RadiSys ARTIC960
Programmer’s
Reference

RadiSys Corporation

5445 NE Dawson Creek Drive
Hillsboro, OR 97124

(503) 615-1100

FAX: (503) 615-1150
www.radisys.com

November 2000

Referencesin this publication to Radi Sys Corporation products, programs, or services do not
imply that Radi Sysintendsto makethese availablein al countriesin which RadiSys operates.

Any reference to a RadiSys licensed program or other RadiSys product in this publication
is not intended to state or imply that only RadiSys Corporation’s program or other product
can be used. Any functionally equivalent product, program, or service that does not
infringe on any of RadiSys Corporation’sintellectual property rights or other legally
protectible rights can be used instead of the RadiSys product, program, or service.
Evaluation and verification of operation in conjunction with other products, programs, or
services, except those expressly designated by RadiSys, are the user’s responsibility.

Radi Sys may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.
You can send license inquires, in writing, to:

Radi Sys Corporation
5445 NE Dawson Creek Drive
Hillsboro, OR 97124

EPC, iRMX, INtime, Inside Advantage, and RadiSys are registered trademarks of RadiSys Corporation.
Spirit, DAI, DAQ, ASM, Brahma, and SAIB are trademarks of RadiSys Corporation.

T All other trademarks, registered trademarks, service marks, and trade names are the property of their
respective owners.

November 2000
Copyright O 2000 by RadiSys Corporation
All rights reserved

‘ Contents

O

ADOUL TRISBOOK ...ttt sttt Xiii
LT 0 LY @e g 11= o1 £ SRS PRRR Xiii

[\ [o1= ol I @00 V7= o1 Lo o TP Xiv

Where to Get MOre INFOMMELTONcooiuiiie ettt st e b e e e e XV
REFErENCE PUDITCEIIONS ...ttt sttt XV
Developer's ASSIStANCE PrOgraM.......ccvieiereeieeeeeestesteseessestessesssseesessessessessssssssessessessessesseseeseesessenns XVi
Chapter 1: Loading and ConfiguriNg........cccceiiieieieeeiess s, 1
ST 000 =0 [N = o (< £ S 1
Kernel and SUDSYSEEIMS.......cc.eiiiiiiieiereeieteeeete sttt sttt e e e ese e e sseesesseseesaeseeseennensnneennesnnnens 1
Kernel Performance CONSIAEIaLiONS...........cvveireirieenieesiees sttt st s se e sbebe e 2
CoNfigUIaioN ParaMELEIS.cc.iiuiie ettt ettt b et b e s b b e bt e s be e e s beneesee e e e eaeeaas 4
ARTICIB0 SUPPOIT FOF OS/2.....eeieeeiieee ettt sttt ettt ea et e be bbb et sbe b e e e e e e e e e e nne e 7
Supported ARTICI60 CONfiQUIBLIONS..........eiuiieerierierieieie ettt eee bbb e e se e e ene e 7

DeVIiCe DIiVEr INSLAIIAHON.coiririeiiierieee ettt ettt s ebesaebe e 7
Mailbox Process (RICMBX32.EXE)ccuiieirieresiieerieeeeseseseestesteseseesteseseeneeesseesssessessessessessesenns 8

F Y R OG0TS0 To] oo (] AN 1 S 10
Supported ARTICI60 CONfIQUIBLIONS..........eiuiiuerierie ettt see bbb see e e e e ene e 10

DeViCe DIiVEr INSLAIAHION.ccoueiieeiee e et s e et 11

MailDOX ProCess (FiCIMDX).....ccciueriiieieeite ettt sttt b e sa e sb et sae st e e e e e 11

Ty o gl 1o To T o 13

LI o= = o S 13
ARTICI960 Support fOr WINAOWS NTcoieeiceie e e seete s esaere e ere st sre e sae s e e eneeneeneenesneens 14
Supported ARTICI60 CONfIQUIELIONS.......cc.eiuiiuerieriereeieie ettt eee bbb e e e e e e ene s 14

DeViCe DIiVEr INSEAIAION.coueiieeee ettt ettt bbbt et 14

IMBIHIIOX PrOCESS... ..ttt a ettt b et bt b e e et e s e e b e e it bt sb et e sae e e e e e e ne e e et ene e 14

Y= 10 I (o 11 o S 14
Chapter 2: ARTICO60 K& NEl SEIVICES........c.ooiuieieeieceiseeeeeee ettt esssssnes 15
SUMMANY OF SEIVICES. ...ttt ettt sttt b e bbb e s bt e et e s e e e e ae e s e eb e e aesbeebebesaesb e beeeseennenen 15
PaIaMELEL TYPES ...eeeutieitee ettt sttt st b et e st s b e e abe e b e s abeeate e sae e e be e ebe e s Rt e e nbeesae e e b eeeabe et e e enneenreenreas 18
Chapter 3: BaSE KEINEl SENVICES.........oice sttt 21
Process ManagemENt SENVICES........c uieiruerieriiieieeeesteeiesie st te e seesbeeesee e e e sae et saesaesbeseeseesaeseaneensesesneaneasens 22
Completelnit—Mark Process as Completely Initialized..........coovvvviveneiccce e 23
QueryProcessStatus—Get the ProCESS SEALUS.........cveveieerereeeeesesesesieseee e esieee e e e srese e seessenes 25
QueryCardinfo—Get the Card Configuration INfOrmation...........cceceeievveeieneniescenes e 28
QueryConfigParams—Get the Configuration Parameters.............oocoeeerererenienenese e 31
CreatePrOCESS—CrEate @ PrOCESSccoi ettt ettt sttt e e ettt be e s besae e b e eae e b e saeebesaeenas 34
SEArTPrOCESS—Sart 8 PTOCESS.... ..ottt et bbb e e b e e e e 36
SLOPPIrOCESS—SEOP @ PTOCESSeeeiieeeeisteesiesteeteesteesee st estesteetesseeseesaesseesseeeesseentesseeneessenneessesnsesseenses 37
Unl0adProcess—UNIOad @ PIrOCESS.........coueuireiiriiirieiesieeestetes sttt sttt sttt st seebe e 38

Contents iii

SUSPENdPIOCESS—SUSPENT 8 PIOCESS. ... cviitiieree ettt ettt sttt st eb et e e e e ae b e seesbe e s
ResumeProcess—ResuUme a ProCess...........ccovvvereeneneenneeieenneenes
SetExitRoutine—Set the Exit Routine for the Process.................
SetPriority—Set the Priority of the Process........ccocveevevvcecenennn,
QueryPriority—Query the Priority of the Process..........c.ccoceuee...
QueryProcessinExec—Get ID of Processin Execution...............
SetProcessData—Set Process DataL..........cceveeeverieeneneeneesceeseeeen
GetProcessData—Get Process Data........ccevveevereeeeneneecneseennennen
EnterCritSec—Enter CritiCal SECLION.........cciiiiiieirrer e
ExitCritSec—EXit Critical SeCtion.........cocvveveveiereiereireenesienens
Dispatch—Cause a Dispatch Cycle........ocooeveieiriniiinerere
Process Synchronization SErVICEScoeiirieriereniniesireserie e
CreateSem—Create a SEMaPhOre.........ooecvererreereeeeie e
OpenSem—Open aSemaphore.........cccoeeevveeereeesce s
CloseSem—Close a SemMapPhOre.........ccveveeeeeereeesese e sese e
ReleaseSem—Release a Semaphore.........cooeeeerveeerenenesesene
RequestSem—Request a Semaphore...........ococeevneereriencnenene
QuerySemCount—Get a Semaphore Countccoeeeenerereenns
SetSemCount—Set a Semaphore Count..........c.cvvvveevererereeieenens
CreateEvent—Create an Event Word...........cccvvevvinnineccnnennen
OpenEvent—Open Accessto an Event Word.........ccococevvvveneenen.
CloseEvent—Release Access to an Event Word...........ccoceeeeneee.
WaitEvent—Wait on an EVENtccccocierininn e
Memory Management SENVICEScveureereeeeeeererie e
CreateMem—Allocate MEeMOIYccovevieeerreee s eese e
OpenMem—Get Addressability to Allocated Memory................
CloseMem—Remove Addressability to Memoryccccceeeenee.
ResizeMem—Reallocate Memory.........occoevereeeenereriesesenienene
SetMemProt—Change Memory Protection...........c.ccoceeeeveveneenen.
SetProcMemProt—Change a Process Memory Protection.........
QueryMemProt—Query Memory Protection.........occcceveeeeveeenn,
QueryProcMemProt—Query a Process' Memory Protection.......
QueryFreeMem—Query Free Memorycocevveeenveneseenensnens
InitSuballoc—Prepare a Block of Memory for Suballocation
GetSuballoc—Suballocate MemOoryccoveeeeeerienenenere e
FreeSuballoc—Free Suballocated Memory..........cccceeeeerceniennene
GetSuballocSize—Return Size of Suballocation Pool
MallocMem—Allocate MEMOTYccccvvvveveerieieereeeeeee e
FreeMem—Free MEmMOIYoccvveeriieiee e
CollectMem—ColleCt MEMOTYc.ccovereieieeeeee e
THMEN SEIVICES ..c.vieieiieie ettt eb e s bt sae e b
CreateSwTimer—Allocate a Software Timercccceveeeeeeeenne.
CloseSwTimer—Return a Software Timerccccovevenrencnenenn
StartSwTimer—Start a Software TiMerccccoceevveniinnennenenn,
StopSwTimer—Stop a Software TIMer........cccevveeeevereecereeeseenn,
SetSystemTime—Set the Time-of-Day ClocKcccecevevennnee.
QuerySystemTime—Get the Time of Daycccccevereecercnenienn,
StartPerf Timer—Start the Performance Timer.........cccoeveeeennenn.
StopPerfTimer—Stop the Performance Timerccocveevvevveveenen.

ReadPerf Timer—Read Current Time of the Performance Timer

ARTIC960 Programmer’s Reference

39
40
41

GRES

46
47

49
50
51
52
53

55
56
57
58
59
60
61
63

67
68
69
70
71
72
73
74
75
77
78
79
80
81
82
83

85
86
88
89
90
91
92
93

Process Communication Services.........
CreateQueue—Create a Quevue......
OpenQueue—Open a Queue..........
CloseQueue—Close aQueue.........

PutQueue—Put an Element int0 @ QUEUE............ccueeieiieeie et e sttt e e e sneesne e e nnens
GetQueue—Get or Peek at an Element on @aQUEUE............coveciieieeie e sttt

SearchQueue—Search a Queue for
CreateM bx—Create a Mailbox......
OpenMbx—Open aMailbox

AN ELEMENL ... s

GetMbxBuffer—Get a Free MaillbDOX BUFFENocue ittt s ae e srae e
FreeMbXxBuffer—Free MailboX BUFFETccuii ettt st e s st saa e e s snan s

SendMbx—Send a Message..........
ReceiveM bx—Receive a Message
CloseMbx—Close a Mailbox
CreateSig—Create a Signdl
OpenSig—Open aSignal...............
CloseSig—Closea Signdl..............
InvokeSig—Call aSigndl
Device Driver/Subsystem Services.......
CreateDev—Register a Subsystem

OF DEVICE DIIVEN .ottt et ressnee s

OpenDev—Open a SUDSYSLEM OF DEVICE DIIVENc.ccovviieriie sttt es
CloseDev—Close a SUbSYStem OF DEVICE DIIVEScccoiuiiiiriiie ettt
InvokeDev—Call a SUbSYStEm Or DEVICE DIV ..o e
AllocVector—Allocate an INLEITUPL VECLOcoueiuirieiieierie et st e e
AllocVectorMux—Allocate an INLETUPL VECLOc.eveiirerererieeerse st steee e se e e sne s
SetVector—Set a New Interrupt Vector ENtry POINt..........ccccoeieeeeiinine e

SetVectorMux—Set an Interrupt V

S (0 PP PSPPI

ReturnV ector—Return an INEITUPL VECTONooueiieiieiie ettt e e s s
AlloCHW—AIlocate a HardWare DEVICEceieeeiriirieierie sttt st et
ReturnHW—Return @ Hardware DEVICE...........oeeiierereieerie et
QueryHW—Query Status of HardWar€ DEVICEeccvvereriresireeseeeseeresesre e saeneens

Asynchronous Event Notification Servi

GBS i e

RegisterAsyncHandler—Register an Async Handler..........coovviveeeiceeeeeese e
DeregisterAsyncHandler—Deregister an ASynC Handlerooeveiiieineninenee e

HOOK SEIVICES......occveeeeieeeeeee e

RegisterHook—Register an Entry Point for @ HOOKcccooiiiiniieniieieeee e e
DeregisterHook—Deregister an Entry Point for @ HOOK..........cccovvverrcecnecse e

Kernel Trace Services......oovvevveeeeenenne

InitTrace—Initialize @ Trace BUFFESccvioreeee e
EnableTrace—Enable Tracing Of SErviCe ClaSSES........couririireriinienie e e e

DisableTrace—Disable Tracing of

SEIVICE ClaSSES......eeeiieteie ittt ae s s sate s eer e e s sre s s seeeens

LogTrace—L og TraCe INfOrMELTONcccouirieeiteeeeie ettt

Kernel Trace Information...............

Chapter 4: Kernel Commands......

Common Headers for Commands and RESPONSES........cccciueririerieiiireisie e sieee e eese s sae e sre s saesresee s
RegisterResponseM bx—Register a Command Response MaillboXc.cccevvvvenenievenieneeseneeeenesens
DeRegisterResponseM bx—Deregister a Command Response MailboXceevvvveenvverinecsenennnen,

QueryProcessStatus—Get the Proci
UnloadProcess—Unload a Process

0SS SEALUS....evee et et e et e et e s ebe e s e e e s et e e e e aaae e s araeeeas

Contents

94

95

96

97

98
100
102
104
106
108
109
110
112
114
115
117
119
120
121
122
125
126
127
128
129
131
132
133
134
136
137
138
139
145
146
147
148
149
150
151
152
153
155

163
164
166
167
168
169

\Y

StopProcess—Stop aProcess....................
StartProcess—Start a Process...................

Chapter 5: Adapter Library Routines...

ANSI C FUNCLIONS......ccooiieiiieie e
Miscellaneous SErviCecccovvveevnerneninienens
ProcessSleep—Sleep a Process................
System Bus Interface Services........cccocvveeenene.
MoveM CData—Move System Bus Data.

ConvertM CToCard—Convert System Bus Addressto Card AdAresSs........oovveveeeeieeenenieeiereeeneee
ConvertCardToM C—Convert Card Addressto System Bus Address........coovereeeeeeenenceeneseniee,
PCI Local Bus Configuration DeVICE DIVEN SEIVICES........cuviviiererierereereeresesiesesseseseesseseesssseessssessessessens
pci BiosPresent—QuUErY PCl DIIVEr PrESENCEccvveiiiieseriesieiesieeeneeseesessessesseseessessessenssssssesssssessens
pciFindDevice—Find a PCI Device by Vendor and Device ID.........cooeviiiie e
pci FindClassCode—Find a PCl Device by PCl Class COE........cocuarririneninere e
pci ReadConfigByte—Read a Byte from PCl Configuration SPace..........ccoceeveeereienenieneenieeeieseenens
pci ReadConfigWord—Read a Word from PCl Configuration Space..........ccocevvvevererereenesieesessennnns
pci ReadConfigDWord—Read a Doubleword from PCI Configuration Space.........c.ccoceevevveveeieennnnns
pciWriteConfigByte—Write a Byte to PCl Configuration SPace.........ccccveevereveeesesieseseeseeeseseenens
pciWriteConfigWord—Write a Word to PCI Configuration SPace...........cocceceverenienenieneenisesieeeenens
pci WriteConfigDWord—Write a Doubleword to PCI Configuration Space.........cccccoveveneneneneenns

Chapter 6: System Unit Utilities...............

Application Loader (ricload) Utility
Application Loader Syntaxc.cccceuee.

Application Loader Messages and EXit COUES.......oouiuirriririrereetererie sttt e

Examples of Application Loader Calls.....
DUMP ULHItY v
DUMP SYNEaX .eeeveeeeeveceeere e
Dump Messages and Exit Codes..............
Configuration Utility.........ccccovereininincnenene
Configuration Syntaxc.ccceeeeereerereenes
Configuration Messages and Exit Codes..
ReSEt ULty .ovovveeeeee e

Reset Messages and Exit Codes...............
Trace ULIlIties ..o
Set Trace Utility....ccooeeeeeeeeeinencceee
Get Trace ULility ..veveeeeeece e
Format Trace Utility ...c..coovvvvvevvereceene

StAtUS ULIHITY v

SEELUS SYNEAX ..coveeeeeieieeeeeeesee e
Status Messages and Exit Codes...............
Status Dump FOrmatcccceeeeeverceenenene.
Status Interactive Messages.........cceueeene.
Examples of Interactive Messages............

Chapter 7. System Unit APIs....................

vi

BaSE AP ...t
RICOpen—Open an ARTIC960 Adapter.
RICClose—Close an ARTIC960 Adapter

ARTIC960 Programmer’s Reference

170
171

173
173
175
175
176
177
181
182
183
184
186
187
188
189
190
191
192
193

195
196
196
199
200
202
202
206
207
208
209
210
210
211
212
213
215
217
223
224
225
225
227
253

263
264
265
266

RICRead—Read from ARTICO60 MEMOIYcccouiiieiiieeeieeeetes ettt st s e e e e e
RICWrite—Write t0 ARTICIB0 MEMOIY.....ccueeueieeeeeiesieseestesteseesteseeseseesessesessesse e ssesseseesseseenseseesenns
RICReset—Reset an ARTICO60 AGADLEScoeveiiiriiie et be s sbe b
RICGetConfig—Get Configuration INfOrMatioNcccevvrereriererseerese e
RICGetVersion—Get Version NUMDEcc.oiiiiiiie et
RICGetEXCeption—Get EXCEPLION SELUS.coveireeeeeeiirieresie st s

V=1 00 AN = SRR

CreateMbX—Create A MailDOX......c..coveiiieecie ettt et et sre b e sbesaeesbesaaenbesanebeeaeennes
(O 07c 011V 1 o) Gl @] o= g 1= W1, =11 oo G
GetMbxBuffer—Get a Free MailboX BUFFESccceiviiieeiiieicceceee et sre s
FreeMbxBuffer—Free MailboX BUFFENooviiiiiiiececcc ettt sre e et
SENAMDBX——SEN0 B IMESSAGE...... ettt sttt ettt ettt eb e s b b e b b e b e e e e e e e et enenneenas
ReCEIVEMDX—RECEIVE @ MESSATEcei ettt et bbb s se e e e
CloSEMBX—ClOSE AMaIO0Xooueiiriiiiitiecie ettt ettt be e s besbeesresbaeabesreenbesaeenes

AppendixX A: SIrUCLUr € DEFINITION. ..ot
RIC_CONFIG SIIUCKUIEcuteeieteeeeeeeeeieseeestesteestesseeseesseestesseestesseesesssessssseesseseesseeseessessesssesssensesseensesseenees
RIC_VERDATA SITUCIUIE......ceiteeeeeeieeeseeeseeseeseesteeseesseestesseessesseessesseesssssesssssssessessesssessesssesssensesseessesseesses
RIC_EXCEPT SIUCLUE.......teetisteeeeeseeeteseeestesteeseesseeseesseestesseessesseesesseessssseessssseessessessssssesssesssnssesseensesseesses

APPENdiX B: MESSAE FIl@..........icieee et
Driver, Mailbox Process, and Utility MESSAQEScccveirererireeiierisie e sesieseeseeeseeseesessessesneseessensesessessens

RN Oele =Y (TS (= o AN] o] 7= o= Lo | Y) TSR
Return Codes (Listed NUMECAIY) ...oveicieece ettt s ne e s ese e eneenens
Kernel Terminal EFTOr COUESccovueirieirieieieesie sttt st sttt st st s e s s sttt

Contents

267
269
271
272
273
274
276
277
280
282
283
284
286
288

289
290
292
293

295
295

311
312
316
325
327

331
333

Vii

viii ARTIC960 Programmer’s Reference

Figures

1-1
1-2
1-3
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24
6-25
6-26
6-27
6-28
6-29
6-30
6-31
6-32
6-33

6-35
6-36
6-37
6-38
6-39
6-40
6-41
6-42

OS/2 DEVICE DIVEN SYNEBX ..veviviieieieeieeeee it stese ettt st et e e se e ese st ssesaesbesbeseesbeneesee e enenneenas 7
OS/2 MailDOX PrOCESS SYNLAXceueiuiiviiereeieereeiereseete st sie sttt se e eseeeese s besaeseesbeeesee e eeeneenas 8
ALX MaiDOX PIrOCESS SYNEAXcviiieitieiiieie ettt e be e se e se et e 12
APPIICAON LOBAES SYNTAXeiviitirieiiieieieie ettt st b e b e se b 196
DUMP ULHTITY SYNEBX ...ttt sttt sb et b e e b ne e e ene e e eneeneas 202
Configuration ULility SYNEAXccceveierierieiecieseeie e s st ese e ere et enessesnenseens 208
Configuration Utility File ENtry FOIMELccceoeveeeceeise s eeesesre e 208
eSS B L VS Y 1= T 210
S I = oY L T VS Y = 213
Gt Trace ULHITY SYNEBX ..veiveeeieeceeseeeceserie sttt e e e e e ne e snesnennenes 215
Format Trace ULIliTy SYNEBXccvveieereeeeere e s see e e se sttt s e s e sne e snesrennas 217
Trace CONIOl BIOCKoveuiieeiiiieiirieicsiee ettt 219
Record Description for a Service Class (Datain BYIES)cccvvvevvveviverieeeeee e 220
Record Description for a Service Class (Datain WOrds)ccoovevvveveneneeeeeeseeseeeseseseenens 221
Trace Control BIOCK EXBMPIEccviueiieierie e seesieee e st se e ne e e snnens 222
Record Description Example (Datain Bytes) Trace Record: OX002Eccocvveverieneerernennnns 222
Record Description Example (Datain Words) Trace Record: 0X0033ccccccovvevervnernnennnns 222
S (0 T 1S Y 1 T 224
Sample FOrMatted DUMPoveeeceeceee et se e ere e sre s besresaeste e sae e e enneenes 226
S (8 1 T Y T Y= 228
Status Utility Configuration DIiSPlayc.coeeeeieieiisienerieeisesese et 229
Status Utility Process SUMMary DiSPlayccccvvevereeereee e seseees s s 230
Status Utility Resource SUMMary DiSPlaycccceevrereiirenneseceeresese e 231
Status Utility MemOry DiSPlayccccoeeieeieiirce st st sse e see s s seenseseens 232
Status Utility Process DetailS DiSPlaycccoveereeesieresireeeeecesee s e sresee e see e s ssenseneens 233
Process Details Display—Process Terminated by Software Eventcccoovvovivvevvnivcevvieennns 234
Process Details Display—Process Terminated by Processor EVentcoovvvvevveveenvcenenieennns 235
Process Details Display—Process Terminated by Adapter EVENtccoovvevvvveeveresvceenenieennns 236
Status Utility Process RESOUICES DiSPIacooviereerierierireeisesesees e e seseeessesesee e e saeseeneesenns 237
Status Utility Process ParameterS DISPlayccccoceeeeveeerie st s 238
RESOUICE DEtailS SUDIMENUc.ovviiiiiirieiesiee sttt s e e s bbb 239
Device Driver Detail DISPlayccovveeieieieieieeree s s se s seetese e ee e st s se e e nesneenens 240
EVENt DELail DiSPIAY ..o.vceeeeeeeisieiisies e sttt se st st st e e ene st st snese e e e e e ene e e eneenens 241
MailbOX DEtail DISPIAY ...ccveoeeerieeirieresiesesee e et s et e e se e e e s sestesaestesee e e aeneeneeneenens 242
Memory Detail DISPIAYcccoveeveiiriiseieseee e s et se e sreeresaesee s e e aenaeneeneenens 243
(@8 L= N LCl B T B I T o] - Y 244
Semaphore DEtail DiSPIAYccccieiiereieiereereere et se sttt sse e s ssesaesre st saesrenenneenes 245
S o 7= I D= o= T I T - S 246
Timer DEtail DISPIAY ..ocveceieieireeie sttt s e ae st e e ne e e e e enn e 247
Hardware Device Detail DiSPlayccccveeireiereseerese e s se s se e see e se e ese s sse s sressensesesnennens 248
V= w (o T = I T o P 249
Status Utility Exception ConditionS DISPlayccceveverrreericieiere s 250
Status Utility VPD INformation DIiSPlaycccevvvereieerereeise s see s s e e s nes 251
Displayed VPD Information for Intel-based SyStemSccccceveieveceneve s 251
Displayed VPD Information for RISC System/6000cccceeeereeeeieresieseseserseeseeesessesseseesens 251

Figures

ix

X

6-43

6-45
6-46
6-47
6-48
6-49
6-50
6-51
6-52
6-53
6-54
6-55
6-56
6-57
6-58
6-59
6-60
6-61
6-62
6-63

6-65
6-66
6-67

Status Utility 80960 ReQiStErS DISPIAYcceiverieriiieiieieieeeeirie e 252

Example Screent—ConfigUurationc.ce et s see e ne e eneas 253
Example SCreen—ProCeSS SUMIMEAIYcccceieririne et sae b s se et se e eneas 253
Example SCreen—ReSoUrCe SUMMATYcccoiiiiirenie et sae e s se e seeeeneas 254
EX@MPIE© SCIEet—IMEIMOIYcccooiiiiieiieire ettt ettt sae bt e e e b e e e s ene e e eneeneas 254
Example Screen—Process DELAIIS ..ottt 254
Example Screen—~Process Terminated by Software EVENtcccooeoeinenininie e 255
Example Screen—~Process Terminated by Processor EVENtccooceirenenineneneesee e 255
Example Screen—~Process Terminated by Adapter EVENt ... 256
SaMPI € SCreent—PrOCESS RESOUITESccuirieiueieisiesie e siereesee st eeeteseesesbesbesbeseesbeseesaeneesee e enssnesnes 256
Example SCreen—mProcess ParamELersScoccecriirinine e s se e 257
Example Screen—Device Driver DEtail ...t 257
Example Screent—EBVent DEail ... 257
Example Screen—MailBoX DEailcooiiiiiiieee e e 258
Example Screen—Memory DELailcoooeecieeinice et e 258
Example Screen—QUEUE DELAILccviieieececeee e sttt 259
Example Screen—Semaphore DEalccccceceeieieceie st 259
Example Screen—=Signal DELailcccceieiereieereee ettt s 259
Example SCreent—Timer DELallccccvveiereecneee sttt 260
Example Screen—Hardware Device Detallcccvevveeeiiiie e 260
Example SCreen—V eCtor DELalccccoceieiereieere s st 260
Example Screen—EXception CoNditionsccccvevieiiiinnsesereeeseseee e seseenens 261
Example Screen—V PD Information for PS/2 SYStEMScccccvveveveeeereneee e e e 261
Example Screen—V PD Information for RISC System/6000cccceevevevrreneseneessseesesneenns 261
Example Screent—-80960 REJISLEISccoeoverireererieeseeesteseseesees e seeseeseesesseesessessesseesessessessesees 262

ARTIC960 Programmer’s Reference

| Tables

1-1
1-2
1-3
1-4
1-5
2-1
2-2
31
3-2
3-3
34
35
3-6
3-7
3-8
39
3-10
311
3-12
3-13
3-14
3-15
3-16
3-17
6-1
6-2

6-4
65

6-7
6-8

6-10
6-11
6-12

Adapters Supported by Each Operating SYSEMcooiiie e e 1
KENEl PAIAIMELEIS ..ottt ettt b e s bbbt b e e e bt e e e e e e ebeenas 4
OS/2 DIIVEr MESSAESveeviiereisieriestereeeeieseesesaestessessestessessaseeassseesessessesaesbesbesbesseseenesseessenesnens 8
OS/2 MailDOX ProCESS IMESSAgESeeeveuteueeerierieeieeiesie sttt s eeesbe e saesbe st sae s e e seenesneenesaeene 9
AIX MailDOX PrOCESS MESSAJESccuviuerirueitiriesiesiesie e seeee st sbese b sbesbe e seeseaae e e e sbesneenesaeas 13
ARTICO60 KEIMEl SEIVICESvoueieeieieiesie sttt sttt st st be st bbb s tebe b e e neeneas 15
= 0 1= (= N I8 0= USSR 18
Service Class: C_ASYNC_EVENT_SERVICE ... 156
Service Class: C_DEVICE_DRIVER_SERVICEccooiiiiiniee e 156
Service Class: C_EVENT_SERVICE ...t 157
Service Class: C_ HOOK _SERVICEcccovieireere s stesie st sees e sese e sse st sae e seanseseenenns 157
Service Class: C_INTERRUPT_SERVICE ... e 157
Service Class: C_KERN_COMMANDS SERVICEccoceiiriiineineere e 157
Service Class: C_MAILBOX_SERVICE ..o st 158
Service Class: C_MEMORY_SERVICE ... 158
Service Class: C_PROCESS SERVICE ... sese st seense e 159
Service Class;: C MEMPROT _SERVICE ..ottt 160
Service Class: C QUEUE_SERVICEcocovcviirieerreesiseee st se st st ste st s se e e e ssesnessesnens 160
Service Class; C_ SEMAPHORE _SERVICE ... 160
Service Class: C_SIGNAL_SERVICE ..ottt stesaeseseene s e e ssessesaeseens 161
Service Class; C_SUBALLOC _SERVICE ...t ete st seese s ese s e e ssesreseesnens 161
Service Class; C_ SWTIMER SERVICE ..ot st se e ens 161
Service Class; C_ TIMER _SERVICE ...t ste st ne e s sne s s s 162
SENVICE CIASS, C CLIB ...uiiiiiiesereeeseeete ettt sttt e s se e e e en e e e e e 162
Application Loader Messages and RetUrN COUESccevverereereeerrese e seseeseseeseneesesseesesneenens 199
Dump Utility Messages and EXit COUEScoeeerrireniereseseieeeesre s nesesnesse e 206
Configuration Utility Messages and EXit COUESccccvvrerrierininne s 209
Reset Utility Messages and EXit COUEScuvevereieereei s seeeseesee e s sse e 211
Set Trace Utility Messages and EXit COUESccvvereerereriireseseseseeseseee s e see e se e 214
Get Trace Utility Messages and EXit COUESccuevverieresinie st 216
Format Trace Utility Messages and EXit COUEScouevveveerieiinenneseee s eensennes 218
SEAEUS ULty OPLIONS .uvceeecieeceeceee st e sne s e e e e e e e 223
Status Utility Messages and EXit COUESccueveerereieresee st se e s sne s 225
S o LU oo = o U= S 234
Termination Status Fault Types and Subtypes for a Processor Eventcccocvvvvvvveciecnenens 235
Recognized EXCeption CONAIitioNScccovvivireiieiieceeeseee e sese st s 250

Tables

Xi

Xii ARTIC960 Programmer’s Reference

| About This Book

This book describes specific aspects of programming in the RadiSys ARTIC960
COProcessor environments.

This book contains information about the ARTIC960 services available for writing
adapter-resident programs. It also contains a brief description of the system unit utility
programs and the steps required to compile and link both system unit and

adapter programs.

This book does not include sample code.

Guide Contents
The following lists the contents of this Guide.

Chapter Description

1 Loading and Configuring Explains how to load and configure the kernel and
related subsystems and RadiSys ARTIC960 Support
for OS/2, AIX, and Windows NT.

2 ARTIC960 Kernel Services Provides a summary of RadiSys ARTIC960 kernel
services and ARTIC960 parameter types.

3 Base Kernel Services Describes the base kernel services
4 Kernel Commands Lists and describes the kernel commands.
5 Adapter Library Routines Lists ANSI C library calls and describes the

Miscellaneous Service, the System Bus Interface
Services, and the PCI Services

6 System Unit Utilities Describes the available system unit utilities.

7 System Unit APIs Describes the system unit APIs.

The appendices provide additional information about ARTIC960.

Appendix Description

A Structure Definition Lists the RIC_CONFIG, RIC_VERDATA, and
RIC_EXCEPT structures.

B Message File Explains the error messages and the actions to
be taken

C Return, Error, and Exit Codes Lists and explains the return codes.

About This Book Xiii

[

Notational Conventions

Xiv

This manual uses the following conventions:

& €

WD

The term ARTIC960 always refers to the Radi Sys ARTIC960 products.

The term ARTIC960 can refer to programs that run on the ARTIC960, ARTIC960
PCI, ARTIC960Rx PCI, or ARTIC960Hx PCI adapters, or the adapters themselves.

Theterm ARTIC960 PCI refers to functions supported only on the ARTIC960 PCI
adapter; ARTIC960 MCA refers to functions supported only on the ARTIC960 Micro
Channel adapter.

The term ARTIC960RXx PCI refers to functions supported by the ARTIC960Rx PCI
adapter; ARTIC960HXx PCI refers to functions supported by the ARTIC960Hx PCI
adapter.

Theterm ARTIC960RXD PCI refersto functions supported by the ARTIC960RxD PCI
adapter.

The term OS2 alwaysrefersto the IBM OS/2 operating system.

The term AlX alwaysrefersto the IBM AlX operating system.

The term system bus can refer to either the Micro Channel or PCI bus.
All countsin this book are assumed to start at zero.

All numeric parameters and command line options are assumed to be decimal values,
unless stated otherwise.

To pass a hexadecimal value for any numeric parameter, the parameter should be
prefixed by Ox or 0X. Thus, the numeric parameters 16, 0x10, and 0X10 are all
equivalent.

Utilities all accept the ? switch as arequest for help with command syntax.
All representations of bytes, words, and double words are in the little endian format.

All bit numbering conforms to the industry standard of the most significant bit having
the highest bit number. Bit 0 isthe low-order bit.

If abitissetto 1, the associated description is true unless stated otherwise.
Screen text and syntax strings appear inthis font.

Notes indicate important information Cautions indicate situations that may
about the product. result in damage to data or the hardware.

Tips indicate alternate techniques or ESD cautions indicate situations that
procedures that you can use to save may cause damage to hardware via
time or better understand the product. electrostatic discharge.

The globe indicates a World Wide Warnings indicate situations that may
Web address. result in physical harm to you or
the hardware.

ARTIC960 Programmer’s Reference

Where to Get More Information

You can find out more about RadiSys ARTIC960 from these sources:

World Wide Web: RadiSys maintains an active site on the World Wide Web. The site
contains current information about the company and locations of sales offices, new
and existing products, contacts for sales, service, and technical support information.
You can also send E-mail to RadiSys using the web site.

V
\

When sending E-mail for technical support, please include information about
both the hardware and software, plus a detailed description of the problem,
including how to reproduce it.

To access the RadiSys web site, enter this URL in your web browser:
http://ww. radi sys. com

Requests for sales, service, and technical support information receive
prompt response.

Other: If you purchased your Radi Sys product from a third-party vendor, you can
contact that vendor for service and support.

Reference Publications

You may need to use one or more of the following publications for reference:
Radi Sys ARTIC960 Programmer’s Guide
Radi Sys ARTIC960 STREAMS Environment Reference

Operating and Installation documentation provided with your computer system

Guide to Operations books for one of the following coprocessor adapters:

RadiSys ARTIC960 PCl adapter
RadiSys ARTIC960Rx PCIl adapter
RadiSys ARTIC960Hx PCl adapter
RadiSys ARTIC960RxD PCI adapter

Each book contains a description of the coprocessor adapter, instructions for
physicaly installing the adapter, parts listings, and warranty information.

About This Book XV

« |BM Publications:

— IBM Operating System/2 (0S2) \Version 3.0, Advanced Interactive Executive
(AIX) Version 4.1 and 4.2

— IBM AIX \ersion 4.x Kernel Extensions and Device Support, Programming
Concepts, (SC23-2207)

For information about writing a STREAMS module or driver, refer to the AIX
Web site:

@ http://ww. rs6000.i bm com doc_link/en_US/a_doc.|ib/
¥ ai xprogd/ progcont/str_prgref.htm

AlX supports asubset of SVR4.2 STREAMS calls, and the on-card STREAMS
subsystem supports a subset of AIX STREAMS.
— IBM Personal System/2 Hardware Reference, S85F-1678)
— IBM XL C Language Reference, (SC09-1260)
* Intel Publications:

— 1960 RP Microprocessor User’s Manual

1960 Rx I/0O Microprocessor Developer’s Manual

1960 Hx Microprocessor User’'s Manual

1960 Cx Microprocessor User’s Manual
80960CA User’s Manual

Developer’'s Assistance Program

XVi

Programming and hardware devel opment assistance is provided by the RadiSys ARTIC
Deveoper’'s Assistance Program (DAP). The DAP provides, via phone and electronic
communications, on-going technical support—such as sample programs, debug
assistance, and access to the latest microcode upgrades.

You can get more information or activate your free membership in the RadiSys ARTIC
DAP by contacting us.

By telephone, call (561) 981-3200.
By E-mail, send to artic@radisys.com.

ARTIC960 Programmer’s Reference

L oadi

ng and Configuring

This chapter contains information about |oading and configuring:

e Thekernd

and related subsystems

e The ARTIC960 Support for 0S/2
e The ARTIC960 Support for AlX
e The ARTIC960 Support for Windows NT

Supported Adapters
Table 1-1 shows which adapters are supported by each operating system.

Table 1-1. Adapters Supported by Each Operating System

0sS/2 AlX Windows NT
Adapter Version 1.2.2 Version 1.4.1 Version 1.2.0
ARTIC960 Micro Channel v Vv
ARTIC960 PCI Vv Vv Vv
ARTIC960Rx PCI Vv Vv Vv
ARTIC960Hx PCI V Vv Vv
ARTIC960RxD PCI Vv
ARTIC960Rx Frame Relay PCI v v

Kernel and Subsystems

Thekerne and

related subsystems (collectively called system executables) must be loaded

onto the adapter before any application processes are loaded. The list of system
executables and associated file names are:

ric kern.rel

ric kdev.rel

ric_basere

ric_ mcio.rel

Runtime kernel. This module provides all of the services described in
Chapter 3: Base Kernel Services on page 21.

This module can be used instead of ric_kern.rel during the debug phase of
application devel opment.

Base device driver. This module provides memory protection services.

If ric_base.rel isloaded when memory protectionisnot active, it isunloaded
automatically by the kernel.

System Bus 1/0O subsystem. This module provides basic support for moving
data between adapters and the system unit.

Chapter 1: Loading and Configuring 1

ric_ sch.rel This module provides peer-to-peer transport services using the Subsystem
Control Block (SCB) architecture.

ric ossrel On-card STREAMS subsystem (OSS). This module providesa STREAMS
environment on the adapter.

ric essrel On-card STREAMS Cross Bus Subsystem. This module transmits
STREAMS data across the system unit bus between STREAMS Access
Library (SAL) and the On-card STREAMS Subsystem (OSS).

ric_ pci.rel PCI bus configuration driver. This module provides basic services for
configuring devices attached to the adapter’slocal PCI bus.

Specific applications may not require all modules.

The system executables must be loaded in the preceding order using the Application
Loader utility. For information, see Application Loader (ricload) Utility on page 196.

Kernel Performance Considerations

2

Kernel performance can be affected by the way the adapter isloaded and configured.

Instruction Cache

The following support provides options that enable the kernel to pin critical kernel codein
instruction cache:

e ARTIC960 Support for IBM OS/2, Version 1.2.1

e ARTIC960 Support for IBM AlX, Version 1.2 or higher

e ARTIC960 Support for Microsoft Windows NT, Version 1.0
There are two types of critical kernel code.

e Code critical for process-intensive applications (dispatcher, request/release
semaphore, and so forth)

» Code critica for interrupt intensive applications (such as, first level interrupt handlers
and enter/exit critical section)

The amount of kernel code that can be pinned depends on the size of the instruction cache
which varies by processor type:

e The Cx processor is used on ARTIC960 and ARTIC960 PCI cards. On aCx or Rx
processor, the kernel pins 2 KB of the 4 KB instruction cache. On a Cx or Rx
processor, only one type of critical code can be pinned.

e Onan Hx processor, the kernel pins up to 8 KB of the 16 KB instruction cache. On an
HXx processor, the cache is big enough to allow both process-intensive and
interrupt-intensive critical code to be pinned.

Thetype of critical code to be pinned is controlled by the PI N_KERN_PROC_CODE and
PI N_KERN_I NT_CODE kernel configuration parameters. See page 5 for information about
these parameters.

ARTIC960 Programmer’s Reference

Internal Data RAM

The following provide for use of 1960 internal data RAM.
e ARTIC960 Support for OS/2 (Version 1.2.1)

e ARTIC960 Support for AlX (Version 1.2)

* ARTIC960 Support for Windows NT (Version 1.0)

Internal data RAM isused for key kernel dataand is also available for application use. The
size of the internal dataRAM is1 KB for a Cx/Rx processor and 2 KB for an Hx
processor.

Internal data RAM is used in the following manner:

Top (0x400 on Cx/Rx, 0x800 on Hx)
Register Cache
Growth
Top - n
Available for
Applications
0x200
Reserved for
Kernel Usage
0x040
Vectors
0x000

The value of nis determined by the number of cached register sets. Thisis controlled by
the REG_CACHE kernel parameter. The default for this parameter is 7. Values of 5 or less
require no additional internal data RAM (n = 0). Vaues from 6 to 15 for REG_CACHE
cause 64 bytes of internal data RAM to be used for each stack frame
(n=(REG_CACHE-5)*64). On the ARTIC960Rx PCI card, internal data RAM is not used
for register cache growth (n = 0).

Applications can use the range of internal data RAM from 200 to the top—n. However, the
kernel does not manage this data area. To avoid potential conflicts, only applications that
take over the card (that is, do not share the card with other applications) can make use of
the application internal data RAM area.

It is not guaranteed that the compatibility of this function will be maintained across
future releases.

Chapter 1: Loading and Configuring 3

Run Time Versus Development Kernel

There are two versions of the kernel:

e ric_kern.rel (runtime)

e ric_kdev.rel (development)

These versions are supported by the following ARTIC960 programs.

« ARTIC960 Support for 0S/2, Version 1.2.1

e ARTIC960 Support for Al X, Version 1.2 or higher

e ARTIC960 Support for Windows NT, Version 1.0

Either version of the kernel can be loaded onto the adapter by way of the ricload utility.

The runtime version has limited error checking and no memory protection support.
Validity checking of most input parameters has been eliminated from kernel service calls.
Once an application has been debugged, this version can be used to give better
performance.

The development version contains full support. The additional functions it provides are
normally needed only during application debug.

Configuration Parameters

Configuration for the kernel and related subsystems is done through load-time parameters
that can be passed on the command line or through a configuration file when using
RICLOAD. These parameters take the form of keywords (representing specific
parameters) followed by an equal sign (=) and their value. The individual parameters are
separated by spaces, tabs, or new lines. Parameters not specified at load time take on
default values. The configuration parameters for the kerndl, the SCB subsystem, and the
System Bus I/0 subsystem follow. There are no parameters for the base device driver.

Kernel Parameters

The following are the kernel parameters that can be set. The default value for the
parameter is underlined.

Table 1-2 (Sheet 1 of 2). Kernel Parameters

Parameter Description

MEMORY_PROTECTION=YES|NO Global memory protection enable. When YES, all
normal processes run with memory protection on.
This parameter is ignored when an application is
running on an adapter that does not support
memory protection.

DEFAULT_PRIORITY=40 Default process priority. Unless otherwise
specified, when a process is loaded its priority is
this value. It must be at least 32.

MAX_DD_SS=16 Maximum number of device drivers and
subsystems.

MAX_REMOTE_MAILBOX=16 Maximum number of remote mailboxes.

MAX_PEER_ADAPTERS=0 Maximum number of peer units, not including this

adapter or the system unit.

4 ARTIC960 Programmer’s Reference

Table 1-2 (Sheet 2 of 2). Kernel Parameters

Parameter

Description

MAX_SYSTEM_MC_REQ=8

Maximum number of system bus read/write
requests from the system unit outstanding.

DEFAULT_STACK_SIZE=4096

Default process stack size.

TIME_SLICE_INTERVAL=10

Time slice interval/disable. 0 means disable.
Interval value is in milliseconds.

WATCHDOG_INTERVAL=2000

Watchdog interval/disable. 0 means disable.
Interval value is in milliseconds. The watchdog
timer is not supported on ARTIC960Rx PCI and
ARTIC960Hx PCI cards. It will be ignored.

TIME_OF_DAY=YESINO

Time-of-day clock enable.

PERFORMANCE_TIMER=YES|NO

Performance timer enable. If the performance timer
is not enabled, the StartPerfTimer, StopPerfTimer,
and ReadPerfTimer services return
RC_PERF_TI MER_NOT_ENABLED.

You can request the kernel to leave the time slice
timer, watchdog timer, time-of-day timer, or
performance timer available for a user process.
See Timer Notes on page 5 for more information.

DATA_CACHE=YES|NO

Data cache enable. This parameter is ignored if
data cache hardware is not present on the adapter
or if MEMORY_PROTECTI ON=YES.

REG_CACHE=7

Number of register sets that are cached. Valid
values depend on the type of processor in use.

INST_CACHE=YES|NO

Instruction cache enable.

PIN_KERN_PROC_CODE=YES|NO

When YES, kernel code that is critical for
process-intensive applications is pinned in
instruction cache, if instruction cache is enabled.

PIN_KERN_INT_CODE=YES|NO

When YES, kernel code that is critical for
interrupt-intensive applications is pinned in
instruction cache if instruction cache is enabled.

PEER_TIMEOUT=5

Timeout value used by the kernel mailbox
subsystem when communicating with peer
processes. Valid values are 0 to 60 seconds. A
value of 0 means that the timeout will be disabled.

Timer Notes

For ARTIC960 and ARTIC960 PCI adapters, you can request the kernel to leave the
timedlice timer, watchdog timer, time-of-day timer, or performance timer available for a
user process. If TI ME_SLI CE_I NTERVAL=0, WATCHDOG | NTERVAL=0,

TI ME_OF_DAY=NO, or PERFORMANCE _TI MER=NQ, the kernel does not allocate the
indicated timer. The timer can be allocated by a user process.

For ARTIC960Rx PCI and ARTIC960Hx PCI adapters, you can request the kernel to
leave TIMERO available for a user process. If TI ME_SLI CE_| NTERVAL=0 and
PERFORMANCE_TI MER=NQ, the kernel will not allocate TIMERO. The timer can be

alocated by a user process.

Chapter 1: Loading and Configuring 5

Subsystems Configuration

« Base Device Driver—There are no configuration parameters defined for the base
subsystem.

e SCB Subsystem—The SCB Subsystem parameters that can be set are as follows. The
default parameters are underlined.

Parameter Description

MEMPROT = YES|NO Subsystem memory protection enable. Protection is
enabled only if kernel memory protection has been
enabled.

SIGHANDPROT = YES|NO Signal interrupt handler memory protection enable.

Protection is enabled only if kernel memory protection
and subsystem memory protection have been enabled.

e System Bus /O Subsystem—The System Bus |/O Subsystem parameters that can be
set are as follows. The default parameters are underlined:

Parameter Description

THRESHOLD =128 Maximum number of bytes to be transferred using
channel 1. Requests above this threshold value are sent
on channel 2.

MEMPROT = YES|NO Subsystem memory protection enable. Protection is
enabled only if kernel memory protection has been
enabled.

If you are running the ARTIC960 Support for OS/2,
Version 1.1.0 or higher, or the ARTIC960 Support for AlX,
Version 1.1.3.0 or higher, this parameter is ignored. The
System Bus I/O Subsystem always runs with its memory
protection disabled.

TCINTPROT = YES|NO Terminal count interrupt handler memory protection
enable. Protection is enabled only if kernel memory
protection and subsystem memory protection have been
enabled.

If you are running the ARTIC960 Support for OS/2,
Version 1.1.0 or higher, or the ARTIC960 Support for AlX,
Version 1.1.3.0 or higher, this parameter is ignored. The
System Bus I/O Subsystem always runs with its memory
protection disabled.

USERCHANNUM = 1|2 Channel number of the channel to be reserved for the
user. It can be setto 1 or 2. The default is no channel is
reserved for the user.

6 ARTIC960 Programmer’s Reference

ARTIC960 Support for OS/2

The following sections describe the ARTIC960 Support for OS/2.

Supported ARTIC960 Configurations

The ARTIC960 adapter supports awide variety of configurations such asinterrupt levels,
I/0 addresses, and system bus memory configurations.

