
NDDS®

Network Data Delivery Service

The Real-Time Publish-Subscribe Connectivity Solution

Tutorial

NDDS Version 3.0

Copyright © 1996-2002 Real-Time Innovations, Inc.
All rights reserved.
Printed in U.S.A. First printing.
September, 2002.

Trademarks
Real-Time Innovations, Constellation, NDDS, RTI, ProfileScope, StethoScope, WaveScope,
WaveSnoop, WaveSurf, and WaveWorks are either trademarks or registered trademarks of Real-
Time Innovations, Inc.
Adobe and Adobe Acrobat are registered trademarks of Adobe Systems Incorporated.
Linux is a trademark of Linus Torvalds.
Microsoft, Windows, Windows NT, Visual C++, and Visual Studio are registered trademarks of
Microsoft Corporation in the United States and/or other countries.
UNIX is a registered trademark of The Open Group in the U.S. and other countries.
SPARC is a registered trademark of SPARC International, Inc.
Sun, SunOS, and Solaris are either trademarks or registered trademarks of Sun Microsystems, Inc.
in the U.S. and other countries.
VxWorks is a registered trademark of Wind River Systems, Inc.
All other trademarks used in this document are the property of their respective owners.

Copy and Use Restrictions
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form (including electronic, mechanical, photocopy, and facsimile) without the prior written
permission of Real-Time Innovations, Inc.
The software described in this document is furnished under and subject to the RTI software license
agreement. The software may be used or copied only under the terms of the license agreement.

Technical Support
Real-Time Innovations, Inc.
155A Moffett Park Drive
Sunnyvale, CA 94089
Phone: 408-734-4200
Fax: 408-734-5009
Email: support@rti.com
Website: http://www.rti.com

Contents

Contents ... iii

Figures .. vii

1 NDDS Overview .. 1-1

1.1 Purpose of This Course..1-1
1.2 Reading and Printing Guide...1-2
1.3 NDDS Documentation Guide...1-3
1.4 Publish-Subscribe Architecture ..1-4

1.4.1 Publish-Subscribe Characteristics ..1-4
1.4.2 Publish-Subscribe in Real Time ..1-5

1.5 RTPS Overview...1-7
1.5.1 RTPS Publication Parameters ...1-8
1.5.2 RTPS Subscription Parameters ...1-8
1.5.3 Reliable Communications Characteristics ..1-8
1.5.4 Request-Reply Service Parameters ..1-9

1.6 NDDS: An Implementation of the RTPS Model ..1-9
1.6.1 Real-Time Distributed-Application Support1-11
1.6.2 Enhanced Publish-Subscribe Capabilities.......................................1-12

2 Basic Exercises ... 2-1

2.1 Getting Started ..2-2
iii

2.2 Lesson 1: Use nddsgen to Auto-Create NDDS Types 2-2
2.2.1 Topic and Type Resolution ... 2-2
2.2.2 Create an NDDS Type ... 2-3
2.2.3 Review the Generated Files.. 2-4

2.3 Lesson 2: Create a Publication and a Subscription ... 2-5
2.3.1 Publication Characteristics... 2-6
2.3.2 Subscription Characteristics... 2-7
2.3.3 Generate Example Publication and Subscription Code 2-8
2.3.4 Edit Hello_publisher.cxx..2-11
2.3.5 Review Hello_subscriber.cxx ... 2-12
2.3.6 Build the Publication and Subscription Programs........................ 2-14
2.3.7 Run the Subscription Program .. 2-16
2.3.8 Run the Publication Program... 2-17
2.3.9 Review the Screen Output on Each Side .. 2-18
2.3.10 Experiment with the Programs.. 2-18
2.3.11 Congratulations! .. 2-19

2.4 Lesson 3: Create a Polled Subscription... 2-19
2.4.1 Polled Subscription Characteristics .. 2-19
2.4.2 Edit the Subscription Source Code.. 2-20
2.4.3 Build the Publication and Subscription Programs........................ 2-21
2.4.4 Run the Subscription and Publication Programs.......................... 2-21

2.5 Lesson 4: Create a Publisher and a Subscriber .. 2-21
2.5.1 Why Use Publishers? .. 2-21
2.5.2 Why Use Subscribers?... 2-23
2.5.3 Edit Hello_publisher.cxx... 2-23
2.5.4 Edit Hello_subscriber.cxx ... 2-24
2.5.5 Build the Publisher and Subscriber Programs 2-25
2.5.6 Run the Subscription and Publication Programs.......................... 2-25

2.6 Lesson 5: Create a Client and a Server.. 2-25
2.6.1 Client-Server Transactions.. 2-26
2.6.2 Create the Request and Reply NDDS Types.................................. 2-28
2.6.3 Edit Add_server.cxx .. 2-29
2.6.4 Edit Add_client.cxx ... 2-30
2.6.5 Build the Client and Server Programs.. 2-33
2.6.6 Run the Client Only... 2-33
2.6.7 Start the Server First and Then the Client...................................... 2-33
iv

3 Advanced Exercises .. 3-1

3.1 Lesson 6: Publish and Subscribe Reliably...3-1
3.1.1 Reliability and Time-Determinism...3-2
3.1.2 Learn How to Create a Reliable Publication3-2
3.1.3 Learn How to Create a Reliable Subscription3-5
3.1.4 Build the Reliable Subscription and Publication Programs3-7
3.1.5 Run the Reliable Subscription and Publication Programs3-7

3.2 Lesson 7: Publish and Subscribe Using Multicast ...3-8
3.2.1 Using Multicast in NDDS..3-8
3.2.2 Learn How to Create a Multicast Publication3-9
3.2.3 Learn How to Create a Multicast Subscription..............................3-11
3.2.4 Build the Multicast Subscription and Publication Programs.......3-12
3.2.5 Run the Multicast Subscription and Publication Programs.........3-13

3.3 Lesson 8: Subscribe Using Patterns..3-13
3.3.1 Pattern Subscriptions ...3-13
3.3.2 Review the Deposition Monitor Code...3-15
3.3.3 Review the Safety Supervisor Code...3-17
3.3.4 Review the Deposition Module..3-18
3.3.5 Review the Thermal Processing Module Code..............................3-18

3.4 Congratulations! ...3-18

4 Basic C Exercises .. 4-1

4.1 Lesson 1: Use nddsgen to Auto-Create NDDS Types4-2
4.1.1 Create an NDDS Type..4-2
4.1.2 Review the Generated Files ..4-3

4.2 Lesson 2: Create a Publication and a Subscription..4-4
4.2.1 Generate Example Publication and Subscription Code..................4-4
4.2.2 Edit Hello_publisher.c ...4-4
4.2.3 Review Hello_subscriber.c ..4-6

4.3 Lesson 3: Create a Polled Subscription..4-8
4.3.1 Edit the Subscription Source Code ..4-8
4.3.2 Build the Publication and Subscription Programs4-9
4.3.3 Run the Subscription and Publication Programs.............................4-9

4.4 Lesson 4: Create a Publisher and a Subscriber...4-9
4.4.1 Edit Hello_publisher.c ...4-9
v

4.4.2 Edit Hello_subscriber.c ... 4-10
4.4.3 Build the Publisher and Subscriber Programs4-11
4.4.4 Run the Subscription and Publication Programs...........................4-11

4.5 Lesson 5: Create a Client and a Server...4-11
4.5.1 Create the Request and Reply NDDS Types...................................4-11
4.5.2 Edit Add_server.c .. 4-12
4.5.3 Edit Add_client.c ... 4-14

5 Advanced C Exercises ... 5-1

5.1 Lesson 6: Publish and Subscribe Reliably .. 5-1
5.1.1 Learn How to Create a Reliable Publication.................................... 5-2
5.1.2 Learn How to Create a Reliable Subscription 5-5
5.1.3 Build the Reliable Subscription and Publication Programs 5-6
5.1.4 Run the Reliable Subscription and Publication Programs............. 5-7

5.2 Lesson 7: Publish and Subscribe Using Multicast .. 5-7
5.2.1 Learn How to Create a Multicast Publication 5-8
5.2.2 Learn How to Create a Multicast Subscription 5-9
5.2.3 Build the Multicast Subscription and Publication Programs...... 5-10
5.2.4 Run the Multicast Subscription and Publication Programs 5-10

5.3 Lesson 8: Subscribe Using Patterns..5-11
5.3.1 Review the Deposition Monitor Code...5-11
5.3.2 Review the Safety Supervisor Code.. 5-13
5.3.3 Review the Deposition Module ... 5-13
5.3.4 Review the Thermal Processing Module Code 5-13

5.4 Congratulations! .. 5-14

Index .. Index-1
vi

Figures

Figure 1.1 Publish-Subscribe Architecture ...1-5
Figure 1.2 NDDS Architecture ...1-10
Figure 1.3 Network Stacks ..1-10
Figure 2.1 Sending Issues at a Fixed Rate...2-6
Figure 2.2 Multiple Publication Arbitration...2-6
Figure 2.3 Customizing Subscription Notification..2-8
Figure 2.4 Best Then First Semantics ...2-27
Figure 3.1 Reliable Publication Code ..3-3
Figure 3.2 Reliable Subscription Code ..3-5
Figure 3.3 Multicast Publication Code ..3-10
Figure 3.4 Multicast Subscription Code in C++...3-11
Figure 3.5 Pattern Subscription Example: Semiconductor Processing...................................3-14
Figure 3.6 Subscribing to Patterns in C++ ..3-15
Figure 3.7 Subscribing to Multiple Patterns in C++..3-17
Figure 5.1 Reliable Publication Code in C ..5-2
Figure 5.2 Reliable Subscription Code in C..5-5
Figure 5.3 Multicast Publication Code in C..5-8
Figure 5.4 Multicast Subscription Code in C ...5-9
Figure 5.5 Subscribing to Patterns in C...5-11
Figure 5.6 Subscribing to Multiple Patterns in C...5-13
vii

viii

1. N
D

D
S O

ve
rview
Chapter 1

NDDS Overview

NDDS is
network
middleware for
distributed real-
time
applications

Network Data Delivery Service (NDDS®) is network middleware for distributed real-time
applications. NDDS simplifies application development, deployment and maintenance
and provides fast, deterministic distribution of time-critical data over standard net-
works.

The NDDS architecture is based on the publish-subscribe model for data distribution.
Real-Time Innovations® (RTI) has added formal extensions to make this model applica-
ble to distributed real-time applications. The NDDS real-time, publish-subscribe (RTPS)
middleware enables users to:

❏ Perform complex one-to-many and many-to-many network communications;
the application uses the simple NDDS API to publish and subscribe to the data.

❏ Customize application operation to meet various real-time, reliability, and qual-
ity-of-service goals.

❏ Provide application-transparent fault tolerance and application robustness.

1.1 Purpose of This Course
This Tutorial introduces you to NDDS’s features and application programming interface
(API). The tutorial is based on a series of exercises in which you use the NDDS tools,
your development tools, and NDDS libraries to build NDDS publications, subscrip-
1-1

Chapter 1 NDDS Overview
tions, clients and servers. At the end of the course, you will have learned the principles
of the NDDS communications interface.

1.2 Reading and Printing Guide
This Tutorial contains basic and advanced lessons. The basic lessons give you hands-on
experience—you will edit code and build applications. In the advanced lessons, you
will simply review the supplied example code1 and read the explanations (you can also
build and run the example code).

The Basic Lessons cover these topics:

❏ Lesson 1: Use nddsgen to Auto-Create NDDS Types (Section 2.2)

❏ Lesson 2: Create a Publication and a Subscription (Section 2.3)

❏ Lesson 3: Create a Polled Subscription (Section 2.4)

❏ Lesson 4: Create a Publisher and a Subscriber (Section 2.5)

❏ Lesson 5: Create a Client and a Server (Section 2.6)

The Advanced Lessons cover these topics:

❏ Lesson 6: Publish and Subscribe Reliably (Section 3.1)

❏ Lesson 7: Publish and Subscribe Using Multicast (Section 3.2)

❏ Lesson 8: Subscribe Using Patterns (Section 3.3)

Use the following guidelines to read and print only the chapters you need:

❏ C++ Users

• This NDDS Overview chapter.

• Basic Exercises (Chapter 2), which provides theory on each basic topic, fol-
lowed by steps for you to perform.

• Optional: Advanced Exercises (Chapter 3).

❏ C Users

• This NDDS Overview chapter.

1. To see the example code, you must install NDDS.
1-2

1.3 NDDS Documentation Guide
1. N

D
D

S O
ve

rview
• Basic Exercises and Basic C Exercises (Chapter 2 and Chapter 4). Chapter 2
provides theory on each basic topic; Chapter 4 provides the steps for you
to follow.

• Optional: Advanced Exercises and Advanced C Exercises (Chapter 3 and
Chapter 5).

To print a specific chapter from a PDF file using Adobe® Acrobat®:

1. Click the chapter title in the Bookmark list on the left (you may have to select the
Bookmarks tab). In this example, we’ll print Basic Exercises, Chapter 2.

2. Observe the page number at the bottom of the window, such as “23 of 106.”

3. Click the chapter title of the following chapter (Advanced Exercises) in the Book-
mark list.

4. Observe the page number at the bottom of the window, such as “57 of 106.” So in
the PDF file, the Basic Exercises chapter starts on page 23 and ends on page 56.

5. Select File, Print.

6. In the Print Window’s Print Range pane, select Pages from: and enter 23 in the
first box and 56 in the second box.

7. Make any other changes required for your printer, then click OK.

1.3 NDDS Documentation Guide
NDDS documentation includes the following documents in PDF format, which is con-
venient for printing. The following documents are located in the pdf/ directory of the
NDDS installation.

❏ This NDDS Tutorial (NDDSTutorial.pdf). You must download and install
NDDS1 to obtain the example code used in the lessons.

❏ The NDDS Getting Started Guide (GettingStarted.pdf), which includes release
notes, installation and compiling instructions. This guide can also be down-
loaded separately from the distribution.

❏ The NDDS User’s Manual (Manual.pdf), which contains detailed descriptions on
how to use NDDS to design, build, and run applications.

1. Download and installation instructions are provided in the NDDS Getting Started Guide.
1-3

Chapter 1 NDDS Overview
NDDS documentation also includes the following, in HTML format, in the main direc-
tory where you installed NDDS.

❏ The NDDS API documentation (NDDS.html).

1.4 Publish-Subscribe Architecture
Publish-
subscribe is the
simplest and
most efficient
method for one-
to-many and
many-to-many
data
distribution

The publish-subscribe communications model provides a more efficient model for
broad data distribution over a network than point-to-point, client-server, and distrib-
uted-object models. Rather than each node directly addressing other nodes to exchange
data, publish-subscribe provides a communications layer that delivers data transpar-
ently from the nodes publishing the data to the nodes subscribing to the data. The pub-
lish-subscribe model simplifies the application programming effort in the following
ways:

❏ Replaces socket programming with the simple publish-subscribe API.

❏ Decouples publishers from subscribers so each can act independently of each
other.

❏ Reduces network traffic and promotes system robustness.

Figure 1.1 illustrates the basic publish-subscribe communications model. In this figure,
the publish-subscribe communications layer is illustrated as middleware that resides
between the application and the operating system’s network interface.

1.4.1 Publish-Subscribe Characteristics

The publish-subscribe (PS) model is defined by the following characteristics:

Distinct publisher and subscriber roles Network communications is composed of appli-
cations publishing and subscribing to data. An application can be either a publisher, a
subscriber, or both.

One-to-many or many-to-many communications In its simplest form, one application
is publishing data and other applications are subscribing to that data. The system is
composed of a complex mix of publishers and subscribers deployed on a dynamic set of
network nodes. The PS middleware keeps track of what nodes provide (publish) and
consume (subscribe to) data, which dramatically reduces application development,
debug, and maintenance efforts.
1-4

1.4 Publish-Subscribe Architecture
1. N

D
D

S O
ve

rview
Named publications Publishers and subscribers label each publication that will be dis-
tributed using a topic (name) rather than the publisher’s or subscriber’s node addresses.

Declaration and delivery PS communications occurs in three steps:

1. Declaration of intent to publish a topic by publishers.

2. Declaration of interest to receive a topic by subscribers.

3. Propagation of the topic issues (data).

Event-driven transfers Publishers and subscribers operate independently and asyn-
chronously, sending an issue and receiving it are individual events with no interdepen-
dencies.

Data marshalling and demarshalling Data is converted and distributed on-the-wire in a
form recognizable by all subscribers, regardless of their processor and platform.

1.4.2 Publish-Subscribe in Real Time

Real-time applications are programs that require data transfers within deterministic
time constraints. Distributed real-time applications interject a network between data
publishers and subscribers. Network data-flow can have different characteristics in real-

Publisher
Application

Subscriber
Application

Subscriber
Application

PS
Middleware

PS
Middleware

PS
Middleware

Temp Pressure

Network
Interface

Network
Interface

Network
Interface

Temp Pressure

Figure 1.1 Publish-Subscribe Architecture

Publish-subscribe middleware presents a simple application programming interface (API) to the
publisher and subscriber tasks and takes care of the low-level network communication chores:
addressing, packet building, and message transfer. Publishers send the information anonymously;
subscribers receive the information anonymously.

Middleware performs all the
complex network functions

Applications make simple
calls to the middleware.
1-5

Chapter 1 NDDS Overview
time applications. For example, many real-time applications have all of the following
types of data flow:

❏ Signals Rapidly generated and time-critical data. In most instances, it is more
important to get the next issue than to retry a dropped issue.

❏ Events Sporadically generated, time-critical messages which must be delivered
reliably.

❏ Commands Sequential instructions which must be received in order.

❏ Status Persistent data about state or goals. Its timeliness differs from one appli-
cation to the next.

❏ Requests Two-way request-reply transactions for a specific service or data.

Publish-subscribe has several advantages for distributed real-time applications over cli-
ent-server and distributed-object architectures:

❏ PS is more efficient in both latency & bandwidth for periodic data distribution.

❏ PS inherently supports fault tolerance through redundant publishers and sub-
scribers.

Publish-
subscribe alone
cannot handle
the
requirements of
real-time

The basic publish-subscribe model must be optimized and extended before it is suitable
for real-time applications. Modifications are needed to provide the following require-
ments:

❏ Delivery timing control Real-time subscribers are concerned about when the
data is delivered, how long it remains valid, and other issue timing-related fac-
tors. For example, a subscriber needs to protect itself from publishers that send
data faster than it can handle it. Delivery timing will often differ between flow
types; for example, the timing controls must be flexible enough to handle rapid
signal and infrequent status data.

❏ Reliability control Reliable delivery conflicts with deterministic delivery; retry-
ing for dropped packets can preclude getting the next issue in a timely manner.
Each real-time subscriber must be able to set up its own reliability characteristics
for signal, event, command, and status data.

❏ Request-reply semantics Complex real-time applications often have one-time
requests for actions or data transactions.

❏ Thread priority awareness Network communications must often be performed
without affecting other publisher or subscriber threads.
1-6

1.5 RTPS Overview
1. N

D
D

S O
ve

rview
Safety and
robustness add
to the
requirements

Real-time systems must also function in environments where safety and availability are
driving concerns. In addition, the following publish-subscribe extensions are required
for these applications:

❏ Fault tolerance Application-transparent, “hot standby” publishers and/or sub-
scribers are required.

❏ Robustness The communications layer should not introduce any single-point of
failure potential.

❏ Selective degradation Each publisher-to-subscriber logical data channel must
be protected from the others. The performance of one channel should not be
affected by others.

❏ Dynamic node detection Publishers and subscribers should be able to join and
leave the system at any time without affecting the operation of the application
and middleware configuration parameters.

1.5 RTPS Overview
To use the publish-subscribe communications model for real-time data distribution,
developers need a time-aware communications model. NDDS is based on a formal Real-
Time Publish-Subscribe (RTPS) communications model with the following characteris-
tics:

❏ Models time and timestamps every transaction.

❏ Allows the application to trade-off timing and reliable delivery.

❏ Controls memory usage.

❏ Works in the real-time operating system environment.

RTPS defines sets of object parameters and communications characteristics to give
developers the control they need to manage all aspects of communication (such as fast
delivery, reliability, fault tolerance, and robustness) in a real-time environment.
1-7

Chapter 1 NDDS Overview
1.5.1 RTPS Publication Parameters
Real-time
extensions let
subscribers
arbitrate among
publications for
hot-standby
support

Each publication is described by four parameters: topic, type, strength and persistence. The
topic is the label that identifies a specific publication across the network. The type defines
the publication issue format. Publishers provide strength and persistence so that subscrib-
ers can arbitrate among issues from different publishers.

❏ Strength Specifies the publisher’s weight relative to other publishers of the
same topic.

❏ Persistence Indicates how long an issue is valid.

Fault-tolerant applications can use redundant publishers to ensure continuous opera-
tion. The primary publisher has the highest strength so that issues from the backup pub-
lisher are ignored. Should the primary publisher fail, the subscriber receives the issue
from the next strongest publisher after the persistence of the primary publisher’s issue
has expired.

