
Pegasus CIM Object Broker Manual

Contents
 Introduction

 Revision History

 Objectives

 Overview

 Credits

 Pegasus Architecture

 Design Goals

 The Broker

 Pegasus Providers.

 Extension Services

 Pegasus Clients.

 Functional Flow

 Pegasus Components

 Component Descriptions

 Pegasus Directory Structure

 Pegasus Utilization

 Pegasus Availability

 Pegasus Installation

 Pegasus Operation

 Pegasus CIM Clients

 Pegasus Providers

 Pegasus MOF Compiler

Introduction

Welcome to
PEGASUS

DRAFT FOR REVIEW

Pegasus is an open source implementation of
the manageability environment defined by the
DMTF WBEM standards.

This Document

This is a working document that is the
temporary user and developers manual for the
Pegasus CIM Server implementation which is
being created by the OpenGroup Enterprise
Management Program Group.

This manual serves as both a manual for
installation and operation of the prototype
version of Pegasus and a manual for
developing components to attach to Pegasus.
In addition to the manual, we keep current
working information in a set of README
files within the Pegasus distributions. Please
consult these files also.

Within this manual you will find:

Information on the installation and
operation of the broker and additional
components.

●

A basic defintion of the architecture and
function of Pegasus.

●

The current definition of the
programming interfaces that Pegasus
allows. As these interfaces are

●

Pegasus Developers and Users Manual

http://donald/MSB/Manual/PegasusManualFrame.htm (1 of 2) [5/5/2001 8:55:12 AM]

 Programming Pegasus

 CIM Objects in Pegasus

 CIM Object Table

 Class Definitions

 Pegasus Interfaces

 CIM Operations over HTTP

 Pegasus Client Interfaces

 Pegasus Provider Interfaces

 Pegasus Service Extension Interfaces

 Repository Interfaces

 Writing Providers.

 Definition of Terms

 NAMESPACE.

 Pegasus Code Examples

 Client Examples

 Client Coding Examples

 Provider Coding Examples

 Document References

 Pegausus FAQ

Alphabetic index●

Hierarchy of classes●

stabilized they will be moved from this
document to an Open Group
specificaton.

A number of defintions of additional
code that is available to interface with
Pegasus as providers, consumers, and
services.

●

ATTN: We need to give a description of the
sections and what they accomplish with
hotlinks to each.

This is not an internals manual for Pegasus.
The Internals for Pegasus developers will be
defined in a separate manual that will be
available from The Open Group
(http://www.opengroup.org/management).

NOTE: This a working document today. It is
revised frequently as we learn more about the
documentation system and stabilize the
Pegasus interfaces. We apologize for the
existing insonsistencies and errors in this
working version of the document.

This version of the Pegasus User Manual was
created at 05/05/2001 08:36:43 AM

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open

Group 2000 2001

Pegasus Developers and Users Manual

http://donald/MSB/Manual/PegasusManualFrame.htm (2 of 2) [5/5/2001 8:55:12 AM]

http://donald/MSB/Manual/ClientExamples.html
http://www.opengroup.org/management

Introduction

Welcome to PEGASUS
DRAFT FOR REVIEW

Pegasus is an open source implementation of the manageability environment defined by the
DMTF WBEM standards.

This Document

This is a working document that is the temporary user and developers manual for the
Pegasus CIM Server implementation which is being created by the OpenGroup Enterprise
Management Program Group.

This manual serves as both a manual for installation and operation of the prototype version
of Pegasus and a manual for developing components to attach to Pegasus. In addition to the
manual, we keep current working information in a set of README files within the Pegasus
distributions. Please consult these files also.

Within this manual you will find:

Information on the installation and operation of the broker and additional
components.

●

A basic defintion of the architecture and function of Pegasus.●

The current definition of the programming interfaces that Pegasus allows. As these
interfaces are stabilized they will be moved from this document to an Open Group
specificaton.

●

A number of defintions of additional code that is available to interface with Pegasus
as providers, consumers, and services.

●

ATTN: We need to give a description of the sections and what they accomplish with
hotlinks to each.

This is not an internals manual for Pegasus. The Internals for Pegasus developers will be
defined in a separate manual that will be available from The Open Group
(http://www.opengroup.org/management).

NOTE: This a working document today. It is revised frequently as we learn more about the
documentation system and stabilize the Pegasus interfaces. We apologize for the existing
insonsistencies and errors in this working version of the document.

This version of the Pegasus User Manual was created at 05/05/2001 08:36:43 AM

Alphabetic index Hierarchy of classes

http://donald/MSB/Manual/Introduction.html (1 of 2) [5/5/2001 8:55:14 AM]

http://www.opengroup.org/management

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/Introduction.html (2 of 2) [5/5/2001 8:55:14 AM]

Table of Contents

General stuff
Credits●

Definition of Terms

NAMESPACE.❍

●

Document References●

Introduction●

Objectives●

Overview●

Pegasus Architecture

Design Goals❍

Extension Services❍

Functional Flow❍

Pegasus Clients.❍

Pegasus Providers.❍

The Broker❍

●

Pegasus Code Examples

Client Coding Examples❍

Provider Coding Examples❍

●

Pegasus Components

Component Descriptions❍

Pegasus Directory Structure❍

●

Pegasus Interfaces

CIM Operations over HTTP❍

Pegasus Client Interfaces❍

Pegasus Provider Interfaces❍

Pegasus Service Extension Interfaces❍

Repository Interfaces❍

●

Pegasus Utilization

Pegasus Availability❍

Pegasus CIM Clients❍

Pegasus Installation❍

Pegasus MOF Compiler❍

Pegasus Operation❍

Pegasus Providers❍

●

Pegausus FAQ●

Programming Pegasus●

http://donald/MSB/Manual/index.html (1 of 18) [5/5/2001 8:55:16 AM]

CIM Object Table❍

CIM Objects in Pegasus❍

Class Definitions

PEGASUS_NAMESPACE_END■

❍

Revision History●

Writing Providers.●

Namespaces
CIMScope The CIMQualifier Scopes are as follows: NONE, Class, ASSOCIATION,INDICATION,PROPERTY,
REFERENCE, METHOD, PARAMETER, ANY

●

Classes
CIMOperations The CIMOperations Class.●

CIMClient Class CIMClient - This class defines the client interfaces for Pegasus.●

CIMRepository This class derives from the CIMOperations class and provides a simple implementation of a CIM
repository.

●

Array Array Class.●

CIMClass The CIMClass class is used to represent CIM classes in Pegasus.●

CIMConstClass CIMConstClass - ATTN: define this.●

CIMDateTime The CIMDateTime class represents the CIM datetime data type as a C++ class CIMDateTime.●

CIMInstance Class CIMInstance - The CIMInstance class represents the instance of a CIM class in Pegasus.●

CIMMethod Class CIMMethod - This class defines the operations associated with manipulation of the Pegasus
implementation of the CIM CIMMethod.

●

CIMName The name class defines static methods for handling CIM names.●

CIMProperty CIMProperty Class - ATTN:●

CIMQualifier Class CIMQualifier - This class defines the Pegasus implementation of the CIM CIMQualifier
QUALIFIER

●

CIMQualifierDecl Class CIMQualifierDecl●

CIMReference The CIMReference class represents the value of a reference.●

CIMType The CIMType Class defines the CIMType enumeration which introduces symbolic constants for the CIM
data types.

●

CIMValue The CIMValue class represents a value of any of the CIM data types (see CIMTypeh for a list of valid CIM
data types).

●

Char16 The Char16 class represents a CIM sixteen bit character (char16).●

KeyBinding The KeyBinding class associates a key name, value, and type.●

AddedReferenceToClass ATTN:●

AlreadyExists ATTN:●

AssertionFailureException Class AssertionFailureException This is an Exception class tied to the definiton of an
assert named PEGASUS_ASSERT.

●

BadQualifierOverride ATTN:●

http://donald/MSB/Manual/index.html (2 of 18) [5/5/2001 8:55:16 AM]

BadQualifierScope ATTN:●

BadReference ATTN:●

CIMException The CIMException defines the CIM exceptions that are formally defined in the CIM Operations over
HTTP specification.

●

CannotCreateDirectory ATTN:●

CannotOpenFile ATTN:●

ClassAlreadyResolved ATTN:●

ClassNotResolved ATTN:●

Exception Class Exception●

ExpectedReferenceValue ATTN:●

FailedToRemoveDirectory ATTN:●

FailedToRemoveFile ATTN:●

IllegalName ATTN:●

IllegalTypeTag ATTN:●

InstanceAlreadyResolved ATTN:●

InstantiatedAbstractClass ATTN:●

InvalidMethodOverride ATTN:●

InvalidPropertyOverride ATTN:●

MissingReferenceClassName ATTN:●

NoSuchDirectory ATTN:●

NoSuchFile ATTN:●

NoSuchNameSpace ATTN:●

NoSuchProperty ATTN:●

NotImplemented ATTN:●

NullPointer ATTN:●

NullType ATTN:●

OutOfBounds ATTN:●

TruncatedCharacter ATTN:●

TypeMismatch ATTN:●

UndeclaredQualifier ATTN:●

UnitializedHandle ATTN:●

Stopwatch Stopwatch - A class for measuring elapsed time Stopwatch is a class for measuring time intervals within
the environment.

●

String The Pegasus String C++ Class implements the CIM string type.●

TimeValue The TimeValue class represents time expressed in seconds plus microseconds●

Functions
Pegasus Interfaces::CIM Operations over HTTP::CIMOperations::associatorNames The associatorNames
operation is used to enumerate the names of CIM Objects (Classes or Instances) that are associated to a particular
source CIM Object.

●

http://donald/MSB/Manual/index.html (3 of 18) [5/5/2001 8:55:16 AM]

Pegasus Interfaces::CIM Operations over HTTP::CIMOperations::associators The Associators method
enumerates CIM Objects (Classes or Instances) that are associated to a particular source CIM Object.

●

Pegasus Interfaces::CIM Operations over HTTP::CIMOperations::createClass The createClass method creates a
single CIM Class in the target Namespace.

●

Pegasus Interfaces::CIM Operations over HTTP::CIMOperations::createInstance The createInstance method
creates a single CIM Instance in the target Namespace.

●

Pegasus Interfaces::CIM Operations over HTTP::CIMOperations::deleteClass The DeleteClass method deletes a
single CIM Class from the target Namespace.

●

Pegasus Interfaces::CIM Operations over HTTP::CIMOperations::deleteInstance The DeleteInstance operation
deletes a single CIM Instance from the target Namespace.

●

Pegasus Interfaces::CIM Operations over HTTP::CIMOperations::deleteQualifier The deleteQualifier
operation deletes a single CIMQualifier declaration from the target Namespace.

●

Pegasus Interfaces::CIM Operations over HTTP::CIMOperations::enumerateClassNames The
enumerateClassNames operation is used to enumerate the names of subclasses of a CIM Class in the target
Namespace.

●

Pegasus Interfaces::CIM Operations over HTTP::CIMOperations::enumerateClasses The enumerateClasses
method is used to enumerate subclasses of a CIM Class in the target Namespace.

●

Pegasus Interfaces::CIM Operations over HTTP::CIMOperations::enumerateInstanceNames The
enumerateInstanceNames operation enumerates the names (model paths) of the instances of a CIM Class in
the target Namespace.

●

Pegasus Interfaces::CIM Operations over HTTP::CIMOperations::enumerateInstances The enumerateInstances
method enumerates instances of a CIM Class in the target Namespace.

●

Pegasus Interfaces::CIM Operations over HTTP::CIMOperations::enumerateQualifiers The
enumerateQualifiers operation is used to enumerate CIMQualifier declarations from the target Namespace.

●

Pegasus Interfaces::CIM Operations over HTTP::CIMOperations::execQuery The execQuery is used to execute a
query against the target Namespace.

●

Pegasus Interfaces::CIM Operations over HTTP::CIMOperations::getClass The GetClass method returns a single
CIM Class from the target Namespace where the ClassName input parameter defines the name of the class to be
retrieved.

●

Pegasus Interfaces::CIM Operations over HTTP::CIMOperations::getInstance The <GetInstance method returns
a single CIM Instance from the target Namespace based on the InstanceName parameter provided.

●

Pegasus Interfaces::CIM Operations over HTTP::CIMOperations::getProperty This operation is used to retrieve a
single property value from a CIM Instance in the target Namespace.

●

Pegasus Interfaces::CIM Operations over HTTP::CIMOperations::getQualifier The getQualifier operation
retrieves a single CIMQualifier declaration from the target Namespace.

●

Pegasus Interfaces::CIM Operations over HTTP::CIMOperations::invokeMethod Any CIM Server is assumed to
support extrinsic methods.

●

Pegasus Interfaces::CIM Operations over HTTP::CIMOperations::modifyClass The modifyClass method modifies
an existing CIM Class in the target Namespace.

●

Pegasus Interfaces::CIM Operations over HTTP::CIMOperations::modifyInstance The modifyInstance method is
used to modify an existing CIM Instance in the target Namespace.

●

Pegasus Interfaces::CIM Operations over HTTP::CIMOperations::referenceNames The referenceNames
operation is used to enumerate the association objects that refer to a particular target CIM Object (Class or
Instance).

●

Pegasus Interfaces::CIM Operations over HTTP::CIMOperations::references The references operation
enumerates the association objects that refer to a particular target CIM Object (Class or Instance).

●

http://donald/MSB/Manual/index.html (4 of 18) [5/5/2001 8:55:16 AM]

Pegasus Interfaces::CIM Operations over HTTP::CIMOperations::setProperty The setProperty operation sets a
single property value in a CIM Instance in the target Namespace.

●

Pegasus Interfaces::CIM Operations over HTTP::CIMOperations::setQualifier The setQualifier creates or
update a single CIMQualifier declaration in the target Namespace.

●

Pegasus Interfaces::Pegasus Client Interfaces::CIMClient::CIMClient●

Pegasus Interfaces::Pegasus Client Interfaces::CIMClient::associatorNames●

Pegasus Interfaces::Pegasus Client Interfaces::CIMClient::associators●

Pegasus Interfaces::Pegasus Client Interfaces::CIMClient::connect●

Pegasus Interfaces::Pegasus Client Interfaces::CIMClient::createClass●

Pegasus Interfaces::Pegasus Client Interfaces::CIMClient::createInstance●

Pegasus Interfaces::Pegasus Client Interfaces::CIMClient::deleteClass●

Pegasus Interfaces::Pegasus Client Interfaces::CIMClient::deleteInstance●

Pegasus Interfaces::Pegasus Client Interfaces::CIMClient::deleteQualifier●

Pegasus Interfaces::Pegasus Client Interfaces::CIMClient::enumerateClassNames●

Pegasus Interfaces::Pegasus Client Interfaces::CIMClient::enumerateClasses●

Pegasus Interfaces::Pegasus Client Interfaces::CIMClient::enumerateInstanceNames●

Pegasus Interfaces::Pegasus Client Interfaces::CIMClient::enumerateInstances●

Pegasus Interfaces::Pegasus Client Interfaces::CIMClient::enumerateQualifiers●

Pegasus Interfaces::Pegasus Client Interfaces::CIMClient::execQuery●

Pegasus Interfaces::Pegasus Client Interfaces::CIMClient::get●

Pegasus Interfaces::Pegasus Client Interfaces::CIMClient::getClass●

Pegasus Interfaces::Pegasus Client Interfaces::CIMClient::getInstance●

Pegasus Interfaces::Pegasus Client Interfaces::CIMClient::getProperty●

Pegasus Interfaces::Pegasus Client Interfaces::CIMClient::getQualifier●

Pegasus Interfaces::Pegasus Client Interfaces::CIMClient::getTimeOut●

Pegasus Interfaces::Pegasus Client Interfaces::CIMClient::invokeMethod●

Pegasus Interfaces::Pegasus Client Interfaces::CIMClient::modifyClass●

Pegasus Interfaces::Pegasus Client Interfaces::CIMClient::modifyInstance●

Pegasus Interfaces::Pegasus Client Interfaces::CIMClient::referenceNames●

Pegasus Interfaces::Pegasus Client Interfaces::CIMClient::references●

Pegasus Interfaces::Pegasus Client Interfaces::CIMClient::runForever●

Pegasus Interfaces::Pegasus Client Interfaces::CIMClient::runOnce●

Pegasus Interfaces::Pegasus Client Interfaces::CIMClient::setQualifier●

Pegasus Interfaces::Pegasus Client Interfaces::CIMClient::setTimeOut●

Pegasus Interfaces::Pegasus Client Interfaces::CIMClient::~CIMClient●

Pegasus Interfaces::Repository Interfaces::CIMRepository::CIMRepository Constructor●

Pegasus Interfaces::Repository Interfaces::CIMRepository::associatorNames associateNames●

Pegasus Interfaces::Repository Interfaces::CIMRepository::associators associators●

Pegasus Interfaces::Repository Interfaces::CIMRepository::createClass createClass●

Pegasus Interfaces::Repository Interfaces::CIMRepository::createInstance createInstance●

http://donald/MSB/Manual/index.html (5 of 18) [5/5/2001 8:55:16 AM]

Pegasus Interfaces::Repository Interfaces::CIMRepository::createNameSpace CIMMethod createNameSpace -
Creates a new namespace in the repository

●

Pegasus Interfaces::Repository Interfaces::CIMRepository::deleteClass deleteClass●

Pegasus Interfaces::Repository Interfaces::CIMRepository::deleteInstance deleteInstance●

Pegasus Interfaces::Repository Interfaces::CIMRepository::deleteNameSpace CIMMethod deleteNameSpace -
Deletes a namespace in the repository.

●

Pegasus Interfaces::Repository Interfaces::CIMRepository::deleteQualifier virtual deleteQualifier●

Pegasus Interfaces::Repository Interfaces::CIMRepository::enumerateClassNames enumerateClassNames●

Pegasus Interfaces::Repository Interfaces::CIMRepository::enumerateClasses enumerateClasses●

Pegasus Interfaces::Repository Interfaces::CIMRepository::enumerateInstanceNames enumerateInstanceNames●

Pegasus Interfaces::Repository Interfaces::CIMRepository::enumerateInstances enumerateInstances●

Pegasus Interfaces::Repository Interfaces::CIMRepository::enumerateNameSpaces CIMMethod
enumerateNameSpaces - Get all of the namespaces in the repository.

●

Pegasus Interfaces::Repository Interfaces::CIMRepository::enumerateQualifiers enumerateQualifiers●

Pegasus Interfaces::Repository Interfaces::CIMRepository::execQuery execQuery●

Pegasus Interfaces::Repository Interfaces::CIMRepository::getClass virtual class CIMClass.●

Pegasus Interfaces::Repository Interfaces::CIMRepository::getInstance getInstance●

Pegasus Interfaces::Repository Interfaces::CIMRepository::getProperty getProperty●

Pegasus Interfaces::Repository Interfaces::CIMRepository::getQualifier getQualifier●

Pegasus Interfaces::Repository Interfaces::CIMRepository::invokeMethod invokeMethod●

Pegasus Interfaces::Repository Interfaces::CIMRepository::modifyClass modifyClass●

Pegasus Interfaces::Repository Interfaces::CIMRepository::modifyInstance modifyInstance●

Pegasus Interfaces::Repository Interfaces::CIMRepository::referenceNames referenceNames●

Pegasus Interfaces::Repository Interfaces::CIMRepository::references references●

Pegasus Interfaces::Repository Interfaces::CIMRepository::setProperty setProperty●

Pegasus Interfaces::Repository Interfaces::CIMRepository::setQualifier setQualifier●

Pegasus Interfaces::Repository Interfaces::CIMRepository::~CIMRepository Descructor●

Array:
Programming Pegasus::Class Definitions::Array::Array Constructs an array with size elements.❍

Programming Pegasus::Class Definitions::Array::Array Default constructor❍

Programming Pegasus::Class Definitions::Array::Array Copy Constructor❍

Programming Pegasus::Class Definitions::Array::Array Constructs an array with size elements.❍

Programming Pegasus::Class Definitions::Array::Array Constructs an array with size elements.❍

●

append:
Programming Pegasus::Class Definitions::Array::append Appends size elements at x to the end of this array❍

Programming Pegasus::Class Definitions::Array::append Appends an element to the end of the array.❍

●

Programming Pegasus::Class Definitions::Array::appendArray Appends one array to another.●

Programming Pegasus::Class Definitions::Array::clear Clears the contents of the array.●

Programming Pegasus::Class Definitions::Array::getCapacity Returns the capacity of the array●

Programming Pegasus::Class Definitions::Array::getData Returns a pointer to the first element of the array●

http://donald/MSB/Manual/index.html (6 of 18) [5/5/2001 8:55:16 AM]

Programming Pegasus::Class Definitions::Array::grow Make the size of the array grow by size elements.●

insert:
Programming Pegasus::Class Definitions::Array::insert Inserts the element at the given index in the array.❍

Programming Pegasus::Class Definitions::Array::insert Inserts size elements at x into the array at the given
position.

❍

●

Programming Pegasus::Class Definitions::Array::operator= Assignment operator●

operator[]:
Programming Pegasus::Class Definitions::Array::operator[] Returns the element at the index given by the pos
argument.

❍

Programming Pegasus::Class Definitions::Array::operator[] Same as the above method except that this is the
version called on const arrays.

❍

●

prepend:
Programming Pegasus::Class Definitions::Array::prepend Appends one element to the beginning of the array.❍

Programming Pegasus::Class Definitions::Array::prepend Appends size elements to the array starting at the
memory address given by x.

❍

●

remove:
Programming Pegasus::Class Definitions::Array::remove Removes the element at the given position from the
array.

❍

Programming Pegasus::Class Definitions::Array::remove Removes size elements starting at the given position.❍

●

Programming Pegasus::Class Definitions::Array::reserve Reserves memory for capacity elements.●

Programming Pegasus::Class Definitions::Array::size Returns the number of elements in the array.●

Programming Pegasus::Class Definitions::Array::swap Swaps the contents of two arrays●

Programming Pegasus::Class Definitions::Array::~Array Destructs the objects, freeing any resources●

CIMClass:
Programming Pegasus::Class Definitions::CIMClass::CIMClass Constructor - Creates a Class from inputs of a
classname and SuperClassName

❍

Programming Pegasus::Class Definitions::CIMClass::CIMClass Constructor - Creates an uninitiated a new
CIM object reprenting a CIM class.

❍

Programming Pegasus::Class Definitions::CIMClass::CIMClass Constructor - Creates a class from a previous
class

❍

●

Programming Pegasus::Class Definitions::CIMClass::addMethod CIMMethod addMethod - Adds the method object
defined by the input parameter to the class and increments the count of the number of methods in the class

●

Programming Pegasus::Class Definitions::CIMClass::addProperty CIMMethod addProperty - Adds the specified
property object to the properties in the CIM class

●

Programming Pegasus::Class Definitions::CIMClass::addQualifier CIMMethod addQualifier - Adds the specified
qualifier to the class and increments the qualifier count.

●

Programming Pegasus::Class Definitions::CIMClass::clone CIMMethod clone - ATTN:●

Programming Pegasus::Class Definitions::CIMClass::findMethod CIMMethod findMethod - Located the method
object defined by the name input

●

Programming Pegasus::Class Definitions::CIMClass::findProperty CIMMethod findProperty - Finds the property
object with the name defined by the input parameter in the class.

●

Programming Pegasus::Class Definitions::CIMClass::findQualifier CIMMethod findQualifier - Finds a qualifier with
the specified input name if it exists in the class @param name CIMName of the qualifier to be found @return Position
of the qualifier in the Class ATTN: Clarify the return.

●

http://donald/MSB/Manual/index.html (7 of 18) [5/5/2001 8:55:16 AM]

Programming Pegasus::Class Definitions::CIMClass::getClassName CIMMethod Gets the name of the class ATTN:
COMMENT.

●

getMethod:
Programming Pegasus::Class Definitions::CIMClass::getMethod CIMMethod getMethod - Gets the method
object defined by the input parameter.

❍

Programming Pegasus::Class Definitions::CIMClass::getMethod CIMMethod getMethod - ATTN:❍

●

Programming Pegasus::Class Definitions::CIMClass::getMethodCount CIMMethod getMethodCount - Count of the
number of methods in the class

●

getProperty:
Programming Pegasus::Class Definitions::CIMClass::getProperty CIMMethod getProperty - Returns a
property representing the property defined by the input parameter

❍

Programming Pegasus::Class Definitions::CIMClass::getProperty CIMMethod getProperty - ATTN❍

●

Programming Pegasus::Class Definitions::CIMClass::getPropertyCount CIMMethod getProperty - Gets the count of
the number of properties defined in the class.

●

getQualifier:
Programming Pegasus::Class Definitions::CIMClass::getQualifier CIMMethod getQualifier - Gets the
CIMQualifier object defined by the input parameter

❍

Programming Pegasus::Class Definitions::CIMClass::getQualifier CIMMethod getQualifier - ATTN:❍

●

Programming Pegasus::Class Definitions::CIMClass::getQualifierCount CIMMethod getQualifierCount - Returns the
number of qualifiers in the class.

●

Programming Pegasus::Class Definitions::CIMClass::getSuperClassName CIMMethod getSuperClassName - Gets the
name of the Parent

●

Programming Pegasus::Class Definitions::CIMClass::identical CIMMethod identical - Compares with another class
ATTN: Clarify exactly what identical means @parm Class object for the class to be compared

●

Programming Pegasus::Class Definitions::CIMClass::isAbstract CIMMethod isAbstract●

Programming Pegasus::Class Definitions::CIMClass::isAssociation CIMMethod isAssociation - Identifies whether or
not this CIM class is an association.

●

Programming Pegasus::Class Definitions::CIMClass::operator int operator - ATTN:●

Programming Pegasus::Class Definitions::CIMClass::operator= Operator = Assigns the CIM Class constructor●

Programming Pegasus::Class Definitions::CIMClass::print CIMMethod print●

Programming Pegasus::Class Definitions::CIMClass::removeProperty CIMMethod removeProperty - Removes the
property represented by the position input parameter from the class

●

Programming Pegasus::Class Definitions::CIMClass::resolve CIMMethod Resolve - Resolve the class: inherit any
properties and qualifiers.

●

Programming Pegasus::Class Definitions::CIMClass::setSuperClassName CIMMethod setSuperClassName - Sets the
name of the parent class from the input parameter.

●

Programming Pegasus::Class Definitions::CIMClass::toXml CIMMethod toXML●

Programming Pegasus::Class Definitions::CIMClass::~CIMClass Destructor●

CIMDateTime:
Programming Pegasus::Class Definitions::CIMDateTime::CIMDateTime CIMDateTime CIMMethod - Creates
the CIMDateTime instance from another CIMDateTime instance

❍

Programming Pegasus::Class Definitions::CIMDateTime::CIMDateTime CIMDateTime CIMMethod❍

Programming Pegasus::Class Definitions::CIMDateTime::CIMDateTime CIMDateTime CIMMethod creates
the CIM CIMDateTime from a string constant

❍

●

http://donald/MSB/Manual/index.html (8 of 18) [5/5/2001 8:55:16 AM]

Programming Pegasus::Class Definitions::CIMDateTime::clear CIMDateTime method clear - Clears the datetime
class instance

●

Programming Pegasus::Class Definitions::CIMDateTime::getString method getString●

Programming Pegasus::Class Definitions::CIMDateTime::isNull CIMDateTime isNull method - Tests for an all zero
date time

 CIMDateTime dt; dtclear(); assert(dtisNull());

●

Programming Pegasus::Class Definitions::CIMDateTime::operator= CIMDateTime method again●

Programming Pegasus::Class Definitions::CIMDateTime::set method set - Sets the date time.●

CIMInstance:
Programming Pegasus::Class Definitions::CIMInstance::CIMInstance Constructor - Creates an Instance object
with the classname from the input parameters

❍

Programming Pegasus::Class Definitions::CIMInstance::CIMInstance Constructor - Create a CIM Instance
object.

❍

Programming Pegasus::Class Definitions::CIMInstance::CIMInstance Constructor - Create a CIMInstance
object from another Instance.

❍

●

Programming Pegasus::Class Definitions::CIMInstance::addProperty addProperty - Adds a property object defined by
the input parameter to the CIMInstance

●

Programming Pegasus::Class Definitions::CIMInstance::addQualifier addQualifier - Adds the CIMQualifier object to
the instance.

●

Programming Pegasus::Class Definitions::CIMInstance::clone CIMMethod●

Programming Pegasus::Class Definitions::CIMInstance::findProperty findProperty - Searches the CIMProperty
objects installed in the CIMInstance for property objects with the name defined by the input.

●

Programming Pegasus::Class Definitions::CIMInstance::findQualifier findQualifier - Searches the instance for the
qualifier object defined by the inputparameter.

●

Programming Pegasus::Class Definitions::CIMInstance::getClassName getClassName - Returns the class name of the
instance

●

Programming Pegasus::Class Definitions::CIMInstance::getInstanceName getInstnaceName - Get the instance name
of this instance.

●

getProperty:
Programming Pegasus::Class Definitions::CIMInstance::getProperty getProperty - Gets the CIMproperty
object in the CIMInstance defined by the input index parameter.

❍

Programming Pegasus::Class Definitions::CIMInstance::getProperty getProperty - Gets the CIMproperty
object in the CIMInstance defined by the input index parameter.

❍

●

Programming Pegasus::Class Definitions::CIMInstance::getPropertyCount getPropertyCount - Gets the numbercount
of CIMProperty objects defined for this CIMInstance.

●

getQualifier:
Programming Pegasus::Class Definitions::CIMInstance::getQualifier getQualifier - Retrieves the qualifier
object defined by the index input parameter.

❍

Programming Pegasus::Class Definitions::CIMInstance::getQualifier getQualifier - Retrieves the qualifier
object defined by the index input parameter.

❍

●

Programming Pegasus::Class Definitions::CIMInstance::getQualifierCount getQualifierCount - Gets the numbercount
of CIMQualifierobjects defined for this CIMInstance.

●

Programming Pegasus::Class Definitions::CIMInstance::identical identical - Compares the CIMInstance with another
CIMInstance defined by the input parameter for equality of all components.

●

http://donald/MSB/Manual/index.html (9 of 18) [5/5/2001 8:55:16 AM]

Programming Pegasus::Class Definitions::CIMInstance::operator int operator int() - ATTN:●

Programming Pegasus::Class Definitions::CIMInstance::operator= Constructor - ATTN●

Programming Pegasus::Class Definitions::CIMInstance::print CIMMethod●

Programming Pegasus::Class Definitions::CIMInstance::resolve resolve - ATTN:●

Programming Pegasus::Class Definitions::CIMInstance::toXml toXml - Creates an XML transformation of the
CIMInstance compatiblewith the DMTF CIM Operations over HTTP defintions.

●

Programming Pegasus::Class Definitions::CIMInstance::~CIMInstance Destructor●

CIMMethod:
Programming Pegasus::Class Definitions::CIMMethod::CIMMethod Creates and instantiates a CIM method
from another method instance

❍

Programming Pegasus::Class Definitions::CIMMethod::CIMMethod Creates a CIM method with the specified
name, type, and classOrigin

❍

Programming Pegasus::Class Definitions::CIMMethod::CIMMethod Creates and instantiates a CIM method.❍

●

Programming Pegasus::Class Definitions::CIMMethod::addParameter CIMMethod addParameter - Adds the
parameter defined by the input to the CIMMethod

●

Programming Pegasus::Class Definitions::CIMMethod::addQualifier CIMMethod addQualifier - @parm
CIMQualifier to add

●

Programming Pegasus::Class Definitions::CIMMethod::clone CIMMethod clone - makes a distinct replica of this
method

●

Programming Pegasus::Class Definitions::CIMMethod::findParameter CIMMethod findParameter - Finds the
parameter whose name is given by the name parameter.

●

Programming Pegasus::Class Definitions::CIMMethod::findQualifier CIMMethod findQualifier - returns the position
of the qualifier with the given name.

●

Programming Pegasus::Class Definitions::CIMMethod::getClassOrigin CIMMethod getClassOrigin - Returns the
class in which this method was defined.

●

Programming Pegasus::Class Definitions::CIMMethod::getName CIMMethod getName - Gets the name of the method●

getParameter:
Programming Pegasus::Class Definitions::CIMMethod::getParameter CIMMethod getParameter - Gets the
parameter defined by the index input as a parameter.

❍

Programming Pegasus::Class Definitions::CIMMethod::getParameter CIMMethod getParameter - ATTN:❍

●

Programming Pegasus::Class Definitions::CIMMethod::getParameterCount CIMMethod getParameterCount - Gets
the count of the numbeer of Parameters attached to the CIMMethod.

●

Programming Pegasus::Class Definitions::CIMMethod::getPropagated method getPropagated - ATTN:●

Programming Pegasus::Class Definitions::CIMMethod::getQualifier CIMMethod getQualifier - Gets the
CIMQualifier defined by the index input as a parameter.

●

Programming Pegasus::Class Definitions::CIMMethod::getQualifierCount CIMMethod getQualifierCount - Returns
the number of Qualifiers attached to this method.

●

Programming Pegasus::Class Definitions::CIMMethod::getType CIMMethod getType - gets the method type●

Programming Pegasus::Class Definitions::CIMMethod::identical CIMMethod identical - Returns true if this method is
identical to the one given by the argument x

●

Programming Pegasus::Class Definitions::CIMMethod::operator int Returns zero if CIMMethod refers to a null
pointer

●

Programming Pegasus::Class Definitions::CIMMethod::operator= Assignment operator●

http://donald/MSB/Manual/index.html (10 of 18) [5/5/2001 8:55:16 AM]

Programming Pegasus::Class Definitions::CIMMethod::print method print - prints this method (in CIM encoded
form).

●

resolve:
Programming Pegasus::Class Definitions::CIMMethod::resolve CIMMethod resolve❍

Programming Pegasus::Class Definitions::CIMMethod::resolve method resolve - ATTN:❍

●

Programming Pegasus::Class Definitions::CIMMethod::setClassOrigin CIMMethod setClassOrigin - ATTN:●

Programming Pegasus::Class Definitions::CIMMethod::setName CIMMethod setName - Set the method name●

Programming Pegasus::Class Definitions::CIMMethod::setPropagated method setPropagated - ATTN:●

Programming Pegasus::Class Definitions::CIMMethod::setType CIMMethod setType - Sets the method type to the
specified CIM method type as defined in CIMType /Ref{TYPE}

●

Programming Pegasus::Class Definitions::CIMMethod::toXml method toXML - placing XML encoding of this object
into out arguemnt.

●

Programming Pegasus::Class Definitions::CIMMethod::~CIMMethod Desctructor.●

Programming Pegasus::Class Definitions::CIMName::equal CIMMethod equal - Compares two names.●

legal:
Programming Pegasus::Class Definitions::CIMName::legal CIMMethod legal - Determine if the name string
input is legal as defnined in the CIMName class definition ATTN: Define what is legal

❍

Programming Pegasus::Class Definitions::CIMName::legal CIMMethod legal - Determine if the name string
input is legal as defnined in the CIMName class definition

❍

●

CIMProperty:
Programming Pegasus::Class Definitions::CIMProperty::CIMProperty CIMMethod CIMProperty❍

Programming Pegasus::Class Definitions::CIMProperty::CIMProperty CIMMethod CIMProperty❍

Programming Pegasus::Class Definitions::CIMProperty::CIMProperty CIMMethod CIMProperty❍

●

Programming Pegasus::Class Definitions::CIMProperty::addQualifier CIMMethod addQualifier - ATTN Throws
AlreadyExists

●

Programming Pegasus::Class Definitions::CIMProperty::clone CIMMethod clone - ATTN●

Programming Pegasus::Class Definitions::CIMProperty::findQualifier CIMMethod findQualifier - ATTN●

Programming Pegasus::Class Definitions::CIMProperty::getArraySize CIMMethod getArraySize - ATTN:●

Programming Pegasus::Class Definitions::CIMProperty::getClassOrigin CIMMethod getClassOrigin - ATTN●

Programming Pegasus::Class Definitions::CIMProperty::getName CIMMethod●

Programming Pegasus::Class Definitions::CIMProperty::getPropagated CIMMethod getPropagated - ATTN●

getQualifier:
Programming Pegasus::Class Definitions::CIMProperty::getQualifier CIMMethod getQualifier - ATTN❍

Programming Pegasus::Class Definitions::CIMProperty::getQualifier CIMMethod getQualifier - ATTN❍

●

Programming Pegasus::Class Definitions::CIMProperty::getQualifierCount CIMMethod getQualifier - ATTN●

Programming Pegasus::Class Definitions::CIMProperty::getReferenceClassName CIMMethod
getReferenceClassName - ATTN:

●

Programming Pegasus::Class Definitions::CIMProperty::getValue CIMMethod getValue - ATTN:●

Programming Pegasus::Class Definitions::CIMProperty::identical CIMMethod identical - ATTN●

Programming Pegasus::Class Definitions::CIMProperty::operator int ATTN●

Programming Pegasus::Class Definitions::CIMProperty::operator= CIMMethod●

http://donald/MSB/Manual/index.html (11 of 18) [5/5/2001 8:55:16 AM]

Programming Pegasus::Class Definitions::CIMProperty::print mthod print -ATTN●

resolve:
Programming Pegasus::Class Definitions::CIMProperty::resolve CIMMethod resolve❍

Programming Pegasus::Class Definitions::CIMProperty::resolve CIMMethod resolve - ATTN❍

●

Programming Pegasus::Class Definitions::CIMProperty::setClassOrigin CIMMethod setClassOrigin●

Programming Pegasus::Class Definitions::CIMProperty::setName CIMMethod setName - Set the property name.●

Programming Pegasus::Class Definitions::CIMProperty::setPropagated CIMMethod setProgagated - ATTN●

Programming Pegasus::Class Definitions::CIMProperty::setValue CIMMethod setValue - ATTN●

Programming Pegasus::Class Definitions::CIMProperty::toXml mthod toXML●

CIMQualifier:
Programming Pegasus::Class Definitions::CIMQualifier::CIMQualifier Constructor instantiates a CIM
qualifier with empty name value fieldsConstructor

❍

Programming Pegasus::Class Definitions::CIMQualifier::CIMQualifier Constructor - instantiates a CIM
qualifier object from another qualifier object.

