant numbers
MA27-Project 04-11 and MA27-Project
05-05) and the Austrian Research
Agency FFG (grant number 818647).

Connect with
the leader in
embedded
USB software.
Micro Digital provides integrated USB

solutions that run out of the box with our

SMX® RTOS, file system, and TCP/IP stack.

These robust, high-performance USB solu-

tions are written in ANSI-C, and can run on

any hardware platform, with SMX, another

RTOS, or stand-alone. Connect with us

today at www.smxrtos.com/usb.

Connect to:
USB disk drives

USB serial devices

USB keybds, mice, HIDs

USB audio devices

USB modems

USB printers

USB-to-Ethernet adapters

USB-to-serial adapters

USB-to-WiFi w/WEP & WPA

Look like to a PC:
USB disk drive

USB serial device

USB keyboard & mouse

Audio with MIDI

Ethernet over USB (RNDIS)

Composite devices

Multi-port serial

USB Controllers Supported:
OHCI, UHCI, EHCI, OTG

Atmel AT91 • Cirrus EP

ColdFire • Freescale i.MX

Luminary LM3S • Maxim 3421

NXP ISP, LPC • Sharp LH7

ST Micro STR7, 9, STM32

Features:
USB 2.0 compliant • Low, full

& high speed • All transfer modes

Small & fast • Easily portable

Standalone operation • Royalty-

free cap licensing • Full Source Code

www.smxrtos.com/usb

U S B S O F T W A R E L E A D E R

800.366.2491 sales@smxrtos.com

2010 EETIMES ACE AWARDS
EE Times presents The 6th Annual EETimes ACE Awards

The Annual Creativity in Electronics (ACE) Awards celebrates the creators of technology
 who demonstrate leadership and innovation in the global electronics industry and shape the
world we live in.

If you or your company has made signifi cant achievements in 2009, enter today to see if
you can become part of a prestigious group of fi nalists and winners recognized by EE Times
editors, a distinguished judging panel and the global electronics industry.

DESIGN TEAM OF THE YEAR

INNOVATOR OF THE YEAR

EXECUTIVE OF THE YEAR

STARTUP OF THE YEAR

COMPANY OF THE YEAR

MOST PROMISING NEW TECHNOLOGY

EDUCATOR OF THE YEAR

STUDENT OF THE YEAR

MOST PROMISING RENEWABLE
 ENERGY AWARD

EE TIMES ACE AWARDS 2010
Tuesday, April 27, 2010

Presented at the Embedded Systems Conference
Silicon Valley

To enter, go to
www.eetimes.com/ace

CATEGORIES

Entry Deadline – January 22, 2010
No cost to enter

CALL FOR ENTRIES

My approach to testing a graphical user interface (GUI) has always
been to find the most appropriate access point to manually inject
test cases. This article will discuss the challenges of trying to
make GUI tests repeatable, and we’ll look at a homegrown frame-
work that allows test input to be managed.

BY NIALL MURPHY

www.embedded.com | embedded systems design | DECEMBER 2009 25

GUI testing—
exposing visual bugs

GUI testing traditionally meant finding the most appropriate access point to inject test cases.
The challenge, however, is in making the GUI tests repeatable. Here’s a homegrown framework that

allows test input to be managed, replacing manual test cases.

To test a GUI, we need a framework
that gives us the ability to inject test cas-
es easily and to observe the output. Ide-
ally, in a test system, the output can be
stored, and then a subsequent test run
can be compared with a previous run to
provide regression testing. By regression
testing, we mean that we have proven
that the new version under test has not
broken anything that used to work for
the previous version.

If we consider a non-GUI issue like
message processing, you might intro-

duce a test set of messages and then the
application’s message store, or inbox, will
contain those messages. If the inbox
from one run is compared with the next,
there are two possible outcomes. The in-
boxes may be identical—this means that
the new functionality has not broken
previous features. In some cases, you
might have expected changes to result
from new functionality in the system
under test—in other words, the output
should have changed but didn’t, telling
us that the new features are not working.

feature

1209esd.p25to33_Murphy 11/30/09 2:12 PM Page 25

The second possibility is that the
outputs are different. If the inbox mes-
sages can be expressed in text format,
some text difference tool can show
those inconsistencies and the engineer
can examine them to decide if the
changes match the new functionality.
For example if an urgency field has
been added to the messages, a message
identifier might change from:

Message index:17,

message title: test_185_title

to:

Message index:17,

message title: test_185_title,

urgency: normal.

If the only changes in the output
are consistent with this, we have suc-
cessfully added the urgency feature, and
we have not broken anything else.

It would be great to apply the same
principle to graphics, but the challenge
is that the appearance of the display can
not usually be expressed in a humanly
readable text format. This means that it
is tricky to examine differences. The

output of a GUI test is the appearance
of the screen, which is a large number
of pixels, and each pixel has a color val-
ue. While a human being can view the
screen and establish if the text is read-
able and the layout conforms to re-
quirements, the job of checking if each
pixel has the correct numerical value
(or color) is a nontrivial task.

A screen-capture tool could record
the screen and a comparison tool
could simply point out if the screen-
shot has changed, and then allow the

tester to view the old and new image.
In theory this is a good approach, but
it can be very labor intensive. The rea-
son is that the number of screenshots

for a GUI can be very high. Usually it
is desirable to capture the screen after
every user event (such as button
press), or external event (some alarm
condition occurred). Unfortunately
one global change can cause a change
to all of those screenshots. For exam-
ple, changing the default font, or back-
ground color, or making the margin at
the left of the screen a little wider, will
cause a change in every screenshot that
has been gathered.

Commercial tools are available to
help automate the process just de-
scribed, and while I would not discour-
age their use, be aware that in this con-
text, automated testing does not mean
labor-free testing. The other restriction
of these tools is that they need access to
the GUI’s frame buffer, so a certain
amount of integration between your
system and the test tool is required. The
amount of effort required to get the
tool up and running will depend on
your operating system and hardware
platform.

At the other extreme, all tests could
be manual, where the test document in-
structs the tester to press certain but-
tons in a certain order, and then ob-
serve the results. While this approach
does not require any code to be written,
it is extremely weak for a number of
reasons. One is that it is very time con-
suming for the tester to read instruc-
tions before each button press. If the
tester makes a mistake, he will most
likely have to restart a sequence. At the
end of a sequence, if the output is not
correct the tester will be left wondering
if the test failed because of a bug or be-
cause they might have pressed the
wrong button without realizing it, so
they may run the sequence again just to
be sure.