1.5.2 RTPS Subscription Parameters
Real-time
extensions let
subscribers
model their
timing
constraints

Each subscription is described by four parameters: topic, type, minimum separation, and
deadline. The topic and type label and define the publication as described above. Applica-
tions use the minimum separation and deadline parameters to model their timing con-
straints for each subscription.

❏ Minimum separation Defines a period during which no new issues are
accepted.

❏ Deadline Establishes how long the subscriber is willing to wait for the next
issue.

Once a subscriber has received an issue, it will not receive another issue for at least the
minimum separation. If a new issue does not arrive by the deadline, the application is
notified.

1.5.3 Reliable Communications Characteristics
RTPS gives
subscribers a
method to
reconcile
real-time versus
reliable
communications
requirements

Reliable delivery means the issues are guaranteed to arrive in the order published. The
RTPS reliability model recognizes that the optimal balance between time-determinism
and data-delivery reliability varies widely among applications and can vary among dif-
ferent publications within the same application. For example, individual issues of signal
data can often be dropped because their value disappears when the next issue is sent.
However, each issue of command data must be received and it must be received in the
1-8

1.6 NDDS: An Implementation of the RTPS Model
1. N

D
D

S O
ve

rview
order sent. RTPS provides a mechanism to customize the determinism/reliability trade-
off on a per subscription basis.

The reliability mechanism involves the subscriber and the publisher. A subscriber sets a
receive window size in terms of a number of issues. Out-of-sequence issues are stored in
this buffer while the middleware retries for the lost issues.

The publisher must be prepared to re-send past issues in response to subscriber
requests. RTPS publishers maintain a history queue for each publication tagged as reli-
able. It re-sends an issue when a subscriber requests it and purges an issue once it is
assured that all subscribers have received it.

1.5.4 Request-Reply Service Parameters
RTPS simplifies
request-reply
semantics by
using service
names rather
than distributed
objects

Real-time applications often need to request data residing on a server. Requests differ
from publications in that they inherently imply a two-way transaction: the client sends a
request to a server; the server sends back a reply. RTPS defines a request-reply mecha-
nism built on top of the named publication model.

RTPS clients and servers model the request-reply slightly differently. Each RTPS server
is described by four parameters: service name, request type, reply type, and strength. The
name is a label for the service; the request and reply types define the data format for the
request and reply data, respectively. The strength value sets the server’s weight relative
to other servers supporting the same service name.

RTPS clients define services by service name, request type, reply type, minimum wait, and
maximum wait. The name and type parameters have the same meaning for clients as serv-
ers. The minimum and maximum wait specify the client’s timing constraints. The middle-
ware will not accept a reply received before the minimum wait and will return an error
if a reply is not received by the expiration of the maximum wait.

1.6 NDDS: An Implementation of the RTPS Model
NDDS is
network
middlewarefor
interconnecting
real-time,
desktop, and
workstation
platforms

NDDS is network middleware that implements the RTPS communication model.
Figure 1.2 illustrates the NDDS architecture. NDDS is available on number of platforms,
including Wind River’s VxWorks®, Windows® CE, Windows 2000, Windows NT® 4.0,
and UNIX®.

NDDS is implemented on top of UDP/IP (see Figure 1.3) so that real-time applications
can use standard IP networks and can coexist with non-real-time (that is, TCP-based)
applications on the same network. The NDDS managers require little space and perform
1-9

Chapter 1 NDDS Overview
the standard middleware services (manage the publications and subscribers database
and serialize, deliver, and deserialize issues). They are also optimized to minimize net-
work communication latency and overhead.

The NDDS middleware presents developers with a simple API, maintains publications and
subscriptions database in each node, and uses the operating system’s network stack for all network
communications.

Figure 1.2 NDDS Architecture

User Application

NDDS Tasks

Operating System
Network Interface

NDDS Library

NDDS Database

TCP’s reliable communications are fundamentally non-deterministic. NDDS is built on UDP,
a packet-oriented protocol that does not affect determinism.

Figure 1.3 Network Stacks

UDP

 IP

 Real-Time Application

 Non-Real-Time Application

TCP

NDDS

Ethernet Hardware
1-10

1.6 NDDS: An Implementation of the RTPS Model
1. N

D
D

S O
ve

rview
1.6.1 Real-Time Distributed-Application Support
NDDS provides
a full
publish-
subscribe model
with real-time
extensions

NDDS provides comprehensive publish-subscribe model support. An application can
have any combination of publishers, subscribers, clients, servers. The underlying mid-
dleware performs all of the messaging services—from fast, best-effort delivery for signal
data to fully reliable delivery for events and command data, as well as request-reply
transactions for client services.

Applications call NDDS through a simple API. The RTPS features are performed by the
underlying middleware to simplify the programming effort:

❏ Delivery Timing Control Applications set the minimum separation and deadline
when they create the subscription. Once the subscription is created, NDDS waits
for the minimum separation to expire and either interrupts the application when
a new issue arrives or caches it until the application polls.

❏ Reliability Control The application customizes reliable subscriptions by setting a
buffer size and deadline according to the reliability requirements on a per sub-
scription basis. NDDS uses the buffer to cache out-of-sequence issues while it
retries for dropped issues. The application receives the issues in the order sent or
is notified that NDDS could not retrieve an issue before the deadline.

❏ Request-reply Semantics The application specifies a name, minimum and max-
imum wait when it creates the client. The server specifies a name and strength.
When a client requests a service, NDDS delivers the request to all servers with
that name, waits the minimum period, and then returns the response from the
server with the highest strength received during that period. After the minimum
wait expires, NDDS returns the first response.

❏ Thread Priority Awareness The NDDS publisher lets the application send an
issue within the application thread context for minimum latency. For application
threads that cannot tolerate network anomalies, NDDS provides separate, lower
priority threads to handle the network interface.

❏ Fault Tolerance The application sets strength and persistence on a per publica-
tion basis. In subscribers, NDDS uses the strength and persistence parameters to
arbitrate among issues with the same topic. The subscriber application always
gets just the issue from the publication with the highest strength whose persis-
tence has not expired. Servers also have a strength value so that NDDS can arbi-
trate among servers with the same name.

❏ Robustness NDDS has no central or special nodes or servers. The failure of a
publisher, subscriber, client or server will be noticed by the NDDS tasks but will
not cause their failure.
1-11

Chapter 1 NDDS Overview
❏ Selective Degradation NDDS publishers and subscribers are decoupled from
each other. Each issue is sent to subscribers separately. The failure of one sub-
scriber has no affect on distribution to other subscribers.

1.6.2 Enhanced Publish-Subscribe Capabilities

NDDS has other features that help reduce RTPS application development efforts:

❏ Automatic Code Generation NDDS provides a utility, nddsgen, that generates
the issue serialization and deserialization routines. The utility generates the code
from CDR-language publication type descriptions. The code must be linked with
the application.

❏ Group Publishing and Subscribing Managing large numbers of publications
individually can be confusing and code intensive. NDDS publishers and sub-
scribers can be used to manage groups of publications and subscriptions. Pub-
lishing in groups offers other advantages too. For example, an NDDS publisher
can be configured to operate in three modes:

• synchronously: sends the group of issues immediately upon the applica-
tion’s command, using its own thread context for lowest latency,

• signalled: sends the group of issues immediately upon the application’s
command but via a separate thread for application thread protection,

• asynchronously: checks for new issues on a user-defined periodic basis
and sends those issues that have changed.

Subscriptions can be grouped as well under a single subscriber. NDDS can inter-
rupt the application when any of the subscriptions arrive or can hold on to them
until the application polls for the lot.

❏ Pattern Subscriptions NDDS allows subscribers to name publications with wild-
card matches. Thus, a system monitor program could subscribe to “Alarm*”, and
receive all alarms generated by any node. This facility also encourages hierarchi-
cal signal management by allowing subscriptions such as “/Vat/*/logs”, which
would receive all log messages from the “Vat” subsystem.

❏ Multicast Support NDDS uses multicasting to efficiently support high-band-
width communication. Applications can mix unicast and multicast subscriptions
to minimize network load and enable high-speed traffic.
1-12

1.6 NDDS: An Implementation of the RTPS Model
1. N

D
D

S O
ve

rview
❏ Dynamic Node Detection New subscription and publication declarations can
be made at any time. All declarations of publications and subscriptions are aged
and eventually discarded, so old information does not affect long-term system
health.

❏ Multiple NIC Support The need for reliability also extends to the network: in
some applications, the system must continue even if the network itself goes
down. NDDS provides multiple NICs (network interface cards) for redundant
networks. Publications are issued through each network simultaneously.

❏ Debugging Tool NDDS includes a utility for monitoring publications. nddsSpy
uses the NDDS pattern subscription capability to subscribe to any available pub-
lication that matches user-specified topic pattern. For example, nddsSpy moni-
tors all publications when the pattern “*” is entered.

❏ C and C++ API The NDDS application programming interface is provided in
both C functions and C++ object/method forms.

❏ Multi-platform Support NDDS is available for execution on Wind River’s
VxWorks, Microsoft Windows CE, Windows 2000, Windows NT, Sun Solaris™
and Linux™.

This concludes the introduction to the publish-subscribe communications model, the
real-time publish-subscribe communications model, and NDDS.
1-13

Chapter 1 NDDS Overview
1-14

2. Ba
sic

 C
++
Chapter 2

Basic Exercises

The lessons in this chapter provide instructions on how to use the most basic capabili-
ties of NDDS:

❏ Lesson 1: Use nddsgen to Auto-Create NDDS Types (Section 2.2)

❏ Lesson 2: Create a Publication and a Subscription (Section 2.3)

❏ Lesson 3: Create a Polled Subscription (Section 2.4)

❏ Lesson 4: Create a Publisher and a Subscriber (Section 2.5)

❏ Lesson 5: Create a Client and a Server (Section 2.6)

What’s your
language?

Each lesson consists of tutorial information on the lesson’s topic, followed by an exer-
cise to give you hands-on experience. You can work through the exercises in C++ or C.
The steps to follow for C++ are included in this chapter. For C, read the tutorial informa-
tion in this chapter and then refer to Chapter 4 to complete each lesson.

The completed source code for each exercise is in the <NDDSHOME>/examples/tuto-
rial directory of your NDDS installation, which will be referred to as <NDDSTutori-
alDir>. To work through each exercise in C++, use the <NDDSTutorialDir>/CPP
directory. As a documentation shortcut, we will leave off the Cpp or C part of the path
and just refer to this directory as <NDDSTutorialDir> directory.
2-1

Chapter 2 Basic Exercises
2.1 Getting Started
Follow the download and installation instructions in Chapter 2 of the NDDS Getting
Started Guide.

What’s your
platform?

In addition to the two languages, you also have the option of using UNIX, Windows, or
VxWorks as your platform. For each platform, there are a few preliminary steps to get
set up. The NDDS Getting Started Guide includes a setup checklist for each platform,
which you should confirm before starting the lessons:

❏ Compiling UNIX Applications (Section 3.1) in the NDDS Getting Started Guide

❏ Compiling Windows Applications (Section 3.2) in the NDDS Getting Started
Guide

❏ Compiling VxWorks Applications (Section 3.3) in the NDDS Getting Started Guide

2.2 Lesson 1: Use nddsgen to Auto-Create NDDS Types
Goal Learn how to create an NDDS type called “HelloMsg” to send short messages to other

applications. The resulting source code should be similar to what is in the <NDDSTuto-
rialDir>/hello/ directory.

The first step in designing an NDDS application is to define each publication’s NDDS
type, which defines the format of the data that you want NDDS to distribute and man-
age for you. NDDS requires routines for each type to convert your data types to a form
that can be transmitted over the network and vice-versa (serialization and deserializa-
tion). Once you register these routines, you can spend your time working on your appli-
cation while NDDS does the “dirty” chores.

The nddsgen command will automatically create these routines, allowing you to begin
developing your application as soon as you specify each NDDS type.

2.2.1 Topic and Type Resolution

A publisher application sends issues1 at its discretion, unaware of any prospective sub-
scription. A subscription subscribes to an NDDS topic that it wants without knowing
who is publishing it.

1. An issue contains an instantaneous value of the publication data you want to distribute.
2-2

2.2 Lesson 1: Use nddsgen to Auto-Create NDDS Types
2. Ba

sic
 C

++
Issues are identified by their NDDS topic. The scope of the topic extends to all the appli-
cations in the NDDS domain among the list of peers. Two publications sending issues
with the same NDDS topic are viewed as different sources for the same topic and are
indistinguishable to the subscriptions. For two publications to be distinguishable by any
subscription, they must have different NDDS topics.

Issues must be of a known type. In this lesson you will use nddsgen to create an NDDS
types and the associated serialize/deserialize routines based on a data structure that
you define in the NDDS exchange language format.

This completes the general discussion for this lesson. If you are using C++, the next sections
walk you through the hands-on part of the lesson. If you are using C, refer to Section 4.1 to com-
plete the lesson.

2.2.2 Create an NDDS Type

To create an NDDS type called HelloMsg:

1. Create a directory called myhello.

2. In the myhello directory, create a file called Hello.x that contains:

const MAX_MSG_LEN = 128;

/*nddsgen.C++.NDDSType HelloMsg;*/
/*nddsgen.C++.output.extension cxx;*/
/*nddsgen.C++.IssueListener HelloMsg;*/

struct HelloMsg {
 string msg<MAX_MSG_LEN>;
};

The keyword “string” within the HelloMsg structure is the type used in the
NDDS exchange language for NULL-terminated strings. The value in the angle
brackets, < >, specifies a maximum size for the message, which is
MAX_MSG_LEN here.
2-3

Chapter 2 Basic Exercises
The first line:

/*nddsgen.C++.NDDSType HelloMsg;*/

• Tells nddsgen to generate code in C++.

• Declares an NDDS type called HelloMsg.

• Tells nddsgen to look for a structure called HelloMsg to build the Hel-
loMsg NDDS type.

Specify file
extension

The second line:

/* nddsgen.C++.Extension cxx;*/

results in .cxx extensions for the generated files.

Specify issue
listener

The third line:

/*nddsgen.C++.IssueListener HelloMsg;*/

causes nddsgen to generate an issue listener class derived from NDDSIssueLis-
tenerClass for the HelloMsg NDDS type. An issue listener class is necessary to
handle the issues received on the subscription side. Lesson 2 walks you through
how to use an issue listener.

3. Type at the command prompt:

nddsgen Hello.x

2.2.3 Review the Generated Files

nddsgen generates all of the serialize/deserialize code for the structure HelloMsg in
the file Hello.x and puts all of the code in the files Hello.h and Hello.cxx. The Hello.cxx
file contains code for the methods of the issue listener class and serialize/deserialize
and print methods for the HelloMsg class. The Hello.h file contains the declaration of
the two classes.

To correct mistakes or modify the NDDS type, use the -replace argument to overwrite
the current files.
2-4

2.3 Lesson 2: Create a Publication and a Subscription
2. Ba

sic
 C

++
The following are the relevant lines from Hello.h:

#define MAX_MSG_LEN 128

class HelloMsg : public NDDSTypeClass {
public:
static class HelloMsg *New();
virtual const char *NddsTypeGet() const;
virtual RTIBool Serialize(struct NDDSCDRStream *nddsds, int option);
virtual RTIBool Deserialize(struct NDDSCDRStream *nddsds);
virtual RTIBool Print(unsigned int indent);
virtual int MaxSize(int size) const;

public:
char *msg;
};

HelloMsg is a class that contains a single data field: the character pointer msg. Although
MAX_MSG_LEN was used to specify the maximum size of the string in Hello.x and
was defined with a #define in Hello.h, msg does not have a predetermined size. This
gives you flexibility in allocating space for the string.

2.3 Lesson 2: Create a Publication and a Subscription
Goal Create a publication and subscription pair to send and receive “Hello World!” messages

in a best-effort real-time manner. Best-effort real-time mode means that the issues will
be delivered as deterministically as the underlying OS and system allow. If an issue is
not received by a subscriber before the deadline expires, the subscriber is notified of the
failure (but the publisher continues publishing the data). NDDS also supports reliable
mode, where the issues are guaranteed to be delivered in order.

In this exercise, you will create a publication/subscription pair of the HelloMsg NDDS
type created in Lesson 1. The publication will publish a “Hello World!” message,
appended by an integer count to identify each message sent. This count will make it
obvious to any subscription receiving the message if it has missed an issue, regardless of
whether it is a reliable subscription or a best-effort subscription. The publication, how-
ever, will not keep a queue to re-send a missing issue; any lost issue is lost forever with
this publication. The subscription will receive the “Hello World!” messages from the
publication and display it to you, along with its NDDS topic and type.

The final code should be the same as that in the <NDDSTutorialDir>/hello directory.
2-5

Chapter 2 Basic Exercises
2.3.1 Publication Characteristics

Creating a publication and then sending an issue with the publication is the simplest
way of publishing an issue. Sending an issue is the process of taking a snapshot of the
values of each publication. The value of the publication is combined with the publica-
tion’s strength, persistence, and time stamp to build the issue. Figure 2.1 illustrates a
case where the sending rate is fixed.

A publication is characterized by three attributes: strength, persistence, and NDDS topic.
There may be multiple publications with the same NDDS topic, usually for redundancy
reasons. In this case, NDDS uses the strength and persistence to arbitrate among the
multiple publications of the same NDDS topic. Figure 2.2 illustrates the multiple publi-
cation arbitration algorithm.

Typically, a publication that sends issues every period T will set its persistence to some
time Tp where Tp > T. While that publication is functional, it will take precedence over
any publication of lesser strength. If a publication stops sending issues (willingly or due
to a failure), another publication with the same NDDS topic will take over after Tp

Figure 2.1 Sending Issues at a Fixed Rate
V

al
ue

 o
f

th
e

P
ub

lic
at

io
n

Time

Multiple publications may publish issues with the same NDDSTopic. Subscriptions accept the
issue from the strongest active publication whose persistence has not expired.

Figure 2.2 Multiple Publication Arbitration

Accept Only Higher
Strength Issue

Accept Issue of
Any Strength

Persistence

Time

Previous Issue
Received
2-6

2.3 Lesson 2: Create a Publication and a Subscription
2. Ba

sic
 C

++
elapses. This mechanism establishes an inherently fault-tolerant communication chan-
nel between the strongest publication of an issue and its subscriptions.

2.3.2 Subscription Characteristics

A subscription is the simplest entity that allows an application to receive issues from a
publication. A subscription is characterized by five attributes: subscription mode, NDDS
topic, deadline, minimum separation, and listener method/callback routine.1

When an issue arrives, subscriptions matching the NDDS topic are notified through
either a subscription listener method (in a C++ program) or a callback routine (in a C pro-
gram). In either case, the issue is passed as an argument back to the application. The sub-
scription mode specifies when this callback routine or listener method is called. The two
subscription modes are:

NDDS_SUBSCRIPTION_IMMEDIATE An immediate subscription calls the subscription
callback routine or the listener method as soon as a valid issue is received.

NDDS_SUBSCRIPTION_POLLED A polled subscription will not notify the application
about the newly received issue until the application “polls.” This may add more
latency to the data, but is useful in programs that are not thread-safe or cannot
handle concurrency.

Deadline and
minimum
separation
control when
issues are
received

You can specify a desired rate at which issues are received with minimum separation. You
can also set a deadline where the callback is called if an issue is not received within a
given time. Of course, a subscription cannot enforce how fast a publication sends issues;
a publication could be down or non-existent, after all. However, NDDS will notify the
receiving application when no new issue has been received within the deadline since the
last notification, as illustrated in Figure 2.3.

Setting:

allows the application to detect when the data rate falls below the minimum rate. Simi-
larly, setting:

limits the incoming data rate. The minimum separation protects a slow receiver applica-
tion.

1. Minimum separation is not an attribute of a reliable subscription. For instructions on sending and
receiving issues reliably, see Lesson 6.

deadline
1

minimum rate
---------------------------------=

minimum separation
1

maximum rate
----------------------------------=
2-7

Chapter 2 Basic Exercises
This completes the general discussion for this lesson. If you are using C++, the next sections
walk you through the hands-on part of the lesson. If you are using C, refer to Section 4.2 to com-
plete the lesson.

2.3.3 Generate Example Publication and Subscription Code

In addition to creating an NDDS type, nddsgen can also create simple example pro-
grams. To help you build these example programs, nddsgen creates:

❏ A makefile for UNIX platforms.

❏ A workspace file (.dsw) and project files (.dsp) for each program on Windows
platforms.

You will need to use nddsgen to obtain the example code for the publication and the
subscription. Using the same .x file created in Lesson 1, use the -example flag to tell
nddsgen to create stub code for simple publication and subscription programs.

The application is notified of issues based on two properties: the minimum separation time and its
deadline. Once the application is called with an issue, NDDS will not notify it again until the
minimum separation time expires.