❍

Programming Pegasus::Class Definitions::CIMQualifier::CIMQualifier Constructor - Instantiates a CIM
qualifier object with the parameters defined on input.

❍

●

Programming Pegasus::Class Definitions::CIMQualifier::clone CIMMethod●

Programming Pegasus::Class Definitions::CIMQualifier::getFlavor CIMMethod●

Programming Pegasus::Class Definitions::CIMQualifier::getName CIMMethod●

Programming Pegasus::Class Definitions::CIMQualifier::getPropagated CIMMethod●

Programming Pegasus::Class Definitions::CIMQualifier::getType CIMMethod●

Programming Pegasus::Class Definitions::CIMQualifier::getValue CIMMethod●

Programming Pegasus::Class Definitions::CIMQualifier::identical CIMMethod●

Programming Pegasus::Class Definitions::CIMQualifier::isArray CIMMethod●

Programming Pegasus::Class Definitions::CIMQualifier::operator int CIMMethod●

Programming Pegasus::Class Definitions::CIMQualifier::operator= operator●

Programming Pegasus::Class Definitions::CIMQualifier::print CIMMethod●

Programming Pegasus::Class Definitions::CIMQualifier::setName CIMMethod Throws IllegalName if name
argument not legal CIM identifier

●

Programming Pegasus::Class Definitions::CIMQualifier::setPropagated CIMMethod●

Programming Pegasus::Class Definitions::CIMQualifier::setValue CIMMethod●

Programming Pegasus::Class Definitions::CIMQualifier::toXml CIMMethod●

Programming Pegasus::Class Definitions::CIMQualifier::~CIMQualifier destructor●

CIMQualifierDecl:
Programming Pegasus::Class Definitions::CIMQualifierDecl::CIMQualifierDecl Constructor - ATTN:❍

Programming Pegasus::Class Definitions::CIMQualifierDecl::CIMQualifierDecl Constructor - ATTN:❍

Programming Pegasus::Class Definitions::CIMQualifierDecl::CIMQualifierDecl Constructor Throws
IllegalName if name argument not legal CIM identifier.

❍

●

Programming Pegasus::Class Definitions::CIMQualifierDecl::clone CIMMethod●

Programming Pegasus::Class Definitions::CIMQualifierDecl::getArraySize CIMMethod●

Programming Pegasus::Class Definitions::CIMQualifierDecl::getFlavor CIMMethod●

http://donald/MSB/Manual/index.html (12 of 18) [5/5/2001 8:55:16 AM]

Programming Pegasus::Class Definitions::CIMQualifierDecl::getName CIMMethod ATTN:●

Programming Pegasus::Class Definitions::CIMQualifierDecl::getScope CIMMethod●

Programming Pegasus::Class Definitions::CIMQualifierDecl::getType CIMMethod ATTN:●

Programming Pegasus::Class Definitions::CIMQualifierDecl::getValue CIMMethod●

Programming Pegasus::Class Definitions::CIMQualifierDecl::identical CIMMethod●

Programming Pegasus::Class Definitions::CIMQualifierDecl::isArray CIMMethod ATTN:●

Programming Pegasus::Class Definitions::CIMQualifierDecl::operator int CIMMethod●

Programming Pegasus::Class Definitions::CIMQualifierDecl::operator= Operator●

Programming Pegasus::Class Definitions::CIMQualifierDecl::print CIMMethod●

Programming Pegasus::Class Definitions::CIMQualifierDecl::setName CIMMethod ATTN:●

Programming Pegasus::Class Definitions::CIMQualifierDecl::setValue CIMMethod●

Programming Pegasus::Class Definitions::CIMQualifierDecl::toXml CIMMethod●

Programming Pegasus::Class Definitions::CIMQualifierDecl::~CIMQualifierDecl Destructor●

CIMReference:
Programming Pegasus::Class Definitions::CIMReference::CIMReference Default constructor.❍

Programming Pegasus::Class Definitions::CIMReference::CIMReference Copy constructor.❍

Programming Pegasus::Class Definitions::CIMReference::CIMReference Initializes this object from a CIM
object name.

❍

Programming Pegasus::Class Definitions::CIMReference::CIMReference Initializes this object from a CIM
object name (char* version).

❍

Programming Pegasus::Class Definitions::CIMReference::CIMReference Constructs a CIMReference from
constituent elements.

❍

●

Programming Pegasus::Class Definitions::CIMReference::clear Clears out the internal fields of this object making it
an empty (or unitialized reference).

●

Programming Pegasus::Class Definitions::CIMReference::getClassName Accessor.●

Programming Pegasus::Class Definitions::CIMReference::getHost Accessor.●

Programming Pegasus::Class Definitions::CIMReference::getKeyBindings Accessor.●

Programming Pegasus::Class Definitions::CIMReference::getNameSpace Accessor●

Programming Pegasus::Class Definitions::CIMReference::identical Returns true if this reference is identical to the
one given by the x argument

●

Programming Pegasus::Class Definitions::CIMReference::makeHashCode Generates hash code for the given
reference.

●

operator=:
Programming Pegasus::Class Definitions::CIMReference::operator= Assignment operator❍

Programming Pegasus::Class Definitions::CIMReference::operator= Same as set() above except that it is an
assignment operator

❍

Programming Pegasus::Class Definitions::CIMReference::operator= Same as set() above except that it is an
assignment operator

❍

●

Programming Pegasus::Class Definitions::CIMReference::print Prints the XML encoding of this objet●

set:
Programming Pegasus::Class Definitions::CIMReference::set Sets this reference from constituent elements.❍

Programming Pegasus::Class Definitions::CIMReference::set Set the reference from an object name .❍

●

http://donald/MSB/Manual/index.html (13 of 18) [5/5/2001 8:55:16 AM]

Programming Pegasus::Class Definitions::CIMReference::setClassName Sets the class name component to the
following string.

●

Programming Pegasus::Class Definitions::CIMReference::setHost Modifier.●

Programming Pegasus::Class Definitions::CIMReference::setKeyBindings Modifier.●

Programming Pegasus::Class Definitions::CIMReference::setNameSpace Sets the namespace component.●

Programming Pegasus::Class Definitions::CIMReference::toString Returns the object name represented by this
reference.

●

Programming Pegasus::Class Definitions::CIMReference::toXml Encodes this object as XML.●

Programming Pegasus::Class Definitions::CIMReference::~CIMReference Destructor●

CIMValue:
Programming Pegasus::Class Definitions::CIMValue::CIMValue Constructor❍

Programming Pegasus::Class Definitions::CIMValue::CIMValue Constructor❍

Programming Pegasus::Class Definitions::CIMValue::CIMValue Constructor❍

Programming Pegasus::Class Definitions::CIMValue::CIMValue Constructor❍

Programming Pegasus::Class Definitions::CIMValue::CIMValue Constructor❍

Programming Pegasus::Class Definitions::CIMValue::CIMValue Constructor❍

Programming Pegasus::Class Definitions::CIMValue::CIMValue Constructor❍

Programming Pegasus::Class Definitions::CIMValue::CIMValue Constructor❍

Programming Pegasus::Class Definitions::CIMValue::CIMValue Constructor❍

Programming Pegasus::Class Definitions::CIMValue::CIMValue Constructor❍

Programming Pegasus::Class Definitions::CIMValue::CIMValue Constructor❍

Programming Pegasus::Class Definitions::CIMValue::CIMValue Constructor❍

Programming Pegasus::Class Definitions::CIMValue::CIMValue Constructor❍

Programming Pegasus::Class Definitions::CIMValue::CIMValue Constructor❍

Programming Pegasus::Class Definitions::CIMValue::CIMValue Constructor❍

Programming Pegasus::Class Definitions::CIMValue::CIMValue Constructor❍

Programming Pegasus::Class Definitions::CIMValue::CIMValue Constructor❍

Programming Pegasus::Class Definitions::CIMValue::CIMValue Constructor❍

Programming Pegasus::Class Definitions::CIMValue::CIMValue Constructor❍

Programming Pegasus::Class Definitions::CIMValue::CIMValue Constructor❍

Programming Pegasus::Class Definitions::CIMValue::CIMValue Constructor❍

Programming Pegasus::Class Definitions::CIMValue::CIMValue Constructor❍

Programming Pegasus::Class Definitions::CIMValue::CIMValue Constructor❍

Programming Pegasus::Class Definitions::CIMValue::CIMValue Constructor❍

Programming Pegasus::Class Definitions::CIMValue::CIMValue Constructor❍

Programming Pegasus::Class Definitions::CIMValue::CIMValue Constructor❍

Programming Pegasus::Class Definitions::CIMValue::CIMValue Constructor❍

Programming Pegasus::Class Definitions::CIMValue::CIMValue Constructor❍

Programming Pegasus::Class Definitions::CIMValue::CIMValue Constructor❍

Programming Pegasus::Class Definitions::CIMValue::CIMValue Constructor❍

●

http://donald/MSB/Manual/index.html (14 of 18) [5/5/2001 8:55:16 AM]

Programming Pegasus::Class Definitions::CIMValue::CIMValue Constructor❍

Programming Pegasus::Class Definitions::CIMValue::CIMValue Constructor❍

Programming Pegasus::Class Definitions::CIMValue::assign CIMMethod assign●

Programming Pegasus::Class Definitions::CIMValue::clear CIMMethod clear●

Programming Pegasus::Class Definitions::CIMValue::get CIMMethod get - ATTN●

Programming Pegasus::Class Definitions::CIMValue::getArraySize CIMMethod getArraySize●

Programming Pegasus::Class Definitions::CIMValue::isArray CIMMethod isArray - Determines if the value is an
array

●

Programming Pegasus::Class Definitions::CIMValue::operator= Operator =●

Programming Pegasus::Class Definitions::CIMValue::print CIMMethod print - ATTN●

set:
Programming Pegasus::Class Definitions::CIMValue::set method set - ATTN:❍

Programming Pegasus::Class Definitions::CIMValue::set CIMMethod Set❍

●

Programming Pegasus::Class Definitions::CIMValue::setNullValue method setNullvalue - ATTN:●

Programming Pegasus::Class Definitions::CIMValue::toString CIMMethod toString - ATTN●

Programming Pegasus::Class Definitions::CIMValue::toXml CIMMethod toXML - ATTN●

Programming Pegasus::Class Definitions::CIMValue::typeCompatible CIMMethod typeCompatible - Compares the
types of two values.

●

Programming Pegasus::Class Definitions::CIMValue::~CIMValue Destrustructor●

Char16:
Programming Pegasus::Class Definitions::Char16::Char16 Constructor Char16❍

Programming Pegasus::Class Definitions::Char16::Char16 Constructor Char16❍

Programming Pegasus::Class Definitions::Char16::Char16 Constructor Char16❍

●

Programming Pegasus::Class Definitions::Char16::getCode Accessor for internal code member●

Programming Pegasus::Class Definitions::Char16::operator Uint16 Implicit converter from Char16 to Uint16●

operator=:
Programming Pegasus::Class Definitions::Char16::operator= Constructor Char16❍

Programming Pegasus::Class Definitions::Char16::operator= Constructor Char16❍

●

CompareIgnoreCase Compare two strings but ignore any case differences●

GetLine Get the next line from the input file●

KeyBinding:
Programming Pegasus::Class Definitions::KeyBinding::KeyBinding Default constructor❍

Programming Pegasus::Class Definitions::KeyBinding::KeyBinding Copy constructor❍

Programming Pegasus::Class Definitions::KeyBinding::KeyBinding Construct a KeyBinding with a name,
value, and type

❍

●

Programming Pegasus::Class Definitions::KeyBinding::getName Accessor●

Programming Pegasus::Class Definitions::KeyBinding::getType Accessor●

Programming Pegasus::Class Definitions::KeyBinding::getValue Accessor●

Programming Pegasus::Class Definitions::KeyBinding::operator= Assignment operator●

Programming Pegasus::Class Definitions::KeyBinding::setName Modifier●

http://donald/MSB/Manual/index.html (15 of 18) [5/5/2001 8:55:16 AM]

Programming Pegasus::Class Definitions::KeyBinding::setType Modifier●

Programming Pegasus::Class Definitions::KeyBinding::setValue Modifier●

Programming Pegasus::Class Definitions::KeyBinding::typeToString Converts the given type to one of the following:
"boolean", "string", or "numeric"

●

Programming Pegasus::Class Definitions::KeyBinding::~KeyBinding Destructor●

Programming Pegasus::Class Definitions::Stopwatch::Stopwatch stopwatch constructor.●

Programming Pegasus::Class Definitions::Stopwatch::getElapsed getElapsed - Get the elapsed time for the defined
stopwatch.

●

Programming Pegasus::Class Definitions::Stopwatch::printElapsed printElapsed method sends the current value of
the timer and sends it to standardout as a string with the word seconds attached

●

Programming Pegasus::Class Definitions::Stopwatch::reset Reset Stopwatch resets an existing Stopwatch object to the
current time value

●

String:
Programming Pegasus::Class Definitions::String::String Initialize with first n characters of x❍

Programming Pegasus::Class Definitions::String::String Copy constructor❍

Programming Pegasus::Class Definitions::String::String Initialize with first n characters from x❍

Programming Pegasus::Class Definitions::String::String Initialize with x❍

Programming Pegasus::Class Definitions::String::String Default constructor without parameters.❍

Programming Pegasus::Class Definitions::String::String Initialize from a plain old C-String:❍

Programming Pegasus::Class Definitions::String::String Initialize from the first n characters of a plain old
C-String:

❍

●

Programming Pegasus::Class Definitions::String::allocateCString Allocates an 8 bit representation of this string.●

append:
Programming Pegasus::Class Definitions::String::append Append the characters of str to this String object❍

Programming Pegasus::Class Definitions::String::append Append the given character to the string.❍

Programming Pegasus::Class Definitions::String::append Append n characters from str to this String object❍

●

Programming Pegasus::Class Definitions::String::appendToCString Append the given string to a C-string.●

assign:
Programming Pegasus::Class Definitions::String::assign Assign this string with x❍

Programming Pegasus::Class Definitions::String::assign Assign this string with x❍

Programming Pegasus::Class Definitions::String::assign Assign this string with first n characters of x❍

Programming Pegasus::Class Definitions::String::assign Assign this string with the plain old C-String x❍

Programming Pegasus::Class Definitions::String::assign Assign this string with first n characters of the plain
old C-String x

❍

●

Programming Pegasus::Class Definitions::String::clear Clear this string.●

compare:
Programming Pegasus::Class Definitions::String::compare Compare two null-terminated strings.❍

Programming Pegasus::Class Definitions::String::compare Compare the first n characters of the two strings.❍

●

equal:
Programming Pegasus::Class Definitions::String::equal Compare two String objects for equality.❍

Programming Pegasus::Class Definitions::String::equal Return true if the two strings are equal❍

●

http://donald/MSB/Manual/index.html (16 of 18) [5/5/2001 8:55:16 AM]

Programming Pegasus::Class Definitions::String::equal Return true if the two strings are equal❍

Programming Pegasus::Class Definitions::String::equal Return true if the two strings are equal❍

Programming Pegasus::Class Definitions::String::equal Return true if the two strings are equal❍

find:
Programming Pegasus::Class Definitions::String::find find substring❍

Programming Pegasus::Class Definitions::String::find Find the position of the first occurence of the string
object.

❍

Programming Pegasus::Class Definitions::String::find Find substring @ param - 16 bit character pointer❍

Programming Pegasus::Class Definitions::String::find Find the position of the first occurence of the character
c.

❍

●

Programming Pegasus::Class Definitions::String::getData Returns a pointer to the first character in the
null-terminated string string.

●

operator+=:
Programming Pegasus::Class Definitions::String::operator+= Overload operator += appends the parameter
String to this String.

❍

Programming Pegasus::Class Definitions::String::operator+= Append the character given by c to this String
object.

❍

Programming Pegasus::Class Definitions::String::operator+= Append the character given by c to this string.❍

●

operator=:
Programming Pegasus::Class Definitions::String::operator= Assign this string with x.❍

Programming Pegasus::Class Definitions::String::operator= Assign this string with x❍

●

operator[]:
Programming Pegasus::Class Definitions::String::operator[] Returns the Ith character of the String (const
version).

❍

Programming Pegasus::Class Definitions::String::operator[] Returns the Ith character of the String object.❍

●

Programming Pegasus::Class Definitions::String::remove Remove size characters from the string starting at the given
position.

●

Programming Pegasus::Class Definitions::String::reserve Reserves memory for capacity characters.●

Programming Pegasus::Class Definitions::String::reverseFind Same as find() but start looking in reverse (last
character first).

●

Programming Pegasus::Class Definitions::String::size Returns the length of the String object.●

Programming Pegasus::Class Definitions::String::subString Return a new String which is initialzed with length
characters from this string starting at pos.

●

toLower:
Programming Pegasus::Class Definitions::String::toLower Convert the plain old C-string to lower case:❍

Programming Pegasus::Class Definitions::String::toLower Converts all characters in this string to lower case❍

●

Programming Pegasus::Class Definitions::String::translate Translate any occurences of fromChar to toChar●

Programming Pegasus::Class Definitions::String::~String String destructor.●

ToLower Return a version of this string whose characters have been shifted to lower case●

operator!= String operator ==.●

operator+ overload operator + - Concatenates String objects.●

operator< overload operator < - Compares String obects.●

http://donald/MSB/Manual/index.html (17 of 18) [5/5/2001 8:55:16 AM]

operator<= overload operator <= compares String objects.●

operator== String operator ==.●

operator== String operator ==.●

operator== String operator ==.●

operator> Overload operator > compares String objects●

operator>= overload operator >= - Compares String objects●

Variables
PEGASUS_NAMESPACE_END●

PEGASUS_NAMESPACE_END●

PEGASUS_NAMESPACE_END●

PEGASUS_NAMESPACE_END●

Programming Pegasus::Class Definitions::CIMDateTime::x●

PEGASUS_NAMESPACE_END●

Programming Pegasus::Class Definitions::String::EMPTY EMPTY - Represent an empty string.●

Macros
PEGASUS_ASSERT define PEGASUS_ASSERT assertion statement.●

Pegasus_Exception_h Programming with Exceptions●

Enums, Unions, Structs
CIMFlavor CIMQualifier flavor constants●

Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/index.html (18 of 18) [5/5/2001 8:55:16 AM]

Credits
Credit for work on the Pegasus implementation so far goes largely to the following
companies and personnel:

Michael Brasher - BMC, Chief Architect and principle Programmer
m.brasher@bmc.com

●

Bob Blair - BMC, Developer of the Pegasus Compiler bblair@bmc.com●

Mike Reynolds - BMC●

Heather Kreger - Originator of the extension services concept and one of our original
believers in the concepts of Manageability kreger@us.ibm.com

●

Martin Kirk - The Open Group, Open Group Enterprise Management Forum Program
Manager, The Open Group m.kirk@opengroup.org

●

Karl Schopmeyer - Formerly Tivoli Systems and now The Open Group, Open group
Enterprise Management Forum Chair and Workgroup leader for the Pegasus Project
k.schopmeyer@opengroup.org

●

Raymond Williams - Tivoli Systems and VP Engineering DMTF for encouragement,
direction, and support. Raymond_Williams@tivoli.com

●

Mike Lambert, Open Group - For supporting and encouraging this effort
m.lambert@opengroup.org

●

Get your name on this list. Support, contribute to and use Pegasus.

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/Credits.html [5/5/2001 8:55:17 AM]

Hierarchy of Classes
Array●

CIMClass●

CIMConstClass●

CIMDateTime●

CIMInstance●

CIMMethod●

CIMName●

CIMOperations

CIMClient❍

CIMRepository❍

●

CIMProperty●

CIMQualifier●

CIMQualifierDecl●

CIMReference●

CIMType●

CIMValue●

Char16●

Exception

AddedReferenceToClass❍

AlreadyExists❍

AssertionFailureException❍

BadQualifierOverride❍

BadQualifierScope❍

BadReference❍

CIMException❍

CannotCreateDirectory❍

CannotOpenFile❍

ClassAlreadyResolved❍

ClassNotResolved❍

ExpectedReferenceValue❍

FailedToRemoveDirectory❍

●

http://donald/MSB/Manual/HIER.html (1 of 2) [5/5/2001 8:55:17 AM]

FailedToRemoveFile❍

IllegalName❍

IllegalTypeTag❍

InstanceAlreadyResolved❍

InstantiatedAbstractClass❍

InvalidMethodOverride❍

InvalidPropertyOverride❍

MissingReferenceClassName❍

NoSuchDirectory❍

NoSuchFile❍

NoSuchNameSpace❍

NoSuchProperty❍

NotImplemented❍

NullPointer❍

NullType❍

OutOfBounds❍

TruncatedCharacter❍

TypeMismatch❍

UndeclaredQualifier❍

UnitializedHandle❍

KeyBinding●

Stopwatch●

String●

TimeValue●

Alphabetic index

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/HIER.html (2 of 2) [5/5/2001 8:55:17 AM]

Definition of Terms
This section provides definitions of terms and concepts used in the specification of the
DMTF CIM and WBEM specifications and of the Pegasus Managability Services Broker
and its implementation.

Namespace - An object that defines a scope within which object keys must be unique.
Multiple namespaces typically indicate the presence of multiple management spaces or
multiple devices.

The namespace pragma

 #pragma namespace()

This pragma is used to specify a Namespace path. The syntax needs to conform to the
following:

 ://

The contents of a MOF file are loaded into a namespace that provides a domain (in other
words, a container), in which the instances of the classes are guaranteed to be unique per the
KEY qualifier definitions. The term namespace is used to refer to an implementation that
provides such a domain. Namespaces can be used to:

Define chunks of management information (objects and associations) to limit
implementation resource requirements, such as database size.

●

Define views on the model for applications managing only specific objects, such as
hubs.

●

Pre-structure groups of objects for optimized query speed.●

CIMOM = TBD Definition of a CIMOM

Repository - The CIM Repository stores the CIM metaschema (class repository) and
instance information (instance repository). TheRepository is provided as part of the
reference implementation, but is considered an independent service for the CIMOM. The
interfaces to the respository are fixed but the supplied respository can be replaced with a
different implementation.

PROPERTY - ATTN:

FLAVOR \Label{FLAOVOR - ATTN:

CIM INSTANCE - ATTN:

MOF - MOF is the standard language used to define elements of the Common Information
Model (CIM). The MOF language specifies syntax for defining CIM classes and instances.
Compilation of MOF files provides developers and administrators with a simple and fast

http://donald/MSB/Manual/DefinitionofTerms.html (1 of 6) [5/5/2001 8:55:17 AM]

technique for modifying the CIM Repository. For more information about MOF, see the
DMTF web page at http://www.dmtf.org.

Association -An association is a relationship between two classes or between instances of
two classes. The properties of an association class include pointers, or references, to the two
classes or instances.

Class association is one of the most powerful CIM features. It provides a way to organize a
collection of management objects into meaningful relationships. For example, a
CIM_ComputerSystem object might contain a CIM_Disk, Processor A, and Processor B.
The CIM_ComputerSystem has an association with each of the objects it contains. Because
this particular association is a containment association, it is represented by a class called
CIM_contains. The CIM_contains class contains references to each of the objects that
belong to the association. In this case, CIM_contains has a reference to Solaris_Disk and a
reference to CIM_ComputerSystem.

WBEM - ATTN:

DMTF - The Distributed Management Task Force (DMTF), a group representing
corporations in the computer and telecommunications industries, is leading the effort to
develop and disseminate standards for management of desktop environments,
enterprise-wide systems, and the Internet. The goal of the DMTF is to develop an integrated
approach to managing networks across platforms and protocols, resulting in cost-effective
products that interoperate as flawlessly as possible. For information about DMTF initiatives
and outcomes, see the DMTF web site at http://www.dmtf.org.

MOF - MOF is the standard language used to define elements of the Common Information
Model (CIM). The MOF language specifies syntax for defining CIM classes and instances.
Compilation of MOF files provides developers and administrators with a simple and fast
technique for modifying the CIM Repository. For more information about MOF, see the
DMTF web page at http://www.dmtf.org.

XmlCIM - ATTN: The XML Schema describes the CIM metaschema. The CIM classes and
instances are valid XML documents.

A Metaschema Mapping is one where the XML schema is used to describe the CIM
metaschema, and both CIM classes and instances are valid XML documents for that schema.
In this case, the DTD is used to describe, in a generic fashion, the notion of a CIM class or
instance. CIM element names are mapped to XML attribute or element values. An alternate
mechanism maps XML documents directly to CIM schema classes and instances. In this
case, CIM element names are mapped to XML element names The advantages of the XML
descriptions are: Only one DTD needs to be defined Avoids the limitations of DTD's
(ordering, scoping, and no inheritance) Straightforward

For more detailed information on the mapping of XML to CIM schema, see
http://www.dmtf.org/download/spec/xmls/CIM_XML_Mapping20.htm and
http://www.dmtf.org/download/spec/xmls/CIM_HTTP_Mapping10.htm. 1.5 Managed
Object Format

http://donald/MSB/Manual/DefinitionofTerms.html (2 of 6) [5/5/2001 8:55:17 AM]

QUALIFIERR - Qualifiers are values that provide additional information about classes,
associations, indications, methods, method parameters, triggers, instances, properties or
references. All qualifiers have a name, type, value, scope, flavor and default value.
Qualifiers cannot be duplicated; there cannot be more than one qualifier of the same name
for any given class, instance, or property.

Qualifiers are defined in detail in the DMTF CIM Specificaiton.

There are several types of Qualifiers as listed below:

Meta-Qualifiers - (ASSOCIATION,INDICATION are the MetaQualifiers) are used
to refine the definition of the meta constructs in the model. These qualifiers are used
to refine the actual usage of an object class or property declaration within the MOF
syntax.

●

StandardQualifiers -(See CIM Specificaiton for a list) All CIM-compliant
implementations are required to handle. Any given object will not have all of the
qualifiers listed.

●

Optional Qualifiers - The optional qualifiers listed in the CIM Specificaiton address
situations that are not common to all CIM-compliant implementations. Thus,
CIM-compliant implementations can ignore optional qualifiers since they are not
required to interpret or understand these qualifiers.

PEGASUS Implements the following optional Qualifiers - ATTN:

●

User Defined Qualifiers - The user can define any additional arbitrary named
qualifiers. However, the CIM specificaiton recommends that only defined qualifiers
be used, and that the list of qualifiers be extended only if there is no other way to
accomplish a particular objective.

●

ATTN: Should we include the table of qualifiers?????

Aggregation -A strong form of an association. For example, the containment relationship
between a system and the components that make up the system can be called an aggregation.
An aggregation is expressed as a Qualifier on the association class. Aggregation often
implies, but does not require, that the aggregated objects have mutual dependencies.

Association - A class that expresses the relationship between two other classes. The
relationship is established by the presence of two or more references in the association class
pointing to the related classes.

Cardinality - A relationship between two classes that allows more than one object to be
related to a single object. For example, Microsoft Office* is made up of the software
elements Word, Excel, Access and PowerPoint.

CIM - Common Information Model is the schema of the overall managed environment. It is
divided into a Core model, Common model and extended schemas. CIM Schema The
schema representing the Core and Common models. Versions of this schema will be
released by the DMTF over time as the schema evolves.

Class - A collection of instances, all of which support a common type; that is, a set of

http://donald/MSB/Manual/DefinitionofTerms.html (3 of 6) [5/5/2001 8:55:17 AM]

properties and methods. The common properties and methods are defined as features of the
class. For example, the class called Modem represents all the modems present in a system.
Common model A collection of models specific to a particular area, derived from the Core
model. Included are the system model, the application model, the network model and the
device model.

Core model - A subset of CIM, not specific to any platform. The Core model is set of
classes and associations that establish a conceptual framework for the schema of the rest of
the managed environment. Systems, applications, networks and related information are
modeled as extensions to the Core model.

Domain - A virtual room for object names that establishes the range in which the names of
objects are unique.

Explicit Qualifier - A qualifier defined separately from the definition of a class, property or
other schema element (see implicit qualifier). Explicit qualifier names must be unique across
the entire schema. Implicit qualifier names must be unique within the defining schema
element; that is, a given schema element may not have two qualifiers with the same name.

Extended schema - A platform specific schema derived from the Common model. An
example is the Win32 schema.

Feature - A property or method belonging to a class.

Flavor - Part of a qualifier spcification indicating overriding and inheritance rules. For
example, the qualifier KEY has Flavor(DisableOverride ToSubclass), meaning that every
subclass must inherit it and cannot override it.

Implicit Qualifier - A qualifier defined as a part of the definition of a class, property or
other schema element (see explicit qualifier).

Indication - A type of class usually created as a result of the occurrence of a trigger.

Inheritance - A relationship between two classes in which all the members of the subclass
are required to be members of the superclass. Any member of the subclass must also support
any method or property supported by the superclass. For example, Modem is a subclass of
Device.

Instance - A unit of data. An instance is a set of property values that can be uniquely
identified by a key.

Key - One or more qualified class properties that can be used to construct a name. One or
more qualified object properties which uniquely identify instances of this object in a
namespace.

Managed Object - The actual item in the system environment that is accessed by the
provider. For example, a Network Interface Card.

Meta model - A set of classes, associations and properties that expresses the types of things
that can be defined in a Schema. For example, the meta model includes a class called

http://donald/MSB/Manual/DefinitionofTerms.html (4 of 6) [5/5/2001 8:55:17 AM]

property which defines the properties known to the system, a class called method which
defines the methods known to the system, and a class called class which defines the classes
known to the system.

Meta schemaMeta schema - The schema of the meta model. Method A declaration of a
signature; that is, the method name, return type and parameters, and, in the case of a
concrete class, may imply an implementation.

METHOD - Methods represent the behavior relevant for a class. A method is defined as an
operation together with its signature. The signature consists of a possibly empty list of
parameters and a return type.

A declaration of a signature; that is, the method name, return type and parameters, and, in
the case of a concrete class, may imply an implementation.

Model - A set of classes, properties and associations that allows the expression of
information about a specific domain. For example, a Network may consist of Network
Devices and Logical Networks. The Network Devices may have attachment associations to
each other, and may have member associations to Logical Networks.

Model Path - A reference to an object within a namespace. Namespace An object that
defines a scope within which object keys must be unique.

Namespath Path - A reference to a namespace within an implementation that is capable of
hosting CIM objects.

Name - Combination of a Namespace path and a Model path that identifies a unique object.

Trigger - The occurrence of some action such as the creation, modification or deletion of an
object, access to an object, or modification or access to a property. Triggers may also be
fired as a result of the passage of a specified period of time. A trigger typically results in an
Indication.

- A subclass may redefine the implementation of a method or property inherited from its
superclass. The property or method is thereby redefined, even if the superclass is used to
access the object. For example, Device may define availability as a string, and may return
the values “powersave”, "on" or "off." The Modem subclass of Device may redefine
(override) availability by returning "on," "off," but not "powersave". If all Devices are
enumerated, any Device that happens to be a modem will not return the value "powersave"
for the availability property.

Property - A value used to characterize an instance of a class. For example, a Device may
have aproperty called status.

Provider - An executable that can return or set information about a given managed object.
Qualifier A value used to characterize a method, property, or class in the meta schema. For
example, if a property has the qualifier KEY with the value TRUE, the property is a key for
the class.

Reference - Special property types that are references or "pointers" to other instances.

http://donald/MSB/Manual/DefinitionofTerms.html (5 of 6) [5/5/2001 8:55:17 AM]

Schema - A namespace and unit of ownership for a set of classes. Schemas may come in
forms such as a text file, information in a repository, or diagrams in a CASE tool.

Scope Scope - Part of a Qualifier specification indicating with which meta constructs the
Qualifier can be used. For example, the Qualifier ABSTRACT has Scope(Class Association
Indication), meaning that it can only be used with Classes, Associations and Indications.

Scoping Object - Objects which represent a real-world managed element, which in turn
propagate keys to other objects.

Signature - The return type and parameters supported by a method.

Subclass - See Inheritance.

Superclass - See Inheritance.

Top Level Object - A class or object that has no scoping object.

 NAMESPACE.

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/DefinitionofTerms.html (6 of 6) [5/5/2001 8:55:17 AM]

NAMESPACE.
Defintion of the namespace.

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/NAMESPACE..html [5/5/2001 8:55:18 AM]

Document References
This section will contain references to external documents.

NOTE: documents we must reference include:

DMTF Specifications●

●

The following is some test tags to find problems and techniquest in DOC++ There is the
label FOO

Here is the reference to Pegasus, the top fo the document Pegasus

Here is a reference to the label FOO "FOO" "FOO" End of all this

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/DocumentReferences.html [5/5/2001 8:55:18 AM]

Objectives
Objectives of the Pegasus Project

The Pegasus project was initiated by the Open Group to provide a means to define and
clarify new standards for the manageability of IT environments.

The Project has the following major objectives:

Creation of a prototype environment for a manageability architecture that uses
existing and emerging standards.

●

Provide a manageability implementation that is sufficiently rich and efficient that it
can be used as the basis for production environments.

●

Provide a manageability environment that can be used to test and demonstrate
components of the manageability architecture. This would allow us not only to create
specifications but to create demonstratable solutions and to test those solutions agains
the specifications. We have found in the last few years that creating standards and
specificaitons alone is not enough. These solutions will only be used if there is real
supporting code. Further, we have come to beleive that we cannot really understand
the correctness or effectiveness of standards without implementations.

Create standards and specifications for manageability APIs●

Contribute back to the DMTF i●

Manageability

We see the problem of managing IT environments as having several major components:

The Management environment - This is represented by the systems that perform the
tasks of managing our IT environment. There are a number of major and minor
suppliers of systems of this type, either for enterprise wide management or for
managemetn of specific tasks, functions, applicaitons, systems, networks, etc.

●

The Manageability environment - The management the interfaces the managed
resources with management. This includes instrumentation for capture of information,
functions to execute tasks within the environment and additional facilities to make
this all available to the Management envirionment

●

The management/manageability interface - This is the key interface that allows the
sepeartion of manageability and management. This interface must define the
information and protocols for the passage of management information between the
manageability environment and the management environment

●

The management/Instrumentation Interface - ATTN: Explain this one.●

WHY SEPARATE THE TWO

ATTN: add this

ADDITIONAL COMMENTS THAT NEED TO BE MADE:

Today, these two environments are heavily integrated. Most management systems include

http://donald/MSB/Manual/Objectives.html (1 of 2) [5/5/2001 8:55:18 AM]

thier own manageability components (agents, information capture tools, control tools).
Thus, the commitment to a management system is also the commitment to instrumentation.

The objective of standards like SNMP and WBEM is to provide the standards to separate
manageability from Management.

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/Objectives.html (2 of 2) [5/5/2001 8:55:18 AM]

Overview
Pegasus is an implementation of the components of a CIM environment as defined by the
DMTF http://www.dmtf.org

The OpenGroup is in the process of creating standard APIs for an implementation of DMTF
CIM Server that will be known as Pegasus.

This will include an OpenGroup Specification of the architecture and interfaces and one or
more implementations that are available as opensource from http://www.opengroup.org.

Pegasus is an implementation of the components of a CIM environment as defined by the
DMTF http://www.dmtf.org

ATTN: Not finished

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/Overview.html [5/5/2001 8:55:18 AM]

http://www.dmtf.org/
http://www.opengroup.org/
http://www.dmtf.org/

Pegasus Architecture
This section defines the overall architecture of the Pegasus implementation.

 Design Goals

 The Broker

 Pegasus Providers.

 Extension Services

 Pegasus Clients.

 Functional Flow

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/PegasusArchitecture.html [5/5/2001 8:55:18 AM]

Design Goals
The Pegasus design team set some basic design goals early in the development of Pegasus as
follows:

C++ as the core development language. We selected C++ because it represented a
compromise between the ability to work with objects and a language that would be
acceptable for high avaailablity platforms.

●

Modular Architecture - We wanted to be able to create the architecture based on well
understand standardized modules that have clean well defined interfaces between the
modules.

●

Open to a wide range of specialization and customization.●

Minimize the functionality of the basic core CIMOM. We wanted to create an
environment where the majority of customization could be created by working with
attached modules that would both extend and modify the functionality of the broker.

●

Use only open source components in the pegasus environment●

Design for maximum portability. The initial targets would be Linux, Unix, and NT
but the product should be usable in a wide variety of platforms and platform sizes.