ARTIC960 32-bit Support for OS/2 supports all configurable adapter options with the
following restrictions:

Interrupt level
All configurable interrupt levels are supported.

I/O address
All configurable base 1/O addresses are supported.

8/16 KB memory window (ARTIC960 Micro Channel only)
Thismemory window is not used by the 32-bit OS/2 support. Its presence and
location do not affect operation.

8 KB memory mapped (ARTIC960 PCI and ARTIC960HXx)
Thismemory window is not used by the 32-hit OS/2 support. Its presence and
location do not affect operation.

Full memory window
Under OS/2, the system unit driver does not require or use direct accessto the
full memory window to communicate with an ARTIC960 adapter (except for
ARTIC960RXx). However, the full memory window must be mapped onto the
system bus to support peer-to-peer adapter operations. If the window is not
visible on the system bus (either not physically mapped or not addressable
due to slot constraints), peer-to-peer adapter operations are not supported.

-% Multiple Virtual DOS Machines (MVDM) DOS applications
are not supported in ARTIC960 OS/2 Support.

Device Driver Installation

Two pieces of code provide OS/2 device driver support: the device driver and a
detached process.

The ARTIC960 OS/2 device driver (RICIO16.SYS) isinstalled through CONFIG.SYS. Itis
asymmetric multiprocessing safe (SMP safe) device driver.

$— DEVICE=

RICIO16.SYS | 2

Ldrived Lpath] L N _

Figure 1-1. OS/2 Device Driver Syntax

This entry must be placed in the CONFIG.SY Sfileto call the ARTIC960 OS/2 device
driver.

-N Disable interrupt nesting

Chapter 1: Loading and Configuring 7

Driver Messages

The content of the message fileislisted in Appendix B: Message File on page 295. The
following are the messagesin that file used by the OS/2 driver.

Table 1-3. OS/2 Driver Messages

Message Number Notes

RIC0001 (Invalid option)

RIC0002 (Invalid parameter)

RIC0009 Warning message (POST error)
RIC0010 Warning message (adapter failure)
RIC0016 (System error)

RIC0020 Information-only message (installing)
RIC0021 (Installed)

RIC0039 (No adapters)

RIC0049 (Unable to install interrupt handler)
RIC0064 Card ROM error (warning)

RIC0066 Interrupt nesting disabled (information)
RIC0071 Card ROM downlevel (warning)
RIC0081 Calibrating ARTIC960Rx timers (information)

Mailbox Process (RICMBX32.EXE)

8

The mailbox process, RICMBX32.EXE, is adetached process that works with the
physical device driver to handle remote mailbox processing.

Mailbox Process Call

The mailbox processis called using the following syntax. It expects configuration
parametersto be supplied to it through the command line or through a configuration file.
The mailbox process must be loaded prior to any application process calls to mailbox.

RICMBX32 |

>
LdriveJ L path J -C config_filename —
[path]
-K

Figure 1-2. OS/2 Mailbox Process Syntax

-C config_filename
Specifiesthat the contents of the file config_filename should be used as input
to the mailbox process for configuration parameters.

-K Specifies to stop the active mailbox process.

-% If the mailbox process is stopped, it may not be restarted without
resetting and reloading the adapters.

The mailbox process requires certain initialization parameters. If you do not specify these
parameters, they are assigned default values. The parameters take the form of keywords
followed by an “=" sign and the value. Spaces, tabs, or new lines should separate
individual parameters.

ARTIC960 Programmer’s Reference

The following parameters can be set:

MAX_GLOBAL_MAI LBOX
The maximum number of global mailboxes created in the system unit. The
default is 16.

MAX_REMOTE_MAI LBOX
The maximum number of remote mailboxes opened from the system unit.
The default is 16.

MAX_REMOTE_MAI LBOX_OPEN
The maximum number of remote mailbox open requests outstanding at any
onetime. The default is 16.

MAX_REMOTE_MAI LBOX_SEND
The maximum number of remote mailbox send requests outstanding at any
onetime. The default is 32.

MAX_REMOTE_MAI LBOX_RCV
The maximum number of remote mailbox receive requests outstanding at any
onetime. The default is 64.

MAX_NUM OF UNI TS
The maximum number of SCB units. The default is 16.

MBX_PROCESS PRI _CLASS
The priority class of the mailbox process, as listed below. The default is 4.

1 Idle

2 Regular

3 Timecriticd
4 Fixed-high

MBX_PROCESS PRI _DELTA
The priority delta of the mailbox process. The priority delta parameter isa
decimal value in the range —31 to +31. The default is 0.

PEER_TI MEQUT
Timeout value in seconds when communicating with peer processes. Valid
values are 1 to 60. The default is 5.

For remote mailbox processing to occur, the Configuration utility must be used to establish
communication between the system unit and adapters. For information on this utility, see
Configuration Utility on page 207.

Mailbox Process Messages and Return Codes

The content of the message fileislisted in Appendix B: Message File on page 295. The
following table correlates the return code of the driver with the driver messages used by
the OS/2 mailbox process.

Table 1-4. OS/2 Mailbox Process Messages

Message

Number Return Code Notes
RIC0001 RC_UTIL_INVALID_CMDLINE_OPTION

RIC0002 RC_UTIL_INVALID_CMDLINE_PARM

Chapter 1: Loading and Configuring 9

Table 1-4. OS/2 Mailbox Process Messages

Message

Number Return Code Notes

RIC0003 RC_UTIL_FILE_NOT_FOUND

RIC0004 RC_UTIL_FILE_ACCESS

RIC0006 RC_UTIL_NO_MORE_MEM

RIC0016 RC_UTIL_SYSTEM_ERROR

RIC0019 RC_UTIL_NOT_INSTALLED

RIC0021 RC_UTIL_SUCCESS Process successfully started
RIC0048 RC_UTIL_WRNHELP_GIVEN

RIC0050 RC_UTIL_RESOURCE_BUSY

RIC0051 RC_UTIL_ALREADY_STARTED

RIC0062 RC_UTIL_SUCCESS Process terminated successfully
RIC0063 RC_UTIL_NOT_RUNNING Not found

ARTIC960 Support for AIX

The following sections describe the ARTIC960 Support for AlX.

Supported ARTIC960 Configurations

10

The ARTIC960 adapter supports awide variety of configurations, such asinterrupt levels,
I/O addresses, and system bus memory configurations. ARTIC960 Support for AlX
Version 1.3 added support for 14 ARTIC960 adapters (0 through 13).

The ARTIC960 Support for AlX supports all configurable hardware options with the
following restrictions.

Interrupt Level
All configurable interrupt levels are supported.

/O Address
All configurable base 1/0 addresses are supported. For the RadiSys
ARTIC960 PCl and ARTIC960HX, thiswindow is used for peer-to-peer 1/O
memory operations only.

8/16-KB Memory Window (ARTIC960 Micro Channel only)
Thiswindow is used only during device driver configuration, and then it
is disabled.

8-KB Memory Mapped 1/0 (ARTIC960 PCI and ARTIC960HXx only)
Thiswindow is used for system-unit-to-card 1/O memory operations.

Full Memory Window
Under AlX, the system unit driver uses this window for small accessesto
ARTIC960 memory.

DMA (Direct Memory Access) Peer-to-Peer Support
ARTIC960 Support for AIX Version 1.1.6 supports DMA between two peer
adapters. In versions after 1.1.6, DMA between two peer adaptersis
supported only for Micro Channel adapters.

ARTIC960 Programmer’s Reference

Micro Channel Only

Arbitration Levels
All configurable arbitration levels are supported.

The ARTIC960 adapters can have two arbitration levels defined. The
ARTIC960 AlIX support usesthe first arbitration level for system-unit-
to-adapter DMA transfers and the second arbitration level for peer-to-peer
DMA transfers. Theadapter attribute that controlsthe second arbitration level
isDMAZ2Enable, and it can be changed using SMIT. When DMAZ2Enableis
set to YES, asecond arbitration level isreserved for peer-to-peer transfers.

Streaming Data Enable
Use SMIT to change this attribute.

Selected Feedback Return Enable
Use SMIT to change this attribute.

Parity Enable
Use SMIT to change this attribute.

Channel Check Enable
Use SMIT to change this attribute.

Device Driver Installation

Two pieces of code provide the AIX support: the device driver and a daemon process.

The ARTIC960 AlX device driver (ricio) isinstalled through the AIX Configuration
Manager at system boot time. It is a multiprocessing safe (MP Safe) device driver.

Mailbox Process (ricmbx)

The mailbox process, ricmbx, is a daemon process that works in conjunction with the
device driver to handle remote mailbox processing.

Version 1.3 of ricmbx added the support for the first ten ARTIC960 adapters, numbers 0
through 9. Mailboxes can be used locally on the adapters 10 and above, but the system unit
mailboxes will not be able to communicate remotely.

Mailbox Process Call

Configuration parameters must be supplied on the command line or through a
configuration file. The mailbox process must be loaded prior to any application process
calls to mailbox services.

-% You can start the mailbox process at system boot time by adding a line to the
/etc/nittab file.

Chapter 1: Loading and Configuring 11

12

The mailbox processis called using the following syntax. The superuser authority is
required to start the mailbox process.

ricmbx >

-C config_filename —
[path]
-K

> L path J

Figure 1-3. AIX Mailbox Process Syntax

-C config_filename
Specifiesthat the contents of the file config_filename should be used asinput
to the mailbox process for configuration parameters.

-K Kill the active mailbox process (superuser authority required).

The mailbox process requires certain initialization parameters. If you do not specify these
parameters, they take default values. The parameters take the form of keywords followed
by an = sign and their value. Spaces, tabs, or new lines should separate individual
parameters.

The following parameters can be set.

MAX_GLOBAL_MAI LBOX
The maximum number of global mailboxes created in the system unit. The
default is 16.

MAX_REMOTE_MAI LBOX
The maximum number of remote mailboxes opened from system unit. The
default is 16.

MAX_REMOTE_MAI LBOX_OPEN
The maximum number of remote mailbox open requests outstanding at any
onetime. The default is 16.

MAX_REMOTE_NAI LBOX_SEND
The maximum number of remote mailbox send requests outstanding at any
onetime. The default is 32.

MAX_REMOTE_MAI LBOX_RCV
The maximum number of remote mailbox receive requests outstanding at any
onetime. The default is 64.

MAX_NUM OF UNI TS
The maximum number of SCB units. The default is 16.

Al X_MBX_PROCESS PRI ORI TY
Themailbox process priority for the mailbox. Application processes wanting
to usethe mailbox services need to havetheir process priority alesser priority
than the mailbox process (1 is the highest priority level within AIX). The
default is 16.

For remote mailbox processing to occur, the Configuration utility must be used to establish
communication between the system unit and adapters. For information on this utility, see
Configuration Utility on page 207.

ARTIC960 Programmer’s Reference

Mailbox Process Messages and Return Codes

The content of the message fileislisted in Appendix B: Message File on page 295. The
following table correlates the return code of the driver with the driver messages used by
the AIX mailbox process.

Table 1-5. AIX Mailbox Process Messages

Message

Number Return Code Notes

RIC0001 RC_UTIL_INVALID_CMDLINE_OPTION Invalid configuration file, invalid
parameter names or values

RIC0002 RC_UTIL_INVALID_CMDLINE_PARM

RIC0003 RC_UTIL_FILE_NOT_FOUND Configuration file not found

RIC0004 RC_UTIL_FILE_ACCESS Cannot access configuration file

RIC0006 RC_UTIL_NO_MORE_MEM Parameter value exceeds
system memory limit

RIC0016 RC_UTIL_SYSTEM_ERROR OS or device driver error

RIC0019 RC_UTIL_NOT_INSTALLED Device driver not installed

RIC0021 RC_UTIL_SUCCESS Process successfully started

RIC0048 RC_UTIL_WRNHELP_GIVEN

RIC0050 RC_UTIL_RESOURCE_BUSY shmid,semid, used by mailbox
has been allocated in the
system

RIC0051 RC_UTIL_ALREADY_STARTED

RIC0076 RC_UTIL_FILE_ACCESS No root authority

Error Logging

Theerror log isatool designed to help isolate hardware problems. The AlX Support
Device Driver provides error logging.

Thefollowing ARTIC errors are logged to the system error log:

/O Error
Problems reading or writing to the system bus address space.

ROM Error
The read only memory (ROM) boot strap microcode not responding in
reasonable time during initialization or ROM finds a hardware error during
its boot strap initialize or reset.

Watchdog Timer Interrupt
Hard exceptionsreported by the ARTIC960 kernel or the adapter (ARTIC960
Watchdog Timeouts).

Adapter Kernel Exception
Software exceptions by the ROM or the kernel.

Trace Facility

The AlX Support device driver provides trace hooks to monitor the entry and exit of the
driver routines and the interrupt routine. The trace event is 29F.

Chapter 1: Loading and Configuring 13

[

ARTIC960 Support for Windows NT

The following sections describe the ARTIC960 Support for Windows NT.

Supported ARTIC960 Configurations

The ARTIC960 Support for Windows NT uses the hardware-abstraction layer (HAL) to
configure the configurabl e hardware options such as interrupt level, 1/0O addresses, and
system bus memory configurations.

Device Driver Installation

The Windows NT Version 4.0 device driver isinstalled when the ARTIC960 Support for
Windows NT isinstalled. The driver is started at boot time. It is a symmetric
multiprocessing (SMP) safe device driver.

Mailbox Process

The ARTIC960 Support for Windows NT supports card-to-card mailbox activity.
However, the System Unit mailbox process is not supported.

Event Logging

Four types of events are logged to the Windows NT Event Log for any particular
ARTIC960 device.

Configuration Errors
These errors are issued when the device driver has encountered errors with
interfacing to the hardware-abstraction layer (HAL).

ROM Errors
The read only memory (ROM) bootstrap microcode is hot responding in
reasonable time during initialization, or ROM finds a hardware error during
its bootstrap initialize or reset.

Watchdog Timer Interrupt
Hard exceptions reported by the ARTIC960 kernel or adapter.

Informational
V arious messages indicating starting and stopping of adevice or ARTIC960
kernel exceptions.

14 ARTIC960 Programmer’s Reference

ARTIC960 Kernda Services

O
194

This chapter summarizes the ARTIC960 kernel services and parameter types.

Summary of Services

Table 2-1 lists the modes in which each kernel service can be called. Thefirst column lists
all the services in the same sequence as they appear in this book. The remaining columns
define whether the service can be called from an interrupt handler, asignal handler, an
asynchronous event notification handler, a process exit routine, and acritical section.
Normal processtimeisone of the modesthat isnot in the table because all services can be
called at normal process time. The other mode that is not in the table is device driver or
subsystem call handlers. The rules that determine which services can be called are the
same as the mode from which the device driver or subsystem was called. Each serviceis
described in Chapter 3: Base Kernel Services on page 21.)

Table 2-1 (Sheet 1 of 4). ARTIC960 Kernel Services

Interrupt Signal Async Process Critical

Function Handler Handler Handler Exit Section

Process Management Services

Completelnit No No No No No
QueryProcessStatus Yes Yes Yes Yes Yes
QueryCardinfo Yes Yes Yes Yes Yes
QueryConfigParams Yes Yes Yes Yes Yes
CreateProcess No No No Yes Yes
StartProcess No No No Yes3 Yes
StopProcess No No No Yes3 Yes
UnloadProcess No No No Yes3 Yes
SuspendProcess Yes6 Yes6 Yes6 Yes Yesl
ResumeProcess Yes Yes Yes Yes Yes
SetExitRoutine No No No No Yes
SetPriority Yes? Yes? Yes? Yes Yes
QueryPriority Yes? Yes? Yes? Yes Yes
QueryProcessIinExec Yes Yes Yes Yes Yes
SetProcessData No Yes? Yes? Yes Yes
GetProcessData Yes Yes Yes Yes Yes
EnterCritSec Yesb Yes Yes Yes Yes
ExitCritSec Yesb Yes Yes Yes Yes
Dispatch No No No Yes Yes!

Chapter 2: ARTIC960 Kernel Services 15

Table 2-1 (Sheet 2 of 4). ARTIC960 Kernel Services

Function Interrupt Signal Async Prqcess Criti_cal
Handler Handler Handler Exit Section
Process Synchronization Services
CreateSem No No No Yes Yes
OpenSem No No No Yes Yes
CloseSem No No No Yes Yes
ReleaseSem Yes Yes Yes Yes Yes
RequestSem No No No Yes Yesl
QuerySemCount Yes Yes Yes Yes Yes
SetSemCount Yes Yes Yes Yes Yes
CreateEvent No No No Yes Yes
OpenEvent No No No Yes Yes
CloseEvent No No No Yes Yes
WaitEvent No No No Yes Yes!
Memory Management Services
CreateMem No No No Yes Yes
OpenMem No No No Yes Yes
CloseMem No No No Yes Yes
ResizeMem No No No Yes Yes
SetMemProt No No No Yes Yes
SetProcMemProt Yes Yes Yes Yes Yes
QueryMemProt No No No Yes Yes
QueryProcMemProt Yes Yes Yes Yes Yes
QueryFreeMem Yes Yes Yes Yes Yes
InitSuballoc No No No Yes Yes
GetSuballoc Yes Yes Yes Yes Yesl
FreeSuballoc Yes Yes Yes Yes Yes
GetSuballocSize Yes Yes Yes Yes Yes
MallocMem Yes Yes Yes Yes Yes
FreeMem Yes Yes Yes Yes Yes
CollectMem No Yes Yes Yes Yes
Timer Services
CreateSwTimer No No No Yes Yes
CloseSwTimer No No No Yes Yes
StartSwTimer Yes Yes Yes Yes Yes
StopSwTimer Yes Yes Yes Yes Yes
SetSystemTime Yes Yes Yes Yes Yes
QuerySystemTime Yes Yes Yes Yes Yes
StartPerfTimer Yes Yes Yes Yes Yes
StopPerfTimer Yes Yes Yes Yes Yes
ReadPerfTimer Yes Yes Yes Yes Yes

16 ARTIC960 Programmer’s Reference

Table 2-1 (Sheet 3 of 4). ARTIC960 Kernel Services

Function Interrupt Signal Async Prqcess Criti_cal
Handler Handler Handler Exit Section
Process Communication Services
CreateQueue No No No Yes Yes
OpenQueue No No No Yes Yes
CloseQueue No No No Yes Yes
PutQueue Yes Yes Yes Yes Yes
GetQueue Yes? Yes? Yes? Yes Yesl
SearchQueue Yes Yes Yes Yes Yes
CreateMbx No No No Yes Yes
OpenMbx No No No Yes Yes?
GetMbxBuffer Yes Yes Yes Yes Yes
FreeMbxBuffer Yes Yes Yes Yes Yes
SendMbx Yes8 Yes8 Yes8 Yes Yes#
ReceiveMbx Yes?2 Yes2 Yes?2 Yes Yesl
CloseMbx No No No Yes Yes
CreateSig No No No Yes Yes
OpenSig No No No Yes Yes
CloseSig No No No Yes Yes
InvokeSig Yes Yes Yes Yes Yes
Device Driver/Subsystem Services
CreateDev No No No Yes Yes
OpenDev No No No Yes Yes
CloseDev No No No Yes Yes
InvokeDev Yes Yes Yes Yes Yes
AllocVector No No No Yes Yes
ReturnVector No No No Yes Yes
SetVector No No No Yes Yes
AllocHW No No No Yes Yes
ReturnHW No No No Yes Yes
QueryHW No No No Yes Yes
AllocVectorMux No No No Yes Yes
SetVectorMux No No No Yes Yes
Asynchronous Event Notification Services
RegisterAsyncHandler No No No Yes Yes
DeregisterAsyncHandler No No No Yes Yes
Hooks
RegisterHook No No No Yes Yes
DeregisterHook No No No Yes Yes

Chapter 2: ARTIC960 Kernel Services

17

Table 2-1 (Sheet 4 of 4). ARTIC960 Kernel Services

Function Interrupt Signal Async Prqcess Critic_:al
Handler Handler Handler Exit Section

Kernel Trace Services

InitTrace No No No Yes Yes

EnableTrace Yes Yes Yes Yes Yes

DisableTrace Yes Yes Yes Yes Yes

LogTrace Yes Yes Yes Yes Yes

1 When the service is called with Preemption or Interrupts disabled, if the process blocks, interrupts and
preemption are enabled.

2 May be called with timeout equal to O.

3 When in an exit handler, a process cannot start, stop, or unload itself.

4 |f the service is called for a remote mailbox, interrupts and preemption are enabled.
5 Preemption cannot be enabled/disabled.

6 A process may not suspend itself from an interrupt handler, a signal handler, or an asynchronous
handler.

7 When in a handler, a process ID must be provided, that is, not the process currently in execution.

8 May be called to send a message to a local mailbox only.

Parameter Types

The description of each service includes the type of each parameter. The following types

are defined:

Table 2-2 (Sheet 1 of 2). Parameter Types
Service Description
RIC_DEVHANDLE Device driver or subsystem resource handle
RIC_PROCESSID Process ID
RIC_EVNHANDLE Event resource handle
RIC_MBXHANDLE Mailbox resource handle
RIC_QUEHANDLE Queue resource handle
RIC_SEMHANDLE Semaphore resource handle
RIC_SIGHANDLE Signal resource handle
RIC_TMRHANDLE Software timer resource handle

RIC_ASYNCHANDLER Entry point code address for an asynchronous event handler

RIC_SIGHANDLER Entry point code address for a signal

RIC_VECTOR Code address

RIC_SLONG Sighed number

RIC_TIMEOUT Signed number

RIC_ULONG Unsigned number
RIC_USHORT Unsigned number
RIC_RESPMBX Unsigned number
RIC_INVOKENUM Subsystem call function number
RIC_CARDNUM Logical card number

18 ARTIC960 Programmer’s Reference

Table 2-2 (Sheet 2 of 2). Parameter Types

Service Description

RIC_DOHANDLER Entry point of code address for an OpenDev entry point
RIC_DCHANDLER Entry point of code address for a CloseDev entry point
RIC_DIHANDLER Entry point of code address for an InvokeDev entry point

RIC_VECTOR_MUX Code address

Chapter 2: ARTIC960 Kernel Services 19

20 ARTIC960 Programmer’s Reference

194

Base Kernel Services

The realtime multi-tasking kernel (which is downloaded to the adapter) provides the
following base services.

Service Group Page
Process management 22
Process synchronization 50
Memory management 63
Timer 83
Process communication 94
Device driver/subsystem 121
Asynchronous event notification 138
Hooks 146
Kernel trace 149

Chapter 3: Base Kernel Services 21

Process Management Services

Process Management Services

The following are the process management services.

Service Name Page
Completelnit 23
QueryProcessStatus 25
QueryCardinfo 28
QueryConfigParams 31
CreateProcess 34
StartProcess 36
StopProcess 37
UnloadProcess 38
SuspendProcess 39
ResumeProcess 40
SetExitRoutine 41
SetPriority 42
QueryPriority 43
QueryProcessInExec 44
SetProcessData 45
GetProcessData 46
EnterCritSec 47
ExitCritSec 48
Dispatch 49

Refer to the ARTIC960 Programmer’s Guide for additional information.

22 ARTIC960 Programmer’s Reference

Completelnit—Mark Process as Completely Initialized

[

Completelnit—Mark Process as Completely Initialized

This service notifies the kernel that the calling process has completed initialization. This
service can also indicate initialization errors.

Functional Prototype

RI C ULONG Conpl etelnit (RIC ULONG ErrorCode,
RI C_ ULONG ProcessRev,
RI C ULONG OptionWord,
RI C_ ULONG Reserved);

Parameters

ErrorCode Input. Contains process-specific information stored in the process control
block. If thisfield is 0, the process initialized successfully. If thisfield is
greater than 0, the process found an error during initialization.

ProcessRev Input. Contains process-specific information stored in the process control
block. Although no specific format is defined, the following format is
recommended: ProcessRev is a 32-bit application-version number:

 8-bit major version number (most significant byte)
 8-bit minor version number
» 16-bit revision number (least significant two bytes)

OptionWord
Input. A bit field specifying options for the Completel nit service.

PERVANENT _PRCCESS

The processisdefined as permanent and cannot be stopped or unl oaded.
TRANSI ENT_PROCESS

Specifies that the process can be stopped or unloaded.

Reserved Input. Reserved parameter (must be 0).

Returns
RC_SUCCESS RC I NVALI D_CALL
RC | NVALI D_RESERVED PARM RC | NVALI D_OPTI ON

RC_ALREADY_I NI TI ALI ZED

Remarks

Thisserviceis used by all processes, device drivers, and subsystems. Device drivers and
subsystems will not receive OPEN requests until this service has been called for
successful initialization. This serviceisoptional for normal processes. However, to use the
—W option of the Application Loader utility, the process must use this service.

Chapter 3: Base Kernel Services 23

Completelnit—Mark Process as Completely Initialized

[

If the caller passes a non-zero value in ErrorCode, the processis stopped and does not
regain control after the call. The ErrorCode is intended as a safety net for reporting status
when no other method is available (for example, the process was not able to open a
mailbox). If a process wants to report non-error initialization status, another
communications mechanism should be used.

Although the ProcessRev format is not required, it is recommended that application
programmers implement it because the diagnostic utility (RICSTAT) uses thisfield.

24 ARTIC960 Programmer’s Reference

QueryProcessStatus—Get the Process Status

[

QueryProcessStatus—Get the Process Status

This service gets the status and other process-related information, accepting either a
process hame or process ID for input. When a process name is specified, this service
resolvesit to aprocessID.

Functional Prototype

RI C_ ULONG QueryProcessStatus (char *Pr ocessNarne,
RI C_PRCCESSI D Processl D,
Rl C_ULONG Opt i onWor d,
struct RI C ProcessStatusBl ock *PSBBufferPtr,
Rl C_ULONG Buf fer Si ze,
Rl C_ULONG Reserved);
Parameters
ProcessName

Input. Process name whose status is required.
ProcessID Input. Process ID whose statusis required.

OptionWord
Input. Possible values are:

PROCESS_NAME_OPTI ON

Specifies the ProcessName parameter is used.
PROCESS | D_OPTI ON

Specifies the ProcessID parameter is used.

PSBBuffer Ptr
Input. Process status and other process-related information is returned to the
reguesting process in this buffer.

BufferSze Input. Size of buffer pointed to by PSBBufferPtr. If the buffer is not large
enough, the service copies BufferSize bytesinto the user’ sbuffer and returns
an error code.

Reserved Input. Reserved parameter (must be 0).

Returns
RC_SUCCESS RC | NVALI D_MEM ACCESS
RC | NVALI D_NAMVE RC | NVALI D_OPTI ON
RC | NVALI D_RESERVED PARM RC | NVALI D_PROCESSI D
RC_NAME_NOT_FOUND RC_BUFFER _TOO SMALL

Chapter 3: Base Kernel Services 25

QueryProcessStatus—Get the Process Status

[

26

Remarks
The kernel returns the information to the calling process using the following structure.

struct RIC ProcessStatusBl ock

{
RI C_PROCESSI D Processl D,
RI C_ULONG ProcessSt at e;
Rl C_ULONG Processl nf o;
Rl C_ULONG ProcessType;
Rl C_ULONG Priority;
Rl C_ULONG MenPr ot St at e;
s
ProcessiD The process ID.
ProcessSate

Defines the current state of the process, using two sets of bits (see Primary
Process State Bits and Secondary Process Sate Bits on page 27).

Processinfo Process-related information, which is passed to the kernel in the ProcessRev
field on the Completelnit system call.

ProcessType Returned by the kernel. It can be one of the following types:
PROCESS_TYPE_NORMAL
PROCESS_TYPE_DEVDRV
PROCESS TYPE_SUBSYS

Priority Indicates the current execution priority for this process.

MemProtSate
Defines the state of memory protection.

MEMPROT _ENABLE Memory protection enabled
MEMPROT_DI SABLE ~ Memory protection disabled

ARTIC960 Programmer’s Reference

QueryProcessStatus—Get the Process Status

Primary Process State Bits

The primary process state bits are shown in the following table.

State bit

Description

LOADED

The LOADED bit is set while a process is being loaded and
is reset when the loading operation is complete.

PROC_STOPPED

The PROC_STOPPED bit is set when a process has been
loaded and is reset when it is unloaded by the system unit
or another process.

STARTED The STARTED bit is set when a process is started and is
reset when it is stopped by the system unit or
another process.

STOPPING The STOPPI NG bit is set when the exit handler of a

process is running.

Secondary Process State Bits

Processes that are in the started or stopping states have a valid secondary state, as defined

in the following table.

State Description

SUSPENDED The SUSPENDED bit is set when the process has been
suspended. The process is taken off the dispatch queue.

BLOCKED The BLOCKED bit is set when the process has been

blocked using a RequestSem, WaitEvent, GetQueue, or
ReceiveMbx call. The process is taken off the dispatch
queue.

DEVICE_DRIVER

The DEVI CE_DRI VER bit is set if a process declares itself
as a device driver.

QUEUED

The QUEUED bit is set when a process is ready to run.

WAITING_ON_PMREQ

The WAI TI NG_ON_PMREQ bit is set when a process is
blocked because it has issued a StopProcess or
UnloadProcess call that is being serviced.

Process Information Bits

Active processes may have valid information bits:

INITIALIZED

The | NI TI ALI ZED bit is set when the process issues the
Completelnit system call.

PERMANENT

The PERMANENT bit is set when a process, subsystem, or
device driver sets this field with the Completelnit system
call. The process, subsystem, or device driver cannot be
unloaded by the UnloadProcess call when this bit is set. It
may be unloaded from the system unit at any time.

Chapter 3: Base Kernel Services 27

[

QueryCardinfo—Get the Card Configuration Information

[

QueryCardinfo—Get the Card Configuration Information

28

This service gets information from the read-only memory (ROM) data structure.

Functional Prototype
RI C ULONG QueryCardlnfo (struct RIC Cardlnfo *ParnPtr,

Rl C_ULONG Buf ferSi ze,
Rl C_ULONG Reserved);
Parameters
ParmPtr Input. Pointer to the user’s buffer. The card information is copied into this
memory.

BufferSize Input. Size of the buffer is pointed to by ParmPtr. If the buffer is not large
enough, the service copies BufferSize bytesinto the user’ sbuffer and returns
an error code.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_| NVALI D_MEM _ACCESS
RC_BUFFER_TOO SMALL

RC_I NVALI D_RESERVED PARM

Remarks
Thisisthe card information structure. These values are taken from the ROS structure:
struct RIC Cardinfo

{
Rl C_ULONG PageSi ze;
Rl C_ULONG Ker nel Ver si on;
Rl C_ULONG BaseSubVer si on;
Rl C_ULONG MCl CSubVer si on;
Rl C_ULONG SCBSubVer si on;
RI C_CARDNUM Car dNum
Rl C_ULONG NuntCar ds;
Rl C_ULONG Car dType;
Rl C_ULONG Mast er 1Ver si on;
Rl C_ULONG Mast er 2Ver si on;
Rl C_ULONG Mast er 3Ver si on;
Rl C_ULONG Reserved;
Rl C_ULONG BaseCar dVer si on;
Rl C_ULONG ROSVer si on;
Rl C_ULONG MenRegi ons
struct RI C_MenRegi on Mem nf o[MAX_MEM _REG ONS] ;
}

ARTIC960 Programmer’s Reference

QueryCardinfo—Get the Card Configuration Information

[

struct RIC_MemRegion

{
RIC_ULONG MemBase,

RIC_ULONG MemTotal;
RIC_ULONG MemType;

}

Parameters
PageSize Size of memory protection page

Kernel Version
Kernel version number

BaseSub\ersion
Base subsystem version

MCIOVersion
System Bus I/O subsystem version

SCBWersion SCB subsystem version
CardNum Card number
NumCards Number of ARTIC960 cards in the configuration

CardType Type of adapter card. Provides information about the type of bus, the
presence of data cache, and the type of interface chip. The following masks
can be used to determine CardType information.

Rl C_CARD_TYPE
Indicates the type of bus. Possible values are:

Rl C_MCA Micro Channel
Rl C_PCI PCI (Peripheral Component I nterconnect)

Rl C_DCACHE
Indicates the presence of a data cache. Possible values are:

0 Datacache hardwareis not present.
1 Datacache hardwareis present.

RICIF CH P
Indicates the type of interface chip. Possible values are:

RIC MAM Miami

RIC MP2P Miami PCI to PCI
RIC RP i960RP

Rl C_RxD i960RxD

Master1Version
Version of ARTIC 32-bit Memory Controller Chip

Master2Version
Version of system bus Interface Chip

Master3Version
Version of CFE Local Bug/AIB Interface Chip

Reserved Reserved field

Chapter 3: Base Kernel Services 29

QueryCardinfo—Get the Card Configuration Information

[

BaseCard\ersion
Base card version

ROSVersion
ROS version

MemRegions
Number of memory regions

MemBase Base address of memory region
MemTotal Size, in bytes, of memory region
MemType Type of memory region. Possible values are:

MEM _TYPE_I NSTRUCTI ON
MEM_TYPE_PACKET

30 ARTIC960 Programmer’s Reference

QueryConfigParams—Get the Configuration Parameters

QueryConfigParams—Get the Configuration Parameters

This service gets the kernel parameters.

Functional Prototype

RI C_ ULONG QueryConfigParans (struct R C ConfigParns *ParnPtr,
Rl C_ULONG
RI C_ULONG

Parameters

ParmPtr

BufferSze

Reserved

this memory.

Returns

RC_SUCCESS

RC_BUFFER_TOO SMALL

RC_| NVALI D_MEM ACCESS
RC_| NVALI D_RESERVED PARM

Remarks

Input. Pointer to user’s structure. The kernel parameters are copied into

Input. Number of bytesto copy to the user’s buffer.

Input. Reserved parameter (must be 0).

Buf ferSi ze,
Reserved);

Thisisthe configuration parameter structure. These values are set at load time. The user
can set these with aconfiguration file. A default valueis used for each parameter not set by
the user.

struct

{

RI C_ULONG
Rl C_ULONG
RI C_ULONG
RI C_ULONG
RI C_ULONG
RI C_ULONG
RI C_ULONG
RI C_ULONG
RI C_ULONG
RI C_ULONG
RI C_ULONG
RI C_ULONG
RI C_ULONG
RI C_ULONG
RI C_ULONG
RI C_ULONG
RI C_ULONG
RI C_ULONG
RI C_ULONG
RI C_ULONG
RI C_ULONG
RI C_ULONG

RI C Confi gPar ns

Menmor yPr ot ecti on;
Defaul tPriority;
MaxPr ocess;

MaxTi mer ;
MaxSemaphor e;
MaxMemAl | oc;
MaxQueue;

MaxEvent ;

Max DDSS;

MaxSi gnal ;

MaxLocal Mai | box;
Maxd obal Mai | box;
MaxRenot eMai | box;
MaxRenot eMai | boxOpen;
MaxRenot eMai | boxSend;
MaxRenot eMai | boxRcv;
MaxPeer Adapt er s;

Max Syst enMCReq;
MaxAdapt er MCReq;

Def aul t St ackSi ze;

Ti meSli ce;

Wat chDog;

Chapter 3: Base Kernel Services

31

[

QueryConfigParams—Get the Configuration Parameters

[

32

RIC_ ULONG Ti neCf Day;
RIC ULONG PerfTiner;
RIC ULONG Dat aCache;
RI C_ ULONG I nstCache;
RIC ULONG RegCache;
RI C_ ULONG Pi nKer nProcCode;
RI C_ ULONG Pi nKer nl nt code;
RI C ULONG Peer Ti neout;
}
Parameter

MemoryProtection
Memory protection enable flag
0 Disabled
1 Enabled)

DefaultPriority
Default process priority

MaxProcess Maximum number of processes; includes device drivers and subsystems
MaxTimer Maximum number of timers

MaxSemaphore
Maximum number of semaphores

MaxMemAlloc

Maximum number of memory allocations
MaxQueue Maximum number of queues
MaxEvent Maximum number of events

MaxDDSS Maximum number of device drivers and subsystems; does not include kernel
device drivers and kernel subsystems

MaxSgnal Maximum number of signals

MaxLocal Mailbox
Maximum number of local mailboxes

MaxGlobal Mailbox
Maximum number of global mailboxes

MaxRemoteMailbox
Maximum number of remote mailboxes

MaxRemoteMailboxOpen
Maximum number of remote mailboxes open

MaxRemoteMailboxSend
Maximum number of remote mailbox sends outstanding

MaxRemoteMailboxRcv
Maximum number of remote mailbox receives outstanding

MaxPeer Adapters
Maximum number of peer adapters

ARTIC960 Programmer’s Reference

QueryConfigParams—Get the Configuration Parameters

[

MaxSystemMCReq
Maximum number of system bus read/write requests from the system
unit outstanding.

MaxAdapterMCReq
Maximum number of system bus move requests outstanding

DefaultStackSize
Default process stack size

TimeSice Timesdiceinterval/disable (interval value in milliseconds,; 0 means disabl ed)
Watchdog Watchdog interval/disable (interval value in milliseconds; 0 means disabled)
TimeOfDay Time of day enableflag

0 Disabled
1 Enabled
PerfTimer Performance timer enable flag
0 Disabled
1 Enabled
DataCache Data cache enableflag
0 Disabled
1 Enabled
InstCache Instruction cache enable flag
0 Disabled
1 Enabled

RegCache Number of register sets that are cached. Valid values are 5 through 15.

PinKernProcCode
Option to pin kernel code critical for process intensive applications
0 Disabled
1 Enabled

PinKernlntCode

Option to pin kernel code critical for interrupt intensive applications
0 Disabled
1 Enabled

Peer Timeout
Timeout value used by kernel mailbox subsystem when communicating with
peer processes.

Chapter 3: Base Kernel Services 33

CreateProcess—Create a Process

[

CreateProcess—Create a Process

34

This service creates a peer process.

Functional Prototype

RI C_ ULONG Cr eat eProcess (char *Pr ocessNane,
Rl C_USERENTRY Ent ryPoi nt,
Rl C_ULONG St ackSi ze,
voi d *ParanPtr,
Rl C_ULONG Par anti ze,
Rl C_ULONG Priority,
Rl C_ULONG Opt i onVord,
RI C_PROCESSI D *Processl D,
Rl C_ULONG Reserved);

Parameters

ProcessName

Input. A process name to assign to the created process. The kernel’s
subsystems have process names beginning with “RIC_". User process names
should not begin with this prefix.

EntryPoint Input. Address of the entry point of the created process.

SackSze Input. Size of stack to be allocated for the created process. If this parameter
is 0, the kernel alocates the default size stack.

ParamPtr Input. Pointer to a parameter area passed to created process.
ParamSze Input. Size of parameter area.

Priority Input. The priority of the created process set by creating process. A 0 means
use the default priority as specified in the kernel configuration parameter
DEFAULT_PRI ORI TY.

OptionWbrd Input. A bit field of options for creating a process. The constants for the
following options should be ORed together to build the appropriate set of
options.

» Process start option

CREATE_AND_NO START
Creates a peer process without issuing a start.

CREATE_AND_START
Starts the process after it is created. Thisis the default.

« Stack cache option

CREATE_CACHE_STACK
By default, the stack is not cached. To designate the stack as cacheable,
can be ORed into the option word. This optionisignored if adatacache
is not present on the adapter, or if a data cache has not been enabled
through the kernel configuration DATA _CACHE parameter.

ARTIC960 Programmer’s Reference

CreateProcess—Create a Process

« Data cache option

CREATE_CACHE_DATA
By default, the data section is not cached. To designate the data section
cacheable, can be ORed into the option word. Thisoption isignored if
data cache hardware is not present on the adapter, or if data cache has
not been enabled through the kernel configuration DATA_CACHE
parameter.

CreateProcess ignores the CREATE_CACHE_DATA option if the

‘% load module that contains the process issuing the CreateProcess
was not itself loaded with the data section cacheable. This is
because the spawned process shares the data section of the load
module.

ProcessID Output. Process ID of the created process.
Reserved Input. Reserved parameter (must be 0).

Returns
RC_SUCCESS RC_DUP_RES_NAVE
RC_| NVALI D_RESERVED PARM RC_| NVALI D_MEM ACCESS
RC_| NVALI D_NAVE RC_| NVALI D_CALL
RC_NO_MORE_PROC RC_| NVALI D_PRI ORI TY
RC_NO_MORE_MEM RC_| NVALI D_OPTI ON

RC_NO_MORE_RES

Remarks

The kernel alocates the stack for the newly created process. The size of stack depends on
the StackSize parameter passed to the service. The newly created process shares the code
and data area of the calling process. It runs at the priority level set by the creator. The
newly created process does not inherit the creator’s resources, exit routine, or floating
point usage. Even if the creator is a subsystem, the new process starts as a normal process
if the start option is used. The kernel gives control to the newly created process at its entry
point, with ParamPtr and ParamSize as parameters.

The new process gets control at main() with the arguments parsed into argc and argv if:
e The passed parameters are built up in the creator’s data area

e The passed parameters are in the format of null-terminated strings with the last string
double-null terminated

e Thelabel ricstart is passed for the entry point

Chapter 3: Base Kernel Services 35

StartProcess—Start a Process

[

StartProcess—Start a Process

This service starts a stopped process.

Functional Prototype

RI C ULONG StartProcess (Rl C PROCESSI D ProcesslD,
Rl C_ULONG Reserved);

Parameters

ProcessID Input. Process ID of the processthat is to be started.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS

RC_I NVALI D_RESERVED PARM
RC_| NVALI D_PROCESSI D
RC_PROCESS_ALREADY_STARTED
RC_| NVALI D_CALL

Remarks

The kernel starts a previously loaded process. The entry point of the processis defined
when the process is loaded from the system unit or by the CreateProcess service of
the kernel.

36 ARTIC960 Programmer’s Reference

StopProcess—Stop a Process

[

StopProcess—Stop a Process

This service stops a previoudly started process.

Functional Prototype

RI C_ULONG St opProcess (R C PROCESSI D Processl D,
Rl C_ULONG Reserved);

Parameters

ProcessID Input. Process ID of the processthat isto be stopped. A value of 0 meansthat
the calling process is stopping itself.

Reserved Input. Reserved parameter (must be 0).

Returns
RC_SUCCESS RC_| NVALI D_CALL
RC_| NVALI D_RESERVED PARM RC_PERMVANENT PROCESS
RC_PROCESS_NOT_STARTED RC_DEVI CE_DRI VER

RC_| NVALI D_PROCESSI D

Remarks

The kernel calls the exit routine of the process before stopping the process. All the
resources acquired by the process are released. This process can be restarted at a
later time.

When a process is stopping another process, the requesting process will not run until the
stopping process has completely stopped (including execution of its exit handler).

Locally, only a device driver/subsystem can stop a device driver/subsystem. The system
unit can stop and unload a device driver/subsystem through the - U parameter of the
Application Loader utility (see Application Loader (ricload) Utility on page 196 for
information on this utility). The system unit can stop a device driver/subsystem through a
globa mailbox command to akernel mailbox from any unit (see Chapter 4: Kernel
Commands on page 163 for details on the mailbox commands).

Chapter 3: Base Kernel Services 37

UnloadProcess—Unload a Process

[

UnloadProcess—Unload a Process

38

This service unloads a previously loaded process.

Functional Prototype

Rl C_ULONG Unl oadProcess (RI C PROCESSI D Processl D,
Rl C_ULONG Reserved);

Parameters

ProcessID Input. Process ID of the processthat is to be unloaded. A value of 0 means
that the calling processis unloading itself.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS

RC_| NVALI D_RESERVED PARM
RC_| NVALI D_PROCESSI D

RC_| NVALI D_CALL
RC_PERVANENT PROCESS
RC_DEVI CE_DRI VER

Remarks

Thekernel callsthe exit routine of the process before unloading the process, if the process
had been started. All the resources acquired by the process are released. The kernel
releases the code, data, parameter, and stack memory areas of the process. The process
cannot be restarted without being rel oaded.

When a process is stopping another process, the requesting process will not run until the
stopping process has completely stopped—including execution of its exit handler.

Locally, only adevice driver/subsystem can unload a device driver/subsystem. The system
unit can unload a device driver/subsystem through the —U parameter of the Application

L oader utility (see Application Loader (ricload) Utility on page 196 for details about the
utility) or through a global mailbox command to a kernel mailbox from any unit (see
Chapter 4. Kernel Commands on page 163 for details about mailbox commands).

ARTIC960 Programmer’s Reference

SuspendProcess—Suspend a Process

[

SuspendProcess—Suspend a Process

This service suspends a process. It is taken off the dispatch queue and its process state is
set to SUSPENDED.
Functional Prototype
Rl C_ULONG SuspendProcess (Rl C PROCESSI D Processl D,
Rl C_ULONG Reserved);
Parameters

ProcessID Input. Process ID of the process that is to be suspended. A value of 0 means
the calling process is suspending itself.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS

RC_| NVALI D_RESERVED PARM
RC_PROCESS_NOT_STARTED
RC_| NVALI D_PROCESSI D
RC_DEVI CE_DRI VER

RC_| NVALI D_CALL

Remarks

None

Chapter 3: Base Kernel Services 39

ResumeProcess—Resume a Process

[

ResumeProcess—Resume a Process

This service resumes a process.

Functional Prototype

Rl C_ ULONG ResuneProcess (RI C PROCESSI D Processl D,
Rl C_ULONG Reserved);

Parameters

ProcessID Input. Process ID of the process that is to be resumed.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS

RC_I NVALI D_RESERVED PARM
RC_PROCESS_NOT_STARTED
RC_| NVALI D_PROCESSI D

Remarks

When the processis resumed, it is put back on the dispatch queue. If the processis already
on the dispatch queue, no action is taken.

If the process was suspended by another process, after it blocked for a semaphore or an
event, ResumeProcess will not make it ready to run immediately unless the semaphore or
event isalso available at the time.

40 ARTIC960 Programmer’s Reference

SetExitRoutine—Set the Exit Routine for the Process

SetExitRoutine—Set the Exit Routine for the Process

This service sets the exit routine for the process.

Functional Prototype

RI C_ ULONG Set Exi t Routine (Rl C VECTOR Exit Routi ne,
RI C_ ULONG Reserved);

Parameters

ExitRoutine Input. Address of the routine the kernel calls when this processis stopped
normally or abnormally.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_| NVALI D_RESERVED PARM
RC_| NVALI D_CALL

RC_| NVALI D_MEM ACCESS

Remarks

The kernel calls the ExitRoutine of the process when the process is stopped, whether it
was normal or abnormal because of asynchronous errors.

This service is mapped to the C function atexit, which allows the registration of multiple
exit handlers. No kernel trace information is provided for this service.

Chapter 3: Base Kernel Services 41

SetPriority—Set the Priority of the Process

[

SetPriority—Set the Priority of the Process

42

This service changes the priority of the current process.

Functional Prototype

RI C ULONG SetPriority (R C PROCESSID ProcesslD,
Rl C_ULONG Priority,
Rl C_ULONG Reserved);
Parameters

ProcessID Input. Setsthis process ID to the new priority. A value of 0 means the
calling process.

Priority Input. New priority of the process. A value of 0 means the default priority.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS

RC_| NVALI D_RESERVED PARM
RC_| NVALI D_CALL

RC_| NVALI D_PROCESSI D

RC_| NVALI D_PRI ORI TY

Remarks

The kernel changes the priority of the process to Priority. If the priority of the currently
executing processis lowered, a dispatch cycle may occur.

Refer to the ARTIC960 Programmer’s Guide for the priority recommendations.

ARTIC960 Programmer’s Reference

QueryPriority—Query the Priority of the Process

[

QueryPriority—Query the Priority of the Process

This service queries the priority of the process.

Functional Prototype

RI C ULONG QueryPriority (RI C PROCESSI D ProcesslD,
Rl C_ULONG *Priority,
Rl C_ULONG Reserved);
Parameters

ProcessID Input. Queriesthe priority of this process. A value of 0 meansthe
calling process.

Priority Output. Priority of the process.
Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS

RC_| NVALI D_RESERVED PARM
RC_| NVALI D_PROCESSI D

RC_| NVALI D_MEM ACCESS

Remarks

None

Chapter 3: Base Kernel Services 43

QueryProcessinExec—Get ID of Process in Execution

[

QueryProcessinExec—Get ID of Process in Execution

44

This service returns the process ID of the process that currently is executing.