An even bigger disadvantage is that
you can not call specific functions using
the method above. In some cases you
may want the tester to press on a but-
ton, then simulate some external event
that causes an alarm to appear on the
display and then get the tester to release
the on-screen button. These are the sort

26 DECEMBER 2009 | embedded systems design | www.embedded.com

feature

These are the sort of sce-
narios that often expose
bugs, but exact sequence
or timing requirements
may be impossible for a
human to reproduce.

!
!
!

The first step of the test creates a button.

Figure 1

1209esd.p25to33_Murphy 11/30/09 2:12 PM Page 26

of scenarios that often expose bugs. But
scenarios that have exact sequence or
timing requirements may be impossible
for a human to reproduce.

Similarly if the test requires that an
on-screen event happens at an exact x,y
location, the tester cannot guarantee
that that acted on the exact required lo-
cation, especially on a touchscreen with
no visible mouse.

Finally, testing the system with no
access to the code means that the test
can not access internal data structures
at the end of the test to check if they
have the correct values. The tester
might be able to observe on-screen or
external state, but they have no visibili-
ty of the state changes internal to the
software that occurred during the test.

ROLL YOUR OWN
A simple test framework can exercise
test cases in your GUI. These test cases

feature

www.embedded.com | embedded systems design | DECEMBER 2009 27

The second step of the test suite shows the font size being changed.

Figure 2

1209esd.p25to33_Murphy 11/30/09 2:12 PM Page 27

can not be fully automated, because a
human observer must confirm the ap-
pearance of the GUI. They allow the
tester to run them in a reasonably effi-
cient fashion, and they make it straight-
forward to ensure that one test run is
consistent with the previous run.

There are two levels of testing that
are of concern when you build a GUI.
One is the low-level graphical opera-
tions accessible via a function call, for
example drawing a line in a particular
color. The second type of testing is
where you want to simulate events that
occur on the finished product. Much of
this involves simulating mouse/touch
events on the screen, or simulating ex-
ternal events such as changes to the
analog or digital input lines. We will
look at each of these situations in turn.

TESTING LOW-LEVEL GRAPHICS
In many modern GUIs, the low-level
graphics primitives are provided by a
graphics library, so the issue of testing
this portion of the software may al-
ready be taken care of by the company
providing the library. Even if you are
using a well-established product, you
may choose to write tests for some
portions of it.

Of course, if you are creating and
selling a library, then you need a test in-
frastructure to test the whole library,
and being able to repeat the tests will be
important at each release.

At www.panelsoft.com/GUItesting.
htm you find an executable that runs a
few simple tests of a button object. The
executable runs on a Windows PC, and
simulates the type of testing you can

perform on an embedded GUI, using
an RS232 port as a means of getting test
information out of the system. Each
step of the test performs some small
change on the GUI and either the test
code or the tester checks that the ap-
propriate change has happened.

For almost all graphics projects,
there are huge advantages to making
the system work on a desktop computer
as well as on the target. All commercial

embedded GUI libraries support this
arrangement. This applies to the final
product code, but it also applies to the
test code. The tests can be developed far
more quickly on the PC with a simulat-
ed display. The completed tests are then
run on the target system, which will
uncover any problems that arise on the
target that were not an issue on the PC.
The PC simulation and the target dis-
play should be pixel-for-pixel identical
in theory, but you can still get bugs that
occur on the target, but not on the PC.
Problems with running out of memory
or timing issues are possible sources of
trouble. Also the PC is likely to be driv-
en by a mouse, while the target may use
a touchscreen. This difference might
disguise some problems on the PC.

STEP BY STEP
The demo test does a few very simple
checks on the functionality of the but-
ton object in the system under develop-
ment, but for the purposes of this ex-
ample, we are not concerned with
whether the button is being fully tested.
We are more concerned with exploring
the test harness that makes it possible

to manage lists of these tests. Once the
harness is in place, it provides a home
for tests to be added, for new features,
or in response to bugs.

How the harness is coded will de-
pend on the communications mecha-
nism available, but a serial port is typi-
cal. At each step some test code is run
and the tester is prompted to check the
display for certain properties. The ex-
ample test code tests a button object,
and Figure 1 shows the state at the end
of the first step, which simply tests the
construction of a button object.

A step like this requires the tester to
confirm that the button is visible and
its text is readable. The test code will
often check internal values. For exam-
ple a call to the button’s getText()
function could be checked to see if it
returned the string “Press me”. The ad-
vantage of these checks is that they do
not require any human interaction and
so do not add to the test time.

Pressing ‘Return’ on the RS232 in-
terface (probably using a terminal emu-
lator program on a PC) will advance to
the next step. Figure 2 shows this dis-
play after the tester has advanced to the
next step. This step modified the font
used in the object that has already been
created. Changing the appearance in
each small step allows the tester to ob-
serve if an operation that changes the
object has the desired effect.

The level of detail of the instruc-
tions given to the tester will vary. One
of the tricky things to check is the coor-
dinate system. If this test places the but-
ton at position 52, 26, it’s desirable to
measure the distance from the top, or
left, of the display to the button. Even if
the pixels were large enough to be indi-
vidually counted, checking 52 of them
would be tedious and error prone. One
approach is to get the test code to draw
a horizontal line 52 pixels from the top
of the screen and then observe if the
line is aligned with the edge of the ob-
ject under test, as shown in Figure 3.

Of course drawing guidelines as-
sumes that the lines will come out in
the correct position. So this test would

28 DECEMBER 2009 | embedded systems design | www.embedded.com

feature

For almost all graphics
projects, there are huge
advantages to making
the system work on a
desktop computer as well
as on the target.

!
!
!

Guidelines confirm the button is in
the correct position.

Figure 3

1209esd.p25to33_Murphy 11/30/09 2:12 PM Page 28

catch a positioning bug that is specific
to the button, but it would not catch
the case where all x positions were in-
correct by 3 pixels. In practice, you will
want to do some position checks, but it
is too labor intensive to add guidelines
for every positioned object, and so once
the coordinate system is tested enough
to be considered trustworthy, the test-
ing effort can move elsewhere.