●

The APIs and interfaces should be clear, given that they are in C++●

●

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/DesignGoals.html [5/5/2001 8:55:18 AM]

Extension Services
ATTN: Document this as an architectural component

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/ExtensionServices.html [5/5/2001 8:55:19 AM]

Functional Flow
The Common Information Model Object Broker (often known as the CIM Information
manager or CIMOM) brokers CIM objects between a number of sources and destinations. A
CIM object should be a representation, or model, of a managed resource, such as a printer,
disk drive, or central processing unit (CPU). In the Pegasus implementation, CIM objects
are represented internally as C++ classes. The CIMOM transfers information between
WBEM clients, the CIM Object Manager Repository, and managed resources.

NOTE: We are very careful in the use of CIM and WBEM. These are terms defined and
controled by the DMTF and they have specific meanings both technically and legally. Thus,
the objects are CIM objects. However, the client is a WBEM client because it uses the
DMTF XML/HTTP specificaitons to transfer information and that specification and CIM
form WBEM.

When a WBEM client application accesses information about a managed resource, the CIM
Object Manager contacts either the appropriate provider for the CIM object that represents
that managed resource or the CIM Object Manager Repository. Providers are classes that
communicate with managed objects to retrieve data. If the requested data is not available
from the CIM Object manager Repository, the CIM Object Manager forwards the request to
the provider for that managed resource.

Using the Repository.

The provider dynamically retrieves the requested information, which is sent back to the
requester. The CIM Object Manager Repository only contains static data. Classes that are
handled by a provider must have a Provider qualifier that identifies the provider to contact
for the class. When the CIM Object Manager receives a request for a class that has a
Provider qualifier, it should route the request to the specified provider. If no provider is
specified, it should route the request to the CIM Object Manager Repository.

When a WBEM client connects to a CIM Object Manager, it will get a handle to the CIM
Object Manager. The client can then perform WBEM operations.using this reference. At
startup, the CIM Object Manager should perform the following functions: Listen for RMI
connections on RMI port 5987 and for XML/HTTP connections on HTTP.

NOTE: The current version of the CIMOM does not incorporate events. Therefore, this
description is written around a CIMOM without events functionality.

Note - The listener for connections may not be the Object Manager; it could be another
entity that is performing the operation for the Object Manager. This could be a servlet in a
Web server. Conformant object managers are required to support XML over HTTP -
Pegasus is conformant.

The CIMOM accepts requests called WBEM Operations from the WBEM client. These
operations are explicitly defined in the WBEM specification. They represent the operations
possible on CIM objects (ex. create/modify/delete class/instance, etc.) During normal
operations, the CIMOM performs the following for each operation request received:

http://donald/MSB/Manual/FunctionalFlow.html (1 of 4) [5/5/2001 8:55:19 AM]

Security checks to authenticate user login and authorization to access the CIMOM
information.

●

Syntactic and semantic checks of the CIM data operations to ensure that they comply
with the current version of the CIM specification.

●

Route requests to the appropriate provider orthe Repository. The CIMOM iteself does
not serve as a Repository for CIM class definitions and instance data. Persistence is
provided by the Repository; however, the contact point is the CIMOM. Thus, the
Repository could be considered as an option except that the CIMIM is required to
keep class information for all semantic and syntatic confirmation and therefore the
class repository is a requirement of a working CIMOM, not an option.

●

Deliver data from providers and from the CIM Object Manager Repository to the
originating WBEM client application.

●

The CIMOM should be a process that accepts requests for CIM operations, as defined by the
DMTF, and carries out these operations. The Pegasus CIMOM runs as a daemon process
that waits for requests.

Authentication

Before any requests can be made to the CIM Object Manager, an authenticated session must
be established.

NOTE:The current version of Pegasus does not have any authentication. However, it is
planned for version 1.1.

An identifier for the user and optionally a role will be associated with the authenticated
session. A role is a principal identity associated with the current session, in addition to the
user identity. Systems that do not support roles can ignore them as described in the Security
Interface. These can be maintained in an internal Hash map.

Request Reception

The CIMOM receives requests through CIM operations over HTTP. Each request will be
associated with a session that is set up as part of the initial authentication exchange. Since
the session has an associated user, each request automatically has a user associated with it.
This should be useful for authorization checking for a given request. Once the request has
been received, the appropriate components for handling the specific request will be invoked.
The Pegasus implementation has methods for each of the major CIM operations over HTTP.
Once the request is received, the appropriate method will be called..

Authorization

The default implementation is Access Control List (ACL) based. Access control lists can be
maintained per namespace or on a per namespace/user basis. These lists will be maintained
in the root/security namespace. The CIM Object Manager will grant read or write
permissions within a namespace based on the access control list. Since CIM operations are
done within the context of a namespace, these ACLs will enforce rules on whether an
operation should be allowed. For operations that will ultimately be handled by a provider,
the appropriate provider can replace the authorization scheme. This will allow providers to

http://donald/MSB/Manual/FunctionalFlow.html (2 of 4) [5/5/2001 8:55:19 AM]

enforce finer grained control if desired. A provider can replace the default authorization
checking scheme by implementing the Authorizable interface. If implemented, no calls are
made to the CIM Object Manager.

Provider

Provider RegistrationB/B>

The Pegasus CIMOM enables developers to write providers, which serve dynamic
information to the CIMOM (see Providers). Providers register themselves by
specifying their location in a Provider qualifier. Providers can be set up on a class,
property, or method basis. Providers can have one or more of the different provider
types. The DMTF CIM specification allows the Provider qualifier to have an
implementation specific interpretation. For Pegasus, the Provider qualifier constitutes
the executable name of a provider executable implementing the provider functions for
the class.

There are a number of conceptual interfaces that can be implemented by providers:
InstanceProvider●

MethodProvider●

PropertyProvider●

AssociatorProvider●

. Each conceptual interface provides a subset of the WBEM Operations as follows:

NOTE: ATTN: Table defining the types vs. operations

However

Providers should be loaded "on demand" by the CIMOM. Classes and properties
marked by the provider qualifier will be an indication to the object manager that the
associated information is dynamic and must be obtained from the providers rather
than the repository. When the object manager determines that a specific request needs
dynamic data, provider should be loaded and instantiated. Additionally, the
"initialize" method of the Provider will be invoked. There should be only a single
instance of the provider.

ATTN: Review the following: In the reference implementation, the ProviderChecker
maintains a hash map of all the providers. This will enable the CIM Object Manager
to load a provider only if it has not been loaded previously. There should be no
specified time when a provider can be "unloaded", however providers have a
"cleanup" method that can be invoked if, and when, this behavior is specified for the
object manager.

The CIM Object Manager will not act as as a provider for classes. However, there are
instances where classes must interact with the CIMOM itself. These might include
authentication classes, authorization classes, namespace classes, and classes that
provide information on the CIMOM iteslf.

http://donald/MSB/Manual/FunctionalFlow.html (3 of 4) [5/5/2001 8:55:19 AM]

These classes will be handled by providers but these will be specialized providers that
have access back to the CIMOM itself. All of this is being defined as part of a services
extension interface to PEGASUS. This interface will be discussed in a future version of
this document:

ATTN: add the services interfaces.

ATTN: Dealing with multiple providers per class.

Request Routing

One of the main functions of the CIMOM is operation request routing. Depending on
the request, the request may need to be authorized and passed to semantic checkers,
providers, and the repository.

Requests may be for static information such as schema definitions or static instances.
In this case, the CIMOM should route the request to the proper repository.

The more complex routing will involve operations that can traverse multiple classes
and their instances. An example of such an operation is association traversal. In order
to determine the associated instances of a given input instance, the CIMOM should
first determine the associations that the given instance class participates in. It will
obtain this from the associations that have been compiled and stored in the repository.
Once these associations are determined, the CIM Object Manager should find those
instances of the associations in which the given input instance plays a role. These
associations may, or may not be, dynamic. Depending on whether the associations are
dynamic or not, the CIM Object Manager may route the requests to providers or the
repository. Once the results are returned, they should be concatenated together and
returned because of the request. The CIM Object Manager will use schema
information to determine which providers to contact. As can be seen, a given request
can result in multiple sub-requests to the providers or the repository. A similar
situation will occur when a deep enumeration is performed on instances of a class.

Semantic Checking

The CIMOM performs semantic checks before classes or instances can be set or
createdusing internal class, property, instance, method, and qualifier checkers and the
rules ov validation defined by the CIM specification. These verifiers ensure that the
CIM rules are enforced. This includes type verification,type conversions, verification
of proper key usage, and other checks.,

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/FunctionalFlow.html (4 of 4) [5/5/2001 8:55:19 AM]

Pegasus Clients.
ATTN: define in more detail

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/PegasusClients..html [5/5/2001 8:55:19 AM]

Pegasus Providers.
ATTN: Define in more detail

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/PegasusProviders..html [5/5/2001 8:55:19 AM]

The Broker
The Common Information Model Object Broker (often known as the CIM Information
manager or CIMOM) brokers CIM objects between a number of sources and destinations. A
CIM object should be a representation, or model, of a managed resource, such as a printer,
disk drive, or central processing unit (CPU). In the Pegasus implementation, CIM objects
are represented internally as C++ classes. The CIMOM transfers information between
WBEM clients, the CIM Object Manager Repository, and managed resources.

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/TheBroker.html [5/5/2001 8:55:19 AM]

Pegasus Code Examples
The following sections provide some examples of the use of the Pegasus APIs for clients,
providers and services.

There are also a number of good examples of Pegasus API and Class usage in the tests
defined for the major Pegasus components. See the tests directories for a list of the tests
currently implemented.

 Client Coding Examples

 Provider Coding Examples

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/PegasusCodeExamples.html [5/5/2001 8:55:20 AM]

Client Coding Examples
Example 1

Declaration of a Class and the addition of qualifiers, properties, and methods to that class. Finally, the code
converts the class defined to XML with print, outputs it, restores it to a new class and compares the results.

This example is one of the tests defined for Pegasus in the /commmon/tests directory

Example of Class Declaration

#include
#include

using namespace Pegasus;

void test01()
{
 ClassDecl class1("MyClass", "YourClass");

 class1
 .addQualifier(Qualifier("association", true))
 .addQualifier(Qualifier("q1", Uint32(55)))
 .addQualifier(Qualifier("q2", "Hello"))
 .addProperty(Property("message", "Hello"))
 .addProperty(Property("count", Uint32(77)))
 .addProperty(
 Property("ref1", Reference("MyClass.key1=\"fred\""), "MyClass"))
 .addMethod(Method("isActive", Type::BOOLEAN)
 .addParameter(Parameter("hostname", Type::STRING))
 .addParameter(Parameter("port", Type::UINT32)));

 // class1.print();

 OutBuffer out;
 out << class1;

 InBuffer in(out.getData());
 ClassDecl tmp;
 in >> tmp;

 assert(class1.identical(tmp));
}

int main()
{

http://donald/MSB/Manual/ClientCodingExamples.html (1 of 2) [5/5/2001 8:55:20 AM]

 try
 {
 test01();
 }
 catch (Exception& e)
 {
 cout << "Exception: " << e.getMessage() << endl;
 }

 cout << "+++++ passed all tests" << endl;

 return 0;
}

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/ClientCodingExamples.html (2 of 2) [5/5/2001 8:55:20 AM]

Provider Coding Examples
ATTN: This section empty for the moment

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/ProviderCodingExamples.html [5/5/2001 8:55:20 AM]

Pegasus Components
This section defines the major components that make up the Pegasus environment, the
architectureal components, the built components, and the supporting directory structure.

 Component Descriptions

 Pegasus Directory Structure

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/PegasusComponents.html [5/5/2001 8:55:20 AM]

Component Descriptions
The major components of Pegasus are:

Pegasus Server - WBEM/CIM CIM_Server with interfaces for providers and Clients

Pegasus Repository - Today Pegasus provides a defined class repository interface and a
simple file based class repository. Future will include the object repository

Pegasus Client SDK - Tools for building Pegasus clients based on the Pegasus C++
interfaces and using the WBEM HTTP/XML protocols or directly interfacing with Pegasus

Pegasus Test Clients - Simple test clients being developed as part of the Pegasus
development process

Pegasus HTML Test Client - To aid some testing we created a test client for Pegasus that
uses a WEB server (ex. Apache) with a set of CGI modules and HTML to allow the entry of
Pegasus operations from a WEB browser as forms and the recept of the response as WEB
pages. This has proven useful as a test tool and can be used for a wide variety of
demonstrations.

Pegasus Providers - Pegasus providers are build as separate components that can be
dynamically loaded by the Pegasus server.

Pegasus Service Extensions - Future (version 1.0)

Pegasus MOF Compiler - The Pegasus MOF compiler compiles MOF files and installs
them into the Pegasus repository.

ATTN: Define the files that make up these components and their structure.

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/ComponentDescriptions.html [5/5/2001 8:55:20 AM]

Pegasus Directory Structure
Pegasus is distributed as a complete directory structure that should be installed either from one of the snapshots or from
CVS.

This structure is generally as follows:

Pegasus - Root directory
 bin
 build Destination for all intermediate files from build
 if no alternative is specified see PEGASUS_HOME

 cgi-bin Source and make for the Pegasus WEB Based Test client
software
 doc Miscelaneous Pegasus Documents. Includes the DMTF XML for
CIM 2.4
 html HTML files for the Browser test client.
 mak General make files (used by the root make and other
makes)
 Repository This Directory containes the created repository
 src All Pegasus Source Files
 ACEExamples Test directrory with examples of the use of ACE
(developers)
 Clients Top level directory for Pegasus Client Programs
 CGI_Client Source for the Pegasus client for the WEB demo

 Pegasus
 CGI CGI files for the WEB test client
 CGIClient
 Client Pegasus Client SDK and Test client using the SDK
 tests Test programs for the client software
 Common Pegasus Common Functions (C++ source and headers
 tests Test programs for the common functions
 Protocol Pegasus Client HTTP/XML Protocol Modules
 tests
 Repository Pegasus Repository Interfaces and Simple Repository
 tests Tests for Repository Functions
 Server Pegasus Server Modules
 tests Unit tests defined for the server functions

 Providers Top Level Directory for Pegasus written Providers
 Generic Non-system oriented providers
 Windows Providers defined for the Windows environment
 Unix Providers defined for the Unix environment
 Services To-be-defined.

 Utils
 manual Pegasus User/developer manual source modules
 HTML Output from the Pegasus Manual compilartion.

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/PegasusDirectoryStructure.html [5/5/2001 8:55:20 AM]

Pegasus Interfaces
The Pegasus MSB interfaces with several different entities:

Providers●

Services (Including respositories and other services)●

Repository●

Further, it includes both the APIs and the definitions of CIM data that are required by the
broker.

Pegasus has effectivly implemented the same operations and data defintions across all of
these interfaces with minor differences because of the special characteristics of each
interface.

CIM Operations over HTTP The core operations implemented in Pegasus are based
entirely on the CIM operations over HTTP definitions by the DMTF in CIM Operations
over HTTP specificaiton.

The creation of all Pegasus interfaces is based on this core was a key objective in the design
of Pegasus. These operations provide the creation, deletion, manipulation of CIM classes
and objects and their components.

Pegasus implements these operations as methods in the Pegasus class Operations The
interfaces for this class and methods is defined in the header file operations.h.

Client Interface In Pegasus the client is a separate component that can communicate with
the Pegasus server either through the WBEM CIM/XML protocol or directly through the
Pegasus Client C++ Interfaces.

The Client interfaces are an extension of the Pegasus Operations interfaces with some
specific methods added for client/server communication control.

Provider Interfaces

In Pegasus, the provider is a separate executable that accesses the managed resources and is
used by the CIMOM to provide access to data. Providers forward this information to the
CIMOM for integration and interpretation. When the CIMOM receives a request from a
management application for data that is not available from the CIMOM Repository, it
forwards the request to a provider. The CIMOM Repository only contains static data.
Providers implement a provider interface that supports the type of service specific to their
role. In order to implement the interface, a provider class must first declare the interface in
an implements clause, and then it must provide an implementation (a body) for all of the
abstract methods of the.interface.

ATTN: Need to put something here.

Repository Interfaces

The repository interface isused by the CIMOM to interface with implementations of the

http://donald/MSB/Manual/PegasusInterfaces.html (1 of 2) [5/5/2001 8:55:21 AM]

repository thatstore and retrieve provide persistence for class and instance information.

A prototype implementation of both a class and instance provider is provided with Pegasus
(ATTN: SEE ALSO). However, it is expected that this will be replaced in many
installations. .

 CIM Operations over HTTP

 Pegasus Client Interfaces

 Pegasus Provider Interfaces

 Pegasus Service Extension Interfaces

 Repository Interfaces

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/PegasusInterfaces.html (2 of 2) [5/5/2001 8:55:21 AM]

CIM Operations over HTTP
The core of the Pegasus external interface is the WBEM Operations (Formally known as
CIM Operations over HTTP in the DMTF specificaion). Pegasus uses the basic WBEM
operations as the basis for all of the interfaces.

Pegasus defines these interfaces in exactly the same manner as they are defined in the
DMTF specification (CIM Operations over HTTP)

Thus, Pegasus implements a Class named CIMOperations. Within that class, each of the
WBEM HTTP operations is implemented as a method.

For example, the WBEM operation GetClass has its direct equivalent in Pegasus
CIMOperations, the getClass method. Further, Pegasus maintains the same parameters as
are defined in the DMTF document.

The CIMOperations class is the heart of all of the CIM interfaces including the Client
interface, the Provider interface, the repository interface, and the services interface. Each of
these interfaces derives from CIMOperations adding methods as required to complete that
particular interface.

This section defines these interfaces in the reference CIMOperations below:

 CIMOperations
The CIMOperations Class.

 PEGASUS_NAMESPACE_END

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/CIMOperationsoverHTTP.html [5/5/2001 8:55:21 AM]

Pegasus Client Interfaces
The DMTF WBEM specifications define an interface between a CIM_Client and a
CIM_Server based on XML and HTTP in the WBEM HTTP operations standard, version
1.0 with erratta.

This interface defines the operations required of a CIM Server and the encoding of these
operations into XML with the HTTP transmission protocol.

The Pegasus MSB has implemented both that WBEM interface and also an interface based
on C++ APIs.

The C++ APIs implement the operations as defined within the WBEM HTTP
documentation using effectively the same parameters as the HTTP Operations but with C++
calls and the data support classes implementation the manipulation of CIM information.

The C++ Interface is implemented both at:

The direct interface to the MSB - a module (esample an executable) that direcetly
implementes the C++ data definitions and calls below and links either statically or
dynamically to the Pegasus MSB can execute the WBEM Operations. These
operations are defined in the Pegasus header file operations.h

●

As a client SDK that generates WBEM based XML/HTTP operations●

The goal was to create a single API that could be used both locally (dynamically linked to
the Pegasus MSB) or remotely through WBEM XML/HTTP interface.

A client program can be built to use either interface simply by changing the build and
linking it either directly to the Pegasus MSB library statically or to the Pegasus dll
dynamically or to the Pegasus Client SDK library.

ATTN: Somewhere we need to define the files, linkages, etc. in detail.

The interfaces and data definitions are defined in the following sections.

 CIMClient
Class CIMClient - This class defines the client interfaces for
Pegasus.

 PEGASUS_NAMESPACE_END

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/PegasusClientInterfaces.html [5/5/2001 8:55:21 AM]

Pegasus Provider Interfaces
ATTN: Today this section is under construction

Today, the CIM/WBEM standards do not define any standards for provider interfaces.

Pegasus implements a set of C++ interfaces for the provider.

In the initial version of Pegasus, these interfaces are implemented as in-process calls from
the MSB to the Client.

In future versions of Pegasus, extensions to the provider SDK will be implemented to allow
process-process communication and possibly system to system communication between the
provider and the MSB.

The Provider Interfaces implement the same operations as the client interface defined in
section Pegasus Client Interfaces and the same datatypes.

This interface implements one extra concept to allow the provider to have access to selected
information from the MSB. It implements a thread-local set of required information as
follows:

ATTN: This needs to be defined

The Provider SDK ATTN: Need to document this.

 PEGASUS_NAMESPACE_END

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/PegasusProviderInterfaces.html [5/5/2001 8:55:21 AM]

Pegasus Service Extension Interfaces
Service extensions provide the means to extend the capabilities of the Pegasus MSB. As an
example, of a similar concept, Apache uses modules to extend the capabilities of the Apache
WEB server.

ATTN: This section is incomplete

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/PegasusServiceExtensionInterfaces.html [5/5/2001 8:55:21 AM]

Repository Interfaces
The repository interfaces is based on the general Pegasus operations interface with a
selected set of additions for functions required by the repository.

The repository interface is documented in repository.h

The repository interface provides a means to communicate with any number of different
repository implementations.

The Pegasus implementation to date as repositories as documented in the repository section
of this document. REPOSITORIES

ATTN: Incomplete. ATTN: TODO Today the repository interface header file is built
seperatly from the operations.h file, depending the programmer to keep these interfaces in
sync.

 CIMRepository
This class derives from the CIMOperations class and provides a
simple implementation of a CIM repository.

 PEGASUS_NAMESPACE_END

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/RepositoryInterfaces.html [5/5/2001 8:55:21 AM]

Pegasus Utilization
This section of the Pegasus working manual defines usage of the Pegasus CIM Server and
Provider implementations and thier associated tools.

It provides information on the availability, installation, startup and usage of the components
of the Pegasus platform.

 Pegasus Availability

 Pegasus Installation

 Pegasus Operation

 Pegasus CIM Clients

 Pegasus Providers

 Pegasus MOF Compiler

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/PegasusUtilization.html [5/5/2001 8:55:21 AM]

Pegasus Availability
Pegasus is available today in source code form from the Open Group.

Go to http://www.opengroup.org/management to acquire a copy of the current code. The
code will be made available in regular snapshots of the source and in addition stable binary
releases for platforms of interest.

Pegasus has currently been tested with window and Lnux platforms.

Thie Pegasus code is freely available under the MIT open source license as defined below:

Copyright (c) 2000 The Open Group, ...

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to
whom the Software is furnished to do so, subject to the
following conditions:

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

The intention of this licensing is to make Pegasus as widely available as possible without
restrictions or limitations.

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/PegasusAvailability.html [5/5/2001 8:55:22 AM]

http://www.opengroup.org/management

Pegasus CIM Clients
Connecting a client

ATTN: Under Construction

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/PegasusCIMClients.html [5/5/2001 8:55:22 AM]

Pegasus Installation
The Installation for Pegasus is currently defined in the readme file in the Pegasus root
directory

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/PegasusInstallation.html [5/5/2001 8:55:22 AM]

Pegasus MOF Compiler
The Pegasus MOF compiler is a command line utility that compiles MOF files (using the
MOF format defined by the DMTF CIM Specification) into a Pegasus repository. It allows
compiling from strucutures of MOF files using the include pragma and can either compile
into a Pegasus repository or simply perform a syntax check on the MOF files.

In the syntax check mode, it checks each class independently and does not do semantic
checks between classes (ex. check for super-classes, etc.). When compiling into a Pegasus
repository, the compiler uses Pegasus to install the classes and instances into the repository
and uses the semantic checking built into Pegasus.

The compiler operates standalone in the syntax checking mode but requires the Pegasus
libraries when compiling into a Pegasus respository.

The compiler requires that the input MOF files be in the current directory or that a fully
qualified path be given. MOF files included using #pragma include must be in the current
directory or in a directory specified by a -I command line switch.

The compiler assumes that the file extension is .mof it is not specified. (This feature is not
yet implemented.)

The actual configuration and type of repository created depends on the characteristics of the
repository implemented in Pegasus. See the description of the Pegasus repositories for more
information.

EXAMPLE

 cimmof -w -Rtestrepository -I./MOF MOF/CIMSchema25.mof

Compile the mof file defined in the directory MOF with the name CIMSchema25.mof and
with include pragmas for other MOF files also in that directory and create the repository
testrepository

NAME

cimmof - Compile DMTF CIM MOF

SYNOPSIS

 cimmof [OPTION]... [FILE]...

DESCRIPTION

The MOF compiler TBD

OPTIONS
-h, --help Print out usage message with command line definitions.●

http://donald/MSB/Manual/PegasusMOFCompiler.html (1 of 2) [5/5/2001 8:55:23 AM]

-E - Perform only a syntax check on the input and creates no repository. Inthis mode,
the compiler does not do the sematic checks that are done when a CIM object is\
added to a repository

-w -- Suppresses warning messages.

●

-R - Specifies the path to the repository to be written. This is an alternative to the
PEGASUS_HOME environment variable. If PEGASUS_HOME is set the repository
gets written to $PEGASUS_HOME/repository. The -R flag one the command line
overrides this with specified in the directive. Specify an absolute path.

●

--CIMRepository=●

-I -- Specifies the path to included MOF files. If the inputmof file has include
pragmas and the included files do not reside in the current directory, the -I directive
must be used to specify a path to them on the compiler command line. Do this with
the -I flag.

cimmof -I~/testfiles ~/testfiles/main.mof

The path may be relative or absolute.

●

Limitations of the current version

See the README in the COMPILER section of the Pegasus code tree for up-to-date
information on both the current Limitations and the current TODOs.

The compiler does not handle missing include files very sanely right now. It just skips them.

TODOs

- Parse and store references correctly●

- Test parsing and storage of instances. They probably don't work now.●

- Rationalize the error logging scheme. Things are spit randomly to sterr now.●

- Extend error detection and handling.●

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/PegasusMOFCompiler.html (2 of 2) [5/5/2001 8:55:23 AM]

Pegasus Operation
Starting the broker

ATTN: Under Construction

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/PegasusOperation.html [5/5/2001 8:55:23 AM]

Pegasus Providers
ATTN: Under Construction

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/PegasusProviders.html [5/5/2001 8:55:23 AM]

Pegausus FAQ
The following is a working list of questions and answers concerning Pegausus that do not fit
into other catagories.

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/PegaususFAQ.html [5/5/2001 8:55:23 AM]

Programming Pegasus
Pegasus was developed in C++.

 CIM Objects in Pegasus

 CIM Object Table

 Class Definitions

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/ProgrammingPegasus.html [5/5/2001 8:55:23 AM]

CIM Object Table
tr>

CIM Objects anc Concepts and their Pegasus Implementation

CIM Concept / Object Pegasus Class Reference Description

CIM Classes CIMClass CIMClass

A CIM Class is a
collection of instances,
all of which support a
common type; that is, a
set of properties and
methods. The common
properties and methods
are defined as features of
the class

CIM Instance CIMInstance CIMInstance ATT: Description

CIM DateTime CIMDateTime CIMDateTime ATT: Description

CIM Qualifier
Declaration

????? ATTN ATT: Description

CIM Qualifier CIMQualifier CIMQualifier ATT: Description

CIM Property CIMProperty PROPERTY
A value used to
characterize an instance
of a class.

CIM Object Path CIMReference CIMReference ATT: Description

CIM Method CIMMethod CIMMethod ATT: Description

CIM Scope CIMScope CIMScope ATT: Description

CIM flavor CIMFlavor CIMFLAVOR

Part of a qualifier
spcification indicating
overriding and
inheritance rules.

CIM ???? Qualifier Type ??? ATT: Description

CIM Array Array Array ATT: Description

http://donald/MSB/Manual/CIMObjectTable.html (1 of 2) [5/5/2001 8:55:23 AM]

CIM Value CIMValue CIMValue ATT: Description

String String String ATT: Description

CIM Type CIMType CIMType ATT: Description

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/CIMObjectTable.html (2 of 2) [5/5/2001 8:55:23 AM]

CIM Objects in Pegasus
The Common Information model (CIM) consists of a number of basic objects defined in the
CIM specification. This includes:

Classes CLASS●

Instances of Classes \Rf{REFERENCE}●

Qualifiers QUALIFIER●

Properties●

Methods●

Arrays●

Pegasus implements representations of these objects in C++ classes and provides methods
for creation, manipulation, and deletion of the objects.

In addition, Pegasus implements a number of the key concepts built into CIM as objects
including:

Scope●

Flavor●

Object Path●

etc.●

Much of the programming of the Pegasus object broker, clients, and in particular providers
and service extensions in the Pegasus envrinment depends on the use of these C++
representations of CIM Objects and concepts.

Each Pegasus CIM C++ Object representation includes:

TConstructors and destructors●

Methods for manipulation of sub-objects. Thus, the class and instance classes provide
for manipulation of the property, qualifier, and method objects that are contained in
these classes.

●

Methods for finding sub-objects. Thus, the class and instance classes provide for
finding property, qualifier, and method objects within an instnace of a CIMClass or
CIMInstance. These methods are generally built around defining the name of the
object to be found and having an index to that object returned.

●

Methods for comparison●

Methods for cloning●

Methods to convert the object to XML●

Methods to convert the object to MOF (Planned)●

There is a class for every major CIM object and concept as shown in the table in CIM
Object Table

Alphabetic index Hierarchy of classes

http://donald/MSB/Manual/CIMObjectsinPegasus.html (1 of 2) [5/5/2001 8:55:23 AM]

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/CIMObjectsinPegasus.html (2 of 2) [5/5/2001 8:55:23 AM]

Class Definitions
 Array

Array Class.

 CIMClass
The CIMClass class is used to represent CIM classes in Pegasus.

 CIMConstClass
CIMConstClass - ATTN: define this.

 CIMDateTime
The CIMDateTime class represents the CIM datetime data type
as a C++ class CIMDateTime.

 CIMQualifierDecl
Class CIMQualifierDecl

 String
The Pegasus String C++ Class implements the CIM string type.

 operator==
String operator ==.

 operator==
String operator ==.

 operator==
String operator ==.

 operator!=
String operator ==.

 operator+
overload operator + - Concatenates String objects.

 operator<
overload operator < - Compares String obects.

 operator<=
overload operator <= compares String objects.

 operator>
Overload operator > compares String objects

 operator>=
overload operator >= - Compares String objects

 ToLower
Return a version of this string whose characters have been shifted
to lower case

 CompareIgnoreCase
Compare two strings but ignore any case differences

 GetLine
Get the next line from the input file

 CIMType
The CIMType Class defines the CIMType enumeration which
introduces symbolic constants for the CIM data types.

http://donald/MSB/Manual/ClassDefinitions.html (1 of 2) [5/5/2001 8:55:24 AM]

 CIMInstance
Class CIMInstance - The CIMInstance class represents the
instance of a CIM class in Pegasus.

 CIMValue
The CIMValue class represents a value of any of the CIM data
types (see CIMTypeh for a list of valid CIM data types).

 CIMProperty
CIMProperty Class - ATTN:

 CIMScope
The CIMQualifier Scopes are as follows: NONE, Class,
ASSOCIATION,INDICATION,PROPERTY, REFERENCE,
METHOD, PARAMETER, ANY

 KeyBinding
The KeyBinding class associates a key name, value, and type.

 CIMReference
The CIMReference class represents the value of a reference.

 CIMQualifier
Class CIMQualifier - This class defines the Pegasus
implementation of the CIM CIMQualifier QUALIFIER

 CIMName
The name class defines static methods for handling CIM names.

 CIMMethod
Class CIMMethod - This class defines the operations associated
with manipulation of the Pegasus implementation of the CIM
CIMMethod.

 CIMFlavor
CIMQualifier flavor constants

 Char16
The Char16 class represents a CIM sixteen bit character
(char16).

 Stopwatch
Stopwatch - A class for measuring elapsed time Stopwatch is a
class for measuring time intervals within the environment.

 TimeValue
The TimeValue class represents time expressed in seconds plus
microseconds

 PEGASUS_NAMESPACE_END

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/ClassDefinitions.html (2 of 2) [5/5/2001 8:55:24 AM]

PEGASUS_NAMESPACE_END
 Pegasus_Exception_h

Programming with Exceptions

 Exception
Class Exception

 AssertionFailureException
Class AssertionFailureException This is an Exception class tied
to the definiton of an assert named PEGASUS_ASSERT.

 PEGASUS_ASSERT
define PEGASUS_ASSERT assertion statement.

 BadReference
ATTN:

 OutOfBounds
ATTN:

 AlreadyExists
ATTN:

 NullPointer
ATTN:

 IllegalName
ATTN:

 UnitializedHandle
ATTN:

 InvalidPropertyOverride
ATTN:

 InvalidMethodOverride
ATTN:

 UndeclaredQualifier
ATTN:

 BadQualifierScope
ATTN:

 BadQualifierOverride
ATTN:

 NullType
ATTN:

 AddedReferenceToClass
ATTN:

 ClassAlreadyResolved
ATTN:

 ClassNotResolved
ATTN:

 InstanceAlreadyResolved
ATTN:

http://donald/MSB/Manual/PEGASUS_NAMESPACE_END.html (1 of 2) [5/5/2001 8:55:25 AM]

 InstantiatedAbstractClass
ATTN:

 NoSuchProperty
ATTN:

 TruncatedCharacter
ATTN:

 ExpectedReferenceValue
ATTN:

 MissingReferenceClassName
ATTN:

 IllegalTypeTag
ATTN:

 TypeMismatch
ATTN:

 NoSuchFile
ATTN:

 FailedToRemoveDirectory
ATTN:

 FailedToRemoveFile
ATTN:

 NoSuchDirectory
ATTN:

 CannotCreateDirectory
ATTN:

 NoSuchNameSpace
ATTN:

 CannotOpenFile
ATTN:

 NotImplemented
ATTN:

 CIMException
The CIMException defines the CIM exceptions that are formally
defined in the CIM Operations over HTTP specification.

 PEGASUS_NAMESPACE_END

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/PEGASUS_NAMESPACE_END.html (2 of 2) [5/5/2001 8:55:25 AM]

Revision History
Revision History

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

Revision History

Versions Date Author Comments
0.5 01/02/01 Karl

0.6 01/04/01 Karl
Clean up the API defintions. and Add
repository section.

0.7 02/20/01 Karl
Change Class names, Add definitions, Add
Architecture documentation.

0.75 02/25/01 Karl Create Frames Version and redo structure..
0.8 03/12/2001 Karl Generate for 0.8 Release.
0.85 03/12/2001 Karl Generate for 0.8.5 Release.
0.91 05/03/2001 Karl Generate for 0.9 Pegasus Code

http://donald/MSB/Manual/RevisionHistory.html [5/5/2001 8:55:26 AM]

Writing Providers.
ATTN:

Alphabetic index Hierarchy of classes

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/WritingProviders..html [5/5/2001 8:55:26 AM]

In file ..\..\src\Pegasus\Common\CIMScope.h:

namespace CIMScope
The CIMQualifier Scopes are as follows: NONE, Class,
ASSOCIATION,INDICATION,PROPERTY, REFERENCE, METHOD, PARAMETER,
ANY

Documentation
The CIMQualifier Scopes are as follows: NONE, Class,
ASSOCIATION,INDICATION,PROPERTY, REFERENCE, METHOD, PARAMETER,
ANY

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/CIMScope.html [5/5/2001 8:55:27 AM]

In file ..\..\src\Pegasus\Common\CIMOperations.h:

class PEGASUS_COMMON_LINKAGE
CIMOperations

The CIMOperations Class.

Documentation
The CIMOperations Class. This class defines the external client operations for Pegasus
These operations are based on the WBEM operations defined in the DMTF CIM
CIMOperations over HTTP operations Specification. They duplicate the names, functions,
and parameters of those CIMOperations. Each WBEM operation is a method in this class.

This library (operations.h) defines the external APIs for the Pegasus MSB. These are
synchronous calls and match the operations defined by the DMTF in the document
"Specification for CIM CIMOperations over HTTP" Version 1.0 with errata

The CIMOperations class is used by other classes such as the client, provider, and repository
classes to instantiate the operations interfaces.