Functional Prototype

RI C_ULONG QueryProcessl nExec (RI C PROCESSI D *Processl D,
Rl C_ULONG Reserved);

Parameters

ProcessiD Output. The process ID of the currently executing process.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_I NVALI D_RESERVED PARM
RC_| NVALI D_MEM _ACCESS

Remarks

At processtime, this call returnsthe caller’'s process ID. When called in interrupt handlers,
this call returns the process that was executing at the time of the interrupt. If no process
was executing at the time of the interrupt, ProcessID is set to | NVALI D_PROCESSI D.

ARTIC960 Programmer’s Reference

SetProcessData—Set Process Data

SetProcessData—Set Process Data

This service sets process instance data for the indicated application environment and
process.

Functional Prototype

Rl C_ ULONG Set ProcessbData (void *ProcessDat aPtr,
unsi gned char Appl I D,
RI C PROCESSID ProcesslD);

Parameters

ProcessDataPtr
Input. Pointer to process instance data.

ApplID Input. Unique ID to indicate which application environment the process
instance dataisassociated with. IDs 0 through 63 are reserved for ARTIC960
use.

ProcessID Input. Indicates which processthe instance dataisfor. A value of O indicates
the process in execution.

Returns
RC_SUCCESS
RC_NO MORE_RES
RC | NVALI D_PROCESSI D
RC | NVALI D_CALL

Remarks

This service maintains process instance data pointers for up to 15 application IDs. If more
than 15 application IDs are specified, RC_NO MORE_RES is returned.

This service cannot be called from an interrupt handler. It can be called from acall
handler. However, doing so with a Processl D value of 0 can give unexpected results and
should be used with caution. While in acall handler, the processin execution is considered
to be the process that called the handler. If call processes are nested, it is the process that
called thefirst handler.

-% To set process data for a process that is started by CreateProcess, services
should be called in the following order:

1. CreateProcess

2. EnterCritSec to disable preemption
StartProcess

SetProcessData

ExitCritSec to enable preemption

S

Chapter 3: Base Kernel Services 45

GetProcessData—Get Process Data

[

GetProcessData—Get Process Data

46

This service returns the process instance data associated with the indicated application
environment and process.

Functional Prototype

Rl C_ ULONG Get ProcessbData (void *ProcessDat aPtr,
unsi gned char Appl I D,
RI C PROCESSID ProcesslD);

Parameters

ProcessDataPtr
Input. Pointer to location where the kernel returns the pointer to the process
instance data. If no process instance datais found, aNULL pointer is
returned.

ApplID Input. Unique I D to indicate with which application environment the process
instance data i s associated.

ProcessID Input. Process ID of the instance data to be retrieved. A value of O indicates
the process in execution.

Returns

RC_SUCCESS
RC_| NVALI D_PROCESSI D

Remarks

This service can be caled from an interrupt handler or a call handler. However, doing so
with a Process| D value of 0 may give unexpected results and should be used with caution.
Whilein an interrupt handler, the process in execution is considered to be the kernel.
Whilein acall handler, the processin execution is considered to be the process that called
the handler. If call processes are nested, it is the process that called the first handler.

ARTIC960 Programmer’s Reference

EnterCritSec—Enter Critical Section

EnterCritSec—Enter Critical Section

This service disables interrupts and/or preemptions.

Functional Prototype

RIC ULONG EnterCritSec (RIC ULONG OptionWrd,
RI C_ ULONG Reserved);

Parameters

OptionWord
Input.

DI SABLE | NTERRUPTS
If ORed into the option word, interrupts are disabled; the default is not
to change the interrupt state.

DI SABLE _PREEMPTI ON
If ORed into the option word, preemption is disabled; the default is not
to change the preemption state.

Failure to select either option causes an RC_| NVALI D_OPTI ONto be
returned.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_| NVALI D_RESERVED PARM
RC_| NVALI D_CALL

RC_| NVALI D_OPTI ON

Remarks

The number of calls to enable interrupts must match the number of callsto disable
interrupts, similar to pushes and pops of a stack. The sameis true for preemption.

Aninterrupt handler cannot disable preemption.

The following situation forces a critical section to end. If (1) interrupts or

.% preemption is disabled and (2) a process calls a kernel service that causes
the process to block, interrupts and preemption are automatically enabled.
This allows the block to proceed. In other words, a blocking call ends a critical
section.

Chapter 3: Base Kernel Services a7

ExitCritSec—Exit Critical Section

[

ExitCritSec—EXxit Critical Section

48

This service enables interrupts and/or preemption.

Functional Prototype

RIC ULONG ExitCritSec (RIC ULONG OptionWrd,
RI C ULONG Reserved);

Parameters

OptionWord
Input.

ENABLE_| NTERRUPTS
If ORed into the OptionWord, interrupts are enabled; the default is not
to change the interrupt state.

ENABLE_PREEMPTI ON
If ORed into the OptionWord, preemption is enabled; the default is not
to change the preemption state.

Failure to select either option causes an RC_| NVALI D_OPTI ONto
be returned.
Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_I NVALI D_RESERVED PARM
RC_| NVALI D_CALL

RC_| NVALI D_OPTI ON

Remarks

The number of calls to enable interrupts must match the number of callsto disable
interrupts, similar to pushes and pops of a stack. The sameis true of preemption.

Aninterrupt handler cannot enable preemption.

ARTIC960 Programmer’s Reference

Dispatch—Cause a Dispatch Cycle

[

Dispatch—Cause a Dispatch Cycle
This service causes a dispatch cycle.
Functional Prototype
Rl C_ULONG Di spatch (void);

Returns

RC_SUCCESS
RC_| NVALI D_CALL

Remarks

This service cannot be called from an interrupt handler.

Chapter 3: Base Kernel Services 49

Process Synchronization Services

Process Synchronization Services

Process synchronization is accomplished through semaphores and events.

Semaphores are the post/wait mechanism for all processes and come in two types. mutual
exclusion and counting semaphores.

e Mutual exclusion (mutex) semaphores are used for serializing access to code or data
structures.

e Counting semaphores are used for synchronizing processes, such as synchronizing a
producer-consumer pair of processes.

Semaphores can be explicit or implicit.
» Explicit semaphores are decremented before control returns to the process.

« Implicit semaphores are decremented when the process calls the appropriate resource
services, such as removing a queue element or mailbox message.

Processes can allocate and manipulate semaphores using the following services.

Service Name Page
CreateSem 51
OpenSem 52
CloseSem 53
ReleaseSem 54
RequestSem 55
QuerySemCount 56
SetSemCount 57
CreateEvent 58
OpenEvent 59
CloseEvent 60
WaitEvent 61

Refer to the ARTIC960 Programmer’s Guide for additional information.

50 ARTIC960 Programmer’s Reference

CreateSem—Create a Semaphore

[

CreateSem—Create a Semaphore

This service creates a semaphore and gives access to the requesting process.

Functional Prototype

RI C_ ULONG Creat eSem (char * SemNane,
RI C_ULONG SemCount ,
Rl C_ULONG Opt i onVord,
Rl C_SEMHANDLE * SerHandl e,
Rl C_ULONG Reserved);
Parameters

SemName Input. A nameto assign to the semaphore so other processes can get accessto
the same semaphore by name. This name can be NULL ; however, the
semaphore cannot be shared when SemNameisNULL. Thekernel’s
subsystems allocate all resources, with thefirst four charactersas“RIC " for
the resource name. User semaphore hames should not start with this prefix.

SemCount Input. New count of semaphore. Values greater than 0x80000000 are not
permitted. In addition, mutual exclusion semaphores cannot be assigned a
count greater than one.

OptionWobrd Input.

SEMTIYPE_COUNTI NG Specifies the semaphore as a counting type
SEMIYPE_MUTEX Indicates a mutual exclusion type semaphore

SemHandle Output. Semaphore handle returned to requesting process. Thishandleis
passed to all other semaphore services when referring to this semaphore.

Reserved Input. Reserved parameter (must be 0).

Returns
RC_SUCCESS RC | NVALI D_MEM ACCESS
RC_NO MORE_RES RC | NVALI D_CALL
RC | NVALI D_RESERVED PARM RC | NVALI D_OPTI ON
RC | NVALI D_NAMVE RC | NVALI D_SEM COUNT

RC_DUP_RES_NAVE

Remarks

This service creates a new semaphore and assigns to it the specified name. The usual
initial count for counting semaphoresis 0; the initial count for mutual exclusion
semaphoresis 1. To use another starting semaphore count, see SetSemCount—Set a
Semaphore Count on page 57. Other processes can get access to the same semaphore
using the OpenSem service (see OpenSem—Open a Semaphore on page 52). If a mutex
semaphore is created with a count of 0, the creator ownsit also, Otherwise, the first
requester ownsit.

Chapter 3: Base Kernel Services 51

OpenSem—Open a Semaphore

[

OpenSem—Open a Semaphore

52

This service opens a semaphore previously created by another process.

Functional Prototype

RI C_ ULONG OpenSem (char * SemNane,
Rl C_SEMHANDLE * SenHandl e,
Rl C_ULONG Reserved);
Parameters

SemName Input. The semaphore name used to create the semaphore.

SemHandle Output. Semaphore handle returned to requesting process. This handleis
passed to all other semaphore services when referring to this semaphore.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_NAVE_NOT_FOUND
RC_NO_MORE_RES

RC_| NVALI D_RESERVED PARM
RC_| NVALI D_NAVE

RC_| NVALI D_MEM ACCESS
RC_| NVALI D_CALL

Remarks

This service gets access to a semaphore already created by another process with the
CreateSem service.

ARTIC960 Programmer’s Reference

CloseSem—cClose a Semaphore

[

CloseSem—Close a Semaphore

This service releases access to a semaphore and del etes the semaphore if no other
processes have access.

Functional Prototype

RI C_ ULONG O oseSem (Rl C_SEMHANDLE SenHandl e,
Rl C_ULONG Reserved);

Parameters
SemHandle Input. Handle of semaphore to release.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_| NVALI D_HANDLE

RC_| NVALI D_RESERVED PARM
RC_DEPENDENT _EVENTS

RC_| NVALI D_CALL

Remarks

If the closeisissued by aprocess while other processes still have access to the semaphore,
the service removes access rights for the issuing process. When the last process with
accessrights callsthis service, the semaphore ceases to exist. See CreateSem—Createa
Semaphore on page 51 and OpenSem—Open a Semaphor e on page 52 for more
information.

If aprocessis stopped or unloaded, the kernel closes all of its resources. It notifies,
through asynchronous notification, all other processes that shared those resources that the
process has gone away. If aprocess closes amutual exclusion semaphore that it owns (that
is, it requested the semaphore last but has not released it), all processes waiting for the
semaphore are awakened with an error of RC_OANER_CLOSED_SEM Thisis done because
the code and data protected by the mutual exclusion semaphore may have been left in an
indeterminable state. When this happens, the semaphore count is reset to one, so the
semaphore can be re-requested if the application process knows that the protected code
and dataisin avalid state.

Chapter 3: Base Kernel Services 53

ReleaseSem—Release a Semaphore

[

ReleaseSem—Release a Semaphore

54

This service makes a semaphore available to the next process waiting for it.

Functional Prototype

RI C_ ULONG Rel easeSem (RI C_ SEMHANDLE SenHandl e,
Rl C_ULONG Reserved);

Parameters

SemHandle Input. Handle of semaphore to increment.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS

RC_| NVALI D_HANDLE

RC_I NVALI D_RESERVED PARM
RC_SEM NOT_OWKNED

Remarks

The next process waiting for the semaphore is posted if thisisthe only semaphore for
which it iswaiting. If no processes are waiting, the semaphore count is incremented.

A mutual exclusion semaphore cannot be rel eased with this service twice by the same
process, unless it does a RequestSem in between. In addition, a mutual exclusion
semaphore cannot be released by a process other than the one that last requested it.

ARTIC960 Programmer’s Reference

RequestSem—Request a Semaphore

[

RequestSem—Request a Semaphore

This service waits for a semaphore.

Functional Prototype

RI C_ULONG Request Sem (RI C_ SEMHANDLE SenHandl e,
RI C TI MEQUT Ti meout,
Rl C_ULONG Reserved);

Parameters
SemHandle Input. Handle of semaphore to decrement.

Timeout Input. Optional timeout for waiting for a semaphore.

-1 Wait indefinitely

0 Returnimmediately if the semaphores are unavailable.

Any other value from 1 to 65535
Wait time in milliseconds. The granularity of the timer isfive
milliseconds. The timeout value is rounded up to the next multiple of
five, if it is not aready a multiple of five.

Reserved Input. Reserved parameter (must be 0).

Returns
RC_SUCCESS RC_OMER_CLOSED SEM
RC | NVALI D_HANDLE RC_SEM ALREADY_ OWNED
RC_TI MEQUT RC | NVALI D _CALL
RC | NVALI D_RESERVED PARM RC | NVALI D_TI MEQUT

RC_NEW SEM_COUNT

Remarks

If the semaphore count is positive, control returns immediately to the caller and the count
is decremented. If the count is zero, the calling process is made to wait. Only processes
that have created or opened the semaphore can wait for the semaphore.

Processes are made to wait in afirst-in, first-out (FIFO) order, rather than by priority.

If amutual exclusion semaphore is owned by a process that is stopped, all waiting
processes are awakened with an RC_OMER_CLOSED SEM indicating the owner was
stopped. The error is returned because the code and data protected by the mutual exclusion
semaphore may have been left in an indeterminable state. If the semaphore’s count is
modified using SetSemCount, any process waiting for the semaphore is awvakened with
RC_NEW SEM COUNT.

Processes cannot wait for implicit semaphores with this service. Instead, processes should
use the services related to the semaphore, such as GetQueue or ReceiveMbx. In addition,
implicit semaphores can be part of an event wait.

Chapter 3: Base Kernel Services 55

QuerySemCount—Get a Semaphore Count

[

QuerySemCount—Get a Semaphore Count

This service returns the count of a semaphore.

Functional Prototype

RI C_ ULONG QuerySenCount (RI C SEMHANDLE SenHandl e,
RI C_ULONG * SemCount
Rl C_ULONG Reserved);

Parameters

SemHandle Input. Handle of semaphore.

SemCount Output. Count of semaphore.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS

RC_| NVALI D_RESERVED PARM
RC_| NVALI D_MEM ACCESS
RC_| NVALI D_HANDLE

Remarks

If the count is zero, the semaphore is not available. Other processes may be waiting for the
semaphore. A positive count indicates the number of times that processes can request the
semaphore before they are blocked.

Thisisthe only semaphore service that can be used on implicit semaphores.

56 ARTIC960 Programmer’s Reference

SetSemCount—Set a Semaphore Count

|
SetSemCount—Set a Semaphore Count

This service sets the count of a semaphore.

Functional Prototype

Rl C_ ULONG Set SemCount (Rl C_SEMHANDLE SenHandl e,
RI C_ULONG SemCount ,
Rl C_ULONG Reserved);

Parameters

SemHandle Input. Semaphore handle.

SemCount Input. New count of semaphore. Values less than zero are not permitted. In
addition, mutual exclusion semaphores cannot be assigned a count greater
than 1.

Reserved Input. Reserved parameter (must be 0).

Returns
RC_SUCCESS RC_| NVALI D_SEM COUNT
RC_| NVALI D_HANDLE RC_PROCESSES WAl TI NG_ON_SEM
RC_| NVALI D_RESERVED PARM RC_NEW SEM_COUNT

Remarks

This service should be used immediately after the semaphore is created to configure the
semaphore to the desired type. If any processes are waiting for the semaphore when the
count is set, they are released and returned with RC_NEW SEM COUNT. Thisincludes
processes waiting for events that include the semaphore.

Chapter 3: Base Kernel Services 57

CreateEvent—Create an Event Word

[

CreateEvent—Create an Event Word

58

This service creates an event word based on a semaphore list and mask.

Functional Prototype

RI C_ ULONG Creat eEvent (char *EvnNane,
Rl C_SEMHANDLE * SermHandl es,
RI C_ULONG SemCount ,
Rl C_EVNHANDLE *EvnHandl e,
Rl C_ULONG Reserved);
Parameters

EvnName Input. A nameto assign to the event word so that other processes can get
accesstoit.

SemHandles Input. Pointer to an array of up to 32 semaphore handlesto associate with the
event word. These semaphore handles can be implicit or explicit.

SemCount Input. Number of semaphores in semaphore handle array (no more than 32
semaphores).

EvnHandle Output. Event handle to be used with other event services when referring to
this event.

Reserved Input. Reserved parameter (must be 0).

Returns
RC_SUCCESS RC_NO_MORE_EVNS
RC_NO_MORE_RES RC_| NVALI D_HANDLE
RC_| NVALI D_RESERVED PARM RC_| NVALI D_MEM ACCESS
RC_| NVALI D_NAVE RC_| NVALI D_CALL
RC_DUP_RES_NAVE RC_| NVALI D_COUNT

RC_DUP_RES_HANDLES

Remarks

The semaphore handle list can be any combination of explicit (returned by CreateSem or
OpenSem) or implicit (returned by other services, such as queues and mailboxes)
semaphores. A process, therefore, can wait for synchronization with other processes as
well as resources at the same time. Explicit semaphores are decremented before control
returns to the process. Implicit semaphores are decremented when the process calls the
appropriate resource services, such asremoving a queue e ement or mailbox message.

ARTIC960 Programmer’s Reference

OpenEvent—Open Access to an Event Word

[

OpenEvent—Open Access to an Event Word

This service provides access to a previously created event word.

Functional Prototype

RI C_ ULONG OpenEvent (char *EvnNane,
Rl C_EVNHANDLE *EvnHandl e,
Rl C_ULONG Reserved);
Parameters

EvnName Input. Event name to be accessed.

EvnHandle Output. Event handle to be used with other event services when referring to
this event.

Reserved Input. Reserved parameter (must be 0).

Returns
RC_SUCCESS RC_| NVALI D_NAVE
RC_NAVE_NOT_FOUND RC_| NVALI D_HANDLE
RC_NO_MORE_RES RC_| NVALI D_MEM ACCESS
RC_| NVALI D_RESERVED PARM RC_| NVALI D_CALL

Remarks

The calling process must have already opened the semaphores that make up the event.

Chapter 3: Base Kernel Services 59

CloseEvent—Release Access to an Event Word

[

CloseEvent—Release Access to an Event Word

This service releases access to an event word and del etes the event, if no other processes
have access.
Functional Prototype

RI C_ ULONG d oseEvent (RI C EVNHANDLE EvnHandl e,
Rl C_ULONG Reserved);

Parameters
EvnHandle Input. Event handle returned by CreateEvent service.
Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS

RC_| NVALI D_HANDLE

RC_| NVALI D_RESERVED PARM
RC_| NVALI D_CALL

Remarks

If aprocess closes an event that is shared with other processes, this service removes access

rights for the caller only. Only when the last process closes the event does the event cease
to exist.

60 ARTIC960 Programmer’s Reference

WaitEvent—Wait on an Event

WaitEvent—Wait on

an Event

This service waits for the requesting process until the event occurs.

Functional Prototype

RI C ULONG Wai t Event (RI C EVNHANDLE EvnHandl e,
Rl C_ULONG Mask,
Rl C_ULONG Opt i onVord,
Rl C_TI MEQUT Ti meout ,
RI C_ULONG * St at us,
Rl C_ULONG Reserved);
Parameters
EvnHandle Input. Event handle returned by CreateEvent and OpenEvent services.
Mask Input. Mask telling which semaphores to include in the event wait. If bit nis
set in the mask, the nth semaphore in the semaphore handle array passed to
CreateEvent isincluded in the event wait.
OptionWord Input.
EVENT_WAI T_ALL
I ndicatesthat the processisawakened only when all the semaphoresare
available.
EVENT_WAI T_ANY
Indicates that the process is awakened when the first semaphore
becomes available.
Timeout Input. Optional timeout value for waits for events.
-1 Wait indefinitely
0 Returnimmediately if the semaphores are unavailable.
Any other value from 1 to 65535
Wait time in milliseconds. The granularity of the timer isfive
milliseconds. The timeout value is rounded up to the next multiple of
five, if it is not already a multiple of five.
Satus Output. Bit field that returns which semaphores (that were part of the event
wait) were positive/available.
Reserved Input. Reserved parameter (must be 0).
Returns
RC_SUCCESS RC_| NVALI D_MEM ACCESS
RC_| NVALI D_HANDLE RC_| NVALI D_CALL
RC_| NVALI D_RESERVED PARM RC_| NVALI D_OPTI ON
RC_TI MEQUT RC_| NVALI D_TI MEOUT
RC_NEW SEM_COUNT RC_OWNER _CLOSED_SEM

RC_| NVALI D_EVN_MASK

Chapter 3: Base Kernel Services 61

WaitEvent—Wait on an Event

[

62

Remarks

If the OptionWord parameter isset to EVENT_WAI T_ALL, the service tests each semaphore
count for a positive value. If all are positive, the parameter decrements the explicit
semaphores that are positive and control returnsto the caller. If al the semaphores do not
have a positive value, the requester is waited. When one or more semaphoresin the list
become available, al other semaphores are tested to determine if they are positive values.
Any explicit semaphoresthat are positive are decremented and control returnsto the caller.
The performance of this option can be optimized by specifying the semaphore handles
least likely to be availablefirst in the list of semaphore handles supplied on the
CreateEvent service.

If the OptionWord parameter is set to EVENT_WAI T_ANY, the serviceteststo seeif any one
of the semaphores is positive. If oneis positive, the service decrements the explicit
semaphores that are positive and returns to the caller. If no semaphores are positive, the
caller iswaited. When one or more semaphoresin the list become available, the service
decrements the explicit semaphores that are positive and control returns to the caller.

If the timeout value is exceeded, the process is awakened, regardless of the state of the
event.

If asemaphore included in await event gets a new semaphore count, any processes
waiting for events that include that semaphore are awakened with the error code
RC_NEW SEM COUNT.

If aprocess closes a mutex semaphore while owning it, the WaitEvent is canceled with the
error code RC_OWNER_CLOSED_SEM

ARTIC960 Programmer’s Reference

Memory Management Services

|
Memory Management Services

The following are the memory management services.

Service Name Page
CreateMem 64
OpenMem 67
CloseMem 68
ResizeMem 69
SetMemProt 70
SetProcMemProt 71
QueryMemProt 72
QueryProcMemProt 73
QueryFreeMem 74
InitSuballoc 75
GetSuballoc 77
FreeSuballoc 78
GetSuballocSize 79
MallocMem 80
FreeMem 81
CollectMem 82

Refer to the ARTIC960 Programmer’s Guide for additional information.

Chapter 3: Base Kernel Services 63

CreateMem—Allocate Memory

[

CreateMem—Allocate Memory

64

This service alocates memory from the free storage pool to arequesting process.

Functional Prototype

RI C_ULONG

Parameters

MemName

Sze

Alignment

Access

MemType

Baseptr
Reserved

Creat eMem (char * MemNane,
RIC ULONG Size,
RIC ULONG Alignment,
RIC_ ULONG Access,
RIC_ ULONG Meniype,
voi d **Baseptr,
RIC ULONG Reserved);
Input. An optional storage area name to assign to the memory block so that

other processes can get accessto the same block by name. Thisnamealso can
be NULL. Memory cannot be shared when MemNameisNULL. The
kernd’s subsystems allocate all resources, with the first four characters as
“RIC_" for the resource name. User memory names should not start with this
prefix.

Input. Size of allocated block in bytes. If thesizeis0, RC_| NVALI D_SI ZEis
returned.

Input. Boundary alignment for the start of the allocated block. Al i gnmrent
values are the log of the boundary number. For example, a4 KB boundary
trandatestoan Al i gnent valueof log (4096) =12. Al i gnment valuesless
than 4 KB are rounded up to 4 KB.

Input. Bit field specifying the access rights to the memory block. See
Remarks on page 65 for more information.

Input. Flag indicating the type of memory to be alocated: MEM _TYPE_| NSTR
or MEM TYPE_PACKET. By hardware design, the processor is more efficient
using instruction memory. Packet memory is more efficient for access from
the daughter card or system bus. On adapters that have only packet memory,
packet memory is allocated even if instruction memory is requested.

MEM TYPE_PACKET Allocate packet memory. Return with an error if no
packet memory is available.

MEM TYPE_I NSTR Allocateinstruction memory. Returnwith an error if
no instruction memory is available.

Output. Pointer to allocated memory block.
Input. Reserved parameter (must be 0).

ARTIC960 Programmer’s Reference

CreateMem—Allocate Memory

Returns
RC_SUCCESS RC_| NVALI D_MEM ACCESS
RC_| NVALI D_RESERVED PARM RC_| NVALI D_CALL
RC_NO_MORE_RES RC_| NVALI D_SI ZE
RC_| NVALI D_NAVE RC_| NVALI D_OPTI ON
RC_DUP_RES_NAVE RC_| NVALI D_ALI GNVENT

RC_NO_MORE_MEM

Remarks

This serviceisintended for large memory allocations, such as buffer pools. For smaller,
more dynamic allocations, see GetSuballoc—Suballocate Memory on page 77. The
minimum amount of memory that can be allocated is one page (4 KB).

The following constants are defined and can be ORed to create the appropriate access
rights for the allocated memory.

MVEM_SHARE
Memory can be shared with other processes. The default is memory that
cannot be shared.

MEM _READABLE
Memory can be read by the 80960. The default is memory cannot be read or
written by the 80960.

MEM VRl TABLE
Memory can be written by the 80960. The default is memory cannot be read
or written by the 80960.

VEM _OVERRI DE_MC_ACCESS
The current system bus access to the created memory is overridden. The
default is system bus access is not changed.

MEM _MC_READABLE
Memory can be read from the system bus. In addition, the on-card DMA
channel can read the memory. The default is memory cannot be read or
written from either.

MEM MC_W\RI TABLE
Memory can be written from the system bus. In addition, the on-card DMA
channel can write to memory. The default is memory cannot be read or
written from either.

MEM OVERRI DE_Al B_ ACCESS
The current daughter board access to the created memory is overridden. The
default is daughter board accessis not changed.

VEM Al B_READABLE
The daughter board DMA can read from memory. The default is memory
cannot be read or written by the daughter board DMA.

MEM Al B_WRI TABLE
The daughter board DMA can write to memory. The default is memory
cannot be read or written by the daughter board DMA.

Chapter 3: Base Kernel Services 65

[

CreateMem—Allocate Memory

[

66

MEM_DCACHE

Memory is cachable. The default isthat memory is not cachable. This option
should not be used for memory that is accessed by other masters. Thisoption
isignored if data cache hardwareisnot present on the adapter or if datacache
has not been enabled through the kernel configuration DATA CACHE
parameter.

MEM Bl G_ENDI AN

The big-endian address of the allocated memory isreturned. The byte order
of the allocated memory is big endian. By default, all memory istreated as
little endian.

If the kernel does not support big-endian memory regions,
RC_| NVALI D_OPTI ONisreturned. The kernel supports only big-endian
memory regions on the ARTIC960HXx adapter.

ARTIC960 Programmer’s Reference

OpenMem—Get Addressability to Allocated Memory

[

OpenMem—Get Addressability to Allocated Memory
This service gets addressability to memory allocated by another process.

Functional Prototype

RI C_ ULONG OpenMem (char * MemNane,
RIC_ ULONG Access,
voi d **Baseptr,

RIC ULONG Reserved);

Parameters

MemName Input. Name of allocated memory. This should be the same asthe name used
to allocate the memory block.

Access Input. Bit field specifying the access rights to the memory block. Theseflags
are sharable, read/write, and read only. The MEM DCACHE and
MEM BI G_ENDI AN flagsareignored by this service. The access rights do not
have to be the same as the process that created the memory. The memory
must be sharable to be able to open it. See the Remarks section under
CreateMem—Allocate Memory on page 64 for more information.

Baseptr Output. Pointer to memory block.
Reserved Input. Reserved parameter (must be 0).

Returns
RC_SUCCESS RC_NAVE_NOT_FOUND
RC_| NVALI D_RESERVED PARM RC_MEM SHARI NG_ERRCR
RC_NO_MORE_RES RC_| NVALI D_MEM ACCESS
RC_| NVALI D_NAVE RC_| NVALI D_CALL

RC_| NVALI D_OPTI ON

Remarks

This service gets access to amemory block allocated with the CreateMem service,
provided that the memory was allocated as shareable.

Chapter 3: Base Kernel Services 67

CloseMem—Remove Addressability to Memory

[

CloseMem—Remove Addressability to Memory

68

This service releases access to previoudly allocated memory.

Functional Prototype
RI C ULONG Cd oseMem (voi d *Baseptr,

RI C_ ULONG Reserved);
Parameters
Baseptr Input. Pointer to allocated memaory block.
Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
C_I NVALI D_RESERVED PARM
RC_| NVALI D_BASEPTR
RC_NO_RES_ACCESS

RC_| NVALI D_CALL

Remarks

This service complements the function of CreateMem and OpenMem. When the last
process rel eases access to a block of memory, the memory is returned to the free storage
pool and all access rights are revoked.

ARTIC960 Programmer’s Reference

ResizeMem—Reallocate Memory

[

ResizeMem—Reallocate Memory

This service resizes alocated memory.

Functional Prototype

Rl C_ ULONG Resi zeMem (void *Baseptr,
RI C_ ULONG NewSi ze,
RI C_ ULONG Reserved);

Parameters
Baseptr Input. Pointer to allocated memaory block.
NewSze Input. New size of the memory block in bytes. If the sizeis0,

RC | NVALI D_SI ZE isreturned.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS

RC_| NVALI D_RESERVED PARM
RC_| NVALI D_BASEPTR

RC_| NVALI D_SI ZE

RC_| NVALI D_CALL

Remarks

The size of the block can be increased only if it does not increase the number of memory
pages. The block can always be reduced in size.

Chapter 3: Base Kernel Services 69

SetMemProt—Change Memory Protection

[

SetMemProt—Change Memory Protection

70

This service changes the access of a processto a block of memory.

Functional Prototype

RI C_ ULONG Set MenProt (void *Bl ockPtr,
RI C ULONG Si ze,
RI C_ULONG Access,
RI C ULONG Reserved);

Parameters

BlockPtr Input. Pointer to block of memory. The calling process must have created or
opened the memory that contains this block.

Sze Input. Size of block of memory in bytes.

Access Input. New access rights to memory. The MEM_DCACHE and

MEM BI G_ENDI AN options are ignored by this service. See the Remarks
section under CreateMem—Allocate Memory on page 64 for more
information.

Reserved Input. Reserved parameter (must be 0).

Returns
RC_SUCCESS RC I NVALI D_SI ZE
RC | NVALI D_RESERVED PARM RC_CANT_STOP_SHARI NG
RC | NVALI D_BASEPTR RC I NVALI D_CALL
Remarks

If the kernel has been loaded with memory protection enabled, the access rightsto the
referenced memory block change for the calling process. Only a single set of daughter
card and system bus access flags are kept. They are not stored on a per process basis.
Therefore, setting these two sets of access flags affects all processes.

To use this service, the process had to have created or opened the memory. This service
differs from SetProcMemProt, which does not verify that the caller created or opened the
memory. However, SetProcMemProt is available only to device drivers and subsystems.

ARTIC960 Programmer’s Reference

SetProcMemProt—Change a Process’ Memory Protection

[

SetProcMemProt—Change a Process’ Memory Protection

This service changes the access of a given process to ablock of memory. It is available
only to device drivers and subsystems.

Functional Prototype
Rl C_ULONG Set ProcMenProt (RI C PROCESSI D ProcesslD,

voi d *Bl ockPtr,
Rl C_ULONG Si ze,

RI C_ULONG Access,

Rl C_ULONG Reserved);

Parameters

ProcessID Input. Process ID of process whose accessisto be set.

BlockPtr Input. Pointer to a block of memory.
Sze Input. Size of block of memory in bytes.
Access Input. New access rights to memory. The MEM_DCACHE and

MEM BI G_ENDI AN options are ignored by this service. See the Remarks
section of CreateMem—Allocate Memory on page 64 for more information.

Reserved Input. Reserved parameter (must be 0).

Returns
RC_SUCCESS RC | NVALI D_ADDRESS
RC | NVALI D_RESERVED PARM RC NOT_DD OR_SS
RC | NVALI D_PROCESSI D RC I NVALI D_OPTI ON
Remarks

If the kernel has been loaded with memory protection enabled, the access rightsto the
referenced memory block change for the given process. Only a single set of daughter card
and system bus access flags are kept. They are not stored on a per process basis. Therefore,
setting these two sets of access flags affect all processes.

This service is available only to device drivers and subsystems so they can gain access to
client memory areas.

Chapter 3: Base Kernel Services 71

QueryMemProt—Query Memory Protection

[

QueryMemProt—Query Memory Protection

72

This service queries the memory protection of ablock of memory.

Functional Prototype

RI C_ ULONG QueryMenProt (void *Bl ockPtr,
RIC ULONG Size,
RI C_ULONG *Access,
RIC ULONG Reserved);

Parameters

BlockPtr Input. Pointer to block of memory. The caller must have created or opened
the memory that contains this block.

Sze Input. Size of block to query.

Access Output. Accessrightsto memory. ThiscanincludetheMEM_DCACHE and
MEM_BIG_ENDIAN options. See the Remarks section under CreateMenm—
Allocate Memory on page 64 for more information.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_| NVALI D_BASEPTR

RC_| NVALI D_RESERVED PARM
RC_| NVALI D_CALL

RC_| NVALI D_MEM _ACCESS
RC_I NVALI D_SI ZE

Remarks

This service returns the access rights to the memory block for the calling process. Only a
single set of daughter card and system bus access flags are saved by the memory
protection services. Therefore, this service returns the same value for these two sets of
flags, regardless of the caller’s process ID.

ARTIC960 Programmer’s Reference

QueryProcMemProt—Query a Process’ Memory Protection

[

QueryProcMemProt—Query a Process’ Memory Protection

This service queries the memory protection of ablock of memory for agiven process. Itis
available only to device drivers and subsystems.

Functional Prototype
RI C_ULONG QueryProcMenProt (R C PROCESSID Processl D,

voi d *Bl ockPtr,
Rl C_ULONG Si ze,

RI C_ULONG * Access,

Rl C_ULONG Reserved);

Parameters

ProcessID Input. Process ID of process whose memory praotection is to be queried.

BlockPtr Input. Pointer to a block of memory.
Sze Input. Size of block to query.
Access Output. Accessrights to memory. This can include the MEM DCACHE and

MEM _BI G_ENDI AN options. See the Remarks section under CreateMem—
Allocate Memory on page 64 for more information.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_| NVALI D_PROCESSI D
RC_| NVALI D_ADDRESS
RC_| NVALI D_MEM ACCESS
RC_NOT_DD_OR_SS

Remarks

This service returns the access rights to the memory block for the given process. This
serviceis made available for device drivers and subsystems so that they can check memory
access for their clients.

Chapter 3: Base Kernel Services 73

QueryFreeMem—~Query Free Memory

[

QueryFreeMem—Query Free Memory

This servicereturns the total amount of free memory and the size of the largest unallocated
block of memory.
Functional Prototype

RI C ULONG QueryFreeMem (RIC_ ULONG Opti onWrd,
RI C_ ULONG *Largest,
RI C_ULONG *Tot al,
RIC ULONG Reserved);
Parameters

OptionWord
Input.

MEM TYPE_PACKET Free packet memory
MEM TYPE_I NSTR Free instruction memory

Largest Output. Size of largest block of free memory in bytes.
Total Output. Total amount of free memory in bytes.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_I NVALI D_RESERVED PARM
RC_| NVALI D_MEM _ACCESS
RC_| NVALI D_OPTI ON

Remarks

None

74 ARTIC960 Programmer’s Reference

InitSuballoc—Prepare a Block of Memory for Suballocation

[

InitSuballoc—Prepare a Block of Memory for Suballocation

This service prepares ablock of allocated memory areafor suballocation.

Functional Prototype

RI C_ ULONG | ni t Subal | oc (void *Bl ockPtr,
RIC ULONG Size,
RIC ULONG Alignment,
RI C ULONG Subal l ocUnit,
RIC ULONG Reserved);

Parameters

BlockPtr Input. Pointer to block of memory. On cardsthat support big-endian memory
regions, the memory must have been created as little endian. If abig-endian
pointer isgiven, RC_| NVALI D_BASEPTRIs returned.

Sze Input. Size of block in bytes.

Alignment Input. Boundary alignment of suballocated memory. Alignment values are
the log of the boundary number. For example:

* An 8-byte boundary would translate to an Alignment value of 10g,(8)=3.

* A 4 KB boundary would translate to an Alignment value of
l0g,(4096)=12.

Alignment defaultsto 1 byte if avalue of 0 is passed.

SuballocUnit
Input. Size of smallest block of memory that can be suballocated. Larger
suballocated memory blocks are suballocated as multiples of this unit. The
unit size isrounded up to the next power of 2.

Reserved Input. Reserved parameter (must be 0).

Returns
RC_SUCCESS RC_SUBALLOCATED MEM
RC | NVALI D_RESERVED PARM RC | NVALI D_CALL
RC | NVALI D_BASEPTR RC | NVALI D_ALI GNMENT

RC_I NVALI D_SI ZE

Remarks

The block must be contained within memory that is accessible to the calling process. The
suballocation unit size helps tune the suball ocation services for higher-performance and
lower-memory utilization. The suballocation unit size should be aslarge as possible, while
still mapping well to the size of the expected suball ocations. Bit map allocation is used to
implement suballocation—the larger the unit size, the fewer the bits required to represent
the pool. Thisresultsin smaller bit map size and quicker searches of the bit map.

Chapter 3: Base Kernel Services 75

InitSuballoc—Prepare a Block of Memory for Suballocation

[

When calculating the alignment of suballocation chunks, this service rounds the unit size
up to the next power of two. The actual alignment is the larger of this rounded value and
the aignment represented by the Alignment parameter. For example:

e A unit size of 4 bytes and Alignment value of 0 (1-byte boundary) resultin
suballocation on 4-byte boundaries.

* A unit size of 4 bytes and an Alignment value of 4 (16-byte boundary) result in
suballocation on 16-byte boundaries.

e A unit size of 3and an Alignment value of 1 (2-byte boundaries) result in
suballocation on 4-byte boundaries.

Use GetSuballocSize to determine the proper size of the block to accommodate the
regquested number of suballocation units and the bit map.

76 ARTIC960 Programmer’s Reference

GetSuballoc—Suballocate Memory

|
GetSuballoc—Suballocate Memory

This service suballocates memory from previously allocated memory.

Functional Prototype

Rl C_ ULONG Get Subal | oc (void *Bl ockptr,
Rl C_ULONG Si ze,
voi d **Subal | ocptr,

Rl C_ULONG Reserved);

Parameters

Blockptr Input. Pointer to beginning of suballocation pool. On cards that support
big-endian memory regions, the memory must have been created as little
endian. If abig-endian pointer is given, RC_| NVALI D_BASEPTR s returned.

Sze Input. Amount of memory in bytesto suballocate. The size is rounded up to
amultiple of the suballocation unit size set with InitSuballoc. If the sizeisO,
RC_ | NVALI D_SI ZE isreturned.

Suballocptr Output. Pointer to suballocated memory.
Reserved Input. Reserved parameter (must be 0).

Returns
RC_SUCCESS RC_NO_MORE_MEM
RC | NVALI D_RESERVED PARM RC | NVALI D_MEM ACCESS
RC | NVALI D_BASEPTR RC I NVALI D_SI ZE
Remarks

No more than 65535 (64K —1) times the suballocation unit size in bytes can be
suballocated with a single call to GetSuballoc. This restriction lowers the memory
overhead of the suballocation services.

Application writers should be aware that the kernel’s suballocation control information is
stored in the user’s memory, unlike all the other kernel services whose control information
isin protected memory. This decision was made to improve suball ocation performance,
but it potentially allows corruption of kernel suballocation data structures.

Chapter 3: Base Kernel Services 77

FreeSuballoc—Free Suballocated Memory

[

FreeSuballoc—Free Suballocated Memory

78

This service frees suballocated memory.

Functional Prototype

Rl C_ULONG FreeSubal | oc (void *Bl ockptr,
voi d *Subal | ocptr,
RIC ULONG Reserved);

Parameters

Blockptr Input. Pointer to beginning of suballocation pool.
Suballocptr Input. Pointer to suballocated memory.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS

RC_| NVALI D_RESERVED PARM
RC_| NVALI D_BASEPTR

RC_| NVALI D_SUBALLOC_ADDR

Remarks

None

ARTIC960 Programmer’s Reference

GetSuballocSize—Return Size of Suballocation Pool

GetSuballocSize—Return Size of Suballocation Pool

This service returns the amount of memory required for a suballocation pool.

Functional Prototype

RI C_ ULONG Get Subal | ocSi ze (RI C_ ULONG Unit Count,
RIC ULONG UnitSize,
RI C ULONG Alignment,
Rl C_ULONG *Subal | ocSi ze,
RI C ULONG Reserved);

Parameters
UnitCount Input. Number of suballocation blocks in the pool.

UnitSze Input. Size of the smallest block of memory that can be suballocated. Larger
suballocated memory blocks are suballocated as multiples of this unit. The
unit sizeisrounded up to the next power of 2. If thesizeisO,

RC_| NVALI D_SI ZE is returned.

Alignment Input. Boundary alignment of suballocated memory. Alignment values are
the log of the boundary number. For example, a 16-byte boundary would
translate to an Alignment value of 10g,(16)=4.

SuballocSze
Output. Number of bytes of memory required to make a suballocation pool
with the given suballocation unit size and number of units. Thissize can then
be used to cal culate the amount of memory to allocate with CreateMem.

Reserved Input. Reserved parameter (must be 0).

Returns
RC_SUCCESS RC_| NVALI D_COUNT
RC_ | NVALI D_RESERVED PARM RC | NVALI D_SI ZE
RC | NVALI D_MEM ACCESS RC | NVALI D_ALI GNVENT
Remarks

This service should be used by applications using the suballocation services so that they
know how much memory to allocate for a suballocation pool. This service returnsonly a
byte count. It does not actually allocate or initialize any memory.

When calculating the alignment of suballocation chunks, this service rounds the unit size
up to the next power of two. The actual alignment is the larger of this rounded value and
the alignment represented by the Alignment parameter. For example:

e A unit size of 4 bytes and Alignment value of 0 (1-byte boundary) resultsin
suballocation on 4-byte boundaries.

e A unit size of 4 bytes and an Alignment val ue of 4 (16-byte boundary) resultsin
suballocation on 16-byte boundaries.

e A unitsizeof 3 and an Alignment value of 1 (2-byte boundaries) resultsin
suballocation on 4-byte boundaries.

Chapter 3: Base Kernel Services 79

MallocMem—Allocate Memory

[

MallocMem—Allocate Memory

80

This service alocates ablock of memory from the dynamic memory pool.

Functional Prototype

void * Mal | ocMem (RIC_ULONG Si ze,
RI C ULONG OptionWrd);

Parameters
Sze Input. Size in bytes of memory block to be allocated.

OptionWord
Input. Bit field to describe the optionsto be used to allocate the memory. The
following constants should be ORed together to build the appropriate set of
options.

« Type of memory to create

By default, memory is alocated without regard to memory type. If the
option word is set to OPTI ON_PACKET_MEMORY, memory is allocated
from packet memory. If memory protection is active, the packet memory
is given system bus read/write access. The default option is

OPTI ON_ANY_ MVENORY.

« Data cache option for created memory

By default, memory is not created as cachable. To create cachable
memory, MEM_DCACHE can be ORed into the option word. This option
should not be used for memory that is accessed by other masters. This
option isignored if data cache hardware is not present on the adapter or if
data cache has not been enabled through the kernel configuration

DATA _CACHE parameter.

» Big-endian option for created memory
By default, memory is created little endian. To create memory for
big-endian access, MEM _BI G_ENDI AN can be ORed into the option word.
This option isvalid only on the ARTIC960Hx PCI adapter. An invalid
option causes avaue of NULL to be returned.
Returns
Pointer to the allocated memory. A NULL pointer means that no memory is available or
that an invalid size or option was specified.
Remarks
This service can be called from an interrupt handler.

The C library malloc function is mapped into this service using the default option.

ARTIC960 Programmer’s Reference

FreeMem—Free Memory

[

FreeMem—Free Memory

Thisservicereturnsablock of memory that was allocated using the service MallocMem to
the dynamic memory pool.

Functional Prototype
RI C_ ULONG FreeMem (void *Bl ockptr);

Parameters

Blockptr Input. Pointer to the memory block to be freed.

Returns

RC_SUCCESS
RC_I NVALI D_BASEPTR

Remarks
This service can be called from an interrupt handler.

The C library free function is mapped into this service.

Chapter 3: Base Kernel Services 81

CollectMem—Collect Memory

[

CollectMem—Collect Memory

82

This service returns pages of memory that are in dynamic memory pools and are not being
used. The pages are returned to the memory page pooal. It also provides information about
the amount of memory available in dynamic memory pools after collection is done.

Functional Prototype

RI C ULONG Col | ect Mem (RI C_ULONG Opti onWrd,
RI C ULONG *FreeUnits,
Rl C_ULONG * Fr eedPages) ;

Parameters

OptionWord
Input. A bit field specifying options for the CollectMem service.

OPTI ON_COLLECT_PROCESS
Unused pages belonging to the dynamic memory pool of the processin
execution are returned. OPTI ON_COLLECT_PROCESS is meaningful
only if memory protection is active.

OPTI ON_COLLECT_ALL
All unused pages in both the general and the process-specific dynamic
memory pools are returned. Thisisthe default.

FreeUnits Output. The number of free unitsthat exist in the dynamic memory pool s after
the collection is done. If OPTI ON_COLLECT_PROCESS was used, it reflects
the number of free unitsin the dynamic memory pools of the process. A unit
is 32 bytes.

FreedPages
Output. The number of pagesin dynamic memory poolsthat were returned to
the Memory Page Pool after the collection is done.

Returns

RC_SUCCESS
RC_| NVALI D_OPTI ON
RC_| NVALI D_CALL

Remarks
This service cannot be called from an interrupt handler.

If RC_NO_MORE_xxx isreturned by a service, CollectMem can be issued to make unused
pages available. Then the service can be retried to determine if enough memory is
available.

ARTIC960 Programmer’s Reference

Timer Services

Timer Services

The following are the timer services.

Service Name Page
CreateSwTimer 84
CloseSwTimer 85
StartSwTimer 86
StopSwTimer 88
SetSystemTime 89
QuerySystemTime 90
StartPerfTimer 91
StopPerfTimer 92
ReadPerfTimer 93

Refer to the ARTIC960 Programmer’s Guide for additional information.

Chapter 3: Base Kernel Services 83

CreateSwTimer—Allocate a Software Timer

[

CreateSwTimer—Allocate a Software Timer

84

This service creates a software timer and gives access to the requesting process.

Functional Prototype

RI C_ ULONG Cr eat eSwTi ner (char *Ti mer Nane,
Rl C_TMRHANDLE *Ti mer Handl e,
Rl C_ULONG Reserved);
Parameters

TimerName Input. A hameto assign to the timer. This parameter also can be NULL. The
kernel subsystems alocate all resources, with the first four characters as
“RIC_" for the resource name. User timer names should not start with this
prefix.

TimerHandle
Input. Timer handle returned to requesting process. This handle is passed to
all other timer services when this timer is referenced.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS

RC_I NVALI D_RESERVED PARM
RC_DUP_RES_NAVE
RC_NO_MORE_RES

RC_| NVALI D_NAVE

RC_| NVALI D_MEM _ACCESS
RC_| NVALI D_CALL

Remarks

This service creates a new software timer and assigns it the specified name. Because
software timers cannot be shared, there is not an equivalent open service.

The granularity of the software timer is five milliseconds. The TimeCount valueis
rounded up to the next multiple of five, if it is not already a multiple of five.

ARTIC960 Programmer’s Reference

CloseSwTimer—Return a Software Timer

CloseSwTimer—Return a Software Timer

This service returns a previously created software timer.

Functional Prototype

RI C_ ULONG O oseSwTi ner (Rl C_ TMRHANDLE Ti ner Handl e,
Rl C_ULONG Reserved);

Parameters

TimerHandle
Input. Timer handle of the timer to be returned. This handle is passed to the
process by the service CreateSwTimer.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS

RC_| NVALI D_RESERVED PARM
RC_| NVALI D_HANDLE

RC_| NVALI D_CALL

Remarks

This service returns a previously-created software timer. The process cannot access this
software timer any more. This call stops atimer that is started.

Chapter 3: Base Kernel Services 85

StartSwTimer—Start a Software Timer

[

StartSwTimer—Start a Software Timer

This service starts a software timer.