If the test is initially run on a PC, a
number of options are available, that
might not be possible on the target.
One is to do a screen capture and paste
the screen into a drawing tool. Most
drawing tools will report the position
of the cursor as an x,y position and so
you can measure the distance, in pixels,
between any two points in the captured
screenshot. Figure 4 shows an example
using Paint Shop Pro.

Once you have done a screen cap-
ture, you also have the chance to zoom
in to examine the details. This is espe-
cially useful if the screen is of high res-
olution and subtle details, like anti-
aliasing at the edge of letters can not be
easily seen with the naked (and some-
times aging) eye. Figure 5 shows how
zooming in allows us an up close view
of the anti-aliasing being applied. Part
(a) shows no anti-aliasing. When this is
rectified, part (b) shows the edges being
anti-aliased. The color choices for the
softening of the edges are not ideal, and
this is due a limited color palette. If this
is rectified in software, the changes to
the edges of the letters would be quite
subtle, and zooming would be vital to
examine the change.

A typical PC simulation copies the
target screen pixel for pixel. On some
projects, I have modified the simula-
tion to allow an option of doubling the
number of pixels in the horizontal and
vertical directions. This effectively is a
200% zoomed view of the target and
can be very useful when examining the
details.

CODE ORGANIZATION
A good test harness must make it easy
to insert and remove tests. Each set of

tests should be runnable independent
of the last set, to allow them to be run
in reasonable size chunks. For exam-
ple, all of the button tests might be
built as one executable, and so they
can be run completely independent of
the slider tests. This means that a
problem with the button tests will not
impact the slider tests. Within the suite
of tests for button, sectioning the
numbers as 1.1, 1.2, 1.3, and so forth,

and then another section as 2.1, 2.2,
etc., will allow a new test to be added
without having to reorder every fol-
lowing test. In theory you could have

used the rule that new tests must al-
ways be added at the end, but in prac-
tice, previous tests often set up the
right state in which you can best run
the new test, so the best place for a
new test might be just after some
closely related test that has set the
right conditions.

There will often be a bit of code
that must be run before or after each
test—sometimes a function to refresh
the display, or to flush all pending
events is required. Also, during devel-
opment, you want a lot of control over
which tests are run and in what order.
For example, if I am having trouble
with test 4.16, I may want to run that
test several times, making alterations
each time, but I do not want to run
every preceding test each time. To
achieve this, I want to temporarily
disable all the tests before 4.16. In
some cases, I will want to keep any
tests that set up the conditions re-
quired for test 4.16.

These requirements lend them-
selves to a structure where each test

feature

www.embedded.com | embedded systems design | DECEMBER 2009 29

Previous tests often set
up the right state . . . the
best place for a new test
might be after some
closely related test that
has the right conditions.

!
!
!

The dimensions of the selection box are shown in the bottom border,
which tells us that the top left corner of the button is in position 52, 26
on the simulated screen.

Figure 4

1209esd.p25to33_Murphy 11/30/09 2:12 PM Page 29

step is a function and a table of point-
ers to functions dictates the order in
which they will be called. Commenting
out some portions of the table allows a
bunch of tests to be temporarily dis-
abled. Part of the array might look like
Listing 1.

Each function name in the list rep-
resents a step of the test. Note that the
ButtonClick part requires two entries
in the table. This is because the har-
ness progresses to the next step each
time the tester presses return and
some tests require more than one press
of the return key to check all parts. In
this case there is a setup step and a
check-at-end step. Most of the time, it
is a purely semantic issue whether
such setup and check pairs are consid-
ered to be two parts of one test or
whether they are considered to be two
tests that have a dependency on each
other.

EVENT CHECKING
In the case of the button test, the reason
two steps are required is that at the first
step, the tester is prompted to click on
(or touch) the button, and then on the
second step the test code confirms if the
tester did in fact click on the button.
For this to work, the first step has to set
up the button’s event handlers in such a
way that the click is recorded in some
boolean flag. In the second step, the flag
is checked. If it is still false, the event
never registered. Either the tester did
not follow the instructions, or the event
handling has a bug.

If you run the demo executable,
and if you do not click on the button
when instructed, the next step will
print a failure message. Because the
event handler also prints a message to
the serial port, the tester could have
just observed that there was a response
to the event. However checking a flag

means that there is less reliance on the
tester and therefore less opportunity
for human error.

A similar approach should be tak-
en to any other objects that the tester
manipulates. If the tester is instructed
to move a slider to its maximum, the
tester can be instructed to check the
on-screen value of the slider, and the
test code can also query the internal
stored value. Both checks are necessary
to ensure the object is storing and dis-
playing its value correctly.

THE BIG PICTURE
Most of the discussion so far has as-
sumed that individual graphical ob-
jects are being tested. In many cases,
the underlying objects are trustworthy,
but the application logic needs to be
tested. I generally use the same test
harness to test the application, but in-
stead of calling individual functions of
the object’s interface, I fake
mouse/touch events or eternal events
that have an impact on the appearance
of the interface, such as an alarm. Oth-
er external stimulation might be a
varying analog signal that is being
graphed on the GUI.

Simulating the external data some-
times means replacing a function such
as readAnalog() function with code
that accesses a table of test data in-
stead of the analog hardware.

Creating false button presses is
sometimes more challenging than you
would think. If there are 10 buttons on
the display, the test code may not have
pointers to those objects. The only
pointer to them might be inside the
window, or group, object that contains
them, and since that window contains
many other objects, it might not be
trivial to query the window for the
specific button that you require.

In some cases, the creation order
of the objects is known. For example,
the test author might know that the
fifth object created within a window is
the button the required for the test. So
the test code iterates through the list of
buttons contained by the window until

30 DECEMBER 2009 | embedded systems design | www.embedded.com

feature

Creating false button
presses is sometimes
more challenging that
you would think. If there
are 10 buttons on the
display, the test code
may not have pointers to
those objects.

!
!
!
!

Zooming in on (a) shows that antialiasing is not being used, and (b)
shows that it is.

Figure 5

(a) (b)

Listing 1

typedef void (*TestFn)(void);

TestFn TestList[] = {

TestCreateButton,

TestFontSize,

TestButtonClick1,

TestButtonClick2,

NULL

};

1209esd.p25to33_Murphy 11/30/09 2:12 PM Page 30

it reaches the fifth one. This approach
is not entirely satisfactory, since minor
changes to the order of construction
will break the test.