Inheritance:

Public Methods

virtual CIMClass getClass (const String& nameSpace, const String& className,
Boolean localOnly = true, Boolean includeQualifiers = true,
Boolean includeClassOrigin = false, const Array<String>&
propertyList = StringArray())
The GetClass method returns a single CIM Class from the
target Namespace where the ClassName input parameter defines
the name of the class to be retrieved.

virtual CIMInstance getInstance (const String& nameSpace, const CIMReference&
instanceName, Boolean localOnly = true, Boolean
includeQualifiers = false, Boolean includeClassOrigin = false,
const Array<String>& propertyList = StringArray())
The <GetInstance method returns a single CIM Instance from
the target Namespace based on the InstanceName parameter
provided.

http://donald/MSB/Manual/CIMOperations.html (1 of 27) [5/5/2001 8:55:31 AM]

virtual void deleteClass (const String& nameSpace, const String&
className)
The DeleteClass method deletes a single CIM Class from the
target Namespace.

virtual void deleteInstance (const String& nameSpace, const
CIMReference& instanceName)
The DeleteInstance operation deletes a single CIM Instance
from the target Namespace.

virtual void createClass (const String& nameSpace, CIMClass& newClass)
The createClass method creates a single CIM Class in the
target Namespace.

virtual void createInstance (const String& nameSpace, CIMInstance&
newInstance)
The createInstance method creates a single CIM Instance in
the target Namespace.

virtual void modifyClass (const String& nameSpace, CIMClass&
modifiedClass)
The modifyClass method modifies an existing CIM Class in
the target Namespace.

virtual void modifyInstance (const String& nameSpace, const
CIMInstance& modifiedInstance)
The modifyInstance method is used to modify an existing
CIM Instance in the target Namespace.

virtual Array<CIMClass> enumerateClasses (const String& nameSpace, const String&
className = String::EMPTY, Boolean deepInheritance = false,
Boolean localOnly = true, Boolean includeQualifiers = true,
Boolean includeClassOrigin = false)
The enumerateClasses method is used to enumerate
subclasses of a CIM Class in the target Namespace.

virtual Array<String> enumerateClassNames (const String& nameSpace, const
String& className = String::EMPTY, Boolean deepInheritance =
false)
The enumerateClassNames operation is used to enumerate
the names of subclasses of a CIM Class in the target Namespace.

virtual Array<CIMInstance> enumerateInstances (const String& nameSpace, const String&
className, Boolean deepInheritance = true, Boolean localOnly =
true, Boolean includeQualifiers = false, Boolean
includeClassOrigin = false, const Array<String>& propertyList =
StringArray())
The enumerateInstances method enumerates instances of a
CIM Class in the target Namespace.

http://donald/MSB/Manual/CIMOperations.html (2 of 27) [5/5/2001 8:55:31 AM]

virtual Array<CIMReference> enumerateInstanceNames (const String& nameSpace, const
String& className)
The enumerateInstanceNames operation enumerates the
names (model paths) of the instances of a CIM Class in the target
Namespace.

virtual Array<CIMInstance> execQuery (const String& queryLanguage, const String& query)
The execQuery is used to execute a query against the target
Namespace.

virtual Array<CIMInstance> associators (const String& nameSpace, const CIMReference&
objectName, const String& assocClass = String::EMPTY, const
String& resultClass = String::EMPTY, const String& role =
String::EMPTY, const String& resultRole = String::EMPTY,
Boolean includeQualifiers = false, Boolean includeClassOrigin =
false, const Array<String>& propertyList = StringArray())
The Associators method enumerates CIM Objects (Classes or
Instances) that are associated to a particular source CIM Object.

virtual Array<CIMReference> associatorNames (const String& nameSpace, const
CIMReference& objectName, const String& assocClass =
String::EMPTY, const String& resultClass = String::EMPTY,
const String& role = String::EMPTY, const String& resultRole =
String::EMPTY)
The associatorNames operation is used to enumerate the
names of CIM Objects (Classes or Instances) that are associated
to a particular source CIM Object.

virtual Array<CIMInstance> references (const String& nameSpace, const CIMReference&
objectName, const String& resultClass = String::EMPTY, const
String& role = String::EMPTY, Boolean includeQualifiers =
false, Boolean includeClassOrigin = false, const Array<String>&
propertyList= StringArray())
The references operation enumerates the association objects
that refer to a particular target CIM Object (Class or Instance).

virtual Array<CIMReference> referenceNames (const String& nameSpace, const
CIMReference& objectName, const String& resultClass =
String::EMPTY, const String& role = String::EMPTY)
The referenceNames operation is used to enumerate the
association objects that refer to a particular target CIM Object
(Class or Instance).

virtual CIMValue getProperty (const String& nameSpace, const CIMReference&
instanceName, const String& propertyName)
This operation is used to retrieve a single property value from a
CIM Instance in the target Namespace.

http://donald/MSB/Manual/CIMOperations.html (3 of 27) [5/5/2001 8:55:31 AM]

virtual void setProperty (const String& nameSpace, const CIMReference&
instanceName, const String& propertyName, const CIMValue&
newValue = CIMValue())
The setProperty operation sets a single property value in a
CIM Instance in the target Namespace.

virtual CIMQualifierDecl getQualifier (const String& nameSpace, const String&
qualifierName)
The getQualifier operation retrieves a single CIMQualifier
declaration from the target Namespace.

virtual void setQualifier (const String& nameSpace, const
CIMQualifierDecl& qualifierDecl)
The setQualifier creates or update a single CIMQualifier
declaration in the target Namespace.

virtual void deleteQualifier (const String& nameSpace, const String&
qualifierName)
The deleteQualifier operation deletes a single
CIMQualifier declaration from the target Namespace.

virtual Array<CIMQualifierDecl> enumerateQualifiers (const String& nameSpace)
The enumerateQualifiers operation is used to enumerate
CIMQualifier declarations from the target Namespace.

virtual CIMValue invokeMethod (const String& nameSpace, const
CIMReference& instanceName, const String& methodName,
const Array<CIMValue>& inParameters, Array<CIMValue>&
outParameters)
Any CIM Server is assumed to support extrinsic methods.

virtual CIMClass getClass(const String& nameSpace, const String&
className, Boolean localOnly = true, Boolean includeQualifiers = true,
Boolean includeClassOrigin = false, const Array<String>& propertyList
= StringArray())

The GetClass method returns a single CIM Class from the target Namespace where the
ClassName input parameter defines the name of the class to be retrieved.

Parameters:
NameSpace - The NameSpace parameter is a string that defines the target namespace
NAMESPACE
ClassName - The ClassName input parameter defines the name of the Class to be retrieved.
LocalOnly - If the LocalOnly input parameter is true, this specifies that only CIM
Elements (properties, methods and qualifiers) overriden within the definition of the Class
are returned. If false, all elements are returned. This parameter therefore effects a CIM
Server-side mechanism to filter certain elements of the returned object based on whether or
not they have been propagated from the parent Class (as defined by the PROPAGATED
attribute).

http://donald/MSB/Manual/CIMOperations.html (4 of 27) [5/5/2001 8:55:31 AM]

IncludeQualifiers - If the IncludeQualifiers input parameter is true, this specifies
that all Qualifiers for that Class (including Qualifiers on the Class and on any returned
Properties, Methods or CIMMethod Parameters) MUST be included as elements in the
response. If false no elements are present in the returned Class.
IncludeClassOrigin - If the IncludeClassOrigin input parameter is true, this
specifies that the CLASSORIGIN attribute MUST be present on all appropriate elements in
the returned Class. If false, no CLASSORIGIN attributes are present in the returned Class.
PropertyList - If the PropertyList input parameter is not NULL, the members of the
array define one or more CIMProperty names. The returned Class MUST NOT include
elements for any Properties missing from this list. Note that if LocalOnly is specified as true
this acts as an additional filter on the set of Properties returned (for example, if CIMProperty
A is included in the PropertyList but LocalOnly is set to true and A is not local to the
requested Class, then it will not be included in the response). If the PropertyList input
parameter is an empty array this signifies that no Properties are included in the response. If
the PropertyList input parameter is NULL this specifies that all Properties (subject to the
conditions expressed by the other parameters) are included in the response. If the
PropertyList contains duplicate elements, the Server MUST ignore the duplicates but
otherwise process the request normally. If the PropertyList contains elements which are
invalid CIMProperty names for the target Class, the Server MUST ignore such entries but
otherwise process the request normally.

Returns:
If successful, the return value is a single CIM Class. If unsuccessful, one of the following
status codes MUST be returned by this method, where the first applicable error in the list
(starting with the first element of the list, and working down) is the error returned. Any
additional method-specific interpretation of the error in is given in parentheses.

CIM_ERR_ACCESS_DENIED■

CIM_ERR_INVALID_NAMESPACE■

CIM_ERR_INVALID_PARAMETER (including missing, duplicate,unrecognized or
otherwise incorrect parameters)

■

CIM_ERR_NOT_FOUND (the request CIM Class does not exist in the specified
namespace)

■

CIM_ERR_FAILED (some other unspecified error occurred)■

virtual CIMInstance getInstance(const String& nameSpace, const
CIMReference& instanceName, Boolean localOnly = true, Boolean
includeQualifiers = false, Boolean includeClassOrigin = false, const
Array<String>& propertyList = StringArray())

The <GetInstance method returns a single CIM Instance from the target Namespace based on
the InstanceName parameter provided.

Parameters:
NameSpace - The NameSpace parameter is a string that defines the target namespace

http://donald/MSB/Manual/CIMOperations.html (5 of 27) [5/5/2001 8:55:31 AM]

NAMESPACE
InstanceName - The InstanceName input parameter defines the name of the Instance to be
retrieved.
LocalOnly - If the LocalOnly input parameter is true, this specifies that only elements
(properties and qualifiers) overriden within the definition of the Instance are returned. If
false, all elements are returned. This parameter therefore effects a CIM Server-side
mechanism to filter certain elements of the returned object based on whether or not they
have been propagated from the parent Class (as defined by the PROPAGATED attribute).
IncludeQualifiersIf - the IncludeQualifiers input parameter is true, this specifies
that all Qualifiers for that Instance (including Qualifiers on the Instance and on any returned
Properties) MUST be included as elements in the response. If false no elements are present
in the returned Instance.
IncludeClassOrigin - If the IncludeClassOrigin input parameter is true, this
specifies that the CLASSORIGIN attribute MUST be present on all appropriate elements in
the returned Instance. If false, no CLASSORIGIN attributes are present in the returned
instance.
PropertyList - If the PropertyList input parameter is not NULL, the members of the
array define one or more CIMProperty names. The returned Instance MUST NOT include
elements for any Properties missing from this list. Note that if LocalOnly is specified as true
this acts as an additional filter on the set of Properties returned (for example, if CIMProperty
A is included in the PropertyList but LocalOnly is set to true and A is not local to the
requested Instance, then it will not be included in the response). If the PropertyList input
parameter is an empty array this signifies that no Properties are included in the response. If
the PropertyList input parameter is NULL this specifies that all Properties (subject to the
conditions expressed by the other parameters) are included in the response. If the
PropertyList contains duplicate elements, the Server MUST ignore the duplicates but
otherwise process the request normally. If the PropertyList contains elements which are
invalid CIMProperty names for the target Instance, the Server MUST ignore such entries but
otherwise process the request normally.

Returns:
If successful, the return value is a single CIM Instance. If unsuccessful, one of the following
status codes MUST be returned by this method, where the first applicable error in the list
(starting with the first element of the list, and working down) is the error returned. Any
additional method-specific interpretation of the error in is given in parentheses.

CIM_ERR_ACCESS_DENIED■

CIM_ERR_INVALID_NAMESPACE■

CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or
otherwise incorrect parameters)

■

CIM_ERR_INVALID_CLASS (the CIM Class does not exist in the specified
namespace)

■

CIM_ERR_NOT_FOUND (the CIM Class does exist, but the requested CIM Instance
does not exist in the specified namespace)

■

CIM_ERR_FAILED (some other unspecified error occurred)■

http://donald/MSB/Manual/CIMOperations.html (6 of 27) [5/5/2001 8:55:31 AM]

virtual void deleteClass(const String& nameSpace, const String&
className)

The DeleteClass method deletes a single CIM Class from the target Namespace.

Parameters:
NameSpace - The NameSpace parameter is a string that defines the target namespace
NAMESPACE
ClassName - The ClassName input parameter defines the name of the Class to be deleted.

Returns:
If successful, the specified Class (including any subclasses and any instances) MUST have
been removed by the CIM Server. The operation MUST fail if any one of these objects
cannot be deleted. If unsuccessful, one of the following status codes MUST be returned by
this method, where the first applicable error in the list (starting with the first element of the
list, and working down) is the error returned. Any additional method-specific interpretation
of the error in is given in parentheses.

CIM_ERR_ACCESS_DENIED■

CIM_ERR_NOT_SUPPORTED■

CIM_ERR_INVALID_NAMESPACE■

CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or
otherwise incorrect parameters)

■

CIM_ERR_NOT_FOUND (the CIM Class to be deleted does not exist)■

CIM_ERR_CLASS_HAS_CHILDREN (the CIM Class has one or more subclasses
which cannot be deleted)

■

CIM_ERR_CLASS_HAS_INSTANCES (the CIM Class has one or more instances
which cannot be deleted)

■

CIM_ERR_FAILED (some other unspecified error occurred)■

virtual void deleteInstance(const String& nameSpace, const
CIMReference& instanceName)

The DeleteInstance operation deletes a single CIM Instance from the target Namespace.

Parameters:
NameSpace - The NameSpace parameter is a string that defines the target namespace
NAMESPACE
InstanceName - The InstanceName input parameter defines the name (model path) of the
Instance to be deleted.

Returns:
If successful, the specified Instance MUST have been removed by the CIM Server. If
unsuccessful, one of the following status codes MUST be returned by this method, where
the first applicable error in the list (starting with the first element of the list, and working

http://donald/MSB/Manual/CIMOperations.html (7 of 27) [5/5/2001 8:55:31 AM]

down) is the error returned. Any additional method-specific interpretation of the error in is
given in parentheses.

CIM_ERR_ACCESS_DENIED■

CIM_ERR_NOT_SUPPORTED■

CIM_ERR_INVALID_NAMESPACE■

CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or
otherwise incorrect parameters)

■

CIM_ERR_INVALID_CLASS (the CIM Class does not exist in the specified
namespace)

■

CIM_ERR_NOT_FOUND (the CIM Class does exist, but the requested CIM Instance
does not exist in the specified namespace)

■

CIM_ERR_FAILED (some other unspecified error occurred)■

virtual void createClass(const String& nameSpace, CIMClass&
newClass)

The createClass method creates a single CIM Class in the target Namespace. The Class
MUST NOT already exist. The NewClass input parameter defines the new Class. The proposed
definition MUST be a correct Class definition according to the CIM specification.

In processing the creation of the new Class, the following rules MUST be conformed to by the
CIM Server:

Any CLASSORIGIN and PROPAGATED attributes in the NewClass MUST be ignored by the
Server. If the new Class has no Superclass, the NewClass parameter defines a new base Class. The
Server MUST ensure that all Properties and Methods of the new Class have a CLASSORIGIN
attribute whose value is the name of the new Class. If the new Class has a Superclass, the
NewClass parameter defines a new Subclass of that Superclass. The Superclass MUST exist. The
Server MUST ensure that:

Any Properties, Methods or Qualifiers in the Subclass not defined in the Superclass are
created as new elements of the Subclass. In particular the Server MUST set the
CLASSORIGIN attribute on the new Properties and Methods to the name of the Subclass,
and ensure that all other Properties and Methods preserve their CLASSORIGIN attribute
value from that defined in the Superclass

If a CIMProperty is defined in the Superclass and in the Subclass, the value assigned to that
property in the Subclass (including NULL) becomes the default value of the property for the
Subclass. If a CIMProperty or CIMMethod of the Superclass is not specified in the
Subclass, then that CIMProperty or CIMMethod is inherited without modification by the
Subclass

❍

Any Qualifiers defined in the Superclass with a TOSUBCLASS attribute value of true
MUST appear in the resulting Subclass. Qualifiers in the Superclass with a TOSUBCLASS
attribute value of false MUST NOT be propagated to the Subclass . Any CIMQualifier
propagated from the Superclass cannot be modified in the Subclass if the OVERRIDABLE

❍

http://donald/MSB/Manual/CIMOperations.html (8 of 27) [5/5/2001 8:55:31 AM]

attribute of that CIMQualifier was set to false in the Superclass. It is a Client error to specify
such a CIMQualifier in the NewClass with a different definition to that in the Superclass
(where definition encompasses the name, type and flavor attribute settings of the element,
and the value of the CIMQualifier).

Parameters:
NameSpace - The NameSpace parameter is a string that defines the target namespace
NAMESPACE @parm NewClass The NewClass input parameter defines the new Class.

Returns:
If successful, the specified Class MUST have been created by the CIM Server. If
unsuccessful, one of the following status codes MUST be returned by this method, where
the first applicable error in the list (starting with the first element of the list, and working
down) is the error returned. Any additional method-specific interpretation of the error in is
given in parentheses.

CIM_ERR_ACCESS_DENIED■

CIM_ERR_NOT_SUPPORTED■

CIM_ERR_INVALID_NAMESPACE■

CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or
otherwise incorrect parameters)

■

CIM_ERR_ALREADY_EXISTS (the CIM Class already exists)■

CIM_ERR_INVALID_SUPERCLASS (the putative CIM Class declares a
non-existent superclass)

■

CIM_ERR_FAILED (some other unspecified error occurred)■

virtual void createInstance(const String& nameSpace, CIMInstance&
newInstance)

The createInstance method creates a single CIM Instance in the target Namespace. The
Instance MUST NOT already exist.

In processing the creation of the new Instance, the following rules MUST be conformed to by the
CIM Server:

Any CLASSORIGIN and PROPAGATED attributes in the NewInstance MUST be ignored by the
Server.

The Server MUST ensure that:

Any Qualifiers in the Instance not defined in the Class are created as new elements of the
Instance.

❍

All Properties of the Instance preserve their CLASSORIGIN attribute value from that
defined in the Class.

❍

If a CIMProperty is specified in the ModifiedInstance parameter, the value assigned to that
property in the Instance (including NULL) becomes the value of the property for the
Instance. Note that it is a Client error to specify a CIMProperty that does not belong to the

❍

http://donald/MSB/Manual/CIMOperations.html (9 of 27) [5/5/2001 8:55:31 AM]

Class.

If a CIMProperty of the Class is not specified in the Instance, then that CIMProperty is
inherited without modification by the Instance.

❍

Any Qualifiers defined in the Class with a TOINSTANCE attribute value of true appear in
the Instance. Qualifiers in the Class with a TOINSTANCE attribute value of false MUST
NOT be propagated to the Instance.

❍

Any CIMQualifier propagated from the Class cannot be modified in the Instance if the
OVERRIDABLE attribute of that CIMQualifier was set to false in the Class. It is a Client
error to specify such a CIMQualifier in the NewInstance with a different definition to that in
the Class (where definition encompasses the name, type and flavor attribute settings of the
element, and the value of the CIMQualifier).

❍

Parameters:
NameSpace - The NameSpace parameter is a string that defines the target namespace
NAMESPACE
newInstance - The newInstance input parameter defines the new Instance. The
proposed definition MUST be a correct Instance definition for the underlying CIM Class
according to the CIM specification.

Returns:
If successful, the return value defines the object path of the new CIM Instance relative to the
target Namespace (i.e. the Model Path as defined by the CIM specification), created by the
CIM Server. It is returned in case one or more of the new keys of the Instance are allocated
dynamically during the creation process rather than specified in the request. If unsuccessful,
one of the following status codes MUST be returned by this method, where the first
applicable error in the list (starting with the first element of the list, and working down) is
the error returned. Any additional method-specific interpretation of the error in is given in
parentheses.

CIM_ERR_ACCESS_DENIED■

CIM_ERR_NOT_SUPPORTED■

CIM_ERR_INVALID_NAMESPACE■

CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or
otherwise incorrect parameters)

■

CIM_ERR_INVALID_CLASS (the CIM Class of which this is to be a new Instance
does not exist)

■

CIM_ERR_ALREADY_EXISTS (the CIM Instance already exists)■

CIM_ERR_FAILED (some other unspecified error occurred)■

virtual void modifyClass(const String& nameSpace, CIMClass&
modifiedClass)

The modifyClass method modifies an existing CIM Class in the target Namespace. The Class
MUST already exist. The ModifiedClass input parameter defines the set of changes (which
MUST be correct amendments to the CIM Class as defined by the CIM Specification) to be made

http://donald/MSB/Manual/CIMOperations.html (10 of 27) [5/5/2001 8:55:31 AM]

to the current class definition.

In processing the modifcation of the Class, the following rules MUST be conformed to by the CIM
Server.

Any CLASSORIGIN and PROPAGATED attributes in the ModifiedClass MUST be
ignored by the Server.

❍

If the modified Class has no Superclass, theModifiedClass parameter defines
modifications to a base Class. The Server MUST ensure that:

All Properties and Methods of the modified Class have a CLASSORIGIN attribute
whose value is the name of this Class.

■

Any Properties, Methods or Qualifiers in the existing Class definition which do not
appear in the ModifiedClass parameter are removed from the resulting modified
Class.

■

❍

If the modified Class has a Superclass,the ModifiedClass parameter defines modifications to a
Subclass of that Superclass. The Superclass MUST exist, and the Client MUST NOT change
the name of the Superclass in the modified Subclass. The Server MUST ensure that:

Any Properties, Methods or Qualifiers in the Subclass not defined in the Superclass
are created as elements of the Subclass. In particular the Server MUST set the
CLASSORIGIN attribute on the new Properties and Methods to the name of the
Subclass, and MUST ensure that all other Properties and Methods preserve their
CLASSORIGIN attribute value from that defined in the Superclass.

■

Any CIMProperty, CIMMethod or CIMQualifier previously defined in the Subclass
but not defined in the Superclass, and which is not present in the ModifiedClass
parameter, is removed from the Subclass.

■

If a CIMProperty is specified in the ModifiedClass parameter, the value assigned to that
property therein (including NULL) becomes the default value of the property for the
Subclass.

■

If a CIMProperty or CIMMethod of the Superclass is not specified in the Subclass,
then that CIMProperty or CIMMethod is inherited without modification by the
Subclass (so that any previous changes to such an Element in the Subclass are lost).

■

If a CIMQualifier in the Superclass is not specified in the Subclass, and the
CIMQualifier is defined in the Superclass with a TOSUBCLASS attribute value of true,
then the CIMQualifier MUST still be present in the resulting modified Subclass (it is
not possible to remove a propagated CIMQualifier from a Subclass).

■

Any CIMQualifier propagated from the Superclass cannot be modified in the
Subclass if the OVERRIDABLE attribute of that CIMQualifier was set to false in the
Superclass. It is a Client error to specify such a CIMQualifier in the ModifiedClass with
a different definition to that in the Superclass (where definition encompasses the
name, type and flavor attribute settings of the <QUALIFIER> element, and the value of
the CIMQualifier).

■

Any Qualifiers defined in the Superclass with a TOSUBCLASS attribute value of false
MUST NOT be propagated to the Subclass.

■

❍

Parameters:

http://donald/MSB/Manual/CIMOperations.html (11 of 27) [5/5/2001 8:55:31 AM]

NameSpace - The NameSpace parameter is a string that defines the target namespace
NAMESPACE
ModifiedClass - The ModifiedClass input parameter defines the set of changes (which MUST
be correct amendments to the CIM Class as defined by the CIM Specification) to be made to
the current class definition.

Returns:
If successful, the specified Class MUST have been updated by the CIM Server. The request
to modify the Class MUST fail if the Server cannot update any existing Subclasses or
Instances of that Class in a consistent manner.
If unsuccessful, one of the following status codes MUST be returned by this method, where
the first applicable error in the list (starting with the first element of the list, and working
down) is the error returned. Any additional method-specific interpretation of the error in is
given in parentheses.

CIM_ERR_ACCESS_DENIED■

CIM_ERR_NOT_SUPPORTED■

CIM_ERR_INVALID_NAMESPACE■

CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or
otherwise incorrect parameters)

■

CIM_ERR_NOT_FOUND (the CIM Class does not exist)■

CIM_ERR_INVALID_SUPERCLASS (the putative CIM Class declares a
non-existent or incorrect superclass)

■

CIM_ERR_CLASS_HAS_CHILDREN (the modification could not be performed
because it was not possible to update the subclasses of the Class in a consistent
fashion)

■

CIM_ERR_CLASS_HAS_INSTANCES (the modification could not be performed
because it was not possible to update the instances of the Class in a consistent
fashion)

■

CIM_ERR_FAILED (some other unspecified error occurred)■

virtual void modifyInstance(const String& nameSpace, const CIMInstance& modifiedInstance)

The modifyInstance method is used to modify an existing CIM Instance in the target Namespace.

Parameters:
NameSpace - The NameSpace parameter is a string that defines the target namespace
NAMESPACE
ModifiedInstance - The ModifiedInstance input parameter identifies the name of the Instance
to be modified, and defines the set of changes (which MUST be correct amendments to the
Instance as defined by the CIM Specification) to be made to the current Instance definition.
In processing the modifcation of the Instance, the following rules MUST be conformed to
by the CIM Server:

Any CLASSORIGIN and PROPAGATED attributes in the ModifiedInstance MUST be■

http://donald/MSB/Manual/CIMOperations.html (12 of 27) [5/5/2001 8:55:31 AM]

ignored by the Server.

The Class MUST exist, and the Client MUST NOT change the name of the Class in
the modified Instance. The Server MUST ensure that:

Any Qualifiers in the Instance not defined in the Class are created as new
elements of the Instance.

■

All Properties of the Instance preserve their CLASSORIGIN attribute value from
that defined in the Class.

■

Any CIMQualifier previously defined in the Instance but not defined in the
Class, and which is not present in the ModifiedInstance parameter, is removed
from the Instance.

■

If a CIMProperty is specified in the ModifiedInstance parameter, the value
assigned to that property therein (including NULL) becomes the value of the
property for the Instance. Note that it is a Client error to specify a CIMProperty
that does not belong to the Class.

■

If a CIMProperty of the Class is not specified in the Instance, then that
CIMProperty is inherited without modification by the Instance (so that any
previous changes to that CIMProperty in the Instance are lost).

■

Any Qualifiers defined in the Class with a TOINSTANCE attribute value of true
appear in the Instance (it is not possible remove a propagated CIMQualifier
from an Instance. Qualifiers in the Class with a TOINSTANCE attribute value of
false MUST NOT be propagated to the Instance.

■

Any CIMQualifier propagated from the Class cannot be modified by the Server
if the OVERRIDABLE attribute of that CIMQualifier was set to false in the Class.
It is a Client error to specify such a CIMQualifier in the ModifiedInstance with a
different definition to that in the Class (where definition encompasses the
name, type and flavor attribute settings of the <QUALIFIER> element, and the
value of the CIMQualifier).

■

Any CIMQualifier propagated from the Class cannot be modified in the
Instance if the OVERRIDABLE attribute of that CIMQualifier was set to false in
the Class. It is a Client error to specify such a CIMQualifier in the
ModifiedInstance with a different definition to that in the Class (where definition
encompasses the name, type and flavor attribute settings of the <QUALIFIER>
element, and the value of the CIMQualifier).

■

■

Returns:
If successful, the specified Instance MUST have been updated by the CIM Server. If
unsuccessful, one of the following status codes MUST be returned by this method, where
the first applicable error in the list (starting with the first element of the list, and working
down) is the error returned. Any additional method-specific interpretation of the error in is
given in parentheses

http://donald/MSB/Manual/CIMOperations.html (13 of 27) [5/5/2001 8:55:31 AM]

CIM_ERR_ACCESS_DENIED■

CIM_ERR_NOT_SUPPORTED■

CIM_ERR_INVALID_NAMESPACE■

CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or
otherwise incorrect parameters)

■

CIM_ERR_INVALID_CLASS (the CIM Class of which this is to be a new Instance
does not exist)

■

CIM_ERR_NOT_FOUND (the CIM Instance does not exist)■

CIM_ERR_FAILED (some other unspecified error occurred)■

virtual Array<CIMClass> enumerateClasses(const String& nameSpace, const String& className =
String::EMPTY, Boolean deepInheritance = false, Boolean localOnly = true, Boolean includeQualifiers = true, Boolean
includeClassOrigin = false)

The enumerateClasses method is used to enumerate subclasses of a CIM Class in the target
Namespace.

Parameters:
NameSpace - The NameSpace parameter is a string that defines the target namespace
NAMESPACE
className - The ClassName input parameter defines the Class that is the basis for the
enumeration.
DeepInheritance - If the DeepInheritance input parameter is true, this specifies that all
subclasses of the specified Class should be returned (if the ClassName input parameter is
absent, this implies that all Classes in the target Namespace should be returned). If false, only
immediate child subclasses are returned (if the ClassName input parameter is NULL, this
implies that all base Classes in the target Namespace should be returned).
LocalOnly - If the LocalOnly input parameter is true, it specifies that, for each returned Class,
only elements (properties, methods and qualifiers) overriden within the definition of that
Class are included. If false, all elements are returned. This parameter therefore effects a CIM
Server-side mechanism to filter certain elements of the returned object based on whether or
not they have been propagated from the parent Class (as defined by the PROPAGATED
attribute).
IncludeQualifiers - If the IncludeQualifiers input parameter is true, this specifies that all
Qualifiers for each Class (including Qualifiers on the Class and on any returned Properties,
Methods or CIMMethod Parameters) MUST be included as <QUALIFIER> elements in the
response. If false no <QUALIFIER> elements are present in each returned Class.
IncludeClassOrigin - If the IncludeClassOrigin input parameter is true, this specifies that the
CLASSORIGIN attribute MUST be present on all appropriate elements in each returned Class.
If false, no CLASSORIGIN attributes are present in each returned Class.

Returns:
If successful, the method returns zero or more Classes that meet the required criteria. If
unsuccessful, one of the following status codes MUST be returned by this method, where
the first applicable error in the list (starting with the first element of the list, and working

http://donald/MSB/Manual/CIMOperations.html (14 of 27) [5/5/2001 8:55:31 AM]

down) is the error returned. Any additional method-specific interpretation of the error in is
given in parentheses.

CIM_ERR_ACCESS_DENIED■

CIM_ERR_NOT_SUPPORTED■

CIM_ERR_INVALID_NAMESPACE■

CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or
otherwise incorrect parameters)

■

CIM_ERR_INVALID_CLASS (the CIM Class that is the basis for this enumeration
does not exist)

■

CIM_ERR_FAILED (some other unspecified error occurred)■

virtual Array<String> enumerateClassNames(const String& nameSpace, const String& className =
String::EMPTY, Boolean deepInheritance = false)

The enumerateClassNames operation is used to enumerate the names of subclasses of a CIM Class in
the target Namespace.

Parameters:
NameSpace - The NameSpace parameter is a string that defines the target namespace
NAMESPACE
className - The ClassName input parameter defines the Class that is the basis for the
enumeration.
DeepInheritance - If the DeepInheritance input parameter is true, this specifies that the
names of all subclasses of the specified Class should be returned (if the ClassName input
parameter is absent, this implies that the names of all Classes in the target Namespace
should be returned). If false, only the names of immediate child subclasses are returned (if
the ClassName input parameter is NULL, this implies that the names of all base Classes in
the target Namespace should be returned).

Returns:
If successful, the method returns zero or more names of Classes that meet the requested
criteria. If unsuccessful, one of the following status codes MUST be returned by this
method, where the first applicable error in the list (starting with the first element of the list,
and working down) is the error returned. Any additional method-specific interpretation of
the error in is given in parentheses.

CIM_ERR_ACCESS_DENIED■

CIM_ERR_NOT_SUPPORTED■

CIM_ERR_INVALID_NAMESPACE■

CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or
otherwise incorrect parameters)

■

CIM_ERR_INVALID_CLASS (the CIM Class that is the basis for this enumeration
does not exist)

■

CIM_ERR_FAILED (some other unspecified error occurred)■

http://donald/MSB/Manual/CIMOperations.html (15 of 27) [5/5/2001 8:55:31 AM]

virtual Array<CIMInstance> enumerateInstances(const String& nameSpace, const String& className, Boolean
deepInheritance = true, Boolean localOnly = true, Boolean includeQualifiers = false, Boolean includeClassOrigin =
false, const Array<String>& propertyList = StringArray())

The enumerateInstances method enumerates instances of a CIM Class in the target Namespace.

Parameters:
NameSpace - The NameSpace parameter is a string that defines the target namespace
NAMESPACE
ClassName - The ClassName input parameter defines the Class that is the basis for the
enumeration.

LocalOnly - If the LocalOnly input parameter is true, this specifies that, for each returned Instance,
only elements (properties and qualifiers) overriden within the definition of that Instance are
included. If false, all elements are returned. This parameter therefore effects a CIM Server-side
mechanism to filter certain elements of the returned object based on whether or not they have been
propagated from the parent Class (as defined by the PROPAGATED attribute). Only elements
(properties, methods and qualifiers) defined or overridden within the class are included in the
response. Propagated properties are not included because their values are based on another class’
information. If not specified, all elements of the class’ definition are returned. Note: When
instances are returned, the InstanceName must include all keys, including propagated keys.
Therefore, these attributes are included in the name part of the method response, but not in the
value information.
DeepInheritance - If the DeepInheritance input parameter is true, this specifies that, for each returned
Instance of the Class, all properties of the Instance MUST be present (subject to constraints
imposed by the other parameters), including any which were added by subclassing the specified
Class. If false, each returned Instance includes only properties defined for the specified Class. The
Enumerate Instances operation returns the same number of instances regardless of whether or not
the DeepInheritance flag is set. The DeepInheritance flag is only used to determine whether or not
the subclass property values should be returned.
IncludeQualifiersIf - the IncludeQualifiers input parameter is true, this specifies that all Qualifiers
for each Instance (including Qualifiers on the Instance and on any returned Properties) MUST be
included as <QUALIFIER> elements in the response. If false no <QUALIFIER> elements are present
in each returned Instance.
IncludeClassOrigin - If the IncludeClassOrigin input parameter is true, this specifies that the
CLASSORIGIN attribute MUST be present on all appropriate elements in each returned Instance. If
false, no CLASSORIGIN attributes are present in each returned Instance.
PropertyList - If the PropertyList input parameter is not NULL, the members of the array define one
or more CIMProperty names. Each returned Instance MUST NOT include elements for any
Properties missing from this list. Note that if LocalOnly is specified as true (or DeepInheritance is
specified as false) this acts as an additional filter on the set of Properties returned (for example, if
CIMProperty A is included in the PropertyList but LocalOnly is set to true and A is not local to a
returned Instance, then it will not be included in that Instance). If the PropertyList input parameter is
an empty array this signifies that no Properties are included in each returned Instance. If the
PropertyList input parameter is NULL this specifies that all Properties (subject to the conditions

http://donald/MSB/Manual/CIMOperations.html (16 of 27) [5/5/2001 8:55:32 AM]

expressed by the other parameters) are included in each returned Instance. If the PropertyList
contains duplicate elements, the Server MUST ignore the duplicates but otherwise process the
request normally. If the PropertyList contains elements which are invalid CIMProperty names for
any target Instance, the Server MUST ignore such entries but otherwise process the request
normally.

Returns:
If successful, the method returns zero or more named Instances that meet the required criteria. If
unsuccessful, one of the following status codes MUST be returned by this method, where the first
applicable error in the list (starting with the first element of the list, and working down) is the error
returned. Any additional method-specific interpretation of the error in is given in parentheses.

CIM_ERR_ACCESS_DENIED❍

CIM_ERR_NOT_SUPPORTED❍

CIM_ERR_INVALID_NAMESPACE❍

CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or
otherwise incorrect parameters)

❍

CIM_ERR_INVALID_CLASS (the CIM Class that is the basis for this enumeration does
not exist)

❍

CIM_ERR_FAILED (some other unspecified erroroccurred)❍

virtual Array<CIMReference> enumerateInstanceNames(const String& nameSpace, const String& className)

The enumerateInstanceNames operation enumerates the names (model paths) of the instances of a CIM Class
in the target Namespace.

Parameters:
NameSpace - The NameSpace parameter is a string that defines the target namespace
NAMESPACE
ClassName - The ClassName input parameter defines the Class that is the basis for the
enumeration.

Returns:
If successful, the method returns zero or more names of Instances (model paths) that meet the
requsted criteria. If unsuccessful, one of the following status codes MUST be returned by this
method, where the first applicable error in the list (starting with the first element of the list, and
working down) is the error returned. Any additional method-specific interpretation of the error in
is given in parentheses.

CIM_ERR_ACCESS_DENIED❍

CIM_ERR_NOT_SUPPORTED❍

CIM_ERR_INVALID_NAMESPACE❍

CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or
otherwise incorrect parameters)

❍

CIM_ERR_INVALID_CLASS (the CIM Class that is the basis for this enumeration does
not exist)

❍

http://donald/MSB/Manual/CIMOperations.html (17 of 27) [5/5/2001 8:55:32 AM]

CIM_ERR_FAILED (some other unspecified error occurred)❍

virtual Array<CIMInstance> execQuery(const String& queryLanguage, const String& query)

The execQuery is used to execute a query against the target Namespace.

Parameters:
NameSpace - The NameSpace parameter is a string that defines the target namespace
NAMESPACE
QueryLanguage - The QueryLanguage input parameter defines the query language in which the
Query parameter is expressed.
The - Query input parameter defines the query to be executed.

Returns:
If successful, the method returns zero or more CIM Classes or Instances that correspond to the
results set of the query. If unsuccessful, one of the following status codes MUST be returned by
this method, where the first applicable error in the list (starting with the first element of the list,
and working down) is the error returned. Any additional method-specific interpretation of the error
in is given in parentheses.

CIM_ERR_ACCESS_DENIED❍

CIM_ERR_NOT_SUPPORTED❍

CIM_ERR_INVALID_NAMESPACE❍

CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or
otherwise incorrect parameters)

❍

CIM_ERR_QUERY_LANGUAGE_NOT_SUPPORTED (the requested query language is
not recognized)

❍

CIM_ERR_INVALID_QUERY (the query is not a valid query in the specified query
language)

❍

CIM_ERR_FAILED (some other unspecified error ccurred)❍

virtual Array<CIMInstance> associators(const String& nameSpace, const CIMReference& objectName, const
String& assocClass = String::EMPTY, const String& resultClass = String::EMPTY, const String& role =
String::EMPTY, const String& resultRole = String::EMPTY, Boolean includeQualifiers = false, Boolean
includeClassOrigin = false, const Array<String>& propertyList = StringArray())

The Associators method enumerates CIM Objects (Classes or Instances) that are associated to a particular
source CIM Object.