Functional Prototype
RI C ULONG Start SwTiner (RIC TMRHANDLE Ti ner Handl e,

Rl C_ULONG Ti meCount ,
RI C_ TMRHANDLER Ti ner Handl er,
Rl C_ULONG Opt i onVord,
Rl C_ULONG Ti mer Meno,
Rl C_ULONG Reserved);
Parameters
TimerHandle

Input. Timer handle of the timer to be started. This handle is passed to the
process by the service CreateSwTimer.

TimeCount Input. Timeout count. This parameter is specified in terms of milliseconds
and can range from 1 to 65535. The granularity of the timer isfive
milliseconds. The timeout value isrounded up to the next multiple of five, if
it is not already a multiple of five. A value of 0 is not valid.

TimerHandler
Input. Address of timer handler.

OptionWord
Input. A set of options for starting the software timer.

TI MER_REPEAT
If the constant is ORed with OptionWord, the timer is restarted after
expiration. This occurs until the user stops the timer using
StopSwTimer, or restarts it with another StartSwTimer.

TI MER_ONE_SHOT
Thetimer is not restarted.

OPTI ON_PROT_ON
If the constant is ORed with OptionWord and global protectionison,
memory protection is enabled for the timer handler.

OPTI ON_PROT_OFF
The timer handler runs without memory protection.

TimerMemo Input. Optional user-defined input.
Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS

RC_I NVALI D_RESERVED PARM
RC_| NVALI D_HANDLE

RC_| NVALI D_MEM _ACCESS
RC_| NVALI D_OPTI ON

RC_I NVALI D_TI MEQUT
RC_NO_BASE_DEVI CE_DRI VER

86 ARTIC960 Programmer’s Reference

StartSwTimer—Start a Software Timer

Remarks

This service starts a software timer for the requested timer interval unconditionally. When
the timer expires, the kernel gives control to the timer handler TimerMemo as the
parameter. The timer handler runs as an extension of the kernel interrupt handler.

Because atimer handler is an interrupt routine, care should be taken not to remain in the
timer handler for very long.

If TI MER_REPEAT is ORed with OptionWord, the timer is restarted when the kernel gets
control back from the timer handler of the process.

The process can stop the timer at any time with the StopSwTimer service.

Chapter 3: Base Kernel Services 87

StopSwTimer—Stop a Software Timer

[

StopSwTimer—Stop a Software Timer

88

This service stops a previoudly started software timer.

Functional Prototype

RI C_ULONG St opSwTi mer (Rl C_TMRHANDLE Ti nmer Handl e,
Rl C_ULONG Reserved);

Parameters

TimerHandle
Input. Handle of the timer to be stopped. This handle is passed to the process
by the service CreateSwTimer.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_| NVALI D_RESERVED PARM
RC_| NVALI D_HANDLE

Remarks

This service stops a previoudly started software timer. When called from an interrupt
handler, this service can potentially stop arecently expired software timer (that is, the
software timer expired but the timer handler of the process was not called yet).

ARTIC960 Programmer’s Reference

SetSystemTime—Set the Time-of-Day Clock

SetSystemTime—Set the Time-of-Day Clock

This service sets the time-of-day clock.
Functional Prototype

RI C_ ULONG Set Systeni ne (struct Tinelnfo *SysTi nel nfo,
Rl C_ULONG Reserved);

Parameters
SysTimelnfo

Input. Pointer to auser’s structure that contains time information (see the

Remarks section for this service).

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_| NVALI D_RESERVED PARM
RC_NO_BASE_DEVI CE_DRI VER

Remarks
The Timelnfo is defined as follows:

struct Tinelnfo

{
RI C_ULONG Ti n®;
Rl C_SLONG Ti neZone;
RI C_ LONG Dayli ght;
char Ti meZoneStr[4] ;
char DayLi ght Str[4];
}
Time Isthe timein secondsin GMT since 1970.

TimeZone Isthedifferencein hours between the local time zone and GMT.
DayLight Istrueif daylight savingstimeisto be applied.

TimeZoneStr
Is atime zone character string, for example, EST and CST.

DayLightStr
Is adaylight savings time zone, for example, EDT and PDT.

Chapter 3: Base Kernel Services

89

[

QuerySystemTime—Get the Time of Day

[

QuerySystemTime—Get the Time of Day

90

This service gets the time of day.

Functional Prototype
RI C_ ULONG QuerySystenilime (struct Tinmelnfo *Tine,
Rl C_ULONG Reserved);

Parameters

Time Output. Pointer to a user’s structure that contains time information (see the
Remarks section for this service).

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS

RC_| NVALI D_MEM ACCESS
RC_| NVALI D_RESERVED PARM
RC_NO_BASE_DEVI CE_DRI VER
RC_TOD _NOT_ENABLED

Remarks

Userstypically use the standard C calls for getting and setting the time. The underlying
services call this kernel service.

ARTIC960 Programmer’s Reference

StartPerfTimer—Start the Performance Timer

StartPerfTimer—Start the Performance Timer

This service starts the performance timer.

Functional Prototype
RIC ULONG StartPerfTiner (R C ULONG Reserved);

Parameters

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_TI MER | S_ACTI VE

RC_I NVALI D_RESERVED PARM
RC_NO_BASE_DEVI CE_DRI VER
RC_PERF_TI MER_NOT_ENABLED

Remarks
The range of the performance timer is from 1 microsecond to 6 seconds.

The performance timer cannot be restarted once it is active. To restart the performance
timer, it must first be stopped with StopPerf Timer. Aslong as users check the return code
from this service, it effectively serializes use of the performance timer.

Chapter 3: Base Kernel Services 91

StopPerfTimer—Stop the Performance Timer

[

StopPerfTimer—Stop the Performance Timer

This service stops the performance timer and returns the final time.

Functional Prototype

RI C_ ULONG St opPerfTi mer (R C_ULONG *Ti neCount,
RI C_ ULONG Reserved);

Parameters
TimeCount Output. Final count of performance timer in microseconds.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS

RC_| NVALI D_MEM _ACCESS
RC_I NVALI D_RESERVED PARM
RC_TI MER_OVERFLOWED
RC_PERF_TI MER_NOT_ENABLED

Remarks

None

92 ARTIC960 Programmer’s Reference

ReadPerfTimer—Read Current Time of the Performance Timer

ReadPerfTimer—Read Current Time of the Performance Timer

This service reads the performance timer count without stopping it.

Functional Prototype
Rl C_ ULONG ReadPer f Ti mer (R C_ULONG *Ti neCount,
RI C_ ULONG Reserved);
Parameters
TimeCount Output. Current count of performance timer in microseconds.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS

RC_TI MER_| S_I NACTI VE

RC_| NVALI D_MEM _ACCESS

RC_| NVALI D_RESERVED PARM
RC_TI MER_OVERFLOWED
RC_PERF_TI MER_NOT_ENABLED

Remarks

None

Chapter 3: Base Kernel Services 93

Process Communication Services

Process Communication Services

Using the following services, process communication can be accomplished through
queues, mailboxes, and signals.

Service Page
CreateQueue 95
OpenQueue 96
CloseQueue 97
PutQueue 98
GetQueue 100
SearchQueue 102
CreateMbx 104
OpenMbx 106
GetMbxBuffer 108
FreeMbxBuffer 109
SendMbx 110
ReceiveMbx 112
CloseMbx 114
CreateSig 115
OpenSig 117
CloseSig 119
InvokeSig 120

Refer to the ARTIC960 Programmer’s Guide for additional information.

94 ARTIC960 Programmer’s Reference

CreateQueue—<Create a Queue

[

CreateQueue—-Create a Queue

This service creates a queue and gives access to the requesting process.

Functional Prototype

RI C_ ULONG Cr eat eQueue (char *QueueNarne,
Rl C_QUEHANDLE * QueueHand! e,
Rl C_SEMHANDLE * SenHandl e,
Rl C_ULONG Reserved);

Parameters

QueueName
Input. A gueue name to assign to the queue so that other processes can access
the same queue by name. This name also can be NUL L. The queue cannot be
shared when QueueName isNULL. The kernel’ s subsystems allocate all
resources with the first four characters being “RIC_” for the resource hame.
User queue names should not start with this prefix.

QueueHandle
Output. Queue handle returned to requesting process. This handleis passed
to all other queue services when this queue is referenced.

SemHandle Output. Handle of the semaphore used to wait on queue elements. The handle
isreturned so that it can be part of a multiple event wait.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_NO_MORE_RES

RC_I NVALI D_RESERVED PARM
RC_| NVALI D_NAVE
RC_DUP_RES_NAVE

RC_| NVALI D_MEM _ACCESS
RC_| NVALI D_CALL

Remarks

This service creates a new queue and assigns it the specified name. Other processes can
access the same queue with the OpenQueue service. Theinitial semaphore count is set
to 0. It is up to the process to ensure that it has read/write memory accessto all queue
elements.

Multiple processes can read and receive from a single queue.

Chapter 3: Base Kernel Services 95

OpenQueue—Open a Queue

|
OpenQueue—Open a Queue

This service opens a queue previoudly created by another process.

Functional Prototype

Rl C_ ULONG OpenQueue (char *QueueNarne,
Rl C_QUEHANDLE * QueueHandl e,
Rl C_SEMHANDLE * SenHandl e,
Rl C_ULONG Reserved);

Parameters

QueueName
Input. The gueue name used to create the queue.

QueueHandle
Output. Queue handle returned to the requesting process. This handle is
passed to all other queue services when this queue is referenced.

SemHandle Output. Handle of the semaphore used to wait on queue elements. Thisis
returned so it can be part of a multiple event wait.

Reserved Input. Reserved parameter (must be 0).

Returns
RC_SUCCESS RC | NVALI D_NAME
RC_NAME_NOT_FOUND RC_NO_MORE_TI MERS
RC_NO MORE_RES RC | NVALI D_CALL
RC | NVALI D_RESERVED PARM RC | NVALI D_MEM ACCESS
Remarks

This service gets access to a queue aready created by another process with the
CreateQueue service. It is up to the processto ensure that it has read/write memory access
to the queue elements.

Multiple processes can read and receive from a single queue.

96 ARTIC960 Programmer’s Reference

CloseQueue—Close a Queue

[

CloseQueue—Close a Queue

This service releases access to a queue and deletes the queue if no other processes have
accessto it.

Functional Prototype

RI C_ ULONG O oseQueue (RI C_ QUEHANDLE QueueHandl e,
Rl C_ULONG Reserved);

Parameters

QueueHandle
Input. Queue handle of queueto release.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS

RC_| NVALI D_HANDLE

RC_| NVALI D_RESERVED PARM
RC_DEPENDENT _EVENTS

RC_| NVALI D_CALL

Remarks

If the close isissued by a process while other processes still have access to the queue, the
service removes access rights for the issuing process. When the last process with access
rights calls this service, the queue ceases to exist. See the services CreateQueue—Create a
Queue on page 95 and OpenQueue—Open a Queue on page 96 for more information.

If the closeisissued by the kernel on behalf of the process, such aswhen the kerndl cleans
up resources for a process that is stopped or unloaded, all other processes are notified
through their asynchronous handlers that the process has gone away.

Chapter 3: Base Kernel Services 97

PutQueue—Put an Element into a Queue

[

PutQueue—Put an Element into a Queue

This service puts a queue element on a gueue and increments the semaphore associated
with the queue.

Functional Prototype
Rl C_ ULONG Put Queue (RI C_ QUEHANDLE QueueHandl e,

voi d *El ement ,
Rl C_ULONG Opt i onVord,
RI C_ULONG *QueueSt at us,
Rl C_ULONG Reserved);
Parameters
QueueHandle
Input. Handle of queue to add element to.
Element Input. Pointer to element to add to queue.
OptionWord
I nput.
QUE_PUT_LI FO The queue element is added to the head of the queue.
QUE_PUT_FI FO A queue element is added to the end of the queue.
QueueSatus
Output. Returns the status of the queue.
QUE_EMPTY The queue went from empty to not-empty.
QUE_NOT_EMPTY The queue aready had at |east one element on the
queue.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_| NVALI D_HANDLE

RC_I NVALI D_RESERVED PARM
RC_| NVALI D_MEM _ACCESS
RC_| NVALI D_OPTI ON

Remarks
Eight bytes must be reserved at the top of the queue element for queueing service pointers.

« If dl elements are queued with the QUE_PUT_LI FOflag on, the queue becomes a
virtual stack.

« If dl elements are queued with the QUE_PUT_LI FOflag off, the queue manages the
elementsin FIFO order as expected.

98 ARTIC960 Programmer’s Reference

PutQueue—Put an Element into a Queue

[

e |If the elements are queued alternating between QUE_PUT_LI FOon and off, a
two-priority queue is built.

Elements added with the QUE_PUT_LI FOflag on have a higher priority because

they are put at the front of the queue.

Elements added with the QUE_PUT_LI FOflag off have alower priority because

they are put at the back of the queue.

Chapter 3: Base Kernel Services 99

GetQueue—Get or Peek at an Element on a Queue

[

GetQueue—Get or Peek at an Element on a Queue

100

Thisservice gets or peeks at the top element of aqueue. If the element isremoved from the
queue, the semaphore associated with the queue is decremented.

Functional Prototype
RI C ULONG Get Queue (RIC_ QUEHANDLE QueueHandl e,

voi d **E| emrent ,
Rl C_TI MEQUT Ti meout ,
Rl C_ULONG Opt i onVord,
RI C_ULONG *QueueSt at us,
Rl C_ULONG Reserved);
Parameters
QueueHandle

Input. Handle of queue to get element from.
Element Output. Pointer to element removed from the queue.
Timeout Input. Size of time to wait for queue element.

-1 Wait indefinitely

0 Returnimmediately if there are no queue elements.

Any other value from 1 to 65535
Wait time in milliseconds. The granularity of the timer isfive
milliseconds. The timeout value is rounded up to the next multiple of
five, if it is not already a multiple of five.

OptionWord
Input. Bit field that gives receive options.

QUE_READ
Thishit should be set if the processwants only to peek at thetop element
of the queue without removing it from the queue.

QUE_GET
The queue element is removed from the queue.

QueueSatus
Output. Returns the status of the queue.

QUE_EMPTY

If returned, the queue went from not-empty to empty.
QUE_NOT_EMPTY

If returned, the queue still has at least one element in the queue.

Reserved Input. Reserved parameter (must be 0).

ARTIC960 Programmer’s Reference

GetQueue—Get or Peek at an Element on a Queue

[

Returns
RC_SUCCESS RC_| NVALI D_MEM ACCESS
RC_| NVALI D_HANDLE RC_| NVALI D_CALL
RC_| NVALI D_RESERVED PARM RC_| NVALI D_OPTI ON
RC_QUEUE_EMPTY RC_| NVALI D_TI MEQUT

Remarks

If the QUE_READ bit of OptionWord is set, and if more than one process is reading the
gueue, each may get a pointer to the same queue element.

Chapter 3: Base Kernel Services 101

SearchQueue—Search a Queue for an Element

[

SearchQueue—Search a Queue for an Element

102

This service searches a queue for a queue element and optionally removes it from

the queue.

Functional Prototype

RI C_ULONG Sear chQueue (R C QUEHANDLE QueueHandl e,
voi d **El ement ,
Rl C_ULONG Opt i onVord,
Rl C_ULONG KeyVal ue,
Rl C_ULONG KeyO f set
Rl C_ULONG KeyMask,
Rl C_ULONG Reserved);
Parameters
QueueHandle

Element
OptionWord

KeyValue

KeyOffset

KeyMask

Reserved

Input. Handle of queue to search for element.

Output. Pointer to queue element.

Input. Option word indicating how to do search.

QUE_SEARCH_ADDRS
If ORed with OptionWord, the KeyValue parameter is an element
address to search for.
QUE_SEARCH_KEY
If ORed with OptionWord, the KeyVaueisakey value within the
queue elements to search for.

If the queue element is found:

QUE_GET
If specified, the element is removed from the queue and the queue’s
semaphore is decremented.
QUE_READ
If specified, the pointer to the element isreturned and the queue element
is not removed.

Input. Either the address of the element to search for or the value with the
gueue element to search for.

Input. If the QUE_SEARCH_KEY is set, this parameter indicates the offset
within the queue element where the key value is found. The key word must
be located on aword (4-byte) boundary.

Input. If the QUE_SEARCH_KEY is set, this parameter indicates the mask to be
ANDed with the key word before comparing it with the KeyValue.

Input. Reserved parameter (must be 0).

ARTIC960 Programmer’s Reference

SearchQueue—Search a Queue for an Element

[

Returns
RC_SUCCESS RC_ELEMENT _NOT_FOUND
RC_| NVALI D_HANDLE RC_| NVALI D_MEM ACCESS
RC_| NVALI D_RESERVED PARM RC_| NVALI D_OPTI ON
Remarks

If the queue element is not found, control returnsto the calling process. This service will
not wait until a queue element arrives that satisfies the search criteria.

Chapter 3: Base Kernel Services 103

CreateMbx—Create a Mailbox

[

CreateMbx—Create a Mailbox

104

This service creates a mailbox and gives access to the requesting process.

Functional Prototype

Rl C_ ULONG Creat eMox (char * MoxNane,
char * MoxRx MermNane,
Rl C_ULONG MsgUni t Si ze,
Rl C_ULONG MsgUni t Count ,
Rl C_ULONG Opt i onVord,

Rl C_MBXHANDLE *MoxHandl e,
Rl C_SEMHANDLE * SenHandl e,
Rl C_ULONG Reserved);

Parameters

MbxName Input. A mailbox hameto assign to the mailbox so other processes can access
the same mailbox by name. This name also can be NULL. The mailbox
cannot be shared when MbxNameis NULL.

The kernel’ s subsystems allocate all resources, with the first four characters
as“RIC " for the resource name. User mailbox names should not start with
this prefix.

MbxRxMemName
Input. Optional storage-area name associated with this mailbox for receiving
messages. A value of NULL means there is no name associated with the
memory and memory cannot be shared.

MsgUnitSze
Input. The smallest allocatable message size. All messages are allocated in
units of thissize. If thesizeis0, RC_| NVALI D_SI ZE isreturned.

MsgUnitCounpmt
Input. The maximum number of message unitsthat can be allocated from this
mailbox.

OptionWord
Input. Bit field to describe the options to be used to create the mailbox. The
following constants should be ORed together to build the appropriate set of
options.

» Type of mailbox to create. The caller can create either type.

VBX_CREATE_GLOBAL
Mailbox accepts messages from other peer units

MBX_CREATE_LOCAL
Mailbox does not accept messages from other units

ARTIC960 Programmer’s Reference

CreateMbx—Create a Mailbox

« Type of memory access for storage area. The caller can OR the following
constants together to specify both types of access to the memory. The
default isthat neither accesstypeis given for alocal mailbox and that
system bus accessis given for aglobal mailbox.

MBX_MEM MC_ACCESS
System-bus access rights to the memory

MBX_MEM Al B_ ACCESS
Daughter card access rights to the memory

MbxHandle
Output. Mailbox handle returned to requesting process. Thishandleis passed
to all other mailbox services when this mailbox is referred to.

SemHandle Output. Semaphore handle associated with the mailbox. Thishandleis passed
to event services when this mailbox-associated semaphore is referred to.

Reserved Input. Reserved parameter (must be 0).

Returns
RC_SUCCESS RC | NVALI D_MEM ACCESS
RC | NVALI D_RESERVED PARM RC | NVALI D_CALL
RC | NVALI D_NAMVE RC_NO_MORE_SEM
RC_DUP_RES NAME RC_NO_MORE_TI MERS
RC | NVALI D_OPTI ON RC | NVALI D_COUNT
RC_NO MORE_RES RC | NVALI D_SI ZE

RC_NO_MORE_MEM

Remarks

This service creates a semaphore associated with this mailbox. The initial semaphore
count is set to 0. Users can wait on this semaphore through WaitEvent to
receive messages.

This service also allocates the memory requested by the user. This memory is used to keep
the messages in the mailbox. Optionally, a name can be assigned to this memory and the
sending process can access this memory by passing the same name to OpenMbx. Sharing
the memory between sending and receiving processes avoids a copy operation by
SendMbx. Refer to the ARTIC960 Programmer’s Guide for more information about
mailbox memory options.

Optionally, mailboxes can accept messages from other peer units. The processes on other
units can access this mailbox using OpenMbx. Only the process that created the mailbox
with the CreateM bx service can receive messages from the mailbox.

If the process is sharing the receive memory of the mailbox with a previously created
mailbox, the MsgUnitSize and M sgUnitCount parameters must be the same value on both
create calls. If the mailbox receives messages from other units, the kernel ensures system
bus access has been enabled for the mailbox’s pool.

Mailbox memory areas are allocated from packet memory. If there is not enough packet
memory to allocate the buffer, the RC_NO_MORE_MEMerror is returned.

If amailbox is not going to be accessed from off-card, it should be created with the
MBX_CREATE_LOCAL option.

Chapter 3: Base Kernel Services 105

OpenMbx—Open a Mailbox

[

OpenMbx—Open a Mailbox

106

This service opens a mailbox previously created by another process.

Functional Prototype

RI C_ ULONG OpenMox (char * MoxNane,
char * SendMoxMenNane,
Rl C_ULONG MsgUni t Si ze,
Rl C_ULONG MsgUni t Count ,
Rl C_ULONG Opt i onVord,
RI C_MBXHANDLE *MoxHandl e,
Rl C_ULONG *MoxType,
Rl C_ULONG Reserved);
Parameters

MbxName Input. A mailbox name used to create the mailbox.

SendMbxMemName
Input. For local mailboxes, an optional storage-areaname associated with the
mailbox for sending messages by this process. A value of NULL means that
there is no name associated with the memory and the memory cannot be
shared. Refer to the ARTIC960 Programmer’s Guide for more information
about mailbox memory options.

MsgUnitSze
Input. The smallest allocatable message size. All messages are allocated in
units of thissize. If thesizeis0, RC | NVALI D_SI ZE is returned.

MsgUnitCount
Input. The maximum number of messages that can be allocated from this
mailbox.

OptionWord
Input. A bit field to describe the options to be used to open the mailbox. The
following constants should be ORed together to build the appropriate set of
options:

« Search options for finding a mailbox

MBX_OPEN_SEARCH GLOBAL
Other peer units are searched if the mailbox does not exist on this unit.

MBX_OPEN SEARCH LOCAL
Search only this unit.

ARTIC960 Programmer’s Reference

OpenMbx—Open a Mailbox

[

« Type of memory access for storage area. The caller can OR the following
constants together to specify both types of access to the memory. The
default isthat neither accesstypeis given for alocal mailbox and that
system bus accessis given for aglobal mailbox.

MBX_MEM MC_ACCESS
For system bus access rights to the memory.

MBX_MEM Al B_ ACCESS
For daughter card access rights to the memory.

MbxHandle
Output. Mailbox handle returned to requesting process. Thishandleis passed
to all other mailbox services when this mailbox is referred to.

MbxType Output. Type of mailbox that was opened. The MbxStatusfield can return the
following values:

MBX_TYPE_LOCAL
The mailbox is on this unit and does not accept messages from other
units.

MBX_TYPE_GLOBAL
The mailbox ison this unit and accepts messages from other units.

MBX_TYPE_REMOTE
The mailbox was created on another unit.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS

RC_| NVALI D_RESERVED PARM
RC_| NVALI D_NAVE
RC_NAVE_NOT_FOUND

RC_| NVALI D_OPTI ON

* NO_MORE_RES_ON_REMOTE
* NO_MORE_REM _MBX

> NO_MORE_QUEUES
REMOTE_CFG_NOT_EST

|

|

|

|

3838

NVALI D_MEM ACCESS

38383838

RC_NO_MORE_RES 1 NVALI D_CALL
RC_DUP_RES_NAVE > 1 N\VALI D_SI ZE
RC_NO_MORE_MEM NVALI D_COUNT

Remarks

If the memory name provided by the processis the same as that passed to CreateMbx, the
service does not create anew memory pool; it gives the process access to the memory pool
aready created. If the memory name is not the same, this service allocates the memory
requested by the process. This memory is used to send messages by this process and a
copy operation is performed by SendMbx.

If the process is sharing the memory, the MsgUnitSize and MsgUnitCount parameters
must be less than or equal to the val ues specified when the memory was created.

If messages are being sent to other units, the kernel ensures that system bus access has
been enabled on the mailbox pool.

Mailbox memory areas are alocated from packet memory. If there is not enough packet
memory to allocate the buffer, the service returnsa RC_NO_MORE_MEMerror.

Chapter 3: Base Kernel Services 107

GetMbxBuffer—Get a Free Mailbox Buffer

[

GetMbxBuffer—Get a Free Mailbox Buffer

108

This service alocates afree mailbox buffer to the requesting process.

Functional Prototype

RI C_ ULONG Get MoxBuffer (R C MBXHANDLE MoxHandl e,
Rl C_ULONG Si ze,
voi d **MsgPtr,
Rl C_ULONG Reserved);

Parameters

MbxHandle Input. Handle of mailbox from which the process wants to get a message
buffer.

Sze Input. Message size specified in bytes. The sizeisrounded up to amultiple of
the message unit size set by CreateMbx or OpenMbx. A value of Oisinvalid.

The maximum size alowed with asingle call is 65535 times the size of the
message unit.

MsgPtr Output. Pointer to allocated mailbox buffer.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS

RC_I NVALI D_RESERVED PARM
RC_| NVALI D_HANDLE
RC_NO_MBX_BUFFER
RC_NO_MBX_RECEI VER

RC_I NVALI D_SI ZE

RC_| NVALI D_MEM _ACCESS

Remarks

No more than 65535 times the message size in bytes can be allocated with asingle call to
GetMbxBuffer.

ARTIC960 Programmer’s Reference

FreeMbxBuffer—Free Mailbox Buffer

FreeMbxBuffer—Free Mailbox Buffer

This service frees a previously allocated mailbox buffer.

Functional Prototype

RI C_ ULONG FreeMoxBuffer (R C MBXHANDLE MoxHandl e,
voi d *MsgPtr,
Rl C_ULONG Reserved);

Parameters
MbxHandle Input. Handle of mailbox where the process wants to free a message buffer.

MsgPtr Input. Pointer to allocated mailbox buffer.
Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS

RC_| NVALI D_RESERVED PARM
RC_| NVALI D_HANDLE

RC_| NVALI D_MBX_BUFFER_ADDR
RC_| NVALI D_MEM _ACCESS
RC_MBX_BUFFER_| N_QUEUE

Remarks

None

Chapter 3: Base Kernel Services 109

SendMbx—Send a Message

[

SendMbx—Send a Message

This service puts a message into a mailbox.

Functional Prototype
RI C_ ULONG SendMox (RI C_MBXHANDLE MoxHandl e,

voi d *MsgPtr,

Rl C_ULONG Si ze,

Rl C_ULONG Opt i onVord,
Rl C_ULONG Reserved);

Parameters
MbxHandle Input. Handle of the mailbox where the process sends the message.

MsgPtr Input. Pointer to the message to be sent. When the
MBX_SEND_FREE_BUFFER option isspecified, MsgPtr must point to the start
of the message buffer. Otherwise, it may point to any location contained in

the message buffer.
Sze Input. Size of the message buffer. A message size of O isinvalid.
OptionWord
Input. Bit field to describe how to send the message. To build the appropriate
set of options, OR the following constants.
MBX_SEND_COPY
Forces a copy of the message in the mailbox memory. This option
applies only when sender and receiver are sharing memory. The default
isMBX_SEND NO COPY.
MBX_SEND_FREE_BUFFER
Returns the buffer to the free pool. The default is
MBX_SEND_ KEEP_BUFFER, which means the buffer must be freed
explicitly with the FreeMbxBuffer service.
MBX_SEND LI FO
Puts a message in the front of the message queue. The default is
MBX_SEND_FI FO, which meansthat the messageis put at the end of the
message queue.
Reserved Input. Reserved parameter (must be 0).
Returns
RC_SUCCESS RC_NO_RCV_BUFFER
RC_| NVALI D_RESERVED PARM RC_| NVALI D_CALL
RC_| NVALI D_HANDLE RC_| NVALI D_OPTI ON
RC_| NVALI D_SI ZE RC_| NVALI D_MEM ACCESS
RC_NO MBX_ RECEI VER RC UNABLE TO ACCESS UNI'T
RC_MSG BUFFER_NOT _FREED RC_PI PES_NOT_CONFI GURED
RC_| NVALI D_MBX_BUFFER_ADDR RC_MBX_BUFFER_| N QUEUE

110 ARTIC960 Programmer’s Reference

SendMbx—Send a Message

Remarks
The semaphore associated with this mailbox is incremented by 1.

The MBX_SEND_COPY option isvalid only if the sender and the receiver are sharing
memory. It can be used with shared memory to keep the message around for further
processing. If the sender and the receiver are not sharing memory, the value of the
MBX_SEND_COPY hit isignored and the message is copied automatically to the
receive memory.

The MBX_SEND_FREE BUFFER option isignored if the sender and receiver are sharing
memory and the MBX_SEND_COPY option was not requested. The call returns the
RC_MSG_BUFFER_NOT_FREED return code after sending the message.

If MBX_SEND FREE_BUFFERIs specified and the SendMbx service fails, the buffer is not
freed. It must be explicitly freed by the sender using FreeMbxBuffer.

If messages are being sent to other units, the kernel ensures system bus access has been
enabled on the mailbox pooal.

Chapter 3: Base Kernel Services 111

[

ReceiveMbx—Receive a Message

[

ReceiveMbx—Receive a Message

112

This service reads or receives a message from a mailbox.

Functional Prototype

RI C_ULONG

Parameters
MbxHandle

OptionWord

Timeout

MsgPtr
Sze

Reserved

Recei veMox (Rl C_MBXHANDLE MoxHandl e,
Rl C_ULONG Opt i onVord,
Rl C_TI MEQUT Ti meout ,
voi d **MsgPtr,
Rl C_ULONG *Si ze,
Rl C_ULONG Reserved);

Input. Handle of the mailbox from which the process wants to receive a
message.

Input. Option word for specifying receive options. The following constant
can be used:

VBX_RECEI VE_READ MESSAGE
Return apointer to the message but do not remove the message from the
mailbox.

MBX_RECEI VE_GET _MESSAGE
Returns a pointer to the message and removes the message from the
mailbox. Thisisthe default.

Input. Optional timeout for waiting on semaphore associated with this
mailbox.

-1 Thereisno timeout.

0 Returnimmediately if there are no mailbox elements.

Any other value from 1 to 65535
Wait time in milliseconds. The granularity of the timer isfive
milliseconds. The timeout value is rounded up to the next multiple of
five, if it is not already a multiple of five.

Output. Pointer to the received message buffer.
Output. Size of the received message buffer.
Input. Reserved parameter (must be 0).

ARTIC960 Programmer’s Reference

ReceiveMbx—Receive a Message

[

Returns
RC_SUCCESS RC_| NVALI D_OPTI ON
RC_| NVALI D_RESERVED PARM RC_| NVALI D_MEM ACCESS
RC_| NVALI D_HANDLE RC | NVALI D_CALL
RC_| NVALI D_RECEI VER RC_| NVALI D_TI MEQUT
RC_MBX_EMPTY

Remarks

If the MBX_RECEI VE_READ_MESSAGE option is set in OptionWord, the message is hot
degueued from the message queue.

If the MBX_RECEI VE_READ_MESSAGE option is not set in OptionWord, this service
removes the first message from the queue, and the semaphore associated with the mailbox
is decremented.

Chapter 3: Base Kernel Services 113

CloseMbx—Close a Mailbox

[

CloseMbx——Close a Mailbox

This service releases the mailbox and deletesiit if no other process has access to it.

Functional Prototype

RI C_ ULONG O oseMox (R C_MBXHANDLE MoxHandl e,
Rl C_ULONG Reserved);

Parameters

MbxHandle Input. Handle of mailbox to close.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_I NVALI D_RESERVED PARM
RC_| NVALI D_HANDLE
RC_DEPENDENT _EVENTS

RC_| NVALI D_CALL

Remarks

If the close isissued by a process while other processes still have access to the mailbox,
the service removes access rights for the calling process.

Any memory pool associated with the mailbox for sending by this processis rel eased.

When the last process closes the mailbox, the mailbox is deleted. When the creator closes
the mailbox, the semaphore associated with the mailbox is closed, and the memory used
by the mailbox for receiving datais closed.

114 ARTIC960 Programmer’s Reference

CreateSig—Create a Signal

CreateSig—Create a Signal

This service creates a signal and optionally registers asignal handler.

Functional Prototype

RI C_ULONG

Parameters

SgName

CreateSig (char *Si gNane,
Rl C_SI GHANDLER Ent r yPoi nt ,
Rl C_ULONG Opt i onVord,
Rl C_ULONG Si gHanl D,
RI C_SI GHANDLE *Si gHandl e,
Rl C_ULONG Reserved);
Input. Name to assign to signal so that other processes can accessit. This

parameter also can be NULL. However, if itisNULL, only the creating
process can use the signal.

EntryPoint Input. Entry address on which user getscontrol on calling of the signal. If this
parameter is NULL, the calling process does not get control through this
signal. It gets only a handle back in SigHandleto use in calling the signal.

OptionWord
Input. Describes how to receive asignal. This parameter isvalid only if the
EntryPoint parameter isnot NULL.

SI G_CONTROL_ ALWAYS
Calling process wants control any timethe signal is called.

SI G_CONTROL_NVATCH
Calling process wants control only when the signal is called with a
matching SigHanID.

SgHanlD Input. Thisparameter isvalid only if OptionWord isSI G_CONTROL_MATCH.
The caller gets control only when the signal is called with a matching
SigHanID.

SgHandle Output. Signal handle returned to requesting process. This handleis used to
call the signal.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS RC_DUP_RES NANE

RC | NVALI D_RESERVED PARM RC | NVALI D_MEM ACCESS
RC_NO _MORE_RES RC I NVALI D_CALL

RC | NVALI D_NAVE RC | NVALI D_OPTI ON

Chapter 3: Base Kernel Services 115

[

CreateSig—Create a Signal

[

116

Remarks

Processes that open asignal withaNULL EntryPoint are calling processes. Processes that
open asignal with anon-NULL EntryPoint are receiving processes.

The EntryPoint for areceiving process should be a handler that accepts three parameters:
e SigHanID

e A pointer to a parameter block

e A parameter block size

It should also return aflag as the function value indicating what the kernel should do next.

0 Indicates that the kernel should call the rest of the receiving processes in the chain.
1 Indicates that the kernel should give control back to the calling process
immediately.

For normal processes, when the handler is called, memory protection isturned on if global
memory protection is enabled. For device drivers and subsystems, the state of memory
protection depends on the OptionWord specified in CreateDev.

A signal can have multiple receiving processes. Each can be distinguished with the
SigHanID. Calling processes can also be receiving processes for the same signal.

ARTIC960 Programmer’s Reference

OpenSig—Open a Signal

OpenSig—Open a Signal

This service opens asignal and optionally registers asignal handler.

Functional Prototype

RI C_ ULONG OpenSi g (char *Si gNane,

SI GHANLDER Ent r yPoi nt ,
Rl C_ULONG Opt i onVord,
Rl C_ULONG Si gHanl D,
RI C_SI GHANDLE *Si gHandl e,
Rl C_ULONG Reserved);

Parameters

SgName Input. Name of signal to access.

EntryPoint Input. Entry address on which user gets control on calling of thesignal. If this
parameter is NULL, the calling process does not get control through this
signal. It getsonly ahandle back in SigHandle, which it can usein calling the
signal.

OptionWord
Input. Describes how to receive asignal. This parameter isvalid only if the
EntryPoint parameter isnot NULL.

S| G_CONTROL_ALWAYS
Calling process wants control any time the signal is called.

S| G_CONTROL_MATCH
Calling process wants control only when the signal is called with a
matching SigHanID.

SgHanlD Input. Thisparameter isvalid only if OptionWordisSI G_CONTROL_MATCH.
The caller gets control only when the signal is called with a matching
SigHanID. The SigHanID cannot have a value of 0 because it is used for
broadcasts.

SgHandle Output. Handlefor the signal requested by the process. Thishandleisused to
call the signal.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS RC_| NVALI D_NANMVE

RC_| NVALI D_RESERVED PARM RC_| NVALI D_MEM ACCESS
RC_NO_MORE_RES RC_| NVALI D_CALL
RC_NAVE_NOT_FOUND RC_| NVALI D_OPTI ON

Chapter 3: Base Kernel Services 117

[

OpenSig—Open a Signal

[

118

Remarks

Processes that open asignal withaNULL EntryPoint are calling processes. Processes that
create asignal using anon-NULL EntryPoint are receiving processes.

The EntryPoint for areceiving process should be a handler that accepts three parameters:
e SigHanID

e A pointer to a parameter block

e A parameter block size

It should also return aflag as the function value indicating what the kernel should do next.
0 Thekernel should call the rest of the receiving processes in the chain.

1 Thekernel should give control back to the calling process immediately.

For normal processes, when the handler is called, memory protection isturned on if global
memory protection is enabled. For device drivers and subsystems, the state of memory
protection depends on the OptionWord specified in CreateDev.

ARTIC960 Programmer’s Reference

CloseSig—Close a Signal

[

CloseSig—Close a Signal

This service releases access to a signal and deletes the signal if no other processes
have access.
Functional Prototype

RI C ULONG O oseSig (R C_SI GHANDLE Si gHandl e,
Rl C_ULONG Reserved);

Parameters
SgHandle Input. Signa handle of signal to release.
Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS

RC_| NVALI D_HANDLE

RC_| NVALI D_RESERVED PARM
RC_| NVALI D_CALL

Remarks

If a process attemptsto close a signal while other processes still have access to the signal,
the service removes access rights for the process issuing the call. When the last process
with accessrights calls this service, the signal ceasesto exist.

Chapter 3: Base Kernel Services 119

InvokeSig—Call a Signal

[

InvokeSig—Call a Signal

Thisservice callsasignal.

Functional Prototype
RI C_ ULONG I nvokeSi g (RI C SI GHANDLE Si gHandl e,

Rl C_ULONG Si gHanl D,
voi d *Par s,

RI C_ULONG Par m_en,
Rl C_ULONG Reserved);

Parameters
SgHandle Input. Handle of signal returned from CreateSig or OpenSig.

SgHanlD Input. A value of Oisinterpreted as abroadcast. Every receiving process gets
control unconditionally. Any other value is interpreted as a conditional call.
Only receiving processes that have a matching SigHanID or that set their
Always flag get control.

Parms Input. Pointer to parameters to pass to receiving processes.
ParmLen Input. Size of parameters to pass to receiving processes.
Reserved Input. Reserved parameter (must be 0).

Returns
RC_SUCCESS
RC_CALL_TERM NATED
RC | NVALI D_RESERVED PARM
RC_| NVALI D_HANDLE
RC NO SUCH SIG ID
RC | NVALI D_MEM ACCESS

Remarks

Before passing control to areceiving process, the kernel changes the memory protection to
allow the receiving processto access the parameter block aswell asits own memory, code,
data, and stack. Thisis also true for a subsystem or device driver with memory protection
turned on. The OPTI ON_PROT_OFF option in the OptionWord parameter of CreateDev is
used to determine if memory protection is enabled for signals received by a device driver

or subsystem.

120 ARTIC960 Programmer’s Reference

Device Driver/Subsystem Services

|
Device Driver/Subsystem Services

The following are the device driver/subsystem services.

Service Name Page
CreateDev 122
OpenDev 125
CloseDev 126
InvokeDev 127
AllocVector 128
AllocVectorMux 129
SetVector 131
SetVectorMux 132
ReturnVector 133
AllocHW 134
ReturnHW 136
QueryHW 137

Refer to the ARTIC960 Programmer’s Guide for additional information.

Chapter 3: Base Kernel Services 121

CreateDev—Register a Subsystem or Device Driver

[

CreateDev—Register a Subsystem or Device Driver

122

This service registers the process as a subsystem or device driver.

Functional Prototype

RI C_ULONG

Parameters

DDName

OpenEntry

CloseEntry

InvokeEntry

OptionWord

Creat eDev (char * DDNarre,
RI C_ DOHANDLER OpenEntry,
RI C DCHANDLER Cl oseEntry,
Rl C DI HANDLER | nvokeEntry,
Rl C_ULONG Opt i onVord,
Rl C_DEVHANDLE * DDHandl e,
Rl C_ULONG Reserved);
Input. A device nameto assign to this subsystem or device driver so that other

processes can access this subsystem by name. The kernel’ s subsystems
alocate al resources with the first four characters being “RIC_” for the
resource name. User device driver and subsystem names should not start with
this prefix.

Input. Address of open entry point of subsystem or device driver. It gets
control on this entry point when an application uses OpenDev. See
OpenEntry Prototype on page 123.

Input. Address of close entry point of subsystem or device driver. It gets
control on this entry point when an application uses CloseDev. See
CloseEntry Prototype on page 124.

Input. Address of strategy entry point of subsystem or device driver. It gets
control on this entry point when an application uses InvokeDev. See
InvokeEntry Prototype on page 124.

Input. Bit field that gives various create options. These constants may be
ORed together to create the device driver options.

OPTI ON_DEV_DRV
Registers the process as a device driver

OPTI ON_SUB_SYS
Registers the process as a subsystem.

OPTI ON_PROT_ON
Turns on memory protection before the kernel gives control to the
processat one of itsentry points. Thisconstant does not apply to vectors
owned by the subsystem or device driver.

OPTI ON_PROT_OFF
Turns off memory protection. This constant does not apply to vectors
owned by the subsystem or device driver.

ARTIC960 Programmer’s Reference

CreateDev—Register a Subsystem or Device Driver

DDHandle Output. Device handle returned to the requesting process.
Reserved Input. Reserved parameter (must be 0).

Returns
RC_SUCCESS RC _NO MORE_RES
RC | NVALI D_RESERVED PARM RC | NVALI D_MEM ACCESS
RC_| NVALI D_NAMVE RC | NVALI D_CALL
RC_DUP_RES NAME RC_| NVALI D_OPTI ON

Remarks

An application process communi cates with a subsystem or device driver using OpenDev,
CloseDev, and InvokeDev.

If memory protection is enabled using the OPTI ON_PROT_ON in OptionWord, the kernel
keeps the memory protection enabled and maps the subsystem or device driver’s code,
data, and application-passed parameters before giving control to the subsystem or device
driver.

Memory protection for subsystem or device driver is expected only during early
development. Because subsystem or device driver code is more trusted and performance
will improve, it is expected that each subsystem or device driver will run with memory
protection disabled in production systems.

The following are examples of function prototypes for OpenEntry, CloseEntry, and
InvokeEntry that must be followed when writing a device driver or subsystem.

OpenEntry Prototype

The function prototype for OpenEntry must be:

Rl C_ULONG Open_Nane (void * DDPar ans,
Rl C_ULONG Si ze,
Rl C_PROCESSI D Processl D,
Rl C_ULONG *DevMeno) ;
Rl C_ULONG *DevMeno) ;
Parameters

DDParams Input. Address of subsystem or device driver defined parameters.

Sze Input. Size of subsystem or devicedriver defined parameters. The size of the
buffer pointed to by DDParams.

ProcessID Input. The ProcessID of the process in execution.

DevMemo Output. Device memo returned to the kernel from the driver or subsystem.

Returns

Must return RC_SUCCESS if it is successful or a non-zero value (between 0xFFFF0000

and OXFFFFFFFF) if it fails.

Chapter 3: Base Kernel Services 123

[

CreateDev—Register a Subsystem or Device Driver

[

124

CloseEntry Prototype

The function prototype for CloseEntry must be:

RI C_ULONG C ose_Nane (RI C_PROCESSI D Processl D,
Rl C_ULONG DevMeno) ;

Parameters
ProcessiID Input. The ProcessID of the process in execution.

DevMemo Input. Device-memo value previously provided by the subsystem.

Returns

Must return RC_SUCCESS if it is successful or a non-zero value (between 0XFFFF0000
and OXFFFFFFFF) if it fails.

InvokeEntry Prototype

The function prototype for InvokeEntry must be:

Rl C_ULONG | nvoke_Name (void * DDPar ans,
Rl C_ULONG Si ze,
RI C_PROCESSI D Processl D,
Rl C_ULONG DevMeno) ;
Parameters

DDParams Input. Address of subsystem or device driver defined parameters.

Sze Input. Size of subsystem or devicedriver defined parameters. Thesize of the
buffer pointed to by DDParams.

ProcessID Input. The ProcessID of the process in execution.

DevMemo Input. Device-memo value previously provided by the subsystem.

Returns

Must return RC_SUCCESS if it is successful or a non-zero value (between 0xFFFF0000
and OXFFFFFFFF) if it fails.

ARTIC960 Programmer’s Reference

OpenDev—Open a Subsystem or Device Driver

OpenDev—Open a Subsystem or Device Driver

This service opens a previously registered subsystem or device driver.

Functional Prototype

Rl C_ ULONG OpenDev (char * DDNarre,
voi d * DDPar ans,
Rl C_ULONG Si ze,
Rl C_DEVHANDLE * DDHandl e,
Rl C_ULONG Reserved);
Parameters

DDName Input. A device name used to create the subsystem or device driver.
DDParams Input. Address of subsystem or device driver defined parameters.

Sze Input. Size of subsystem or device driver defined parameters. The size of the
buffer pointed to by DDParams.

DDHandle Output. Device handle returned to the requesting process. Thishandleis
passed to all other services related to subsystem or device driver.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS

RC_CALL_TERM NATED

RC_I NVALI D_RESERVED PARM
RC_| NVALI D_NAVE
RC_NAVE_NOT_FOUND
RC_NO_MORE_RES

RC_| NVALI D_MEM _ACCESS
RC_| NVALI D_CALL

Remarks
This service gets access to the aready registered subsystem or device driver.

The kernel gives control to subsystem or device driver on its OpenEntry entry point with
the parameters specified on page 123. The subsystem or device driver can return a 32-hit
device memo to the kernel on the exit from its OpenEntry function. The kernel passes this
memo back to the subsystem or device driver on any call for this process.

Multiple opens of adevice driver are allowed, but the number of closes by asingle process
should match the number of opens by that process.

Return codes returned by the OpenEntry function of a subsystem or device driver are
passed back to the calling process as the return code of OpenDev. These return codes must
be either RC_SUCCESS or within the range OXFFFFO000 to OxFFFFFFFF. Return codes
outside this range are discarded. The return code from OpenEntry is used by the kernel to
remove access to the device driver if the return code is not RC_SUCCESS.

Chapter 3: Base Kernel Services 125

CloseDev—Close a Subsystem or Device Driver

[

CloseDev—Close a Subsystem or Device Driver

126

This service releases the access of this process to the subsystem or device driver. It also
deregisters a device driver or subsystem.

Functional Prototype

RI C_ULONG O oseDev (Rl C_DEVHANDLE DDHandl e,
Rl C_ULONG Reserved);

Parameters
DDHandle Input. Handle of subsystem or device driver to close.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS

RC_CALL_TERM NATED

RC_| NVALI D_RESERVED PARM
RC_| NVALI D_HANDLE

RC_| NVALI D_MEM ACCESS
RC_| NVALI D_CALL

Remarks

When this service isissued by a process that had previously issued an OpenDev for the
subsystem or device driver, the kerndl gives control to the subsystem or device driver at the
CloseEntry entry point with the parameters specified on page 124.

If this serviceis called by the subsystem or device driver itself (using the handle received
from CreateDev), access to the subsystem or device driver isremoved and all other
processes having access to this subsystem or device driver are notified through an
asynchronous-event natification. In this case, the CloseEntry function is not called.

Return codes returned by the CloseEntry point of a subsystem or device driver are passed
back to the calling process as the return code of CloseDev. These return codes must be
either RC_SUCCESS or in the range 0xFFFF0000 to OxFFFFFFFF. Return codes outside
this range are discarded.

The kernel removes the access of the process to the subsystem or device driver, even if
CloseEntry failed.

ARTIC960 Programmer’s Reference

InvokeDev—Call a Subsystem or Device Driver

[

InvokeDev—Call a Subsystem or Device Driver

This service calls the subsystem or device driver on its strategy entry point.

Functional Prototype
RI C_ ULONG | nvokeDev (RI C DEVHANDLE DDHandl e,

voi d * DDPar ans,
Rl C_ULONG Si ze,
Rl C_ULONG Reserved);

Parameters
DDHandle Input. Handle of subsystem or device driver to call.
DDParams Input. Address of subsystem or device driver defined parameters.