Some libraries will allow you to
seek a button without knowing the
pointer. For example the PEG library
allow an identifier, which is an integer,
to be associated with any object. A
find() function is available in the top
level window, which will recursively
search all windows to locate the object
with the a matching identifier. This is
better than the previous approach, but
still has weaknesses. One is that the
identifiers are not necessarily unique, so
two buttons in two different windows
might have the same identifier. The sec-
ond problem is that it only locates ob-
jects that are on the display. The test
code may need to access an object be-
fore it becomes visible, in order to alter
some of its properties.

Another approach that doesn’t re-
quire pointers to the button objects, is
to generate mouse/touch events at a
low level, and the x, y, position of those
events is set to correspond to the posi-
tion of the required button. This has
the drawback that changing the posi-
tion of a button means that the test
might not work as expected.

While I would not recommend this
method for all testing, there are some
cases where generating low-level
mouse/touch events are ideal. If you
want to test what happens when you
touch the edge of the button, specify-
ing the x,y position allows you to sim-
ulate a user’s touch on an exact loca-
tion that sits on the button’s border.
Note that this is something that would
be impossible for a human tester to do
on a touchscreen, since the human fin-
ger is just not that accurate. Another
example of a test that suits this
method is where you simulate a press-
down event inside the button and a re-
lease event outside the button.

If you plan for it early in the devel-
opment cycle, the buttons and other
objects required for testing can be reg-
istered with the test harness, using

some enumeration type to index them
in a table, which will make them al-
ways accessible to the test code. This
registration step is often conditionally
compiled code within the application
itself. Adding code to the application
in order to allow the test harness to
work is not ideal, since it can make the

build process more complex, but in
this case it may be justified if it means
that we get a clean mechanism for fak-

ing button events.
At this point you might be thinking

that faking button presses might be
more trouble than it is worth. If the
tester has to press return at the end of
each step, why not let the tester press
the button on the GUI and avoid the
need to generate button events from
the test code. In practice, it would be
very difficult to get the tester to follow
an exact sequence of button presses. In
many cases the test may require multi-
ple buttons for one step—the interme-
diate states in the GUI may already
have been tested, so the goal is to check
the final state that resulted from many
user events.

SHOWING ALL STRINGS
A test suite that displays all test strings
is very useful, especially if the GUI is
going to be translated into foreign lan-
guages. Each step of the test navigates
to a different state, or changes some

feature

www.embedded.com | embedded systems design | DECEMBER 2009 31

This has the drawback
that changing the
position of a button
means that the test
might not work as
expected.

!
!
!

Part (a) looks fine but changing the background colors in (b) reveals
that the address field is too wide and overlaps with the neighboring
icon.

Figure 6

(a)

(b)

1209esd.p25to33_Murphy 11/30/09 2:12 PM Page 31

external condition to display a string
that has not been seen before. Of
course, there are many strings that get
seen at multiple steps of the test. The
‘OK’ string in one of your buttons
might be visible at almost every test
step. The serial port output of each
step should identify which of the
strings on the display have not already
been viewed on a previous step.

Once you have a test that displays
all strings, you can be confident that
you will catch any strings that are too
long to fit in the space allocated to
them on the screen. When the product
has been translated into a foreign lan-
guage, the same test can be run to en-
sure that the translated strings do not
overflow the areas that were sufficient
in the English version.

If all translated strings can be gen-
erated in a simple list, I usually print
out that list and tick off each string
as it is viewed in the test, so that at the
end, I can tell at a glance if there is a
translated string that did not get
tested.

MEMORY MANAGEMENT
Some GUI libraries use the heap and
some do not. A major concern is
whether use of the GUI library leads to
any memory leaks. Letting a GUI run
for days, and checking memory con-
sumption occasionally, does not really
stress the heap. If there is a memory
leak, it is caused by the response to a
particular event. So the key to testing
the heap is to measure heap size and
drive a sequence of events, and then at
the end of that sequence, check if the
heap has grown.

So the memory management test
should start at some neutral state,
where there are no outstanding events
on the GUI. Then the test code should
navigate through every screen, trigger
every conceivable event, and then nav-
igate back to its starting position. The
external events may be things like
alarms that cause a warning to popup
on the display, or anything else that
leads to GUI interaction.

When the test code arrives back at
the starting state, there should be no
partially processed events. Any win-
dows that were opened should be
closed. Any alarms that were raised
should be cleared. At this point, the
heap size should be exactly the same as
it was at the start. If not, you should
suspect a leak.

Be aware that in some designs ob-
jects will consume space the first time
they are used. For example, the first
time an alarm occurs, space might be
allocated for the alarm message. All
following occurrences then use that
same piece of storage. So one sequence
through the test will result in a heap
that is bigger at the end than it was at
the start. For this reason, I prefer to
run this sequence twice. I ignore any
heap growth on the first run of the
test, but the second run should not
cause any further growth.

If there is growth in the heap, this
test may detect it, but it does not iden-
tify the exact cause. There is further
discussion of how to pinpoint the
cause of a memory leak in my “More
on Memory Leaks” article.1

LOGGING AND PACING
Many types of applications lend them-
selves to test-by-log-file, where a test is
stimulated and as the application per-
forms actions, they are also logged to a
file, or transmitted on a serial port.
Generating the log file depends on the
application including a logging fea-
ture, which might be conditionally
compiled. Following the test, examina-
tion of the log file will indicate if the
correct actions took place. This is par-
ticularly useful if the actions are diffi-
cult to observe externally. On a GUI,
by definition, almost everything is vis-
ible externally and log files are not
used very much.

There are a few cases where I have
found logging revealed things that
would have been difficult to spot on
the display. A log file that records each
item drawn on the display makes it
possible to see the order in which they
were drawn, and also if an item was
drawn twice. It is not unusual to have
a bug in a GUI that leads to part of the
display being updated twice. Such a
bug is relatively harmless, but it is a
waste of CPU cycles to draw the same

32 DECEMBER 2009 | embedded systems design | www.embedded.com

feature

Any windows that were opened should be closed. Any
alarms that were raised should be cleared. At this point,
the heap size should be exactly the same as it was at
the start. If not, you should suspect a leak.