Parameters:
NameSpace - The NameSpace parameter is a string that defines the target namespace
NAMESPACE @ObjectName The ObjectName input parameter defines the source CIM Object
whose associated Objects are to be returned. This may be either a Class name or Instance name
(model path).
AssocClass - The AssocClass input parameter, if not NULL, MUST be a valid CIM Association
Class name. It acts as a filter on the returned set of Objects by mandating that each returned Object

http://donald/MSB/Manual/CIMOperations.html (18 of 27) [5/5/2001 8:55:32 AM]

MUST be associated to the source Object via an Instance of this Class or one of its subclasses.
ResutlClass - The ResultClass input parameter, if not NULL, MUST be a valid CIM Class name.
It acts as a filter on the returned set of Objects by mandating that each returned Object MUST be
either an Instance of this Class (or one of its subclasses) or be this Class (or one of its subclasses).
Role - The Role input parameter, if not NULL, MUST be a valid CIMProperty name. It acts as a
filter on the returned set of Objects by mandating that each returned Object MUST be associated to
the source Object via an Association in which the source Object plays the specified role (i.e. the
name of the CIMProperty in the Association Class that refers to the source Object MUST match
the value of this parameter).
ResultRole - The ResultRole input parameter, if not NULL, MUST be a valid CIMProperty name.
It acts as a filter on the returned set of Objects by mandating that each returned Object MUST be
associated to the source Object via an Association in which the returned Object plays the specified
role (i.e. the name of the CIMProperty in the Association Class that refers to the returned Object
MUST match the value of this parameter).
IncludeQualifiers - If the IncludeQualifiers input parameter is true, this specifies that all
Qualifiers for each Object (including Qualifiers on the Object and on any returned Properties)
MUST be included as elements in the response. If false no elements are present in each returned
Object.
IncludeClassOrigin - If the IncludeClassOrigin input parameter is true, this specifies that the
CLASSORIGIN attribute MUST be present on all appropriate elements in each returned Object. If
false, no CLASSORIGIN attributes are present in each returned Object. @parm PropertyList If the
PropertyList input parameter is not NULL, the members of the array define one or more
CIMProperty names. Each returned Object MUST NOT include elements for any Properties
missing from this list. Note that if LocalOnly is specified as true (or DeepInheritance is specified
as false) this acts as an additional filter on the set of Properties returned (for example, if
CIMProperty A is included in the PropertyList but LocalOnly is set to true and A is not local to a
returned Instance, then it will not be included in that Instance). If the PropertyList input parameter
is an empty array this signifies that no Properties are included in each returned Object. If the
PropertyList input parameter is NULL this specifies that all Properties (subject to the conditions
expressed by the other parameters) are included in each returned Object. If the PropertyList
contains duplicate elements, the Server MUST ignore the duplicates but otherwise process the
request normally. If the PropertyList contains elements which are invalid CIMProperty names for
any target Object, the Server MUST ignore such entries but otherwise process the request
normally. Clients SHOULD NOT explicitly specify properties in the PropertyList parameter
unless they have specified a non-NULL value for the ResultClass parameter.

Returns:
If successful, the method returns zero or more CIM Classes or Instances meeting the requested
criteria. Since it is possible for CIM Objects from different hosts or namespaces to be associated,
each returned Object includes location information. If unsuccessful, one of the following status
codes MUST be returned by this method, where the first applicable error in the list (starting with
the first element of the list, and working down) is the error returned. Any additional
method-specific interpretation of the error in is given in parentheses.

CIM_ERR_ACCESS_DENIED❍

http://donald/MSB/Manual/CIMOperations.html (19 of 27) [5/5/2001 8:55:32 AM]

CIM_ERR_NOT_SUPPORTED❍

CIM_ERR_INVALID_NAMESPACE❍

CIM_ERR_INVALID_PARAMETER (including missing,duplicate, unrecognized or
otherwise incorrect parameters)

❍

CIM_ERR_FAILED (some other unspecified error occurred)❍

virtual Array<CIMReference> associatorNames(const String& nameSpace, const CIMReference& objectName,
const String& assocClass = String::EMPTY, const String& resultClass = String::EMPTY, const String& role =
String::EMPTY, const String& resultRole = String::EMPTY)

The associatorNames operation is used to enumerate the names of CIM Objects (Classes or Instances) that
are associated to a particular source CIM Object.

Parameters:
NameSpace - The NameSpace parameter is a string that defines the target namespace
NAMESPACE
objectName - - The ObjectName input parameter defines the source CIM Object whose associated
names are to be returned. This is either a Class name or Instance name (model path).
AssocClass - - The AssocClass input parameter, if not NULL, MUST be a valid CIM Association
Class name. It acts as a filter on the returned set of names by mandating that each returned name
identifies an Object that MUST be associated to the source Object via an Instance of this Class or
one of its subclasses.
ResultClass - - The ResultClass input parameter, if not NULL, MUST be a valid CIM Class name.
It acts as a filter on the returned set of names by mandating that each returned name identifies an
Object that MUST be either an Instance of this Class (or one of its subclasses) or be this Class (or
one of its subclasses).
Role - - The Role input parameter, if not NULL, MUST be a valid CIMProperty name. It acts as a
filter on the returned set of names by mandating that each returned name identifies an Object that
MUST be associated to the source Object via an Association in which the source Object plays the
specified role (i.e. the name of the CIMProperty in the Association Class that refers to the source
Object MUST match the value of this parameter).
ResultRole - - The ResultRole input parameter, if not NULL, MUST be a valid CIMProperty
name. It acts as a filter on the returned set of names by mandating that each returned name
identifies an Object that MUST be associated to the source Object via an Association in which the
named returned Object plays the specified role (i.e. the name of the CIMProperty in the
Association Class that refers to the returned Object MUST match the value of this parameter).

Returns:
If successful, the method returns zero or more full CIM Class paths or Instance paths of Objects
meeting the requested criteria. Since it is possible for CIM Objects from different hosts or
namespaces to be associated, each returned path is an absolute path that includes host and
namespace information. If unsuccessful, one of the following status codes MUST be returned by
this method, where the first applicable error in the list (starting with the first element of the list,
and working down) is the error returned. Any additional method-specific interpretation of the error
in is given in parentheses.

http://donald/MSB/Manual/CIMOperations.html (20 of 27) [5/5/2001 8:55:32 AM]

CIM_ERR_ACCESS_DENIED❍

CIM_ERR_NOT_SUPPORTED❍

CIM_ERR_INVALID_NAMESPACE;❍

CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or
otherwise incorrect parameters)

❍

CIM_ERR_FAILED (some other unspecified error occurred)❍

virtual Array<CIMInstance> references(const String& nameSpace, const CIMReference& objectName, const
String& resultClass = String::EMPTY, const String& role = String::EMPTY, Boolean includeQualifiers = false,
Boolean includeClassOrigin = false, const Array<String>& propertyList= StringArray())

The references operation enumerates the association objects that refer to a particular target CIM Object
(Class or Instance).

Parameters:
The - NameSpace parameter is a string that defines the target namespace NAMESPACE
The - ObjectName input parameter defines the target CIM Object whose referring Objects are to
be returned. This is either a Class name or Instance name (model path).
The - ResultClass input parameter, if not NULL, MUST be a valid CIM Class name. It acts as a
filter on the returned set of Objects by mandating that each returned Object MUST be an Instance
of this Class (or one of its subclasses), or this Class (or one of its subclasses).
The - Role input parameter, if not NULL, MUST be a valid CIMProperty name. It acts as a filter
on the returned set of Objects by mandating that each returned Objects MUST refer to the target
Object via a CIMProperty whose name matches the value of this parameter.
If - the IncludeQualifiers input parameter is true, this specifies that all Qualifiers for each Object
(including Qualifiers on the Object and on any returned Properties) MUST be included as elements
in the response. If false no elements are present in each returned Object.
IncludeClassOrigin - If the IncludeClassOrigin input parameter is true, this specifies that the
CLASSORIGIN attribute MUST be present on all appropriate elements in each returned Object. If
false, no CLASSORIGIN attributes are present in each returned Object.
PropertyList - If the PropertyList input parameter is not NULL, the members of the array define
one or more CIMProperty names. Each returned Object MUST NOT include elements for any
Properties missing from this list. Note that if LocalOnly is specified as true (or DeepInheritance is
specified as false) this acts as an additional filter on the set of Properties returned (for example, if
CIMProperty A is included in the PropertyList but LocalOnly is set to true and A is not local to a
returned Instance, then it will not be included in that Instance). If the PropertyList input parameter
is an empty array this signifies that no Properties are included in each returned Object. If the
PropertyList input parameter is NULL this specifies that all Properties (subject to the conditions
expressed by the other parameters) are included in each returned Object. If the PropertyList
contains duplicate elements, the Server MUST ignore the duplicates but otherwise process the
request normally. If the PropertyList contains elements which are invalid CIMProperty names for
any target Object, the Server MUST ignore such entries but otherwise process the request
normally. Clients SHOULD NOT explicitly specify properties in the PropertyList parameter
unless they have specified a non-NULL value for the ResultClass parameter.

http://donald/MSB/Manual/CIMOperations.html (21 of 27) [5/5/2001 8:55:32 AM]

Returns:
If successful, the method returns zero or more CIM Classes or Instances meeting the requested
criteria. Since it is possible for CIM Objects from different hosts or namespaces to be associated,
each returned Object includes location information. If unsuccessful, one of the following status
codes MUST be returned by this method, where the first applicable error in the list (starting with
the first element of the list, and working down) is the error returned. Any additional
method-specific interpretation of the error in is given in parentheses.

CIM_ERR_ACCESS_DENIED❍

CIM_ERR_NOT_SUPPORTED❍

CIM_ERR_INVALID_NAMESPACE❍

CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or
otherwise incorrect parameters)

❍

CIM_ERR_FAILED (some other unspecified error occurred)❍

virtual Array<CIMReference> referenceNames(const String& nameSpace, const CIMReference& objectName,
const String& resultClass = String::EMPTY, const String& role = String::EMPTY)

The referenceNames operation is used to enumerate the association objects that refer to a particular target
CIM Object (Class or Instance).

Parameters:
The - NameSpace parameter is a string that defines the target namespace NAMESPACE
The - ObjectName input parameter defines the target CIM Object whose referring object names
are to be returned. It may be either a Class name or an Instance name (model path).
The - ResultClass input parameter, if not NULL, MUST be a valid CIM Class name. It acts as a
filter on the returned set of Object Names by mandating that each returned Object CIMName
MUST identify an Instance of this Class (or one of its subclasses), or this Class (or one of its
subclasses).
The - role input parameter, if not NULL, MUST be a valid CIMProperty name. It acts as a filter
on the returned set of Object Names by mandating that each returned Object CIMName MUST
identify an Object that refers to the target Instance via a CIMProperty whose name matches the
value of this parameter.

Returns:
If successful,the method returns the names of zero or more full CIM Class paths or Instance paths
of Objects meeting the requested criteria. Since it is possible for CIM Objects from different hosts
or namespaces to be associated, each returned path is an absolute path that includes host and
namespace information. If unsuccessful, one of the following status codes MUST be returned by
this method, where the first applicable error in the list (starting with the first element of the list,
and working down) is the error returned. Any additional method-specific interpretation of the error
in is given in parentheses.

CIM_ERR_ACCESS_DENIED❍

CIM_ERR_NOT_SUPPORTED❍

CIM_ERR_INVALID_NAMESPACE❍

http://donald/MSB/Manual/CIMOperations.html (22 of 27) [5/5/2001 8:55:32 AM]

CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or
otherwise incorrect parameters)

❍

CIM_ERR_FAILED (some other unspecified error occurred)❍

virtual CIMValue getProperty(const String& nameSpace, const CIMReference& instanceName, const String&
propertyName)

This operation is used to retrieve a single property value from a CIM Instance in the target Namespace.

Parameters:
NameSpace - The NameSpace parameter is a string that defines the target namespace
NAMESPACE
The - InstanceName input parameter specifies the name of the Instance (model path) from which
the CIMProperty value is requested. \INSTANCENAME
The - PropertyName input parameter specifies the name of the CIMProperty whose value is to be
returned.

Returns:
If successful, the return value specifies the value of the requested CIMProperty. If the value is
NULL then no element is returned. If unsuccessful, one of the following status codes MUST be
returned by this method, where the first applicable error in the list (starting with the first element
of the list, and working down) is the error returned. Any additional method-specific interpretation
of the error in is given in parentheses.

CIM_ERR_ACCESS_DENIED❍

CIM_ERR_INVALID_NAMESPACE❍

CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or
otherwise incorrect parameters)

❍

CIM_ERR_INVALID_CLASS (the CIM Class does not exist in the specified namespace)❍

CIM_ERR_NOT_FOUND (the CIM Class does exist, but the requested CIM Instance does
not exist in the specified namespace)

❍

❍

CIM_ERR_NO_SUCH_PROPERTY (the CIM Instance does exist, but the requested
CIMProperty does not)

❍

CIM_ERR_FAILED (some other unspecified error occurred)❍

virtual void setProperty(const String& nameSpace, const CIMReference& instanceName, const String&
propertyName, const CIMValue& newValue = CIMValue())

The setProperty operation sets a single property value in a CIM Instance in the target Namespace.

Parameters:
NameSpace - The NameSpace parameter is a string that defines the target namespace
NAMESPACE
InstanceName - The InstanceName input parameter specifies the name of the Instance (model
path) for which the CIMProperty value is to be updated.

http://donald/MSB/Manual/CIMOperations.html (23 of 27) [5/5/2001 8:55:32 AM]

PropertyName - The PropertyName input parameter specifies the name of the CIMProperty
whose value is to be updated.
Newvalue - The NewValue input parameter specifies the new value for the CIMProperty (which
may be NULL).

Returns:
If unsuccessful, one of the following status codes MUST be returned by this method, where the
first applicable error in the list (starting with the first element of the list, and working down) is the
error returned. Any additional method-specific interpretation of the error in is given in parentheses.

CIM_ERR_ACCESS_DENIED❍

CIM_ERR_INVALID_NAMESPACE❍

CIM_ERR_INVALID_PARAMETER (including missing,duplicate, unrecognized or
otherwise incorrect parameters)

❍

CIM_ERR_INVALID_CLASS (the CIM Class does not exist in the specified namespace)❍

CIM_ERR_NOT_FOUND (the CIM Class does exist, but the requested CIM Instance does
not exist in the specified namespace)

❍

CIM_ERR_NO_SUCH_PROPERTY (the CIM Instance does exist, but the requested
CIMProperty does not)

❍

CIM_ERR_FAILED (some other unspecified error occurred)❍

virtual CIMQualifierDecl getQualifier(const String& nameSpace, const String& qualifierName)

The getQualifier operation retrieves a single CIMQualifier declaration from the target Namespace.

Parameters:
NameSpace - The NameSpace parameter is a string that defines the target namespace
NAMESPACE
QualifierName - The QualifierName input parameter identifies the CIMQualifier whose
declaration to be retrieved.

Returns:
If successful, the method returns the CIMQualifier declaration for the named CIMQualifier. If
unsuccessful, one of the following status codes MUST be returned by this method, where the first
applicable error in the list (starting with the first element of the list, and working down) is the error
returned. Any additional method-specific interpretation of the error in is given in parentheses.

CIM_ERR_ACCESS_DENIED❍

CIM_ERR_NOT_SUPPORTED❍

CIM_ERR_INVALID_NAMESPACE❍

CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or
otherwise incorrect parameters)

❍

CIM_ERR_INVALID_CLASS (the CIM Class does not exist in the specified namespace)❍

CIM_ERR_NOT_FOUND (the CIM Class does exist, but the requested CIM Instance does
not exist in the specified namespace)

❍

http://donald/MSB/Manual/CIMOperations.html (24 of 27) [5/5/2001 8:55:32 AM]

CIM_ERR_NO_SUCH_PROPERTY (the CIM Instance does exist, but the requested
CIMProperty does not)

❍

CIM_ERR_TYPE_MISMATCH (the supplied value is incompatible with the type of the
CIMProperty)

❍

CIM_ERR_FAILED (some other unspecified error occurred)❍

virtual void setQualifier(const String& nameSpace, const CIMQualifierDecl& qualifierDecl)

The setQualifier creates or update a single CIMQualifier declaration in the target Namespace. If the
CIMQualifier declaration already exists it is overwritten.

Parameters:
NameSpace - The NameSpace parameter is a string that defines the target namespace
NAMESPACE
- CIMQualifier Declaration The QualifierDeclaration input parameter defines the CIMQualifier
Declaration to be added to the Namespace. @return If successful, the CIMQualifier declaration
MUST have been added to the target Namespace. If a CIMQualifier declaration with the same
CIMQualifier name already existed, then it MUST have been replaced by the new declaration.

Returns:
If unsuccessful, one of the following status codes MUST be returned by this method, where the
first applicable error in the list (starting with the first element of the list, and working down) is the
error returned. Any additional method-specific interpretation of the error in is given in parentheses.

CIM_ERR_ACCESS_DENIED❍

CIM_ERR_NOT_SUPPORTED❍

CIM_ERR_INVALID_NAMESPACE❍

CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or
otherwise incorrect parameters)

❍

CIM_ERR_NOT_FOUND (the requested CIMQualifier declaration did not exist)❍

CIM_ERR_FAILED (some other unspecified error occurred)❍

virtual void deleteQualifier(const String& nameSpace, const String& qualifierName)

The deleteQualifier operation deletes a single CIMQualifier declaration from the target Namespace.

Parameters:
NameSpace - The NameSpace parameter is a string that defines the target namespace
NAMESPACE
QualifierName - The QualifierName input parameter identifies the CIMQualifier whose
declaration to be deleted. @return If successful, the specified CIMQualifier declaration MUST
have been deleted from the Namespace.

Returns:
If unsuccessful, one of the following status codes MUST be returned by this method, where the
first applicable error in the list (starting with the first element of the list, and working down) is the

http://donald/MSB/Manual/CIMOperations.html (25 of 27) [5/5/2001 8:55:32 AM]

error returned. Any additional method-specific interpretation of the error in is given in parentheses.

CIM_ERR_ACCESS_DENIED❍

CIM_ERR_NOT_SUPPORTED❍

CIM_ERR_INVALID_NAMESPACE❍

CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or
otherwise incorrect parameters)

❍

CIM_ERR_FAILED (some other unspecified error occurred)❍

virtual Array<CIMQualifierDecl> enumerateQualifiers(const String& nameSpace)

The enumerateQualifiers operation is used to enumerate CIMQualifier declarations from the target
Namespace.

Parameters:
NameSpace - The NameSpace parameter is a string that defines the target namespace
NAMESPACE

Returns:
If successful, the method returns zero or more CIMQualifier declarations. If unsuccessful, one of
the following status codes MUST be returned by this method, where the first applicable error in
the list (starting with the first element of the list, and working down) is the error returned. Any
additional method-specific interpretation of the error in is given in parentheses.

CIM_ERR_ACCESS_DENIED❍

CIM_ERR_NOT_SUPPORTED❍

CIM_ERR_INVALID_NAMESPACE❍

CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or
otherwise incorrect parameters)

❍

CIM_ERR_NOT_FOUND (the requested CIMQualifier declaration did not exist)❍

CIM_ERR_FAILED (some other unspecified error occurred)❍

virtual CIMValue invokeMethod(const String& nameSpace, const CIMReference& instanceName, const String&
methodName, const Array<CIMValue>& inParameters, Array<CIMValue>& outParameters)

Any CIM Server is assumed to support extrinsic methods. Extrinsic methods are defined by the Schema
supported by the Cim Server. If a CIM Server does not support extrinsic method invocations, it MUST
(subject to the considerations described in the rest of this section) return the error code
CIM_ERR_NOT_SUPPORTED to any request to execute an extrinsic method. This allows a CIM client
to determine that all attempts to execute extrinsic methods will fail.

@retrun - If the Cim Server is unable to perform the extrinsic method invocation, one of the following
status codes MUST be returned by the CimServer, where the first applicable error in the list (starting
with the first element of the list, and working down) is the error returned. Any additional specific
interpretation of the error is given in parentheses.

CIM_ERR_ACCESS_DENIED●

http://donald/MSB/Manual/CIMOperations.html (26 of 27) [5/5/2001 8:55:32 AM]

CIM_ERR_NOT_SUPPORTED (the CimServer does not support extrinsic method invocations)●

CIM_ERR_INVALID_NAMESPACE●

CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or otherwise
incorrect parameters)

●

CIM_ERR_NOT_FOUND (the target CIM Class or instance does not exist in the specified
namespace)

●

CIM_ERR_METHOD_NOT_FOUND●

CIM_ERR_METHOD_NOT_AVAILABLE (the CimServer is unable to honor the invocation
request)

●

CIM_ERR_FAILED (some other unspecified error occurred)●

Direct child classes:
CIMRepository
CIMClient

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/CIMOperations.html (27 of 27) [5/5/2001 8:55:32 AM]

In file ..\..\src\Pegasus\Client\CIMClient.h:

class PEGASUS_CLIENT_LINKAGE CIMClient
Class CIMClient - This class defines the client interfaces for Pegasus.

Documentation
Class CIMClient - This class defines the client interfaces for Pegasus. These are the
interfaces that could be used by a CIM CIMClient written in C++. These interfaces are
based completely on the operations interfaces defined in the Pegasus CIMOperations.h file
with some extensions for the client interface. @see "The CIMOperations Class"

Inheritance:

Public Methods

CIMClient (Selector* selector, Uint32 timeOutMilliseconds =
DEFAULT_TIMEOUT_MILLISECONDS)
~CIMClient ()

Uint32 getTimeOut () const

void setTimeOut (Uint32 timeOutMilliseconds)

void connect (const char* address)

void get (const char* document) const

void runOnce ()

void runForever ()

virtual CIMClass getClass (const String& nameSpace, const String& className,
Boolean localOnly = true, Boolean includeQualifiers = true,
Boolean includeClassOrigin = false, const Array<String>&
propertyList = StringArray())

virtual CIMInstance getInstance (const String& nameSpace, const CIMReference&
instanceName, Boolean localOnly = true, Boolean
includeQualifiers = false, Boolean includeClassOrigin = false,
const Array<String>& propertyList = StringArray())

virtual void deleteClass (const String& nameSpace, const String&
className)

http://donald/MSB/Manual/CIMClient.html (1 of 6) [5/5/2001 8:55:34 AM]

virtual void deleteInstance (const String& nameSpace, const
CIMReference& instanceName)

virtual void createClass (const String& nameSpace, CIMClass& newClass)

virtual void createInstance (const String& nameSpace, CIMInstance&
newInstance)

virtual void modifyClass (const String& nameSpace, CIMClass&
modifiedClass)

virtual void modifyInstance (const String& nameSpace, const
CIMInstance& modifiedInstance)

virtual Array<CIMClass> enumerateClasses (const String& nameSpace, const String&
className = String::EMPTY, Boolean deepInheritance = false,
Boolean localOnly = true, Boolean includeQualifiers = true,
Boolean includeClassOrigin = false)

virtual Array<String> enumerateClassNames (const String& nameSpace, const
String& className = String::EMPTY, Boolean deepInheritance =
false)

virtual Array<CIMInstance> enumerateInstances (const String& nameSpace, const String&
className, Boolean deepInheritance = true, Boolean localOnly =
true, Boolean includeQualifiers = false, Boolean
includeClassOrigin = false, const Array<String>& propertyList =
StringArray())

virtual Array<CIMReference> enumerateInstanceNames (const String& nameSpace, const
String& className)

virtual Array<CIMInstance> execQuery (const String& queryLanguage, const String& query)

virtual Array<CIMInstance> associators (const String& nameSpace, const CIMReference&
objectName, const String& assocClass = String::EMPTY, const
String& resultClass = String::EMPTY, const String& role =
String::EMPTY, const String& resultRole = String::EMPTY,
Boolean includeQualifiers = false, Boolean includeClassOrigin =
false, const Array<String>& propertyList = StringArray())

virtual Array<CIMReference> associatorNames (const String& nameSpace, const
CIMReference& objectName, const String& assocClass =
String::EMPTY, const String& resultClass = String::EMPTY,
const String& role = String::EMPTY, const String& resultRole =
String::EMPTY)

http://donald/MSB/Manual/CIMClient.html (2 of 6) [5/5/2001 8:55:34 AM]

virtual Array<CIMInstance> references (const String& nameSpace, const CIMReference&
objectName, const String& resultClass = String::EMPTY, const
String& role = String::EMPTY, Boolean includeQualifiers =
false, Boolean includeClassOrigin = false, const Array<String>&
propertyList = StringArray())

virtual Array<CIMReference> referenceNames (const String& nameSpace, const
CIMReference& objectName, const String& resultClass =
String::EMPTY, const String& role = String::EMPTY)

virtual CIMValue getProperty (const String& nameSpace, const CIMReference&
instanceName, const String& propertyName)

virtual CIMQualifierDecl getQualifier (const String& nameSpace, const String&
qualifierName)

virtual void setQualifier (const String& nameSpace, const
CIMQualifierDecl& qualifierDeclaration)

virtual void deleteQualifier (const String& nameSpace, const String&
qualifierName)

virtual Array<CIMQualifierDecl> enumerateQualifiers (const String& nameSpace)

virtual CIMValue invokeMethod (const String& nameSpace, const
CIMReference& instanceName, const String& methodName,
const Array<CIMValue>& inParameters, Array<CIMValue>&
outParameters)

Inherited from CIMOperations:

Public Methods

virtual void setProperty(const String& nameSpace, const CIMReference& instanceName, const
String& propertyName, const CIMValue& newValue = CIMValue())

 CIMClient(Selector* selector, Uint32 timeOutMilliseconds =
DEFAULT_TIMEOUT_MILLISECONDS)

 ~CIMClient()

Uint32 getTimeOut() const

void setTimeOut(Uint32 timeOutMilliseconds)

void connect(const char* address)

void get(const char* document) const

void runOnce()

http://donald/MSB/Manual/CIMClient.html (3 of 6) [5/5/2001 8:55:34 AM]

void runForever()

virtual CIMClass getClass(const String& nameSpace, const String&
className, Boolean localOnly = true, Boolean includeQualifiers = true,
Boolean includeClassOrigin = false, const Array<String>& propertyList
= StringArray())

virtual CIMInstance getInstance(const String& nameSpace, const
CIMReference& instanceName, Boolean localOnly = true, Boolean
includeQualifiers = false, Boolean includeClassOrigin = false, const
Array<String>& propertyList = StringArray())

virtual void deleteClass(const String& nameSpace, const String&
className)

virtual void deleteInstance(const String& nameSpace, const
CIMReference& instanceName)

virtual void createClass(const String& nameSpace, CIMClass&
newClass)

virtual void createInstance(const String& nameSpace, CIMInstance&
newInstance)

virtual void modifyClass(const String& nameSpace, CIMClass&
modifiedClass)

virtual void modifyInstance(const String& nameSpace, const
CIMInstance& modifiedInstance)

virtual Array<CIMClass> enumerateClasses(const String& nameSpace,
const String& className = String::EMPTY, Boolean deepInheritance =
false, Boolean localOnly = true, Boolean includeQualifiers = true,
Boolean includeClassOrigin = false)

virtual Array<String> enumerateClassNames(const String& nameSpace,
const String& className = String::EMPTY, Boolean deepInheritance =
false)

virtual Array<CIMInstance> enumerateInstances(const String&
nameSpace, const String& className, Boolean deepInheritance = true,
Boolean localOnly = true, Boolean includeQualifiers = false, Boolean
includeClassOrigin = false, const Array<String>& propertyList =
StringArray())

virtual Array<CIMReference> enumerateInstanceNames(const String&
nameSpace, const String& className)

virtual Array<CIMInstance> execQuery(const String& queryLanguage,

http://donald/MSB/Manual/CIMClient.html (4 of 6) [5/5/2001 8:55:34 AM]

const String& query)

virtual Array<CIMInstance> associators(const String& nameSpace,
const CIMReference& objectName, const String& assocClass =
String::EMPTY, const String& resultClass = String::EMPTY, const
String& role = String::EMPTY, const String& resultRole =
String::EMPTY, Boolean includeQualifiers = false, Boolean
includeClassOrigin = false, const Array<String>& propertyList =
StringArray())

virtual Array<CIMReference> associatorNames(const String&
nameSpace, const CIMReference& objectName, const String& assocClass =
String::EMPTY, const String& resultClass = String::EMPTY, const
String& role = String::EMPTY, const String& resultRole =
String::EMPTY)

virtual Array<CIMInstance> references(const String& nameSpace,
const CIMReference& objectName, const String& resultClass =
String::EMPTY, const String& role = String::EMPTY, Boolean
includeQualifiers = false, Boolean includeClassOrigin = false, const
Array<String>& propertyList = StringArray())

virtual Array<CIMReference> referenceNames(const String& nameSpace,
const CIMReference& objectName, const String& resultClass =
String::EMPTY, const String& role = String::EMPTY)

virtual CIMValue getProperty(const String& nameSpace, const
CIMReference& instanceName, const String& propertyName)

virtual CIMQualifierDecl getQualifier(const String& nameSpace,
const String& qualifierName)

virtual void setQualifier(const String& nameSpace, const
CIMQualifierDecl& qualifierDeclaration)

virtual void deleteQualifier(const String& nameSpace, const String&
qualifierName)

virtual Array<CIMQualifierDecl> enumerateQualifiers(const String&
nameSpace)

virtual CIMValue invokeMethod(const String& nameSpace, const
CIMReference& instanceName, const String& methodName, const
Array<CIMValue>& inParameters, Array<CIMValue>& outParameters)

This class has no child classes.

http://donald/MSB/Manual/CIMClient.html (5 of 6) [5/5/2001 8:55:34 AM]

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/CIMClient.html (6 of 6) [5/5/2001 8:55:34 AM]

In file ..\..\src\Pegasus\Repository\CIMRepository.h:

class PEGASUS_REPOSITORY_LINKAGE
CIMRepository

This class derives from the CIMOperations class and provides a simple implementation of a
CIM repository.

Documentation
This class derives from the CIMOperations class and provides a simple implementation of a
CIM repository. It only implements the methods for manipulating classes and instances. The
others throw this exception:

 CIMException(CIMException::NOT_SUPPORTED)

Inheritance:

Public Methods

CIMRepository (const String& repositoryRoot)
Constructor

virtual ~CIMRepository ()
Descructor

virtual CIMClass getClass (const String& nameSpace, const String& className,
Boolean localOnly = true, Boolean includeQualifiers = true,
Boolean includeClassOrigin = false, const Array<String>&
propertyList = StringArray())
virtual class CIMClass.

virtual CIMInstance getInstance (const String& nameSpace, const CIMReference&
instanceName, Boolean localOnly = true, Boolean
includeQualifiers = false, Boolean includeClassOrigin = false,
const Array<String>& propertyList = StringArray())
getInstance

virtual void deleteClass (const String& nameSpace, const String&
className)
deleteClass

http://donald/MSB/Manual/CIMRepository.html (1 of 7) [5/5/2001 8:55:36 AM]

virtual void deleteInstance (const String& nameSpace, const
CIMReference& instanceName)
deleteInstance

virtual void createClass (const String& nameSpace, CIMClass& newClass)
createClass

virtual void createInstance (const String& nameSpace, CIMInstance&
newInstance)
createInstance

virtual void modifyClass (const String& nameSpace, CIMClass&
modifiedClass)
modifyClass

virtual void modifyInstance (const String& nameSpace, const
CIMInstance& modifiedInstance)
modifyInstance

virtual Array<CIMClass> enumerateClasses (const String& nameSpace, const String&
className = String::EMPTY, Boolean deepInheritance = false,
Boolean localOnly = true, Boolean includeQualifiers = true,
Boolean includeClassOrigin = false)
enumerateClasses

virtual Array<String> enumerateClassNames (const String& nameSpace, const
String& className = String::EMPTY, Boolean deepInheritance =
false)
enumerateClassNames

virtual Array<CIMInstance> enumerateInstances (const String& nameSpace, const String&
className, Boolean deepInheritance = true, Boolean localOnly =
true, Boolean includeQualifiers = false, Boolean
includeClassOrigin = false, const Array<String>& propertyList =
StringArray())
enumerateInstances

virtual Array<CIMReference> enumerateInstanceNames (const String& nameSpace, const
String& className)
enumerateInstanceNames

virtual Array<CIMInstance> execQuery (const String& queryLanguage, const String& query)
execQuery

virtual Array<CIMInstance> associators (const String& nameSpace, const CIMReference&
objectName, const String& assocClass = String::EMPTY, const
String& resultClass = String::EMPTY, const String& role =
String::EMPTY, const String& resultRole = String::EMPTY,
Boolean includeQualifiers = false, Boolean includeClassOrigin =
false, const Array<String>& propertyList = StringArray())
associators

http://donald/MSB/Manual/CIMRepository.html (2 of 7) [5/5/2001 8:55:36 AM]

virtual Array<CIMReference> associatorNames (const String& nameSpace, const
CIMReference& objectName, const String& assocClass =
String::EMPTY, const String& resultClass = String::EMPTY,
const String& role = String::EMPTY, const String& resultRole =
String::EMPTY)
associateNames

virtual Array<CIMInstance> references (const String& nameSpace, const CIMReference&
objectName, const String& resultClass = String::EMPTY, const
String& role = String::EMPTY, Boolean includeQualifiers =
false, Boolean includeClassOrigin = false, const Array<String>&
propertyList = StringArray())
references

virtual Array<CIMReference> referenceNames (const String& nameSpace, const
CIMReference& objectName, const String& resultClass =
String::EMPTY, const String& role = String::EMPTY)
referenceNames

virtual CIMValue getProperty (const String& nameSpace, const CIMReference&
instanceName, const String& propertyName)
getProperty

virtual void setProperty (const String& nameSpace, const CIMReference&
instanceName, const String& propertyName, const CIMValue&
newValue = CIMValue())
setProperty

virtual CIMQualifierDecl getQualifier (const String& nameSpace, const String&
qualifierName)
getQualifier

virtual void setQualifier (const String& nameSpace, const
CIMQualifierDecl& qualifierDecl)
setQualifier

virtual void deleteQualifier (const String& nameSpace, const String&
qualifierName)
virtual deleteQualifier

virtual Array<CIMQualifierDecl> enumerateQualifiers (const String& nameSpace)
enumerateQualifiers

virtual CIMValue invokeMethod (const String& nameSpace, const
CIMReference& instanceName, const String& methodName,
const Array<CIMValue>& inParameters, Array<CIMValue>&
outParameters)
invokeMethod

http://donald/MSB/Manual/CIMRepository.html (3 of 7) [5/5/2001 8:55:36 AM]

void createNameSpace (const String& nameSpace)
CIMMethod createNameSpace - Creates a new namespace in the
repository

virtual Array<String> enumerateNameSpaces () const
CIMMethod enumerateNameSpaces - Get all of the namespaces
in the repository.

void deleteNameSpace (const String& nameSpace)
CIMMethod deleteNameSpace - Deletes a namespace in the
repository.

Inherited from CIMOperations:

 CIMRepository(const String& repositoryRoot)

Constructor

virtual ~CIMRepository()

Descructor

virtual CIMClass getClass(const String& nameSpace, const String&
className, Boolean localOnly = true, Boolean includeQualifiers = true,
Boolean includeClassOrigin = false, const Array<String>& propertyList
= StringArray())

virtual class CIMClass. From the operations class

virtual CIMInstance getInstance(const String& nameSpace, const
CIMReference& instanceName, Boolean localOnly = true, Boolean
includeQualifiers = false, Boolean includeClassOrigin = false, const
Array<String>& propertyList = StringArray())

getInstance

virtual void deleteClass(const String& nameSpace, const String&
className)

deleteClass

virtual void deleteInstance(const String& nameSpace, const
CIMReference& instanceName)

deleteInstance

virtual void createClass(const String& nameSpace, CIMClass&
newClass)

createClass

virtual void createInstance(const String& nameSpace, CIMInstance&
newInstance)

http://donald/MSB/Manual/CIMRepository.html (4 of 7) [5/5/2001 8:55:36 AM]

createInstance

virtual void modifyClass(const String& nameSpace, CIMClass&
modifiedClass)

modifyClass

virtual void modifyInstance(const String& nameSpace, const
CIMInstance& modifiedInstance)

modifyInstance

virtual Array<CIMClass> enumerateClasses(const String& nameSpace,
const String& className = String::EMPTY, Boolean deepInheritance =
false, Boolean localOnly = true, Boolean includeQualifiers = true,
Boolean includeClassOrigin = false)

enumerateClasses

virtual Array<String> enumerateClassNames(const String& nameSpace,
const String& className = String::EMPTY, Boolean deepInheritance =
false)

enumerateClassNames

virtual Array<CIMInstance> enumerateInstances(const String&
nameSpace, const String& className, Boolean deepInheritance = true,
Boolean localOnly = true, Boolean includeQualifiers = false, Boolean
includeClassOrigin = false, const Array<String>& propertyList =
StringArray())

enumerateInstances

virtual Array<CIMReference> enumerateInstanceNames(const String&
nameSpace, const String& className)

enumerateInstanceNames

virtual Array<CIMInstance> execQuery(const String& queryLanguage,
const String& query)

execQuery

virtual Array<CIMInstance> associators(const String& nameSpace,
const CIMReference& objectName, const String& assocClass =
String::EMPTY, const String& resultClass = String::EMPTY, const
String& role = String::EMPTY, const String& resultRole =
String::EMPTY, Boolean includeQualifiers = false, Boolean
includeClassOrigin = false, const Array<String>& propertyList =
StringArray())

associators

virtual Array<CIMReference> associatorNames(const String&

http://donald/MSB/Manual/CIMRepository.html (5 of 7) [5/5/2001 8:55:36 AM]

nameSpace, const CIMReference& objectName, const String& assocClass =
String::EMPTY, const String& resultClass = String::EMPTY, const
String& role = String::EMPTY, const String& resultRole =
String::EMPTY)

associateNames

virtual Array<CIMInstance> references(const String& nameSpace,
const CIMReference& objectName, const String& resultClass =
String::EMPTY, const String& role = String::EMPTY, Boolean
includeQualifiers = false, Boolean includeClassOrigin = false, const
Array<String>& propertyList = StringArray())

references

virtual Array<CIMReference> referenceNames(const String& nameSpace,
const CIMReference& objectName, const String& resultClass =
String::EMPTY, const String& role = String::EMPTY)

referenceNames

virtual CIMValue getProperty(const String& nameSpace, const
CIMReference& instanceName, const String& propertyName)

getProperty

virtual void setProperty(const String& nameSpace, const
CIMReference& instanceName, const String& propertyName, const
CIMValue& newValue = CIMValue())

setProperty

virtual CIMQualifierDecl getQualifier(const String& nameSpace,
const String& qualifierName)

getQualifier

virtual void setQualifier(const String& nameSpace, const
CIMQualifierDecl& qualifierDecl)

setQualifier

virtual void deleteQualifier(const String& nameSpace, const String&
qualifierName)

virtual deleteQualifier

virtual Array<CIMQualifierDecl> enumerateQualifiers(const String&
nameSpace)

enumerateQualifiers

virtual CIMValue invokeMethod(const String& nameSpace, const
CIMReference& instanceName, const String& methodName, const

http://donald/MSB/Manual/CIMRepository.html (6 of 7) [5/5/2001 8:55:36 AM]

Array<CIMValue>& inParameters, Array<CIMValue>& outParameters)

invokeMethod

void createNameSpace(const String& nameSpace)

CIMMethod createNameSpace - Creates a new namespace in the repository

Throws:
- Throws "Already_Exists if the Namespace exits. Throws "CannotCreateDirectory" if there
are problems in the creation.