If a new issue does not arrive before the deadline, N seconds, the application is notified of the
timeout. This notification occurs between N and 2 * N seconds.

Figure 2.3 Customizing Subscription Notification

Last
Notification Deadline

Minimum
Separation

Subscription
Never Notified

Subscription Notified if
New Issues Arrive

Subscription
Always
Notified

Time
2-8

2.3 Lesson 2: Create a Publication and a Subscription
2. Ba

sic
 C

++
In the myhello/ directory that you created in Lesson 1, type:

nddsgen Hello.x -example <architecture>:publish

where <architecture> is the architecture abbreviation for your system, as given in
Table 2.1. (For the most recent list of supported architectures, refer to Section 1.1.1 in the
NDDS Getting Started Guide.)

Table 2.1 nddsgen Architecture Switch for UNIX and Windows Platforms

Operating System CPU Compiler
RTI Architecture

Abbreviation

Linux, 2.4 kernel Pentium gcc 2.96 i86Linux2.4gcc2.96

LynxOS 4.0 Pentium gcc2.95.3 i86Linux4.0gcc2.95.3

Solarisa 2.7 SPARC® Sun CC 5.0 sparcSol2.7cc5.0

gcc 2.7.2 sparcSol2.7gcc2.7.2

gcc 2.95 sparcSol2.7gcc2.95

Solaris 2.8 UltraSPARC Sun CC 5.0 sparcSol2.8cc5.0

Sun CC 5.2 sparcSol2.8cc5.2

gcc 2.95 sparcSol2.8gcc2.95

VxWorks 5.4/
Tornado 2.0.x
(Solaris or Windows®)

ARM7TDMI® gcc 2.7.9 arm7tdmiVx5.4gcc

SA-110™ gcc 2.7.9 armsa110Vx5.4gcc

Intel® 486 gcc 2.7.2 i486Vx5.4gcc

Intel Pentium® gcc 2.7.2 pentiumVx5.4gcc

PowerPC® 603 gcc 2.7.2 ppc603Vx5.4gcc

PowerPC 860 (long jump) gcc 2.7.2 ppc860Vx5.4gcc

PowerPC 860 (no long jump) gcc 2.7.2 ppc860Vx5.4gcc.nljmp

PowerPC EC603 gcc 2.7.2 ppcEC603Vx5.4gcc

UltraSPARC® (SPARCV9™) gcc 2.96 sparcv9Vx5.4gcc

Motorola® 68020 gcc 2.7.2 m68020Vx5.4gcc

VxWorks 5.4.x/
Tornado 2.1.x
(Solaris or Windows)

PowerPC 604 gcc 2.96 ppc604Vx5.4gcc
2-9

Chapter 2 Basic Exercises
Note: Since you did not specify the -replace flag, nddsgen will not overwrite the exist-
ing Hello.cxx or Hello.h files created in Lesson 1.

The :publish switch tells nddsgen to generate source code for a publish-subscribe
example, as opposed to the client-server example.

You now should have Hello.h and three .cxx files in the myhello/ directory: Hello.cxx
(created in Lesson 1), Hello_publisher.cxx and Hello_subscriber.cxx (created by using
the -example flag). In addition, you should either have:

❏ makefile_Hello_<architecture>, if you specified a UNIX architecture.

❏ Or Hello.dsw, Hello_publisher.dsp, and Hello_subscriber.dsp, if you specified
a Windows architecture.

2.3.4 Edit Hello_publisher.cxx

To edit the generated publication code to send the "Hello World!" message:

1. Open myhello/Hello_publisher.cxx and review the generated code.

VxWorks 5.5/
Tornado 2.2
(Solaris or Windows)

Pentium® gcc 2.9 pentiumVx5.5gcc

Pentium II gcc 2.9 pentim2Vx5.5gcc

Pentium III gcc 2.9 pentium3Vx5.5gcc

Pentium IV gcc 2.9 pentium4Vx5.5gcc

PowerPC 603 gcc 2.96 ppc603Vx5.5gcc

Diab 5.0.1 ppc603Vx5.5diab

PowerPC 604 gcc 2.96 ppc604Vx5.5gcc

Diab 5.0.1 ppc604Vx5.5diab

PowerPC 860 gcc 2.96 ppc860Vx5.5gcc

Diab 5.0.1 ppc860Vx5.5diab

Windows NT,
Windows 2000,
Windows XP

Pentium Visual C++
6.0

i86Win32VC60

a. Run uname -a to verify your operating system. If your operating system is SunOS, subtract 3 from the
version number to obtain the Solaris version number.

Table 2.1 nddsgen Architecture Switch for UNIX and Windows Platforms

Operating System CPU Compiler
RTI Architecture

Abbreviation
2-10

2.3 Lesson 2: Create a Publication and a Subscription
2. Ba

sic
 C

++
Specify the
verbosity

NDDS runs at the silent verbosity setting by default; so you see only error mes-
sages. Increasing verbosity can reveal what NDDS is doing under the hood, and
is helpful for advanced debugging. To change the verbosity to 3, initialize ndds-
Verbosity to 3 in main().

RtiNtpTimePackFromNanosec() converts a time value from seconds and nano-
seconds into the format used by NDDS (a structure of type RTINtpTime).

Initialize an
NDDS
application

NDDSDomainDerivable() initializes an application in the NDDS domain of
your choice. This domain creation function must be called before you can create
any publications or subscriptions.

Instantiate an
object for the
NDDSType

HelloMsg() allocates enough memory for MAX_MSG_LEN (defined in Hello.x)
number of characters. The pointer instance now points to the HelloMsg object
you will give to NDDS to send an issue.

Create a
publication

The following creates a publication for the hello message:

if(!(publication = new NDDSPublicationDerivable(domain,
"Example HelloMsg", instance, &properties)) ||

 !publication->IsValid()){
 return 0;
}

The generated code creates a publication using the values listed in Table 2.2.
While there are other fields in the properties structure, for this example we are
only interested in the persistence and strength fields.

Send the
message

2. You need to add one line to make the code work. Underneath the line, /* modify
the data to be sent here */, add the following code, which modifies the message
to be sent:

sprintf(instance->msg, "Hello Universe! (%d)", count);

Table 2.2 Arguments to NDDSPublicationDerivable()

Argument Value Description

nddsDomain 0 domain ID

nddsTopic "Example HelloMsg" NDDS topic

instance address of a HelloMsg object The instance is an object of the
HelloMsg class

properties.persistence 15 seconds Refer to Section 2.3.1

properties.strength 1 Refer to Section 2.3.1
2-11

Chapter 2 Basic Exercises
The count variable already exists and is incremented by the publication task
every time it sends an issue with the call:

publication->Send();

You can simulate the effect of fixed rate issuing by “sleeping” for
send_period_sec (which has been set to 4 seconds):

NddsUtilitySleep(send_period_sec);

Warning: Do not use NddsUtilitySleep() to conduct performance tests, such as
throughput or latency tests. NddsUtilitySleep() cannot guarantee the resolution
required in a performance test. Instead, use the for() loop or its equivalent,
which has much finer resolution. For hints, see the performance test examples in
the examples/performance/ directory.

3. Save your changes. The final code should be the same as that in the <NDDSTu-
torialDir>/hello directory.

2.3.5 Review Hello_subscriber.cxx

To review the subscription code for the "Hello World!" message:

1. Open myhello/Hello_subscriber.cxx and review the generated code. No
changes are required to run this code.

The generated code for Hello_subscriber.cxx parallels Hello_publisher.cxx in
three ways:

a. Sets NDDS verbosity with NddsVerbositySet().

b. Initializes the application in an NDDS domain with NDDSDomainDeriv-
able().

c. Instantiates a HelloMsg object.

Review the
generated
subscription
listener class

In Lesson 1, nddsgen created a class for the NDDS type described in hello.x.
nddsgen also declared an issue listener class for the NDDS type. Both classes are
in Hello.h. An issue listener class specifies what to do with received issues. The
OnIssueReceived() method in Hello_subscriber.cxx is derived from the
NDDSIssueListenerClass and remains a pure virtual method.

In hello.h:

class HelloMsgListener : public NDDSIssueListenerClass {
 public:
 virtual ~HelloMsgListener() {};
 HelloMsgListener() {};
2-12

2.3 Lesson 2: Create a Publication and a Subscription
2. Ba

sic
 C

++
 virtual RTIBool IssueTypeMatch(class NDDSTypeClass *instance);
 class HelloMsg *InstanceGet(class NDDSTypeClass *instance)
 { return (HelloMsg *)instance; }
};

Implement your
own
OnIssueReceived()
method
(optional)

Since the OnIssueReceived() method in the HelloMsgListener class is pure vir-
tual, you must implement the OnIssueReceived() method by deriving your own
listener class from the HelloMsgListener class, as the generated subscription
code does in Hello_subscriber.cxx:

class MyListener : public HelloMsgListener {
 public:
 virtual RTIBool OnIssueReceived(const NDDSRecvInfo * /*info*/,

 class NDDSTypeClass *instance);
};

RTIBool MyListener::OnIssueReceived(const NDDSRecvInfo * /*info*/,
 class NDDSTypeClass *instance)

{
 instance->Print(0);
 return RTI_TRUE;
}

Create an
immediate
subscription

Notice that the generated code in subscriberMain() calls NDDSSubscription-
Derivable() to create a subscription using the values listed in Table 2.3:

new NDDSSubscriptionDerivable(domain, "Example HelloMsg", instance,
 listener, &properties, NDDS_USE_UNICAST)

Sleep while
waiting for
issues

There is nothing left to do after creating the subscription but wait for issues.

Table 2.3 Arguments to NDDSSubscriptionDerivable()

Argument Value Description

nddsDomain 0 domain ID

nddsTopic "Example HelloMsg" Must be the same as the NDDSTopic
assigned to the publication.

instance address of a HelloMsg
object

The instance is an object of the HelloMsg
class.

listener listener A pointer to your subscription listener
instance

properties.deadline 10.0 seconds Alert the application if no new data is
received in 10 seconds. See Section 2.3.2.
2-13

Chapter 2 Basic Exercises
2. (Optional) The generated OnIssueReceived() method simply prints the content
of the issue. Of course, you can do more useful things in your application. To
give you a flavor for what you might do for your application, you can print some
detailed information about the issue.

3. Save your changes (if any). The final code should be the same as that in the
<NDDSTutorialDir>/hello directory.

2.3.6 Build the Publication and Subscription Programs

Instructions on building publication and subscription programs are provided in the fol-
lowing sections:

❏ UNIX: Section 2.3.6.1

❏ Windows: Section 2.3.6.2

❏ VxWorks: Section 2.3.6.3

2.3.6.1 UNIX Systems

To build the two applications using the generated makefile:

1. In the myhello directory, type:

gmake -f makefile_Hello_<architecture>

where <architecture> is the architecture switch you specified to nddsgen (see
Table 2.1).

If all goes well, you will see intermediate files for Hello_publisher and
Hello_subscriber in the objs/<architecture>/ directory.

If the build fails, it is likely that you do not have the compiler and linker speci-
fied in the makefile. See your system administrator or contact RTI for advice.

properties.minimum-
Separation

0.0 seconds The subscription will accept all issues
from the publications no matter how fast
they are published. See Section 2.3.2.

multicastAddress NDDS_USE_UNICAST Receive issues using unicast. To learn
about using multicast in NDDS, see
Lesson 7.

Table 2.3 Arguments to NDDSSubscriptionDerivable()

Argument Value Description
2-14

2.3 Lesson 2: Create a Publication and a Subscription
2. Ba

sic
 C

++
2.3.6.2 Windows Systems

NDDS requires Microsoft Visual C++ 6.0 Service Pack 3 running on either Windows NT
4.0 Service Pack 5 (or higher) or Windows 2000.

To build the publication and the subscription programs:

Set up the
workspace

1. Start Microsoft Visual C++ 6.0.

2. From the File menu, select Open Workspace...

The Open Workspace Window pops up.

3. In the Open Workspace Window, browse to the myhello directory.

a. Select Hello.dsw.

b. Click on the Open button.

Build a
publication
program

4. At the bottom of the Workspace Window, click on the FileView tab and right-
click Hello_publisher files to display its pop-up menu. (If you don’t see the
WorkSpace Window, select View, Workspace.)

5. From the pop-up menu, select Build.

This builds a debug version of the program. To build the release version, change
the build target in the Build menu (which can be displayed by right-clicking over
the menu area).

6. Confirm that you now have Hello_publisher.exe in the directory,
myhello\objs\i86Win32VC60.

Build a
subscription
program

7. To build the subscription program, repeat Step 4 through Step 6 substituting
Hello_publisher with Hello_subscriber.

Warning: The generated projects already specify the Multi-threaded DLL build option. If
you link other objects or libraries to your NDDS application, they must also build with
the Multi-threaded DLL build option. For instructions on how to specify this option, see
Section 3.2.2 of the NDDS Getting Started Guide.

2.3.6.3 VxWorks Systems

Write your own makefile to build for your VxWorks target. Your build settings should
reflect Table 2.4.

To build the publication and the subscription programs using your own makefile:

1. Build the Hello_publisher object from Hello.cxx and Hello_publisher.cxx.

2. Build the Hello_subscriber object from Hello.cxx and Hello_subscriber.cxx.
2-15

Chapter 2 Basic Exercises
2.3.7 Run the Subscription Program

Start the subscription program before the publication program so that you do not miss
any issues.

To run the subscription program:

❏ On UNIX systems, type at a command prompt:

objs/<architecture>/Hello_subscriber

where <architecture> is the architecture switch for your system (see Table 2.1).

❏ On Windows systems, type at a command prompt:

objs\i86Win32VC60\Hello_subscriber

❏ On VxWorks systems:

1. Make sure you have:

• Set the host name of the target.

• Specified the IP addresses of all the peers you wish to communicate
with.

• Set the NDDS_PEER_HOSTS environment variable with the putenv
command.

• Loaded the appropriate libraries.

Once again, examples/vxWorks/login.cmd is a good starting point.

2. Since VxWorks does not have a main() entry point, enter the program at
the subscription program’s main body of code:

int subscriberMain(int nddsDomain, int nddsVerbosity)

Table 2.4 VxWorks Architecture-Independent Build Settings

Field Values

Compiler DEFINES RTI_VXWORKS

INCLUDES Directories $(NDDSHOMEa)/include/vx

Libraries to link with does not apply in VxWorks

a. NDDSHOME is the root directory of the installation
2-16

2.3 Lesson 2: Create a Publication and a Subscription
2. Ba

sic
 C

++
Type at the windsh:

sp (subscriberMain, 0, 0)

2.3.7.1 Subscription Screen Output

If you did not modify the generated subscriber program, you should see:

Allocate HelloMsg type.
Sleeping for 10.000000 sec...
Sleeping for 10.000000 sec...
HelloMsg:
msg: ""

The subscription sleeps for 10 seconds while waiting for issues. Since you did not start
the publication program yet, there is no data to receive. At the 10 second deadline, it
prints whatever it received last, which is nothing in this case.

2.3.8 Run the Publication Program

Each node must specify its peer(s) in the NDDS_PEER_HOSTS environment variable
or file.

To run the publication program:

❏ On UNIX systems, type at a command prompt:

objs/<architecture>/Hello_publisher

where <architecture> is the architecture switch for your system (see Table 2.1).

❏ On Windows systems, type at a command prompt:

objs\i86Win32VC60\Hello_publisher

❏ On VxWorks systems, type at the windsh:

sp (publisherMain, 0, 0)

2.3.9 Review the Screen Output on Each Side

On the publication screen, you should see:

Allocate HelloMsg type.
Sampling publication, count 0
Sampling publication, count 1
2-17

Chapter 2 Basic Exercises
...

The subscription will start receiving issues as soon as the publication program starts
running. The subscription should display the following:

HelloMsg:
 msg: ""
HelloMsg:
 msg: "Hello Universe! (0)"
Sleeping for 10.000000 sec...
HelloMsg:
 msg: "Hello Universe! (1)"
...

2.3.10 Experiment with the Programs

Try killing and restarting the publication and the subscription programs. No matter
what you do, the subscription gets the newest issue published.

To kill the exercise programs:

❏ On UNIX and Windows systems, type at a command prompt:

<Ctrl-C>1

❏ On VxWorks systems:

1. To see the summary of tasks, type at the console or winsh:

i

2. Identify the task ID of the task you want to stop. This is the hexadecimal
number in the TID column.

3. Type (where <#tid> is the task ID number of the task in hexadecimal):

td <#tid>

2.3.11 Congratulations!

Your first NDDS applications are running. You used the immediate subscription mode
to receive the issues in an event-driven manner. The following is the sequence from
publication to delivery:

1. Press the "c" character while the Ctrl key is pressed.
2-18

2.4 Lesson 3: Create a Polled Subscription
2. Ba

sic
 C

++
1. NDDS marshals (serializes and deserializes) the data into an exchange language
format and sends it directly to the subscription application.

2. NDDS at the subscription application demarshals the received issue, puts it into
the memory address (instance), and calls the callback routine specified at the
subscription creation time.

Immediate mode yields the minimum latency possible. In Lesson 3 you will learn how
to use the polled mode for subscriptions that cannot have interrupted threads.

2.4 Lesson 3: Create a Polled Subscription
Goal Modify the subscription created in Lesson 2 to poll for issues from the publication cre-

ated in Lesson 2.

The immediate subscription mode is simple and yields minimum latency. However,
immediate subscription mode may be inappropriate for an application that cannot be
interrupted. The immediate subscription mode is also dangerous if the subscription
callback routine calls a non-reentrant function(s) because an internal NDDS thread exe-
cutes the callback routine as soon as a new issue is received, regardless of what the other
application threads are doing at that moment. If your application is constrained in
either of these two ways, the polled mode is the safer alternative.

In this lesson, you will use the polled subscription mode to receive issues.

The final code should be the same as that in the <NDDSTutorialDir>/polled directory.

2.4.1 Polled Subscription Characteristics

As the name suggests, if you use the polled subscription mode, you have to actively
poll. The role of deadline and minimum separation are the same. But since NDDS can-
not wake you up at deadline, you will only find out about an expired deadline when
you poll. This suggests that you must poll at a period smaller than your deadline. In fact,
you should poll faster than the average rate of data arrival, which is controlled by the
subscription’s minimum separation.

Buy insurance
with the receive
queue

But no matter how fast you poll, there is a possibility of issues arriving in a bursts,
resulting in dropped issues. Increasing the receive queue size protects you against such
events.
2-19

Chapter 2 Basic Exercises
This completes the general discussion for this lesson. If you are using C++, the next sections
walk you through the hands-on part of the lesson. If you are using C, refer to Section 4.3 to com-
plete the lesson.

2.4.2 Edit the Subscription Source Code

Continue working in the myhello directory you used in the previous lessons.

There are three changes required in the subscription to poll for "Example HelloMsg":

❏ Change the subscription mode to NDDS_SUBSCRIPTION_POLLED.

❏ Increase the receive queue size to 8.

❏ Poll the subscription at a 10 second rate.

Note: You will be polling slower than the send rate of the publication. Initially, the
receive queue will cache the issues, but you will drop issues eventually. For the purpose
of this exercise, this is fine.

To edit the Hello_subscriber.cxx code for polled mode:

1. Open Hello_subscriber.cxx for edit.

2. In the section of code commented “set subscription properties” change
NDDS_SUBSCRIPTION_IMMEDIATE to
NDDS_SUBSCRIPTION_POLLED.

3. After the line modified in the above step, properties.mode =
NDDS_SUBSCRIPTION_POLLED, add the following line to increase the
receive queue size:

properties.receiveQueueSize = 8;

4. Change the line:

/* subscription->Poll() is only needed... */

in the while(1) loop to:

subscription->Poll();
2-20

2.5 Lesson 4: Create a Publisher and a Subscriber
2. Ba

sic
 C

++
Note: You poll the subscription at the deadline rate due to:

NddsUtilitySleep(properties.deadline);

5. Save your changes. The final code should be the same as that in the <NDDSTu-
torialDir>/polled directory.

Note: Publication code is unaffected for the polled mode.

2.4.3 Build the Publication and Subscription Programs

See Section 2.3.6 for instructions on building the publication and subscription pro-
grams.

2.4.4 Run the Subscription and Publication Programs

There is no difference in output content from Lesson 2. But if you look closely, the sub-
scription does not report new data right away, but in bursts every 10 seconds, which is
the polling rate.

2.5 Lesson 4: Create a Publisher and a Subscriber
Goal Use a signalled publisher to send the "Hello World!" message to a subscription managed

by a subscriber. The final code should be the same as that in <NDDSTutorialDir>/pub-
lisherSubscriber directory.

2.5.1 Why Use Publishers?

Creating a publication to send issues is fine for simple applications such as those cov-
ered in this Tutorial. But a real application may publish hundreds to thousands of publi-
cations. If you publish 100 topics, calling the send function for each of the 100
publications is tedious and invites errors.