!
!

1209esd.p25to33_Murphy 11/30/09 2:12 PM Page 32

items more than once. Since the final
state of the GUI is the same, a tester
might not spot this. However if a log
file is examined and it states that cer-
tain items were drawn more than once
then the problem can be identified.

Another way to detect the same
style of problem is to deliberately slow
down the GUI. Add a delay in some
low-level drawing routine and the
whole GUI will move in slow motion.
You will see the display being gradual-
ly built up as different elements are
drawn. If an item is drawn, then
erased, and then drawn again, you will
see this happen.

Another common flaw that is ex-
posed by this technique is where one
component is drawn but then com-
pletely covered by some overlapping
objects. Since there was no benefit in
drawing the elements that get covered,
the software could be optimized to re-
move that step.

A second method for slowing
down the GUI is to disable the clock
that drives the on-screen events. Each
time the tester presses return, the clock
is advanced a few ticks. I have found
this very useful when testing wave-
forms that are tracking some analog
input, such as an oscilloscope display.
Running at full speed, it is difficult to
observe the changes from one tick to
the next. By freezing the clock, the
waveform can be observed as it ad-
vances from one sample to the next on
each press of the return key.

BORDER CROSSINGS
The alignment of objects and whether
they overlap is often only visible if the
borders of the object are visible. In
many cases those borders are deliber-
ately invisible. For example a piece of
text will often not show its bounding
box. A bitmap can use the back-
ground color so that it floats on the
background instead of appearing as a
rectangle.

For test purposes, seeing those
boundaries is important if we want to
ensure objects do not overlap. Fields

that vary in length, such as names and
addresses entered by the user, might
look OK when the data is short, but
cause problems if the field is filled
completely. Figure 6 illustrates this as
one of the text fields will overlap with
an icon if the text field is completely
filled.

Changing a few of the background
colors in a test build will often make
these issues visible. You do not want
to scatter conditionally compiled
background definitions throughout
your code. However, if all of your col-
or definitions are arranged in one

header file, changing the definition of
the most common window back-
ground may show up most of the ob-
jects of interest.

BUGS VERSUS TASTE
One of the challenges of interpreting
test failures is distinguishing between
outright bugs and issues that might be
open to interpretation or taste, such as
usability issues. One tester might con-
sider a screen to be perfect while an-
other tester might consider it difficult
to read because of font size or difficult
to understand because of poorly
worded text. Other usability issues
such as size or position of buttons
may also be open to debate. These
subjective failures may be rejected by

developer on the grounds that the
software was still meeting its explicit
requirements.

It is important to have a process in
place that allows these issues to be re-
solved. The process might state that no
usability issues are to be addressed at
the test phase, or it might state that the
project leader will arbitrate if the tester
and developer cannot agree if a partic-
ular test has failed, or you could hand
all power to the tester and allow him
to fail any test where he thinks the
look of the GUI might not meet cus-
tomer expectations. As long as the
process is understood by all sides, it
can avoid endless debate between de-
velopers and testers.

FIRST IMPRESSIONS,
LASTING IMPRESSIONS
Testing the visual elements of your
GUI is vital because the GUI forms
the customer’s first impression of the
product and any quality issues in the
GUI will be interpreted as quality is-
sues for the whole product. Different
areas of software will always require
some tweaking of the test methods
employed to maximize the number of
bugs caught, and hopefully some of
the techniques shown here will help
you track down a few extra GUI bugs.

■

Niall Murphy has been designing user
interfaces for over 14 years. He is the
author of Front Panel: Designing Soft-
ware for Embedded User Interfaces.
Murphy teaches and consults on build-
ing better user interfaces. He welcomes
feedback and can be reached at nmur-
phy@panelsoft.com. His web site is
www.panelsoft.com.

ENDNOTES:
1. Murphy, Niall. “More on Memory Leaks,”

Embedded Systems Programming, April
2002, available on-line at www.embedded.
com/story/OEG20020321S0021

www.embedded.com | embedded systems design | DECEMBER 2009 33

feature

Running at full speed,
it’s difficult to observe
the changes from one
tick to the next. By
freezing the clock, the
waveform can be
observed as it advances
from one sample to the
next on each press of the
return key.

!
!
!
!
!

1209esd.p25to33_Murphy 11/30/09 2:12 PM Page 33

34 DECEMBER 2009 | embedded systems design | www.embedded.com

BY RICHARD NASS

The imaging and
telephony functions

were up to snuff.
The UI left a little

to be desired.

Blackberry Storm
has some good

qualities, and some
not so good

The BlackBerry Storm came out not too long
after I purchased my Blackberry Curve. Like
lots of the latest consumer electronics de-
vices, you’re always hesitant to jump in and
make a purchase, because you know your

device will be trumped by something cooler in a very
short time.

That was the case with my Curve, but not exactly. Shortly after I ac-
quired my Curve, the Storm crossed my desk, as the object of a Tear
Down. My first inclination with a Tear Down is to try the device out for
a while, to get a feel for the user experience. In this case, it was to see
what I was missing out on.

To my surprise (and delight), I found out that the Storm doesn’t have
a better user experience. In fact, I like my Curve better. The biggest rea-
son for that is the touch interface that accompanies the Storm. I found it
quite difficult to press the right buttons. I may have big fingers, but
they’re not so big that I should have that much trouble with the interface.

Being the engineer that I am, I decided not to let that one design
flaw completely ruin the user experience, although it was hard to get

tear down

www.embedded.com | embedded systems design | DECEMBER 2009 35

passed that point. I found that as a
telephone, the Storm worked really
well. And that’s an important compo-
nent, although I use the phone more
for e-mail and texting than I do as a
phone (nobody calls anybody any-
more, do they?).

The second feature I found to be
quite attractive was the imaging quali-
ty, both for still images and for video.
So that’s where my Tear Down start-
ed. I wanted to find out what was the
cause of those qualities that I found to
be so appealing.

The sensor that’s in the Blackber-
ry Storm is from OmniVision Tech-
nologies, the OV3647. It’s a low-pow-
er, low-cost CMOS image sensor.
Containing a parallel interface as well
as a mobile digital display interface
(MDDI), the sensor has a resolution

of 3 Mpixels running at 15 frames/s. It
has embedded phase-locked loop
(PLL) and can be embedded into a
module that’s 7 by 7 by 5 mm, as is
the case in the Storm. It has an em-
bedded 1.5-V regulator for operation
at full power, but the core power is
about 1.4 V.