Parameters:
- String with the name of the namespace

virtual Array<String> enumerateNameSpaces() const

CIMMethod enumerateNameSpaces - Get all of the namespaces in the repository. NAMESPACE

Returns:
Array of strings with the namespaces

void deleteNameSpace(const String& nameSpace)

CIMMethod deleteNameSpace - Deletes a namespace in the repository. The deleteNameSpace
method will only delete a namespace if there are no classed defined in the namespace. Today this
is a Pegasus characteristics and not defined as part of the DMTF standards.

Throws:
- Throws NoSuchDirectory if the Namespace does not exist.

Parameters:
- String with the name of the namespace

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/CIMRepository.html (7 of 7) [5/5/2001 8:55:36 AM]

In file ..\..\src\Pegasus\Common\Array.h:

template<class T> class Array
Array Class.

Documentation
Array Class. This clas is used to represent arrays of intrinsic data types in CIM. And it is
also used by the implementation to represent arrays of other kinds of objects (e.g., it is used
to implement the String class). However, the user will only use it directly to manipulate
arrays of CIM data types.

Inheritance:

Public Methods

Array ()
Default constructor
Array (const Array<T>& x)
Copy Constructor
Array (Uint32 size)
Constructs an array with size elements.
Array (Uint32 size, const T& x)
Constructs an array with size elements.
Array (const T* items, Uint32 size)
Constructs an array with size elements.
~Array ()
Destructs the objects, freeing any resources

Array<T> & operator= (const Array<T>& x)
Assignment operator

void clear ()
Clears the contents of the array.

void reserve (Uint32 capacity)
Reserves memory for capacity elements.

void grow (Uint32 size, const T& x)
Make the size of the array grow by size elements.

http://donald/MSB/Manual/Array.html (1 of 5) [5/5/2001 8:55:38 AM]

void swap (Array<T>& x)
Swaps the contents of two arrays

Uint32 size () const
Returns the number of elements in the array.

Uint32 getCapacity () const
Returns the capacity of the array

const T* getData () const
Returns a pointer to the first element of the array

T& operator[] (Uint32 pos)
Returns the element at the index given by the pos argument.

const T& operator[] (Uint32 pos) const
Same as the above method except that this is the version called on const arrays.

void append (const T& x)
Appends an element to the end of the array.

void append (const T* x, Uint32 size)
Appends size elements at x to the end of this array

void appendArray (const Array<T>& x)
Appends one array to another.

void prepend (const T& x)
Appends one element to the beginning of the array.

void prepend (const T* x, Uint32 size)
Appends size elements to the array starting at the memory address given by x.

void insert (Uint32 pos, const T& x)
Inserts the element at the given index in the array.

void insert (Uint32 pos, const T* x, Uint32 size)
Inserts size elements at x into the array at the given position.

void remove (Uint32 pos)
Removes the element at the given position from the array.

void remove (Uint32 pos, Uint32 size)
Removes size elements starting at the given position.

 Array()

Default constructor

 Array(const Array<T>& x)

Copy Constructor

 Array(Uint32 size)

Constructs an array with size elements. The elements are initialized with their copy constructor.

Parameters:
- size defines the number of elements

http://donald/MSB/Manual/Array.html (2 of 5) [5/5/2001 8:55:38 AM]

 Array(Uint32 size, const T& x)

Constructs an array with size elements. The elements are initialized with x.

 Array(const T* items, Uint32 size)

Constructs an array with size elements. The values come from the items pointer.

 ~Array()

Destructs the objects, freeing any resources

Array<T> & operator=(const Array<T>& x)

Assignment operator

void clear()

Clears the contents of the array. After calling this, size() returns zero.

void reserve(Uint32 capacity)

Reserves memory for capacity elements. Notice that this does not change the size of the array
(size() returns what it did before). If the capacity of the array is already greater or equal to the
capacity argument, this method has no effect. After calling reserve(), getCapacity() returns a value
which is greater or equal to the capacity argument.

Parameters:
capacity - defines the size that is to be reserved

void grow(Uint32 size, const T& x)

Make the size of the array grow by size elements. Thenew size will be size() + size. The new
elements (there are size of them) are initialized with x. @parm size defines the number of elements
by which the array is to grow.

void swap(Array<T>& x)

Swaps the contents of two arrays

Uint32 size() const

Returns the number of elements in the array.

Returns:
The number of elements in the array.

Uint32 getCapacity() const

Returns the capacity of the array

const T* getData() const

Returns a pointer to the first element of the array

T& operator[](Uint32 pos)

Returns the element at the index given by the pos argument.

Returns:
A reference to the elementdefined by index so that it may be modified.

http://donald/MSB/Manual/Array.html (3 of 5) [5/5/2001 8:55:38 AM]

const T& operator[](Uint32 pos) const

Same as the above method except that this is the version called on const arrays. The return value
cannot be modified since it is constant.

void append(const T& x)

Appends an element to the end of the array. This increases the size of the array by one.

Parameters:
Element - to append.

void append(const T* x, Uint32 size)

Appends size elements at x to the end of this array

void appendArray(const Array<T>& x)

Appends one array to another. The size of this array grows by the size of the other.

Parameters:
- Array to append.

void prepend(const T& x)

Appends one element to the beginning of the array. This increases the size by one.

Parameters:
Element - to prepend.

void prepend(const T* x, Uint32 size)

Appends size elements to the array starting at the memory address given by x. The array grows by
size elements.

void insert(Uint32 pos, const T& x)

Inserts the element at the given index in the array. Subsequent elements are moved down. The size
of the array grows by one.

void insert(Uint32 pos, const T* x, Uint32 size)

Inserts size elements at x into the array at the given position. Subsequent elements are moved
down. The size of the array grows by size elements.

void remove(Uint32 pos)

Removes the element at the given position from the array. The size of the array shrinks by one.

void remove(Uint32 pos, Uint32 size)

Removes size elements starting at the given position. The size of the array shrinks by size
elements.

This class has no child classes.
Friends:

CIMValue

http://donald/MSB/Manual/Array.html (4 of 5) [5/5/2001 8:55:38 AM]

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/Array.html (5 of 5) [5/5/2001 8:55:38 AM]

In file ..\..\src\Pegasus\Common\CIMClass.h:

class PEGASUS_COMMON_LINKAGE CIMClass
The CIMClass class is used to represent CIM classes in Pegasus.

Documentation
The CIMClass class is used to represent CIM classes in Pegasus. In CIM, a class object may
be a class or an associator. A CIM class must contain a name and may contain methods,
properties, and qualifiers. It is a template for creating a CIM instance. A CIM class
represents a collection of CIM instances, all of which support a common type (for example,
a set of properties, methods, and associations).

Inheritance:

Public Methods

CIMClass ()
Constructor - Creates an uninitiated a new CIM object reprenting a CIM class.
CIMClass (const CIMClass& x)
Constructor - Creates a class from a previous class

CIMClass& operator= (const CIMClass& x)
Operator = Assigns the CIM Class constructor
CIMClass (const String& className, const String& superClassName =
String())
Constructor - Creates a Class from inputs of a classname and SuperClassName
~CIMClass ()
Destructor

Boolean isAssociation () const
CIMMethod isAssociation - Identifies whether or not this CIM class is an
association.

Boolean isAbstract () const
CIMMethod isAbstract

const String& getClassName () const
CIMMethod Gets the name of the class ATTN: COMMENT.

const String& getSuperClassName () const
CIMMethod getSuperClassName - Gets the name of the Parent

http://donald/MSB/Manual/CIMClass.html (1 of 7) [5/5/2001 8:55:39 AM]

void setSuperClassName (const String& superClassName)
CIMMethod setSuperClassName - Sets the name of the parent class from the
input parameter.

CIMClass& addQualifier (const CIMQualifier& qualifier)
CIMMethod addQualifier - Adds the specified qualifier to the class and
increments the qualifier count.

Uint32 findQualifier (const String& name)
CIMMethod findQualifier - Finds a qualifier with the specified input name if it
exists in the class @param name CIMName of the qualifier to be found @return
Position of the qualifier in the Class ATTN: Clarify the return.

CIMQualifier getQualifier (Uint32 pos)
CIMMethod getQualifier - Gets the CIMQualifier object defined by the input
parameter

CIMConstQualifier getQualifier (Uint32 pos) const
CIMMethod getQualifier - ATTN:

Uint32 getQualifierCount () const
CIMMethod getQualifierCount - Returns the number of qualifiers in the class.

CIMClass& addProperty (const CIMProperty& x)
CIMMethod addProperty - Adds the specified property object to the properties
in the CIM class

void removeProperty (Uint32 pos)
CIMMethod removeProperty - Removes the property represented by the position
input parameter from the class

Uint32 findProperty (const String& name)
CIMMethod findProperty - Finds the property object with the name defined by
the input parameter in the class.

CIMProperty getProperty (Uint32 pos)
CIMMethod getProperty - Returns a property representing the property defined
by the input parameter

CIMConstProperty getProperty (Uint32 pos) const
CIMMethod getProperty - ATTN

Uint32 getPropertyCount () const
CIMMethod getProperty - Gets the count of the number of properties defined in
the class.

CIMClass& addMethod (const CIMMethod& x)
CIMMethod addMethod - Adds the method object defined by the input parameter
to the class and increments the count of the number of methods in the class

Uint32 findMethod (const String& name)
CIMMethod findMethod - Located the method object defined by the name input

CIMMethod getMethod (Uint32 pos)
CIMMethod getMethod - Gets the method object defined by the input parameter.

http://donald/MSB/Manual/CIMClass.html (2 of 7) [5/5/2001 8:55:39 AM]

CIMConstMethod getMethod (Uint32 pos) const
CIMMethod getMethod - ATTN:

Uint32 getMethodCount () const
CIMMethod getMethodCount - Count of the number of methods in the class

void resolve (DeclContext* declContext, const String& nameSpace)
CIMMethod Resolve - Resolve the class: inherit any properties and qualifiers.
operator int () const
operator - ATTN:

void toXml (Array<Sint8>& out) const
CIMMethod toXML

void print (std::ostream &o=std::cout) const
CIMMethod print

Boolean identical (const CIMConstClass& x) const
CIMMethod identical - Compares with another class ATTN: Clarify exactly what
identical means @parm Class object for the class to be compared

CIMClass clone () const
CIMMethod clone - ATTN:

 CIMClass()

Constructor - Creates an uninitiated a new CIM object reprenting a CIM class. The class object
created by this constructor can only be used in an operation such as the copy constructor. It cannot
be used to create a class by appending names, properties, etc. since it is unitiated.

Use one of the other constructors to create an initiated new CIM class object.

Throws:
Throws an exception "unitialized handle" if this unitialized handle is used
/REF(HPEGASUS_HANDLES)

 CIMClass(const CIMClass& x)

Constructor - Creates a class from a previous class

CIMClass& operator=(const CIMClass& x)

Operator = Assigns the CIM Class constructor

 CIMClass(const String& className, const String& superClassName =
String())

Constructor - Creates a Class from inputs of a classname and SuperClassName

Parameters:
className - - String representing name of the class being created
superClassName - - String representing name of the SuperClass ATTN: Define what makes
up legal name.

Returns:
Throws IllegalName if className argument illegal CIM identifier.

http://donald/MSB/Manual/CIMClass.html (3 of 7) [5/5/2001 8:55:39 AM]

CIMClass NewCass("MyClass", "YourClass");

 ~CIMClass()

Destructor

Boolean isAssociation() const

CIMMethod isAssociation - Identifies whether or not this CIM class is an association. An
association is a relationship between two (or more) classes or instances of two classes. The
properties of an association class include pointers, or references, to the two (or more) instances.
All CIM classes can be included in one or more associations. ATTN: Move the association
definition elsewhere

Returns:
Boolean True if this CIM class belongs to an association; otherwise, false.

Boolean isAbstract() const

CIMMethod isAbstract

const String& getClassName() const

CIMMethod Gets the name of the class ATTN: COMMENT. Why not just get name so we have
common method for all.

const String& getSuperClassName() const

CIMMethod getSuperClassName - Gets the name of the Parent

Returns:
String with parent class name.

void setSuperClassName(const String& superClassName)

CIMMethod setSuperClassName - Sets the name of the parent class from the input parameter.
\REF{CLASSNAME}. ATTN: Define legal classnames

Parameters:
- - String defining parent name.

Returns:
Throws IllegalName if superClassName argument not legal CIM identifier.

CIMClass& addQualifier(const CIMQualifier& qualifier)

CIMMethod addQualifier - Adds the specified qualifier to the class and increments the qualifier
count. It is illegal to add the same qualifier more than one time.

Parameters:
- - CIMQualifier object representing the qualifier to be added ATTN: Pointer to qualifier
object.

Returns:

http://donald/MSB/Manual/CIMClass.html (4 of 7) [5/5/2001 8:55:39 AM]

Throws AlreadyExists.

Uint32 findQualifier(const String& name)

CIMMethod findQualifier - Finds a qualifier with the specified input name if it exists in the class
@param name CIMName of the qualifier to be found @return Position of the qualifier in the Class
ATTN: Clarify the return. What if not found, etc.

CIMQualifier getQualifier(Uint32 pos)

CIMMethod getQualifier - Gets the CIMQualifier object defined by the input parameter

Parameters:
pos - defines the position of the qualifier in the class from the findQualifier method

Returns:
CIMQualifier object representing the qualifier found. ATTN: what is error return here?

CIMConstQualifier getQualifier(Uint32 pos) const

CIMMethod getQualifier - ATTN:

Uint32 getQualifierCount() const

CIMMethod getQualifierCount - Returns the number of qualifiers in the class.

Returns:
ATTN:

CIMClass& addProperty(const CIMProperty& x)

CIMMethod addProperty - Adds the specified property object to the properties in the CIM class

void removeProperty(Uint32 pos)

CIMMethod removeProperty - Removes the property represented by the position input parameter
from the class

Parameters:
position - parameter for the property to be removed from the findPropety method

Returns:
ATTN:

Uint32 findProperty(const String& name)

CIMMethod findProperty - Finds the property object with the name defined by the input parameter
in the class.

Parameters:
- String parameter with the property name.

Returns:
position representing the property object found. ATTN: Clarify case of not found

CIMProperty getProperty(Uint32 pos)

CIMMethod getProperty - Returns a property representing the property defined by the input

http://donald/MSB/Manual/CIMClass.html (5 of 7) [5/5/2001 8:55:39 AM]

parameter

Parameters:
position - for this property ATTN: Should we not use something like handle for position???

Returns:
CIMProperty object ATTN: what is error return?

CIMConstProperty getProperty(Uint32 pos) const

CIMMethod getProperty - ATTN

Uint32 getPropertyCount() const

CIMMethod getProperty - Gets the count of the number of properties defined in the class.

Returns:
count of number of proerties in the class

CIMClass& addMethod(const CIMMethod& x)

CIMMethod addMethod - Adds the method object defined by the input parameter to the class and
increments the count of the number of methods in the class

Parameters:
- - method object representing the method to be added

Uint32 findMethod(const String& name)

CIMMethod findMethod - Located the method object defined by the name input

Parameters:
- String representing the name of the method to be found

Returns:
Position of the method object in the class to be used in subsequent getmethod, etc.
operations

CIMMethod getMethod(Uint32 pos)

CIMMethod getMethod - Gets the method object defined by the input parameter.

Parameters:
ATTN - : @ method object representing the method defined ATTN: Error???

CIMConstMethod getMethod(Uint32 pos) const

CIMMethod getMethod - ATTN:

Uint32 getMethodCount() const

CIMMethod getMethodCount - Count of the number of methods in the class

Returns:
integer representing the number of methods in the class

void resolve(DeclContext* declContext, const String& nameSpace)

CIMMethod Resolve - Resolve the class: inherit any properties and qualifiers. Make sure the

http://donald/MSB/Manual/CIMClass.html (6 of 7) [5/5/2001 8:55:39 AM]

superClass really exists and is consistent with this class. Also set the propagated flag class-origin
for each class feature. ATTN: explain why this here

 operator int() const

operator - ATTN:

void toXml(Array<Sint8>& out) const

CIMMethod toXML

void print(std::ostream &o=std::cout) const

CIMMethod print

Boolean identical(const CIMConstClass& x) const

CIMMethod identical - Compares with another class ATTN: Clarify exactly what identical means
@parm Class object for the class to be compared

Returns:
True if the classes are identical

CIMClass clone() const

CIMMethod clone - ATTN:

This class has no child classes.
Friends:

class CIMConstClass

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/CIMClass.html (7 of 7) [5/5/2001 8:55:39 AM]

In file ..\..\src\Pegasus\Common\CIMClass.h:

class PEGASUS_COMMON_LINKAGE
CIMConstClass

CIMConstClass - ATTN: define this.

Documentation
CIMConstClass - ATTN: define this.

Inheritance:

This class has no child classes.
Friends:

class CIMClassRep
class CIMClass
class CIMInstanceRep

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/CIMConstClass.html [5/5/2001 8:55:40 AM]

In file ..\..\src\Pegasus\Common\CIMDateTime.h:

class PEGASUS_COMMON_LINKAGE CIMDateTime
The CIMDateTime class represents the CIM datetime data type as a C++ class CIMDateTime.

Documentation
The CIMDateTime class represents the CIM datetime data type as a C++ class CIMDateTime. A CIM datetime may contain a
date or an interval. CIMDateTime is an intrinsic CIM data type which represents the time as a formated fixedplength string.

 A date has the following form:
 yyyymmddhhmmss.mmmmmmsutc

 Where

 yyyy = year (0-1999)
 mm = month (1-12)
 dd = day (1-31)
 hh = hour (0-23)
 mm = minute (0-59)
 ss = second (0-59)
 mmmmmm = microseconds.
 s = '+' or '-' to represent the UTC sign.
 utc = UTC offset (same as GMT offset).

 An interval has the following form:

 ddddddddhhmmss.mmmmmm:000

 Where

 dddddddd = days
 hh = hours
 mm = minutes
 ss = seconds
 mmmmmm = microseconds

Note that intervals always end in ":000" (this is how they are distinguished from dates).

Intervals are really durations since they do not specify a start and end time (as one expects when speaking about an interval). It
is better to think of an interval as specifying time elapsed since some event.

CIMDateTime objects are constructed from C character strings or from other CIMDateTime objects. These character strings
must be exactly twenty-five characters and conform to one of the forms idententified above.

CIMDateTime objects which are not explicitly initialized will be implicitly initialized with the null time interval:

00000000000000.000000:000

Instances can be tested for nullness with the isNull() method.

ATTN: Add inequalities.

http://donald/MSB/Manual/CIMDateTime.html (1 of 3) [5/5/2001 8:55:41 AM]

Inheritance:

Public Fields

const CIMDateTime& x

Public Methods

CIMDateTime ()
CIMDateTime CIMMethod
CIMDateTime (const char* str)
CIMDateTime CIMMethod creates the CIM CIMDateTime from a string constant
CIMDateTime (const CIMDateTime& x)
CIMDateTime CIMMethod - Creates the CIMDateTime instance from another CIMDateTime instance

CIMDateTime& operator= (const CIMDateTime& x)
CIMDateTime method again

Boolean isNull () const
CIMDateTime isNull method - Tests for an all zero date time

 CIMDateTime dt; dtclear(); assert(dtisNull());

const char* getString () const
method getString

void set (const char* str)
method set - Sets the date time.

void clear ()
CIMDateTime method clear - Clears the datetime class instance

 CIMDateTime()

CIMDateTime CIMMethod

 CIMDateTime(const char* str)

CIMDateTime CIMMethod creates the CIM CIMDateTime from a string constant

 CIMDateTime(const CIMDateTime& x)

CIMDateTime CIMMethod - Creates the CIMDateTime instance from another CIMDateTime instance

CIMDateTime& operator=(const CIMDateTime& x)

CIMDateTime method again

Boolean isNull() const

CIMDateTime isNull method - Tests for an all zero date time

 CIMDateTime dt;
 dtclear();
 assert(dtisNull());

Returns:
This method returns true of the contents are "00000000000000.000000:000". Else it returns false

const char* getString() const

method getString

void set(const char* str)

method set - Sets the date time. Creates the CIMDateTime instance from the input string constant which must be in the datetime
format.

 CIMDateTime dt;

http://donald/MSB/Manual/CIMDateTime.html (2 of 3) [5/5/2001 8:55:41 AM]

 dt.set("19991224120000.000000+360");

Throws:
Throws exception BadDateTimeFormat on format error.

Returns:
On format error, CIMDateTime set throws the exception BadDateTimeFormat

void clear()

CIMDateTime method clear - Clears the datetime class instance

const CIMDateTime& x

This class has no child classes.
Friends:

Boolean operator==(

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/CIMDateTime.html (3 of 3) [5/5/2001 8:55:41 AM]

In file ..\..\src\Pegasus\Common\CIMInstance.h:

class PEGASUS_COMMON_LINKAGE CIMInstance
Class CIMInstance - The CIMInstance class represents the instance of a CIM class in
Pegasus.

Documentation
Class CIMInstance - The CIMInstance class represents the instance of a CIM class in
Pegasus. It is used manipulate instances and the characteristics of instances

Inheritance:

Public Methods

CIMInstance ()
Constructor - Create a CIM Instance object.
CIMInstance (const CIMInstance& x)
Constructor - Create a CIMInstance object from another Instance.

CIMInstance& operator= (const CIMInstance& x)
Constructor - ATTN
CIMInstance (const String& className)
Constructor - Creates an Instance object with the classname from the input
parameters
~CIMInstance ()
Destructor

const String& getClassName () const
getClassName - Returns the class name of the instance

CIMInstance& addQualifier (const CIMQualifier& qualifier)
addQualifier - Adds the CIMQualifier object to the instance.

Uint32 findQualifier (const String& name)
findQualifier - Searches the instance for the qualifier object defined by the
inputparameter.

CIMQualifier getQualifier (Uint32 pos)
getQualifier - Retrieves the qualifier object defined by the index input
parameter.

http://donald/MSB/Manual/CIMInstance.html (1 of 7) [5/5/2001 8:55:43 AM]

CIMConstQualifier getQualifier (Uint32 pos) const
getQualifier - Retrieves the qualifier object defined by the index input
parameter.

Uint32 getQualifierCount () const
getQualifierCount - Gets the numbercount of CIMQualifierobjects defined for
this CIMInstance.

CIMInstance& addProperty (const CIMProperty& x)
addProperty - Adds a property object defined by the input parameter to the
CIMInstance

Uint32 findProperty (const String& name)
findProperty - Searches the CIMProperty objects installed in the CIMInstance
for property objects with the name defined by the input.

CIMProperty getProperty (Uint32 pos)
getProperty - Gets the CIMproperty object in the CIMInstance defined by the
input index parameter.

CIMConstProperty getProperty (Uint32 pos) const
getProperty - Gets the CIMproperty object in the CIMInstance defined by the
input index parameter.

Uint32 getPropertyCount () const
getPropertyCount - Gets the numbercount of CIMProperty objects defined for
this CIMInstance.
operator int () const
operator int() - ATTN:

void resolve (DeclContext* declContext, const String& nameSpace)
resolve - ATTN:

void toXml (Array<Sint8>& out) const
toXml - Creates an XML transformation of the CIMInstance compatiblewith the
DMTF CIM Operations over HTTP defintions.

void print (std::ostream &o=std::cout) const
CIMMethod

Boolean identical (const CIMConstInstance& x) const
identical - Compares the CIMInstance with another CIMInstance defined by the
input parameter for equality of all components.

CIMInstance clone () const
CIMMethod

CIMReference getInstanceName (const CIMConstClass& cimClass) const
getInstnaceName - Get the instance name of this instance.

 CIMInstance()

Constructor - Create a CIM Instance object.

Returns:
Instance created

http://donald/MSB/Manual/CIMInstance.html (2 of 7) [5/5/2001 8:55:43 AM]

 CIMInstance(const CIMInstance& x)

Constructor - Create a CIMInstance object from another Instance.

Parameters:
Instance - object from which the new instance is created.

Returns:
New instance @example ATTN:

CIMInstance& operator=(const CIMInstance& x)

Constructor - ATTN

 CIMInstance(const String& className)

Constructor - Creates an Instance object with the classname from the input parameters

Throws:
Throws IllegalName if className argument not legal CIM identifier. ATTN: Clarify the
defintion of legal CIM identifier.

Parameters:
- - String className to be used with new instance object

Returns:
The new instance object

 ~CIMInstance()

Destructor

const String& getClassName() const

getClassName - Returns the class name of the instance

Returns:
String with the class name.

CIMInstance& addQualifier(const CIMQualifier& qualifier)

addQualifier - Adds the CIMQualifier object to the instance. Thows an exception of the
CIMQualifier already exists in the instance

Throws:
Throws AlreadyExists.

Parameters:
- CIMQualifier object to add to instance

Returns:
ATTN:

Uint32 findQualifier(const String& name)

findQualifier - Searches the instance for the qualifier object defined by the inputparameter.

Parameters:

http://donald/MSB/Manual/CIMInstance.html (3 of 7) [5/5/2001 8:55:43 AM]

- String defining the qualifier to be found

Returns:
- Index of the qualifier to be used in subsequent operations or -1 if the qualifier is not found.

CIMQualifier getQualifier(Uint32 pos)

getQualifier - Retrieves the qualifier object defined by the index input parameter. @ index for the
qualifier object. The index to qualifier objects is zero-origin and continuous so that incrementing
loops can be used to get all qualifier objects in a CIMInstnace.

Throws:
Throws the OutOfBounds exception if the index is out of bounds ATTN: What is effect of
out of range index???

Returns:
: Returns qualifier object defined by index.

CIMConstQualifier getQualifier(Uint32 pos) const

getQualifier - Retrieves the qualifier object defined by the index input parameter. @ index for the
qualifier object. The index to qualifier objects is zero-origin and continuous so that incrementing
loops can be used to get all qualifier objects in a CIMInstnace.

Throws:
Throws the OutOfBounds exception if the index is out of bounds ATTN: What is effect of
out of range index??? ATTN: Is the above statement correct???

Returns:
: Returns qualifier object defined by index.

Uint32 getQualifierCount() const

getQualifierCount - Gets the numbercount of CIMQualifierobjects defined for this CIMInstance.

Throws:
Throws the OutOfBounds exception if the index is out of bounds

Returns:
Count of the number of CIMQalifier objects in the CIMInstance.

CIMInstance& addProperty(const CIMProperty& x)

addProperty - Adds a property object defined by the input parameter to the CIMInstance

Throws:
Throws the exception AlreadyExists if the property already exists.

Parameters:
Property - Object to be added. See the CIM Property class for definition of the property
object

Returns:
ATTN:

Uint32 findProperty(const String& name)

http://donald/MSB/Manual/CIMInstance.html (4 of 7) [5/5/2001 8:55:43 AM]

findProperty - Searches the CIMProperty objects installed in the CIMInstance for property objects
with the name defined by the input.

Parameters:
- String with the name of the property object to be found

Returns:
Index in the CIM Instance to the property object if found or -1 if no property object found
with the name defined by the input.

CIMProperty getProperty(Uint32 pos)

getProperty - Gets the CIMproperty object in the CIMInstance defined by the input index
parameter.

Throws:
Throws the OutOfBounds exception if the index is out of bounds ATTN: What is the effect
of out of range?

Parameters:
Index - to the property object in the CIMInstance. The index to qualifier objects is
zero-origin and continuous so that incrementing loops can be used to get all qualifier objects
in a CIMInstnace.

Returns:
CIMProperty object corresponding to the index.

CIMConstProperty getProperty(Uint32 pos) const

getProperty - Gets the CIMproperty object in the CIMInstance defined by the input index
parameter.

Throws:
Throws the OutOfBounds exception if the index is out of bounds ATTN: What is the effect
of out of range?

Parameters:
Index - to the property object in the CIMInstance. The index to qualifier objects is
zero-origin and continuous so that incrementing loops can be used to get all qualifier objects
in a CIMInstnace.

Returns:
CIMProperty object corresponding to the index.

Uint32 getPropertyCount() const

getPropertyCount - Gets the numbercount of CIMProperty objects defined for this CIMInstance.

Throws:
Throws the OutOfBounds exception if the index is out of bounds

Returns:
Count of the number of CIMProperty objects in the CIMInstance. Zero indicates that no
CIMProperty objects are contained in the CIMInstance

http://donald/MSB/Manual/CIMInstance.html (5 of 7) [5/5/2001 8:55:43 AM]

 operator int() const

operator int() - ATTN:

void resolve(DeclContext* declContext, const String& nameSpace)

resolve - ATTN:

void toXml(Array<Sint8>& out) const

toXml - Creates an XML transformation of the CIMInstance compatiblewith the DMTF CIM
Operations over HTTP defintions.

Returns:
ATTN: This is incorrect and needs to be corrected.

void print(std::ostream &o=std::cout) const

CIMMethod

Boolean identical(const CIMConstInstance& x) const

identical - Compares the CIMInstance with another CIMInstance defined by the input parameter
for equality of all components.

Parameters:
- CIMInstance to be compared

Returns:
Boolean true if they are identical

CIMInstance clone() const

CIMMethod

CIMReference getInstanceName(const CIMConstClass& cimClass) const

getInstnaceName - Get the instance name of this instance. The class argument is used to determine
which fields are keys. The instance name has this from:

 ClassName.key1=value1,...,keyN=valueN

The instance name is in standard form (the class name and key name is all lowercase; the
keys-value pairs appear in sorted order by key name).

This class has no child classes.
Friends:

class CIMConstInstance

Alphabetic index HTML hierarchy of classes or Java

http://donald/MSB/Manual/CIMInstance.html (6 of 7) [5/5/2001 8:55:43 AM]

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/CIMInstance.html (7 of 7) [5/5/2001 8:55:43 AM]

In file ..\..\src\Pegasus\Common\CIMMethod.h:

class PEGASUS_COMMON_LINKAGE CIMMethod
Class CIMMethod - This class defines the operations associated with manipulation of the
Pegasus implementation of the CIM CIMMethod.

Documentation
Class CIMMethod - This class defines the operations associated with manipulation of the
Pegasus implementation of the CIM CIMMethod. Within this class, methods are provides
for creation, deletion, and manipulation of method declarations.

// ATTN: remove the classOrigin and propagated parameters.

Inheritance:

Public Methods

CIMMethod ()
Creates and instantiates a CIM method.
CIMMethod (const CIMMethod& x)
Creates and instantiates a CIM method from another method instance

CIMMethod& operator= (const CIMMethod& x)
Assignment operator
CIMMethod (const String& name, CIMType type, const String& classOrigin
= String(), Boolean propagated = false)
Creates a CIM method with the specified name, type, and classOrigin
~CIMMethod ()
Desctructor.

const String& getName () const
CIMMethod getName - Gets the name of the method

void setName (const String& name)
CIMMethod setName - Set the method name

CIMType getType () const
CIMMethod getType - gets the method type

void setType (CIMType type)
CIMMethod setType - Sets the method type to the specified CIM method type as
defined in CIMType /Ref{TYPE}

http://donald/MSB/Manual/CIMMethod.html (1 of 6) [5/5/2001 8:55:44 AM]

const String& getClassOrigin () const
CIMMethod getClassOrigin - Returns the class in which this method was
defined.

void setClassOrigin (const String& classOrigin)
CIMMethod setClassOrigin - ATTN:

Boolean getPropagated () const
method getPropagated - ATTN:

void setPropagated (Boolean propagated)
method setPropagated - ATTN:

CIMMethod& addQualifier (const CIMQualifier& x)
CIMMethod addQualifier - @parm CIMQualifier to add

Uint32 findQualifier (const String& name)
CIMMethod findQualifier - returns the position of the qualifier with the given
name.

CIMQualifier getQualifier (Uint32 pos)
CIMMethod getQualifier - Gets the CIMQualifier defined by the index input as
a parameter.

Uint32 getQualifierCount () const
CIMMethod getQualifierCount - Returns the number of Qualifiers attached to
this method.

CIMMethod& addParameter (const CIMParameter& x)
CIMMethod addParameter - Adds the parameter defined by the input to the
CIMMethod

Uint32 findParameter (const String& name)
CIMMethod findParameter - Finds the parameter whose name is given by the
name parameter.

CIMParameter getParameter (Uint32 pos)
CIMMethod getParameter - ATTN:

CIMConstParameter getParameter (Uint32 pos) const
CIMMethod getParameter - Gets the parameter defined by the index input as a
parameter.

Uint32 getParameterCount () const
CIMMethod getParameterCount - Gets the count of the numbeer of Parameters
attached to the CIMMethod.

void resolve (DeclContext* declContext, const String& nameSpace, const
CIMConstMethod& method)
method resolve - ATTN:

void resolve (DeclContext* declContext, const String& nameSpace)
CIMMethod resolve
operator int () const
Returns zero if CIMMethod refers to a null pointer

http://donald/MSB/Manual/CIMMethod.html (2 of 6) [5/5/2001 8:55:44 AM]

void toXml (Array<Sint8>& out) const
method toXML - placing XML encoding of this object into out arguemnt.

void print (std::ostream &o=std::cout) const
method print - prints this method (in CIM encoded form).

Boolean identical (const CIMConstMethod& x) const
CIMMethod identical - Returns true if this method is identical to the one given
by the argument x

CIMMethod clone () const
CIMMethod clone - makes a distinct replica of this method

 CIMMethod()

Creates and instantiates a CIM method.

 CIMMethod(const CIMMethod& x)

Creates and instantiates a CIM method from another method instance

Returns:
pointer to the new method instance

CIMMethod& operator=(const CIMMethod& x)

Assignment operator

 CIMMethod(const String& name, CIMType type, const String&
classOrigin = String(), Boolean propagated = false)

Creates a CIM method with the specified name, type, and classOrigin

Parameters:
name - for the method
type - ATTN
classOrigin -
propagated -

Returns:
Throws IllegalName if name argument not legal CIM identifier.

 ~CIMMethod()

Desctructor.

const String& getName() const

CIMMethod getName - Gets the name of the method

Returns:
String with the name of the method

void setName(const String& name)

CIMMethod setName - Set the method name

Throws:

http://donald/MSB/Manual/CIMMethod.html (3 of 6) [5/5/2001 8:55:44 AM]

IllegalName if name argument not legal CIM identifier.

Parameters:
name -

CIMType getType() const

CIMMethod getType - gets the method type

Returns:
The CIM method type for this method.

void setType(CIMType type)

CIMMethod setType - Sets the method type to the specified CIM method type as defined in
CIMType /Ref{TYPE}

const String& getClassOrigin() const

CIMMethod getClassOrigin - Returns the class in which this method was defined.

Returns:
ATTN:

void setClassOrigin(const String& classOrigin)

CIMMethod setClassOrigin - ATTN:

Boolean getPropagated() const

method getPropagated - ATTN:

void setPropagated(Boolean propagated)

method setPropagated - ATTN:

CIMMethod& addQualifier(const CIMQualifier& x)

CIMMethod addQualifier - @parm CIMQualifier to add

Throws:
AlreadyExists exception

Parameters:
- CIMQualifier to be added

Returns:
Throws AlreadyExists excetpion if the qualifier already exists in the method

Uint32 findQualifier(const String& name)

CIMMethod findQualifier - returns the position of the qualifier with the given name.

Parameters:
name - - name of qualifier to be found.

Returns:
index of the parameter if found; otherwise Uint32(-1).

http://donald/MSB/Manual/CIMMethod.html (4 of 6) [5/5/2001 8:55:44 AM]

CIMQualifier getQualifier(Uint32 pos)

CIMMethod getQualifier - Gets the CIMQualifier defined by the index input as a parameter.

Throws:
OutOfBounds exception if the index is outside the range of parameters available from the
CIMMethod.

Parameters:
Index - of the qualifier requested.