Send multiple
publications
with a single call

The solution is to use publishers to manage a group of publications that can be sent
together. Adding a group of publications to a publisher and then calling the send func-
tion of the publisher will send issues for all publications in one shot.

Control how
issues are sent

Another benefit of using publishers is more control over how the issues are sent. If you
use the publication to send issues, they are sent in the calling task’s context. But this can
2-21

Chapter 2 Basic Exercises
affect the real-time behavior and is not suitable for time-critical tasks. With publishers,
you can choose among the following publisher modes:

Publishing
modes:
synchronous,
asynchronous,
and signalled

NDDS_PUBLISHER_SYNCHRONOUS This is the behavior you get if you use publications
to send issues. The issue is distributed immediately by the task that calls the send
method.

❏ Advantage Minimum communication latency.

❏ Disadvantage The application task takes a non-deterministic amount of time to
send issues. This is unsuitable for time-critical tasks.

NDDS_PUBLISHER_SIGNALLED The application task signals another NDDS thread to
send the issue.

❏ Advantage Almost the same low communications latency as the
NDDS_PUBLISHER_SYNCHRONOUS mode without slowing down the
application task. This is the recommended publisher type for time-critical tasks.

❏ Disadvantage Additional thread created for each signalled publisher.

NDDS_PUBLISHER_ASYNCHRONOUS The issues are saved for later delivery by an NDDS
thread that executes at a fixed rate.1 In this mode, multiple issues can be packaged
together and the message overhead per issue is smaller.

❏ Advantage The application task takes a deterministic amount of time to send
issues suitable for time-critical tasks, without the overhead of an additional
thread per signalled publisher.

❏ Disadvantage Increased latency.

Design considerations affect which publisher mode to use. For example, if the OS of the
node that will run the publisher program is not multi-threaded,
NDDS_PUBLISHER_SYNCHRONOUS is the only option. In another example, if you are
trying to achieve the maximum bandwidth possible
NDDS_PUBLISHER_ASYNCHRONOUS might do the job. Regardless of the publisher’s
mode, there is no outward difference to you in the API or usage; you just send. NDDS takes
care of the all underlying chores. Just be aware of which publisher mode you are using.

Note You can still use a publication to send an issue even after adding it to a publisher.
But if you use the publication to send the issues, they are sent in the
NDDS_PUBLISHER_SYNCHRONOUS mode, regardless of the mode of the publisher
to which the publication belongs.

1. A mode is called asynchronous when the thread that is actually doing the sending is not synchronized
to the thread that called the Send function.
2-22

2.5 Lesson 4: Create a Publisher and a Subscriber
2. Ba

sic
 C

++
2.5.2 Why Use Subscribers?
Subscribers can
poll in one shot

The subscriber-subscription relationship parallels the publisher-publication relation-
ship. Adding a group of polled subscriptions to a subscriber and polling the subscriber
results in all subscriptions being polled together.

Subscribe to
pattern topics

Subscribers also allow you to subscribe to pattern topics. You will learn about the pat-
tern subscription feature in Lesson 8.

This completes the general discussion for this lesson. If you are using C++, the next sections
walk you through the hands-on part of the lesson. If you are using C, refer to Section 4.4 to com-
plete the lesson.

2.5.3 Edit Hello_publisher.cxx

Continue working in the myhello directory you used in the previous lessons.

To edit the Hello_publisher.cxx code to use a signalled publisher:

1. Open Hello_publisher.cxx for edit.

2. Add the NDDSPublisherDerivable declaration after the NDDSPublication-
Derivable declaration line:

NDDSPublicationDerivable *publication = NULL;
NDDSPublisherDerivable *publisher = NULL;

3. Create a signalled publisher just after calling new NDDSPublicationDeriv-
able() by adding the following lines:

if(!(publisher = new NDDSPublisherDerivable(domain,
 NDDS_PUBLISHER_SIGNALLED)) ||
 !publisher->IsValid()) {
 return 0;
}

4. After you’ve created the publication and the publisher, add the publication to the
publisher by adding the following lines:

if(!(publisher->PublicationAdd(publication))){
 return 0;
}

2-23

Chapter 2 Basic Exercises
5. Use the publisher to send issues. Change:

publication->Send();

to:

publisher->Send();

6. Save your changes. The final code should be the same as that in
<NDDSTutorialDir>/publisherSubscriber directory.

2.5.4 Edit Hello_subscriber.cxx

Continue working in the myhello directory you used in the previous lessons.

To edit the Hello_subscriber.cxx code:

1. Open Hello_subscriber.cxx for edit.

2. Add the NDDSSubscriberClass declaration after the NDDSSubscriptionDeriv-
able declaration line:

NDDSSubscriptionDerivable *subscription = NULL;
NDDSSubscriberDerivable *subscriber = NULL;

3. Create a subscriber just after calling new NDDSSubscriptionDerivable() by
adding the following lines:

if(!(subscriber = new NDDSSubscriberDerivable(domain))) {
return 0;

}

4. After creating the subscription and the subscriber, add the subscription to the
subscriber by adding the following lines:

if(!subscriber->SubscriptionAdd(subscription)) {
return 0;

}

5. If the subscription were in the immediate mode, you could stop here. But since
this is a polled subscription, you must now use the subscriber to poll. Change:

subscription->Poll();

to:

subscriber->Poll();
2-24

2.6 Lesson 5: Create a Client and a Server
2. Ba

sic
 C

++
6. Save your changes. The final code should be the same as that in <NDDSTutori-
alDir>/publisherSubscriber directory.

2.5.5 Build the Publisher and Subscriber Programs

For instructions on how to build the publisher and subscriber programs, see
Section 2.3.6.

2.5.6 Run the Subscription and Publication Programs

Using publishers and subscribers does not change the apparent behavior. The outputs
should be the same as in Lesson 2.

2.6 Lesson 5: Create a Client and a Server
Goal Create a client-server pair and implement a service that adds a pair of numbers. In this

exercise, you will create a client that sends two numbers to a server, which will add
them and return the result to the client.

The final code should be the same as that in the <NDDSTutorialDir>/clientServer
directory.

2.6.1 Client-Server Transactions

Real-time applications occasionally need to make specific requests for data or an action.
Requests differ from publications in that they inherently imply a two-way transaction—
the client sends the request along with some parameters, and the server performs an
action and returns a response to that specific request.

Clients and
servers are
identified only
by their service
name

NDDS implements a client-server transaction mechanism consistent within the publish-
subscribe paradigm. Client-server transactions are built around the concept of services.
A service consists of a service name (similar to an NDDS topic), and NDDS types for the
request and reply messages. An application can declare itself as a server or a client for
any given service.
2-25

Chapter 2 Basic Exercises
2.6.1.1 Server Characteristics

A server has the following characteristics:.

❏ ServiceName Analogous to the NDDS topic, in that it uniquely identifies a ser-
vice in the NDDS domain.

❏ Server mode Parallels the subscription mode discussed in Lesson 2.

• NDDS_SERVER_IMMEDIATE Calls the server the listener method (in
the C++ language API) or callback routine (in the C language API) as soon
as a valid request is received.

• NDDS_SERVER_POLLED Does not notify the server about the newly
received request until the server “polls.” This may add more latency to the
response, but is useful in programs that must not be interrupted or cannot
handle concurrency.

❏ server listener (in C++ API) The OnServiceRequest() method of the specified
server listener object executes when a service request is received.

❏ strength Enables a client to arbitrate replies from multiple servers with the
same service name.

2.6.1.2 Client Characteristics

A client invokes a service by its service name and specifies the following parameters:

❏ minimum wait time

❏ maximum wait time for the server reply

❏ blocking mode

2.6.1.3 Client-Multi-Server Semantics

NDDS client-server transaction mechanism supports client-multi-server semantics. This
occurs transparently whenever multiple servers are created for the same service name.
The request will return with the best—highest strength—response that arrived within
the minimum wait period. If no reply is received within that period, NDDS returns the
first response received until the maximum wait time expires. Figure 2.4 illustrates this
"best then first" semantics.

Of course, the traditional case of multiple clients for a server also works. Combining the
two cases, you can implement a multi-client multi-server scenario.
2-26

2.6 Lesson 5: Create a Client and a Server
2. Ba

sic
 C

++
This completes the general discussion for this lesson. If you are using C++, the next sections
walk you through the hands-on part of the lesson. If you are using C, refer to Section 4.5 to com-
plete the lesson.

2.6.2 Create the Request and Reply NDDS Types

To create the request and reply NDDS Types for the add service:

1. Create a new directory called myClientServer/.

2. In the new directory, create a file named Add.x which contains:

1 /* nddsgen.C++.NDDSType RequestMsg; */
2 /* nddsgen.C++.NDDSType ReplyMsg; */
3 /* nddsgen.C++.ServerListener ReplyMsg:RequestMsg; */
4 /* nddsgen.C++.output.extension cxx; */
5
6 struct RequestMsg {
7 int x;
8 int y;
9 };
10
11 struct ReplyMsg {

Figure 2.4 Best Then First Semantics

Time

Return the Strongest
Reply Received

Client
Call Return First

Received Reply

Notify of
Timeout

Client
Always
Notified

Minimum Wait

Maximum Wait
2-27

Chapter 2 Basic Exercises
12 int sum;
13 };

Lines 1-2 As in Lesson 1, the NDDSType token tells nddsgen which exchange language
structure to use to build the NDDS type.

Line 3 What is different from Lesson 1 is the ServerListener token in place of the
IssueListener token. Since a server listener must know about the NDDS type of
both the reply message and the request message, the reply and request NDDS
types are specified with a : between them—the reply NDDS type followed by :
and then the request NDDS type.

3. Type at the command prompt:

nddsgen Add.x -example <architecture>:client

where <architecture> is the architecture switch for your system (see Table 2.1).

4. Verify that nddsgen generated Add.h, Add.cxx, Add_client.cxx,
Add_server.cxx, and the following:

• makefile_Add_<architecture>, if you specified a UNIX architecture.

• Add.dsw, Add_client.dsp, and Add_server.dsp, if you specified a Win-
dows architecture.

2.6.3 Edit Add_server.cxx

Create a server that adds two integers sent by the client, and then sends the results back
to the client. Once created, the server just sits in a while() loop. The real action takes
place in the OnServiceRequest() method of the server listener class you provide when
creating the server.

Continue working in the myClientServer directory you created in Section 2.6.2.

To create a server for the add service:

1. Open Add_server.cxx and review the generated code.

If you finished Lesson 2, you are familiar with the beginning part of the code,
which:

• Sets the verbosity level with NddsVerbositySet().

• Initializes the application in an NDDS domain with NDDSDomain-
Class::Create().

• Instantiates the request and reply NDDS type objects.
2-28

2.6 Lesson 5: Create a Client and a Server
2. Ba

sic
 C

++
Derive and
implement your
server listener
class

A server performs a service by listening for a client request to process. To listen
for a request, a server needs to derive its own listener class and implement the
OnServiceRequest() method. This method is invoked when a service request is
received. In this exercise, you will add the two numbers from the request mes-
sage.

2. At the beginning of MyServiceListener::OnServiceRequest(), add:

ReplyMsg *itemReply = ReplyGet(reply);
RequestMsg *itemRequest = RequestGet(request);

to cast the data to the correct class.

3. Below the line:

/* modify the data replied here */

Add:

itemReply->sum = itemRequest->x + itemRequest->y;

to add the two numbers in the request message.

Create a server 4. Notice the following lines before the while() loop in serverMain(); they create a
server for "Service1":

if(!(server = new NDDSServerDerivable(domain, "Service1", instanceReply,
 instanceRequest, serviceListener,
 properties)) ||

 !server->IsValid()) {
 return 0;
}

Table 2.5 lists the arguments specified.

Table 2.5 Arguments to ServerCreate()

Argument Value Description

domain NDDSDomain-
Derivable object

A previously constructed NDDSDomainDerivable
object.

serviceName "Service1" This subscription will invoke the subscription
callback routine as soon as a valid issue is received.

reply instanceReply Temporary holder for the outgoing reply to the
client.

request instanceRequest Temporary holder for the incoming request from
clients.
2-29

Chapter 2 Basic Exercises
5. Save your changes. The final code should be the same as that in <NDDSTutori-
alDir>/clientServer directory.

2.6.4 Edit Add_client.cxx
Goal Create a client that will continuously send a pair of increasing integers. For each service

request wait at least 2.0 seconds and at most 5.0 seconds for the reply.

As illustrated in Figure 2.4, the minimum and maximum waits are the parameters gov-
erning the "best and then first" semantics. That is, if you ran multiple servers for
"Service1", with one server stronger than the rest, you would see that the client waits for
2.0 seconds, and then comes back with the reply from the strongest server. If the client
did not get a reply from any server within the 2.0 second wait, then it will report the first
reply it gets from any server from that point on, until the deadline expires after 5.0 sec-
onds.

Continue working in the myClientServer directory you created in Section 2.6.2.

To create a client for the add service:

1. Open Add_client.cxx and review the generated code.

The beginning part of the code does the same thing as the server code:

• Sets the verbosity level with NddsVerbositySet().

• Initializes the application in an NDDS domain with new NDDSDomain-
Derivable().

• Instantiates the request and reply NDDSType objects.

listener serviceListener OnServiceReceived() method of this
NDDSServerListenerClass is invoked when a valid
request is received.

properties.mode NDDS_SERVER_
IMMEDIATE

ServerRoutine() will be invoked as soon as a valid
request is received.

properties.strength 1 Allows arbitration among multiple servers. The
value does not matter if there is only one server for
"Service1".

Table 2.5 Arguments to ServerCreate()

Argument Value Description
2-30

2.6 Lesson 5: Create a Client and a Server
2. Ba

sic
 C

++
Create a client 2. Before calling ServerWait() in clientMain(), add the following lines to create a
client to "Service1" with new NDDSClientDerivable():

if(!(client = new NDDSClientDerivable(domain, "Service1", instanceReply,
 instanceRequest)) ||

 !client->IsValid()) {
 return 0;
}

Table 2.6 lists the arguments specified.

Wait for a server
to appear
(optional)

3. (Optional) Since clients and servers are anonymous, the clients do not know by
default whether a server for the desired service exists. If there is in fact no server,
or something prevents the client from receiving the server reply, the client would
only find out after the maximum wait for the request expires. Optionally, you
can ensure that a server exists by calling ServerWait().

After creating the client and before sending the request, add:

if (client->ServerWait(waitTime, 5, 1) == RTI_FALSE) {
 printf("There is no server. Exiting...\n");
 return RTI_FALSE;
}

where waitTime is 2 seconds. With this call, you are telling the client to try to
find at least one server, retrying up to 5 times and waiting 2 seconds between
retries. If the client still cannot find a server, this exercise simply exits the pro-
gram.

Enter the
request message

4. Since you already have the count variable, which is incremented in the for()
loop, send its value in the request message.

Below the line:

/* modify the data requested here */

Table 2.6 Arguments to NDDSClientDerivable()

Argument Value Description

domain NDDSDomainDerivable object A handle to a NDDSDomainDerivable
object.

serviceName "Service1" Must match the ServiceName for the server.

reply instanceReply Temporary holder of for the outgoing reply
to the client.

request instanceRequest Temporary holder for the incoming request
from clients.
2-31

Chapter 2 Basic Exercises
Add the following lines:

instanceRequest->x = count;
instanceRequest->y = count;

Send the request
and wait

When sending a request, clients can either:

• Block for a reply by calling CallAndWait().

• Continue with other tasks while passively waiting for the reply by calling
Call().

Since you have nothing else to do (probably not true in your real application),
block waiting for the reply for up to 5.0 seconds. Even if the reply comes back
immediately, you will need to wait for at least 2.0 seconds.

Check the status
of the reply

When the reply comes back before the deadline, report the contents of the reply
with Print(), which is defined in Add.h.

5. Save your changes. The final code should be the same as that in <NDDSTutori-
alDir>/clientServer directory.

2.6.5 Build the Client and Server Programs

Building the client-server pair is no different than building the publication-subscription
pairs in Lessons 2. For more information on building NDDS applications, see
Section 2.3.6.

2.6.6 Run the Client Only

Try starting the client to see what happens. It should fail after 10 seconds.

To run the client program:

❏ On UNIX systems, type at a command prompt:

objs/<architecture>/Add_client

where <architecture> is the architecture switch for your system (see Table 2.1).

❏ On Windows systems, type at a command prompt:

objs\i86Win32VC60\Add_client

❏ On VxWorks systems, type at the console or windsh:

sp (clientMain, 0, 0)
2-32

2.6 Lesson 5: Create a Client and a Server
2. Ba

sic
 C

++
2.6.6.1 Client Screen Output

The client should wait for a server to appear for 10 seconds and then quit. You should
see:

Allocate ReplyMsg and RequestMsg types.
There is no server. Exiting...

2.6.7 Start the Server First and Then the Client

Start the server first.

To run the server program:

❏ On UNIX systems, type at a command prompt:

objs/<architecture>/Add_server

where <architecture> is the architecture switch for your system (see Table 2.1).

❏ On Windows systems, type at a command prompt:

objs\i86Win32VC60\Add_server

❏ On VxWorks systems, type at the console or windsh:

sp (serverMain, 0, 0)

2.6.7.1 Client Screen Output

Now start the client as specified in Section 2.6.6. You should see:

Allocate ReplyMsg and RequestMsg types.
Requesting the time, count 0
ReplyMsg:
 sum: 0
Requesting the time, count 1
ReplyMsg:
 sum: 2
Requesting the time, count 2
ReplyMsg:
 sum: 4
Requesting the time, count 3
ReplyMsg:
 sum: 6
...
2-33

Chapter 2 Basic Exercises
2.6.7.2 Server Screen Output

The server reports the requests it is receiving.

Allocate RequestMsg and ReplyMsg types.
Sleeping for 10.000000 sec...
RequestMsg:
 x: 0
 y: 0
RequestMsg:
 x: 1
 y: 1
RequestMsg:
 x: 2
 y: 2
Sleeping for 10.000000 sec...
RequestMsg:
 x: 3
 y: 3
...
2-34

3. A
d

va
nc

e
d

 C
++
Chapter 3

Advanced Exercises

Read the Overview and perform the Basic Exercises before you attempt the Advanced
Exercises. This chapter includes the following lessons on the advanced capabilities of
NDDS:

❏ Lesson 6: Publish and Subscribe Reliably (Section 3.1)

❏ Lesson 7: Publish and Subscribe Using Multicast (Section 3.2)

❏ Lesson 8: Subscribe Using Patterns (Section 3.3)

These advanced lessons do not require you to make any code changes. You will be
reviewing, and reading the explanation of, the supplied example code. The steps to fol-
low for C++ are included in this chapter. For C, read the tutorial information in this
chapter and then refer to Chapter 5 to complete each lesson.

3.1 Lesson 6: Publish and Subscribe Reliably
Goal Create a reliable publication-subscription pair to send and receive the "Hello World!"

message of the HelloMsg NDDS type created in Lesson 1.

In this exercise, you will review the publication and the subscription code in the
<NDDSTutorialDir>/reliable directory and discover the calls necessary to send issues
reliably. You will learn that the code is similar to the unreliable publication and sub-
3-1

Chapter 3 Advanced Exercises
scription created in Lesson 2. The NDDS type and the message content is exactly the
same. There are no code changes for you to make in this lesson.

3.1.1 Reliability and Time-Determinism

Most communication architectures provide one or more reliability models. Not all mod-
els are equally suitable for real-time applications. For instance, a transactional model
(e.g. banking application) is highly reliable but has extremely poor determinism (its
time behavior is widely varying and unbounded). The transactional model is therefore
unsuitable for real-time applications.

The optimal balance between determinism (time-reliability) and data-delivery reliabil-
ity varies between real-time applications and among different subscriptions within the
same application. NDDS provides a mechanism for the application to customize the
determinism/reliability trade-off on a per-subscription basis. Moreover, reliability
impacts memory usage because extra memory buffers have to be maintained for retries,
time-outs, etc. NDDS provides the mechanism necessary for the application to predict
and control memory usage.

NDDS’s reliability model is subscription-driven: a publication does not directly specify
whether the data should be sent reliably. However, services are provided to allocate
publication memory and control issue flow. If there is a matching subscription that
wishes to receive the issues reliably from this publication, NDDS will send issues reli-
ably.

This completes the general discussion for this lesson. If you are using C++, the next sections
walk you through the hands-on part of the lesson. If you are using C, refer to Section 5.1 to com-
plete the lesson.