The OV3647, which is related to
the sensor in RIM’s Blackberry Curve
handset (the OV2640), supports a raw
RGB output format, image sizes of
QV-XGA and XGA, and has a pro-
grammable frame rate. Image quality
controls like lens correction, auto ex-
posure, auto gain, auto balance, and
defect pixel canceling help enhance
the images, along with support for
LED and flash-strobe mode.

One of the unique features of the
OV3647 is that it contains Qual-

comm’s proprietary MDDI. This is a
key differentiator because it provides
a proven solution for the interconnect
challenge provided by the hinge in a
flip (clamshell) phone. This reduces
the wire cost, and ultimately reduces
the overall system cost.

According to the engineers at
OmniVision, the interface also helps
reduce the EMI in the differential sig-
naling protocol. This, in turn, elimi-
nates the need to use a parallel port
where you’ve got eight data bits
swinging at 1.8 V with a clock and
two syncs signals.

While the Storm obviously doesn’t
employ a clamshell design, the EMI is
reduced nonetheless. Qualcomm sup-
ports MDDI on most of its newer chip
sets. Hence, it gives OmniVision easier
entry into a Qualcomm design.

tear down

While the phone was designed by
RIM, the designers at OmniVision
were involved in integrating the sen-
sor into the handset. This process oc-
curred about 18 months ago.

While it’s obviously a hardware
integration, there were some software
issues that OmniVision had to iron
out with RIM, like which settings
should be used. OmniVision’s applica-
tions team worked hand in hand with
RIM to get the best image quality, res-
olution, etc. That led to OmniVision
doing some scripting for the Storm and
tuning the image parameters, like the
lens correction and the defect correc-
tion, so the image looks the best regard-
less of temperature. The OmniVision
developers also had to ensure that they
provided the modes for all image sizes.

THE MAKINGS OF A WORLD
PHONE
The power amplifier (PA) in the Storm

is a Wideband CDMA HSPA UMTS
model, the AWT6241, from Anadigics.
The device provides the amplification
for the phone’s 3G mode. This particu-
lar model is a world phone that runs on
Verizon’s CDMA network in the U.S. It
enters roaming mode while in Europe,
taking advantage of a GSM /EDGE
power amplifier.

RIM chose the AWT6241 because
of its high efficiency and high output
power. The device is part of Anadigics’

third-generation High-Efficiency, Low-
Power (HELP3) product line. It’s real
claim to fame is its low quiescent cur-
rent and the high efficiency at backed-
off power. The result is a longer battery
life, which is essential in a device like
that Storm that contains a touch screen,
a web browser, an e-mail client, and lots
of other bells and whistles.

“For the IMT band, the 6241 is
compatible with the Qualcomm chip
set which is really the heart and soul of
the Storm,” says Bruce Webber, director
of marketing for Anadigics’ wireless
products. “Sometime next year, we’ll
have our fourth generation HELP parts,
which offer even further improvements
in efficiency and quiescent current.”

Note that in the design of a hand-
set, there are some shortcuts you can
take, and others you should avoid.
Handsets are obviously space-con-
strained, and designers would prefer to
use a single-sided board rather than a
double-sided board.

Webber says, “One of the things
we’ve seen is that the continuing drive
to reduce board area and BOM costs is
causing people to leave out matching
components. They’ll try to do a one- or
two-component match and sometimes
that’s not ideal. You need to leave your-
self enough flexibility to match the
power amp to the duplexer that’s select-
ed for best power output efficiency.
Otherwise you can end up having prob-
lems with linearity or even oscillation
under some circumstances.”

Anadigics provides reference de-
signs for many of its parts. And the
company is quick to point out that de-
signers shouldn’t get too hung up on
saving components at the expense of
good matching between the compo-
nents and the RF subsystem. Because
that’s where you can achieve the high
efficiency, good linearity, and low spu-
rious emissions, while simultaneously
resulting in good RF performance.

“The end user might not be aware
of all the stuff that goes on inside, but
they certainly know when a call gets
dropped,” adds Webber. ■

36 DECEMBER 2009 | embedded systems design | www.embedded.com

The Blackberry Storm employs a Wideband CDMA HSPA UMTS
power amplifier, the AWT6241, from Anadigics. This part allows the
phone to be used in most regions throughout the world.

Figure 1

Designers shouldn’t get
too hung up on saving
components at the
expense of good matching
between the components
and the RF subsystem.

!
!
!

www.embedded.com | embedded systems design | DECEMBER 2009 37

Advertiser URL Page
ARM/KEIL KEIL.COM .10
ARROW WWW.ARROWAC.COM/CREE .15
EXPRESS LOGIC WWW.RTOS.COM .C4
FUTURE ELECTRONICS WWW.FUTUREELECTRONICS.COM/VIDEO TOUR .21
GEIST TECHNOLOGY GEISTTEK.COM .37
GREEN HILLS SOFTWARE INC WWW.GHS.COM .1
HANSOFT AB WWW.HANSOFT.SE .27
MENTOR GRAPHICS WWW.MENTOR.COM/EMBEDDED .CV3
MICRO DIGITAL WWW.SMXRTOS.COM/USB .16
MICROCHIP WWW.MICROCHIP.COM/PIC KIT3 .2
MOUSER ELECTRONICS WWW.MOUSER.COM .4/6
NATIONAL INSTRUMENTS NI.COM/EMBEDDED .8
NUMONYX WWW.NUMONYX.COM/EMBEDDED .13
SMART BEAR SOFTWARE WWW.CODEREVIEWBOOK.COM .37
TECH TOOLS WWW.TECH-TOOLS.COM .37
TECHNOLOGIC SYSTEMS WWW.EMBEDDEDARM.COM .14
TEKTRONIX WWW.TEKTRONIX.COM/THESOLUTION .18

ad index

EMBEDDED SYSTEMS MARKETPLACE

Let us Web Enable your gear.

Tired of traveling to check on your remote sites?
Need to add web access to your products?

· Get to market in weeks not months
· Let us do the design work for you
· We are experts in control and data acquisition
· Set alarms, get alerts via SNMP and email
· We have field proven hardware and software

From Web Enabling power control products to monitoring
climate conditions at remote sites, we get products

online in record time.