Returns:
CIMQualifier object or exception

Uint32 getQualifierCount() const

CIMMethod getQualifierCount - Returns the number of Qualifiers attached to this method.

Returns:
integer representing number of Qualifiers.

CIMMethod& addParameter(const CIMParameter& x)

CIMMethod addParameter - Adds the parameter defined by the input to the CIMMethod

Uint32 findParameter(const String& name)

CIMMethod findParameter - Finds the parameter whose name is given by the name parameter.

Parameters:
name - - name of parameter to be found.

Returns:
index of the parameter if found; otherwise Uint32(-1).

CIMParameter getParameter(Uint32 pos)

CIMMethod getParameter - ATTN:

CIMConstParameter getParameter(Uint32 pos) const

CIMMethod getParameter - Gets the parameter defined by the index input as a parameter.

Parameters:
index - for the parameter to be returned.

Returns:
CIMParameter requested. @Exception OutOfBounds exception is thrown if the index is
outside the range of available parameters

Uint32 getParameterCount() const

CIMMethod getParameterCount - Gets the count of the numbeer of Parameters attached to the
CIMMethod. @retrun - count of the number of parameters attached to the CIMMethod.

void resolve(DeclContext* declContext, const String& nameSpace,
const CIMConstMethod& method)

http://donald/MSB/Manual/CIMMethod.html (5 of 6) [5/5/2001 8:55:44 AM]

method resolve - ATTN:

void resolve(DeclContext* declContext, const String& nameSpace)

CIMMethod resolve

 operator int() const

Returns zero if CIMMethod refers to a null pointer

void toXml(Array<Sint8>& out) const

method toXML - placing XML encoding of this object into out arguemnt.

void print(std::ostream &o=std::cout) const

method print - prints this method (in CIM encoded form).

Boolean identical(const CIMConstMethod& x) const

CIMMethod identical - Returns true if this method is identical to the one given by the argument x

CIMMethod clone() const

CIMMethod clone - makes a distinct replica of this method

This class has no child classes.
Friends:

class CIMConstMethod
class CIMClassRep

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/CIMMethod.html (6 of 6) [5/5/2001 8:55:44 AM]

In file ..\..\src\Pegasus\Common\CIMName.h:

class PEGASUS_COMMON_LINKAGE CIMName
The name class defines static methods for handling CIM names.

Documentation
The name class defines static methods for handling CIM names. The names of classes,
properties, qualifiers, and methods are all CIM names. A CIM name must match the
following regular expression:

 [A-Z-a-z_][A-Za-z_0-9]*

Notice that the definition of a name is the same as C, C++, and Java.

This class cannot be instantiated (since its only constructor is private).

Inheritance:

Public Methods

static Boolean legal (const Char16* name)
CIMMethod legal - Determine if the name string input is legal as defnined in the
CIMName class definition ATTN: Define what is legal

static Boolean legal (const String& name)
CIMMethod legal - Determine if the name string input is legal as defnined in the
CIMName class definition

static Boolean equal (const String& name1, const String& name2)
CIMMethod equal - Compares two names.

static Boolean legal(const Char16* name)

CIMMethod legal - Determine if the name string input is legal as defnined in the CIMName class
definition ATTN: Define what is legal

Parameters:
- - String to test

Returns:

http://donald/MSB/Manual/CIMName.html (1 of 2) [5/5/2001 8:55:45 AM]

Returns true if the given name is legal. Throws NullPointer exception if name argument is
null.

static Boolean legal(const String& name)

CIMMethod legal - Determine if the name string input is legal as defnined in the CIMName class
definition

Parameters:
- - String to test

Returns:
Returns true if the given name is legal. Throws NullPointer exception if name argument is
null.

static Boolean equal(const String& name1, const String& name2)

CIMMethod equal - Compares two names.

Returns:
Return true if the two names are equal. CIM names are case insensitive and so it this
method.

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/CIMName.html (2 of 2) [5/5/2001 8:55:45 AM]

In file ..\..\src\Pegasus\Common\CIMProperty.h:

class PEGASUS_COMMON_LINKAGE CIMProperty
CIMProperty Class - ATTN:

Documentation
CIMProperty Class - ATTN:

Inheritance:

Public Methods

CIMProperty ()
CIMMethod CIMProperty
CIMProperty (const CIMProperty& x)
CIMMethod CIMProperty
CIMProperty (const String& name, const CIMValue& value, Uint32 arraySize
= 0, const String& referenceClassName = String::EMPTY, const String&
classOrigin = String(), Boolean propagated = false)
CIMMethod CIMProperty

CIMProperty& operator= (const CIMProperty& x)
CIMMethod

const String& getName () const
CIMMethod

void setName (const String& name)
CIMMethod setName - Set the property name.

const CIMValue& getValue () const
CIMMethod getValue - ATTN:

void setValue (const CIMValue& value)
CIMMethod setValue - ATTN

Uint32 getArraySize () const
CIMMethod getArraySize - ATTN:

const String& getReferenceClassName () const
CIMMethod getReferenceClassName - ATTN:

const String& getClassOrigin () const
CIMMethod getClassOrigin - ATTN

http://donald/MSB/Manual/CIMProperty.html (1 of 4) [5/5/2001 8:55:46 AM]

void setClassOrigin (const String& classOrigin)
CIMMethod setClassOrigin

Boolean getPropagated () const
CIMMethod getPropagated - ATTN

void setPropagated (Boolean propagated)
CIMMethod setProgagated - ATTN

CIMProperty& addQualifier (const CIMQualifier& x)
CIMMethod addQualifier - ATTN Throws AlreadyExists

Uint32 findQualifier (const String& name)
CIMMethod findQualifier - ATTN

CIMQualifier getQualifier (Uint32 pos)
CIMMethod getQualifier - ATTN

CIMConstQualifier getQualifier (Uint32 pos) const
CIMMethod getQualifier - ATTN

Uint32 getQualifierCount () const
CIMMethod getQualifier - ATTN

void resolve (DeclContext* declContext, const String& nameSpace, Boolean
isInstancePart, const CIMConstProperty& property)
CIMMethod resolve

void resolve (DeclContext* declContext, const String& nameSpace, Boolean
isInstancePart)
CIMMethod resolve - ATTN
operator int () const
ATTN

void toXml (Array<Sint8>& out) const
mthod toXML

void print (std::ostream &o=std::cout) const
mthod print -ATTN

Boolean identical (const CIMConstProperty& x) const
CIMMethod identical - ATTN

CIMProperty clone () const
CIMMethod clone - ATTN

 CIMProperty()

CIMMethod CIMProperty

 CIMProperty(const CIMProperty& x)

CIMMethod CIMProperty

 CIMProperty(const String& name, const CIMValue& value, Uint32
arraySize = 0, const String& referenceClassName = String::EMPTY, const
String& classOrigin = String(), Boolean propagated = false)

http://donald/MSB/Manual/CIMProperty.html (2 of 4) [5/5/2001 8:55:46 AM]

CIMMethod CIMProperty

Returns:
Throws IllegalName if name argument not legal CIM identifier.

CIMProperty& operator=(const CIMProperty& x)

CIMMethod

const String& getName() const

CIMMethod

void setName(const String& name)

CIMMethod setName - Set the property name. Throws IllegalName if name argument not legal
CIM identifier.

const CIMValue& getValue() const

CIMMethod getValue - ATTN:

void setValue(const CIMValue& value)

CIMMethod setValue - ATTN

Uint32 getArraySize() const

CIMMethod getArraySize - ATTN:

const String& getReferenceClassName() const

CIMMethod getReferenceClassName - ATTN:

const String& getClassOrigin() const

CIMMethod getClassOrigin - ATTN

void setClassOrigin(const String& classOrigin)

CIMMethod setClassOrigin

Boolean getPropagated() const

CIMMethod getPropagated - ATTN

void setPropagated(Boolean propagated)

CIMMethod setProgagated - ATTN

CIMProperty& addQualifier(const CIMQualifier& x)

CIMMethod addQualifier - ATTN Throws AlreadyExists

Uint32 findQualifier(const String& name)

CIMMethod findQualifier - ATTN

CIMQualifier getQualifier(Uint32 pos)

CIMMethod getQualifier - ATTN

CIMConstQualifier getQualifier(Uint32 pos) const

http://donald/MSB/Manual/CIMProperty.html (3 of 4) [5/5/2001 8:55:46 AM]

CIMMethod getQualifier - ATTN

Uint32 getQualifierCount() const

CIMMethod getQualifier - ATTN

void resolve(DeclContext* declContext, const String& nameSpace,
Boolean isInstancePart, const CIMConstProperty& property)

CIMMethod resolve

void resolve(DeclContext* declContext, const String& nameSpace,
Boolean isInstancePart)

CIMMethod resolve - ATTN

 operator int() const

ATTN

void toXml(Array<Sint8>& out) const

mthod toXML

void print(std::ostream &o=std::cout) const

mthod print -ATTN

Boolean identical(const CIMConstProperty& x) const

CIMMethod identical - ATTN

CIMProperty clone() const

CIMMethod clone - ATTN

This class has no child classes.
Friends:

class CIMConstProperty
class CIMClassRep
class CIMInstanceRep

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/CIMProperty.html (4 of 4) [5/5/2001 8:55:46 AM]

In file ..\..\src\Pegasus\Common\CIMQualifier.h:

class PEGASUS_COMMON_LINKAGE CIMQualifier
Class CIMQualifier - This class defines the Pegasus implementation of the CIM
CIMQualifier QUALIFIER

Documentation
Class CIMQualifier - This class defines the Pegasus implementation of the CIM
CIMQualifier QUALIFIER

Inheritance:

Public Methods

CIMQualifier ()
Constructor instantiates a CIM qualifier with empty name value fieldsConstructor
CIMQualifier (const CIMQualifier& x)
Constructor - instantiates a CIM qualifier object from another qualifier object.
CIMQualifier (const String& name, const CIMValue& value, Uint32 flavor =
CIMFlavor::DEFAULTS, Boolean propagated = false)
Constructor - Instantiates a CIM qualifier object with the parameters defined on
input.
~CIMQualifier ()
destructor

CIMQualifier& operator= (const CIMQualifier& x)
operator

const String& getName () const
CIMMethod

void setName (const String& name)
CIMMethod Throws IllegalName if name argument not legal CIM identifier

CIMType getType () const
CIMMethod

Boolean isArray () const
CIMMethod

const CIMValue& getValue () const
CIMMethod

http://donald/MSB/Manual/CIMQualifier.html (1 of 4) [5/5/2001 8:55:46 AM]

void setValue (const CIMValue& value)
CIMMethod

Uint32 getFlavor () const
CIMMethod

const Uint32 getPropagated () const
CIMMethod

void setPropagated (Boolean propagated)
CIMMethod
operator int () const
CIMMethod

void toXml (Array<Sint8>& out) const
CIMMethod

void print (std::ostream &o=std::cout) const
CIMMethod

Boolean identical (const CIMConstQualifier& x) const
CIMMethod

CIMQualifier clone () const
CIMMethod

 CIMQualifier()

Constructor instantiates a CIM qualifier with empty name value fieldsConstructor

Returns:
instantiated empty qualifier object

 CIMQualifier(const CIMQualifier& x)

Constructor - instantiates a CIM qualifier object from another qualifier object.

Parameters:
CIM - CIMQualifier object ATTN: What is differenc from clone?

Returns:
- Instantiated qualifier object

 CIMQualifier(const String& name, const CIMValue& value, Uint32
flavor = CIMFlavor::DEFAULTS, Boolean propagated = false)

Constructor - Instantiates a CIM qualifier object with the parameters defined on input.

Throws:
Throws IllegalName if name argument not legal CIM identifier.

Parameters:
- String representing CIMName for the new qualifier
value -
flavor - - ATTN:
propoagated - - ATTN:

http://donald/MSB/Manual/CIMQualifier.html (2 of 4) [5/5/2001 8:55:46 AM]

Returns:
-Returns the instantiated qualifier object or throws an exception if the name argument is
illegal

 ~CIMQualifier()

destructor

CIMQualifier& operator=(const CIMQualifier& x)

operator

const String& getName() const

CIMMethod

void setName(const String& name)

CIMMethod Throws IllegalName if name argument not legal CIM identifier

CIMType getType() const

CIMMethod

Boolean isArray() const

CIMMethod

const CIMValue& getValue() const

CIMMethod

void setValue(const CIMValue& value)

CIMMethod

Uint32 getFlavor() const

CIMMethod

const Uint32 getPropagated() const

CIMMethod

void setPropagated(Boolean propagated)

CIMMethod

 operator int() const

CIMMethod

void toXml(Array<Sint8>& out) const

CIMMethod

void print(std::ostream &o=std::cout) const

CIMMethod

Boolean identical(const CIMConstQualifier& x) const

CIMMethod

http://donald/MSB/Manual/CIMQualifier.html (3 of 4) [5/5/2001 8:55:46 AM]

CIMQualifier clone() const

CIMMethod

This class has no child classes.
Friends:

class CIMConstQualifier
class CIMClassRep

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/CIMQualifier.html (4 of 4) [5/5/2001 8:55:46 AM]

In file ..\..\src\Pegasus\Common\CIMQualifierDecl.h:

class PEGASUS_COMMON_LINKAGE
CIMQualifierDecl

Class CIMQualifierDecl

Documentation
Class CIMQualifierDecl

NOTE: Clarify difference between qualifier and qualiferdeclaration ATTN: Important work
required here.

Inheritance:

Public Methods

CIMQualifierDecl ()
Constructor - ATTN:
CIMQualifierDecl (const CIMQualifierDecl& x)
Constructor - ATTN:
CIMQualifierDecl (const String& name, const CIMValue& value, Uint32
scope, Uint32 flavor = CIMFlavor::DEFAULTS, Uint32 arraySize = 0)
Constructor Throws IllegalName if name argument not legal CIM identifier.
~CIMQualifierDecl ()
Destructor

CIMQualifierDecl& operator= (const CIMQualifierDecl& x)
Operator

const String& getName () const
CIMMethod ATTN:

void setName (const String& name)
CIMMethod ATTN:

CIMType getType () const
CIMMethod ATTN:

Boolean isArray () const
CIMMethod ATTN:

const CIMValue& getValue () const
CIMMethod

http://donald/MSB/Manual/CIMQualifierDecl.html (1 of 3) [5/5/2001 8:55:48 AM]

void setValue (const CIMValue& value)
CIMMethod

Uint32 getScope () const
CIMMethod

Uint32 getFlavor () const
CIMMethod

Uint32 getArraySize () const
CIMMethod
operator int () const
CIMMethod

void toXml (Array<Sint8>& out) const
CIMMethod

void print (std::ostream &o=std::cout) const
CIMMethod

Boolean identical (const CIMConstQualifierDecl& x) const
CIMMethod

CIMQualifierDecl clone () const
CIMMethod

 CIMQualifierDecl()

Constructor - ATTN:

 CIMQualifierDecl(const CIMQualifierDecl& x)

Constructor - ATTN:

 CIMQualifierDecl(const String& name, const CIMValue& value, Uint32
scope, Uint32 flavor = CIMFlavor::DEFAULTS, Uint32 arraySize = 0)

Constructor Throws IllegalName if name argument not legal CIM identifier. ATTN:

 ~CIMQualifierDecl()

Destructor

CIMQualifierDecl& operator=(const CIMQualifierDecl& x)

Operator

const String& getName() const

CIMMethod ATTN:

void setName(const String& name)

CIMMethod ATTN:

CIMType getType() const

CIMMethod ATTN:

Boolean isArray() const

http://donald/MSB/Manual/CIMQualifierDecl.html (2 of 3) [5/5/2001 8:55:48 AM]

CIMMethod ATTN:

const CIMValue& getValue() const

CIMMethod

void setValue(const CIMValue& value)

CIMMethod

Uint32 getScope() const

CIMMethod

Uint32 getFlavor() const

CIMMethod

Uint32 getArraySize() const

CIMMethod

 operator int() const

CIMMethod

void toXml(Array<Sint8>& out) const

CIMMethod

void print(std::ostream &o=std::cout) const

CIMMethod

Boolean identical(const CIMConstQualifierDecl& x) const

CIMMethod

CIMQualifierDecl clone() const

CIMMethod

This class has no child classes.
Friends:

class CIMConstQualifierDecl
class CIMClassRep

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/CIMQualifierDecl.html (3 of 3) [5/5/2001 8:55:48 AM]

In file ..\..\src\Pegasus\Common\CIMReference.h:

class PEGASUS_COMMON_LINKAGE CIMReference
The CIMReference class represents the value of a reference.

Documentation
The CIMReference class represents the value of a reference. A reference is one of property types which an
association may contain. Consider the following MOF for example:

 [Association]
 class MyAssociations
 {
 MyClass ref from;
 MyClass ref to;
 };

The value of the from and to properties are internally represented using the CIMReference class.

CIM references are used to uniquely identify a CIM class or CIM instance objects. CIMReference objects
contain the following parts:

Host - name of host whose repository contains the object●

NameSpace - the namespace which contains the object●

ClassName - name of objects class●

KeyBindings key/value pairs which uniquely identify an instance●

CIM references may also be expressed as simple strings (as opposed to being represented by the CIMReference
class). This string is known as the "Object Name". An object name has the following form:

 <namespace-path>:<model-path>

The namespace-path is implementation dependent and has the following form in Pegasus:

 //<hostname>>/<namespace>>

For example, suppose there is a host named "atp" with a CIM Server listening on port 9999 which has a CIM
repository with a namespace called "root/cimv25". Then the namespace-path is given as:

 //atp:9999/root/cimv25

As for the model-path mentioned above, its form is defined by the CIM Standard (more is defined by the "XML
Mapping Specification v2.0.0" specification) as follows:

 <Qualifyingclass>.<key-1>=<value-1>[,<key-n>=<value-n>]*

For example:

http://donald/MSB/Manual/CIMReference.html (1 of 7) [5/5/2001 8:55:49 AM]

 TennisPlayer.first="Patrick",last="Rafter"

This of course presupposes the existence of a class called "MyClass" that has key properties named "first" and
"last". For example, here is what the MOF might look like:

 class TennisPlayer : Person
 {
 [key] string first;
 [key] string last;
 };

All keys must be present in the model path.

Now the namespace-type and model-path are combined in the following string object name.

//atp:9999/root/cimv25:TennisPlayer.first="Patrick",last="Rafter"

Now suppose we wish to create a CIMReference from this above string. There are two constructors provided:
one which takes the above string and the other that takes the constituent elements. Here are the signature of the
two constructors:

 CIMReference(const String& objectName);

 CIMReference(
 const String& host,
 const String& nameSpace,
 const String& className,
 const KeyBindingArray& keyBindings);

Following our example, the above object name may be used to initialize a CIMReference like this:

 CIMReference ref =
 "//atp:9999/root/cimv25:TennisPlayer.first="Patrick",last="Rafter";

A CIMReference may also be initialized using the constituent elements of the object name (sometimes the
object name is not available as a string: this is the case with CIM XML encodings). The arguments shown in
that constructor above correspond elements of the object name in the following way:

host = "atp:9999"●

nameSpace = "root/cimv25"●

className = "TennisPlayer"●

keyBindings = "first=\"Patrick\",last=\"Rafter\""●

Note that the host and nameSpace argument may be empty since object names need not necessarily include a
namespace path according to the standard.

Of course the key bindings must be built up by appending KeyBinding objects to a KeyBindingArray like this:

 KeyBindingArray keyBindings;
 keyBindings.append(KeyBinding("first", "Patrick", KeyBinding::STRING));
 keyBindings.append(KeyBinding("last", "Rafter", KeyBinding::STRING));

http://donald/MSB/Manual/CIMReference.html (2 of 7) [5/5/2001 8:55:49 AM]

The only key values that are supported are:

KeyBinding::BOOLEAN●

KeyBinding::STRING●

KeyBinding::NUMERIC●

This limitation is imposed by the "XML Mapping Specification v2.0.0" specification. The CIM types are
encoded as one of these three in the following way:

 boolean - BOOLEAN (the value must be "true" or "false")
 uint8 - NUMERIC
 sint8 - NUMERIC
 uint16 - NUMERIC
 sint16 - NUMERIC
 uint32 - NUMERIC
 sint32 - NUMERIC
 uint64 - NUMERIC
 sint64 - NUMERIC
 char16 - NUMERIC
 string - STRING
 datetime - STRING

Notice that real32 and real64 are missing. Properties of these types cannot be used as keys.

Notice that the keys in the object name may appear in any order. That is the following object names refer to the
same object:

 TennisPlayer.first="Patrick",last="Rafter"
 TennisPlayer.last="Rafter",first="Patrick"

And since CIM is not case sensitive, the following refer to the same object:

 TennisPlayer.first="Patrick",last="Rafter"
 tennisplayer.FIRST="Patrick",Last="Rafter"

Therefore, the CIMReferences::operator==() would return true for the last two examples.

The CIM standard leaves it an open question whether model paths may have spaces around delimiters (like '.',
'=', and ','). We assume they cannot. So the following is an invalid model path:

 TennisPlayer . first = "Patrick", last="Rafter"

We require that the '.', '=', and ',' have no spaces around them.

For reasons of efficiency, the key bindings are internally sorted during initialization. This allows the key
bindings to be compared more easily. This means that when the string is converted back to string (by calling
toString()) that the keys may have been rearranged.

There are two forms an object name can take:

 <namespace-path>:<model-path>

http://donald/MSB/Manual/CIMReference.html (3 of 7) [5/5/2001 8:55:49 AM]

 <model-path>

In other words, the namespace-path is optional. Here is an example of each:

 //atp:9999/root/cimv25:TennisPlayer.first="Patrick",last="Rafter"
 TennisPlayer.first="Patrick",last="Rafter"

If it begins with "//" then we assume the namespace-path is present and process it that way.

It should also be noted that an object name may refer to an instance or a class. Here is an example of each:

 TennisPlayer.first="Patrick",last="Rafter"
 TennisPlayer

In the second case--when it refers to a class--the key bindings are omitted.

Inheritance:

Public Methods

CIMReference ()
Default constructor.
CIMReference (const CIMReference& x)
Copy constructor.
CIMReference (const String& objectName)
Initializes this object from a CIM object name.
CIMReference (const char* objectName)
Initializes this object from a CIM object name (char* version).
CIMReference (const String& host, const String& nameSpace, const String&
className, const KeyBindingArray& keyBindings = KeyBindingArray())
Constructs a CIMReference from constituent elements.

virtual ~CIMReference ()
Destructor

CIMReference& operator= (const CIMReference& x)
Assignment operator

void clear ()
Clears out the internal fields of this object making it an empty (or unitialized reference).

void set (const String& host, const String& nameSpace, const String& className, const
KeyBindingArray& keyBindings = KeyBindingArray())
Sets this reference from constituent elements.

void set (const String& objectName)
Set the reference from an object name .

CIMReference& operator= (const String& objectName)
Same as set() above except that it is an assignment operator

http://donald/MSB/Manual/CIMReference.html (4 of 7) [5/5/2001 8:55:49 AM]

CIMReference& operator= (const char* objectName)
Same as set() above except that it is an assignment operator

const String& getHost () const
Accessor.

void setHost (const String& host)
Modifier.

const String& getNameSpace () const
Accessor

void setNameSpace (const String& nameSpace)
Sets the namespace component.

const String& getClassName () const
Accessor.

void setClassName (const String& className)
Sets the class name component to the following string.

const Array<KeyBinding> & getKeyBindings () const
Accessor.

void setKeyBindings (const Array<KeyBinding>& keyBindings)
Modifier.

String toString () const
Returns the object name represented by this reference.

Boolean identical (const CIMReference& x) const
Returns true if this reference is identical to the one given by the x argument

void toXml (Array<Sint8>& out) const
Encodes this object as XML.

void print (std::ostream& os = std::cout) const
Prints the XML encoding of this objet

Uint32 makeHashCode () const
Generates hash code for the given reference.

 CIMReference()

Default constructor.

 CIMReference(const CIMReference& x)

Copy constructor.

 CIMReference(const String& objectName)

Initializes this object from a CIM object name.

 CIMReference(const char* objectName)

Initializes this object from a CIM object name (char* version).

 CIMReference(const String& host, const String& nameSpace, const String&
className, const KeyBindingArray& keyBindings = KeyBindingArray())

Constructs a CIMReference from constituent elements.

Parameters:
host - - name of host (e.g., "nemesis-8888").
nameSpace - - namespace (e.g., "root/cimv20").
className - - name of a class (e.g., "MyClass").
keyBindings - - an array of KeyBinding objects.

virtual ~CIMReference()

http://donald/MSB/Manual/CIMReference.html (5 of 7) [5/5/2001 8:55:49 AM]

Destructor

CIMReference& operator=(const CIMReference& x)

Assignment operator

void clear()

Clears out the internal fields of this object making it an empty (or unitialized reference). The effect is the same as if
the object was initialized with the default constructor.

void set(const String& host, const String& nameSpace, const String& className,
const KeyBindingArray& keyBindings = KeyBindingArray())

Sets this reference from constituent elements. The effect is same as if the object was initialized using the constructor
above that has the same arguments.

void set(const String& objectName)

Set the reference from an object name .

CIMReference& operator=(const String& objectName)

Same as set() above except that it is an assignment operator

CIMReference& operator=(const char* objectName)

Same as set() above except that it is an assignment operator

const String& getHost() const

Accessor.

void setHost(const String& host)

Modifier.

const String& getNameSpace() const

Accessor

void setNameSpace(const String& nameSpace)

Sets the namespace component.

Throws:
Throws IllegalName if form of the namespace is illegal.

Parameters:
- String representing the Namespace

const String& getClassName() const

Accessor.

void setClassName(const String& className)

Sets the class name component to the following string.

Throws:
Throws IllegalName if form of className is illegal.

const Array<KeyBinding> & getKeyBindings() const

Accessor.

void setKeyBindings(const Array<KeyBinding>& keyBindings)

Modifier.

String toString() const

Returns the object name represented by this reference.

http://donald/MSB/Manual/CIMReference.html (6 of 7) [5/5/2001 8:55:49 AM]

Boolean identical(const CIMReference& x) const

Returns true if this reference is identical to the one given by the x argument

void toXml(Array<Sint8>& out) const

Encodes this object as XML.

Parameters:
out - - argument to place resulting XML into.

void print(std::ostream& os = std::cout) const

Prints the XML encoding of this objet

Uint32 makeHashCode() const

Generates hash code for the given reference. Two identical references generate the same hash code (despite any subtle
differences such as the case of the classname and key names as well as the order of the keys).

This class has no child classes.
Friends:

XmlWriter

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/CIMReference.html (7 of 7) [5/5/2001 8:55:49 AM]

In file ..\..\src\Pegasus\Common\CIMType.h:

class PEGASUS_COMMON_LINKAGE CIMType
The CIMType Class defines the CIMType enumeration which introduces symbolic constants
for the CIM data types.

Documentation
The CIMType Class defines the CIMType enumeration which introduces symbolic constants
for the CIM data types.

The table below shows each CIM type, its symbolic constant, and its representation type.

 CIM CIMType Constant C++ CIMType

 boolean CIMType::BOOLEAN Boolean
 uint8 CIMType::UINT8 Uint8
 sint8 CIMType::SINT8 Sint8
 uint16 CIMType::UINT16 Uint16
 sint16 CIMType::SINT16 Sint16
 uint32 CIMType::UINT32 Uint32
 sint32 CIMType::SINT32 Sint32
 uint64 CIMType::UINT64 Sint64
 sint64 CIMType::SINT64 Sint64
 real32 CIMType::REAL32 Real32
 real64 CIMType::REAL64 Real64
 char16 CIMType::CHAR16 Char16
 string CIMType::STRING String
 datetime CIMType::DATETIME CIMDateTime
 reference CIMType::REFERENCE CIMReference

Inheritance:

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

http://donald/MSB/Manual/CIMType.html (1 of 2) [5/5/2001 8:55:50 AM]

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/CIMType.html (2 of 2) [5/5/2001 8:55:50 AM]

In file ..\..\src\Pegasus\Common\CIMValue.h:

class PEGASUS_COMMON_LINKAGE CIMValue
The CIMValue class represents a value of any of the CIM data types (see CIMTypeh for a
list of valid CIM data types).

Documentation
The CIMValue class represents a value of any of the CIM data types (see CIMTypeh for a
list of valid CIM data types). This class encapsulates a union which holds the current value.
The class also has a type field indicating the type of that value.

Inheritance:

Public Methods

CIMValue ()
Constructor
CIMValue (Boolean x)
Constructor
CIMValue (Uint8 x)
Constructor
CIMValue (Sint8 x)
Constructor
CIMValue (Uint16 x)
Constructor
CIMValue (Sint16 x)
Constructor
CIMValue (Uint32 x)
Constructor
CIMValue (Sint32 x)
Constructor
CIMValue (Uint64 x)
Constructor
CIMValue (Sint64 x)
Constructor

http://donald/MSB/Manual/CIMValue.html (1 of 7) [5/5/2001 8:55:50 AM]

CIMValue (Real32 x)
Constructor
CIMValue (Real64 x)
Constructor
CIMValue (const Char16& x)
Constructor
CIMValue (const String& x)
Constructor
CIMValue (const char* x)
Constructor
CIMValue (const CIMDateTime& x)
Constructor
CIMValue (const CIMReference& x)
Constructor
CIMValue (const Array<Boolean>& x)
Constructor
CIMValue (const Array<Uint8>& x)
Constructor
CIMValue (const Array<Sint8>& x)
Constructor
CIMValue (const Array<Uint16>& x)
Constructor
CIMValue (const Array<Sint16>& x)
Constructor
CIMValue (const Array<Uint32>& x)
Constructor
CIMValue (const Array<Sint32>& x)
Constructor
CIMValue (const Array<Uint64>& x)
Constructor
CIMValue (const Array<Sint64>& x)
Constructor
CIMValue (const Array<Real32>& x)
Constructor
CIMValue (const Array<Real64>& x)
Constructor
CIMValue (const Array<Char16>& x)
Constructor

http://donald/MSB/Manual/CIMValue.html (2 of 7) [5/5/2001 8:55:50 AM]

CIMValue (const Array<String>& x)
Constructor
CIMValue (const Array<CIMDateTime>& x)
Constructor
CIMValue (const CIMValue& x)
Constructor
~CIMValue ()
Destrustructor

CIMValue& operator= (const CIMValue& x)
Operator =

void assign (const CIMValue& x)
CIMMethod assign

void clear ()
CIMMethod clear

Boolean typeCompatible (const CIMValue& x) const
CIMMethod typeCompatible - Compares the types of two values.

Boolean isArray () const
CIMMethod isArray - Determines if the value is an array

Uint32 getArraySize () const
CIMMethod getArraySize

void setNullValue (CIMType type, Boolean isArray, Uint32 arraySize = 0)
method setNullvalue - ATTN:

void set (Boolean x)
method set - ATTN:

void set (Uint8 x)
CIMMethod Set

void get (Boolean& x) const
CIMMethod get - ATTN

void toXml (Array<Sint8>& out) const
CIMMethod toXML - ATTN

void print (std::ostream &o=std::cout) const
CIMMethod print - ATTN

String toString () const
CIMMethod toString - ATTN

 CIMValue()

Constructor

 CIMValue(Boolean x)

Constructor

 CIMValue(Uint8 x)

http://donald/MSB/Manual/CIMValue.html (3 of 7) [5/5/2001 8:55:50 AM]

Constructor

 CIMValue(Sint8 x)

Constructor

 CIMValue(Uint16 x)

Constructor

 CIMValue(Sint16 x)

Constructor

 CIMValue(Uint32 x)

Constructor

 CIMValue(Sint32 x)

Constructor

 CIMValue(Uint64 x)

Constructor

 CIMValue(Sint64 x)

Constructor

 CIMValue(Real32 x)

Constructor

 CIMValue(Real64 x)

Constructor

 CIMValue(const Char16& x)

Constructor

 CIMValue(const String& x)

Constructor

 CIMValue(const char* x)

Constructor

 CIMValue(const CIMDateTime& x)

Constructor

 CIMValue(const CIMReference& x)

Constructor

 CIMValue(const Array<Boolean>& x)

Constructor

 CIMValue(const Array<Uint8>& x)

http://donald/MSB/Manual/CIMValue.html (4 of 7) [5/5/2001 8:55:50 AM]

Constructor

 CIMValue(const Array<Sint8>& x)

Constructor

 CIMValue(const Array<Uint16>& x)

Constructor

 CIMValue(const Array<Sint16>& x)

Constructor

 CIMValue(const Array<Uint32>& x)

Constructor

 CIMValue(const Array<Sint32>& x)

Constructor

 CIMValue(const Array<Uint64>& x)

Constructor

 CIMValue(const Array<Sint64>& x)

Constructor

 CIMValue(const Array<Real32>& x)

Constructor

 CIMValue(const Array<Real64>& x)

Constructor

 CIMValue(const Array<Char16>& x)

Constructor

 CIMValue(const Array<String>& x)

Constructor

 CIMValue(const Array<CIMDateTime>& x)

Constructor

 CIMValue(const CIMValue& x)

Constructor

 ~CIMValue()

Destrustructor

CIMValue& operator=(const CIMValue& x)

Operator =

void assign(const CIMValue& x)

http://donald/MSB/Manual/CIMValue.html (5 of 7) [5/5/2001 8:55:50 AM]

CIMMethod assign

void clear()

CIMMethod clear

Boolean typeCompatible(const CIMValue& x) const

CIMMethod typeCompatible - Compares the types of two values.

Returns:
true if compatible.

Boolean isArray() const

CIMMethod isArray - Determines if the value is an array

Returns:
TRUE if the value is an array

Uint32 getArraySize() const

CIMMethod getArraySize

Returns:
The number of entries in the array

void setNullValue(CIMType type, Boolean isArray, Uint32 arraySize =
0)

method setNullvalue - ATTN:

void set(Boolean x)

method set - ATTN:

void set(Uint8 x)

CIMMethod Set

void get(Boolean& x) const

CIMMethod get - ATTN

void toXml(Array<Sint8>& out) const

CIMMethod toXML - ATTN

void print(std::ostream &o=std::cout) const

CIMMethod print - ATTN

String toString() const

CIMMethod toString - ATTN

This class has no child classes.
Friends:

class CIMMethodRep
class CIMParameterRep

http://donald/MSB/Manual/CIMValue.html (6 of 7) [5/5/2001 8:55:50 AM]

class CIMPropertyRep
class CIMQualifierRep
class CIMQualifierDeclRep
Boolean operator==(

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/CIMValue.html (7 of 7) [5/5/2001 8:55:50 AM]

In file ..\..\src\Pegasus\Common\Char16.h:

class PEGASUS_COMMON_LINKAGE Char16
The Char16 class represents a CIM sixteen bit character (char16).

Documentation
The Char16 class represents a CIM sixteen bit character (char16). This class is a trivial
wrapper for a sixteen bit integer. It is used as the element type in the String class (used to
represent the CIM string type). Ordinarily Uint16 could be used; however, a distinguishable
type was needed for the purposes of function overloaded which occurs in the CIMValue
class.

Inheritance:

Public Methods

Char16 ()
Constructor Char16
Char16 (Uint16 x)
Constructor Char16
Char16 (const Char16& x)
Constructor Char16

Char16& operator= (Uint16 x)
Constructor Char16

Char16& operator= (const Char16& x)
Constructor Char16
operator Uint16 () const
Implicit converter from Char16 to Uint16

Uint16 getCode () const
Accessor for internal code member

 Char16()

Constructor Char16

 Char16(Uint16 x)

Constructor Char16

 Char16(const Char16& x)

http://donald/MSB/Manual/Char16.html (1 of 2) [5/5/2001 8:55:52 AM]

Constructor Char16

Char16& operator=(Uint16 x)

Constructor Char16

Char16& operator=(const Char16& x)

Constructor Char16

 operator Uint16() const

Implicit converter from Char16 to Uint16

Uint16 getCode() const

Accessor for internal code member

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/Char16.html (2 of 2) [5/5/2001 8:55:52 AM]

In file ..\..\src\Pegasus\Common\CIMReference.h:

class PEGASUS_COMMON_LINKAGE KeyBinding
The KeyBinding class associates a key name, value, and type.

Documentation
The KeyBinding class associates a key name, value, and type. It is used by the reference
class to represent key bindings. See the CIMReference class to see how they are used.