3.1.2 Learn How to Create a Reliable Publication

Open and review Hello_publisher.cxx in the <NDDSTutorialDir>/reliable directory.
The main body of code is shown in Figure 3.1. There are no code changes required.
3-2

3.1 Lesson 6: Publish and Subscribe Reliably
3. A

d
va

nc
e

d
 C

++
Figure 3.1 Reliable Publication Code

1 extern "C" int publisherMain(int nddsDomain, int nddsVerbosity)
2 {
3 int count = 0;
4 RTINtpTime send_period_sec = {0,0};
5 NDDSPublicationProperties properties;
6 NDDSPublicationDerivable *publication = NULL;
7 NDDSDomainDerivable *domain = NULL;
8 HelloMsg *instance = NULL;
9 RTINtpTime heartBeatTimeout = {0,0};
10 RTINtpTime waitTime = {0,0};
11
12 RtiNtpTimePackFromNanosec(send_period_sec, 4, 0); /* 4 seconds */
13 RtiNtpTimePackFromNanosec(waitTime, 2, 0); /* 2 seconds */
14
15 NddsVerbositySet(nddsVerbosity);
16
17 if(!(domain = new NDDSDomainDerivable(nddsDomain, NULL, NULL)) ||
18 !domain->IsValid()) {
19 return 0;
20 }
21
22 if(!(instance = new HelloMsg())) {
23 return 0;
24 }
25
26 domain->PublicationPropertiesGet(&properties);
27 properties.sendQueueSize = 5;
28 properties.lowWaterMark = 1;
29 properties.highWaterMark = 4;
30 RtiNtpTimePackFromMillisec(properties.heartBeatTimeout, 0, 500);
31 RtiNtpTimePackFromNanosec(properties.sendMaxWait, 2, 0);
32 RtiNtpTimePackFromNanosec(properties.persistence, 15, 0);
33 properties.strength = 1;
34
35 if(!(publication = new NDDSPublicationDerivable(domain,
36 "Reliable HelloMsg",
37 instance, &properties)) ||
38 !publication->IsValid()) {
39 return 0;
40 }
41
3-3

Chapter 3 Advanced Exercises
42 if(publication->SubscriptionWait(waitTime, 5, 1) !=
43 NDDS_WAIT_SUCCESS) {
44 printf("There is no subscription to the topic. "
45 "Might as well exit.\n");
46 return 0;
47 }
48
49 for (count=0;;count++) {
50 printf("Sampling publication, count %d\n", count);
51
52 /* modify the data to be sent here */
53 sprintf(instance->msg, "Hello World! (%d)", count);
54
55 if (publication->Send() != NDDS_PUBLICATION_SUCCESS) {
56 printf("Issue %d not sent\n", count);
57 return 0;
58 }
59 NddsUtilitySleep(send_period_sec);
60 }
61 return 1;
62 }

Line 5 We create an NDDSPublicationProperties structure on the stack to tailor the publica-
tion behavior for reliability.

Lines 12-13 These lines convert time values from seconds and nanoseconds into RTINtpTime struc-
tures. This is our operating system-independent time representation. It is based on the
NTP time format. Time is not represented in a human readable form. Instead it is orga-
nized in a way that makes 64-bit arithmetic easy. We have provided a set of functions to
convert to and from RTINtpTime. See Appendix A for details.

Lines 15-23 The steps to create a reliable publication are identical to the best-effort publication,
including creating a domain and allocating a publication instance.

Lines 25-33 Tailor reliable behavior of the publication through publication properties. When a publi-
cation has reliable subscriptions, it is functionally different than a regular (best-effort,
unreliable) publication in the following ways:

❏ It checks for acknowledgements from the reliable subscriptions, and resends pre-
viously published issues if a subscription reports that issue(s) as missing. The
sendQueueSize field of the publication’s property specifies the maximum number
of issues the publication remembers.

❏ In addition to passively checking the acknowledgement messages from the reli-
able subscriptions, the publication can (optionally) actively poll for the remote
subscription’s receipt status periodically. We set the heartBeatTimeout field to 0.5
3-4

3.1 Lesson 6: Publish and Subscribe Reliably
3. A

d
va

nc
e

d
 C

++
second to poll for the subscription status twice a second. This feature is not nec-
essary for this simple example, but we show it here in case you want to use it
later in your application.

❏ If a subscription falls behind despite the publication’s efforts, the publication’s
queue will eventually fill up, and the send call will block for the sendMaxWait
seconds, and then return error. We want to block only a finite time: 2.0 seconds
here.

Lines 35-40 We create the publication with the Derivable API.

Lines 42-47 Even though a reliable publication is allowed to send the issues as soon as it changes the
queue size, there is no guarantee that a subscription exists to receive the issues. If you
start publishing anyway without ensuring the existence of a subscription, it somewhat
defeats the purpose of using reliable subscriptions. SubscriptionWait() is a convenience
function for ensuring the existence of a specified number of subscriptions to the publica-
tion’s NDDS topic. It is also a deterministic call because you will wait no more than
waitTime (2 seconds) times retries (10 times), which is 20 seconds in this exercise.

Lines 55-58 If the send queue becomes full, a reliable publication blocks waiting for a free space, up
to sendMaxWait, at the end of which the send call returns an error. You are free to ignore
it and simply note that the issue was not sent. Here, we take the most dramatic action of
quitting the program. You can also wait for the queue level to drop to a value you spec-
ify with Wait(), and ensure that all published issues have been acknowledged by the
reliable subscriptions.

3.1.3 Learn How to Create a Reliable Subscription

Open and review Hello_subscriber.cxx in the <NDDSTutorialDir>/reliable directory.
The main body of code is shown in Figure 3.2. There are no code changes required.

Figure 3.2 Reliable Subscription Code

1 extern "C" int subscriberMain(int nddsDomain, int nddsVerbosity)
2 {
3 NDDSSubscriptionProperties properties;
4 NDDSSubscriptionDerivable *subscription = NULL;
5 MyListener *listener = NULL;
6 NDDSDomainDerivable *domain = NULL;
7 HelloMsg *instance = NULL;
8 char deadlineString[RTI_NTP_TIME_STRING_LEN];
9
10 NddsVerbositySet(nddsVerbosity);
11
3-5

Chapter 3 Advanced Exercises
12 if(!(domain = new NDDSDomainDerivable(nddsDomain, NULL, NULL)) ||
13 !domain->IsValid()) {
14 return 0;
15 }
16
17 /*
18 Set subscription properties.
19 */
20 domain->SubscriptionPropertiesGet(&properties);
21 RtiNtpTimePackFromNanosec(properties.deadline,10,0);
22 properties.mode = NDDS_SUBSCRIPTION_IMMEDIATE;
23 properties.receiveQueueSize = 5;
24
25 /*
26 * Allocate the object. Nddsgen generates allocation code for
27 * internal structures.
28 */
29 if(!(instance = new HelloMsg())) {
30 return 0;
31 }
32
33 if(!(listener = new MyListener())) {
34 return 0;
35 }
36
37 if(!(subscription =
38 new NDDSSubscriptionReliableDerivable(domain,
39 "Reliable HelloMsg",
40 instance, listener,
41 &properties)) ||
42 !subscription->IsValid()) {
43 return 0;
44 }
45
46 while (1) {
47 /*subscription->Poll() only needed if NDDS_SUBSCRIPTION_POLLED*/
48
49 /*
50 * We sleep only to kill time. Nothing need be done here
51 * for an NDDS_SUBSCRIPTION_IMMEDIATE subscription.
52 */
53 printf("Sleeping for %s sec...\n",
54 RtiNtpTimeToString(properties.deadline, deadlineString));
55 NddsUtilitySleep(properties.deadline);
56 }
57 return 1;
58 }
3-6

3.1 Lesson 6: Publish and Subscribe Reliably
3. A

d
va

nc
e

d
 C

++
Line 3 We create an NDDSSubscriptionProperties structure on the stack to tailor the subscrip-
tion behavior for reliability.

Lines 10-35 The steps to create a reliable subscription are identical to the best-effort subscription,
including creating a domain, allocating a subscription instance, and creating an issue
listener. There are differences in how the properties are initialized, however.

Lines 17-23 Tailor reliable behavior of the subscription through subscription properties.

A reliable subscription is different than a best-effort subscription in the following ways:

❏ It checks the sequence number of the received issues and puts them in order
before handing them off to the application. Upon discovery of lost issue, it
reserves space for the missing issue and requests retransmission. The receive-
QueueSize field of the subscription’s property specifies the maximum number of
issues the subscription can cache while it retries lost issues.

❏ You cannot specify minimum separation for a reliable subscription. If you want
to receive issues in order, you must accept all issues. Hence we specify the dead-
line but not the minimum separation.

Lines 37-42 We create the reliable subscription with the Derivable API. Since we do not want to be
notified of any reliable-subscription-related events, we simply omit setting up a reliable
listener in this example. Note that we are still specifying an issue listener, as we must to
create any subscription.

3.1.4 Build the Reliable Subscription and Publication Programs

To build the reliable subscription and publication programs:

1. Copy the contents of the <NDDSTutorialDir>/reliable directory into a new
directory of your own, such as myreliable.

2. Follow the build steps listed in Section 2.3.6, but use your new myreliable direc-
tory.

3.1.5 Run the Reliable Subscription and Publication Programs

To run the reliable subscription and publication programs:

1. Start the publication first. Since there is no subscription, the publication should
wait for 20 seconds then quit.

2. Start the subscription.
3-7

Chapter 3 Advanced Exercises
3. Start the publication again.

Note: The output from the reliable subscription is the same as what you had seen from
the best-effort publication in Lesson 2. The NDDS reliability mechanism is transparent
to the application.

4. Now kill the subscription with <Ctrl-c>. The publication keeps publishing until
its send queue fill up, blocks for 2 seconds, and finally quits the program because
the send call returned an error because it timed out on the full queue. For UNIX-
based operating systems you can test the reliability by suspending <Ctrl-z> the
subscriber process for a couple of seconds and then restoring it <bg>. The sub-
scriber gets the missed issues (in the right order!).

3.2 Lesson 7: Publish and Subscribe Using Multicast
Goal Create a multicast publication-subscription pair to send and receive the "Hello World!"

message of the HelloMsg NDDS type created in Lesson 1.

In this exercise, you will review the publication and the subscription code in the
<NDDSTutorialDir>/multicast directory and discover the calls necessary to send and
receive issues on a multicast address. You will learn that the code is very similar to the
unicast publication and subscription code in the <NDDSTutorialDir>/hello directory,
created in Lesson 2. The NDDS type and the message content will be exactly same.
There are no code changes for you to make in this lesson.

3.2.1 Using Multicast in NDDS

NDDS takes advantage of multicasting on systems that support it. With multicasting,
applications can send data to multiple subscribers efficiently. This is useful for users
who want to send a large amount of data to multiple nodes simultaneously.

NDDS integrates multicasting seamlessly. The API and behavior is transparent. All
NDDS features such as reliability and transparent redundancy are the same whether
you are using unicast or multicast.
3-8

3.2 Lesson 7: Publish and Subscribe Using Multicast
3. A

d
va

nc
e

d
 C

++
To use multicast an NDDS application must:

1. Enable multicasting and set the Time-To-Live (TTL) value appropriate for the
multicast data for the application during initialization of NDDS.

TTL is the number of hops or gateways a message may take before it is dis-
carded, thus controlling the extent of the multicast data.

2. If the application is a subscriber, specify a multicast address at creation time.

We recommend using a multicast address in the range of 225.0.0.0 and higher.

Note: A publication does not specify a multicast address. A subscription specifies
whether and on which multicast address to receive issues. This is consistent with other
aspects of receiving messages, such as reliability. If a subscription specifies a multicast
address, the matching publication(s) will send the issues on the requested multicast
address.

This completes the general discussion for this lesson. If you are using C++, the next sections
walk you through the hands-on part of the lesson. If you are using C, refer to Section 5.2 to com-
plete the lesson.

3.2.2 Learn How to Create a Multicast Publication

Open Hello_publisher.cxx in the <NDDSTutorialDir>/multicast directory. The main
body of code is shown in Figure 3.3.

Line 8 Create an NDDSDomainProperties structure variable to turn on multicasting and set
the TTL.

Lines 13-23 Copy the default application properties into the NDDSDomainProperties structure
before changing the multicast properties structure. Multicasting is enabled and the TTL
is set to restrict the messages to within the same subnet. The application is finally initial-
ized with these multicast properties during new NDDSDomainDerivable().

Lines 24-47 The rest of this example is the same as the unicast publication code in the
<NDDSTutorialDir>/hello directory (see Lesson 2).
3-9

Chapter 3 Advanced Exercises
Figure 3.3 Multicast Publication Code

1 extern "C" int publisherMain(int nddsDomain, int nddsVerbosity)
2 {
3 int count = 0;
4 RTINtpTime send_period_sec = {0,0};
5 NDDSPublicationDerivable *publication = NULL;
6 NDDSDomainDerivable *domain = NULL;
7 HelloMsg *instance = NULL;
8 NDDSDomainProperties domainProperties;
9 NDDSPublicationProperties publProperties;
10
11 RtiNtpTimePackFromNanosec(send_period_sec, 4,0); /* 4 seconds */
12
13 NddsDomainPropertiesDefaultGet(&domainProperties);
14 domainProperties.multicast.enabled = RTI_TRUE;
15 domainProperties.multicast.ttl = NDDSTTLSameSubnet;
16
17 NddsVerbositySet(nddsVerbosity);
18
19 if(!(domain = new NDDSDomainDerivable(nddsDomain,
20 &domainProperties)) ||
21 !domain->IsValid()) {
22 return 0;
23 }
24
25 domain->PublicationPropertiesGet(&publProperties);
26 RtiNtpTimePackFromNanosec(publProperties.persistence, 15, 0);
27 publProperties.strength = 1;
28
29 if(!(instance = new HelloMsg())) {
30 return 0;
31 }
32
33 if(!(publication = new NDDSPublicationDerivable(domain,
34 "Multicast HelloMsg", instance, &publProperties)) ||
35 !publication->IsValid()) {
36 return 0;
37 }
38
39 for (count=0;;count++) {
40 printf("Sampling publication, count %d\n", count);
41 /* modify the data to be sent here */
42 sprintf(instance->msg, "Hello World! (%d)", count);
43 publication->Send();
44 NddsUtilitySleep(send_period_sec);
45 }
46 return 1;
47 }
3-10

3.2 Lesson 7: Publish and Subscribe Using Multicast
3. A

d
va

nc
e

d
 C

++
3.2.3 Learn How to Create a Multicast Subscription

Open Hello_subscriber.cxx in the <NDDSTutorialDir>/multicast directory. The main
body of code is shown in Figure 3.4.

Figure 3.4 Multicast Subscription Code in C++

1 extern "C" int subscriberMain(int nddsDomain, int nddsVerbosity)
2 {
3 NDDSSubscriptionDerivable *subscription = NULL;
4 MyListener *listener = NULL;
5 NDDSDomainDerivable *domain = NULL;
6 HelloMsg *instance = NULL;
7 char deadlineString[RTI_NTP_TIME_STRING_LEN];
8 NDDSDomainProperties domainProperties;
9 NDDSSubscriptionProperties subsProperties;
10
11 NddsVerbositySet(nddsVerbosity);
12
13 NddsDomainPropertiesDefaultGet(&domainProperties);
14 domainProperties.multicast.enabled = RTI_TRUE;
15 domainProperties.multicast.ttl = NDDSTTLSameSubnet;
16 if(!(domain = new NDDSDomainDerivable(nddsDomain,
17 &domainProperties)) ||
18 !domain->IsValid()) {
19 return 0;
20 }
21
22 domain->SubscriptionPropertiesGet(&subsProperties);
23 subsProperties.mode = NDDS_SUBSCRIPTION_IMMEDIATE;
24 RtiNtpTimePackFromNanosec(subsProperties.deadline,10,0);
25 RtiNtpTimePackFromNanosec(subsProperties.minimumSeparation,0,0);
26
27 /*
28 * Allocate the object. Nddsgen generates allocation code for
29 * internal structures.
30 */
31 if(!(instance = new HelloMsg())) {
32 return 0;
33 }
34
35 if(!(listener = new MyListener())) {
36 return 0;
37 }
38
3-11

Chapter 3 Advanced Exercises
39 if(!(subscription = new NDDSSubscriptionDerivable(domain,
40 "Example HelloMsg", instance, listener, &subsProperties,
41 NddsStringToAddress("225.0.0.1"))) ||
42 !subscription->IsValid()) {
43 return 0;
44 }
45
46 while (1) {
47 /*subscription->Poll() only needed if NDDS_SUBSCRIPTION_POLLED*/
48
49 /*
50 * We sleep only to kill time. Nothing need be done here
51 * for an NDDS_SUBSCRIPTION_IMMEDIATE subscription.
52 */
53 printf("Sleeping for %s sec...\n",
54 RtiNtpTimeToString(subsProperties.deadline,
55 deadlineString));
56 NddsUtilitySleep(subsProperties.deadline);
57 }
58 return 1;
59 }

Line 8 Similar to a publication, an NDDSDomainProperties structure is created to turn on
multicasting and set the TTL.

Lines 13-20 The steps to turn on multicasting and set the TTL before initializing NDDS are the same
as for the multicast publication.

Lines 22-37 The steps to create a reliable subscription are identical to the best-effort subscription,
including setting properties, creating a domain and allocating a publication instance.

Lines 39-44 The only difference between a unicast subscription and a multicast subscription is in the
last argument to the create call. For the unicast subscription in Lesson 2, you passed in
NDDS_USE_UNICAST to indicate a unicast subscription. This time, you specify the
host byte order integer for 225.0.0.1 with NddsStringToAddress(), which converts the
string form of an IP address into a host byte-ordered address.

Lines 46- The rest of this example is the same as the unicast publication code in the
<NDDSTutorialDir>/hello directory (see Lesson 2).

3.2.4 Build the Multicast Subscription and Publication Programs

To build the multicast subscription and publication programs:

1. Copy the contents of the <NDDSTutorialDir>/multicast directory into a new
directory of your own, such as mymulticast.
3-12

3.3 Lesson 8: Subscribe Using Patterns
3. A

d
va

nc
e

d
 C

++
2. Follow the build steps listed in Section 2.3.6, but use your new mymulticast
directory.

3.2.5 Run the Multicast Subscription and Publication Programs

To run the multicast subscription and publication programs:

1. Start the subscription.

2. Start the publication.

Note: The output from the multicast subscription is the same as what you had seen from
the best-effort publication in Lesson 2. The NDDS multicast mechanism is transparent to
the application.

3.3 Lesson 8: Subscribe Using Patterns
Goal In this exercise, you will review the publication and the subscription code in the

<NDDSTutorialDir>/pattern directory and discover the calls necessary to implement
the pattern subscription strategy shown in Figure 3.5.

There are no code changes for you to make in this lesson.

3.3.1 Pattern Subscriptions

With the pattern subscription feature, you can subscribe to sets of related NDDS topics.
An NDDS subscriber may subscribe to a topic or type pattern in place of the explicit
NDDS topic and NDDS type. The NDDS topic and NDDS type patterns are simple regular
expressions that are matched against the full NDDS topics and NDDS types for all cur-
rent and future publications. The pattern subscription feature allows you to group pub-
lications and subscribe to related NDDS topics. For instance, a monitoring program
could subscribe to all types of alarm conditions by specifying a subscription to NDDS
topic “Alarm*.” The applications would then receive a publication of AlarmTempera-
ture, AlarmTimeout, and AlarmError.

Hierarchical
NDDS Topics

The pattern subscription feature supports a hierarchical organization for NDDS topics,
which can help you organize your data, especially if your system is complex. Figure 3.5
illustrates the use of pattern topics in a semiconductor processing application. In the
diagram, the chemical vapor deposition module is overseen by the deposition monitor
node and the safety supervisor node. The safety supervisor node also monitors the ther-
3-13

Chapter 3 Advanced Exercises
mal processing module and sends commands reliably. There are two deposition cham-
bers and a dispenser in the deposition module.

In the above case, the use of pattern subscriptions reduces the amount of code on the
subscriber side drastically, and allow flexible subscription strategy. For example, the
Deposition Monitor subscribes to all of the Deposition Module publications with a sin-
gle function. The flexibility derives from the fact that new publications are automati-
cally added if they adhere to the same naming convention.

This completes the general discussion for this lesson. If you are using C++, the next sections
walk you through the code for the lesson. If you are using C, refer to Section 5.3 to complete the
lesson.

Deposition Module
Publish:
DepMod/Chamber1/Pressure
DepMod/Chamber1/Temperature
DepMod/Chamber2/Pressure
DepMod/Chamber2/Temperature

DepMod/Dispenser/Vel
DepMod/Dispenser/Pos

Thermal Processing

Publish:
Module

Thermal/Chamber/Pressure
Thermal/Chamber/Temperature
Thermal/Chamber/GasFlow

Subscribe:
Command

Safety Supervisor

Subscribe:
//Pressure
//Temperature

Publish:
Command

Deposition Monitor

Subscribe:
DepMod/*/*

Pressure Pos, Vel

Temperature

Pressure Temperature

Pressure Temperature

Command

NDDS

NDDSNDDS

NDDS

Figure 3.5 Pattern Subscription Example: Semiconductor Processing
3-14

3.3 Lesson 8: Subscribe Using Patterns
3. A

d
va

nc
e

d
 C

++
3.3.2 Review the Deposition Monitor Code

Open depMonitor.cxx in the <NDDSTutorialDir>/pattern directory. The main body of
the code, seen in Figure 3.6, shows how to subscribe to the pattern NDDS topic
"DepMod/*/*".