Contact us for this free book at (512) 331-8676 or Book@GeistTek.com

Free Book!Visit GeistTek.com to learn more

38 DECEMBER 2009 | embedded systems design | www.embedded.com

Programming quotations

Jack G. Ganssle is a lecturer and consultant on embedded
development issues. He conducts seminars on embedded systems
and helps companies with their embedded challenges.
Contact him at jack@ganssle.com.

O death, where is thy sting?
O grave, where is thy victory?

Those words ring with Shakespeari-
an power. Hamlet? King Lear? Ac-
tually, the quote comes from the

New Testament.
I image the Bible is the most-quot-

ed book of all time. My parents would
paraphrase a parable or cite a verse to
make a point or correct our behavior.
The nuns at St. Camillus did, too, and a
sure way to curry favor with them was
to quote chapter and verse. Even the
most secular couples often use 1
Corinthians 13 in their weddings.

The world abounds in aphorisms
that convey wisdom to the young, al-
though that advice is usually ignored.
Many aphorisms are by unknown au-
thors: “A stitch in time saves nine” (al-
though anyone who has repaired a sail
knows that one stitch can actually save
9,000). “People who live in glass houses
shouldn’t throw stones.” And many wit-
ty people have contributed their own,
like this gem from Mae West: “Lead me
not into temptation; I can find the way
myself.”

Pithy quotes and aphorisms can en-
tertain and instruct. Often they do
both.

Engineers can turn a clever phrase
as well as Mae West. I’ve collected quips
that relate, sometimes unintentionally,
to development for many years. Here’s
some of the best:

Testing by itself does not improve soft-
ware quality. Test results are an indica-
tor of quality, but in and of themselves,
they don’t improve it. Trying to im-
prove software quality by increasing the
amount of testing is like trying to lose
weight by weighing yourself more of-
ten. What you eat before you step onto
the scale determines how much you will

weigh, and the software development
techniques you use determine how
many errors testing will find. If you
want to lose weight, don’t buy a new
scale; change your diet. If you want to
improve your software, don’t test more;
develop better.

—Steve McConnell

Programming can be fun, so can cryp-
tography; however, they should not be
combined.

—Charles Kreitzberg and
Ben Shneiderman

The sooner you start to code, the longer
the program will take.

—Roy Carls

Our developers never release code.
Rather, it tends to escape, pillaging the
countryside all around.

—The Enlightenment Project

Perl is the crystal meth of program-
ming: it’s so incredibly useful when you
need to do a large amount of work in a
small amount of time that you tend to
overlook the fact that it’s basically pre-
cipitating the implosion of your vital
organs.

—Dan Martinez

Programmers are the tools for convert-
ing caffeine into code.

—Unknown

If you lie to the compiler, it will get its
revenge.

—Henry Spencer

There are only two industries that refer
to their customers as users.

—Edward Tufte

Einstein argued that there must be sim-
plified explanations of nature, because

By Jack G. Gansslebreak points

Documentation is a love letter
that you write to your future self.

—Damian Conway

www.embedded.com | embedded systems design | DECEMBER 2009 39

God is not capricious or arbitrary. No
such faith comforts the software engineer.

—Fred Brooks, Jr.

To iterate is human, to recurse divine.
—L. Peter Deutsch

Good judgment comes from experi-
ence, and experience comes from bad
judgment.

—Fred Brooks

There are two ways to write error-free
programs; only the third works.

—Alan J. Perlis

When Leo Tolstoy wrote Anna Karenina,
he could have been thinking about cubi-
cles: “there are no conditions of life to
which a man cannot get accustomed, es-
pecially if he sees them accepted by
everyone around him.”

—Leo Tolstoy

The real value of tests is not that they
detect bugs in the code but that they de-
tect inadequacies in the methods, con-
centration, and skills of those who de-
sign and produce the code.

—C.A.R. Hoare

The most important single aspect of
software development is to be clear
about what you are trying to build.

—Bjarne Stroustrup

Most of you are familiar with the virtues
of a programmer. There are three, of
course: laziness, impatience, and hubris.

—Larry Wall

I did say something along the lines of C
makes it easy to shoot yourself in the
foot; C++ makes it harder, but when you
do, it blows your whole leg off.

—Bjarne Stroustrup

There are two ways of constructing a
software design. One way is to make it so
simple that there are obviously no defi-
ciencies. And the other way is to make it

so complicated that there are no obvious
deficiencies.

—C.A.R. Hoare

Any fool can use a computer. Many do.
—Ted Nelson

Trying to outsmart a compiler defeats
much of the purpose of using one

—Brian W. Kernighan and
P. J. Plauger

UNIX is simple. It just takes a genius to
understand its simplicity.

—Dennis Ritchie

Putt’s Law: Technology is dominated by
two types of people—those who under-
stand what they do not manage and
those who manage what they do not un-
derstand.

An organization that treats its program-
mers as morons will soon have pro-
grammers that are willing and able to
act like morons only.

—Bjarne Stroustrup

Theoretically, software is the only com-
ponent that can be perfect, and this
should always be our starting point.

—Jesse Poore

If the code and the comments disagree,
both are probably wrong.

—Norm Schryer

Always code as if the guy who ends up
maintaining your code will be a violent
psychopath who knows where you live.

—Damian Conway

Documentation is a love letter that you
write to your future self.

—Damian Conway

If you think good architecture is ex-
pensive, try bad architecture.

—Brian Foote and Joseph Yoder

Theory is when you know something,
but it doesn’t work. Practice is when
something works, but you don’t know
why. Programmers combine theory
and practice: nothing works and they
don’t know why.

—Unknown

If the code and the comments dis-
agree, then both are probably wrong.

—Unknown

Those who want really reliable soft-
ware will discover that they must find
means of avoiding the majority of
bugs to start with, and as a result, the
programming process will become
cheaper. If you want more effective
programmers, you will discover that
they should not waste their time de-
bugging, they should not introduce the
bugs to start with.

—Edsger Dijkstra

In theory there is no difference be-
tween theory and practice. In practice
there is.

—Yogi Berra

For a successful technology, honesty
must take precedence over public rela-
tions for nature cannot be fooled.