Sze Input. Size of subsystem or device driver defined parameters. The size of the
buffer pointed to by DDParams.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS

RC_CALL_TERM NATED

RC_| NVALI D_RESERVED PARM
RC_| NVALI D_HANDLE

RC_| NVALI D_MEM ACCESS
RC_| NVOKE_ENTRY_FAI LURE
RC_DD_RC_OUT_OF RANGE

Remarks

The kernel gives control to subsystem or device driver at the InvokeEntry entry point with
the parameters specified in the InvokeEntry Prototype on page 124 with driver memo
(returned by the subsystem or device driver on call of OpenEntry by kernel) as parameters.

If the device driver or subsystem has specified memory protection be disabled, it is
disabled whenits call handler gets control. If the device driver or subsystem requested that
memory protection be enabled, the device driver or subsystem will have access to the call
parameter block, aswell asits own code, data, stack, allocated memory, and so forth.

Return codes returned by the InvokeEntry function are passed back to the calling process
as the return code of InvokeDev . These return codes must be either RC_SUCCESS,

RC_| NVOKE_ENTRY_FAI LURE, or in the range OxXFFFF0000 to OXFFFFFFFF. Return
codes not in this range are discarded and the RC_DD_RC_OQUT_OF_RANGE error is
returned.

Chapter 3: Base Kernel Services 127

AllocVector—Allocate an Interrupt Vector

[

AllocVector—Allocate an Interrupt Vector

128

This service dlocates an interrupt vector to the calling subsystem or device driver.

Functional Prototype

RI C ULONG Al |l ocVector (R C_ULONG Vect or Num
Rl C_VECTOR Ent r yPoi nt,
Rl C_ULONG Opt i onVord,
Rl C_ULONG Reserved);
Parameters

VectorNum Input. The interrupt vector number to be allocated.

EntryPoint Input. Pointer to the interrupt-handling routine for the requested interrupt
vector.

OptionWord Input.

OPTI ON_PROT_ON
The kernel enables memory protection before passing control to the
EntryPoint.

OPTI ON_PROT_OFF
The kernel does not enable memory protection.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_I NVALI D_RESERVED PARM
RC_| NVALI D_VECTOR

RC_| NVALI D_OPTI ON
RC_NO_MORE_RES
RC_VECTOR_NOT_AVAI LABLE
RC_NOT_DD_OR_SS

RC_| NVALI D_MEM _ACCESS
RC_| NVALI D_CALL

Remarks

The kernel allocates the requested vector to the calling process as non-shared. If the vector
was previously allocated as non-shared, RC_ VECTOR _NOT_AVAI LABLE isreturned. Refer
to the ARTIC960 Programmer’s Guide for information about vector sharing.

Memory protection for an interrupt handler is disabled when global memory protectionis
disabled, regardless of the state of the OptionWord.

The calling process must be a device driver or subsystem.

ARTIC960 Programmer’s Reference

AllocVectorMux—Allocate an Interrupt Vector

[

AllocVectorMux—Allocate an Interrupt Vector

This service alocates an interrupt vector to the calling subsystem or device driver

Functional Prototype

RI C_ ULONG Al | ocVect or Mux (Rl C_ULONG Vect or Num
Rl C VECTOR_MJX EntryPoi nt,
Rl C_ULONG Opt i onVord,
Rl C_ULONG Reserved);
Parameters

VectorNum Input. The interrupt vector number to be allocated.

EntryPoint Input. Pointer to the interrupt-handling routine for the requested interrupt
vector. Theinterrupt-handling routine must return avalue of O if theinterrupt
was not claimed or a non-zero value if the interrupt was claimed.

OptionWord
Input. Bit field to describe options. Use the OR operation on the following
constants to build the appropriate set of options:

OPTI ON_PROT_ON
The kernel enables memory protection prior to passing control to the
EntryPoint.

OPTI ON_PROT_COFF
The kernel does not enable memory protection.

OPTI ON_VECTOR_SHARED
Allocates the vector as shared.

OPTI ON_VECTOR_NOT_SHARED
Allocates the vector as nonshared. This is the default.

Reserved Input. Reserved parameter (must be 0).

Returns
RC_SUCCESS RC_VECTOR_NOT_AVAI LABLE
RC | NVALI D_RESERVED PARM RC NOT_DD OR_SS
RC | NVALI D_VECTOR RC | NVALI D_MEM ACCESS
RC | NVALI D_OPTI ON RC | NVALI D_CALL

RC_NO_MORE_RES

Remarks

The kernel allocates the requested vector to the calling process. If

OPTI ON_VECTOR_NOT_SHARED is requested and the vector was previously allocated as
nonshared, RC_VECTOR_NOT_AVAI LABLE isreturned. Refer to the ARTIC960
Programmer’s Guide for information about vector sharing.

Memory protection for an interrupt handler is disabled when global memory protectionis
disabled, regardless of the state of the OptionWord.

The calling process must be a device driver or subsystem.

A process may not allocate the same vector multiple times.

Chapter 3: Base Kernel Services 129

AllocVectorMux—Allocate an Interrupt Vector

[

130

TheSetInterruptPriority macro can be used from within an interrupt handler to set a new
interrupt priority level for the processor. This macro gives an interrupt handler the ability
to lower its priority and allow other interrupts at the same level or lower levelsto be
serviced.

The macro is defined as follows:
#define SetinterruptPriority(priority, 0)

Valid priority values are 0 to 30. In addition, a priority value of OXFFFFFFFF sets the new
priority level to the current priority level minus 1. A priority value of O can be used to get
off of interrupt priority, but remain within the interrupt context.

The caller must clear the interrupt source before lowering the interrupt priority.

EntryPoint Prototype

The function prototype for the EntryPoint must be:
RI C_ULONG EntryPoi nt (Rl C_ULONG Vect or Nunj ;

Returns

Must return O if the interrupt was not claimed or non-zero if the interrupt was claimed.

ARTIC960 Programmer’s Reference

SetVector—Set a New Interrupt Vector Entry Point

[

SetVector—Set a New Interrupt Vector Entry Point

This service sets a new entry point for a previously allocated interrupt vector.

Functional Prototype

Rl C_ULONG Set Vect or (RI C_ULONG Vect or Num
Rl C_VECTOR Ent r yPoi nt,
Rl C_ULONG Opt i onVord,
Rl C_ULONG Reserved);
Parameters

VectorNum Input. The interrupt vector number whose entry address is to be changed.
EntryPoint Input. Pointer to the interrupt-handling routine for the interrupt vector.

OptionWord
I nput.

OPTI ON_PROT_ON
Causesthe kernel to enable memory protection prior to passing control
to the EntryPoint.

OPTI ON_PROT_OFF
Does not enable memory protection.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS

RC_I NVALI D_RESERVED PARM
RC_| NVALI D_VECTOR

RC_| NVALI D_CALL

RC_| NVALI D_MEM _ACCESS
RC_| NVALI D_OPTI ON
RC_VECTOR_NOT_ALLOCATED

Remarks

The application must allocate the vector before calling this service.

Chapter 3: Base Kernel Services 131

SetVectorMux—Set an Interrupt Vector

[

SetVectorMux—Set an Interrupt Vector

132

This service sets anew entry point for a previously-allocated interrupt vector.

Functional Prototype

RI C_ ULONG Set Vect or Mux (Rl C_ULONG Vect or Num
Rl C_ VECTOR_MJX EntryPoi nt,
Rl C_ULONG Opt i onVord,
Rl C_ULONG Reserved);
Parameters

VectorNum Input. The interrupt vector number whose entry address is to be changed.

EntryPoint Input. Pointer to theinterrupt-handling routine for the shared interrupt vector.
Theinterrupt-handling routine must return avalue of 0if theinterrupt was not
claimed or anon-zero value if the interrupt was claimed.

See EntryPoint Prototype on page 132.

OptionWord
Input.

OPTI ON_PROT_ON
The kernel enables memory protection prior to passing control to the
EntryPoint.

OPTI ON_PROT_COFF
The kernel does not enable memory protection.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS

RC_| NVALI D_RESERVED PARM
RC_| NVALI D_VECTOR

RC_| NVALI D_CALL

RC_| NVALI D_MEM ACCESS
RC_| NVALI D_OPTI ON
RC_VECTOR_NOT_ALLOCATED

Remarks

The calling process must have allocated the vector before calling this service.

EntryPoint Prototype

The function prototype for the EntryPoint must be:
RI C_ULONG EntryPoint (R C_ULONG Vect or Nunj ;

Returns

Must return O if the interrupt was not claimed or non-zero if the interrupt was claimed.

ARTIC960 Programmer’s Reference

ReturnVector—Return an Interrupt Vector

[

ReturnVector—Return an Interrupt Vector

This service returns a previoudy allocated interrupt vector.

Functional Prototype

RI C_ ULONG ReturnVector (Rl C ULONG Vect or Num
Rl C_ULONG Reserved);

Parameters
VectorNum Input. Vector number of vector returned by this service.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS

RC_I NVALI D_RESERVED PARM
RC_VECTOR_NOT_ALLOCATED
RC_| NVALI D_VECTOR

RC_| NVALI D_CALL

Remarks

None

Chapter 3: Base Kernel Services 133

AllocHW—AIllocate a Hardware Device

[

AllocHW—AIllocate a Hardware Device

134

This service alocates a hardware device to the calling subsystem or device driver.

Functional Prototype

RI C_ ULONG Al | ocHW (char *Devi ceNane,
Rl C_ULONG Buf ferSi ze,
RI C_ULONG *POSTSt at us,
unsi gned char *Devi ceDat aPtr,
Rl C_ULONG Reserved);
Parameters
DeviceName

Input. Name of the hardware device requested by thiscall. This nameis
predefined for each type of device.

BufferSze Input. Size of the buffer pointed to by DeviceDataPtr. The kernel copies
device-related data to this buffer. If the buffer istoo small, the kernel copies
BufferSize amount of datainto the buffer and returns an error.

POSTSatus
Output. A zeroin thisfield indicates power-on self test (POST) code for this
device completed successfully. A non-zero value is device specific but
indicates that some form of error occurred during POST.

DeviceDataPtr
Output. Pointer to abuffer to which the kernel copies device-dependent data
(see Device-Dependent Data on page 135 for more information).

Reserved Input. Reserved parameter (must be 0).

Returns
RC_SUCCESS RC_BUFFER _TOO SMALL
RC | NVALI D_RESERVED PARM RC | NVALI D_NAME
RC_NO_MORE_RES RC NOT_DD OR_SS
RC_HW ALREADY_ALLOCATED RC | NVALI D_CALL
RC_NAME_NOT_FOUND RC | NVALI D_MEM ACCESS
Remarks

The kernel allocates the requested hardware device to the calling process, if available. For
device names, refer to the documents for the applicable daughter card. (For example, for
the 4-Port Multi-Interface Application Interface Board, see the related chapter in the
ARTIC960 Co-Processor Platforms: Hardware Technical Reference.)

ARTIC960 Programmer’s Reference

AllocHW—Allocate a Hardware Device

Device-Dependent Data

When the adapter is powered on or reset, POST code on the adapter or daughter card
updates the Resource Descriptor Table (RDT) with device information. The kernel returns
this device information on this call. The following is the structure of the Resource
Descriptor Table.

struct RIC RDTEntry

{
char Devi ceNane[DEVI CE_NAME_SI ZE] ;
RI C_PROCESSI D Processl D,
Rl C_ULONG Post St at us;
Rl C_ULONG Dat aSi ze;
unsi gned char Devi ceDat a]| MAX_DATA SI ZE] ;
}

Chapter 3: Base Kernel Services 135

ReturnHW—Return a Hardware Device

[

ReturnHW—Return a Hardware Device

136

This service returns a previoudy-allocated hardware device.

Functional Prototype
RI C_ULONG Ret ur nHW (char *Devi ceNane,
Rl C_ULONG Reserved);

Parameters

DeviceName
Input. Name of the hardware device to return.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS

RC_| NVALI D_RESERVED PARM
RC_HW NOT_FOUND

RC_HW NOT_ALLOCATED

RC_| NVALI D_CALL

RC_| NVALI D_NAVE

RC_| NVALI D_MEM ACCESS

Remarks

None

ARTIC960 Programmer’s Reference

QueryHW—Query Status of Hardware Device

QueryHW—Query Status of Hardware Device

This service returns the status of a hardware device to the calling subsystem or device

driver.

Functional Prototype

RI C_ULONG

Parameters

DeviceName

Quer yHW (char *Devi ceNane,
Rl C_ULONG Buf ferSi ze,
RI C_ULONG * St at us,
RI C_ULONG *POSTSt at us,
unsi gned char *Devi ceDataPtr,
Rl C_ULONG Reserved);
Input. Name of the hardware device requested by this service. Thisnameis

predefined for each type of device.

BufferSze Input. Size of the buffer pointed to by DeviceDataPtr. The kernel copies
device-related data to this buffer. If the buffer istoo small, the kernel copies
BufferSize amounts of datainto the buffer and returns an error.

Satus Output. If the return code is RC_SUCCESS, thisfield is set to indicate the
allocation status of the hardware device.

HW AVAI LABLE Resource is available.
HW NOT_AVAI LABLE Resourceisnot available.

POSTSatus Output. A zero in thisfield indicates this device completed POST
successfully. A non-zero value is device specific but indicates that an error
occurred during POST.

DeviceDataPtr
Output. Pointer to abuffer to which the kernel copies device-dependent data
(see Device-Dependent Data on page 135 for more information).

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS

RC_| NVALI D_RESERVED PARM
RC_NOT_DD_OR_SS
RC_NAVE_NOT_FOUND

RC_| NVALI D_CALL

RC_| NVALI D_MEM ACCESS
RC_| NVALI D_NAVE
RC_BUFFER_TOO SMALL

Remarks

None

Chapter 3: Base Kernel Services 137

[

Asynchronous Event Notification Services

[

Asynchronous Event Notification Services

The following are the asynchronous event notification services.

Service Name Page
RegisterAsyncHandler 139
DeregisterAsyncHandler 145

Refer to the ARTIC960 Programmer’s Guide for additional information.

138 ARTIC960 Programmer’s Reference

RegisterAsyncHandler—Register an Async Handler

[

RegisterAsyncHandler—Register an Async Handler

This service registers the asynchronous event notification handler of a process for
specified events.

Functional Prototype

Rl C_ ULONG Regi st er AsyncHandl er (Rl C_ULONG Sof t war eEvent s,
Rl C_ULONG Adapt er Event s,
RI C_ULONG Processor Event s,
Rl C_ASYNCHANDLER AsyncHandl er,
Rl C_ULONG Reserved);

Parameters

SoftwareEvents

Input. Mask specifying of which software events the process wants to
be notified. The software event mask is built by ORing the following event
flags together. The event flags can be used to build the software event mask.

AEN DEV_TERM Device driver or subsystem termination
AEN PROCESS START Process start
AEN_PROCESS_STOP Process stop

AEN_SHARED RESOURCE Closing a shared resource

Adapter Events
Input. Mask specifying of which adapter events the process wants to be
notified. Y ou can OR the following event flags together to form the adapter

event mask.
AEN_WATCHDOG Watchdog timer expiration
AEN_PARI TY Parity error
* Multiple-bit ECC error
» AIB busread parity error with 80960
master
* Local bus parity for:
— RadiSys ARTIC 32-bit Memory
Controller Chip
— System bus Interface Chip
— CFE Loca Bug/AlB Interface Chip
AEN_MEM PROCESSOR Memory-protection violation (80960
processor)
AEN_MEM M CROCHANNEL Memory-protection violation (system bus
master)
AEN_MEM Al B Memory-protection violation (AIB master)
AEN_MEM VI OLATI ON Non-existent memory access by the 80960
AEN PCI _ERROR PCI bus error

Chapter 3: Base Kernel Services 139

RegisterAsyncHandler—Register an Async Handler

[

140

Processor Events
Input. Mask specifying of which processor events the process wants to be
notified. Y ou can OR thefollowing event flagstogether to form the processor
event mask.

AEN_80960_ARI THVETI C Arithmetic
AEN_80960_CONSTRAI NT Constraint
AEN_80960_COPERATI ON Operation
AEN_80960_PROTECTI ON Protection
AEN_80960_TRACE Trace
AEN_80960_TYPE Type

AsyncHandler
Input. Address of user-defined asynchronous-event notification handler. This
handler is called when any of the events specified in the masks occur. (See
Asynchronous Event Notification Handler on page 141.)

Reserved Input. Reserved parameter (must be 0).

Returns
RC_SUCCESS RC_NO MORE_RES
RC_DUP_ASYNC EVENT RC | NVALI D_MEM ACCESS
RC_ | NVALI D_RESERVED PARM RC | NVALI D_CALL
Remarks

See the Intel 80960CA User’s Manual for more information on processor faults. Parall€l
faults are not reported to users directly. Instead, the processes are notified separately of
each fault that is part of the parallel fault.

If aprocess cals this service more than once, the processis naotified of all events requested
in all calls. However, the process cannot register for a particular event again unlessiit first
deregisters for that event. If the processissues a call to register for an event again, the
processis not registered for any of the events specified in the call.

If the calling processis a device driver or subsystem, the asynchronous event notification
handler is called with the memory protection specified when the calling process issued
CreateDev. Otherwise, the handler is called with the memory protection set in accordance
with global memory protection. Refer to the ARTIC960 Programmer’s Guide for
additional information on the use of memory protection.

ARTIC960 Programmer’s Reference

RegisterAsyncHandler—Register an Async Handler

Asynchronous Event Notification Handler

The AsyncHandler should be thought of as an interrupt handler. It has access to the same
subset of services as an interrupt handler. An AsyncHandler should accept one parameter
(apointer to an asynchronous event notification record) and should not return areturn
value. The record is defined as follows.

struct RI C _AsyncEvent

{

Rl C_ULONG d ass;

Rl C_ULONG I nt St at;

Rl C_PROCESSI D Processl D,
Rl C_ULONG Type;

uni on

{

struct RI C ProcessorEvent Pr;

struct RI C_Adapt er Event Ad;

struct RIC SoftwareEvent Sw,
} Cd assl nf o;

s
where:

Class

IntSat
Process|D

Type

Pr
Ad

Isthe event class. Vdid values are;

AEN_CLASS_SOFTWARE
AEN_CLASS_ADAPTER
AEN_CLASS_PROCESSOR

Set to 1 if fault occurred during an interrupt or a handler.
ID of the process that caused the event.

Type of event within the Class. Refer to the event masks listed in sections
SoftwareEvents and Adapter Events on page 139, and Processor Events on
page 140.

Information specific to processor events (see Pr Field on page 142).
Information specific to adapter events (see Ad Field on page 143).

Information specific to software events (see Sw Field on page 144).

Chapter 3: Base Kernel Services 141

[

RegisterAsyncHandler—Register an Async Handler

[

Pr Field

The Pr field in AsyncEvent has the following definition. For maximum portability,
applications should limit their accesses of this structure to the Type and CodeAddress
fields. The other fields are processor-specific. All fields except the StackFrame field are
defined in the Intel 80960CA User’s Manual.

struct RI C ProcessorEvent

{
RIC ULONG Faul t Type;
RIC ULONG SubType;
RIC_ ULONG CodeAddr;
RIC ULONG St ackFrane;
RIC ULONG ProcessCrl;
RIC UUONG ArithCrl;
RIC ULONG Reservedl;
RIC ULONG Reserved2;
s
where:

FaultType Fault type given by the processor
Subtype Fault subtype given by the processor
CodeAddr Code address of the fault (undefined for some faults)

SackFrame Pointer tothe process' registersonthe stack. Thisfieldisvalid only for Trace
faults.

ProcessCtrl Contents of the process-controls (PC) register.
ArithCtrl Contents of the arithmetic-controls (AC) register.

Reservedl, Reserved?2
Reserved for future use.

142 ARTIC960 Programmer’s Reference

RegisterAsyncHandler—Register an Async Handler

[

Ad Field
The Ad field in AsyncEvent has the following definition.
struct RI C _Adapter Event

{

voi d * CodeAddr ;

voi d * MemAddr ;

struct RIC PClError PClError;
s
where:

CodeAddr Code address after and near the faulting instruction.

MemAddr Memory address that the code was attempting to access. If the valueis
OxFFFFFFFF, the address is unknown.

PCIError Structure of information related to the PCI bus error. The PCIError fieldin
AsyncEvent has the following definition. For a definition of RPInfo and
HxInfo, refer to the ARTIC960 Programmer’ s Guide. Thisinformation should
be checked to determine the specific cause of the interrupt.

struct RIC PCl Error
{

uni on
{
struct RIC RPErrinfo RPInNfo;
struct RIC HxErrlInfo Hxlnfo;
} TernErrlnfo;
RI C ULONG Ter nkrr Code;
RIC ULONG ReturnCode;

}
where:
TermErrinfo
A union containing the exception data that will be posted after
al asynchronous handlers have been called.
-% ARTIC960RxD information will be filled in the RPInfo
field.
TermErrCode
The exception code to be posted (either
TERVERR_PLX_| NTERRUPT or TERVMERR _NM _ | NTERRUPT).
ReturnCode

A field that the asynchronous handler may set to 1 to force the
kernel not to generate aterminal error. Otherwise, handlers
should not modify thisfield.

Chapter 3: Base Kernel Services 143

RegisterAsyncHandler—Register an Async Handler

[

144

Sw Field
The SW field in AsyncEvent has the following definition.

struct RI C _SoftwareEvent

{
uni on
{
Rl C_DEVHANDLE DevHandl e;
struct RIC SharedRsrcd ose ShrRes;
} SW nf o;
s
where:

DevHandle Device handle in the case of device driver termination.

ShrRes Structure of information related to the closing of shared resources. The
ShrRes field in SoftwareEvent has the following definition.

struct RIC SharedRsrcC ose

{
Rl C_ULONG ResType,;
RES HANDLE ResHandl e;
Rl C_ULONG OpenCount ;
Rl C_ULONG Resi nf o;
s
where:

ResType Number indicating the type of the resource being closed
ResHandle Resource handle
OpenCount Number of processes that have the resource open
Resinfo Resource specific information:

Memory Contains a base pointer

Mailbox TRUE if the creator is closing

Semaphore TRUE if the semaphoreis MUTEX and the
owner isclosing

Events FALSE, always
Signals The number of receiversremaining
Queues FALSE, always

ARTIC960 Programmer’s Reference

DeregisterAsyncHandler—Deregister an Async Handler

DeregisterAsyncHandler—Deregister an Async Handler

This service deregisters the asynchronous event notification handler of a process for
specified events.

Functional Prototype

RI C_ULONG Der egi st er AsyncHandl er (RIC ULONG SwEvents,
RIC_ ULONG HwEvents,
RIC_ ULONG PrEvents,
RIC ULONG Reserved);

Parameters

SwEvents Input. Mask specifying of which software eventsthe process should no longer
be notified.

HwEvents Input. Mask specifying of which adapter hardware events the process should
no longer be notified.

PrEvents Input. Mask specifying of which processor events the process should no
longer be notified.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS

RC_I NVALI D_RESERVED PARM
RC_NOT_REG STERED

RC_| NVALI D_CALL

Remarks

The structure of the masksis defined under Register AsyncHandler—Register an Async
Handler on page 139. If the process is not registered for one of the events specified in the
masks, the process is not deregistered for any of the events.

Chapter 3: Base Kernel Services 145

Hook Services

[

Hook Services

The kernel provides hooks so processes can be notified of specia actions. These hooks
have the option of preprocessing or post-processing notification. In other words, processes
can be notified either before the action occurs or after the action occurs. This notification
takes the form of calling a hook handler registered by the process. Within the hook
handler, the process can take whatever actions are required.

The following are the hook services.

Service Name Page
RegisterHook 147
DeregisterHook 148

Only one hook isinitially provided and it is for the dispatcher. A dispatcher hook handler
might want to save and restore an environment for processes as they are dispatched.

146 ARTIC960 Programmer’s Reference

RegisterHook—Register an Entry Point for a Hook

[

RegisterHook—Register an Entry Point for a Hook

This service registers an entry point for a hook.

Functional Prototype
Rl C_ULONG Regi st er Hook (Rl C_ HOOKHANDLER Ent r yPoi nt ,

Rl C_ULONG HookNum
Rl C_ULONG Opt i onVord,
Rl C_ULONG Reserved);
Parameters
EntryPoint

Input. The entry point where the process wants control when it is called from
the dispatcher.

HookNum Input. Number of the hook to register. Initially, only one hook is available:
HOOK_DI SPATCH.

OptionWord
Input. If the OptionWord is ORed with HOOK_PREPRCCESS, the entry point
of the processis called before the action. If the OptionWord is ORed with
HOOK_POSTPROCESS, the entry point iscalled after the action. A process can
register for preprocessing and post-processing in the same call.

Reserved Input. Reserved parameter (must be 0).

Returns
RC_SUCCESS RC_| NVALI D_OPTI ON
RC_HOOK_ALREADY_REG STERED RC_| NVALI D_RESERVED PARM
RC_| NVALI D_MEM ACCESS RC_| NVALI D_HOOK

RC_| NVALI D_CALL

Remarks
The hook entry point should be defined in this way:
voi d HookEntry (uni on HookDat aStruc *HookDat a) ;
where:
HookDat aSt r uc is defined as follows:
?ni on HookDat aSt ruc

}

Rl C_PROCESSI D Processl nExec; /* for Dispatch hook */

Chapter 3: Base Kernel Services 147

DeregisterHook—Deregister an Entry Point for a Hook

[

DeregisterHook—Deregister an Entry Point for a Hook

This service deregisters an entry point for a hook.

Functional Prototype

Rl C_ULONG Der egi st er Hook (Rl C_ULONG HookNum
RI C ULONG OptionWrd,
RI C ULONG Reserved);

Parameters

HookNum Input. Number of the hook that was registered.

OptionWord
Input. If the OptionWord is ORed with HOOK _PREPROCESS, the
preprocessing entry point of the process should be deregistered. If the
OptionWord is ORed with HOOK _POSTPROCESS, the post-processing entry
point is deregistered.

Reserved Input. Reserved parameter (must be 0).

Returns
RC_SUCCESS RC | NVALI D_RESERVED PARM
RC_HOOK_NOT_REG STERED RC | NVALI D_OPTI ON
RC | NVALI D_MEM ACCESS RC | NVALI D_HOOK
RC | NVALI D_CALL
Remarks
None

148 ARTIC960 Programmer’s Reference

Kernel Trace Services

Kernel Trace Services

Thefollowing are the kernel trace services. These services let the user define atrace buffer
and to selectively enable and disable trace on different service classes.

Service Name Page
InitTrace 150
EnableTrace 151
DisableTrace 152
LogTrace 153

Refer to the ARTIC960 Programmer’s Guide for additional information on trace services.

Chapter 3: Base Kernel Services 149

InitTrace—Initialize a Trace Buffer

[

InitTrace—Initialize a Trace Buffer

150

This service sets up atrace buffer for logging information during execution.

Functional Prototype

RIC ULONG I nitTrace (RIC ULONG BufferSize,
RI C_ SLONG W apAroundCount);

Parameters
BufferSze Input. Size of the trace buffer in KB.

WrapAroundCount
Input. Number of times the trace buffer should do awrap around before the
trace gets disabled. Use avalue of —1 for infinite. A negative value not equal
to—lisinvalid.

Returns

RC_SUCCESS

RC_| NVALI D_CALL
RC_NO_MORE_MEM
RC_NO_MORE_RES
RC_| NVALI D_OPTI ON

Remarks

This service allocates memory for the trace buffer and must be called before any call to
EnableTrace or DisableTrace. If called twice, the previous trace buffer is purged and a
fresh buffer of size specified in the second call is allocated. In this case, all the previous
logs are lost. EnableTrace must be called to enable the logging of the trace data after each
call to InitTrace.

ARTIC960 Programmer’s Reference

EnableTrace—Enable Tracing of Service Classes

[

EnableTrace—Enable Tracing of Service Classes

This service enables the logging of the trace information for the given set of service
classes.

Functional Prototype
Rl C_ULONG Enabl eTrace (Rl C ULONG ParantCount, ...);

Parameters

ParamCount
Input. Number of service classes being supplied as arguments to
EnableTrace.

Input. List of all the service classes, separated by commas, for which thetrace
isto be enabled. See the Remarks section for details.

Returns

RC_SUCCESS
RC_TRACE_NOT_| NI TI ALI ZED
RC_| NVALI D_SERVI CECLASS

Remarks
InitTrace must be called before any call to EnableTrace.

The EnableTrace service enables the logging of the trace for the service classes given as
argument. It does not report errorsif the trace on a particular service was aready enabled.
It enables the trace on the given services, in addition to those for which trace is already
enabled. The valid service classes for the kernel are:

ALL_SERVI CES
C_ASYNC_EVENT_SERVI CE

C CLIB

C_DEVI CE_DRI VER_SERVI CE
C_EVENT_SERVI CE
C_HOOK_SERVI CE

C_I NTERRUPT_SERVI CE
C_KERN_COMMVANDS_SERVI CE
C_MAI LBOX_SERVI CE
C_MEMORY_SERVI CE
C_MEMPROT_SERVI CE
C_PROCESS_SERVI CE
C_QUEUE_SERVI CE
C_SEMAPHORE_SERVI CE
C_SI GNAL_SERVI CE
C_SUBALLOC_SERVI CE
C_SWI'l MER_SERVI CE

C_TI MER_SERVI CE

Chapter 3: Base Kernel Services 151

DisableTrace—Disable Tracing of Service Classes

[

DisableTrace—Disable Tracing of Service Classes

This service disables the logging of the trace information for the given set of service
classes.

Functional Prototype
RI C_ULONG Di sabl eTrace (Rl C_ULONG ParanCount, ...);

Parameters

ParamCount
Input. Number of service classes being supplied as arguments to
DisableTrace.

Input. List of all the service classes, separated by commas, for which thetrace
isto be disabled. See the Remarks section for details.

Returns

RC_SUCCESS
RC_TRACE_NOT_| NI TI ALI ZED
RC_| NVALI D_SERVI CECLASS

Remarks

This service disables the logging of the trace for the service classes given as argument. It
does not report errors if the trace on a particular service was already disabled. It disables
the trace on the given services, in addition to those for which traceis already disabled. The
valid service classes for the kernel are:

ALL_SERVI CES
C_ASYNC_EVENT_SERVI CE

C CLIB

C_DEVI CE_DRI VER_SERVI CE
C_EVENT_SERVI CE
C_HOOK_SERVI CE

C_I NTERRUPT_SERVI CE
C_KERN_COMMVANDS_SERVI CE
C_MAI LBOX_SERVI CE
C_MEMORY_SERVI CE
C_MEMPROT_SERVI CE
C_PROCESS_SERVI CE
C_QUEUE_SERVI CE
C_SEMAPHORE_SERVI CE
C_SI GNAL_SERVI CE
C_SUBALLOC_SERVI CE
C_SWI'l MER_SERVI CE

C_TI MER_SERVI CE

152 ARTIC960 Programmer’s Reference

LogTrace—Log Trace Information

|
LogTrace—Log Trace Information

This service logs the trace information in the trace buffer.

Functional Prototype
RI C ULONG LogTrace (R C ULONG Serviced ass,

Rl C_ULONG Pr ocedur el D,
Rl C_ULONG Cal |l erPosi tion,
Rl C_ULONG TraceOption,
Rl C_ULONG Dat aSi ze,
voi d * Addr ess) ;
Parameters
ServiceClass

Input. Identifies the class of the calling procedure and decides whether the

traceisto belogged as set by EnableTrace and DisableTrace calls. Therange
isfrom O0to 255. Range 0 to 127 isreserved for the kernel and its subsystems.
However, the kernel does not perform checking to enforce the reserved range.

Procedurel D
Input. Identifies the procedure in the given service class. The ServiceClass
and the Procedurel D together form aunique identification for any procedure.
Rangeisfrom 0 to 255.

CallerPosition
Input. Provides information regarding the position of the caller inside the
procedure. The following values are supported.

TRACE_ENTRY
To mark the entry into any procedure.

TRACE_EXI T
To mark the exit from any procedure.

Vaues 0x00000001 to OxFE
To mark different positionsinside any procedure.

TraceOption
Input. Decides what isto be logged and how it is displayed after formatting
by Rl CFMITR.

Y ou can OR more than one option together to form a TraceOption. If both
TRACE_I NT and TRACE_CHAR are used, the datais displayed in both forms
in two consecutive trace records.

TRACE_I NT
Take the datafrom Address and display as integers.

TRACE_CHAR
Take the data from Address and display in hexadecimal and ASCI|.

TRACE_NO NFO
No datais associated with this trace record.

Chapter 3: Base Kernel Services 153

LogTrace—Log Trace Information

[

154

DataSze Input. Number of bytesof datato belogged from Address. The DataSize must
be 0 and the address must be NULL if TraceOption is TRACE_NO NFO,

Address Input. Pointer to the buffer containing the data to be logged.

Returns
RC_SUCCESS RC | NVALI D_SERVI CECLASS
RC | NVALI D_MEM ACCESS RC | NVALI D_PROCEDURE_| D
RC | NVALI D_OPTI ON RC | NVALI D_CALLER POSI TI ON

RC_TRACE_NOT_| NI TI ALI ZED

Remarks

This service logs the trace information for the calling procedure, if the trace was enabled
for the service class of the calling procedure. Thetask calling This service must be
compiled with the -DTRACE option. The service classes defined for the kernel are:

C_ASYNC_EVENT_SERVI CE

C CLIB

C_DEVI CE_DRI VER_SERVI CE
C_EVENT_SERVI CE
C_HOOK_SERVI CE

C_I NTERRUPT_SERVI CE
C_KERN_COMMANDS_SERVI CE
C_MAI LBOX_SERVI CE
C_MEMORY_SERVI CE
C_MEMPROT_SERVI CE
C_PROCESS_SERVI CE
C_QUEUE_SERVI CE
C_SEMAPHORE_SERVI CE
C_SI GNAL_SERVI CE
C_SUBALLOC_SERVI CE
C_SWI'l MER_SERVI CE

C_TI MER_SERVI CE

ARTIC960 Programmer’s Reference

Kernel Trace Information

Kernel Trace Information

The following tables indicate the procedures that are traced when a particular service class

is enabled. They also indicate the contents of the trace records associated with each

procedure.

Service Class

Page

C_ASYNC_EVENT_SERVICE

156

C_DEVICE_DRIVER_SERVICE

156

C_HOOK_SERVICE

157

C_INTERRUPT_SERVICE

157

C_KERN_COMMANDS_SERVICE

157

C_MAILBOX_SERVICE

158

C_MEMORY_SERVICE

158

C_PROCESS_SERVICE

159

C_MEMPROT_SERVICE

160

C_QUEUE_SERVICE

160

C_SEMAPHORE_SERVICE

160

C_SIGNAL_SERVICE

161

C_SUBALLOC_SERVICE

161

C_SWTIMER_SERVICE

161

C_TIMER_SERVICE

162

C_CLIB

162

Chapter 3: Base Kernel Services

155

Kernel Trace Information

[

Table 3-1. Service Class: C_ASYNC_EVENT_SERVICE
Trace Format of
Procedure ID Kernel Service Position Trace Data Data
P_REGISTER_ASYNC_HNDLER RegisterAsyncHandler Entry SoftwareEvents integer
AdapterEvents integer
ProcessorEvents | integer
AsyncHandler integer
Exit rc integer
P_DEREGISTER_ASYNCH_ DeregisterAsyncHandler Entry SoftwareEvents integer
HNDLER AdapterEvents integer
ProcessorEvents
Exit rc
Table 3-2. Service Class: C_DEVICE_DRIVER_SERVICE
Trace Format of
Procedure ID Kernel Service Position Trace Data Data
P_SETVECTOR SetVector/SetVectorMux Entry VectorNum integer
Exit rc integer
P_ALLOCVECTOR AllocVector/AllocVectorMux Entry VectorNum integer
Exit rc integer
P_RETURNVECTOR ReturnVector Entry VectorNum integer
Exit rc integer
P_ALLOCHW AllocHW Entry DeviceName character
Exit rc integer
P_RETURNHW ReturnHW Entry DeviceName character
Exit rc integer
P_QUERYHW QueryHW Entry DeviceName character
Exit rc integer
P_CREATEDEV CreateDev Entry DDName character
Exit rc integer
P_OPENDEV OpenDev Entry DDName character
Exit rc integer
P_INVOKEDEV InvokeDev Entry DDHandle integer
Exit rc integer
P_CLOSEDEV CloseDev Entry DDHandle integer
Exit rc integer

156 ARTIC960 Programmer’s Reference

Kernel Trace Information

Table 3-3. Service Class: C_EVENT_SERVICE

Trace Format of
Procedure ID Kernel Service Position Trace Data Data
P_CREATEEVENT CreateEvent Entry EvnName character
Exit rc integer
P_OPENEVENT OpenEvent Entry EvnName character
Exit rc integer
P_CLOSEEVENT CloseEvent Entry EvnHandle integer
Exit rc integer
P_WAITEVENT WaitEvent Entry EvnHandle integer
Exit rc integer
Table 3-4. Service Class: C_ HOOK_SERVICE
Trace Format of
Procedure ID Kernel Service Position Trace Data Data
P_REGISTERHOOK RegisterHook Entry HookNum integer
Exit rc integer
P_DEREGISTERHOOK DeregisterHook Entry HookNum integer
Exit rc integer
Table 3-5. Service Class: C_INTERRUPT_SERVICE
Trace Format of
Procedure ID Kernel Service Position Trace Data Data
P_FIRSTLEVELINT First level interrupt Entry Vector number integer
handler
Table 3-6. Service Class: C_ KERN_COMMANDS_ SERVICE
Trace Format of
Procedure ID Kernel Service Position Trace Data Data
P_PROCESSMBXCOMMAND Receiving a command Entry CommandNum integer
in the kernel mailbox Exit none
-% A NULL resource name is displayed as the string “Null Pointer.” An invalid
resource name is displayed as the string “Invalid Pointer.”

Chapter 3: Base Kernel Services 157

Kernel Trace Information

[

Table 3-7. Service Class: C_MAILBOX_ SERVICE

Trace Format of
Procedure ID Kernel Service Position Trace Data Data
P_CREATEMBX CreateMbx Entry MbxName character
Entry MbxRxMemName | character
Exit rc integer
P_OPENMBX OpenMbx Entry MbxName character
Entry SendMemName | character
Exit rc integer
P_SENDMBX SendMbx Entry MbxHandle integer
Exit rc integer
P_GETMBXBUFFER GetMbxBuffer Entry MbxHandle integer
Exit rc integer
P_FREEMBXBUFFER FreeMbxBuffer Entry MbxHandle integer
Exit rc integer
P_RECEIVEMBX ReceiveMbx Entry MbxHandle integer
Exit rc integer
P_CLOSEMBX CloseMbx Entry MbxHandle integer
Exit rc integer
Table 3-8. Service Class: C_ MEMORY_SERVICE
Trace Format of
Procedure ID Kernel Service Position Trace Data Data
P_CREATEMEM CreateMem Entry MemName character
Exit rc integer
P_OPENMEM OpenMem Entry MemName character
Exit rc integer
P_CLOSEMEM CloseMem Entry Baseptr integer
Exit rc integer
P_RESIZEMEM ResizeMem Entry Baseptr integer
Exit rc integer
P_SETMEMPROT SetMemProt Entry BlockPtr integer
Exit rc integer
P_QUERYMEMPROT QueryMemProt Entry BlockPtr integer
Exit rc integer
P_QUERYFREEMEM QueryFreeMem Entry OptionWord integer
Exit rc integer
P_MALLOCMEM MallocMem Entry Size integer
Exit Baseptr integer
P_FREEMEM FreeMem Entry Blockptr integer
Exit rc integer
P_COLLECTMEM CollectMem Entry Option integer
Exit rc integer
*FreeUnits integer
*FreePages integer

158 ARTIC960 Programmer’s Reference

Kernel Trace Information

Table 3-9. Service Class: C_PROCESS_SERVICE

Trace Format of
Procedure ID Kernel Service Position Trace Data Data
P_QUERYPROCESSSTATUS QueryProcessStatus Entry OptionWord integer
Entry ProcessName character
or
ProcessID integer
Exit rc integer
P_SETPRIORITY SetPriority Entry ProcessID integer
Entry Priority integer
Exit rc integer
P_QUERYPRIORITY QueryPriority Entry ProcessID integer
Exit Priority integer
Exit rc integer
P_STOPPROCESS StopProcess Entry ProcessID integer
Exit rc integer
P_UNLOADPROCESS UnloadProcess Entry ProcessID integer
Exit rc integer
P_STARTPROCESS StartProcess Entry ProcessID integer
Exit rc integer
P_CREATEPROCESS CreateProcess Entry ProcessName character
Exit rc integer
P_COMPLETEINIT Completelnit Entry none integer
Exit rc
P_SUSPENDPROCESS SuspendProcess Entry ProcessID integer
Exit rc integer
P_RESUMEPROCESS ResumeProcess Entry ProcessID integer
Exit rc integer
P_QUERYPROCESSINEXEC QueryProcessinExec Entry none
Exit ProcessID integer
Exit rc integer
P_QUERYCARDINFO QueryCardinfo Entry none
Exit rc integer
P_QUERYCONFIGPARAMS QueryConfigParams Entry none
Exit rc integer
P_SETPROCESSDATA SetProcessData Entry ApplID character
Exit rc integer
P_GETPROCESSDATA GetProcessData Entry ApplID character
Exit *ProcessDataPtr | integer
P_ENTERCRITSEC EnterCritSec Entry OptionWord integer
Exit rc integer
P_EXITCRITSEC ExitCritSec Entry OptionWord integer
Exit rc integer

Chapter 3: Base Kernel Services 159

Kernel Trace Information

[

Table 3-10. Service Class: C_ MEMPROT_SERVICE

Trace Format of
Procedure ID Kernel Service Position Trace Data Data
P_SETPROCMEMPROT SetProcMemProt Entry ProcessID integer
Exit rc integer
P_QUERYPROCMEMPROT QueryProcMemProt Entry ProcessID integer
Exit rc integer
Table 3-11. Service Class: C_QUEUE_SERVICE
Trace Format of
Procedure ID Kernel Service Position Trace Data Data
P_CREATEQUEUE CreateQueue Entry QueueName character
Exit rc integer
P_OPENQUEUE OpenQueue Entry QueueName character
Exit rc integer
P_CLOSEQUEUE CloseQueue Entry QueueHandle integer
Exit rc integer
P_PUTQUEUE PutQueue Entry QueueHandle integer
Exit rc integer
P_GETQUEUE GetQueue Entry QueueHandle integer
Exit rc integer
P_SEARCHQUEUE SearchQueue Entry QueueHandle integer
Exit rc integer
Table 3-12. Service Class: C_SEMAPHORE_SERVICE
Trace Format of
Procedure ID Kernel Service Position Trace Data Data
P_CREATESEM CreateSem Entry SemName character
Exit rc integer
P_OPENSEM OpenSem Entry SemName character
Exit rc integer
P_CLOSESEM CloseSem Entry SemHandle integer
Exit rc integer
P_RELEASESEM ReleaseSem Entry SemHandle integer
Exit rc integer
P_REQUESTSEM RequestSem Entry SemHandle integer
Exit rc integer
P_QUERYSEMCOUNT QuerySemCount Entry SemHandle integer
Exit rc integer
P_SETSEMCOUNT SetSemCount Entry SemHandle integer
Exit rc integer

160

ARTIC960 Programmer’s Reference

Kernel Trace Information

Table 3-13. Service Class: C_SIGNAL_SERVICE

Trace Format of
Procedure ID Kernel Service Position Trace Data Data
P_CREATESIG CreateSig Entry SigName character
Exit rc integer
P_OPENSIG OpenSig Entry SigName character
Exit rc integer
P_INVOKESIG InvokeSig Entry SigHandle integer
Exit rc integer
P_CLOSESIG CloseSig Entry SigHandle integer
Exit rc integer
Table 3-14. Service Class: C_SUBALLOC_SERVICE
Trace Format of
Procedure ID Kernel Service Position Trace Data Data
P_GETSUBALLOCSIZE GetSuballocSize Entry UnitSize integer
Exit rc integer
P_INITSUBALLOC InitSuballoc Entry BlockPtr integer
Exit rc integer
P_GETSUBALLOC GetSuballoc Entry BlockPtr integer
Exit rc integer
P_FREESUBALLOC FreeSuballoc Entry BlockPtr integer
Exit rc integer
Table 3-15. Service Class: C_SWTIMER SERVICE
Trace Format of
Procedure ID Kernel Service Position Trace Data Data
P_CREATESWTIMER CreateSwTimer Entry TimerName character
Exit rc integer
P_CLOSESWTIMER CloseSwTimer Entry TimerHandle integer
Exit rc integer
P_STARTSWTIMER StartSwTimer Entry TimerHandle integer
Exit rc integer
P_STOPSWTIMER StopSwTimer Entry TimerHandle integer
Exit rc integer

Chapter 3: Base Kernel Services 161

Kernel Trace Information

[

Table 3-16. Service Class: C_TIMER_SERVICE

Trace Format of
Procedure ID Kernel Service Position Trace Data Data
P_SETSYSTIME SetSystemTime Entry SysTimelnfo.Time | integer

Exit rc integer
P_QUERYSYSTIME QuerySystemTime Entry none

Exit rc integer
P_STARTPERFTIMER StartPerfTimer Entry none

Exit rc integer
P_STOPPERFTIMER StopPerfTimer Entry none

Exit rc integer
P_READPERFTIMER ReadPerfTimer Entry none

Exit rc integer

Table 3-17. Service Class: C_CLIB

Trace Format of
Procedure ID Kernel Service Position Trace Data Data
P_FD_STDOUT printf - - character
P_FD_STDERR printf - - character

162 ARTIC960 Programmer’s Reference

Kernel Commands

Processes located on aremote card or in the system unit can send command and status
requests to the kernel, using the kernel command facility. These requests are sent to the
kernel through its mailbox, named “RIC_KERNMBXn” (nisalogical card number). As
an example, commands destined for the kernel on logical card 0 would be sent to mailbox
“RIC_KERNMBXO0".

Command completion status is returned to the requester in a response mailbox specified
using the RegisterResponseMbx command. Requesters should check the status provided
in the response mailbox to verify successful command completion.

The following kernel commands have been defined. Refer to the ARTIC960
Programmer’s Guide for additional information.

Service Group Page
RegisterResponseM bx 166
DeRegisterResponseM bx 167
QueryProcessStatus 168
UnloadProcess 169
StopProcess 170
StartProcess 171

Chapter 4: Kernel Commands 163

[

Common Headers for Commands and Responses

164

Commands

All commands have acommon header with a variant part unique for each command. The
format is:

struct RI C_Ker nCommand

{
struct RI C_KernMxCnd Header ;

uni on

{
struct RI C Regi ster ResponseMixCnd CndO;

struct RI C DeregisterResponseMixCnd Cmd1;

struct RI C QueryProcessStatusCnd Cn2;

struct RIC_StopProcessCnd Cmd3;

struct RIC StartProcessCnd Cnd4;

struct RI C _Unl oadProcessCmd Cnmd5;
} Cds;

i

struct RI C_Ker nMoxCnd

{
RIC ULONG CommandNum

Rl C_RESPMBX RespMoxl D

RIC ULONG Correl ationlD,
RIC ULONG ReturnCode;

RIC ULONG Reserved;

s
where:

CommandNum
Command number unique to each kernel command.

RespMbxID
ID returned on RegisterResponseMbx that indicates the mailbox where the
command response is to be sent.

CorrelationlD
Vauethat is passed on with the command and isnot interpreted by the kernel.
The requester can use the field to correlate command responses.

ReturnCode
Reserved field (must be 0)

Reserved Resereved field (must be 0)

ARTIC960 Programmer’s Reference

Responses

Like commands, responses have a common header with a variant part unique to each
response. Some responses have no variant part. The format is:

struct RIC_KernResponse

{
Rl C_ULONG Correl ationl D
Rl C_ULONG Ret ur nCode;
Rl C_ULONG Reserved;
uni on
{
struct RI C Regi sterResponseMixResp RespO;
struct RI C QueryProcessStatusResp Respl;
} Resp;
s
where:

CorrelationlD
Value passed in the command. The field can be used to correlate command

responses.

ReturnCode
Return code returned by the kernel to indicate the completion status of the
command.

Reserved Reserved field (must be 0)

-% If a bad RespMbxID is passed on a command, the kernel ignores the
command and a timeout on the reply occurs.