Figure 3.6 Subscribing to Patterns in C++

1 class DataPatternSubscriptionClass : public NDDSSubscriberPatternClass {
2 public:
3 virtual ~DataPatternSubscriptionClass();
4 DataPatternSubscriptionClass(class NDDSDomainDerivable *domain,
5 class DataListener *listener);
6 virtual NDDSSubscriptionClass *OnMatch(const char *nddsTopic,
7 const char *nddsType);
8 private:
9 class NDDSDomainDerivable *_domain;
10 class DataListener *_listener;
11 };
12
13 DataPatternSubscriptionClass::~DataPatternSubscriptionClass() {}
14 DataPatternSubscriptionClass::
15 DataPatternSubscriptionClass(class NDDSDomainDerivable *domain,
16 class DataListener *listener) :
17 _domain(domain),
18 _listener(listener)
19 {
20 }
21 NDDSSubscriptionClass *
22 DataPatternSubscriptionClass::OnMatch(const char *nddsTopic,
23 const char *nddsType)
24 {
25 NDDSSubscriptionProperties properties;
26 NDDSSubscriptionDerivable *subscription;
27 Data *instance;
28
29 _domain->SubscriptionPropertiesGet(&properties);
30 RtiNtpTimePackFromNanosec(properties.deadline, 10,0);
31 RtiNtpTimePackFromNanosec(properties.minimumSeparation, 0, 0);
32 properties.mode = NDDS_SUBSCRIPTION_IMMEDIATE;
33
34 if(!(instance = new Data())) {
35 return 0;
36 }
37
38 subscription = new NDDSSubscriptionDerivable(_domain, nddsTopic,
39 instance,_listener,
40 &properties,
41 NDDS_USE_UNICAST);
3-15

Chapter 3 Advanced Exercises
42 if (subscription->IsValid()) {
43 return subscription;
44 }
45
46 return NULL;
47 }
48
49 extern "C" int DepositionMonitor(int nddsDomain, int nddsVerbosity)
50 {
51 NDDSSubscriberDerivable *depMonitor = NULL;
52 MyListener *listener = NULL;
53 NDDSDomainDerivable *domain = NULL;
54 RTINtpTime sleepTime = {10, 0};
55 DataPatternSubscriptionClass *myPatternSubscription = NULL;
56
57 NddsVerbositySet(nddsVerbosity);
58 if(!(domain = new NDDSDomainDerivable(nddsDomain)) ||
59 !domain->IsValid()) {
60 return 0;
61 }
62
63 if(!(listener = new MyListener())) {
64 return 0;
65 }
66
67 if(!(depMonitor = new NDDSSubscriberDerivable(domain)) ||
68 !depMonitor->IsValid()) {
69 return 0;
70 }
71
72 if(!(myPatternSubscription =
73 new DataPatternSubscriptionClass(domain, listener))) {
74 return 0;
75 }
76
77 depMonitor->PatternAdd("DepMod/*/*", "Data", myPatternSubscription);
78
79 while (1) {
80 NddsUtilitySleep(sleepTime);
81 }
82
83 return 1;
84 }

Line 67 In Lesson 4, you learned that a subscriber manages subscriptions. Since the pattern sub-
scription feature involves creating multiple subscriptions for each match, you specify
the desired pattern NDDS topic and NDDS types to a subscriber, which can create a sub-
scription for the match. Therefore, you need to create a subscriber first.
3-16

3.3 Lesson 8: Subscribe Using Patterns
3. A

d
va

nc
e

d
 C

++
Line 77 The PatternAdd() method tells the subscriber (depMonitor) what pattern topic ("Dep-
Mod/*/*") and pattern type ("Data") to match. If there is a match, the subscriber invokes
the OnMatch() method of the object (myPatternSubscription) of a sub-class of
NDDSSubscriberPatternClass to create a subscription for the match.

Lines 21-47 You told NDDS to invoke myPatternSubscription’s (an instance of the DataPattern-
SubscriptionClass) OnMatch() method when it discovers a publication matching the
pattern topic/type. With this method, you have the flexibility to:

❏ Create a subscription for all matches, as you are doing here. Note that all sub-
scriptions will use the same deadline, minimum separation, callback routine,
and data instance, but this is purely for simplification purposes. Each subscrip-
tion can have different parameters.

❏ Do other things before returning the subscription to NDDS. The user parameter
is convenient for passing information in either direction.

If you want to implement the OnMatch() method:

1. Derive your own pattern subscriber class from the NDDSSubscriberPattern-
Class.

2. Implement the OnMatch() method of the derived class.

3.3.3 Review the Safety Supervisor Code

Open supervisor.cxx in the <NDDSTutorialDir>/pattern directory. Even though the
safety supervisor publishes as well as subscribes, you will examine only the pattern
subscription part in this exercise. You already learned how to subscribe to a pattern in
the deposition monitor program. The safety supervisor code in Figure 3.7 shows that
you can subscribe to multiple pattern topics with one subscriber: in this example, the
Safety Supervisor subscribes to the patterns "*/*/Pressure" and "*/*/Temperature".

Figure 3.7 Subscribing to Multiple Patterns in C++

1 if(!(safetySubscriber = new NDDSSubscriberDerivable(domain) ||
1 !safetySubscriber->IsValid()) {
2 return 0;
3 }
4 if(!(myPatternSubscription =
5 new DataPatternSubscriptionClass(domain,listener))) {
6 return 0;
7 }
8 safetySubscriber->PatternAdd("*/*/Pressure", "Data",
9 myPatternSubscription);
10 safetySubscriber->PatternAdd("*/*/Temperature", "Data",
11 myPatternSubscription);
3-17

Chapter 3 Advanced Exercises
3.3.4 Review the Deposition Module

Review the code in depModule.cxx in the <NDDSTutorialDir>/pattern directory. The
deposition module creates six publications with a hierarchical naming scheme. If you
need a refresher on the concept of creating publications, see Lesson 2.

3.3.5 Review the Thermal Processing Module Code

Review the code in thermProcess.cxx in the <NDDSTutorialDir>/pattern directory. The
thermal processing module creates three publications with a hierarchical naming
scheme, and creates a reliable subscription to the command. If you need a refresher on
the concept of creating publications and subscriptions, see Lesson 2.

3.4 Congratulations!
You can now develop any distributed real-time application. Your next steps are:

❏ Develop your application. See Chapter 3 in the NDDS User’s Manual for guid-
ance.

❏ Refer to the other advanced examples in the examples/ directory. To test NDDS’s
performance on your system, work in the examples/performance/ directory.

❏ Consult with RTI on using NDDS to meet your design goals. For consulting rates
and scheduling, contact your sales representative or send e-mail to RTI at
info@rti.com.
3-18

4. Ba
sic

 C
Chapter 4

Basic C Exercises

This chapter provides instructions on how to perform the same exercises presented in
Chapter 2 if you are using C language.

❏ Lesson 1: Use nddsgen to Auto-Create NDDS Types (Section 4.1)

❏ Lesson 2: Create a Publication and a Subscription (Section 4.2)

❏ Lesson 3: Create a Polled Subscription (Section 4.3)

❏ Lesson 4: Create a Publisher and a Subscriber (Section 4.4)

❏ Lesson 5: Create a Client and a Server (Section 4.5)

You should read the general discussion sections for each lesson presented in Chapter 2,
before using the instructions in this chapter.

Each exercise is available in complete source code form in the <NDDSTutorialDir/C>
directory of your NDDS installation. For convenience, we will leave off “/C” and sim-
ply refer to this directory as <NDDSTutorialDir>.

The same platforms that are supported with C++ are also supported with C. Refer to the
setup checklist for your platform before proceeding with the lessons:

❏ Compiling UNIX Applications (Section 3.1) in the NDDS Getting Started Guide

❏ Compiling Windows Applications (Section 3.2) in the NDDS Getting Started
Guide

❏ Compiling VxWorks Applications (Section 3.3) in the NDDS Getting Started Guide
4-1

Chapter 4 Basic C Exercises
4.1 Lesson 1: Use nddsgen to Auto-Create NDDS Types
Goal Create an NDDS type called “HelloMsg” to send a short message to other applications.

The resulting source code should be similar to what is in the <NDDSTutorialDir>/
hello> directory.

4.1.1 Create an NDDS Type

To create an NDDS Type called HelloMsg:

1. Create a directory called myhello.

2. In the myhello directory, create a file called Hello.x that contains:

/* nddsgen.C.NDDSType HelloMsg; */

const MAX_MSG_LEN = 128;

struct HelloMsg {
 string msg<MAX_MSG_LEN>;
};

The keyword “string” within the HelloMsg structure is the type used in the
NDDS exchange language for NULL-terminated strings. The value in the angle
brackets, < >, specifies a maximum size for the message, which is
MAX_MSG_LEN here.

The line:

/* nddsgen.C.NDDSType HelloMsg; */

• Tells nddsgen to generate code in C.

• Declares an NDDSType called HelloMsg.

• Tells nddsgen to look for a structure called HelloMsg to build the Hel-
loMsg NDDS type.

3. Type at the command prompt:

nddsgen Hello.x
4-2

4.1 Lesson 1: Use nddsgen to Auto-Create NDDS Types
4. Ba

sic
 C
4.1.2 Review the Generated Files

nddsgen generates all of the serialize/deserialize code for the structure HelloMsg in
the file Hello.x and puts all of the code in the files Hello.h and Hello.c. The Hello.c file
contains all of the exchange language code and NDDS wrapper functions, such as the
serialize/deserialize and print functions. The Hello.h file contains the structure that you
will use throughout your code.

To correct mistakes or modify the NDDS type, use the -replace argument to overwrite
the current files.

The generated Hello.h file contains the actual data structure for the new NDDS type
and declares the functions in Hello.c.

The following are the relevant lines from Hello.h.

#define MAX_MSG_LEN 128

typedef struct HelloMsg {
char *msg;

} HelloMsg;

#define HelloMsgNDDSType "HelloMsg";
extern RTIBool HelloMsgSerialize(NDDSXDRStream nddsds,

HelloMsg *instance,
int options);

extern RTIBool HelloMsgNddsRegister();
extern HelloMsg *HelloMsgAllocate();
extern HelloMsg *HelloMsgDeserialize(NDDSXDRStream nddsds,

 HelloMsg *instance);
extern RTIBool HelloMsgPrint(HelloMsg *nddsHelloMsg,

 unsigned int indent);

HelloMsg is defined to be a structure that contains a single data member: the character
pointer msg. Although MAX_MSG_LEN was used to specify the maximum size of the
string in Hello.x and defined with a #define in Hello.h, msg does not have a predeter-
mined size. This gives you flexibility in allocating space for the string.

In addition to the serialize, deserialize, allocate, and print routines, nddsgen also creates
a function that registers the type to NDDS: HelloMsgNddsRegister(). HelloMs-
gNddsRegister() and HelloMsgAllocate() are the two most commonly used functions
in your application. The rest are internally used by NDDS.
4-3

Chapter 4 Basic C Exercises
4.2 Lesson 2: Create a Publication and a Subscription
Goal Create a publication and subscription pair to send and receive “Hello World!” messages

in a best-effort real-time manner. Best-effort real-time mode means that the issues will
be delivered as deterministically as the underlying OS and system allows. If an issue is
not received by a subscriber until the deadline expires, the subscriber is notified of the
failure (the publisher continues publishing the data nevertheless). NDDS also supports
reliable mode, where the issues are guaranteed to be delivered in-order.

The final code should be the same as in the <NDDSTutorialDir>/hello directory.

4.2.1 Generate Example Publication and Subscription Code

Refer to Section 2.3.3 for instructions on using nddsgen to create the code you need
before starting this lesson.

4.2.2 Edit Hello_publisher.c

To edit the generated publication code to send the "Hello World!" message:

1. Open Hello_publisher.c and review the generated code.

Specify the
verbosity

NDDS runs at the silent verbosity setting by default; you see only error mes-
sages. Increasing verbosity can reveal what NDDS is doing under the hood and
is helpful for advanced debugging. To change the verbosity to 3, initialize ndds-
Verbosity to 3 in main().

Initialize an
NDDS
application

NddsInit() initializes an application in the NDDS domain of your choice, and
returns a handle to the new domain, for use in creating NDDS objects in that
domain later on. NddsInit() must be called before you can create any publica-
tions or subscriptions.

Register the
NDDSType

The generated function HelloMsgNddsRegister() registers the HelloMsg
NDDSType.

Allocate space
for the message

The generated function HelloMsgAllocate() allocates memory for an instance of
the HelloMsg NDDSType, enough to accommodate the maximum array size
specified by the MAX_MSG_SIZE constant specified in Hello.x.
4-4

4.2 Lesson 2: Create a Publication and a Subscription
4. Ba

sic
 C
The code:

instance = HelloMsgAllocate();

allocates memory for the HelloMsg structure and sets instance to it so you can
give the pointer to NDDS to send issues. You change the issue value by modify-
ing the content of this address, as shown in the next step.

Create a
publication

The following creates a publication for the hello message:

publication = NddsPublicationCreate(domain, "Example HelloMsg",
 HelloMsgNDDSType, instance,
 persistence, strength);

Table 4.1 lists the arguments specified to create this publication.

Send the
message.

2. You need to add one line to make the code work. Modify the message to be sent
under the following line:

/* modify the data to be sent here */

by adding the following line:

sprintf(instance->msg, "Hello Universe! (%d)", count);

The count variable already exists and is incremented by the publication task
every time it sends an issue with the call:

NddsPublicationSend(publication);

You produced the effect of sending issues at a fixed rate by sleeping for
send_period_sec (4 seconds):

NddsUtilitySleep(send_period_sec).

Table 4.1 Arguments to NddsPublicationCreate()

Argument Value Description

domain domain Handle to the domain to which the publication will
belong.

nddsTopic "Example HelloMsg" NDDSTopic.

nddsType HelloMsgNDDSType #defined as "HelloMsg" in Hello.h.

instance address of HelloMsg
structure

Pointer to HelloMsg structure containing the data to
be published.

persistence 15 seconds Refer to Section 2.3.1.

strength 1 Refer to Section 2.3.1.
4-5

Chapter 4 Basic C Exercises
Warning: Do not use NddsUtilitySleep() to conduct performance tests, such as
throughput or latency tests. NddsUtilitySleep() cannot guarantee the resolution
required in a performance test. Instead, use the for() loop or its equivalent, which
has much finer resolution. For hints, see the performance test examples in the
examples/performance directory.

3. Save your changes. The final code should be the same as that in the <NDDSTu-
torialDir>/hello directory.

4.2.3 Review Hello_subscriber.c

To review the subscription code for the "Hello World!" message:

1. Open myhello/Hello_subscriber.c and review the generated code. No changes
are required to run this code.

The generated code for Hello_subscriber.c parallels Hello_publisher.c in four
ways:

a. Sets the NDDS verbosity with NddsVerbositySet().

b. Initializes the application in an NDDS domain with NddsInit().

c. Registers the HelloMsg NDDSType with HelloMsgNddsRegister().

d. Allocates space for a data object of the type HelloMsg with HelloMsgAllo-
cate().

Create an
immediate
subscription

A subscription is created after the above four steps:

subscription = NddsSubscriptionCreate(domain, NDDS_SUBSCRIPTION_IMMEDIATE,
"Example HelloMsg",
HelloMsgNDDSType, instance,
deadline, min_separation,
HelloMsgCallback, NULL,
NDDS_USE_UNICAST);

Table 4.2 lists the arguments specified to create this subscription.

Customize the
callback routine
(optional)

HelloMsgCallback() is currently set to print only the contents of the message.

2. (Optional) If you want to print a detailed message: Look in the HelloMsgCall-
back() routine, find the #if 0 and the #endif /* 0 */ lines, and remove them.

Sleep while
waiting for
issues

For an immediate subscription, there is nothing left to do, because NDDS will
automatically invoke the callback when an issue is received.

3. Save your changes (if any). The final code should be the same as that in the
<NDDSTutorialDir>/hello directory.
4-6

4.2 Lesson 2: Create a Publication and a Subscription
4. Ba

sic
 C
4. The remaining steps in this lesson are covered in Chapter 2:

Refer to
Chapter 2

• Build the Publication and Subscription Programs (Section 2.3.6)

• Run the Subscription Program (Section 2.3.7)

• Run the Publication Program (Section 2.3.8)

• Review the Screen Output on Each Side (Section 2.3.9)

• Experiment with the Programs (Section 2.3.10)

Table 4.2 Arguments to NddsSubscriptionCreate()

Argument Value Description

domain domain Handle to the subscription’s domain.

mode NDDS_SUBSCRIPTION
_IMMEDIATE

This subscription will invoke the subscription call-
back routine as soon as a valid issue is received.

nddsTopic "Example HelloMsg" Must be the same as the NDDSTopic assigned to
the publication.

nddsType HelloMsgNDDSType #defined as "HelloMsg" in Hello.h.

instance Address of HelloMsg
structure

Structure to be used as temporary data holder for
the incoming issue.

deadline 10.0 seconds Alert the application if no new data is received in
10 seconds. See Section 2.3.2.

minimum-
Separation

0.0 seconds The subscription will accept all issues from the
publications no matter how fast they are pub-
lished. See Section 2.3.2.

callBackRtn HelloMsgCallback() This routine is invoked when a valid issue arrives
or the deadline occurs.

callback-
RtnParam

NULL User provided pointer to be parsed back to the
callback routine.

multicast-
Address

NDDS_USE_UNICAST Receive issues using unicast. To learn about using
multicast in NDDS, see Lesson 7.
4-7

Chapter 4 Basic C Exercises
4.3 Lesson 3: Create a Polled Subscription
Goal Modify the subscription created in Lesson 2 to poll for issues from the publication cre-

ated in Lesson 2. The final code should be the same as that in the <NDDSTutorialDir>/
polled directory.

4.3.1 Edit the Subscription Source Code

Continue working in the myhello directory you used in the previous lessons.

There are three changes required in the subscription to poll for "Example HelloMsg":

❏ Change the subscription mode to NDDS_SUBSCRIPTION_POLLED.

❏ Increase the receive queue size to 8.

❏ Poll the subscription at a 10 second period.

Note: You will be polling slower than the send rate of the publication. Initially, the
receive queue will cache the issues, but you will drop issues eventually. For the purpose
of this exercise, this is fine.

To edit the Hello_subscriber.c code for polled mode:

1. Open Hello_subscriber.c for edit.

2. Below the NDDSSubscription declaration:

NDDSSubscription subscription;

Declare the structure to hold the new subscription properties information:

NDDSSubscriptionProperties properties;

3. Change NDDS_SUBSCRIPTION_IMMEDIATE in NddsSubscriptionCreate()
to NDDS_SUBSCRIPTION_POLLED.

4. After creating the subscription (below the NddsSubscriptionCreate() call),
change the receive queue size by entering the following:

NddsSubscriptionPropertiesGet(subscription, &properties);
properties.receiveQueueSize = 8;
NddsSubscriptionPropertiesSet(subscription, &properties);
4-8

4.4 Lesson 4: Create a Publisher and a Subscriber
4. Ba

sic
 C
5. Uncomment the line:

/* NddsSubscriptionPoll(); */

in the while(1) loop to poll the subscription at the deadline rate.

6. Save your changes. The final code should be the same as that in the <NDDSTu-
torialDir>/polled directory.

Note: Publication code is unaffected for the polled mode.

4.3.2 Build the Publication and Subscription Programs

See Section 2.3.6 for instructions on building the publication and subscription programs.

4.3.3 Run the Subscription and Publication Programs

There is no difference in output content from Lesson 2. But if you look closely, the sub-
scription does not report new data right away, but in bursts every 10 seconds, which is
the polling rate.

4.4 Lesson 4: Create a Publisher and a Subscriber
Goal Use a signalled publisher to send the "Hello World!" message to a subscription managed

by a subscriber. The final code should be the same as in the <NDDSTutorialDir>/pub-
lisherSubscriber directory.

4.4.1 Edit Hello_publisher.c

Continue working in the myhello directory you used in the previous lessons.