—Richard Feynman

One of the main causes of the fall of the
Roman Empire was that, lacking zero,
they had no way to indicate successful
termination of their C programs.

—Robert Firth

Hofstadter’s Law: It always takes longer
than you expect, even when you take
into account Hofstadter’s Law.

Always code as if the guy
who ends up maintaining
your code will be a violent
psychopath who knows
where you live.

!
!
!

PHP is a minor evil perpetrated and
created by incompetent amateurs,
whereas Perl is a great and insidious
evil, perpetrated by skilled but pervert-
ed professionals.

—Jon Ribbens

If you want a girlfriend, avoid working
in the computer games industry like the
plague. If you work seven days a week,
15 hours a day for almost two years,
with barely enough time for a pint, you
have no time whatsoever for relation-
ships. Plus computer-games makers are
regarded as being about as hip and cool
as abattoir workers.

—Toby Gard

Your problem is another’s solution;
your solution will be his problem.

—Unknown

Embedded lines of code are growing
26% annually but developers are in-
creasing by 8%.

—Venture Development Corporation

Productivity can decrease by as much
as 25% when workers put in 60+ hour
weeks for a prolonged time. And,
turnover is nearly three times higher
among workers who work extended
hours. Absenteeism among companies
with extended hours is more than twice
the national average.

—Reworded from
Circadian Technologies

Shiftware Practices 2005 survey

There’s a fine line between being on the
leading edge and being in the lunatic
fringe.

—Frank Armstrong

Two things are infinite: the universe
and human stupidity; and I’m not sure
about the universe.

—Albert Einstein

Some people, when confronted with
a problem, think I know, I’ll use regu-
lar expressions. Now they have two
problems.

—Jamie Zawinski

The most amazing achievement of the
computer software industry is its contin-
uing cancellation of the steady and stag-
gering gains made by the computer
hardware industry.

—Henry Petroski

One test is worth a thousand opinions.
—Unknown

If the lessons of history teach us any-
thing it is that nobody learns the lessons
that history teaches us.

—Unknown

The trouble with the world is that the
stupid are cocksure and the intelligent
are full of doubt.

—Bertrand Russell

Debugging is like alien abduction. Large
blocks of time disappear, for which you
have no explanation.

—Unknown

Most software today is very much like an
Egyptian pyramid with millions of
bricks piled on top of each other, with
no structural integrity, but just done by
brute force and thousands of slaves.

—Alan Kay

If builders built buildings the way pro-
grammers wrote programs, then the first
woodpecker that came along would de-
stroy civilization.

—Gerald Weinberg.

Ugly programs are like ugly suspension
bridges: they’re much more liable to col-
lapse than pretty ones, because the way
humans (especially engineer-humans)
perceive beauty is intimately related to
our ability to process and understand
complexity. A language that makes it

hard to write elegant code makes it hard
to write good code.

—Eric S. Raymond

Let us change our traditional attitude to
the construction of programs. Instead of
imagining that our main task is to in-
struct a computer what to do, let us con-
centrate rather on explaining to human
beings what we want a computer to do.

—Donald Knuth

The most unsuccessful three years in the
education of cost estimators appears to
be fifth-grade arithmetic.

—Norman R. Augustine

No engineer looks at a television remote
control without wondering what it
would take to turn it into a stun gun. No
engineer can take a shower without
wondering if some sort of Teflon coating
would make showering unnecessary. To
the engineer, the world is a toy box full
of suboptimized and feature-poor toys.

—Scott Adams

I love deadlines. I like the whooshing
sound they make as they fly by.

—Douglas Adams

In handling resources, strive to avoid dis-
aster rather than to attain an optimum.

—Butler Lampson

There are various reasons that software
tends to be unwieldy, but a primary one
is what I like to call “brittleness”. Soft-
ware breaks before it bends, so it de-
mands perfection in a universe that
prefers statistics.

—Jaron Lanier

People tend to overestimate what can be
done in one year and to underestimate
what can be done in five or ten years.

—Joseph Licklider

Code generation, like drinking alcohol,
is good in moderation.

—Alex Lowe

Do you have favorites? Post them on
embedded.com. ■

40 DECEMBER 2009 | embedded systems design | www.embedded.com

Debugging is like alien
abduction. Large blocks of
time disappear, for which
you have no explanation.

!
!

break points

BUILD it [Reliably]

RUN it [Fast]

ANALYZE it [Easily]

SHIP it [Confi dently]

With Express Logic’s award-winning BenchX® IDE or use tools from

over 20 commercial offerings including those from ARM, Freescale,

Green Hills, IAR, Microchip, MIPS, Renesas, and Wind River.

With Express Logic’s small, fast, royalty-free and industry leading

ThreadX® RTOS, NetX™ TCP/IP stack, FileX® FAT fi le system, and USBX™

USB stack.

With Express Logic’s graphical TraceX® event analysis tool, and new

StackX™ stack usage analysis tool. See exactly what is happening in your

system, which is essential for both debugging and optimization.

No matter what “it” is you’re developing, Express Logic’s solutions will

help you build it, analyze it, run it, and ship it better and in less time. Join

the success of over 600,000,000 deployed products using

Express Logic’s ThreadX!

ThreadX, BenchX, TraceX and FileX are a registered trademarks of Express Logic, Inc. All other trade-
marks are the property of their respective owners.

For a free evaluation copy, visit www.rtos.com • 1-888-THREADX

Edward L. Lamie

T H R E A D

With ThreadX

Second Edition

Now with appendices for ARM, Coldfi re,

MIPS and PowerPC architectures

Newnes

Containing ThreadX

demonstration system

and C code examples

Containing ThreadX
Containing ThreadX
Containing ThreadX

INCLUDED
INCLUDED
INCLUDED
CD-ROM

REAL-TIME

EMBEDDED

MULTITHREADING

B E N C H T H R E A D T R A C E S T A C K

SHIP it
No matter what “it” is you’re developing, Express Logic’s solutions will No matter what “it” is you’re developing, Express Logic’s solutions will

help you build it, analyze it, run it, and ship it better and in less time. Join help you build it, analyze it, run it, and ship it better and in less time. Join

the success of over 600,000,000 deployed products using the success of over 600,000,000 deployed products using

Express Logic’s ThreadX!Express Logic’s ThreadX!

B
E

N
C

H

T
R

A
C

E

T H R E A D