Chapter 4: Kernel Commands 165

RegisterResponseMbx—Register a Command Response Mailbox

[

RegisterResponseMbx—Register a Command Response Mailbox

This command returns the response mailbox |D associated with the specified response
mailbox name.

Command Parameters
CommandNum in the common header must be set to KERN_REG _RESP_MBX.
RespMbxId in the common header is not defined for this command.

Structures

struct RI C _Regi st er ResponseMixCnd

{
char MoxNanme[MAX_RES USER] ;
RIC ULONG Reserved;

}

where:

MbxName Response mailbox name
Reserved Reserved field (must be 0)

Response Parameters
ReturnCode values in RIC_KernResponse are:
RC_SUCCESS
The following shows the variant part of the response for this command.

struct RI C Regi ster ResponseMixResp

{
Rl C_RESPMBX RespMox| D
Rl C_ULONG Reserved,;
}
where:
RespMbxID

Identifier used on all subsequent kernel commands
Reserved Reserved field (must be 0)

Remarks

This command must be issued prior to any other commands being issued. It isthe user’s
responsibility to issue a DeRegisterResponseM bx command when the application
terminates.

166 ARTIC960 Programmer’s Reference

DeRegisterResponseMbx—Deregister a Command Response Mailbox

DeRegisterResponseMbx—Deregister a Command Response Mailbox

This command removes a response mailbox when its ID is specified.

Command Parameters
CommandNum in the common header must be set to KERN_DEREG _RESP_VBX.

Structures
struct RI C DeRegi st er ResponseMixCnd
{
Rl C_RESPMBX RespMox| D
Rl C_ULONG Reserved,;
}
where:
RespMbxI D

Response mailbox identifier
Reserved Reserved field (must be 0)

Response Parameters
ReturnCode values in RIC_KernResponse are:

RC_I NVALI D_RESERVED PARM
RC_| NVALI D_HANDLE

There isno variant response part for this command.

Remarks

None

Chapter 4: Kernel Commands 167

[

QueryProcessStatus—Get the Process Status

[

QueryProcessStatus—Get the Process Status

168

This command returns the process status and process identification, when the process
name is specified.

Command Parameters
CommandNum in the common header must be set to KERN_QUERY_PROC_STAT.

Structures

struct RI C QueryProcessStatusCnd

{
char Pr ocName[MAX_RES USER] ;
struct RIC ProcessStatusBl ock ProcSB;
Rl C_ULONG Reserved;

}

where:

ProcName Process name

ProcSB Reference to the structure containing status information. See
QueryProcessStatus—Get the Process Satus on page 25 for the format of the
process status block.

Reserved Reserved field (must be 0)

Response Parameters
ReturnCode valuesin RIC_KernResponse are:

RC_SUCCESS

RC_| NVALI D_NAVE

RC_| NVALI D_RESERVED PARM
RC_NAVE_NOT_FOUND

The following shows the variant part of the response for this command.

struct RIC QueryProcessStatusResp

{
struct RIC ProcessStatusBl ock ProcSB;
Rl C_ULONG Reserved,;
}
where:
ProcB Reference to the structure containing status information. See

QueryProcessSatus—Get the Process Status on page 25 for the format of the
process status block.

Reserved Reserved field (must be 0)

Remarks

None

ARTIC960 Programmer’s Reference

UnloadProcess—Unload a Process

UnloadProcess—Unload a Process

This command unloads a process, given its process ID.

Command Parameters
CommandNum in the common header must be set to KERN_UNLOAD PRCC.
Structures

struct RI C _Unl oadProcessCnd

{
RI C_PROCESSI D Processl D,

Rl C_ULONG Reserved;
}

where:
ProcessID Processidentification
Reserved Reserved field (must be 0)

Response Parameters
ReturnCode valuesin RIC_KernResponse are:

RC_SUCCESS

RC_| NVALI D_RESERVED PARM
RC_| NVALI D_PROCESSI D
RC_PERVANENT PROCESS

There isno variant response part for this command.

Remarks

None

Chapter 4: Kernel Commands 169

StopProcess—Stop a Process

[

StopProcess—Stop a Process

This command stops a process, given its process ID.

Command Parameters
CommandNum in the common header must be set to KERN_STOP_PRCC.
Structures

struct RIC_StopProcessCnd

{
RI C_PROCESSI D Processl D,

Rl C_ULONG Reserved;
}

where:
ProcessID Processidentification
Reserved Reserved field (must be 0)

Response Parameters
ReturnCode valuesin RIC_KernResponse are:

RC_SUCCESS

RC_| NVALI D_RESERVED PARM
RC_PROCESS_NOT_STARTED
RC_| NVALI D_PROCESSI D
RC_PERVANENT PROCESS

There isno variant response part for this command.

Remarks

None

170 ARTIC960 Programmer’s Reference

StartProcess—Start a Process

StartProcess—Start a Process

This command starts the process specified by the process ID.

Command Parameters
CommandNum in the common header must be set to KERN_START _PRCC.

Structures

struct RIC StartProcessCrd

{
RI C_PROCESSI D Processl D,
Rl C_ULONG Opt i onWor d;
Rl C_SLONG Ti neQut ;
Rl C_ULONG Reserved;

}

where:

ProcessiID Process identification.

OptionWord
Bit field indicating whether the requester wants the kernel to wait for the
process being started to perform a Completel nit before the kernel returns a
return code (and thus completes the command).

WAI T_FOR COVMPLETEINIT
The kernel waits for the starting process to issue the Completelnit call.

NO WAI T_FOR_COVPLETEINI T
The kernel does not wait.

TimeOut Time, specified in seconds, that the kernel waits for the process to perform
the Compl etelnit. The actual time waited is a multiple of approximately 1/4
seconds. A value of zero indicates that the requester does not want to wait.
Thereis no infinite timeout.

Reserved Reserved field (must be 0)

Response Parameters
ReturnCode valuesin RIC_KernResponse are:

RC_SUCCESS

RC_| NVALI D_RESERVED PARM

RC_| NVALI D_PROCESSI D
RC_PROCESS_ALREADY_STARTED
RC_PROCESS_STOPPED

RC_TI MEQUT

Error code used by a process on Conpletelnit

Thereis no variant response part for this command.

Remarks

None

Chapter 4: Kernel Commands 171

StartProcess—Start a Process

[

172 ARTIC960 Programmer’s Reference

Adapter Library Routines

This chapter lists ANSI C library calls and describes the Miscellaneous Service, the
System Bus Interface Services, and the PCI Services.

ANSI C Functions
Thefollowing ANSI C library calls are supported by the kernel.

Use of some functions may require that additional libraries be used. Refer to your

‘% compiler documentation for details. You can modify your ricproc.ld file to include
additional libraries. Refer to the ARTIC960 Programmer’s Guide for information
about doing this.

Character Handling

isalnum isgraph ispunt isxdigit
isalpha islower isspace tolower
iscntrl isprint isupper toupper
isdigit

Mathematics

acos cosh Idexp sinh
asin exp log sqrt
atan fabs logl10 tan
atan2 floor modf tanh
ceil fmod pow

cos frexp sin

Variable Arguments

va_arg va_end va_start

Input/Output

fflush2.3 printf2.3 sprintf sscanf
General Utilities

abs atol free2 srand
atexitl bsearch malloc2 strtod
atof div gsort! strtol
atoi exitl.2 rand strtoul

1. Some ANSI C functions cannot be called from interrupt handlers.

2. These functions are implemented in libricc.a (0S/2) and libriccx.a (AIX) along with
other kernel services.

3. Refer to the ARTIC960 Programmer’s Guide for information on using this
C function.

Chapter 5: Adapter Library Routines 173

174

String Handlings

memchr strcat
memcmp strchr
memcpy strcmp
memmove strcpy
memset strcspn
Date and Times

asctime difftime
ctime gmtime

strerror
strlen
strncat

strncmp
strncpy

localtime
mktime

strpbrk
strrchr
strspn
strstr
strtok

time2

1. Some ANSI C functions cannot be called from interrupt handlers.
2. These functions are implemented in libricc.a (O0S/2) and libriccx.a (AIX) along with

other kernel services.

3. Refer to the ARTIC960 Programmer’s Guide for information on using this

C function.

ARTIC960 Programmer’s Reference

ProcessSleep—Sleep a Process

[

Miscellaneous Service

ProcessSleep—Sleep a Process

This service blocks a process for the specified length of time.

Functional Prototype
RI C_ULONG ProcessSl eep (RI C_TI MEQUT Ti neval ue,
RIC ULONG Reserved);

Parameters
Timevalue Input. The length of time in milliseconds for the process to sleep.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS

RC_| NVALI D_CALL

RC_I NVALI D_RESERVED PARM
RC_I NVALI D_TI MEQUT
RC_NO_MORE_SEM
RC_NO_MORE_TI MERS

Remarks

Thislibrary routine allows users to block for a specified period of time without first
creating asemaphore. It does the equivalent of creating a semaphore, blocking onit for the
reguested time, and then closing the semaphore. This routine is contained in the file
libricc.a.

Chapter 5: Adapter Library Routines 175

System Bus Interface Services

|
System Bus Interface Services

The kernel provides the following system-bus interface services.

Service Page
MoveMCData 177
ConvertMCToCard 181
ConvertCardToMC 182

These services allow aprocessto perform system bus operations. They are provided by the
System Bus I/O Subsystem RIC_MCIO.REL.

Programs that use the system bus interface services must define the constant | NCL_ MCHL
prior to the #i ncl ude <ri c. h> statement to obtain the proper declarations.

Thelibraries for these services are contained in the file libmclib.a for OS/2 and
libmclibx.afor AlX. To link a program with thislibrary, add - | ncli b or - | ncl i bx to
the LNK960 call. Refer to the ARTIC960 Programmer’s Guide for more information.

176 ARTIC960 Programmer’s Reference

MoveMCData—Move System Bus Data

|
MoveMCData—Move System Bus Data

This service moves data to/from a buffer on the loca unit from/to a buffer on another unit
(aremote unit) through a system bus operation. It blocks the requesting process until the
operation is complete.

Functional Prototype

RI C_ULONG MbveMCDat a (RI C_DEVHANDLE DDHandl e,
struct RI C MoveBl ock *PPtr,
Rl C_ULONG Reserved);
Parameters

DDHandle Input. Handle of subsystem returned by OpenDev of System Bus /O
Subsystem.

PPtr Input. Pointer to the move block
Reserved Input. Reserved parameter (must be 0)
The move block structureis:

struct RI C MoveBl ock

{
Rl C_ULONG Opt i onVor d;
Rl C_CARDNUM Sour ceCard;
Rl C_CARDNUM Dest Car d;
voi d *Sour ceAddpt r;
voi d *Dest Addpt r;
Rl C_ULONG Si ze;
struct RI C MoveBl ock *ChainPtr;
}
OptionWord
Input. Specifies options that can be selected for system bus operations. See
the Remarks section for option information.
SourceCard

Input. Thelogical card number for the ARTIC960 adapter source unit. A
valid ARTIC960 logical card number indicates that the source address
specifies alocal address on that unit.

MC_SU ADDR_CARD NUMBER
This value indicates that the source unit is the system unit and that the
source address specifies a physical system bus address for the system
unit.

Chapter 5: Adapter Library Routines 177

MoveMCData—Move System Bus Data

[

MC_ADPT_ADDR_CARD NUMBER
This value indicates that the source unit is not an ARTIC960 adapter
and that the source address specifies a physical system bus address for
that adapter.

'% « An ARTIC960 address cannot be expressed as a physical system
bus address.
« ARTIC960 Support for AIX Version 1.1 or higher and ARTIC960
Support for NT Version 1.0 do not support DMA transfers between

two peer adapters. They support DMA transfers only between the
adapter and system unit.

DestCard Input. Thelogical card number for the ARTIC960 adapter destination unit. A
valid ARTIC960 logical card number indicates that the destination address
specifies alocal address on that unit.

MC_SU ADDR_CARD NUMBER
Thisvalue indicates that the destination unit is the system unit and that
the destination address specifies a physical system bus address for the
system unit.

MC_ADPT_ADDR_CARD NUMBER
This value indicates that the destination unit is not an ARTIC960
adapter and that the destination address specifies a physical system bus
address for that adapter.

'% An ARTIC960 address cannot be expressed as a physical system
bus address.

SourceAddptr
Input. The address of the source buffer on the source unit. The addressformat
is determined by the source unit field.

DestAddptr Input. The address of the destination buffer on the destination unit. The
address format is determined by the destination unit field.

Sze Input. The number of bytes of datato be moved. The maximum valueis 1IM—
1 for the MCA adapter. The maximum valueis 16M—1 for PCI adapters. O is
not valid.

ChainPtr Input. The pointer to the next Move structure. If thisisthe last block in the
chain, thisfieldisNULL.

178 ARTIC960 Programmer’s Reference

MoveMCData—Move System Bus Data

Returns

., LOSS_OF_CHANNEL_ERR
. LOCAL_BUS_PARI TY_ERR
., EXCEPTI ON_ERR

. TI MEQUT

. | NVALI D_COVBI NATI ON
., CHAI NI NG_EX_ERR

RC_SUCCESS

RC_| NVALI D_ADDRESS
RC_| NVALI D_COVBI NATI ON
RC_| NVALI D_SI ZE

RC_| NVALI D_OPTI ON

RC_| NVALI D_CARD _NUMBER

388883888383
55%?3555%55%

RC_| NVALI D_MEM ACCESS POSTSTAT_EX_ERR

RC | NVALI D_CALL ET_ACTI VE

RC_MC_DATA PARI TY_ERR > MASTER_ABORT

RC_MC_CHCK_ERR - BUS_FAULT

RC_MC_CARD SEL_FDBACK_ERR > MEM_FAULT
Remarks.

-% The caller of this service must ensure that a reset does not occur during a
system bus operation.

This function may block the requesting process. The function returns to the caller
when the move is complete.
To open the system bus 1/0 subsystem, issue the following command:

OpenDev (MCSSNAME, (void *) NULL, O , &DDhandle);
The source and destination units must be different, and one must be the requester unit.
No validation is done on the physical system bus addresses.
Thelogical card number is checked for validity.

If memory protection is enabled, the local memory address is checked for system bus
access and aRC | NVALI D_MEM ACCESS error isreturned if accessis not correct.

An unsupported system-unit address can generate a channel check.

Because requests can be passed to two different system bus DMA channels, the order
of message delivery is not guaranteed. The order is guaranteed only within a chain.

This function does not support mixing of card-to-card and card-to-system unit

‘% moves chained in the same MoveMCData request. To ensure correct
operation, such requests should be issued in separate MoveMCData
requests.

Chapter 5: Adapter Library Routines 179

[

MoveMCData—Move System Bus Data

[

« Thefollowing constants have been defined for the OptionWord parameter.

MOV_ MEMORY
Moveisfor amemory address (default).

MOV_| O
Moveisfor an I/O address.

RC | NVALI D_OPTI ONisreturned if:

e The peer card isan ARTIC960Rx PCI adapter or ARTIC960RxD
PCI adapter. These adapters do not support |/O.

» Theinitiator card isan ARTIC960Rx PCl or ARTIC960RxD PCI
adapter, and the peer card does not have memory-mapped 1/0.

MOV_I NCR
Increment remote-unit address after each byte transfer (default).

MOV_NO | NCR
Do not increment remote-unit address after each byte transfer. This
option may be used to move consecutive bytesto an I/O address. This
option isignored by PCI devices.

180 ARTIC960 Programmer’s Reference

ConvertMCToCard—Convert System Bus Address to Card Address

[

ConvertMCToCard—Convert System Bus Address to Card Address

This service converts a system bus address to alogical card number and local
address pointer.

Functional Prototype

RI C ULONG ConvertMCToCard (Rl C DEVHANDLE DDHandl e,
voi d * MCAddr ess,
Rl C_CARDNUM *Card,
voi d ** | ocal Addptr,
Rl C_ULONG Reserved);
Parameters

DDHandle Input. Handle of subsystem returned by OpenDev of system bus /O
Subsystem.

MCAddress Input. System bus address to be converted.
Card Output. Logica card number represented by system bus address.

Local Addptr
Output. Local address on the indicated logical card.

Reserved Input. Must be 0.

Returns

RC_SUCCESS
RC_UNABLE_TO_CONVERT_ADDRESS.

-% The compatibility of this function is not guaranteed across future releases.

Chapter 5: Adapter Library Routines 181

ConvertCardToMC—Convert Card Address to System Bus Address

[

ConvertCardToMC—Convert Card Address to System Bus Address

This service converts alogical card number and local address pointer to a system bus
address.

Functional Prototype

RI C_ ULONG Convert CardToMC (Rl C_DEVHANDLE DDHandl e,
Rl C_CARDNUM Card,
voi d *Local Addptr,
voi d ** MCAddr ess,
Rl C_ULONG Reserved);
Parameters
DDHandle Input. Handle of subsystem returned by OpenDev of System Bus I/O
Susbystem.
Card Input. Logical card number for local address.
Local Addptr

Input. Local address to be converted.

MCAddress
Output. Converted system bus address.

Reserved Input. Must be 0.

Returns

RC_SUCCESS
RC_| NVALI D_CARD_NUMBER.

-% The compatibility of this function is not guaranteed across future releases.

182 ARTIC960 Programmer’s Reference

PCI Local Bus Configuration Device Driver Services

|
PCIl Local Bus Configuration Device Driver Services

The kernel provides the following adapter PCI local-bus interface services.

Service Page
pciBiosPresent 184
pciFindDevice 186
pciFindClassCode 187
pciReadConfigByte 188
pciReadConfigWord 189
pciReadConfigDWord 190
pciWriteConfigByte 191
pciWriteConfigWord 192
pciWriteConfigDWord 193

These services call adevice driver to access PCI devices on the adapter’slocal PCI bus on
the ARTIC960Rx and ARTIC960Hx adapters. They are provided by the PCI Device
Driver RIC_PCI.REL.

Programsthat use the PCI local businterface services must define the constant | NCL_PCl
prior to the #i ncl ude <ri c. h> statement to obtain the proper declarations.

The libraries for these services are contained in the regular kernel serviceslibraries.

Chapter 5: Adapter Library Routines 183

pciBiosPresent—Query PCI Driver Presence

[

pciBiosPresent—Query PCI Driver Presence

This service determines the presence of the PCI device driver, and returns version
information and the number of PCI buses in the system.

Functional Prototype
RI C_ ULONG pci Bi osPresent (struct PCI_BIOS I NFO *PCl | nfoPtr);

Parameters
PCI_InfoPtr
Input. Pointer to the user’ s structure. The PCI parameters are copied into this
memory.
Returns
RC_SUCCESS
RC_PCl _NO _BI Cs
Remarks
struct PCl_BI OS_| NFO
{
Rl C_ULONG Opt i ons;
Rl C_ULONG Dri ver Ver si on;
Rl C_ULONG Bl OSVer si on;
Rl C_ULONG Last Bus;
Rl C_ULONG Local MenBase;
Rl C_ULONG Local | O Base;
unsi gned char I nt Pi nA Vector;
unsi gned char I nt Pi nB_Vector;
unsi gned char I nt Pi nC_Vector;
unsi gned char I nt Pi nD_Vector;
s
Options Reserved parameter (currently 0)
DriverVersion
Version number of the RIC_PCI.REL device driver
BIOSVersion

PCI BIOS version number compatible
LastBus Number of the last PCI bus on the adapter

LocalMemBase
Local bus base address for 1960 access to a PCl-device memory (see
LocallO_Base for more information).

184 ARTIC960 Programmer’s Reference

pciBiosPresent—Query PCI Driver Presence

LocallO_Base
Local bus base address for 1960 access to a PCl-device memory-mapped 1/0

The LocalMemBase and LocallO_Base values are used as a base address
when accessing a PCl device from the i960. These values should be added to
the physical address read from a PCI-device base address register to obtain a
local 1960 address for accessing the device. The Local MemBase value should
be used for memory base address registers, and the LocallO_Base value
should be used for accessing memory-mapped /O base address registers.

IntPinA_Vector, IntPinB_\Vector, IntPinC_Vector, IntPinD_ Vector
PCI interrupt-pin vector assignments

Normally, the interrupt-line-configuration register for the device should be
read to determine the vector. The IntPin information is provided for deviant
PMCs.

Chapter 5: Adapter Library Routines 185

pciFindDevice—Find a PCI Device by Vendor and Device ID

[

pciFindDevice—Find a PCI Device by Vendor and Device ID
This service finds the PCI device that is specified by the vendor and device ID.

Functional Prototype

RI C_ULONG pci Fi ndDevi ce (PClI_DEVI CE_| D Devi cel D,
PCI _VENDOR_| D Vendor | D,
PCl _I NSTANCE | nstance,
PCl _ID *pci | D);

Parameters
DevicelD Input. The PCI deviceID.
VendorID Input. The PCI vendor ID.

Instance Input. Theinstance number of the device. Thefirst devicewith agiven device
and vendor ID isinstance zero. The next device with the same device and
vendor ID isinstance one.

pcilD Output. If the deviceisfound, a unique identifier for the device is returned.
Thisidentifier is then used when accessing the device on subsequent PCI
driver calls.
Returns
RC_SUCCESS

RC_PCl _NO BI OS
RC_PCl _DEVI CE_NOT_FOUND
Remarks

To find multiple devices having the same vendor ID and device ID, the calling software
should make successive calls to this function starting with Instance set to zero and
incrementing it until the return codeis RC_PCl _DEVI CE_NOT_FOUND.

186 ARTIC960 Programmer’s Reference

pciFindClassCode—Find a PCI Device by PCI Class Code

|
pciFindClassCode—Find a PCI Device by PCI Class Code

This service finds a specific PCI device given a class code.

Functional Prototype

Rl C_ULONG pci Fi nddl assCode (PCl _CLASS CODE C assCode,
PCl _ 1 NSTANCE I nst ance,

PCl _ID *pci | D) ;

Parameters

ClassCode Input. The PCI device class code.

Instance Input. Theinstance number of the device. Thefirst devicewiththegiven class
code isinstance zero. The next device with the same class code is instance
one.

pcilD Output. If the deviceisfound, a unique identifier for the device is returned.
Thisidentifier is then used when accessing the device on subsequent PCI
driver calls.

Returns

RC_SUCCESS

RC_PCI _NO BI Cs
RC_PCl _DEVI CE_NOT_FOUND
Remarks

To find multiple devices having the same class code, the calling software should make
successive calls to this function starting with Instance set to zero and incrementing it until
the return codeis RC_PCl _DEVI CE_NOT_FOUND.

Chapter 5: Adapter Library Routines 187

pciReadConfigByte—Read a Byte from PCI Configuration Space

[

pciReadConfigByte—Read a Byte from PCI Configuration Space

This service reads one byte from the device PCI configuration space.

Functional Prototype

Rl C_ULONG pci ReadConfigByte (PCl _ID pci | D,
PCl _REG _NUM RegNum
unsi gned char *Val ue);

Parameters

pcilD Input. The PCI device identifier obtained by way of the pciFindDevice or
pciFindClassCode service.

RegNum Input. The register number to be read (normally 0 to 255).
Value Output. The byte read is returned in this parameter.

Returns

RC_SUCCESS
RC_PCl _NO BI G
RC_PCI _BAD_REG STER NUMBER

Remarks

None

188 ARTIC960 Programmer’s Reference

pciReadConfigWord—Read a Word from PCI Configuration Space

[

pciReadConfigWord—Read a Word from PCI Configuration Space

This service reads one 16-bit word from the device PCI configuration space.

Functional Prototype

Rl C_ULONG pci ReadConfigwrd (PCl _ID pci | D,
PCl _REG _NUM RegNum
Rl C_USHORT *Val ue) ;
Parameters
pcilD Input. The PCI deviceidentifier obtained by way of either the pciFindDevice
or pciFindClassCode service.

RegNum Input. The register number to be read (normally 0 to 255). The register
number must be divisible by 2.

Value Output. The word read is returned in this parameter.

Returns

RC_SUCCESS
RC_PCl _NO BI G
RC_PCI _BAD_REG STER NUMBER

Remarks

None

Chapter 5: Adapter Library Routines 189

pciReadConfigDWord—Read a Doubleword from PCI Configuration Space

[

pciReadConfigDWord—Read a Doubleword from PCI Configuration

Space
This service reads one 32-hit doubleword from the device PCI configuration space.
Functional Prototype
Rl C_ULONG pci ReadConfi gDwrd (PCl _ID pci | D,
PCl _REG _NUM RegNum
Rl C_ULONG *Val ue) ;
Parameters
pcilD Input. The PCI deviceidentifier obtained by way of either the pciFindDevice
or pciFindClassCode service.
RegNum Input. The register number to be read (normally 0 to 255). The register
number must be evenly divisible by 4.
Value Output. The doubleword read is returned in this parameter.
Remarks
None
190 ARTIC960 Programmer’s Reference

pciWriteConfigByte—Write a Byte to PCI Configuration Space

[

pciWriteConfigByte—Write a Byte to PCI Configuration Space

This service writes one byte to the device PCI configuration space.

Functional Prototype

RI C ULONG pci WiteConfigByte (PCl _ID pci | D,
PCl _REG NUM RegNum
unsi gned char Val ue);

Parameters

pcilD Input. The PCI deviceidentifier obtained by way of either the pciFindDevice
or pciFindClassCode service.

RegNum Input. The register number to be read (normally 0 to 255).
Value Input. The byte to be written.

Returns

RC_SUCCESS
RC_PCl _NO BI G
RC_PCI _BAD_REG STER NUMBER

Remarks

None

Chapter 5: Adapter Library Routines 191

pciWriteConfigWord—Write a Word to PCI Configuration Space

[

pciWriteConfigWord—Write a Word to PCI Configuration Space

This service writes one 16-hit word to the device PCI configuration space.

Functional Prototype

RI C_ ULONG pci WiteConfigwrd (PCl _ID pci | D,
PCl _REG _NUM RegNum
Rl C_USHORT Val ue) ;
Parameters
pcilD Input. The PCI deviceidentifier obtained by way of either the pciFindDevice
or pciFindClassCode service.

RegNum Input. The register number to be read (normally 0 to 255). The register
number must be evenly divisible by 2.

Value Input. The word to be written.

Returns

RC_SUCCESS
RC_PCl _NO BI G
RC_PCI _BAD_REG STER NUMBER

Remarks

None

192 ARTIC960 Programmer’s Reference

pciWriteConfigDWord—Write a Doubleword to PCI Configuration Space

[

pciWriteConfigDWord—Write a Doubleword to PCI Configuration
Space

This service writes one 32-bit doubleword to the device PCI configuration space.

Functional Prototype

RI C_ULONG pci WiteConfi gDwrd (PC _ID pci | D,
PCl _REG NUM RegNum
Rl C_ULONG Val ue) ;
Parameters
pcilD Input. The PCI deviceidentifier obtained by way of either the pciFindDevice
or pciFindClassCode service.

RegNum Input. The register number to be read (normally 0 to 255). The register
number must be evenly divisible by 4.

Value Input. The doubleword to be written.

Returns

RC_SUCCESS
RC_PCl _NO BI G
RC_PCI _BAD_REG STER NUMBER

Remarks

None

Chapter 5: Adapter Library Routines 193

pciWriteConfigDWord—Write a Doubleword to PCI Configuration Space

[

194 ARTIC960 Programmer’s Reference

System Unit Utilities

Ve
194

System unit utilities are a set of command-line-driven utilities used to initialize and
examine the ARTIC960 adapter.

Although it is not shown in the syntax diagrams, help is provided for all utilities by using
the ? switch. The utilities display a brief message containing the syntax diagram for the
utility. The utilities also display the help messages if no parameters or switches are
entered, or if they are entered incorrectly.

All numeric parameters and command line options are assumed to be decimal values,
unless otherwise noted. To pass a hexadecimal value for any numeric parameter, prefix the
parameter with 0x or 0X. For example, 0x10 and 0X10 are equivaent to the decimal
parameter of 16.

Thelogical card numbers referred to by the utilities are assigned by the driver during
installation.

The ARTIC960 utilities do not perform any special processing to handle the OS2
<CtrI><Break> or <Ctrl><C> program termination signals.

» If the user breaks out of aload operation, it may be necessary to unload a
partialy-loaded process or reset the card to continue.

« If the user breaks out of the Configuration utility or out of an active dump, aresetis
required to continue.

« |If the user breaks out of a dump while waiting with an exception trigger set, no action
should be necessary.

Utilities that use input files use the following as search criteriato find the required file:
e Current directory
* RICPATH environment variable

« DPATH environment variable for OS2 and Windows NT, and PATH environment
variablein AIX and Windows NT.

If the file is not found using this search criteria, the appropriate error code is returned.

For all utilities, the length of the command lineis limited to 256 bytes. All lineswithin
files processed by the utilities are limited to alength of 256 bytes, including the
end-of-line sequence. The number of entries within configuration files and parameter files
isunlimited.

Chapter 6: System Unit Utilities 195

Application Loader (ricload) Utility

[

Application Loader (ricload) Utility

The Application Loader isa command-line-driven utility that |oads processes onto the
ARTIC960 adapter. The Application Loader does not require the presence or absence of
any optional parameters to specify other optiona parameters.

Arguments passed within quotes on the command line are passed as a single parameter.
Extraneous quotes within the argument parameter are deleted. See Examples of
Application Loader Calls on page 200. Blank lines within either a configuration or
parameter file are discarded. Within a parameter file, the standard C end-of-line sequence
is used to separate parameters.

Application Loader Syntax

196

-}}—L—_l— ricload -C config_filename =3
path [-Q :I |
C

ard_num— filename + |

-A “process_args”
—E -F arg_filename :l_
—— -D cache_option
—— -K stack_size

-L
L -W timeout — 1
| -N process_name
-0
|—— -P priority
-T
-V

L -W timeout — 1

— -S process_name

— -T
- -U process_name

Figure 6-1. Application Loader Syntax

-Q Specifies quiet Application Loader operation. Normally, the Application
L oader displays messages indicating a successful or unsuccessful operation
onthe standard output device. In quiet mode, the Application L oader does not
display any messages.

—C config_filename
Specifies that the configuration file config_filename contains alist of
processes to be loaded. Each line in the configuration file istreated as an
individual load request. If an error is encountered during the processing of the

configuration file, the load operation is terminated and the remaining entries
are not processed.

card_num Specifiesthelogical card number to be loaded.

filename Specifies the file containing the process to be loaded.

ARTIC960 Programmer’s Reference

Application Loader (ricload) Utility

—A “process_args’

Specifies that the arguments in process_args (which is enclosed within a
single set of quote marks), are to be passed to the process as argv[1] through
argv[n].

The process_args arguments themselves must not contain the quote
characters (* "). To use a quote mark within the arguments, use the -
arg_filename parameter. Using this parameter allows you to pass command
line parametersin afile.

—F arg_filename

Specifies that the contents of the file arg_filename are passed to the process
as argv[1] through argv[n]. Each linein thefileis passed as a separate argv
entry.

-D cache _option

Specifies data cache options for loading the process. The valid values are:
—D 0 Caching is not used (the default)
—D 1 Process stack is cached
—D 2 Process data section is cached

—D 3 Both the process stack and data sections are cached.

-% This option has no effect unless the 1960 data cache is enabled. See
the definition of DATA_CACHE on page 5.

—K stack size

|

—W timeout

Specifies the size of the process stack in bytes. If this parameter is not
specified, the kernel chooses its default stack size.

Specifies that the processis to be loaded but not started.

Specifies the time (in seconds) that the Application Loader waits for the
loaded process to complete initialization. The Application Loader then
outputs a message indicating the success or failure of that initialization. (See
Completel nit—Mark Process as Compl etely Initialized on page 23.)

The maximum timeout valueis 64. If afailure occurs, the message contains
the ErrorCode from the Completelnit call. Thisoption isautomatically set by
the Application Loader for al files beginning with “RIC .

—N process_name

Specifies the name for the process being loaded. The process nameis passed
tothe processasargv[Q]. If this parameter is not specified, filenameis passed
as argv[Q] (with the path information stripped). The length of the process
name s limited to 16 characters including the NULL terminator.

Specifies creating an outfile for symbolic debugging. The outfile nameisthe
filename with afile extension of .out instead of .rel. Thefileiscreated in the
current directory. The intended use isto download the task that is not started
(-L) and specify the—O switch. Then filename.out can be used with an 80960
interactive-computing environment (ICE) or a supported debugger.

Chapter 6: System Unit Utilities 197

[

Application Loader (ricload) Utility

[

—P priority
Specifiesthat the process should be started with apriority leve of priority. If
this parameter is not specified, the kernel chooses a default priority level.

=T Specifies to set the time of day on the adapter. The system timeis obtained
and passed to the kernel on the ARTIC960 adapter.
-V Specifiesto display verbose information about the loaded task. Displayed

information includes the address of thetask’ s entry point, code segment, data
segment, BSS segment, stack address, and parameter address.

—Sprocess_hame
Specifies that the process (previously loaded) is to be started.

—U process_name
Specifies that the process should be unloaded.

To specify either aconfig_filename, filename, process _name, or arg_filename with spaces
or specia charactersin the name, the name must be enclosed within quotes (*). This
allows support of the OS/2 high performance file system (HPFS).

-% The text files processed by the Application Loader (config_filename and
arg_filename) are processed as a text stream. The ANSI C end-of-line and
end-of-file sequence translation rules apply to these files.

Blank lines and comments in configuration files are ignored.

198 ARTIC960 Programmer’s Reference

Application Loader (ricload) Utility

Application Loader Messages and Exit Codes

The contents of the message file used by all utilities are listed in Appendix B: Message File
on page 295. The messages used by the Application Loader are listed in Table 6-1. The
Application Loader also setsits exit code value to indicate the status of the load operation.
The following table correlates the exit code of the Application Loader with the
Application Loader messages.

Table 6-1. Application Loader Messages and Return Codes

Message
Number

Exit Code

Notes

RIC0001

RC_UTIL_INVALID_CMDLINE_OPTION

RIC0002

RC_UTIL_INVALID_CMDLINE_PARM

RIC0003

RC_UTIL_FILE_NOT_FOUND

RIC0004

RC_UTIL_FILE_ACCESS

RIC0005

RC_UTIL_INVALID_CARD_NUMBER

RIC0006

RC_UTIL_NO_MORE_MEM

RIC0007

RC_UTIL_INVALID_NAME

RIC0008

RC_UTIL_DUP_RES_NAME

RIC0009

RC_UTIL_ADAPTER_EXCEPTION

RIC0010

RC_UTIL_NO_ADAPTER_RESPONSE

RIC0016

RC_UTIL_SYSTEM_ERROR

RIC0019

RC_UTIL_NOT_INSTALLED

RIC0022

RC_UTIL_SUCCESS

Successful unload process operation

RIC0023

RC_UTIL_NAME_NOT_FOUND

RIC0024

RC_UTIL_SUCCESS

Successful start process operation

RIC0025

RC_UTIL_ALREADY_STARTED

RIC0026

RC_UTIL_FILE_FORMAT

RIC0027

RC_UTIL_WRNHELP_GIVEN

RIC0035

RC_UTIL_INVALID_MICROCODE

Kernel not loaded first

RIC0037

RC_UTIL_MICROCODE_ERROR

Microcode error

RIC0038

RC_UTIL_ACCESS_ERROR

RIC0042

RC_UTIL_PROC_MISMATCH

RIC0044

RC_UTIL_PROC_DID_NOT_INIT

RIC0045

RC_UTIL_PROC_INIT_ERROR

RIC0052

RC_UTIL_TIMESET_ERROR

RIC0053

RC_UTIL_SUCCESS

Successful start of System Clock

RIC0054

RC_UTIL_SUCCESS

Additional Information about task being
loaded

RIC0057

RC_UTIL_SUCCESS

Successful load process operation

V

If the Application Loader is processing a configuration file and the entire file is
processed successfully, the Application Loader returns a

RC_UTI L_SUCCESS. If an error occurs during the processing of the file, the
load operation terminates with an exit code corresponding to the error
detected. If a POST error is detected during the loading of a configuration file
and no subsequent errors are detected, the exit code

RC_UTI L_ADAPTER_EXCEPTI ONis displayed.

Chapter 6: System Unit Utilities

199

[

Application Loader (ricload) Utility

[

Examples of Application Loader Calls

The following examples show different methods of using ri cl oad.

Example—Load, Start, and Name a Process

This example loads and starts the process c:\mydir\myproc.rel to logical card 0 and assigns
it a process name of PROCess 1.

ricload O c:\nydir\myproc.rel —N PROCess_1 -A "-C/T:"text""
The parameters passed to the process are:

argv[0] [PROCess_ 1]
argv[1] [-C
argv[2] [/T:"text']

Example—Load and Start a Process with a Default Name

This example loads and starts the process process.rel to logical card 0. The processis
named process.rel because a name was not specified.

ricload O process.rel —A "abc def ghi jkl mmo"
The parameters passed to the process are:

argv[0] [process.rel]
argv[1] [abc]
argv[2] [def]
argv[3] [ghi]
argv[4] [jklI]
argv[5] [mo]

Example—Unload a Process
This example unloads the process PROCess 1 from logical card 0.
ricload 0 —U PRCOCess_1

200 ARTIC960 Programmer’s Reference

Application Loader (ricload) Utility

Example—Load a Process and Pass the Contents of a File

This example loads the process \sub dir\proc FILEOOL.rel to logical card 0. The processis
not started. The contents of the file parms.txt are passed as parameters argv|].

ricload 0x0 "\sub dir\proc FILEOOl.rel" —f parns.txt —-L

The following shows the contents of the file parms.txt and the parameters passed to the
processin argv].

Contents of File parms.txt

this is the FIRST line of paraneters
this is the second line
paraneter 3

Parametersargv[]

argv[0] [proc FILEOOLl.rel]

argv[1l] [this is the FIRST Iine of paraneters]
argv[2] [this is the second |ine]

argv[3] [paraneter 3]

Example—Load and Start a Process Using a Configuration File

The following shows the contents of the file setup.cfg and the resulting action. The entire
load operation is done quietly (no messages displayed).

ricload —C setup.cfg —Q

Contents of File setup.cfg

* %k % %

* Setup configuration file

*

Oric_kern.rel —F ric_kern.cfg

O ric_base.re

*

Oric_ntio.rel —F ric_ntio.cfg
O ric_sch.rel -Fric_sch.cfg

* k% % %

Resulting Action

1. Thefileric_kern.rel isloaded to logical card O with ric_kern.cfg passed asits
parameters. Then the processis started.

Thefileric_baserel isloaded to logical card 0 and started.

3. Thefileric_mcio.rel isloaded to logical card O, with ric_mcio.cfg passed asits
parameters. Then the processis started.

4. Thefileric_sch.rel isloaded to logical card 0 with ric_sch.cfg passed asits
parameters. Then the processis started.

Chapter 6: System Unit Utilities 201

[

Dump Utility

[

202

Dump Utility

The Dump utility dumps the state of the ARTIC960 adapter for diagnostic purposes. The
Dump utility dumps all of the memory and 1/0 regions of the ARTIC960 adapter address
space.

-% The Dump utility does not break a dump into pieces across several diskettes.
The target drive must have the space necessary to capture the entire dump
file or the dump fails.

The Dump utility compresses the dump data to minimize the size of the dump file. The
Status utility handles dump file decompression. The Dump utility does not contain any
user prompts, which enablesit to run unattended.

The Dump utility has two modes of operation: triggered and immediate. In multitasking
operating systems, running the Dump utility in triggered mode requires a dedicated
session. While running in triggered mode, the Dump utility blocks on atriggering
mechanism provided by the device drivers.

Dump Syntax

-)}—L—_I— ricdump ard_num filename -A addr, len =
path l-ql L path -P PMC_cfgfile I: - :I
T
-O out_file

-C

Figure 6-2. Dump Utility Syntax

-Q Specifies quiet dump operation. Normally, the Dump utility displays
messages indicating a successful or unsuccessful operation on the standard
output device. In quiet mode, no messages are displayed.

card nhum Specifiesthelogical card number to be dumped.

filename Specifies the file into which the raw dump datais to be dumped. If the file
aready exists, it is overwritten.

A Specifiesan |/O region to be dumped. This option can be repeated up to four
times. This option is not supported on the ARTIC960Rx PCl adapter.

addr Address of an I/O region to be dumped. No validity checking is done on this
address.

len Length of an I/O region to be dumped. No validity checking is done on this
length.

—P PMC _cfdfile

Specifiesa PMC region to be dumped. Specifies that the configuration file
PMC_cfdfile contains alist of addresses and lengths to dump. Each linein
the configuration file is treated as an individual dump request.

ARTIC960 Programmer’s Reference

Dump Utility

—Oout_file

The PMC_cfdfile can contain up to 31 lines of information. Thefollowing is
an example of this configuration file. The first parameter in each lineisthe
address to be dumped, and the second parameter is the amount of datato
dump.

Ox1ffal000, 40
Ox1f f b2000, 0x28

If an error is encountered during the processing of the configuration file, the
dump operation is terminated and the remaining entries are not processed.

This option is not supported on ARTIC960 MCA and ARTIC960 PCI
adapters.

Specifies that the dump output from —P option is written to a binary file
named out_file. If out_file is not specified, the default file pmcdump.bin is
created. If the file already exists, the file is overwritten.

Use a binary editor to view the file created with the -0 option.
'% —0 out_file is used only with -P PMC__cfdfile.

Specifies an immediate dump. Thisisthe default mode of operation.
Specifies atriggered dump. The dump istriggered by an adapter exception.

Specifiesthe previously requested triggered dump should be canceled and the
Dump utility should terminate and uninstall. A triggered dump cannot be
canceled once the trigger has occurred.

Chapter 6: System Unit Utilities 203

[

Dump Utility

[

204

PMC _cfgfile Dump File Header Structures

The —A option can be used to dump a daughter-card /O region. This option is not needed
if the daughter-card ROM or daughter-card device driver fillsin its specific daughter-card
I/O regions in the |ORegions structure of ROMTable. Refer to the hardware technical
reference for your adapter for more information on ROMTable. If the address specified by
addr is not avalid Intel 960 local-bus card address for the length specified by len, abus
error may be generated, causing the system to halt.

-% To specify a filename with spaces or special characters in the name, the name
must be enclosed within quotes. Quotes within a name are not supported.

Data begins at offset 0x00000200.
typedef struct PMCFi | eHeader

{
Rl C_ULONG Magi cNo; /* Magic No. to specify a dunp file*/
Rl C_ULONG Hdr Si ze; /* Indicates total header size */
Rl C_ULONG Regi ons; /[* OFfset to next entry */
Rl C_ULONG TimeStanp; /* Tine Date Stanp */

DUVPFI LEHDR Dunpl nf o[31] ;
} PMCFI LEHEADER;

typedef struct DUMPFi | eHeader

{
Rl C_ULONG Addr essDunp; /* Address to dunp */
Rl C_ULONG Lengt hDunp; /* Amount to dunp */
Rl C_ULONG O fset /[* Ofset into the binary dunp */
/* file to locate information */
/* for this entry */

Rl C_ULONG Reserved,;
} DUMPFI LEHDR;

ARTIC960 Programmer’s Reference

Dump Utility

[

Example of a PMC_cfgfile Dump File

Thefollowing is an example of the binary file created with the —O option when viewed
with a binary editor.

0x00000000: BAAB EDFE 0002 0000 0200 0000 7A08 1236
0x00000010: 0010 FA1lF 2800 0000 0002 0000 0000 0000
0x00000020: 0010 1B1F 2500 0000 2802 0000 0000 0000
0x00000030: 0000 0000 0000 0000 0000 0000 0000 0000
0x00000040: 0000 0000 0000 0000 0000 0000 0000 0000
0x00000050: 0000 0000 0000 0000 0000 0000 0000 0000
0x00000060: 0000 0000 0000 0000 0000 0000 0000 0000
0x00000070: 0000 0000 0000 0000 0000 0000 0000 0000
0x00000080: 0000 0000 0000 0000 0000 0000 0000 0000
0x00000090: 0000 0000 0000 0000 0000 0000 0000 0000
0x000000AO0: 0000 0000 0000 0000 0000 0000 0000 0000
0x000000BO: 0000 0000 0000 0000 0000 0000 0000 0000
0x000000C0: 0000 0000 0000 0000 0000 0000 0000 0000
0x000000D0: 0000 0000 0000 0000 0000 0000 0000 0000
0x000000EO: 0000 0000 0000 0000 0000 0000 0000 0000
0x000000F0: 0000 0000 0000 0000 0000 0000 0000 0000
0x00000100: 0000 0000 0000 0000 0000 0000 0000 0000
0x00000110: 0000 0000 0000 0000 0000 0000 0000 0000
0x00000120: 0000 0000 0000 0000 0000 0000 0000 0000
0x00000130: 0000 0000 0000 0000 0000 0000 0000 0000
0x00000140: 0000 0000 0000 0000 0000 0000 0000 0000
0x00000150: 0000 0000 0000 0000 0000 0000 0000 0000
0x00000160: 0000 0000 0000 0000 0000 0000 0000 0000
0x00000170: 0000 0000 0000 0000 0000 0000 0000 0000
0x00000180: 0000 0000 0000 0000 0000 0000 0000 0000
0x00000190: 0000 0000 0000 0000 0000 0000 0000 0000
0x000001A0: 0000 0000 0000 0000 0000 0000 0000 0000
0x000001BO: 0000 0000 0000 0000 0000 0000 0000 0000
0x000001C0: 0000 0000 0000 0000 0000 0000 0000 0000
0x000001D0: 0000 0000 0000 0000 0000 0000 0000 0000
0x000001EO0: 0000 0000 0000 0000 0000 0000 0000 0000
0x000001FO0: 0000 0000 0000 0000 0000 0000 0000 0000
0x00000200: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
0x00000210: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
0x00000220: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
0x00000230: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
0x00000240: FFFF FFFF FFFF FFFF FFFF FFFF FF

Chapter 6: System Unit Utilities 205

Dump Utility

[

Dump Messages and Exit Codes

The contents of the message file used by all utilities are listed in Appendix B: Message File
on page 295. The messages used by the Dump utility are listed in Table 6-2. The Dump
utility also setsits exit code value to indicate the status of the dump operation. The
following table correlates the exit code of the Dump utility with the dump messages.

Table 6-2. Dump Utility Messages and Exit Codes

Message
Number

Exit Code

Notes

RIC0001

RC_UTIL_INVALID_CMDLINE_OPTION

RIC0002

RC_UTIL_INVALID_CMDLINE_PARM

RIC0003

RC_UTIL_FILE_NOT_FOUND

RIC0004

RC_UTIL_FILE_ACCESS

RIC0005

RC_UTIL_INVALID_CARD_NUMBER

RIC0010

RC_UTIL_NO_ADAPTER_RESPONSE

RIC0011

None

Information-only message

RIC0012

RC_UTIL_SUCCESS

Successful dump completion

RIC0013

None

Information-only message

RIC0014

RC_UTIL_SUCCESS

Successful dump cancellation

RIC0015

RC_UTIL_NOT_PENDING

RIC0016

RC_UTIL_SYSTEM_ERROR

RIC0019

RC_UTIL_NOT_INSTALLED

RIC0028

RC_UTIL_WRNHELP_GIVEN

RIC0038

RC_UTIL_ACCESS_ERROR

RIC0040

RC_UTIL_ALREADY_STARTED

RIC0056

None

Information-only message

RIC0075

RC_UTIL_INVALID_CMDLINE_OPTION

RIC0080

RC_UTIL_UNSUPPORTED_OPTION

Warning message

RIC0082

RC_UTIL_UNSUPPORTED_OPT _
HARDWARE

Warning message

RIC0083

RC_UTIL_DUMP_PROCESS_ERROR

RIC0084

None

RIC0085

RC_UTIL_SUCCESS

Successful PMC dump completion

RIC0086

RC_UTIL_DUMP_CONFIG_ERROR

RIC0087

RC_UTIL_PARM_SYNTAX_ERROR

Syntax for parameters incorrect

206 ARTIC960 Programmer’s Reference

Configuration Utility

|
Configuration Utility

The Subsystem Control Block (SCB) Logical 1/O Architecture specifies how units on the
system bus communicate with one another. The SCB Configuration utility configures the
move-mode SCB pipes between the ARTIC960 adapters and the system processor and
between each ARTIC960 adapter. The SCB pipes should be configured before using
Remote Mailbox services. The Configuration utility must be run after the ARTIC960
kernel, base subsystem, system-bus I/O subsystem, and SCB subsystem are loaded, but
before any mailbox applications are loaded.