To edit the Hello_publisher.c code to use a signalled publisher:

1. Open Hello_publisher.c for edit.

2. Add the NDDSPublisher declaration after the NDDSPublication declaration
line:

NDDSPublication publication;
NDDSPublisher publisher;
4-9

Chapter 4 Basic C Exercises
3. Create a signalled publisher before NddsPublicationCreate() by adding the fol-
lowing line:

publisher = NddsPublisherCreate(domain, NDDS_PUBLISHER_SIGNALLED);

4. After creating the publication and the publisher, add the publication to the pub-
lisher by adding the following line:

NddsPublisherPublicationAdd(publisher, publication);

5. Use the publisher to send issues. Change:

NddsPublicationSend(publication);

to:

NddsPublisherSend(publisher);

6. Save your changes. The final code should be the same as in the <NDDSTutori-
alDir>/publisherSubscriber directory.

4.4.2 Edit Hello_subscriber.c

To edit the Hello_subscriber.c code to use a subscriber:

1. Open Hello_subscriber.c for edit.

2. Add the NDDSSubscriber declaration after the NDDSSubscription declaration
line:

NDDSSubscription subscription;
NDDSSubscriber subscriber;

3. Create a subscriber before calling NddsSubscriptionCreate().

subscriber = NddsSubscriberCreate(domain);

4. After creating the subscription and changing its properties (receiveQueueSize in
this case), add it to the subscriber. After the following lines:

NddsSubscriptionPropertiesSet(subscription, &properties)
properties.receiveQueueSize = 8;

Add:

NddsSubscriberSubscriptionAdd(subscriber, subscription);
4-10

4.5 Lesson 5: Create a Client and a Server
4. Ba

sic
 C
5. If the subscription were in the immediate mode, you could stop here. But since
this is a polled subscription, you must now use the subscriber to poll.

Change:

NddsSubscriptionPoll(subscription);

to:

NddsSubscriberPoll(subscriber);

6. Save your changes. The final code should be the same as in the <NDDSTutori-
alDir>/publisherSubscriber directory.

4.4.3 Build the Publisher and Subscriber Programs

For instructions on how to build the publisher and subscriber programs, see
Section 2.3.6.

4.4.4 Run the Subscription and Publication Programs

Using publishers and subscribers does not change the apparent behavior. The output
should be the same as in Lesson 2.

4.5 Lesson 5: Create a Client and a Server
Goal Create a client-server pair and implement a service that adds a pair of numbers. In this

exercise, you will create a client that sends two numbers to a server, which will add
them and return the result to the client. The final code should be the same as in the
<NDDSTutorialDir>/clientServer directory.

4.5.1 Create the Request and Reply NDDS Types

To create the request and reply NDDS Types for the add service in C:

1. Create a new directory called myclientServer/.
4-11

Chapter 4 Basic C Exercises
2. In the new directory, create a file named Add.x which contains:

1 /* nddsgen.C.NDDSType RequestMsg; */
2 /* nddsgen.C.NDDSType ReplyMsg; */
3
4 struct RequestMsg {
5 int x;
6 int y;
7 };
8
9 struct ReplyMsg {
10 int sum;
11 };

Lines 1,2 As in Lesson 1, the NDDSType token identifies the structure that will be the basis
of the NDDS type.

3. Type at the command prompt:

nddsgen Add.x -example <architecture>:client

Refer to
Chapter 2

where <architecture> is the architecture switch for your system (see Table 2.1).

4. Verify that nddsgen generated Add.h, Add.c, Add_client.c, Add_server.c, and
the following:

• makefile_Add_<architecture>, if you specified a UNIX architecture.

• Add.dsw, Add_client.dsp, and Add_server.dsp, if you specified a Win-
dows architecture.

4.5.2 Edit Add_server.c

Create a server that adds two integers sent by the client, and then sends the results back
to the client. Once created, the server sits in an infinite while() loop. The real action
takes place in the server callback routine that you provide when you create the server.

Continue working in the myClientServer directory you created in Section 4.5.1.

To create a server for the add service:

1. Open Add_server.c and review the generated code.

If you finished Lesson 2, you are familiar with the beginning part of the code,
which:

• Sets the verbosity level with NddsVerbositySet().

• Initializes the application in an NDDS domain with NddsInit().
4-12

4.5 Lesson 5: Create a Client and a Server
4. Ba

sic
 C
• Registers the request and reply NDDSTypes.

• Allocates space for the request and reply message holders.

Create a server 2. Before the while() loop in serverMain(), add the following lines to create a
server for "Service1" with NddsServerCreate():

NddsServerCreate(domain, "Service1", NDDS_SERVER_IMMEDIATE, strength,
ReplyMsgNDDSType, instanceReply, RequestMsgNDDSType,
instanceRequest, ServerRoutine, NULL);

Table 4.3 lists the arguments specified.

Once the server is created, there is nothing more to do in the main body of the
server program but to wait for a request to come. The real action is in the server
callback routine, ServerRoutine(), where the service is performed. In this exer-
cise, add the two numbers in the request message.

Table 4.3 Arguments to NddsServerCreate()

Argument Value Description

domain domain Handle to the server’s domain.

serviceName “Service1” The name of the server to be invoked.

mode NDDS_SERVER
_IMMEDIATE

The ServerRoutine() will be invoked as soon as a valid
request is received.

strength 1 Allows arbitration among multiple servers. The value
does not matter if there is only one server for “Service1.”

replyType Reply-
MsgNDDSType

#defined as "ReplyMsg" in Add.h

reply instanceReply Temporary holder for the outgoing reply to the client.

requestType Request-
MsgNDDSType

#defined as "RequestMsg" in Add.h

request instanceRequest Temporary holder for the incoming request from clients.

callBackRtn ServerRoutine() This routine is invoked by NDDS when a client request is
received.

callBack-
RtnParam

NULL Pass any user data to the server callback routine with this
pointer.
4-13

Chapter 4 Basic C Exercises
3. In ServerRoutine(), find the line:

Edit the server
callback routine

/* modify the data replied here */

and add below it:

itemReply->sum = itemRequest->x + itemRequest->y;

to add the two numbers in the request message.

Note: The server callback routine returns RTI_TRUE by default. If you return
RTI_FALSE, no reply is sent to the client; the server will “veto” that request.

4. Save your changes. The final code should be the same as in the <NDDSTutori-
alDir>/clientServer directory.

4.5.3 Edit Add_client.c

You will create a client that will continuously send a pair of increasing integers. For each
service request, it will wait at least 2.0 seconds and at most 5.0 seconds for the reply.

As illustrated in Figure 2.4, the minimum and maximum waits are the parameters gov-
erning the “best then first” semantics. If you ran multiple servers for “Service1” with
one server stronger than the others, you would see that the client waits for 2.0 seconds
and then comes back with the reply from the strongest server. If the client did not get a
reply from any server within the 2.0 second wait, then it will report the first reply it gets
from any server from that point on, until the deadline expires after 5.0 seconds.

To create a client for the add service:

1. Open Add_client.c and review the generated code.

The beginning part of the code is the same as in the server:

• Set the verbosity level with NddsVerbositySet().

• Initialize the application in an NDDS domain with NddsInit().

• Register the request and reply NDDS types.

• Allocate space for the request and reply messages.

Create a client 2. Before calling NddsClientServerWait(), add the following lines to create a client
for "Service1" with NddsClientCreate():

client = NddsClientCreate(domain, "Service1",
ReplyMsgNDDSType, instanceReply,
RequestMsgNDDSType, instanceRequest);

Table 4.4 lists the arguments specified.
4-14

4.5 Lesson 5: Create a Client and a Server
4. Ba

sic
 C
Wait for a
server
to appear
(optional)

3. (Optional) Since clients and servers are anonymous, the clients do not know
whether a server for the desired service exists. If there is in fact no server, or
something prevents the client from receiving the server reply, the client would
only find out after the maximum wait for the request expires. Optionally, you
can ensure that a server exists with NddsClientServerWait().

After creating the client and before sending the request, type:

if (!NddsClientServerWait(client, 2.0, 5, 1)) {
printf("There is no server. Exiting...\n");
return RTI_FALSE;

}

With this call, you tell the client to try to find at least one server, retrying up to 5
times and waiting 2.0 seconds between retries. If the client still can not find a
server, you will need to exit the program.

Enter the
request message

4. Since you already have the count variable which is incremented in the for() loop,
you will need to send its value in the request message.

Below the line:

/* modify the data requested here */

Add the following lines:

instanceRequest->x = count;
instanceRequest->y = count;

Send the request
and wait

When sending a request, clients can either:

• Block for a reply by calling NddsClientCallAndWait().

• Go on with other tasks while passively waiting for the reply by calling
NddsClientCall().

Table 4.4 Arguments to NddsClientCreate()

Argument Value Description

domain domain Handle to the client’s domain.

serviceName "Service1" Must match the ServiceName for the server.

replyType ReplyMsgNDDSType #defined as "ReplyMsg" in Add.h

reply instanceReply Temporary holder for outgoing reply to the client.

requestType Request-
MsgNDDSType

#defined as "RequestMsg" in Add.h

request instanceRequest Temporary holder for incoming request from clients.
4-15

Chapter 4 Basic C Exercises
Since you have nothing else to do (probably not true in your real application),
block waiting for the reply for up to 5.0 seconds. Even if the reply comes back
immediately, you will need to wait for at least 2.0 seconds.

When the reply comes back before the deadline, report the content of the reply
with ReplyMsgPrint(), which is defined in Add.h.

5. Save your changes. The final code should be the same as in the <NDDSTutori-
alDir>/clientServer directory.

6. The remaining steps in this lesson are provided in:

• Build the Client and Server Programs (Section 2.6.5)

Refer to
Chapter 2

• Run the Client Only (Section 2.6.6)

• Start the Server First and Then the Client (Section 2.6.7)
4-16

5. A
d

va
nc

e
d

 C
Chapter 5

Advanced C Exercises

Read the Overview and perform the Basic Exercises before you attempt the Advanced
Exercises. This chapter provides instructions on how to perform the same exercises pre-
sented in Chapter 3 if you are using C language.

These advanced lessons do not require you to make any code changes. You will be
reviewing, and reading the explanation of, the supplied example code.

❏ Lesson 6: Publish and Subscribe Reliably (Section 5.1)

❏ Lesson 7: Publish and Subscribe Using Multicast (Section 5.2)

❏ Lesson 8: Subscribe Using Patterns (Section 5.3)

5.1 Lesson 6: Publish and Subscribe Reliably
Goal Create a reliable publication-subscription pair to send and receive the "Hello World!"

message of the HelloMsg NDDS type created in Lesson 1.

In this exercise, you will review the publication and the subscription code in the
<NDDSTutorialDir>/reliable directory and discover the calls necessary to send issues
reliably. You will learn that the code is similar to the unreliable publication and sub-
scription created in Lesson 2. The NDDS type and the message content is exactly the
same. There are no code changes for you to make in this lesson.
5-1

Chapter 5 Advanced C Exercises
5.1.1 Learn How to Create a Reliable Publication

Open Hello_publisher.c in the <NDDSTutorialDir>/reliable directory. The main body
of code is shown in Figure 5.1.

Figure 5.1 Reliable Publication Code in C

1 int publisherMain(int nddsDomain, int nddsVerbosity)
2 {
3 int count = 0;
4 RTINtpTime send_period_sec = {0,0};
5 int strength = 1;
6 NDDSPublication publication;
7 NDDSPublicationProperties properties;
8 HelloMsg *instance = NULL;
9 NDDSDomain domain;
10 RTINtpTime waitTime = {0,0};
11
12 RtiNtpTimePackFromNanosec(send_period_sec, 4, 0); /* 4 seconds */
13 RtiNtpTimePackFromNanosec(waitTime, 2, 0); /* 2 seconds */
14
15 NddsVerbositySet(nddsVerbosity);
16 domain = NddsInit(nddsDomain, NULL, NULL);
17
18 HelloMsgNddsRegister();
19
20 printf("Allocate HelloMsg type.\n");
21 instance = HelloMsgAllocate();
22
23 NddsPublicationPropertiesDefaultGet(domain, &properties);
24 properties.sendQueueSize = 5;
25 RtiNtpTimePackFromMillisec(properties.heartBeatTimeout, 0, 500);
26 RtiNtpTimePackFromNanosec(properties.sendMaxWait, 2, 0);
27 RtiNtpTimePackFromNanosec(properties.persistence, 15, 0);
28 /* 15 seconds */
29 properties.strength = strength;
30
31 publication = NddsPublicationCreateAtomic(domain,
32 "Reliable HelloMsg",
33 HelloMsgNDDSType, instance,
34 &properties, NULL);
35
36 if (NddsPublicationSubscriptionWait(publication, waitTime, 10, 1)
37 != NDDS_WAIT_SUCCESS) {
38 printf("There is no subscription to the topic. \
39 Might as well exit.\n");
40 return 0;
41 }
42
5-2

5.1 Lesson 6: Publish and Subscribe Reliably
5. A

d
va

nc
e

d
 C
43 for (count=0;;count++) {
44 printf("Sampling publication, count %d\n", count);
45
46 /* modify the data to be sent here */
47 sprintf(instance->msg, "Hello World! (%d)", count);
48
49 if (NddsPublicationSend(publication) !=
50 NDDS_PUBLICATION_SUCCESS) {
51 printf("publication %d not sent\n", count);
52 return 0;
53 }
54 NddsUtilitySleep(send_period_sec);
55 }
56
57 return 1;
58 }

Line 7 We create an NDDSPublicationProperties structure on the stack to tailor the publica-
tion behavior for reliability.

Lines 12-13 These lines convert time values from seconds and nanoseconds into RTINtpTime struc-
tures. This is our operating system-independent time representation. It is based on the
NTP time format. Time is not represented in a human readable form. Instead it is orga-
nized in a way that makes 64 bit arithmetic easy. We have provided a set of functions to
convert to and from RTINtpTime. See Appendix A for details.

Lines 12-21 The steps to create a reliable publication are identical to the best-effort publication, up to
the point of initializing NDDS, registering the NDDS Type, and allocating a publication
instance.

Lines 23-29 Tailor reliable behavior of the publication through publication properties.

When a publication has reliable subscriptions, it is functionally different than a best-
effort (unreliable) publication in the following ways:

❏ It checks for acknowledgements from the reliable subscriptions, and resends pre-
viously published issues if a subscription reports that issue(s) as missing. The
sendQueueSize field of the publication’s property specifies the maximum number
of issues the publication remembers.

❏ In addition to passively checking the acknowledgement messages from the reli-
able subscriptions, the publication can (optionally) actively poll for the remote
subscription’s receipt status periodically. We set the heartBeatTimeout field to 0.5
second to poll for the subscription status twice a second. This fancy feature is not
necessary for this simple example, but we show it here in case you want to use it
later in your application.
5-3

Chapter 5 Advanced C Exercises
❏ If a subscription falls behind despite the publication’s efforts, the publication’s
queue will eventually fill up, and the send call will block for the sendMaxWait
seconds, and then return error. We want to block only a finite time: 2.0 seconds
here.

❏ We specify the strength and persistence through the properties rather than the
creation API because we use the atomic creation API, as shown below.

Lines31-34 We created the publication with the atomic creation API because we want the publica-
tion to start out with the desired properties from the outset. In addition to the proper-
ties, the atomic creation API takes a publication listener as the last argument. Since we
do not want to be notified of any publication-related events, we simply pass NULL in
this example.

Atomically created NDDS objects behave as you want from the very beginning and do
not take additional time to change the properties afterwards. Changing an object prop-
erty after the initial creation can be an expensive operation, depending on the property
being changed. Queue size is one such field, and the property change may fail for a vari-
ety of reasons, including running out of memory. In such cases, the object is in an incon-
sistent or unusable (at least not exactly the way you wanted) state. Strictly speaking,
you have to kill that object if the property change failed, wasting the effort invested to
create that object.

Lines 36-41 Even though a reliable publication is allowed to send issues immediately after creation,
there is no guarantee that a subscription exists to receive the issues. If you start publish-
ing anyway without ensuring the existence of a subscription, it defeats the purpose of
using reliable subscriptions somewhat. NddsPublicationSubscriptionWait() is a conve-
nience function for ensuring the existence of a specified number of subscriptions to the
publication’s NDDS topic. It is also a deterministic call because you will wait no more
than waitTime (2.0 seconds) times retries (10 times), which is 20 seconds in this exercise.

Lines 49-53 If the send queue becomes full, a reliable publication blocks waiting for a free space, up
to the sendMaxWait time you specified, at the end of which the send call returns an error.
You are free to ignore it and simply note that the issue was not sent. Here, we take the
most dramatic action of quitting the program. You can also wait for the queue level to
drop to a value you specify with NddsPublicationWait(), and ensure that all published
issues have been acknowledged by the reliable subscriptions.
5-4

5.1 Lesson 6: Publish and Subscribe Reliably
5. A

d
va

nc
e

d
 C
5.1.2 Learn How to Create a Reliable Subscription

Open Hello_subscriber.c in the <NDDSTutorialDir>/reliable directory. The main body
of code is shown in Figure 5.2.

Figure 5.2 Reliable Subscription Code in C

1 int subscriberMain(int nddsDomain, int nddsVerbosity)
2 {
3 NDDSSubscription subscription;
4 NDDSSubscriptionProperties properties;
5 HelloMsg *instance = NULL;
6 NDDSDomain domain;
7 NDDSIssueListener issueListener;
8 char deadlineString[RTI_NTP_TIME_STRING_LEN];
9
10 NddsVerbositySet(nddsVerbosity);
11 domain = NddsInit(nddsDomain, NULL, NULL);
12
13 HelloMsgNddsRegister();
14
15 printf("Allocate HelloMsg type.\n");
16 instance = HelloMsgAllocate();
17
18 NddsSubscriptionPropertiesDefaultGet(domain, &properties);
19 properties.receiveQueueSize = 5;
20 properties.mode = NDDS_SUBSCRIPTION_IMMEDIATE;
21 RtiNtpTimePackFromNanosec(properties.deadline, 10, 0);
22
23 NddsSubscriptionIssueListenerDefaultGet(&issueListener);
24 issueListener.recvCallBackRtn = HelloMsgCallback;
25
26 subscription =
27 NddsSubscriptionReliableCreateAtomic(domain, "Reliable HelloMsg",
28 HelloMsgNDDSType, instance,
29 &properties, &issueListener,
30 NULL, NDDS_USE_UNICAST);
31
32 while (1) {
33 /* Only needed if NDDS_SUBSCRIPTION_POLLED */
34 /* NddsSubscriptionPoll(subscription); */
35
36 /*
37 * We sleep only to kill time. Nothing need be done here
38 * for an NDDS_SUBSCRIPTION_IMMEDIATE subscription.
39 */
40 printf("Sleeping for %s sec...\n",
41 RtiNtpTimeToString(properties.deadline, deadlineString));
42 NddsUtilitySleep(properties.deadline);
43 }
44 return 1;
45 }
5-5

Chapter 5 Advanced C Exercises
Line 4 We create an NDDSSubscriptionProperties structure on the stack to tailor the subscrip-
tion behavior for reliability.

Lines 10-16 The steps to create a reliable subscription are identical to the best-effort subscription, up
to the point of initializing NDDS, registering the NDDS type, and allocating a subscrip-
tion instance.

Lines 18-21 Tailor reliable behavior of the subscription through subscription properties.

A reliable subscription is different than a best-effort subscription in the following ways:

❏ It checks the sequence number of the received issues and puts them in order
before handing them off to the application. Upon discovery of lost issue, it
reserves space for the missing issue and requests retransmission. The receive-
QueueSize field of the subscription’s property specifies the maximum number of
issues the subscription can cache while it retries lost issues.

❏ You cannot specify minimum separation to a reliable subscription. If you want to
receive issues in-order, you must accept all issues. Hence we specify the deadline
but not the minimum separation in properties.

❏ We specify the mode and the deadline through the properties rather than pass-
ing them directly to the creation API because we use the atomic creation API, as
shown below. The creation API itself is different than for the best-effort subscrip-
tions: namely, it uses the keyword “Reliable” as part of the function name.

Lines 23-30 We create the reliable subscription with the atomic creation API for the same reasons we
had used the atomic API for the publication creation. In addition to the properties and
issue listener, the atomic creation API takes the reliable subscription listener as the sec-
ond-to-last argument. Since we do not want to be notified of any reliable subscription-
related events, we simply pass NULL in this example. Note that we are still specifying
an issue listener, as we must to create any subscription.

5.1.3 Build the Reliable Subscription and Publication Programs

To build the reliable subscription and publication programs:

1. Copy the contents of the <NDDSTutorialDir>/reliable directory into a new
directory of your own, such as myreliable.

2. Follow the build steps listed in Section 2.3.6, but use your new myreliable direc-
tory.
5-6

5.2 Lesson 7: Publish and Subscribe Using Multicast
5. A

d
va

nc
e

d
 C
5.1.4 Run the Reliable Subscription and Publication Programs

To run the reliable subscription and publication programs:

1. Start the publication first. Since there is no subscription, the publication should
wait for 20 seconds then quit.

2. Start the subscription.

3. Start the publication again.

Note: The output from the reliable subscription is the same as what you saw for the best-
effort publication in Lesson 2. The NDDS reliability mechanism is transparent to the
application.