Inheritance:

Public Methods

KeyBinding ()
Default constructor
KeyBinding (const KeyBinding& x)
Copy constructor
KeyBinding (const String& name, const String& value, Type type)
Construct a KeyBinding with a name, value, and type
~KeyBinding ()
Destructor

KeyBinding& operator= (const KeyBinding& x)
Assignment operator

const String& getName () const
Accessor

void setName (const String& name)
Modifier

const String& getValue () const
Accessor

void setValue (const String& value)
Modifier

Type getType () const
Accessor

void setType (Type type)
Modifier

http://donald/MSB/Manual/KeyBinding.html (1 of 3) [5/5/2001 8:55:52 AM]

static const char* typeToString (Type type)
Converts the given type to one of the following: "boolean", "string", or "numeric"

 KeyBinding()

Default constructor

 KeyBinding(const KeyBinding& x)

Copy constructor

 KeyBinding(const String& name, const String& value, Type type)

Construct a KeyBinding with a name, value, and type

 ~KeyBinding()

Destructor

KeyBinding& operator=(const KeyBinding& x)

Assignment operator

const String& getName() const

Accessor

void setName(const String& name)

Modifier

const String& getValue() const

Accessor

void setValue(const String& value)

Modifier

Type getType() const

Accessor

void setType(Type type)

Modifier

static const char* typeToString(Type type)

Converts the given type to one of the following: "boolean", "string", or "numeric"

This class has no child classes.
Friends:

Boolean operator==(const KeyBinding& x, const KeyBinding& y)
CIMReference

Alphabetic index HTML hierarchy of classes or Java

http://donald/MSB/Manual/KeyBinding.html (2 of 3) [5/5/2001 8:55:52 AM]

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/KeyBinding.html (3 of 3) [5/5/2001 8:55:52 AM]

In file ..\..\src\Pegasus\Common\Exception.h:

class PEGASUS_COMMON_LINKAGE
AddedReferenceToClass

ATTN:

Documentation
ATTN:

Inheritance:

Inherited from Exception:

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/AddedReferenceToClass.html [5/5/2001 8:55:53 AM]

In file ..\..\src\Pegasus\Common\Exception.h:

class PEGASUS_COMMON_LINKAGE
AlreadyExists

ATTN:

Documentation
ATTN:

Inheritance:

Inherited from Exception:

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/AlreadyExists.html [5/5/2001 8:55:53 AM]

In file ..\..\src\Pegasus\Common\Exception.h:

class PEGASUS_COMMON_LINKAGE
AssertionFailureException

Class AssertionFailureException This is an Exception class tied to the definiton of an assert
named PEGASUS_ASSERT.

Documentation
Class AssertionFailureException This is an Exception class tied to the definiton of an assert
named PEGASUS_ASSERT. This assertion can be included at any point in Pegasus code

Inheritance:

Inherited from Exception:

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/AssertionFailureException.html [5/5/2001 8:55:53 AM]

In file ..\..\src\Pegasus\Common\Exception.h:

class PEGASUS_COMMON_LINKAGE
BadQualifierOverride

ATTN:

Documentation
ATTN:

Inheritance:

Inherited from Exception:

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/BadQualifierOverride.html [5/5/2001 8:55:53 AM]

In file ..\..\src\Pegasus\Common\Exception.h:

class PEGASUS_COMMON_LINKAGE
BadQualifierScope

ATTN:

Documentation
ATTN:

Inheritance:

Inherited from Exception:

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/BadQualifierScope.html [5/5/2001 8:55:53 AM]

In file ..\..\src\Pegasus\Common\Exception.h:

class PEGASUS_COMMON_LINKAGE
BadReference

ATTN:

Documentation
ATTN:

Inheritance:

Inherited from Exception:

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/BadReference.html [5/5/2001 8:55:54 AM]

In file ..\..\src\Pegasus\Common\Exception.h:

class PEGASUS_COMMON_LINKAGE
CIMException

The CIMException defines the CIM exceptions that are formally defined in the CIM
Operations over HTTP specification.

Documentation
The CIMException defines the CIM exceptions that are formally defined in the CIM
Operations over HTTP specification. @example

 throw CIMException(CIMException::NOT_SUPPORTED);

Inheritance:

Inherited from Exception:

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/CIMException.html [5/5/2001 8:55:54 AM]

In file ..\..\src\Pegasus\Common\Exception.h:

class PEGASUS_COMMON_LINKAGE
CannotCreateDirectory

ATTN:

Documentation
ATTN:

Inheritance:

Inherited from Exception:

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/CannotCreateDirectory.html [5/5/2001 8:55:54 AM]

In file ..\..\src\Pegasus\Common\Exception.h:

class PEGASUS_COMMON_LINKAGE
CannotOpenFile

ATTN:

Documentation
ATTN:

Inheritance:

Inherited from Exception:

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/CannotOpenFile.html [5/5/2001 8:55:54 AM]

In file ..\..\src\Pegasus\Common\Exception.h:

class PEGASUS_COMMON_LINKAGE
ClassAlreadyResolved

ATTN:

Documentation
ATTN:

Inheritance:

Inherited from Exception:

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/ClassAlreadyResolved.html [5/5/2001 8:55:54 AM]

In file ..\..\src\Pegasus\Common\Exception.h:

class PEGASUS_COMMON_LINKAGE
ClassNotResolved

ATTN:

Documentation
ATTN:

Inheritance:

Inherited from Exception:

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/ClassNotResolved.html [5/5/2001 8:55:55 AM]

In file ..\..\src\Pegasus\Common\Exception.h:

class PEGASUS_COMMON_LINKAGE Exception
Class Exception

Documentation
Class Exception

Inheritance:

Direct child classes:
UnitializedHandle
UndeclaredQualifier
TypeMismatch
TruncatedCharacter
OutOfBounds
NullType
NullPointer
NotImplemented
NoSuchProperty
NoSuchNameSpace
NoSuchFile
NoSuchDirectory
MissingReferenceClassName
InvalidPropertyOverride
InvalidMethodOverride
InstantiatedAbstractClass
InstanceAlreadyResolved
IllegalTypeTag
IllegalName
FailedToRemoveFile
FailedToRemoveDirectory
ExpectedReferenceValue
ClassNotResolved
ClassAlreadyResolved
CannotOpenFile
CannotCreateDirectory

http://donald/MSB/Manual/Exception.html (1 of 2) [5/5/2001 8:55:55 AM]

CIMException
BadReference
BadQualifierScope
BadQualifierOverride
AssertionFailureException
AlreadyExists
AddedReferenceToClass

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/Exception.html (2 of 2) [5/5/2001 8:55:55 AM]

In file ..\..\src\Pegasus\Common\Exception.h:

class PEGASUS_COMMON_LINKAGE
ExpectedReferenceValue

ATTN:

Documentation
ATTN:

Inheritance:

Inherited from Exception:

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/ExpectedReferenceValue.html [5/5/2001 8:55:55 AM]

In file ..\..\src\Pegasus\Common\Exception.h:

class PEGASUS_COMMON_LINKAGE
FailedToRemoveDirectory

ATTN:

Documentation
ATTN:

Inheritance:

Inherited from Exception:

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/FailedToRemoveDirectory.html [5/5/2001 8:55:55 AM]

In file ..\..\src\Pegasus\Common\Exception.h:

class PEGASUS_COMMON_LINKAGE
FailedToRemoveFile

ATTN:

Documentation
ATTN:

Inheritance:

Inherited from Exception:

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/FailedToRemoveFile.html [5/5/2001 8:55:55 AM]

In file ..\..\src\Pegasus\Common\Exception.h:

class PEGASUS_COMMON_LINKAGE IllegalName
ATTN:

Documentation
ATTN:

Inheritance:

Inherited from Exception:

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/IllegalName.html [5/5/2001 8:55:55 AM]

In file ..\..\src\Pegasus\Common\Exception.h:

class PEGASUS_COMMON_LINKAGE
IllegalTypeTag

ATTN:

Documentation
ATTN:

Inheritance:

Inherited from Exception:

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/IllegalTypeTag.html [5/5/2001 8:55:56 AM]

In file ..\..\src\Pegasus\Common\Exception.h:

class PEGASUS_COMMON_LINKAGE
InstanceAlreadyResolved

ATTN:

Documentation
ATTN:

Inheritance:

Inherited from Exception:

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/InstanceAlreadyResolved.html [5/5/2001 8:55:56 AM]

In file ..\..\src\Pegasus\Common\Exception.h:

class PEGASUS_COMMON_LINKAGE
InstantiatedAbstractClass

ATTN:

Documentation
ATTN:

Inheritance:

Inherited from Exception:

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/InstantiatedAbstractClass.html [5/5/2001 8:55:56 AM]

In file ..\..\src\Pegasus\Common\Exception.h:

class PEGASUS_COMMON_LINKAGE
InvalidMethodOverride

ATTN:

Documentation
ATTN:

Inheritance:

Inherited from Exception:

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/InvalidMethodOverride.html [5/5/2001 8:55:57 AM]

In file ..\..\src\Pegasus\Common\Exception.h:

class PEGASUS_COMMON_LINKAGE
InvalidPropertyOverride

ATTN:

Documentation
ATTN:

Inheritance:

Inherited from Exception:

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/InvalidPropertyOverride.html [5/5/2001 8:55:57 AM]

In file ..\..\src\Pegasus\Common\Exception.h:

class PEGASUS_COMMON_LINKAGE
MissingReferenceClassName

ATTN:

Documentation
ATTN:

Inheritance:

Inherited from Exception:

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/MissingReferenceClassName.html [5/5/2001 8:55:58 AM]

In file ..\..\src\Pegasus\Common\Exception.h:

class PEGASUS_COMMON_LINKAGE
NoSuchDirectory

ATTN:

Documentation
ATTN:

Inheritance:

Inherited from Exception:

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/NoSuchDirectory.html [5/5/2001 8:55:59 AM]

In file ..\..\src\Pegasus\Common\Exception.h:

class PEGASUS_COMMON_LINKAGE NoSuchFile
ATTN:

Documentation
ATTN:

Inheritance:

Inherited from Exception:

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/NoSuchFile.html [5/5/2001 8:56:00 AM]

In file ..\..\src\Pegasus\Common\Exception.h:

class PEGASUS_COMMON_LINKAGE
NoSuchNameSpace

ATTN:

Documentation
ATTN:

Inheritance:

Inherited from Exception:

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/NoSuchNameSpace.html [5/5/2001 8:56:00 AM]

In file ..\..\src\Pegasus\Common\Exception.h:

class PEGASUS_COMMON_LINKAGE
NoSuchProperty

ATTN:

Documentation
ATTN:

Inheritance:

Inherited from Exception:

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/NoSuchProperty.html [5/5/2001 8:56:00 AM]

In file ..\..\src\Pegasus\Common\Exception.h:

class PEGASUS_COMMON_LINKAGE
NotImplemented

ATTN:

Documentation
ATTN:

Inheritance:

Inherited from Exception:

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/NotImplemented.html [5/5/2001 8:56:01 AM]

In file ..\..\src\Pegasus\Common\Exception.h:

class PEGASUS_COMMON_LINKAGE NullPointer
ATTN:

Documentation
ATTN:

Inheritance:

Inherited from Exception:

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/NullPointer.html [5/5/2001 8:56:01 AM]

In file ..\..\src\Pegasus\Common\Exception.h:

class PEGASUS_COMMON_LINKAGE NullType
ATTN:

Documentation
ATTN:

Inheritance:

Inherited from Exception:

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/NullType.html [5/5/2001 8:56:04 AM]

In file ..\..\src\Pegasus\Common\Exception.h:

class PEGASUS_COMMON_LINKAGE
OutOfBounds

ATTN:

Documentation
ATTN:

Inheritance:

Inherited from Exception:

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/OutOfBounds.html [5/5/2001 8:56:04 AM]

In file ..\..\src\Pegasus\Common\Exception.h:

class PEGASUS_COMMON_LINKAGE
TruncatedCharacter

ATTN:

Documentation
ATTN:

Inheritance:

Inherited from Exception:

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/TruncatedCharacter.html [5/5/2001 8:56:04 AM]

In file ..\..\src\Pegasus\Common\Exception.h:

class PEGASUS_COMMON_LINKAGE
TypeMismatch

ATTN:

Documentation
ATTN:

Inheritance:

Inherited from Exception:

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/TypeMismatch.html [5/5/2001 8:56:05 AM]

In file ..\..\src\Pegasus\Common\Exception.h:

class PEGASUS_COMMON_LINKAGE
UndeclaredQualifier

ATTN:

Documentation
ATTN:

Inheritance:

Inherited from Exception:

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/UndeclaredQualifier.html [5/5/2001 8:56:05 AM]

In file ..\..\src\Pegasus\Common\Exception.h:

class PEGASUS_COMMON_LINKAGE
UnitializedHandle

ATTN:

Documentation
ATTN:

Inheritance:

Inherited from Exception:

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/UnitializedHandle.html [5/5/2001 8:56:06 AM]

In file ..\..\src\Pegasus\Common\StopWatch.h:

class PEGASUS_COMMON_LINKAGE Stopwatch
Stopwatch - A class for measuring elapsed time Stopwatch is a class for measuring time
intervals within the environment.

Documentation
Stopwatch - A class for measuring elapsed time Stopwatch is a class for measuring time
intervals within the environment. It is intended to be a developers tool primarily.

Inheritance:

Public Methods

Stopwatch ()
stopwatch constructor.

void reset ()
Reset Stopwatch resets an existing Stopwatch object to the current time value

double getElapsed () const
getElapsed - Get the elapsed time for the defined stopwatch.

void printElapsed ()
printElapsed method sends the current value of the timer and sends it to standardout as a
string with the word seconds attached

 Stopwatch()

stopwatch constructor. The constructor creates the object and starts the timer @example
Stopwatch time;

void reset()

Reset Stopwatch resets an existing Stopwatch object to the current time value

double getElapsed() const

getElapsed - Get the elapsed time for the defined stopwatch.

Returns:
Returns the elapsed time value as a double

void printElapsed()

printElapsed method sends the current value of the timer and sends it to standardout as a string
with the word seconds attached

http://donald/MSB/Manual/Stopwatch.html (1 of 2) [5/5/2001 8:56:06 AM]

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/Stopwatch.html (2 of 2) [5/5/2001 8:56:06 AM]

In file ..\..\src\Pegasus\Common\String.h:

class PEGASUS_COMMON_LINKAGE String
The Pegasus String C++ Class implements the CIM string type.

Documentation
The Pegasus String C++ Class implements the CIM string type. This class is based on the general
handle/representation pattern defined for all the Pegasus objects. However, it differes from most
in that it implements "copy on assign" all of the others implement "no copy on assign" semantics.
The string class uses the Array class and implements an array of characters.

Inheritance:

Public Fields

static const String EMPTY
EMPTY - Represent an empty string.

Public Methods

String ()
Default constructor without parameters.
String (const String& x)
Copy constructor
String (const String& x, Uint32 n)
Initialize with first n characters from x
String (const Char16* x)
Initialize with x
String (const Char16* x, Uint32 n)
Initialize with first n characters of x
String (const char* x)
Initialize from a plain old C-String:
String (const char* x, Uint32 n)
Initialize from the first n characters of a plain old C-String:
~String ()
String destructor.

String& operator= (const String& x)
Assign this string with x.

http://donald/MSB/Manual/String.html (1 of 10) [5/5/2001 8:56:07 AM]

String& operator= (const Char16* x)
Assign this string with x

String& assign (const String& x)
Assign this string with x

String& assign (const Char16* x)
Assign this string with x

String& assign (const Char16* x, Uint32 n)
Assign this string with first n characters of x

String& assign (const char* x)
Assign this string with the plain old C-String x

String& assign (const char* x, Uint32 n)
Assign this string with first n characters of the plain old C-String x

void clear ()
Clear this string.

void reserve (Uint32 capacity)
Reserves memory for capacity characters.

Uint32 size () const
Returns the length of the String object.

const Char16* getData () const
Returns a pointer to the first character in the null-terminated string string.

char* allocateCString (Uint32 extraBytes = 0, Boolean noThrow = false) const
Allocates an 8 bit representation of this string.

void appendToCString (char* str, Uint32 length = Uint32(-1), Boolean noThrow = false) const
Append the given string to a C-string.

Char16& operator[] (Uint32 i)
Returns the Ith character of the String object.

const Char16 operator[] (Uint32 i) const
Returns the Ith character of the String (const version).

String& append (const Char16& c)
Append the given character to the string.

String& append (const Char16* str, Uint32 n)
Append n characters from str to this String object

String& append (const String& str)
Append the characters of str to this String object

String& operator+= (const String& x)
Overload operator += appends the parameter String to this String.

String& operator+= (Char16 c)
Append the character given by c to this String object.

String& operator+= (char c)
Append the character given by c to this string.

void remove (Uint32 pos, Uint32 size = Uint32(-1))
Remove size characters from the string starting at the given position.

http://donald/MSB/Manual/String.html (2 of 10) [5/5/2001 8:56:07 AM]

String subString (Uint32 pos, Uint32 length = Uint32(-1)) const
Return a new String which is initialzed with length characters from this string starting at
pos.

Uint32 find (Char16 c) const
Find the position of the first occurence of the character c.

Uint32 find (const String& s) const
Find the position of the first occurence of the string object.

Uint32 find (const Char16* s) const
Find substring @ param - 16 bit character pointer

Uint32 find (const char* s) const
find substring

Uint32 reverseFind (Char16 c) const
Same as find() but start looking in reverse (last character first).

void toLower ()
Converts all characters in this string to lower case

void translate (Char16 fromChar, Char16 toChar)
Translate any occurences of fromChar to toChar

static int compare (const Char16* s1, const Char16* s2, Uint32 n)
Compare the first n characters of the two strings.

static int compare (const Char16* s1, const Char16* s2)
Compare two null-terminated strings.

static Boolean equal (const String& x, const String& y)
Compare two String objects for equality.

static Boolean equal (const String& x, const Char16* y)
Return true if the two strings are equal

static Boolean equal (const Char16* x, const String& y)
Return true if the two strings are equal

static Boolean equal (const String& x, const char* y)
Return true if the two strings are equal

static Boolean equal (const char* x, const String& y)
Return true if the two strings are equal

static void toLower (char* str)
Convert the plain old C-string to lower case:

 String()

Default constructor without parameters. This constructor creates a null string

 String test;

 String(const String& x)

Copy constructor

 String(const String& x, Uint32 n)

http://donald/MSB/Manual/String.html (3 of 10) [5/5/2001 8:56:07 AM]

Initialize with first n characters from x

 String(const Char16* x)

Initialize with x

 String(const Char16* x, Uint32 n)

Initialize with first n characters of x

 String(const char* x)

Initialize from a plain old C-String:

 String(const char* x, Uint32 n)

Initialize from the first n characters of a plain old C-String:

 ~String()

String destructor. Used by the representation of the String object

String& operator=(const String& x)

Assign this string with x.

 String t1 = "abc";
 String t2 = t1;

String& operator=(const Char16* x)

Assign this string with x

String& assign(const String& x)

Assign this string with x

String& assign(const Char16* x)

Assign this string with x

String& assign(const Char16* x, Uint32 n)

Assign this string with first n characters of x

String& assign(const char* x)

Assign this string with the plain old C-String x

String& assign(const char* x, Uint32 n)

Assign this string with first n characters of the plain old C-String x

void clear()

Clear this string. After calling clear(), size() will return 0.

 String test = "abc";
 test.clear(); String test is now NULL (length == 0)

void reserve(Uint32 capacity)

http://donald/MSB/Manual/String.html (4 of 10) [5/5/2001 8:56:07 AM]

Reserves memory for capacity characters. Notice that this does not change the size of the string (size()
returns what it did before). If the capacity of the string is already greater or equal to the capacity
argument, this method has no effect. After calling reserve(), getCapicty() returns a value which is greater
or equal to the capacity argument.

Parameters:
capacity - defines the capacity in characters to reserve.

Uint32 size() const

Returns the length of the String object.

Returns:
Length of the string in characters.

String s = "abcd";
assert(s.size() == 4);

const Char16* getData() const

Returns a pointer to the first character in the null-terminated string string.

Parameters:
-

Returns:
Pointer to the first character of the String object

String t1 = "abc";
const Char16* q = t1.getData();

char* allocateCString(Uint32 extraBytes = 0, Boolean noThrow = false)
const

Allocates an 8 bit representation of this string. The user is responsible for freeing the result. If any
characters are truncated, a TruncatedCharacter exception is thrown. This exception may be suppressed
by passing true as the noThrow argument. Extra characters may be allocated at the end of the new string
by passing a non-zero value to the extraBytes argument.

Throws:
Throws TruncatedCharacter exception if any characters are truncated

String test = "abc";
char* p = test.allocateCString();

Parameters:
extraBytes - - Defines the number of extra characters to be allocated at the end of the new string.
Default is zero.
noThrow - - If true, no exception will be thrown if characters are truncated

Returns:

http://donald/MSB/Manual/String.html (5 of 10) [5/5/2001 8:56:07 AM]

pointer to the new representation of the string

void appendToCString(char* str, Uint32 length = Uint32(-1), Boolean
noThrow = false) const

Append the given string to a C-string. If the length is not Uint32(-1), then the lesser of the the length
argument and the length of this string is truncated. Otherwise, the entire string is trunctated. The
TruncatedCharacter exception is thrown if any characters are truncated.

 const char STR0[] = "one two three four";
 String s = STR0;
 const char STR1[] = "zero ";
 char* tmp = new char[strlen(STR1) + s.size() + 1];
 strcpy(tmp, STR1);
 s.appendToCString(tmp, 7);
 assert(strcmp(tmp, "zero one two") == 0);

Char16& operator[](Uint32 i)

Returns the Ith character of the String object.

Throws:
- Throws exception "OutofBounds" if the index is outside the length of the string.

String t1 = "abc;
Char16 c = t1[1]; character b

const Char16 operator[](Uint32 i) const

Returns the Ith character of the String (const version).

Throws:
- Throws exception "OutofBounds" if the index is outside the length of the string.

String& append(const Char16& c)

Append the given character to the string.

 String s4 = "Hello";
 s4.append(Char16(0x0000))

String& append(const Char16* str, Uint32 n)

Append n characters from str to this String object

String& append(const String& str)

Append the characters of str to this String object

String& operator+=(const String& x)

Overload operator += appends the parameter String to this String. @parm String to append.

Returns:

http://donald/MSB/Manual/String.html (6 of 10) [5/5/2001 8:56:07 AM]

This String

String test = "abc";
test += "def";
assert(test == "abcdef");

String& operator+=(Char16 c)

Append the character given by c to this String object.

Parameters:
c - - Single character

String& operator+=(char c)

Append the character given by c to this string.

 String t1 = "abc";
 t1 += 'd'
 assert(t1 == "abcd");

void remove(Uint32 pos, Uint32 size = Uint32(-1))

Remove size characters from the string starting at the given position. If size is -1, then all characters
after pos are removed.

Throws:
throws "OutOfBounds" exception if size is greater than length of String plus starting position for
remove.

Parameters:
pos - - Position in string to start remove
- size - Number of characters to remove. Default is -1 which causes all characters after pos to be
removed

String s;
s = "abc";
s.remove(0, 1);
assert(String::equal(s, "bc"));
assert(s.size() == 2);
s.remove(0);
assert(String::equal(s, ""));
assert(s.size() == 0);

String subString(Uint32 pos, Uint32 length = Uint32(-1)) const

Return a new String which is initialzed with length characters from this string starting at pos.

Parameters:
- pos is the positon in string to start getting the substring.

http://donald/MSB/Manual/String.html (7 of 10) [5/5/2001 8:56:07 AM]

- length is the number of characters to get. If length is -1, then all characters after pos are added
to the new string.

Returns:
String with the defined substring.

s = "abcdefg";
s.remove(3);
assert(String::equal(s, "abc"));

Uint32 find(Char16 c) const

Find the position of the first occurence of the character c. If the character is not found, -1 is returned.

Parameters:
c - - Char to be found in the String

Returns:
Position of the character in the string or -1 if not found.

Uint32 find(const String& s) const

Find the position of the first occurence of the string object. This function finds one string inside another
If the matching substring is not found, -1 is returned.

Parameters:
s - - String object to be found in the String

Returns:
Position of the substring in the String or -1 if not found.

Uint32 find(const Char16* s) const

Find substring @ param - 16 bit character pointer

See Also:
also find

Uint32 find(const char* s) const

find substring

Parameters:
char - * to substring

Uint32 reverseFind(Char16 c) const

Same as find() but start looking in reverse (last character first). @Seealso find

Returns:
Position of the character in the string or -1 if not found. NOTE: This function is defined only for
char* input, not for String.

void toLower()

Converts all characters in this string to lower case

void translate(Char16 fromChar, Char16 toChar)

http://donald/MSB/Manual/String.html (8 of 10) [5/5/2001 8:56:07 AM]

Translate any occurences of fromChar to toChar

static int compare(const Char16* s1, const Char16* s2, Uint32 n)

Compare the first n characters of the two strings.

Parameters:
s1 - - First null-terminated string for the comparison
s2 - - Second null-terminated string for the comparison
n - - Number of characters to compare

Returns:
Return -1 if s1 is lexographically less than s2. If they are equavalent return 0. Otherwise return 1.

static int compare(const Char16* s1, const Char16* s2)

Compare two null-terminated strings.

Parameters:
s1 - - First null-terminated string for the comparison
s2 - - Second null-terminated string for the comparison

Returns:
If s1 is less than s2, return -1; if equal return 0; otherwise, return 1. NOTE: Use the comparison
operators <,<= > >= to compare String objects.

static Boolean equal(const String& x, const String& y)

Compare two String objects for equality.

Parameters:
s1 - - First String for comparison.
s2 - - Second String for comparison.

Returns:
Boolean true if the two strings are equal.

String s1 = "Hello World";
String s2 = s1;
String s3(s2);
assert(String::equal(s1, s3));

static Boolean equal(const String& x, const Char16* y)

Return true if the two strings are equal

static Boolean equal(const Char16* x, const String& y)

Return true if the two strings are equal

static Boolean equal(const String& x, const char* y)

Return true if the two strings are equal

static Boolean equal(const char* x, const String& y)

Return true if the two strings are equal

http://donald/MSB/Manual/String.html (9 of 10) [5/5/2001 8:56:07 AM]

static void toLower(char* str)

Convert the plain old C-string to lower case:

static const String EMPTY

EMPTY - Represent an empty string. This member is used to represent empty strings. Using this
member avoids an expensive construction of an empty string (e.g., String()).

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/String.html (10 of 10) [5/5/2001 8:56:07 AM]

In file ..\..\src\Pegasus\Common\TimeValue.h:

class PEGASUS_COMMON_LINKAGE TimeValue
The TimeValue class represents time expressed in seconds plus microseconds

Documentation
The TimeValue class represents time expressed in seconds plus microseconds

Inheritance:

This class has no child classes.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/TimeValue.html [5/5/2001 8:56:08 AM]

In file ..\..\src\Pegasus\Common\String.h:

PEGASUS_COMMON_LINKAGE int
CompareIgnoreCase

(const
char*
s1,
 const
char*
s2)

Compare two strings but ignore any case differences

Documentation
Compare two strings but ignore any case differences

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/CompareIgnoreCase.html [5/5/2001 8:56:08 AM]

In file ..\..\src\Pegasus\Common\String.h:

PEGASUS_COMMON_LINKAGE
Boolean GetLine

(std::istream&
is,
 String& line)

Get the next line from the input file

Documentation
Get the next line from the input file

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/GetLine.html [5/5/2001 8:56:08 AM]

In file ..\..\src\Pegasus\Common\String.h:

PEGASUS_COMMON_LINKAGE String
ToLower

(const
String&
str)

Return a version of this string whose characters have been shifted to lower case

Documentation
Return a version of this string whose characters have been shifted to lower case

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/ToLower.html [5/5/2001 8:56:08 AM]

In file ..\..\src\Pegasus\Common\String.h:

inline Boolean operator!= (const String& x,
 const String& y)

String operator ==.

Documentation
String operator ==. Test for equality between two strings

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/operator.4.html [5/5/2001 8:56:08 AM]

In file ..\..\src\Pegasus\Common\String.h:

inline String operator+(const String& x,
 const String& y)

overload operator + - Concatenates String objects.

Documentation
overload operator + - Concatenates String objects.

 String t1 = "abc";
 String t2;
 t2 = t1 + "def"
 assert(t2 == "abcdef");

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/operator.5.html [5/5/2001 8:56:09 AM]

In file ..\..\src\Pegasus\Common\String.h:

inline Boolean operator<(const String& x,
 const String& y)

overload operator < - Compares String obects.

Documentation
overload operator < - Compares String obects.

 String t1 = "def";
 String t2 = "a";
 assert (t2 < t1);

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/operator.6.html [5/5/2001 8:56:09 AM]

In file ..\..\src\Pegasus\Common\String.h:

inline Boolean operator<=(const String& x,
 const String& y)

overload operator <= compares String objects.

Documentation
overload operator <= compares String objects.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/operator.7.html [5/5/2001 8:56:09 AM]

In file ..\..\src\Pegasus\Common\String.h:

inline Boolean operator==(const char* x, const
String& y)

String operator ==.

Documentation
String operator ==. Test for equality between two strings

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/operator.3.html [5/5/2001 8:56:09 AM]

In file ..\..\src\Pegasus\Common\String.h:

inline Boolean operator==(const String& x,
 const String& y)

String operator ==.

Documentation
String operator ==. Test for equality between two strings of any of the types String or char*.

Returns:
Boolean - True if the strings are equal

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/operator.html [5/5/2001 8:56:09 AM]

In file ..\..\src\Pegasus\Common\String.h:

inline Boolean operator==(const String& x, const
char* y)

String operator ==.

Documentation
String operator ==. Test for equality between two strings

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/operator.2.html [5/5/2001 8:56:09 AM]

In file ..\..\src\Pegasus\Common\String.h:

inline Boolean operator>(const String& x,
 const String& y)

Overload operator > compares String objects

Documentation
Overload operator > compares String objects

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/operator.8.html [5/5/2001 8:56:09 AM]

In file ..\..\src\Pegasus\Common\String.h:

inline Boolean operator>=(const String& x,
 const String& y)

overload operator >= - Compares String objects

Documentation
overload operator >= - Compares String objects

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/operator.9.html [5/5/2001 8:56:10 AM]

In file ..\..\src\Pegasus\Common\Exception.h:

#define PEGASUS_ASSERT(COND)
define PEGASUS_ASSERT assertion statement.

Documentation
define PEGASUS_ASSERT assertion statement. This statement tests the condition defined
by the parameters and if not True executes a

 throw AssertionFailureException

defining the file, line and condition that was tested.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/PEGASUS_ASSERT.html [5/5/2001 8:56:10 AM]

In file ..\..\src\Pegasus\Common\Exception.h:

#define Pegasus_Exception_h
Programming with Exceptions

Documentation
Programming with Exceptions

The Pegaus programming model uses exceptions extensively.

It is important that these exceptions be handled in any code that is created.

Where exceptions are used in Pegasus Classes and Methods, they are noted in the
documentation with an indication that the method or class generates an exception.

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/Pegasus_Exception_h.html [5/5/2001 8:56:10 AM]

In file ..\..\src\Pegasus\Common\CIMFlavor.h:

struct PEGASUS_COMMON_LINKAGE CIMFlavor
CIMQualifier flavor constants

Documentation
CIMQualifier flavor constants

Alphabetic index HTML hierarchy of classes or Java

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/CIMFlavor.html [5/5/2001 8:56:10 AM]

Hierarchy of classes
alphabetic index

Pegasus Documentation Copyright The Open Group 2000 2001

http://donald/MSB/Manual/HIERjava.html [5/5/2001 8:56:10 AM]

	donald
	Pegasus Developers and Users Manual
	http://donald/MSB/Manual/Introduction.html
	http://donald/MSB/Manual/index.html
	http://donald/MSB/Manual/Credits.html
	http://donald/MSB/Manual/HIER.html
	http://donald/MSB/Manual/DefinitionofTerms.html
	http://donald/MSB/Manual/NAMESPACE..html
	http://donald/MSB/Manual/DocumentReferences.html
	http://donald/MSB/Manual/Objectives.html
	http://donald/MSB/Manual/Overview.html
	http://donald/MSB/Manual/PegasusArchitecture.html
	http://donald/MSB/Manual/DesignGoals.html
	http://donald/MSB/Manual/ExtensionServices.html
	http://donald/MSB/Manual/FunctionalFlow.html
	http://donald/MSB/Manual/PegasusClients..html
	http://donald/MSB/Manual/PegasusProviders..html
	http://donald/MSB/Manual/TheBroker.html
	http://donald/MSB/Manual/PegasusCodeExamples.html
	http://donald/MSB/Manual/ClientCodingExamples.html
	http://donald/MSB/Manual/ProviderCodingExamples.html
	http://donald/MSB/Manual/PegasusComponents.html
	http://donald/MSB/Manual/ComponentDescriptions.html
	http://donald/MSB/Manual/PegasusDirectoryStructure.html
	http://donald/MSB/Manual/PegasusInterfaces.html
	http://donald/MSB/Manual/CIMOperationsoverHTTP.html
	http://donald/MSB/Manual/PegasusClientInterfaces.html
	http://donald/MSB/Manual/PegasusProviderInterfaces.html
	http://donald/MSB/Manual/PegasusServiceExtensionInterfaces.html
	http://donald/MSB/Manual/RepositoryInterfaces.html
	http://donald/MSB/Manual/PegasusUtilization.html
	http://donald/MSB/Manual/PegasusAvailability.html
	http://donald/MSB/Manual/PegasusCIMClients.html
	http://donald/MSB/Manual/PegasusInstallation.html
	http://donald/MSB/Manual/PegasusMOFCompiler.html
	http://donald/MSB/Manual/PegasusOperation.html
	http://donald/MSB/Manual/PegasusProviders.html
	http://donald/MSB/Manual/PegaususFAQ.html
	http://donald/MSB/Manual/ProgrammingPegasus.html
	http://donald/MSB/Manual/CIMObjectTable.html
	http://donald/MSB/Manual/CIMObjectsinPegasus.html
	http://donald/MSB/Manual/ClassDefinitions.html
	http://donald/MSB/Manual/PEGASUS_NAMESPACE_END.html
	http://donald/MSB/Manual/RevisionHistory.html
	http://donald/MSB/Manual/WritingProviders..html
	http://donald/MSB/Manual/CIMScope.html
	http://donald/MSB/Manual/CIMOperations.html
	http://donald/MSB/Manual/CIMClient.html
	http://donald/MSB/Manual/CIMRepository.html
	http://donald/MSB/Manual/Array.html
	http://donald/MSB/Manual/CIMClass.html
	http://donald/MSB/Manual/CIMConstClass.html
	http://donald/MSB/Manual/CIMDateTime.html
	http://donald/MSB/Manual/CIMInstance.html
	http://donald/MSB/Manual/CIMMethod.html
	http://donald/MSB/Manual/CIMName.html
	http://donald/MSB/Manual/CIMProperty.html
	http://donald/MSB/Manual/CIMQualifier.html
	http://donald/MSB/Manual/CIMQualifierDecl.html
	http://donald/MSB/Manual/CIMReference.html
	http://donald/MSB/Manual/CIMType.html
	http://donald/MSB/Manual/CIMValue.html
	http://donald/MSB/Manual/Char16.html
	http://donald/MSB/Manual/KeyBinding.html
	http://donald/MSB/Manual/AddedReferenceToClass.html
	http://donald/MSB/Manual/AlreadyExists.html
	http://donald/MSB/Manual/AssertionFailureException.html
	http://donald/MSB/Manual/BadQualifierOverride.html
	http://donald/MSB/Manual/BadQualifierScope.html
	http://donald/MSB/Manual/BadReference.html
	http://donald/MSB/Manual/CIMException.html
	http://donald/MSB/Manual/CannotCreateDirectory.html
	http://donald/MSB/Manual/CannotOpenFile.html
	http://donald/MSB/Manual/ClassAlreadyResolved.html
	http://donald/MSB/Manual/ClassNotResolved.html
	http://donald/MSB/Manual/Exception.html
	http://donald/MSB/Manual/ExpectedReferenceValue.html
	http://donald/MSB/Manual/FailedToRemoveDirectory.html
	http://donald/MSB/Manual/FailedToRemoveFile.html
	http://donald/MSB/Manual/IllegalName.html
	http://donald/MSB/Manual/IllegalTypeTag.html
	http://donald/MSB/Manual/InstanceAlreadyResolved.html
	http://donald/MSB/Manual/InstantiatedAbstractClass.html
	http://donald/MSB/Manual/InvalidMethodOverride.html
	http://donald/MSB/Manual/InvalidPropertyOverride.html
	http://donald/MSB/Manual/MissingReferenceClassName.html
	http://donald/MSB/Manual/NoSuchDirectory.html
	http://donald/MSB/Manual/NoSuchFile.html
	http://donald/MSB/Manual/NoSuchNameSpace.html
	http://donald/MSB/Manual/NoSuchProperty.html
	http://donald/MSB/Manual/NotImplemented.html
	http://donald/MSB/Manual/NullPointer.html
	http://donald/MSB/Manual/NullType.html
	http://donald/MSB/Manual/OutOfBounds.html
	http://donald/MSB/Manual/TruncatedCharacter.html
	http://donald/MSB/Manual/TypeMismatch.html
	http://donald/MSB/Manual/UndeclaredQualifier.html
	http://donald/MSB/Manual/UnitializedHandle.html
	http://donald/MSB/Manual/Stopwatch.html
	http://donald/MSB/Manual/String.html
	http://donald/MSB/Manual/TimeValue.html
	http://donald/MSB/Manual/CompareIgnoreCase.html
	http://donald/MSB/Manual/GetLine.html
	http://donald/MSB/Manual/ToLower.html
	http://donald/MSB/Manual/operator.4.html
	http://donald/MSB/Manual/operator.5.html
	http://donald/MSB/Manual/operator.6.html
	http://donald/MSB/Manual/operator.7.html
	http://donald/MSB/Manual/operator.3.html
	http://donald/MSB/Manual/operator.html
	http://donald/MSB/Manual/operator.2.html
	http://donald/MSB/Manual/operator.8.html
	http://donald/MSB/Manual/operator.9.html
	http://donald/MSB/Manual/PEGASUS_ASSERT.html
	http://donald/MSB/Manual/Pegasus_Exception_h.html
	http://donald/MSB/Manual/CIMFlavor.html
	http://donald/MSB/Manual/HIERjava.html