If you are going to use peer-to-peer communication, load the kernel with the
MAX_PEER_ADAPTERS parameter equal to the number of peer SCB units. The kernel
defaultis 0. In addition, if you are using the ARTIC960 Micro Channel adapter in an AlX
environment, configure the adapter with the attribute DMA2Enable set to YES if peer-to-
peer communication is needed. The attribute default is NO.

'% If an adapter is reset, this utility must be rerun.

Unless otherwise specified, a default pipe size is used. The default pipe size is 1024 bytes
for alogical adapter pipe, and 2048 bytes for a system unit pipe. When apipe sizeis
specified, it must be aminimum of 128 bytes.

The Configuration utility prevents configuration of a pair of logical adaptersif they are not
physically able to communicate. If an adapter does not have a full memory window
configured, other adapters cannot directly accessit. If an adapter isin a 16-bit Personal
System/2 (PS/2) slot and the window for the peer adapter is located above the 16 MB line,
it cannot access the other adapter. The Configuration utility rejects both of these
configurations with the error message RIC0041.

In AlX, the Configuration utility also prevents configuration of a pair of logical adaptersif
peer-to-peer activity is not supported on PCl adapters. The error message RIC0080
(“Warning: Unsupported option: xooxxxx™) is returned.

The system-unit-to-card SCB pipes have to be configured prior to configuring the
card-to-card SCB pipes.

Chapter 6: System Unit Utilities 207

Configuration Utility

[

Configuration Syntax

> ricenfg -L card_num1 >4
I-path J -Q L card_num2 il |- -Ssls2 J
-A
-P
-C config_filename

Figure 6-3. Configuration Utility Syntax

Specifies quiet operation. Normally, the Configuration utility displays
messages indicating the success of an operation on the standard output
device. In quiet mode, no messages are displayed.

Specifies which logical cards are to be configured. A set of SCB delivery
pipes are configured between logical card_numl and card_num?2. If
card num2 is not specified, it is assumed to be the system unit.

Specifiesthe size, in bytes, of the delivery pipe. The size s1 corresponds to
the size of the delivery pipe from card_numl to card_num2. The size 2
corresponds to the size of the delivery pipe from card_num?2 to card_numl.

The minimum size for s1 and s2 is 128 bytes. If asizeis not specified, the
default size is used (1024 bytes for card-to-card pipes and 2048 bytes for
system-unit-to-card pipes).

—C config_filename

Specifiesthat the contents of the file config_filenameisto be used asinput to
the Configuration utility. Each line in the configuration file is treated as an
individual configuration request. The format of the fileisdescribed in Figure
6-4.

-% To specify a config_filename with spaces or special characters in
the name, the name must be enclosed within quotes (* ”). Quotes
within a name are not supported.

Specifies that all pipes (system unit/adapter and adapter/adapter) be
configured using the default pipe sizes.

Specifies that system unit/adapter pipes be configured using the default pipe
Sizes.

Configuration File Entry Format

-L card_numl

Lcard_numz —l |- -Ssl1s2 J

-A
- -P
* comments

Figure 6-4. Configuration Utility File Entry Format

-% Blank lines and comments in configuration files are ignored.

208 ARTIC960 Programmer’s Reference

Configuration Utility

Configuration Messages and Exit Codes

The contents of the message file used by all utilities are listed in Appendix B: Message File
on page 295. The messages used by the Configuration utility are listed in Table 6-3. The

Configuration utility also setsits exit code value to indicate the status of the configuration
operation. The following table correlates the exit code of the Configuration utility with its

messages.

Table 6-3. Configuration Utility Messages and Exit codes

Message
Number

Exit Code

Notes

RIC0001

RC_UTIL_INVALID_CMDLINE_OPTION

RIC0002

RC_UTIL_INVALID_CMDLINE_PARM

RIC0003

RC_UTIL_FILE_NOT_FOUND

RIC0004

RC_UTIL_FILE_ACCESS

RIC0005

RC_UTIL_INVALID_CARD_NUMBER

RIC0009

RC_UTIL_ADAPTER_EXCEPTION

RIC0010

RC_UTIL_NO_ADAPTER_RESPONSE

RIC0016

RC_UTIL_SYSTEM_ERROR

RIC0019

RC_UTIL_NOT_INSTALLED

RIC0029

RC_UTIL_WRNHELP_GIVEN

RIC0036

RC_UTIL_SUCCESS

RIC0037

RC_UTIL_MICROCODE_ERROR

Microcode error

RIC0038

RC_UTIL_ACCESS_ERROR

RIC0041

RC_UTIL_PIPE_UNCONF

(PS/2 systems only)

RIC0043

RC_UTIL_PIPE_SIZE_OUT_OF_RANGE

RIC0046

RC_UTIL_PIPE_ALREADY_CONF

RIC0047

RC_UTIL_PIPE_CONF_FAILED

RIC0055

RC_UTIL_UNIT_NOT_FUNCTIONING

RIC0067

RC_UTIL_SNGL_PIPE_CONF_FAILED

RIC0068

RC_UTIL_SUBSYSTEM_NOT_FOUND

RIC0080

RC_UTIL_UNSUPPORTED_OPTION

Chapter 6: System Unit Utilities

209

Reset Utility

[

Reset Utility

The Reset utility allows usersto reset ARTIC960 adapters. Multiple adapters can be reset
with asingle call of the Reset utility.

The Reset utility ensuresthat all other SCB units (system driver and adapters) are notified
of the reset operation before resetting the card.

Reset Syntax

”—m— ricreset ﬁm‘ N
path -Q

Figure 6-5. Reset Utility Syntax

-Q Specifies quiet operation. Typically, the Reset utility displays messages
indicating a successful or unsuccessful operation on the standard output
device. In quiet mode, no messages are displayed.

card_num Specifiesthelogical card number to be reset. If multiple adapters are
specified, they are reset sequentially.

If multiple adapters are being reset with asingle call, the Reset utility continues to the next
adapter if anindividual adapter reset fails or if an individual adapter number isinvalid.
The proper messages are generated for each adapter asitsreset isdone. If any errors are
detected while resetting any of the adapters, the most severe error code is returned by the
Reset utility. These exit codes from least to most severe are:

RC_UTI L_SUCCESS
RC_UTI L_I NVALI D_CARD_NUVBER
RC_UTI L_RESET_FAI LED

RC_UTI L_NO_ADAPTER_RESPONSE

All other errors cause the Reset utility to end immediately with the proper error code.

210 ARTIC960 Programmer’s Reference

Reset Utility

Reset Messages and Exit Codes

The contents of the message file used by all utilities are listed in Appendix B: Message File
on page 295. The messages used by the Reset utility are listed in Table 6-4. The Reset
utility also setsits exit code value to indicate the status of the reset operation. The
following table correlates the exit code of the Reset utility with the reset messages.

Table 6-4. Reset Utility Messages and Exit Codes

Message

Number Exit Code Notes

RIC0001 RC_UTIL_INVALID_CMDLINE_OPTION

RIC0005 RC_UTIL_INVALID_CARD_NUMBER

RIC0009 RC_UTIL_RESET_FAILED This message is followed by
message RIC0034

RIC0010 RC_UTIL_NO_ADAPTER_RESPONSE This message is followed by
message RIC0034

RIC0019 RC_UTIL_NOT_INSTALLED

RIC0031 RC_UTIL_WRNHELP_GIVEN

RIC0032 None Information-only message

RIC0033 RC_UTIL_SUCCESS Successful reset operation

RIC0034 None Exit code depends on preceding
message (RIC009 or RIC0010)

RIC0038 RC_UTIL_ACCESS_ERROR

Chapter 6: System Unit Utilities 211

[

Trace Utilities

|
Trace Utilities

The ARTIC960 kernel supportstracing of selected kernel services and user definable
services. Three system unit utilities support tracing of services on the card: Set Trace, Get
Trace, and Format Trace.

e Set Traceinitializes, enables, and disables tracing of specified services.

e Get Tracereads the trace buffer (log) on the card and storesit on the system unit in a
user-definable tracefile.

* Format Trace formats the trace file into a user-readable format.

212 ARTIC960 Programmer’s Reference

Set Trace Utility

|
Set Trace Utility

The Set Trace utility initializes, enables, and disables tracing of various service classes on
the ARTIC960 adapter. Thereis adefined set of kernel service classes that can be
specified. The defined service classes are listed under EnableTrace—Enable Tracing of
Service Classes on page 151. In addition, the user can define his own service classes.

Thetrace buffer must first be initialized before a service class can be enabled. An optional
wrap count may be specified to set the maximum number of times the trace buffer can
wrap. If awrap count is not specified, the trace buffer wraps indefinitely. The wrap count
is helpful in cases when tracing exceeds the trace buffer.

This utility can be used to initialize the trace buffer and enable a service class on the same
command line prompt. Also, multiple, or all, service classes can be enabled and disabled
on the same command line prompt.

Set Trace Syntax

PP———— ricsettr — card_num
|- path J

>
|.-| sizeL_ToumJ—I I__Dm L-Em

Figure 6-6. Set Trace Utility Syntax

v

card hum Specifiesthelogical card number to be traced.

— size Specifiesthe size of the trace buffer (in KB) to be created and initialized on
the adapter. Valid sizerange is 1 to 64.

-W count Specifies the count after which the tracing should stop wrapping in the trace
buffer. A count of —1 wraps the trace buffer infinitely.

-D class Specifiesthe service classesfor which tracing isto be disabled. Valid service
classes are between 0 and 255. Service classes between 0 and 127 are
reserved for kernel services. User-defined services classes are between 128
and 255. For performance reasons, the kernel does not perform any class
range checking.

—-E class Specifiesthe service classes for which tracing isto be enabled. Valid service
classes are between 0 and 255. Service classes between 0 and 127 are
reserved for kernel services. For performance reasons, the kernel does not do
any checking.

Chapter 6: System Unit Utilities 213

Set Trace Utility

[

214

Set Trace Messages and Exit Codes

The contents of the message file used by all utilities are listed in Appendix B: Message File
on page 295. The messages used by the Set Trace utility are listed in Table 6-5. The Set
Trace utility also setsits exit code va ue to indicate the status of the set trace operation.
The following table correlates the exit code of the Set Trace utility with the messages.

Table 6-5. Set Trace Utility Messages and Exit Codes

Message

Number Exit Code Notes

RIC0001 RC_UTIL_INVALID_CMDLINE_OPTION

RIC0002 RC_UTIL_INVALID_CMDLINE_PARM

RIC0005 RC_UTIL_INVALID _CARD_NUMBER

RIC0010 RC_UTIL_NO_ADAPTER_RESPONSE

RIC0019 RC_UTIL_NOT_INSTALLED

RIC0038 RC_UTIL_ACCESS_ERROR

RIC0300 RC_UTIL_WRNHELP_GIVEN

RIC0324 RC_UTIL_INVALID_CMDLINE_PARM Invalid service class
RIC0326 RC_UTIL_SUCCESS Successful set trace operation

ARTIC960 Programmer’s Reference

Get Trace Utility

[

Get Trace Utility

The Get Trace utility allows usersto read data in the trace buffer on the RadiSys
ARTIC960 adapter and store it in afilein binary form. The datain thisfile can be
formatted by the Format Trace utility, discussed in section Format Trace Utility on
page 217. Prior to running the Get Trace utility, use the Set Trace utility to initialize the
trace buffer.

Thetrace buffer should not be read while tracing is active. Before reading the trace buffer,
the Get Trace utility disablestracing of all services currently enabled, unlessthe —E option
is specified. Tracing of services can be enabled again after the buffer isread by using the

Set Trace utility.

Get Trace Syntax

-}}—L—_l— ricgettr — card_num ><¢
path L-O out_filename 1 L -E |

Figure 6-7. Get Trace Utility Syntax

card nhum Specifiesthelogical card number to be traced.

—O out_filename
Specifies the name of the file in which data from the trace buffer is stored. If
this option is not specified, thefilerictrace.bin is created in the current
directory.

-E Specifies that the trace buffer should be retrieved without first disabling the
active tracing. This option should be used only when the trace cannot be
retrieved otherwise, because the trace buffer could be updated asit is
retrieved. This option can be used to recover the trace buffer from a card that
has an exception condition. It should not be used on a card during active
tracing.

Chapter 6: System Unit Utilities 215

Get Trace Utility

[

216

Get Trace Messages and Exit Codes

The contents of the message file used by all utilities are listed in Appendix B: Message File
on page 295. The messages used by the Get Trace utility are listed in Table 6-6. The Get
Trace utility also setsits exit code value to indicate the status of the Get Trace operation.
The following table correlates the exit code of the Get Trace utility with the messages.

Table 6-6. Get Trace Utility Messages and Exit Codes

Message

Number Exit Code Notes

RIC0001 RC_UTIL_INVALID_CMDLINE_OPTION

RIC0002 RC_UTIL_INVALID_CMDLINE_PARM

RIC0004 RC_UTIL_FILE_ACCESS

RIC0005 RC_UTIL_INVALID_CARD_NUMBER

RIC0010 RC_UTIL_NO_ADAPTER_RESPONSE

RIC0016 RC_UTIL_SYSTEM_ERROR

RIC0019 RC_UTIL_NOT_INSTALLED

RIC0038 RC_UTIL_ACCESS_ERROR

RIC0301 RC_UTIL_WRNHELP_GIVEN

RIC0302 RC_UTIL_SUCCESS Successful Get Trace operation

RIC0303 None Information message to run Format
Trace utility

RIC0305 None Trace is not initialized

ARTIC960 Programmer’s Reference

Format Trace Utility

[

Format Trace Utility

The Format Trace utility allows users to format the data obtained in afile by the Get Trace
utility.

The formatted data consists of the fields of the Trace Control Block, which contains
general information about the trace and the trace data of the service classes enabled by the
Set Trace utility. The trace datais in the form of records to enhance readability.

The utility requires a service classfile to correl ate the service classes and procedure names
to service class numbers and procedure I Ds. The text filericclass.trc has all the
predefined kernel service classes and procedure names. This file must be present in the
current directory or one of the directories defined in the RICPATH or DPATH (for 0S/2)
or PATH (for AIX) environment variables for the Format Trace utility to find it for trace
formatting.

You have the option to specify a user trace file using the —C option. Your trace file must
contain the same classes and procedure names that you have defined. You should use
ricclass.trc as an example for the format of the file. Service class hames must begin with
C_ and procedure ID names must begin with P_.

If the Format Trace utility fails to find ricclass.trc, the warning message Rl C0003 is
displayed. The trace file is formatted. However, the service class and procedure names do
not appear in the output file. If the Format Trace utility failsto find the user-specified
service classfile, the message RI C0003 is displayed and the Format Trace utility
terminates with exit code RC_UTI L_FI LE_NOT_FOUND.

The Format Trace utility failswith RC_UTI L_FI LE_FORMAT if the binary datait formats
is corrupted.

Format Trace Syntax

-)}—L—J— ricfmttr b4
path |- -l in_filename —I I--O out_filenameJ |—-C cIass_fiIenameJ

Figure 6-8. Format Trace Utility Syntax

-l in_filename
Specifies the name of the file that contains data obtained by the Get Trace
utility. The Format Trace utility formatsthe datain thisfile. If in_filenameis
not specified, the utility searchesthe current directory, then RICPATH
followed by the DPATH (for OS/2) or PATH (for AlX) environment
variablesfor rictrace.bin.

-0 out_filename
Specifies the name of the file for which the formatted information is stored.
If thefile aready exists, the datain thefileis overwritten. If out_filenameis
not specified, the formatted datais written to stdout.

—C class filename
Specifies the name of the file that contains the user’s service class and
procedure I1D information.

Chapter 6: System Unit Utilities 217

Format Trace Utility

[

218

Example of a Format Trace Call
The following example illustrates the use of format trace.

ricgettr O
ricfmttr

This sample reads the trace buffer on card 0 and writes the formatted trace to stdout. A file
rictrace.bin is created in the current directory.

Format Trace Messages and Exit Codes

The contents of the message file used by all utilities are listed in Appendix B: Message File
on page 295. The messages used by the Format Trace utility arelisted in Figure 6-6. The

Format Trace utility also setsits exit code value to indicate the status of the Format Trace
operation. The following table correlates the exit code of the Format Trace utility with the

messages.
Table 6-7. Format Trace Utility Messages and Exit Codes

Message

Number Exit Code Notes

RIC0001 RC_UTIL_INVALID_CMDLINE_OPTION

RIC0002 RC_UTIL_INVALID_CMDLINE_PARM

RIC0003 RC_UTIL_FILE_NOT_FOUND

RIC0004 RC_UTIL_FILE_ACCESS

RIC0026 RC_UTIL_FILE_FORMAT

RIC0304 RC_UTIL_WRNHELP_GIVEN

RIC0306 RC_UTIL_SUCCESS Trace buffer is empty

RIC0307 — None Format messages

RIC0322,

RIC0325

RIC0323 RC_UTIL_SUCCESS Successful Format Trace operation

ARTIC960 Programmer’s Reference

Format Trace Utility

Format Trace Record Details
The following figures depict the records displayed by the Format Trace utility.

Thefirst record contains the trace control block information. Each successive record
contains information for the required service classes. All displayed values are
hexadecimal.

For examples, see Format Trace Record Examples on page 222.

Trace Control Block Record: The following is the first record in the formatted trace. A
WrapAroundCount of OXxFFFFFFFF indicates an infinite wrap count. Service Classes
Enabled fields indicate which service classes were enabled at the time the ricgettr was
caled.

4 2\
WrapAroundCount Oxnnnnnnnn

CurWrapAroundCount Oxnnnnnnnn

Service Classes Enabled:

nnn nnn nnn nnn nnn nnn nnn nnn
nnn nnn

Figure 6-9. Trace Control Block

Chapter 6: System Unit Utilities 219

[

Format Trace Utility

[

Record Description (Datain Bytes): In thisrecord, the datais shown in bytes. The valid
kernel ServiceClass and Procedurel D fields are obtained from the service classfile
ricclass.trc and the optional —C service class configuration file. The valid kernel
CallerPosition strings are PROCEDURE._ENTRY and PROCEDURE_EXI T.

s . A
ServiceClass = 0xnn SSSSSSSSSSSSSSSS
ProcedurelD = 0Oxnn S$SSSSSSSSSSSSSSS
CallerPosition = Oxnn $SSSSSSSSSSSSSSS
DataSize = Oxnnnnnnnn
ProcessInkExec = $SSSSSSSSSSSSSSS
Data Bytes:
nn nn nn nNn nn nn onn nn - nnonn onn onn onn onn onn onn cceceeeececcceccce
nn nn nn nn cccee

NS J

Figure 6-10. Record Description for a Service Class (Data in Bytes)

220 ARTIC960 Programmer’s Reference

Format Trace Utility

Record Description (Datain Words): In thisrecord, the datais shown in words. The
valid kernel ServiceClass and Procedurel D fields are obtained from the service classfile
ricclass.trc and the optional —C service class configuration file. The valid kernel
CallerPosition strings are PROCEDURE._ENTRY and PROCEDURE_EXI T.

ServiceClass = 0xnn $SSSSSSSSSSSSSSS
ProcedurelD = Oxnn $SSSSSSSSSSSSSSS
CallerPosition = Oxnn SSSSSSSSSSSSSSSS
DataSize = Oxnnnnnnnn

ProcessInkExec = $SSSSSSSSSSSSSSS

Data Words:

nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn
nnnnnnnn nnnnnnnn nannnnann nnnnnnnn
nnnnnnnn nnnnnnnn nannnnann nnnnnnnn
nnnnnnnn nnnnnnnn

Figure 6-11. Record Description for a Service Class (Data in Words)

Chapter 6: System Unit Utilities 221

[

Format Trace Utility

[

Format Trace Record Examples

(WrapAroundCount = OxFFFFFFFF)
CurWrapAroundCount = 0x00000002
Service Classes Enabled:

3 7
& J
Figure 6-12. Trace Control Block Example

s N
Service Class = 0x07 C_MATLBOX_SERVICE
Procedure ID = 0x03 P_OPENMBX
Caller Position = 0x00 PROCEDURE ENTRY
Data Size = 0x00000005
Process In Exec = PRC_rmbTpreb.rel
Data Bytes:
4D 42 58 31 00 MBX1.

\ J
Figure 6-13. Record Description Example (Data in Bytes) Trace Record: 0x002E
4 R
Service Class = 0x03 C_SEMAPHORE_SERVICE
Procedure 1D = 0x07 P_RELEASESEM
Caller Position = OxFF PROCEDURE EXIT

Data Size = 0x00000004
Process In Exec = PRC_RIC_Mbx_SS
Data Words:
00000000
& J

Figure 6-14. Record Description Example (Data in Words) Trace Record: 0x0033

222 ARTIC960 Programmer’s Reference

Status Utility

|
Status Utility

The Status utility is a development tool used to examine the state of the ARTIC960
adapter. This utility can operate in the following states:

Liveanalysis
Examines an active card in a system. (Thisisthe default.)

Post analysis
Examines araw adapter dump file that was produced by the Dump utility.

The following are modes to control the display of card data:

Interactive mode
The user can interactively request the display of specific data on the card. It
uses the standard input (stdin) and standard output (stdout) devices. Thisis
the default.

Status mode
The utility displays a standard set of adapter structuresto the standard output
device. Themodeis similar to the PSTAT command in OS/2. Run the Status
utility in this mode using pipes. Type the following to call pipes:

ricstat <paraneters> -S| nore
The following items are displayed:
» Base hardware configuration (main menu option 1)

« Thename, process ID, version, priority, and state of every process on the
adapter (main menu option 2)

« The name, attributes, and owner of every resource on the adapter (main
menu option 3)
» Exception conditions (main menu option 9)

Dump-format-mode
The address space of the adapter is displayed on the standard output device.
Thismodedisplaysall of the dumped adapter memory spacein aform similar
to the dump memory command in DOS. This format is intentionally raw to
allow more advanced tools and utilities to scan the decompressed data while
still enabling manual inspection of the dump data.

The following chart summarizes the options for using the Status utility.

Table 6-8. Status Utility Options

Live Analysis Post Analysis
Interactive mode default —F dump_file
Status mode -S — dump_file
-S
Dump-format mode N/A —D dump_file

Chapter 6: System Unit Utilities 223

Status Utility

[

Status Syntax
-}}—LpaT_l— ricstat >4

L -l il I:card_num I-SJ

-F dump_file
L— -D dump_file

Figure 6-15. Status Utility Syntax

- Specifiesthat all numeric prompts are decimal (the default is hexadecimal).
card num Specifiesthelogical card number for live-analysis operation.

—F dump_file
Specifies adump file for post-analysis operation.
-S Specifies non-interactive status mode.

—D dump file
Specifies a dump file for dump-format mode.

To specify adump_file with spaces or special charactersin the name, the
name must be enclosed within quotes (“). Quotes within a name are not
supported.

-% If no parameters are specified, the default is to prompt for card nhumbers in
interactive live-analysis mode rather than to provide help. The card number is
always interpreted as decimal.

224 ARTIC960 Programmer’s Reference

Status Utility

[

Status Messages and Exit Codes

The contents of the message file used by all utilities are listed in Appendix B: Message File
on page 295. The messages used by the Status utility are listed in Table 6-9. The Status
utility also setsits exit code value to indicate the status of the operation. The following
table correlates the exit code of the Status utility with the utility messages.

-% The menus, prompts, and displays used by the Status utility in interactive mode
follow those shown in Status Interactive Messages on page 227.

Table 6-9. Status Utility Messages and Exit Codes

Message

Number Return Code Notes
RIC0001 RC_UTIL_INVALID_CMDLINE_OPTION

RIC0002 RC_UTIL_INVALID_CMDLINE_PARM

RIC0003 RC_UTIL_FILE_NOT_FOUND

RIC0004 RC_UTIL_FILE_ACCESS

RIC0005 RC_UTIL_INVALID_CARD_NUMBER

RIC0010 RC_UTIL_NO_ADAPTER_RESPONSE

RIC0016 RC _UTIL_SYSTEM_ERROR

RIC0019 RC_UTIL_NOT_INSTALLED

RIC0026 RC_UTIL_FILE_FORMAT

RIC0030 RC_UTIL_WRNHELP_GIVEN

None RC_UTIL_SUCCESS Normal exit
RIC0038 RC_UTIL_ACCESS_ERROR

RIC0100- None Interactive messages, menus, and
RIC0299 prompts

Status Dump Format

The following shows the format of data displayed when using the dump-format mode of
the Status utility.

rraaaaaaaa hh hh hh hh hh hh hh hh-hh hh hh hh hh hh hh hh cccccceccececececcecce

where:

rr Iseither '=>"to indicate repeated blocks of dataor’ ’toindicate anew block
of data.

aaaaaaaa |sthe 32-bit address of this 16-byte block of data
hh Is the hexadecimal value of each byte in the block.

c Isthe ASCII representation of each printable character in the block, or a
period (.) if the character is not printable.

The Status utility displays al of the memory address space contained in the dump file.
Gaps in memory address space are shown as a blank line. See Figure 6-16 for an example
of aformatted dump.

Chapter 6: System Unit Utilities 225

Status Utility

[

226

Example of a Formatted Dump

This example shows:

Two unique blocks of data at addresses 00100000 through 0010002F, followed by
ablock of FFsfrom address00100030- 001014FF.

The memory address 00101410 through 0010141F is the other unigue block.
The block from 00101420-0010200F isall FFs.

The block from 00102010 through 0010210F contains a repetitive string.

Theblank lineindicatesagap in memory (from 00102110-001FFFFF) followed by a
16-byte block of 00s.

00100000 30 31 32 33 34 35 36 37-41 42 43 44 61 62 63 64 01234567ABCDabcd
00100010 0D OA 24 23 40 21 00 00-00 00 00 00 61 61 61 61 X aaaa
00100020 00 00 00 00 00 00 00 00-00 00 00 00 0O 00 00 0O
=>00101400 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FFo it
00101410 61 20 64 75 6D 6D 79 20-70 61 74 74 65 72 6F 20 a dummy pattern
=>00102000 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF
=>00102100 01 01 01 01 01 O1 01 01-30 30 30 30 31 31 31 31

00200000 00 00 00 00 00 00 00 00-00 00 00 00 0O 00 00 0O

Figure 6-16. Sample Formatted Dump

ARTIC960 Programmer’s Reference

Status Interactive Messages

[

Status Interactive Messages

Thefollowing figures depict all of the menus, prompts, and displays of the Status utility in
interactive mode. In these figures:

e All displayed values are in hexadecimal
e All numeric prompts are assumed to be hexadecimal, unless preceded by "0d"
e Thefull hexadecimal width of numerical valuesis always displayed

» If adefault adapter number is passed on the command line, the “ Enter adapter
number” prompt does not appear and the default is used.

When responding to interactive prompts, any invalid data (entering "Z" at an adapter
number prompt, for example) causes the invalid input message to be displayed, followed
by are-prompt for data.

When displaying data, the status utility keeps track of the number of lines displayed and
the number of lines on the screen when the Status utility isinitiated. If the number of data
lines would cause the displayed datato scroll off the screen, press Enter to continue. Also,
when displaying structures that have lists of datathat may potentially be corrupted or very
long, the Status utility allows the user to abort the display of the list by pressing the “q”
key whilethelist is being displayed. The scroll featureis disabled if the number of linesin
the current window isless than 25.

The following defines the characters used in the data:
n represents numeric data
S represents string data

t represents amemory type

Chapter 6: System Unit Utilities 227

Status Interactive Messages

[

228

Main Menu

Thisisthe main menu for the Status utility.

0) Quit

1) Configuration

2) Process summary

3) Resource summary
4) Memory

5) Process details

6) Process resources
7) Process parameters
8) Resource details
9) Exception conditions
10) VPD Information
11) 80960 registers

Enter item for display =>
\

Figure 6-17. Status Utility Main Menu

The following sections explain each of the options on the Status utility main menu.
1) Configuration on page 229

2) Process Summary on page 230

3) Resource Summary on page 231
4) Memory on page 232

5) Process Details on page 233

6) Process Resources on page 237

7) Process Parameters on page 238
8) Resource Details on page 239

9) Exception Conditions on page 250
10) VPD Information on page 251

11) 80960 Registers on page 252. This option is displayed only if the Status utility is
called on a dump file with the -F switch.

Vector details are available only when specified by name or number. See \ector Resource
Details on page 249 for an explanation of the displayed information. See Figure 6-63 on
page 260 for an example.

ARTIC960 Programmer’s Reference

Status Interactive Messages

1)

Configuration

The following screen shows the prompts and items displayed when the Configuration
option is chosen from the main menu.

If amemory window is not configured, its dataline is not displayed.
On 0S/2 systems with PCI cards, the Slot Number field displays FF.
Valid values for Bus Type are MCA or PCI.

Valid values for Interface Chip are Miami, MiamiP2P, or Rx.

Valid values for Data Cache HW are Present or Not Present.

To theright of the AIB ID is adescriptive AIB name.

— I the daughter-card typeisa PMC and the card is not present,
0X00000000 ()isdisplayed.

— IfaPMC card is present, OXFFFFFFFF (PM C Adapter Present) is displayed.

The Total memory sizeisfirst shown in bytes. To theright of the sizein bytesis
the memory size converted to megabytes.

See Figure 6-44 on page 253 for an example.

N
(Enter adapter number =>

Slot number nn

Card ID nnnnnnnn

Bus Type SSS

Interface Chip $SSS

Data Cache HW SSSSSSS

Base I1/0 address nnnn

Interrupt level nn

AIB ID nnnnnnnn (SSSSSSSSSSS)

Full window address nnnnnnnn

Total memory size nnnnnnnn (n.n MB)

Available memory nnnnnnnn

Memory Region Size Type

nnnnnnnn nnnnnnnn (n.n MB) tttttttttttttttttttttt

nnnnnnnn nnnnnnnn (n.n MB) tttttttttttttttttttttt

-- Press Enter to continue --
NS J

Figure 6-18. Status Utility Configuration Display

Chapter 6: System Unit Utilities 229

[

Status Interactive Messages

[

230

Process Summary

The following screen shows the prompts and items displayed when the Process
Summary option is chosen from the main menu. The output line is repeated for each

process running on the adapter. Valid states are:

loaded

queued

blocked
suspended
stopped

driver

waiting on PMRq
expired

See Figure 6-45 on page 253 for an example.

Enter adapter number =>

S55S555SSSSSSSS nANNNNNN nnnnnnnn . nnnnnnnn
-- Press Enter to continue --

SSSSSSSSS

Figure 6-19. Status Utility Process Summary Display

ARTIC960 Programmer’s Reference

Status Interactive Messages

[

3) Resource Summary

The following screen shows the prompts and items displayed when the Resource
Summary option is chosen from the main menu. The output line is repeated for each
resource on the adapter. Valid resource types are:

semaphore
event

memory

timer

gueue

mailbox

signal

vector

driver

hardware device

See Figure 6-46 on page 254 for an example.

(Enter adapter number =>

Name Type

S5555555555555SS SSSSSSSSS
-- Press Enter to continue --

Figure 6-20. Status Utility Resource Summary Display

Chapter 6: System Unit Utilities 231

Status Interactive Messages

[

232

4) Memory
The following screen shows the prompts and items displayed when the Memory
option is chosen from the main menu.
e Theaddress of the card can be specified by the local card address or the memory
name.
e By enteringaB or W at the prompt, the data can be displayed two different ways:
byte mode or word mode.
— If the byte mode (B) is chosen, the three groups displayed are:
— Address
— Hexadecimal value of each byte
— ASCII representation of each byte (if the character is not a printable
character, a period is displayed)
— If theword mode (W) is chosen, the two groups displayed are:
— Address
— Hexadecimal value of each word
» If the address was previously entered and a NULL value was entered at the
memory address prompt, the Status utility continues to display the memory.
e Theoutput lineis repeated as necessary to display all data.
See Figure 6-47 on page 254 for an example.
Enter adapter number =>
Enter [Address|Name][LengthJ[B|IW] Or 0 to Return =>
aaaaaaaa hh hh hh hh hh hh hh hh-hh hh hh hh hh hh hh hh cceceeeecccccecececec
OR
aaaaaaaa hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
N

Figure 6-21. Status Utility Memory Display

ARTIC960 Programmer’s Reference

Status Interactive Messages

Process Details

The following screen shows the prompts and items displayed when the Process Details
option is chosen from the main menu.

Valid process states are:

loaded

queued
blocked

driver
suspended
wait on PMRq
stopped
expired

Valid process types are:

normal
driver
subsystem
kernel

An expired process is one that has been stopped and unloaded from the adapter. If a
processisin the stopped or expired state, the Process Details submenu also shows
termination status information. A process can be terminated because of the following
events:

Process Terminated by Software Event on page 234
Process Terminated by Processor Event on page 235
Process Terminated by Adapter Event on page 236

See Figure 6-48 on page 254 for an example.

-
Enter adapter number =>
Enter process name or ID =>

Name SSSSSSSSSSSSSSSS
1D nnnnnnnn
Priority nnnnnnnn

Entry point nnnnnnnn

Stack pointer nnnnnnnn

Param pointer nnnnnnnn

State $SSSSSSSSSS
Version nnnnnnnn

Type $SSSSSSSSSS

N

Figure 6-22. Status Utility Process Details Display

Chapter 6: System Unit Utilities

233

[

Status Interactive Messages

[

234

Process Terminated by Software Event: The following screen shows prompts and
items displayed when the Process Details option is chosen from the main menu, the
processisin astopped or expired state, and the termination code is software.

See Figure 6-49 on page 255 for an example.

(Enter adapter number =>
Enter process name or ID =>
Name SSSSSSSSSSSSSSSS
ID nnnnnnnn
Priority nnnnnnnn
Entry point nnnnnnnn
Stack pointer nnnnnnnn
Param pointer nnnnnnnn
State SSSSSSSSSSS
Version nnnnnnnn
Type $SSSSSSSSSSS
Termination Code software
Requester Id nnnnnnnn
Source Of Req SSSSSSSSSSSSSSSS
Error Code nnnnnnnn

& J

Figure 6-23. Process Details Display—Process Terminated by Software Event

The valid values for Source Of Req are shown in Table 6-10.

Table 6-10. Source of Request

Source of Request Value Meaning

Local

Request came from a process on the local adapter.

Remote

Request came through a kernel mailbox command from
either the local adapter or a peer unit.

System Unit Command

Request came from the system unit through a command
(probably issued using ricload with the -U parameter).

ARTIC960 Programmer’s Reference

Status Interactive Messages

[

Process Terminated by Processor Event: The following screen shows the prompts
and items displayed when the Process Details option is chosen, the processisin a stopped
or expired state, and the termination code is processor.

See Figure 6-50 on page 255 for an example.

(Enter adapter number =>
Enter process name or ID =>

Name SSSSSSSSSSSSSSSS
1D nnnnnnnn
Priority nnnnnnnn

Entry point nnnnnnnn

Stack pointer nnnnnnnn

Param pointer nnnnnnnn

State SSSSSSSSSSS
Version nnnnnnnn

Type $SSSSSSSSSS

Termination Code processor

Fault Type $SSSSSSSSSSSSSSS
SubType $SSSSSSSSSSSSSSS
Code Address nnnnnnnn
& J

Figure 6-24. Process Details Display—Process Terminated by Processor Event

Table 6-11 shows the Fault Type and SubType values.
Table 6-11. Termination Status Fault Types and Subtypes for a Processor Event

Fault Type Fault Subtype Notes
Parallel Parallel faults occurred
Trace Instruction
Branch
Call
Return
PreReturn
Supervisor
Breakpoint
Operation Invalid Opcode Operation Unaligned is
Unimp|emented 80960CA specific
Unaligned extension
Invalid Operand
Arithmetic Integer Overflow
Arithmetic Zero-Divide
Constraint Constraint Range
Privileged
Protection Length
Type Type Mismatch
Reserved Reserved Reserved

Chapter 6: System Unit Utilities 235

Status Interactive Messages

[

236

Process Terminated by Adapter Event: The following screen shows the prompts
and items displayed when the Process Details option is chosen from the main menu, the
processisin astopped or expired state, and the termination code is Adapter.

Valid values for Trap Type are: memory violation and processor.

See Figure 6-51 on page 256 for an example.

(Enter adapter number =>
Enter process name or ID =>

Name $5SSS5SSSSSSSSSSS
1D nnnnnnnn
Priority nnnnnnnn

Entry point nnnnnnnn

Stack pointer nnnnnnnn

Param pointer nnnnnnnn

State SSSSSSSSSSS
Version nnnnnnnn

Type SSSSSSSSSSS

Termination Code adapter

Trap Type $SSSSSSSSSSSSSSS

Memory Address nnnnnnnn

Code Address nnnnnnnn

& J

Figure 6-25. Process Details Display—Process Terminated by Adapter Event

ARTIC960 Programmer’s Reference

Status Interactive Messages

6) Process Resources

The following screen shows the prompts and items displayed when the Process resources

option is chosen from the main menu. The display format isidentical to the Resource

summary on page 231, except that only the resources for the selected process' resources
are displayed. The output line is repeated for each resource.

See Figure 6-52 on page 256 for an example.

Enter adapter number =>
Enter process name or ID =>

Name Handle Type

SSSSSSSSSSSSSSSS nnnnnnnn SSSSSSSSS

Figure 6-26. Status Utility Process Resources Display

Chapter 6: System Unit Utilities

237

[

Status Interactive Messages

[

7) Process Parameters

The following screen shows the prompts and items displayed when the Process parameters
option is chosen from the main menu. The output lineis repeated to display all parameters.

See Figure 6-53 on page 257 for an example.

-
Enter adapter number =>
Enter process name or ID =>

argvinn] = "sssss"

Figure 6-27. Status Utility Process Parameters Display

238 ARTIC960 Programmer’s Reference

Status Interactive Messages

8) Resource Details
The format of the Resource details display depends on the individual resource.

If aresource name without the resource type prefix is specified on the main menu, the
following menu is displayed and you are asked to indicate the resource type.

e . h
Return to previous menu

Device Driver
Event

Mailbox

Memory

Queue

Semaphore
Signal

Timer

Hardware Device

OO ~NOO o>~ wMN - O
NN N N N NN N NN

Enter the resource type =>

Figure 6-28. Resource Details Submenu

The following sections explain each of the options on the Resource details submenu.
1) Device Driver (Resource Details Submenu) on page 240

2) Event (Resource Details Submenu) on page 241

3) Mailbox (Resource Details Submenu) on page 242

4) Memory (Resource Details Submenu) on page 243

5) Queue (Resource Details Submenu) on page 244

6) Semaphore (Resource Details Submenu) on page 245

7) Signal (Resource Details Submenu) on page 246

8) Timer (Resource Details Submenu) on page 247

9) Hardware Device (Resource Details Submenu) on page 248

Vector details are available only when specified by name or number. See \ector Resource
Details on page 249 for an explanation of the displayed information. See Figure 6-63 on
page 260 for an example.

Chapter 6: System Unit Utilities 239

[

Status Interactive Messages

[

1) Device Driver (Resource Details Submenu): The following screen shows the
prompts and items displayed when a device driver is selected from the Resource details
submenu. The entriesin the Access list fields show all processes that have access to the
resource.

See Figure 6-54 on page 257 for an example.

4 N\
Enter adapter number =>
Enter resource name or handle =>
Resource type driver
Driver name SSSSSSSSSSSSSSSS
Process name SSSSSSSSSSSSSSSS
Protection SSSSSSSSS
Access list:
Proc No Process Name Handle
nnnnnnnn SSSSSSSSSSSSSSSS nnnnnnnn
_ J

Figure 6-29. Device Driver Detail Display

240 ARTIC960 Programmer’s Reference

Status Interactive Messages

2) Event (Resource Details Submenu): The following screen shows the prompts
and items displayed when an event is selected from the Resource details submenu. The
entries in the Semaphores field show each semaphore in the event. The entriesin the
Access list fields show all processes that have access to the resource.

See Figure 6-55 on page 257 for an example.

4 N\
Enter adapter number =>

Enter resource name or handle =>

Resource type event

Name $SSSSSSSSSSSSSSSS

Semaphores SSSSSSSSSSSSSSSS

S$5555555555555SS

Access list:

Proc No Process Name Handle

nnnnnnnn $5555555555555SS nnnnnnnn

_ J

Figure 6-30. Event Detail Display
Chapter 6: System Unit Utilities 241

[

Status Interactive Messages

[

242

3) Mailbox (Resource Details Submenu): The following screen shows the prompts
and items displayed when a mailbox is selected from the Resource details submenu.

Valid mailbox types are: local, global, and remote.

The Name field is the name of the memory associated with the mailbox. If no memory

is associated with the mailbox, nothing is displayed in thisfield.

The entriesin the Accesslist fields show all processes that have access to the resource.

If the mailbox is empty, the string "<empty>" is displayed on the Messages line.
Otherwise, the first 16 bytes of each mailbox element are displayed in the standard

memory-display format.

See Figure 6-56 on page 258 for an example.

s N
Enter adapter number =>
Enter resource name or handle =>
Resource type mailbox
Name $SS5555555555555S
Type SSSSSS
Receiver $555555555555SSS
Semaphore nnnnnnnn
Access list:
Proc No Process Name Handle Memory Name
nnnnnnNN - SSSSSSSSSSSSSSSS NNNNNNNN SSSSSSSSSSSSSSSS
Messages: $5$555SS
aaaaaaaa hh hh hh hh hh hh hh hh-hh hh hh hh hh hh hh hh ccececcececeecceed

N

Figure 6-31. Mailbox Detail Display

ARTIC960 Programmer’s Reference

Status Interactive Messages

4)

Memory (Resource Details Submenu): The following screen shows the prompts

and items displayed when a memory is selected from the Resource details submenu.

Valid strings for the AIB DMA Access and Mchl Accessfields are: R/W, R/O, W/O,
or none.

Valid strings for the Sharable field are: yes or no.

The entriesin the Accesslist fields show all processes that have access to the resource.

See Figure 6-57 on page 258 for an example.

4 N\
Enter adapter number =>
Enter resource name or handle =>
Resource type memory
Name SSSSSSSSSSSSSSSS
Address nnnnnnnn
Size nnnnnnnn
AIB DMA Access ssSsS
Mch1l Access SSS
Sharable SSS
Access 1list:
Proc No Process Name Handle Access
nnnnnnnn SSSSSSSSSSSSSS nnnnnnnn SSS
NS J

Figure 6-32. Memory Detail Display

Chapter 6: System Unit Utilities 243

[

Status Interactive Messages

[

244

5) Queue (Resource Details Submenu): The following screen shows the prompts
and items displayed when a queue is selected from the Resource details submenu.

e Theentriesinthe Accesslist fields show all processesthat have accessto the resource.

« The Semaphore field is the handle of the semaphore associated with the queue.

« If the queue is empty, the string "<empty>" is displayed on the "Elements" line.
Otherwise, the first 16 bytes of each queue element are displayed in the standard

memory-display format.
See Figure 6-58 on page 259 for an example.

~
(Enter adapter number =>

Enter resource name or handle =>

Resource type queue

Name $SS555555555555SS

Access list:

Proc No Process Name Handle Semaphore

nnnnnnnn $$$SSSSSSSSSSSSS nnnnnnnn nnnnnnnn

Elements: $SSSSSSS

aaaaaaaa hh hh hh hh hh hh hh hh-hh hh hh hh hh hh hh hh CCCCCCCCCCCCCeee
J

Figure 6-33. Queue Detail Display

ARTIC960 Programmer’s Reference

Status Interactive Messages

6) Semaphore (Resource Details Submenu): The following screen shows the
prompts and items displayed when Semaphore is selected from the Resource details
submenu. The entriesin the Access list fields show all processes that have access to the
resource.

See Figure 6-59 on page 259 for an example.

e
Enter adapter number =>
Enter resource name or handle =>

Resource type semaphore
Name SSSSSSSSSSSSSSSS
Count nnnnnnnn

Access 1list:

Proc No Process Name Handle

nnnnnnnn SSSSSSSSSSSSSSSS nnnnnnnn

Figure 6-34. Semaphore Detail Display

Chapter 6: System Unit Utilities 245

[

Status Interactive Messages

[

246

7) Signal (Resource Details Submenu): The following screen shows the prompts
and items displayed when a signal is selected from the Resource details submenu.

e Vadid signal options are: always, match, and sender.

e Theentriesinthe Accesslist fields show all processesthat have accessto the resource.
e ThekEntry field isempty if the Option field is sender.

« TheKey field isignored unless the Option field is match.

See Figure 6-60 on page 259 for an example.

Enter adapter number =>
Enter resource name or handle =>

Resource type signal
Name $SSSSSSSSSSSSSSS

Access Tist:

nnnnnnnn SSSSSSSSSSSSSSSS nnnnnnnn - nnnnnnnn. nnnnnnnn SSSSSSSS

Figure 6-35. Signal Detail Display

ARTIC960 Programmer’s Reference

Status Interactive Messages

[

8) Timer (Resource Details Submenu): The following screen shows the prompts
and items displayed when atimer is selected from the Resource details submenu.

Valid timer states are: running, stopped, and expired.
See Figure 6-61 on page 260 for an example.

(Enter adapter number =>)
Enter resource name or handle =>
Resource type timer
Name SSSSSSSSSSSSSSSS
Handle nnnnnnnn
Handler nnnnnnnn
State SSSSS
Owner name SSSSSSSSSSSSSSSS
Owner no nnnnnnnn
N J

Figure 6-36. Timer Detail Display

Chapter 6: System Unit Utilities 247

Status Interactive Messages

[

9) Hardware Device (Resource Details Submenu): The following screen shows
the prompts and items displayed when a hardware device is selected from the Resource
details option of the main menu.

e Thevauesfor the Valid datafield are: yes and no.
e The Owner name and Owner no fields may be blank if the deviceis not allocated.

e The Device datafields are displayed only if the valid data flag indicates that it is
available.

See Figure 6-62 on page 260 for an example.

-
Enter adapter number =>
Enter resource name or handle =>

Resource type hardware device

Name $SSS555555555SSS
Status nn

Valid data SSS

Owner name $SSSS55555SSSSSS
Owner no nnnnnnnn

Device data:
aaaaaaaa hh hh hh hh hh hh hh hh-hh hh hh hh hh hh hh hh cceeeececcececcccecce

Figure 6-37. Hardware Device Detail Display

248 ARTIC960 Programmer’s Reference

Status Interactive Messages

Vector Resource Details: The following screen shows the prompts and items
displayed when avector resource number or name is specified on the main menu.

Theentriesin the Accesslist fields show all processes that have access to the resource.

Valid values for the Protection field are: enabled and disabled.
Valid values for the Return Code field are: yes and no.
See Figure 6-63 on page 260 for an example.

~
Enter adapter number =>
Enter resource name or handle =>

Resource type vector
Vector nnnnnnnn

Access 1list:

Proc No Process Name Handle Handler Protection

nnnnnnnNn SSSSSSSSSSSSSSSS nnnnnnnn nnnnnnnnnNn SSSSSSSSSS

Return Code

SSSSSSSSSS

Figure 6-38. Vector Detail Display

Chapter 6: System Unit Utilities 249

[

Status Interactive Messages

[

9) Exception Conditions

The following screen shows the prompts and items displayed when the Exception
conditions option is chosen from the main menu.

e Theexception codeisinterpreted and a descriptive string is displayed if the exception
is a predefined exception condition. Table 6-12 lists the recognized exceptions.

e Theentriesin the Exception data fields show the data for all exception conditions.
However, the Exception data fields are not displayed if the exception code indicates
that no exception-condition is present.

See Figure 6-64 on page 261 for an example.

-
Enter adapter number =>
Exception code = nnnnnnnn (SSSSSSSSSSSSSSSSS)

Exception data:
aaaaaaaa hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

-- Press Enter to continue --

N
Figure 6-39. Status Utility Exception Conditions Display

Table 6-12. Recognized Exception Conditions

Fault Type Exception

Processor Fault Operation

Processor Fault Arithmetic

Processor Fault Constraint

Processor Fault Type Mismatch

Adapter Fault Watchdog Timeout

Adapter Fault Parity

Adapter Fault 80960 Memory Protection Violation

Adapter Fault System Bus Master Memory Protection Violation

Adapter Fault AIB Memory Protection Violation

Adapter Fault Async No More Resources

Adapter Fault Invalid Interrupt

Adapter Fault Processor

Adapter Fault NMI Interrupt

Adapter Fault PLX Interrupt

Adapter Error Power On Self Test Failure

Software Error Data Corruption

Software Error Adapter POST Failure

Software Error System Bus I/O Subsystem Failure

Software Error SCB Subsystem Failure

Software Error External Mailbox Failure

250 ARTIC960 Programmer’s Reference

Status Interactive Messages

10) VPD Information

The following submenu shows the available selections to display Vital Product Data
(VPD) information when the VPD information option is chosen from the main menu.

e For each selection, the resulting screen format is the same.
e Sdection 2isnot displayed if the attached card isa PMC card.