4. Now kill the subscription with <Ctrl-C>. The publication keeps publishing until
its send queue fill up, blocks for 2 seconds, and finally quits the program because
send call returned error due to the send call timed out on the full queue.

5.2 Lesson 7: Publish and Subscribe Using Multicast
Goal Create a multicast publication-subscription pair to send and receive the "Hello World!"

message of the HelloMsg NDDS type created in Lesson 1.

In this exercise, you will review the publication and the subscription code in the
<NDDSTutorialDir>/multicast directory and discover the calls necessary to send and
receive issues on a multicast address. You will learn that the code is very similar to the
unicast publication and subscription created in Lesson 2. The NDDS type and the mes-
sage content will be exactly same.

There are no code changes for you to make in this lesson.
5-7

Chapter 5 Advanced C Exercises
5.2.1 Learn How to Create a Multicast Publication

Open Hello_publisher.c in the <NDDSTutorialDir>/multicast directory. The main
body of code is shown in Figure 5.3.

Figure 5.3 Multicast Publication Code in C

1 int publisherMain(int nddsDomain, int nddsVerbosity)
2 {
3 int count = 0;
4 RTINtpTime send_period_sec = {0,0};
5 RTINtpTime persistence = {0,0};
6 int strength = 1;
7 NDDSPublication publication;
8 HelloMsg *instance = NULL;
9 NDDSDomain domain;
10 NDDSDomainProperties domainProperties;
11
12 RtiNtpTimePackFromNanosec(send_period_sec, 4, 0); /* 4 seconds */
13 RtiNtpTimePackFromNanosec(persistence, 15, 0); /* 15 seconds */
14
15 NddsVerbositySet(nddsVerbosity);
16
17 NddsDomainPropertiesDefaultGet(&domainProperties);
18 domainProperties.multicast.enabled = RTI_TRUE;
19 domainProperties.multicast.ttl = NDDSTTLSameSubnet;
20 domain = NddsInit(nddsDomain, &domainProperties, NULL);
21
22 HelloMsgNddsRegister();
23
24 printf("Allocate HelloMsg type.\n");
25 instance = HelloMsgAllocate();
26
27 publication = NddsPublicationCreate(domain, "Multicast HelloMsg",
28 HelloMsgNDDSType, instance,
29 persistence, strength);
30
31 for (count=0;;count++) {
32 printf("Sampling publication, count %d\n", count);
33
34 /* modify the data to be sent here */
35 sprintf(instance->msg, "Hello World! (%d)", count);
36
37 NddsPublicationSend(publication);
38 NddsUtilitySleep(send_period_sec);
39 }
40
41 return 1;
42 }
5-8

5.2 Lesson 7: Publish and Subscribe Using Multicast
5. A

d
va

nc
e

d
 C
Line 9 This code creates an NDDSDomainProperties structure variable to enable multicasting
and set the TTL.

Lines 17-19 First copy the default application properties into the NDDSDomainProperties struc-
ture before changing the fields you are interested in. In this case, we are only interested
in multicast properties.

In this exercise, multicasting is enabled and the TTL is set to restrict the messages to
within the same subnet. The application is finally initialized with these multicast prop-
erties during NddsInit().

Lines 20-42 The rest of the code is the same as the unicast publication in Lesson 2 (Section 4.2).

5.2.2 Learn How to Create a Multicast Subscription

Open Hello_subscriber.c in the <NDDSTutorialDir>/multicast directory. The main
body of code is shown in Figure 5.4.

Figure 5.4 Multicast Subscription Code in C

1 int subscriberMain(int nddsDomain, int nddsVerbosity)
2 {
3 RTINtpTime deadline = {0,0};
4 RTINtpTime min_separation = {0,0};
5 NDDSSubscription subscription;
6 HelloMsg *instance = NULL;
7 NDDSDomain domain;
8 char deadlineString[RTI_NTP_TIME_STRING_LEN];
9 NDDSDomainProperties domainProperties;
10
11 RtiNtpTimePackFromNanosec(deadline, 10, 0);
12 RtiNtpTimePackFromNanosec(min_separation, 0, 0);
13
14 NddsVerbositySet(nddsVerbosity);
15
16 NddsDomainPropertiesDefaultGet(&domainProperties);
17 domainProperties.multicast.enabled = RTI_TRUE;
18 domainProperties.multicast.ttl = NDDSTTLSameSubnet;
19 domain = NddsInit(nddsDomain, &domainProperties, NULL);
20 HelloMsgNddsRegister();
21
22 printf("Allocate HelloMsg type.\n");
23
24 instance = HelloMsgAllocate();
25 subscription = NddsSubscriptionCreate(domain,
26 NDDS_SUBSCRIPTION_IMMEDIATE,"Multicast HelloMsg",
27 HelloMsgNDDSType, instance,deadline, min_separation,
28 HelloMsgCallback, NULL,NddsStringToAddress("225.0.0.1"));
5-9

Chapter 5 Advanced C Exercises
29
30 while (1) {
31 /* Only needed if NDDS_SUBSCRIPTION_POLLED */
32 /* NddsSubscriptionPoll(subscription); */
33
34 /*
35 * We sleep only to kill time. Nothing need be done here
36 * for an NDDS_SUBSCRIPTION_IMMEDIATE subscription.
37 */
38 printf("Sleeping for %s sec...\n",
39 RtiNtpTimeToString(deadline, deadlineString));
40 NddsUtilitySleep(deadline);
41 }
42 return 1;
43 }

Line 9 As in the publication code, this code creates an NDDSDomainProperties structure vari-
able to enable multicasting and set the TTL.

Lines 16-18 Enabling multicasting and setting the TTL is the same as for the publication.

Lines 25-28 The only difference between a unicast subscription and a multicast subscription is in the
last argument to the create call. For the unicast subscription in Lesson 2 (Section 4.2),
you just passed in NDDS_USE_UNICAST to indicate a unicast subscription. This time,
specify the host byte order integer for 225.0.0.1 with NddsStringToAddress(), which
converts a string form of an IP address into a host byte ordered address.

5.2.3 Build the Multicast Subscription and Publication Programs

To build the multicast subscription and publication programs:

1. Copy the contents of the <NDDSTutorialDir>/multicast directory into a new
directory of your own, such as mymulticast.

2. Follow the build steps listed in Section 2.3.6, but use your new mymulticast
directory.

5.2.4 Run the Multicast Subscription and Publication Programs

To run the multicast subscription and publication programs:

1. Start the subscription.

2. Start the publication.
5-10

5.3 Lesson 8: Subscribe Using Patterns
5. A

d
va

nc
e

d
 C
Note: The output from the multicast subscription is the same as what you saw for the
best-effort publication in Lesson 2. The NDDS multicast mechanism is transparent to the
application.

5.3 Lesson 8: Subscribe Using Patterns
Goal In this exercise, you will review the publication and the subscription code in the

<NDDSTutorialDir>/pattern directory and discover the calls necessary to implement
the pattern subscription strategy shown in Figure 3.5.

5.3.1 Review the Deposition Monitor Code

Open depMonitor.c in the <NDDSTutorialDir>/pattern directory. The main body of
the code, provided in Figure 5.5, shows how to subscribe to the pattern NDDS topic
"DepMod/*/*".

Figure 5.5 Subscribing to Patterns in C

1 NDDSSubscription SubscriptionPatternCreate(const char *nddsTopic,
2 const char *nddsType,
3 void *callBackRtnParam)
4 {
5 Data *genericData = NULL;
6 RTINtpTime deadline = {10,0};
7 RTINtpTime min_separation = {0,0};
8
9 genericData = DataAllocate();
10
11 return NddsSubscriptionCreate(NULL, NDDS_SUBSCRIPTION_IMMEDIATE,
12 nddsTopic, nddsType, genericData,
13 deadline, min_separation,
14 DataCallback, NULL, NDDS_USE_UNICAST);
15 }
16
17 int DepositionMonitor(int nddsDomain, int nddsVerbosity)
18 {
19 RTINtpTime sleepTime = {10,0};
20 NDDSSubscriber depMonitor;
21 NDDSDomain domain;
22 char sleepString[RTI_NTP_TIME_STRING_LEN];
23
5-11

Chapter 5 Advanced C Exercises
24 NddsVerbositySet(nddsVerbosity);
25 domain = NddsInit(nddsDomain, NULL, NULL);
26 DataNddsRegister();
27
28 depMonitor = NddsSubscriberCreate(domain);
29 NddsSubscriberPatternAdd(depMonitor, "DepMod/*/*", DataNDDSType,
30 SubscriptionPatternCreate, NULL);
31
32 while (1) {
33 /* NddsSubscriptionPoll(subscription);
34 Only needed if NDDS_SUBSCRIBER_POLLED*/
35
36 /*
37 * We sleep only to kill time. Nothing need be done here
38 * for an NDDS_SUBSCRIBER_IMMEDIATE subscription.
39 */
40 printf("Sleeping for %s sec...\n",
41 RtiNtpTimeToString(sleepTime, sleepString));
42 NddsUtilitySleep(sleepTime);
43 }
44 return 1;
45 }

Line 28 From Lesson 4, you learned that a subscriber manages subscriptions. Since the pattern
subscription feature involves creating multiple subscriptions for each match, you spec-
ify the desired pattern NDDS topic and NDDS types to a subscriber, which can create a
subscription for the match. Therefore, you need to create a subscriber first.

Lines 29-30 NddsSubscriberPatternAdd() tells the subscriber (depMonitor) what pattern topic
("DepMod/*/*") and pattern type ("Data") to match, and if there is a match, what rou-
tine to use to create a subscription for the match (SubscriptionPatternCreate()). The last
argument is an optional user parameter, which can be used to pass any variable you
want to present to the subscription create routine. In this exercise, you use it to pass the
pointer to the temporary holder for the Data (genericData) so that you can use the same
instance to hold the incoming issues for all matching publications.

Lines 1-15 You told NDDS to invoke SubscriptionPatternCreate() when it discovers a publication
matching the pattern topic/type. With SubscriptionPatternCreate(), you have the flexi-
bility to:

❏ Create a subscription for all matches, as you are doing here. Note that all sub-
scriptions will use the same deadline, minimum separation, callback routine, but
this is purely for simplification purposes. Each subscription can have different
parameters.
5-12

5.3 Lesson 8: Subscribe Using Patterns
5. A

d
va

nc
e

d
 C
❏ Do other things before returning the subscription to NDDS. The user parameter
is convenient for passing information in either direction.

5.3.2 Review the Safety Supervisor Code

Open supervisor.c in the <NDDSTutorialDir>/pattern directory. Even though the
safety supervisor publishes as well as subscribes, you will examine only the pattern
subscription part in this exercise. You already learned how to subscribe to a pattern in
the deposition monitor program. The safety supervisor code in Figure 5.6 shows that
you can subscribe to multiple pattern topics with one subscriber: in this example, the
Safety Supervisor subscribes to the patterns "*/*/Pressure" and "*/*/Temperature".

Figure 5.6 Subscribing to Multiple Patterns in C

1 safetySubscriber = NddsSubscriberCreate(NULL);
2 NddsSubscriberPatternAdd(safetySubscriber,
3 "*/*/Pressure", DataNDDSType,
4 SubscriptionPatternCreate, NULL);
5 NddsSubscriberPatternAdd(safetySubscriber,
6 "*/*/Temperature", DataNDDSType,
7 SubscriptionPatternCreate, NULL);

5.3.3 Review the Deposition Module

Review the code in depModule.c in the <NDDSTutorialDir>/pattern directory. The
deposition module creates six publications with a hierarchical naming scheme. If you
need a refresher on the concept of creating publications, see Lesson 2.

5.3.4 Review the Thermal Processing Module Code

Review the code in thermProcess.c in the <NDDSTutorialDir>/pattern directory. The
thermal processing module creates three publications with a hierarchical naming
scheme, and creates a reliable subscription to the command. If you need a refresher on
the concept of creating publications and subscriptions, see Lesson 2.
5-13

Chapter 5 Advanced C Exercises
5.4 Congratulations!
You can now develop any distributed real-time application. Your next steps are:

❏ Develop your application. See Chapter 3 in the NDDS User’s Manual for guid-
ance.

❏ Refer to the other advanced examples in the examples/ directory. To test NDDS’s
performance on your system, work in the examples/performance/ directory.

❏ Consult with RTI on using NDDS to meet your design goals. For consulting rates
and scheduling, contact your sales representative or send e-mail to RTI at
info@rti.com.
5-14

Index
A
arbitration among publications 2-6
architectures supported 2-9
auto-create NDDS types 2-2, 4-2

B
best-effort 2-5, 4-4
best-then-first 2-30

example 2-27
blocking 2-32

C
ClientCreate() parameters 2-31
clients 2-25

multi-server semantics 2-27

D
deadlines 2-7
deserialization

auto-generated code 2-4
deterministic timing 3-2

E
environment variables

NDDS_PEER_HOSTS 2-17

F
fault tolerance 2-7

G
gmake 2-14

I
immediate subscriptions 2-19
issues 2-2

defined 2-6
example 2-6
packaging multiple 2-22
rate control mechanisms 2-7

L
latency 2-22

M
makefiles

example usage 2-14
maximum wait 2-30
Microsoft Visual C++

requirements 2-15
minimum separation 2-7
minimum wait 2-30
Index-1

multicast 3-8, 5-7
address specification example 3-9
sample publication code 3-10, 5-8
sample subscription code 3-11, 5-9

multiple publication arbitration 2-6
multi-server semantics 2-27

N
NDDS topic 2-3, 3-13
NDDS types 2-2, 4-2
NDDS_PEER_HOSTS 2-17
NDDS_SUBSCRIPTION_IMMEDIATE 2-7
NDDS_SUBSCRIPTION_POLLED 2-7, 2-20, 4-8
nddsgen 4-3

architecture switches 2-9
auto-create NDDS types 2-2, 4-2
auto-generated files 2-8
replace argument 2-4, 4-3
verbosity 2-11, 4-4

NDDSIssueListenerClass 2-4
NddsPublicationSubscriptionWait() 5-4

O
OnIssueReceived() 2-13
OnMatch() 3-17

P
pattern subscriptions 3-13
PatternAdd() 3-17
polling 2-19, 4-8
publications 2-5, 4-4

characteristics 2-6
publishers 2-21

benefits of 2-22

R
reliable delivery 3-2

sample publication code 3-2, 5-2
sample subscription code 3-5, 5-5

ReplyMsgPrint() 4-16
RTINtpTime 2-11

S
serialization

auto-generated code 2-4, 4-3
ServerCreate() parameters 2-30

servers 2-25
characteristics 2-26
multiple 2-27

subscribers 2-23
subscription patterns 3-13
SubscriptionCreate()

parameters 2-13
subscriptions 2-5, 4-4

characteristics 2-7, 2-19
deadlines 2-7
immediate mode 2-19
minimum separation 2-7
modes 2-7
notification example 2-8
pattern example 3-14
patterns 3-13
polled 2-19, 4-8
reliability model 3-2

SubscriptionWait() 3-5

T
time-to-live

defined 3-9
transactional models 3-2
TTL. See time-to-live
tutorial 5-1

U
unicast 3-8

V
variables

NDDS_PEER_HOSTS 2-17
verbosity 2-11, 2-31, 4-4

W
Windows

requirements 2-15
Index-2

	Contents
	Figures
	NDDS Overview
	1.1 Purpose of This Course
	1.2 Reading and Printing Guide
	1.3 NDDS Documentation Guide
	1.4 Publish-Subscribe Architecture
	1.4.1 Publish-Subscribe Characteristics
	1.4.2 Publish-Subscribe in Real Time

	1.5 RTPS Overview
	1.5.1 RTPS Publication Parameters
	1.5.2 RTPS Subscription Parameters
	1.5.3 Reliable Communications Characteristics
	1.5.4 Request-Reply Service Parameters

	1.6 NDDS: An Implementation of the RTPS Model
	1.6.1 Real-Time Distributed-Application Support
	1.6.2 Enhanced Publish-Subscribe Capabilities

	Basic Exercises
	2.1 Getting Started
	2.2 Lesson 1: Use nddsgen to Auto-Create NDDS Types
	2.2.1 Topic and Type Resolution
	2.2.2 Create an NDDS Type
	2.2.3 Review the Generated Files

	2.3 Lesson 2: Create a Publication and a Subscription
	2.3.1 Publication Characteristics
	2.3.2 Subscription Characteristics
	2.3.3 Generate Example Publication and Subscription Code
	2.3.4 Edit Hello_publisher.cxx
	2.3.5 Review Hello_subscriber.cxx
	2.3.6 Build the Publication and Subscription Programs
	2.3.7 Run the Subscription Program
	2.3.8 Run the Publication Program
	2.3.9 Review the Screen Output on Each Side
	2.3.10 Experiment with the Programs
	2.3.11 Congratulations!

	2.4 Lesson 3: Create a Polled Subscription
	2.4.1 Polled Subscription Characteristics
	2.4.2 Edit the Subscription Source Code
	2.4.3 Build the Publication and Subscription Programs
	2.4.4 Run the Subscription and Publication Programs

	2.5 Lesson 4: Create a Publisher and a Subscriber
	2.5.1 Why Use Publishers?
	2.5.2 Why Use Subscribers?
	2.5.3 Edit Hello_publisher.cxx
	2.5.4 Edit Hello_subscriber.cxx
	2.5.5 Build the Publisher and Subscriber Programs
	2.5.6 Run the Subscription and Publication Programs

	2.6 Lesson 5: Create a Client and a Server
	2.6.1 Client-Server Transactions
	2.6.2 Create the Request and Reply NDDS Types
	2.6.3 Edit Add_server.cxx
	2.6.4 Edit Add_client.cxx
	2.6.5 Build the Client and Server Programs
	2.6.6 Run the Client Only
	2.6.7 Start the Server First and Then the Client

	Advanced Exercises
	3.1 Lesson 6: Publish and Subscribe Reliably
	3.1.1 Reliability and Time-Determinism
	3.1.2 Learn How to Create a Reliable Publication
	3.1.3 Learn How to Create a Reliable Subscription
	3.1.4 Build the Reliable Subscription and Publication Programs
	3.1.5 Run the Reliable Subscription and Publication Programs

	3.2 Lesson 7: Publish and Subscribe Using Multicast
	3.2.1 Using Multicast in NDDS
	3.2.2 Learn How to Create a Multicast Publication
	3.2.3 Learn How to Create a Multicast Subscription
	3.2.4 Build the Multicast Subscription and Publication Programs
	3.2.5 Run the Multicast Subscription and Publication Programs

	3.3 Lesson 8: Subscribe Using Patterns
	3.3.1 Pattern Subscriptions
	3.3.2 Review the Deposition Monitor Code
	3.3.3 Review the Safety Supervisor Code
	3.3.4 Review the Deposition Module
	3.3.5 Review the Thermal Processing Module Code

	3.4 Congratulations!

	Basic C Exercises
	4.1 Lesson 1: Use nddsgen to Auto-Create NDDS Types
	4.1.1 Create an NDDS Type
	4.1.2 Review the Generated Files

	4.2 Lesson 2: Create a Publication and a Subscription
	4.2.1 Generate Example Publication and Subscription Code
	4.2.2 Edit Hello_publisher.c
	4.2.3 Review Hello_subscriber.c

	4.3 Lesson 3: Create a Polled Subscription
	4.3.1 Edit the Subscription Source Code
	4.3.2 Build the Publication and Subscription Programs
	4.3.3 Run the Subscription and Publication Programs

	4.4 Lesson 4: Create a Publisher and a Subscriber
	4.4.1 Edit Hello_publisher.c
	4.4.2 Edit Hello_subscriber.c
	4.4.3 Build the Publisher and Subscriber Programs
	4.4.4 Run the Subscription and Publication Programs

	4.5 Lesson 5: Create a Client and a Server
	4.5.1 Create the Request and Reply NDDS Types
	4.5.2 Edit Add_server.c
	4.5.3 Edit Add_client.c

	Advanced C Exercises
	5.1 Lesson 6: Publish and Subscribe Reliably
	5.1.1 Learn How to Create a Reliable Publication
	5.1.2 Learn How to Create a Reliable Subscription
	5.1.3 Build the Reliable Subscription and Publication Programs
	5.1.4 Run the Reliable Subscription and Publication Programs

	5.2 Lesson 7: Publish and Subscribe Using Multicast
	5.2.1 Learn How to Create a Multicast Publication
	5.2.2 Learn How to Create a Multicast Subscription
	5.2.3 Build the Multicast Subscription and Publication Programs
	5.2.4 Run the Multicast Subscription and Publication Programs

	5.3 Lesson 8: Subscribe Using Patterns
	5.3.1 Review the Deposition Monitor Code
	5.3.2 Review the Safety Supervisor Code
	5.3.3 Review the Deposition Module
	5.3.4 Review the Thermal Processing Module Code

	5.4 Congratulations!

	Index