<
(0) Previous Menu
1) Base ROM VPD Information
2) AIB ROM VPD Information
Enter item for display =>
_ J

Figure 6-40. Status Utility VPD Information Display

The following screen shows the VPD information contained in the ROM for Intel-based
systems.

(Displayable Message $SS55555555555555555555555S5SSS)

Adapter Type nn
Part Number nnnnnnnnnnnn
FRU Number nnnnnnnnnnnn
Serial Number nnnnnnnn
Manufacturer ID nnnnnnnnnn
EC Level nnnnnnnnnnnn
ROS Level and ID n.n

-- Press Enter to continue --

k J

Figure 6-41. Displayed VPD Information for Intel-based Systems

The following screen shows the VPD information contained in the ROM for RISC
System/6000.

e .

Displayable Message $SS55555555555555555555555S5SSS
Adapter Type nn
Part Number nnnnnnnnnnnn
FRU Number nnnnnnnnnnnn
Serial Number nnnnnnnn
Manufacturer ID nnnnnnnnnn
EC Level nnnnnnnnnnnn
Device Driver Level n.n
Diagnostic Level n.n
Loadable Microcode nn.nn
ROS Level and ID n.n

-- Press Enter to continue --

- J
Figure 6-42. Displayed VPD Information for RISC System/6000

Chapter 6: System Unit Utilities 251

[

Status Interactive Messages

[

11) 80960 Registers

The following screen shows the prompts and items displayed when the 80960 registers
option is chosen from the main menu. This option is available only if the Status utility
is called on adump file using the -F switch.

See Figure 6-67 on page 262 for an example.

(Enter adapter number => A

g0 = nnnnnnnn r0 = nnnnnnnn (pfp)

gl = nnnnnnnn rl = nnnnnnnn (sp)

g2 = nnnnnnnn rZ = nnnnnnnn (rip)

g3 = nnnnnnnn r3 = nnnnnnnn

g4 = nnnnnnnn r4 = nnnnnnnn

gb = nnnnnnnn r5 = nnnnnnnn

gb = nnnnnnnn ré = nnnnnnnn

g7 = nnnnnnnn r7 = nnnnnnnn

g8 = nnnnnnnn r8 = nnnnnnnn

g9 = nnnnnnnn r9 = nnnnnnnn

gl0 = nnnnnnnn r10 = nnnnnnnn

gll = nnnnnnnn rll = nnnnnnnn

gl?2 = nnnnnnnn rl2 = nnnnnnnn

gl3 = nnnnnnnn r13 = nnnnnnnn

gl4d = nnnnnnnn rl4 = nnnnnnnn

gl5 = nnnnnnnn (fp) rl5 = nnnnnnnn

sfO = nnnnnnnn (SSSS)

sfl = nnnnnnnn (SSSS)

sf2 = nnnnnnnn (SSSS)

sf3 = nnnnnnnn (SSSS)

sf4 = nnnnnnnn (SSSS)

ip = nnnnnnnn

ac = nnnnnnnn

pc = nnnnnnnn

tc = nnnnnnnn

fp0 = nnnnnnnnnnnnnnnnnnnn fpZ2 = nnnnnnnnnnnnnnnnnnnn

fpl = nnnnnnnnnnnnnnnnnnnn fp3 = nnnnnnnnnnnnnnnnnnnn
\—— Press Enter to continue --

J

Figure 6-43. Status Utility 80960 Registers Display

e Thefollowing SF registers are displayed, depending on the adapter.

SF Registers Displayed
Adapters sf0 sfl sf2 sf3 sf4
ARTIC960 and ARTIC960 PCI y y y n n
ARTIC960Rx and ARTIC960RxD y y n y n

e Thelines fp0—fp3 are displayed only on adapters with an 80960 processor that
supports floating-point operations.

252 ARTIC960 Programmer’s Reference

Examples of Interactive Messages

Examples of Interactive Messages

The following examples all assume that the adapter number has been passed on the

command line as a default.

1) Configuration

This example shows an Rx card with one window.

(S1ot number

OxFF
Card ID 0x801014
Bus Type PCI
Interface Chip Rx
Data Cache HW Not Present
Base [/0 address 0x0000
Interrupt level OxA
AIB ID
Full window address 0xFDCO0000
Total memory size 0x00400000 (4.0
Available memory 0x003B8000

Size

0x00400000 (4.0 MB)

Memory Region

0xA0000000

-- Press Enter to continue --

MB)

Type

Packet

OxFFFFFFFF (PMC Adapter Present)

Figure 6-44. Example Screen—Configuration

2) Process Summary

Name ID Version
PRC_ric_kern.rel 0x00050000 0x01000001
PRC_RIC_Mbx_SS 0x01050001 0x01000001
PRC_ric_base.rel 0x01050002 0x01000001
PRC_ric_mcio.rel 0x01050003 0x01000001
PRC_ric_scb.rel 0x01050004 0x01000001
PRC_PROC1.rel 0x02050005 0x00000000
PRC_Alfonso 0x02050006 0x00000000
PRC_Mason 0x02050007 0x00000000
-- Press Enter to continue --

Priority

0x00000000
0x00000002
0x00000028
0x00000028
0x00000001
0x00000028
0x00000028
0x00000028

blocked
blocked
driver
blocked
blocked
queued
suspended
blocked

Figure 6-45. Example Screen—Process Summary

Chapter 6: System Unit Utilities

253

[

Examples of Interactive Messages

[

3) Resource Summary

Name Type
QUE_QUEUE_A queue
MEM_DATA_BUFFERS memory
SEM_ProcessSyncl semaphore
SEM_ProcessSync? semaphore
TIM_FeedMeNow timer
-- Press Enter to continue --

Figure 6-46. Example Screen—Resource Summary

4) Memory

(Enter [Address|Namel[Length][BIW] Or 0 to Return => 22040000 2A B
22040000 30 31 32 33 34 00 41 42-43 00 00 00 00 00 00 00 01234 .ABC.......
22040010 30 30 30 00 00 00 61 62-00 00 00 00 00 00 00 00 000...ab........
22040020 00 00 00 00 01 02 03 04-0506 oo
Enter [Address|INamel[LengthI[BIW] Or O to Return => 22040000 8 W

22040000 33323130 42410034 00000043 00000000
22040010 00303030 62610000 00000000 00000000

Figure 6-47. Example Screen—Memory

5) Process Details

(Enter process name or ID => PROCESS_A
Name PRC_PROCESS_A
ID 0x01050007
Priority 0x28
Entry point 0x22061C60
Stack pointer 0x220661F0
Param pointer 0x22067134
State queued
Version 0x0
Type normal

Figure 6-48. Example Screen—Process Details

254 ARTIC960 Programmer’s Reference

Examples of Interactive Messages

This example shows a process terminated by a software event. The process stopped normally with

an error code of 0.

Enter process name or ID => 6

Name PRC_stopproc.rel
ID 0x01050006
Priority 0x28
Entry point 0x2207FDCO
Stack pointer 0x2207E1EQ
Param pointer 0x22080134
State stopped
Version 0x0
Type normal
Termination Code Software
Requester Id 0x01050006
Source Of Req Local
Error Code 0x0

\

Figure 6-49. Example Screen—Process Terminated by Software Event

This example shows a process terminated by a processor event. The process was stopped
because it tried to perform an unsupported operation.

(Enter process name or ID => opfault.rel A
Name PRC_opfault.rel
ID 0x01050007
Priority 0x28
Entry point 0x22082020
Stack pointer 0x220811E0
Param pointer 0x22083144
State stopped
Version 0x0
Type normal
Termination Code Processor
Fault Type Operation
Subtype Invalid Opcode
Code Address 0x22083000
& J

Figure 6-50. Example Screen—Process Terminated by Processor Event

Chapter 6: System Unit Utilities 255

[

Examples of Interactive Messages

[

This example shows a process terminated by an adapter event. The process was stopped
because of an unsupported memory access.

Enter process name or ID => TPROC_3

Name PRC_TPROC_3
ID 0x01050008
Priority 0x28

Entry point 0x2208C000
Stack pointer 0x2208F1E0Q
Param pointer 0x22093134
State stopped
Version 0x0

Type normal

Termination Code Adapter

Trap Type Processor
Memory Address 0x20002040
Code Address 0x2208E1EQ

Figure 6-51. Example Screen—Process Terminated by Adapter Event

6) Process Resources

The process resources screen includes resources that the process created (owns) and

opened.

e

Enter process name or ID => 6
Name Handle Type

PRS\procab.rel 0x03040586 memory
PRC\procab.rel 0x03040588B memory
PRD\procab.rel 0x03040589 memory
MBMJ\PAMO5BJ 0x02040588 memory
STM\procab.rel 0x020A0582 timer
MBS\PAM 0x02070581 semaphore
MBX\PAM 0x0203058A mailbox
MEM_buffa 0x02040583 memory
QSM\ErrMsg 0x02070580 semaphore
QUE_ErrMsg 0x02060584 queue
SEM_ 0x0207057F semaphore

N

Figure 6-52. Sample Screen—Process Resources

256 ARTIC960 Programmer’s Reference

Examples of Interactive Messages

7) Process Parameters

(Enter process name or ID => Mason)
argv[0] = "Mason"
argvll] = "Get"
argv[2] = "off"
argv[3] = "the"
argv[4] = "table"
argv[5] = "you"
argv[6] = "stupid"
argv[7] = "cat!"
N J
Figure 6-53. Example Screen—Process Parameters
8) Resource Details
The following are example screens for resource details.
(Enter resource name or handle =>0101057A)
Resource type driver
Driver name SDD_PortDriver
Process name PRC_DriverX
Protection disabled
Access list:
Proc No Process Name Handle
0x0005 PRC_Driverx 0x0101057A
0x0006 PRC_inproc.rel 0x01010569
0x0007 PRC_outproc.rel 0x0101055C
N J
Figure 6-54. Example Screen—Device Driver Detail
Enter resource name or handle => 0102055F
Resource type event
Name EVN_EVENT_O1
Semaphores SEM_ProcessSyncl
SEM_ProcessSync?
SEM_
Access list:
Proc No Process Name Handle
0x0009 PRC_PamsProcess 0x0102055F
L J
Figure 6-55. Example Screen—Event Detail
Chapter 6: System Unit Utilities 257

[

Examples of Interactive Messages

[

(Enter resource name or handle => 0x01030557

Resource type mailbox

Name MBX_IncomingDataMbx
Type Tocal

Receiver PRC_LineProcessor
Semaphore 0x01070527

Access list:

Proc No Process Name Handle Memory Name

0x0011 PRC_LineProcessor 0x01030557 MBM_LineBufferData
0x0012 PRC_LineFeeder 0x0103055B MBM_LineBufferData
Messages:

20040000 30 31 32 33 34 00 41 42-43 00 00 00 00 00 00 0O 01234.ABC.......
20042050 30 30 30 00 00 00 61 62-00 00 00 00 0O 00 00 0O 000...ab........
20040170 31 31 30 00 00 00 61 62-43 00 00 00 00 00 00 0O 110...abC.......

Figure 6-56. Example Screen—Mailbox Detail

(Enter resource name or handle => 0104055E

Resource type memory

Name MEM_DATA_BUFFERS
Address 0x20042000

Size 0x2000

AIB DMA Access R/W

Mch1l Access R/W

Sharable yes

Access 1list:

Proc No Process Name Handle Access
0x001A PRC_ProcMemHog 0x0104055E R/W
0x001C PRC_ProcessMonitor 0x01040517 R/0

N

Figure 6-57. Example Screen—Memory Detail

258 ARTIC960 Programmer’s Reference

Examples of Interactive Messages

[

Enter resource name or handle => 01060572

Resource type queue
Name QUE_QUEUE_A

Access Tist:

Proc No Process Name Handle Semaphore
0x0011 PRC_DonsProcess 0x01060572 0x01070571
0x0012 PRC_StevesProcess 0x01060561 0x01070560
Elements: <empty>
& J

Figure 6-58. Example Screen—Queue Detail

Enter resource name or handle => 01070560
Resource type semaphore

Name SEM_ProcessSyncl

Count 0

Access 1list:

Proc No Process Name Handle
0x0006 PRC_PROCA.rel 0x01070571
0x0007 PRC_PROCB.rel 0x01070560
NS J

Figure 6-59. Example Screen—Semaphore Detail

~
(Enter resource name or handle => 0108057

Resource type signal

Name BufferRcvdSig

Access list:

Proc No Process Name Handle Entry Key Option

0x0005 MonitorAll 0x0108057E 0x2209B4F0 0x00000000 always

0x0006 MonitorSome 0x02080576 0x220617A4 0x00000001 match
& J

Figure 6-60. Example Screen—Signal Detail

Chapter 6: System Unit Utilities 259

Examples of Interactive Messages

[

(Enter resource name or handle => 010A0573
Resource type timer
Name TIM_FeedMeNow
Handle 0x010A055E
Handler 0x220841AC
State running
Owner name PRC_Mason
Owner no 0x0006
N

Figure 6-61. Example Screen—Timer Detail

(Enter resource name or handle =>000C0022

Resource type hardware device

Name Strange Device
Status 0x000

Valid data yes

Owner name PRC_aib_proc
Owner no 0x000B

Device data:
00040000 30 30 30 30 34 00 41 42-43 00 00 00 OO0 00 00 00 00004 .ABC.......
00040010 39 39 99

Figure 6-62. Example Screen—Hardware Device Detail

The following screen shows the prompts and items displayed when a vector resource
number or name is specified on the main menu.

(Enter resource name or handle => 64
Resource type vector Vector VEC_SWVect-64

Access list:

Proc No Process Name Handle Handler Protection Return Code
0x0005 PRC_TransData 0x0108057E 0x2209B4F0 enabled yes
0x0006 PRC_MonitorErr 0x02080576 0x220617A4 disabled yes

NS

Figure 6-63. Example Screen—Vector Detail

260 ARTIC960 Programmer’s Reference

Examples of Interactive Messages

[

9) Exception Conditions

(Exception code = 0x24 (Adapter Fault: Watchdog Timeout))
Exception data:
0x00000001 0x00000000 0x01050002 0x00000001
0x2200CBA4 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000
-- Press Enter to continue --
N J
Figure 6-64. Example Screen—Exception Conditions
10) VPD Information
(Displayable Message ARTIC960 Co-Processor Adapter A
Adapter Type 00
Part Number 0000091F7710
FRU Number 0000061G2916
Serial Number 12345678
Manufacturer ID 1988000000
EC Level 000000C33261
ROS Level and ID 1.4
-- Press Enter to continue --

Figure 6-65. Example Screen—VPD Information for PS/2 Systems

(Displayable Message ARTIC960 Co-Processor Adapter)

Adapter Type 00
Part Number 0000091F7710
FRU Number 0000061G2916
Serial Number 12345678
Manufacturer ID 1988000000
EC Level 000000C33261
Device Driver Level 1.0
Diagnostic Level 1.0
Loadable Microcode 01.01
ROS Level and ID 1.4

-- Press Enter to continue --

N J

Figure 6-66. Example Screen—VPD Information for RISC System/6000

Chapter 6: System Unit Utilities 261

Examples of Interactive Messages

[

262

11) 80960 Registers

-

n
4
—

I n

item for display =>11

0x20003104 r0 = 0x2206B5D0 (pfp)
0x00000000 rl = 0x2206B660 (sp)
0x00000000 r2 = 0x2200681C (rip)
0x220672DC r3 = 0x1FFA2010
0x20003138 r4 = 0x00000000
0x220672D8 rb = 0x0000001C
0x00000000 re = 0x00000001
0x00000000 r7 = 0x00000001
0x2206B3C0O rg = 0x220672A0
0x00000101 r9 = 0x00000024
0x00000404 r10 = 0x00000020
0x00000030 r1l1 = 0x00000020
0x22068080 rl2 = 0x00000000
0x00000012 r13 = 0x00000000
0x00000000 rl4 = 0x00000000
0x2206B610 (fp) rl5 = 0x00000000

0x00000FFF (IPND)
0x00000000 (IMSK)
0x00000000 (DMAC)

0x2200681C
0xD87F88FF
OXFFFF6EFC
0xFOO1FF81

Figure 6-67. Example Screen—80960 Registers

ARTIC960 Programmer’s Reference

System Unit APIs

O
194

System unit application program interfaces (APIs) are provided to allow the devel oper to
write programs that use the services of an ARTIC960 adapter. These APIs support only
C programs.

API Page
Base API 264
Mailbox API 276

Chapter 7: System Unit APIs 263

Base API

|
Base API

The following interface routines are available to the application in the base API.

Routine Page
RICOpen 265
RICClose 266
RICRead 267
RICWrite 269
RICReset 271
RICGetConfig 272
RICGetVersion 273
RICGetException 274

All API routines block until they are completed, unless otherwise noted. Refer to the
ARTIC960 Programmer’s Guide for additional information on system unit APIs.

264 ARTIC960 Programmer’s Reference

RICOpen—Open an ARTIC960 Adapter

[

RICOpen—Open an ARTIC960 Adapter
Thisroutine is used to obtain a handle for use in accessing the ARTIC960 adapter.

Functional Prototype

R C_ULONG Rl COpen (RI C_CARDNUM Car dNum
RI C_HANDLE *Handl e,
Rl C_ULONG Reserved);
Parameters

CardNum Input. Thelogical card number to open for access.

Handle Output. Adapter device handle returned to the calling process. Thishandleis
passed to all other services when referring to this adapter.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS

RC_| NVALI D_CARD_NUMBER
RC_| NVALI D_RESERVED PARM
RC_SU_OPEN_FAI LED

Remarks

* Anapplication must obtain a handle for each card it accesses directly through the base
API services.

e Thelogical card numbers are assigned by the driver during installation. Refer to the
ARTIC960 Programmer’s Guide for information on the Micro Channel and PCI buses.

* InAIX:

— The configuration manager scans the physical slots from low to high, and defines
the consecutive logical card numbers starting at O for each supported card found.
If an ARTIC960 adapter is added to a slot before an already defined ARTIC960
adapter, it is assigned the next consecutive logical number.

— Handleisonly valid to use within the process that opened it.
— Thereisno thread support.

* Theerror RC_SU OPEN _FAI LEDisreturned if the device driver is not installed.
RC_| NVALI D_CARD_NUMBERIsreturned if the card number is out of range (06 for
0S/2 and Windows NT and 0—13 for AlX).

Chapter 7: System Unit APIs 265

RICClose—Close an ARTIC960 Adapter

[

RICClose—Close an ARTIC960 Adapter

266

Thisroutine is used to terminate access to an individual ARTIC960 adapter.

Functional Prototype
Rl C_ULONG Rl CC ose (RIC_ HANDLE Handl e,
Rl C_ULONG Reserved);
Parameters
Handle Input. The handle to be closed.
Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_I NVALI D_RESERVED PARM
RC_SU_| NVALI D_HANDLE

Remarks

An application calls this routine to return a handle when it is no longer needed to access
the adapter.

ARTIC960 Programmer’s Reference

RICRead—Read from ARTIC960 Memory

[

RICRead—Read from ARTIC960 Memory

Thisroutine is used to read data from memory on an ARTIC960 adapter into system
memory.

Functional Prototype
Rl C_ULONG Rl CRead (Rl C_HANDLE Handl e,

Rl C PTR SrcBuffer,
voi d *Dest Buf f er,
Rl C_ULONG Buf f er Len,
Rl C_ULONG Opti onWord) ;

Parameters
Handle Input. The handle for the ARTIC960 adapter.

ScBuffer Input. The source memory buffer address on the adapter. Thisisaflat, 32-bit
ARTIC960 address.

DestBuffer Input. The destination buffer address in system memory. Thisis a 32-bit

logical address.
BufferLen Input. The length, in bytes, to be read.
OptionWord
Input. Reserved (must be 0).
Returns
RC_SUCCESS RC_NO_MORE_RES
RC_ADAPTER_EXCEPTI ON RC_RESET_ACTI VE
RC_DVA TRANSFER FAI LED(Al X only) RC _SCB _TRANSFER FAI LED

RC_DUVP_ACTI VE RC_SU_| NVALI D_HANDLE
RC_| NVALI D_ADDRESS RC_TI MEOUT
RC_| NVALI D_MEM ACCESS RC_SYSTEM ERROR

3

RC_| NVALI D_OPTI ON
RC_| NVALI D_SI ZE
RC_NO_ADAPTER RESPONSE

>~ UNI T_NOT_FUNCTI ONI NG
WRN_PI PES_NOT_CONFI GURED

3

Remarks

e All referencesto ARTIC960 memory are flat addresses. There is no concept of
paging, shared memory, or DMA visible to the user application.

e The memory-protection hardware on the ARTIC960 adapter reports al errorsto the
ARTIC960 processor. The system unit driver is not directly notified of access
violations. Because of this, short RICRead calls may succeed, even though they cause
access violations—whereas a long RICRead call to the same region may be rejected
because of improper access rights. This is because the subsystems on the card verify
proper access on al transfers requested by the system unit using SCB control
elements.

e Thereturn code RC_ WRN Pl PES_NOT_CONFI GURED is awarning indicating the
memory transfer was completed but the SCB subsystem is not configured.

Chapter 7: System Unit APIs 267

RICRead—Read from ARTIC960 Memory

[

268

Thereturn codesRC_DUMP_ACTI VE and RC_RESET_ACTI VE indicate adump or reset
was active when this call was made, or a dump or reset was done while the call was
blocked.

The return code RC_UNI T_NOT_FUNCTI ONI NG occurs when the driver uses SCB
control elements to move the data and the adapter does not respond within an internal
driver timeout period.

A buffer length of 0 is not valid. The maximum buffer sizeislimited to 64 KB.

The IBM RISC System/6000 uses big-endian memory format, whereas the 80960 on
the ARTIC960 adapter uses little-endian format across the PCI or MCA bus. Itisup to
the calling application to perform byte and word swapping where necessary. The
RICRead and RICWrite functions do not steer the data for the application.

ARTIC960 Programmer’s Reference

RICWrite—Write to ARTIC960 Memory

[

RICWrite—Write to ARTIC960 Memory
Thisroutine is used to write data to memory on the ARTIC960 adapter.

Functional Prototype

R C_ULONG RICWite (RIC HANDLE Handl e,
voi d *SrcBuffer,
Rl C PTR Dest Buf fer,
Rl C_ULONG Buf f er Len,
Rl C_ULONG Opti onWord) ;

Parameters

Handle Input. The handle for the ARTIC960 adapter.

ScBuffer Input. The source buffer address in system memory. Thisis a 32-bit logical
address.

DestBuffer Input. The destination buffer address on the adapter. Thisis aflat 32-bit
ARTIC960 address.

BufferLen Input. The length, in bytes, to be written.

OptionWord
Input. Reserved (must be 0).

Returns
RC_SUCCESS RC_NO_MORE_RES
RC_ADAPTER_EXCEPTI ON RC _RESET_ACTI VE
RC_DUMP_ACTI VE RC_SCB_TRANSFER FAI LED
RC_DMA_TRANSFER FAI LED(Al X only) RC_SU | NVALI D_HANDLE
RC_| NVALI D_ADDRESS RC_SYSTEM ERROR
RC_| NVALI D_MEM ACCESS RC_TI MEOUT
RC_| NVALI D_OPTI ON RC_UNI T_NOT_FUNCTI ONI NG
RC_| NVALI D_SI ZE RC_WRN_PI PES_NOT_CONFI GURED

RC_NO_ADAPTER RESPONSE

Remarks

e All referencesto ARTIC960 memory are flat addresses. There is no concept of
paging, shared memory, or DMA visible to the user application.

e The memory-protection hardware on the ARTIC960 adapter reports al errorsto the
ARTIC960 processor. The system unit driver is not directly notified of access
violations. Because of this, short RICRead calls may succeed, even though they cause
access violations—whereas along RICRead call to the same region may be rejected
because of improper access rights. The reason is because the subsystems on the card
verify proper access on all transfers requested by the system unit using SCB control
elements.

e Thereturn codesRC_DUMP_ACTI VE and RC_RESET_ACTI VE indicate adump or reset
was active when this call was made, or a dump or reset was done while the call was
blocked.

Chapter 7: System Unit APIs 269

RICWrite—Write to ARTIC960 Memory

[

270

Thereturn code RC | NVALI D_MEM ACCESS cannot bereceived in OS/2. If the driver
detects an access violation, OS/2 terminates the process with atrap unless the
application has an exception handler registered with OS/2.

The return code RC_UNI T_NOT_FUNCTI ONI NG occurs when the driver uses SCB
control elements to move the data and the adapter does no respond within an internal
driver timeout period.

The return code RC_WRN_PI PES_NOT_CONFI GURED is a warning indicating the
memory transfer was completed but the SCB subsystem is not configured.

A buffer length of 0 is not valid. The maximum buffer sizeislimited to 64 KB.

The IBM RISC System/6000 uses big-endian memory format, whereas the 80960 on
the ARTIC960 adapter uses little-endian format across the PCI or MCA bus. Itisup to
the calling application to perform byte and word swapping where necessary. The
RICRead and RICWrite functions do not steer the data for the application.

ARTIC960 Programmer’s Reference

RICReset—Reset an ARTIC960 Adapter

[

RICReset—Reset an ARTIC960 Adapter
Thisroutine is used to reset an adapter.

Functional Prototype
Rl C_ULONG Rl CReset (R C HANDLE Handl e,
Rl C_ULONG Reserved);

Parameters
Handle Input. The handle for the ARTIC960 adapter.
Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_I NVALI D_RESERVED PARM
RC_NO_ADAPTER RESPONSE
RC_RESET_FAI LED

RC_SU_| NVALI D_HANDLE
RC_SYSTEM ERROR

Remarks

This routine resets the adapter and aborts any pending RICRead, RICWrite, SendMbx, or
ReceiveMbx commands for the adapter. In addition, the SCB configuration for the adapter
islost during the reset.

Chapter 7: System Unit APIs 271

RICGetConfig—Get Configuration Information

[

RICGetConfig—Get Configuration Information

272

Thisroutineisused to obtain specific hardware configuration information that is otherwise
unavailable at the application level.

Functional Prototype

Rl C_ULONG Rl CGet Confi g (Rl C_HANDLE Handl e,
Rl C_ULONG Confi gLen,
RIC CONFI G *Confi gDat a,
Rl C_ULONG Reserved);

Parameters

Handle Input. The handle for the ARTIC960 adapter.

ConfigLen Input. The length of the buffer provided for the returned configuration
information. The length must be less than 64 KB for OS/2 and Windows NT.

ConfigData
Input. The address of abuffer in system unit memory to receive the
configuration information. Thisis a 32-bit logical address.

Reserved Input. Reserved parameter (must be 0).

Returns
RC_SUCCESS RC | NVALI D_RESERVED PARM
RC_ADAPTER EXCEPTI ON RC_NO_ADAPTER RESPONSE
RC_BUFFER _TOO SMALL RC _SU | NVALI D_HANDLE
RC | NVALI D_MEM ACCESS RC_SYSTEM ERRCR (Al X only)

RC_| NVALI D_SI ZE

Remarks
e Thefollowing information is returned in the RIC_CONFIG structure;

— Card and dot numbers

— Window sizes and locations
— Memory sizes

— AIBID

The SlotNum field is not supported when using the ARTIC960 PCI, ARTIC960HX, or
ARTIC960Rx adapters. The value returned should not be used at thistime.

For more details on the information returned by this structure, see RIC_CONFIG
Structure on page 290.

« When either RC_ADAPTER_EXCEPTI ONor RC_NO_ADAPTER RESPONSE is returned,
most of the configuration datais not valid. The partial datathat is returned on these
errorsincludes only the logical card number, slot number, and system bus base I/O
address.

* Thereturn code RC | NVALI D_MEM ACCESS cannot be received in OS/2. If the driver
detects an access violation, OS/2 terminates the process with atrap unless the
application has an exception handler registered with OS/2.

ARTIC960 Programmer’s Reference

RICGetVersion—Get Version Number

RICGetVersion—Get Version Number

Thisroutine is used to obtain the version numbers of all of the installed ARTIC960
software. The structure returned includes major and minor version numbers for the device
driver, library code, kernel, and base subsystems.

Functional Prototype

Rl C_ULONG Rl CGet Ver si on (Rl C_HANDLE Handl e,
Rl C_ULONG Ver si onLen,
Rl C_ VERDATA *VersionDat a,
Rl C_ULONG Reserved);

Parameters

Handle Input. The handle for the ARTIC960 adapter.

VersionLen

Input. Thelength of the buffer provided for the returned version information.
(Cannot be greater than 64K—1 bytes.)

\VersionData
Input. The address of abuffer in system unit memory to receive the version
information. Thisis a 32-bit logical address.

Reserved Input. Reserved parameter (must be 0).

Returns
RC_SUCCESS RC_| NVALI D_RESERVED PARM
RC_BUFFER_TOO SMALL RC_| NVALI D_SI ZE
RC_| NVALI D_MEM ACCESS RC_SU_| NVALI D_HANDLE

Remarks

« If thekernel or subsystems are not loaded or the adapter is inaccessible (reporting an
exception, being reset, and so forth), this service returns 0 in the corresponding
Rl C_VERDATA field.

For more details on the information returned by this structure, see RIC_VERDATA
Structure on page 292.

* Thereturn code RC | NVALI D_MEM ACCESS cannot bereceived in OS/2. If the driver
detects an access violation, OS/2 terminates the process with atrap unless the
application has an exception handler registered with OS/2.

Chapter 7: System Unit APIs 273

RICGetException—Get Exception Status

[

RICGetException—Get Exception Status

274

Thisroutine is used to query and wait for the ARTIC960 adapter’s exception conditions.

Functional Prototype

Rl C_ULONG Rl CGet Excepti on (R C HANDLE Handl e,
RI C_ULONG Except Len,
Rl C_EXCEPT *Except Dat a,
Rl C_TI MEQUT Ti meout ,
Rl C_ULONG Reserved);
Parameters
Handle Input. The handle for the ARTIC960 adapter.

ExceptLen Input. Thisfield specifiesthe length of the ExceptData buffer provided. The
value must be at least 8 to allow the exception code and actual exception data
length to be returned. It cannot be greater than 64K—1 bytes.

ExceptData
Input. The pointer to the buffer where the exception data should be returned.

Timeout Input. The timeout parameter specifies whether the call should block waiting
for an exception condition to occur. A value of 0 indicates the call should
return immediately. A value of —1 indicates the call should block until an
exception occurs on the adapter. Any other value specifies the number of
milliseconds to wait for an exception before timing out.

Reserved Input. Reserved parameter (must be 0).

Returns
RC_SUCCESS RC I NVALI D_TI MEQUT
RC_DUMP_ACTI VE RC_NO ADAPTER RESPONSE
RC_BUFFER TOO SMALL RC_NO MORE_RES (0S/ 2 only)
RC_HANDLE_CLOSED RC_RESET_ACTI VE
RC | NVALI D_MEM ACCESS RC_SU | NVALI D _HANDLE
RC | NVALI D_RESERVED PARM RC_SYSTEM ERROR
RC I NVALI D_SI ZE RC_TI MEQUT

Remarks

e RC_SUCCESS indicates that an exception has occurred and the exception dataisin the
ExceptData field.

e RC_DUWMP_ACTI VE and RC_RESET_ACTI VE are returned if adump or reset is active
when the RICGetException call is made.

e RC_BUFFER_TOO SMALL indicatesthat an exception has occurred, but that the length
of the buffer provided (specified in ExceptLen) isinsufficient to return al of the
exception information (partial datais returned).

* RC_I NVALI D_MEM ACCESS cannot bereceived in OS/2. If the driver detects an
access violation, OS/2 terminates the process with atrap unless the application has an
exception handler registered with OS/2.

ARTIC960 Programmer’s Reference

RICGetException—Get Exception Status

[

e RC_NO ADAPTER RESPONSE isreturned if the adapter does not complete POST and
cannot reliably report the failing exception condition.

e RC_TI MEQUT isimmediately returned if the caller specifies atimeout of 0 and no
exception condition is present.

e InAlX, ExceptDataisword swapped for the caller because all exception data fields
are defined as word length.

For more details on the information returned by this structure, see RIC_EXCEPT Structure
on page 293.

Chapter 7: System Unit APIs 275

Mailbox API

|
Mailbox API

The programming interface for the mailbox routines is the same as the ARTIC960 kernel
mailbox API, except that there may be dight differences in the implementations—such as
additional error codes and different limits due to word sizes. These differences are noted
within the function descriptions. The following are the mailbox routines.

Service Page
CreateMbx 277
OpenMbx 280
GetMbxBuffer 282
FreeMbxBuffer 283
SendMbx 284
ReceiveMbx 286
CloseMbx 288

Only remote mailboxes are supported (mailboxes between a system process and a card
process). For system-process to system-process communications, the inter-process
communication features of the operating system can be used.

Refer to the ARTIC960 Programmer’s Guide for additional information on mailboxes.

276 ARTIC960 Programmer’s Reference

CreateMbx—Create a Mailbox

CreateMbx—Create a Mailbox

This creates a mailbox and gives access to the requesting process.

Functional Prototype

Rl C_ULONG Creat eMox (char * RI C_SUPTR MoxNane,
char * RI C_SUPTR MoxRxMenmNane,
Rl C_ULONG MsgUni t Si ze,
Rl C_ULONG MsgUni t Count ,
Rl C_ULONG Opt i onVord,

RI C_MBXHANDLE * RI C_SUPTR MoxHandl e,
RI C_SEMHANDLE * RI C_SUPTR SenHandl e,
Rl C_ULONG Reserved);

Parameters

MbxName Input. A mailbox name to assign to the mailbox so other processes can get
access to the same mailbox by name.

MbxRxMemName
Input. Optional storage-area name associated with this mailbox for receiving
messages. A value of null means that there is no name associated with the
memory, and memory cannot be shared.

MsgUnitSize
Input. The smallest message size that can be allocated. All messages are
allocated in units of this size.

MsgUnitCount
Input. The maximum number of message units that can be allocated from
this mailbox.

OptionWord
Input. Bit field to describe the options to be used to create the mailbox. The
following constants should be ORed together to build the appropriate set of
options.

« Type of mailbox to create

The caller can create either a mailbox that accepts messages from other
units (using MBX_CREATE_GLOBAL) or one that does not accept these
messages (using MBX_CREATE_LOCAL).

Because the system unit supports only remote mailboxes, the
MBX_CREATE_LQOCAL option isignored.
« Mailbox buffer-pinning option (ignored in AlX)

The caller can have the memory associated with mailbox buffers
permanently pinned (using MBX_PI N_MEMORY). If this option is not
selected, memory is pinned only for as long as absolutely necessary. This
option applies only when memory is allocated by this CreateMbx call.

MbxHandle
Output. The mailbox handle returned to the requesting process. This handle
is passed to all other mailbox services when referring to this mailbox.

Chapter 7: System Unit APIs 277

CreateMbx—Create a Mailbox

[

SemHandle
The semaphore handle associated with the mailbox. Thishandleis passed to
all other semaphore services when referring to this mailbox-associated
semaphore. This semaphoreis modified whenever amessageis placed in the
mailbox. In OS/2, it is cleared; in AlX, the semval variableis set to 0. For
information on semval, see /usr/include/sys/sem.h.

0OS/2 Output
The semaphore is allocated by the service and the semaphore handleis
returned to the application to allow it to be used in OS/2 multiple
semaphore waits.

AlX Input/Output
The semaphore must be created by the application and removed after
CloseMbx. The application can then use the semaphore handle for a
multiple wait call. For input, the user must initialize semid and semnum
of the RIC_Semhandle (see page 279). Upon return, semval is
initialized to 1, indicating an empty mailbox.

Reserved Input. Reserved parameter (must be 0).

Returns
RC_SUCCESS RC_NO_MBX_ PROCESS
RC DUP_RES NAME RC_NO_MORE_MBX
RC | NVALI D_COUNT RC_NO MORE_NMEM
RC | NVALI D_NAMVE RC_NO MORE_RES
RC | NVALI D_OPTI ON RC_NO MORE_SEM
RC | NVALI D_RESERVED PARM RC_SYSTEM ERROR

RC_| NVALI D_SI ZE

Remarks
e Only the processthat created the mailbox can receive messages from the mailbox.

e Thisservicecall allocates the memory requested by the user. This memory is used to
keep the messages in the mailbox. If the memory name provided by the processisthe
same as that used on a previous CreateMbx or OpenMbx call, this service call gets
access to the memory pool already created. Otherwise, the service call alocates the
memory requested by the process. When memory is shared, the MsgUnitSize and
MsgUnitCount parameters must each be equal to those passed when the memory was
allocated. Otherwise, the RC_| NVALI D_SI ZE or RC_| NVALI D_COUNT error is
returned, depending on which parameter is not the same as the respective input
parameter.

e 0S/2 does not provide counting semaphores. In its implementation, the ReceiveM bx
call setsthe semaphore before blocking on it. Applications wanting to use the
semaphore directly to wait on the arrival of a message must call the ReceiveMbx call
with a no-wait timeout value before blocking on the semaphore. The semaphoreis
cleared by mailbox services when a message arrives.

278 ARTIC960 Programmer’s Reference

CreateMbx—Create a Mailbox

In AlX, the application is responsible for creating a semaphore and providing the
returned information into the structure RIC_Semhandle (defined in rictaixa.h).

typedef struct RIC Semhandl e
{

int semd ;
int semmum ;
} RI C_SEMHANDLE ;

semid The semaphore identifier returned from semget system call
semnum The semaphore number

After CloseMbx is called, the application is responsible for removing the semaphore
from the system. The application must not modify the variable semval (for
information on semval, see /usr/include/sys/sem.h.), which is modified by the AIX
Mailbox Daemon and has one of the following values.

0 Messagesin mailbox
1 No messagesin mailbox

In AIX, MbxHandleis valid only within the process that obtained it. Thereis no
thread support.

Chapter 7: System Unit APIs 279

OpenMbx—Open a Mailbox

[

OpenMbx—Open a Mailbox

280

This opens a mailbox previously created by another process.

Functional Prototype

Rl C_ULONG QpenMox (char *RlI C_SUPTR MoixNane,
char *RlI C_SUPTR SendMVoxMenNane,
Rl C_ULONG MsgUni t Si ze,
Rl C_ULONG MsgUni t Count ,
Rl C_ULONG Opt i onVord,
RI C_MBXHANDLE *RI C_SUPTR MoxHandl e,
RI C_ULONG *RI C_SUPTR MoxType,
Rl C_ULONG Reserved);
Parameters

MbxName Input. The mailbox name used to create the mailbox.

SendMbxMemName
Input. Optional storage-area name associated with the mailbox for sending
messages by this process. A value of NULL means that the memory cannot
be shared. Refer to the ARTIC960 Programmer’s Guide for information
about mailbox memory options.

MsgUnitSize
Input. The smallest allocatable message size. All messages are allocated in
units of thissize. If thesizeis0, RC_| NVALI D_SI ZE isreturned.

MsgUnitCount
Input. The maximum number of messages that can be allocated from this
mailbox.

OptionWord
Input. Bit field to describe the options to be used to open the mailbox. The
following constants should be ORed together to build the appropriate set of
options.

» Search option for finding mailbox:

MBX_OPEN SEARCH GLOBAL
Other cards are searched if the mailbox does not exist on card.

-% Because the system unit supports only remote mailboxes, the
MBX_OPEN_SEARCH_LOCAL option (local cards are searched)
isignored.

« Mailbox buffer-pinning option (ignored in AlX)

The caller can have the memory associated with mailbox buffers
permanently pinned down with a parameter value of MBX_PI N_MEMORY.
If this option is not selected, memory is pinned only for aslong as
absolutely necessary. This option applies only when memory is allocated
by this OpenMbx call.

ARTIC960 Programmer’s Reference

OpenMbx—Open a Mailbox

[

MbxHandle
Output. The mailbox handle returned to the requesting process. This handle
is passed to all other mailbox services when referring to this mailbox.

MbxType Output. Type of mailbox that was opened. The MbxType field can return the
following value:

MBX_TYPE_REMOTE
The mailbox is not local.
'% Because the system unit supports only remote mailboxes, the
following options are ignored:

» MBX_TYPE_LOCAL (the mailbox is local but does not accept
remote messages)

« MBX_TYPE_GLOBAL (the mailbox islocal and accepts card
messages)

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS RC_NO_MBX_PROCESS
RC_DUP_RES_NAVE RC_NO_MORE_MBX

RC_| NVALI D_COUNT RC_NO_MORE_MEM

RC_| NVALI D_NAVE RC_NO_MORE_REM MBX

RC_| NVALI D_OPTI ON RC_NO_MORE_RES

RC_| NVALI D_RESERVED PARM RC_NO_MORE_RES_ON_REMOTE
RC_| NVALI D_SI ZE RC_SYSTEM ERROR

RC_NAMVE_NOT_FOUND

Remarks

If the memory name provided by the process is the same as that used on a previous
CreateMbx or OpenMbx call, this service gets access to the already created memory.
Otherwise, the service allocates the memory requested by the process. When memory is
shared, the MsgUnitSize and M sgUnitCount parameters must each be less than or equal to
those passed when the memory was allocated. Otherwise, RC | NVALI D_SI ZE or

RC_| NVALI D_COUNT error isreturned, depending on which parameter is not the same as
the respective input parameter.

In AIX, MBXHandleisvalid only within the process that obtained it. Thereis no thread
support.

Chapter 7: System Unit APIs 281

GetMbxBuffer—Get a Free Mailbox Buffer

[

GetMbxBuffer—Get a Free Mailbox Buffer

282

This allocates a free mailbox buffer to the requesting process.

Functional Prototype

Rl C_ULONG Get MoxBuf fer (R C_MBXHANDLE MoxHandl e,
Rl C_ULONG Si ze,
voi d *RlI C_SUPTR *MsgPtr,
Rl C_ULONG Reserved);

Parameters

MbxHandle
Input. Handle of the mailbox from which the process wants to get a message
buffer.

Sze Input. Message size in bytes. The size is rounded up to a multiple of the
message unit size set by CreateMbx or OpenMbx. The size parameter must
beintherange 0 < Sze < 65503.

MsgPtr Output. Pointer to allocated mailbox buffer.
Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS

RC_| NVALI D_HANDLE

RC_I NVALI D_RESERVED PARM
RC_I NVALI D_SI ZE
RC_NO_MBX_BUFFER
RC_NO_MBX_PROCESS
RC_NO_MBX_RECEI VER

Remarks
No more than 65503 bytes can be allocated with a single call to GetMbxBuffer.

ARTIC960 Programmer’s Reference

FreeMbxBuffer—Free Mailbox Buffer

FreeMbxBuffer—Free Mailbox Buffer

Thisreturns a previoudly allocated mailbox buffer.

Functional Prototype

Rl C_ULONG FreeMoxBuf fer (Rl C_MBXHANDLE MoxHandl e,
voi d * RI C_SUPTR MsgPtr,
Rl C_ULONG Reserved);

Parameters

MbxHandle

Input. Handle of the mailbox where the process wants to free a message
buffer.

MsgPtr Input. Pointer to allocated mailbox buffer.
Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS

RC_| NVALI D_HANDLE

RC_| NVALI D_MBX_BUFFER_ADDR
RC_| NVALI D_RESERVED PARM
RC_NO_MBX_PROCESS
RC_MBX_BUFFER_| N_QUEUE

Remarks

None

Chapter 7: System Unit APIs 283

SendMbx—Send a Message

[

SendMbx—Send a Message

284

This puts a message into a mailbox.

Functional Prototype

RI C_ULONG

Parameters
MbxHandle

MsgPtr

Sze

OptionWord

Reserved

SendMox (RI C_MBXHANDLE MoxHandl e,

voi d * RI C_SUPTR MsgPtr,
Rl C_ULONG Si ze,

Rl C_ULONG Opt i onVord,

Rl C_ULONG Reserved);

Input. Handle of the mailbox to which the process wants to send the message.
Input. Pointer to the message buffer.

Input. Size of the message buffer. The size parameter must bein the range 0<
Sze< 65503. For ARTIC960 PCI co-processors, the size parameter must be
in the range 0 < Size <16384.

Input. Bit field to describe how to send the message. Usethe OR operation on
the following constants to build the appropriate set of options.

MBX_SEND COPY
Forces a copy of the message in the mailbox memory. This option
appliesonly when the sender and receiver are sharing memory. Because
the system unit supports only remote mailboxes, the MBX_SEND_COPY
option isignored.

MBX_SEND NO_COPY
This is the default because the system unit supports only remote
mailboxes.

MBX_SEND FREE BUFFER
Returns the buffer to the free pool.

MBX_SEND KEEP_BUFFER
The buffer must be freed explicitly with the FreeMbxBuffer call. This
isthe default.

MBX_SEND LI FO
Puts the message in the front of the message queue.

MBX_SEND_FI FO
Themessageis put in the back of the message queue. Thisisthe default.

Input. Reserved parameter (must be 0).

ARTIC960 Programmer’s Reference

SendMbx—Send a Message

[

Returns

RC_SUCCESS
RC_| NVALI D_HANDLE
RC_| NVALI D_MSG_BUFFER

> NO_MORE_RES
* NO_RCV_BUFFER
Pl PES_NOT_CONFI GURED

3838

RC_| NVALI D_OPTI ON RC_SYSTEM ERROR
RC_| NVALI D_RESERVED PARM RC_UNABLE_TO ACCESS_UNI T
RC_| NVALI D_SI ZE RC_MBX_BUFFER_| N_QUEUE

3

RC_NO_MBX_PROCESS
RC_NO_MBX_RECEI VER

MC_TI MEQUT (Al X only)

Remarks

If MBX_SEND_ FREE_BUFFERs specified and the SendMbx service fails, the buffer is not
freed. It must be explicitly freed by the sender using the FreeM bxBuffer service.

Chapter 7: System Unit APIs 285

ReceiveMbx—Receive a Message

[

ReceiveMbx—Receive a Message

286

Thisreads or

Functional
Rl C_ULONG

Parameters
MbxHandle

OptionWord

Timeout

MsgPtr
Sze
Reserved

Returns

receives a message from a mailbox.

Prototype

Recei veMox (R C_MBXHANDLE MoxHandl e,
Rl C_ULONG Opt i onVord,
Rl C_TI MEQUT Ti meout ,
voi d * RI C_SUPTR * MsgPtr,
Rl C_ULONG * RI C_SUPTR Si ze,
Rl C_ULONG Reserved);

Input. Handle of the mailbox from which the process wants to receive a
message.

Input. Option word for specifying receive options. The following constant
can be used.

MBX_RECEI VE_READ MESSAGE
Return the pointer to the message but do not removeit from the mailbox
message queue.

MBX_RECEI VE_GET_MESSAGE
Return the pointer to the message and remove it from the mailbox
message queue. Thisisthe default.

Input. Optional timeout (in milliseconds) for waiting on a semaphore
associated with this mailbox.

0 Theprocessshould not wait if no messages are available in the mailbox.
-1 Thereisno timeout. The process waits indefinitely for amessage to
arrive.

Output. Pointer to the received message buffer.
Output. Size of the received message buffer.
Input. Reserved parameter (must be 0).

RC_SUCCESS RC_I NVALI D_TI MEQUT
RC_| NVALI D_HANDLE RC_MBX_EMPTY

RC_| NVALI D_OPTI ON RC_NO_MBX_PROCESS
RC_| NVALI D_RECEI VER RC_NO_MORE_RES
RC_I NVALI D_RESERVED PARM RC_SYSTEM ERROR

ARTIC960 Programmer’s Reference

ReceiveMbx—Receive a Message

[

Remarks

e |f the MBX_RECEI VE_GET_MESSAGE option is set in the OptionWord parameter, this
call dequeues the first message buffer from the mailbox queue. The semaphore
associated with the mailbox on the ARTIC960 adapter is decreased by 1.

* In OS2 system-unit mailboxes, the semaphoreis set if the dequeued messageisthe
last one in the queue.

e In AlX system-unit mailboxes, the variable semval of the semaphoreisset to 1 if the
dequeued message is the last one in the queue. For information on semval, see
/usr/include/sys/sem.h.

« If the MBX_RECEI VE_READ MESSAGE option is set in the OptionWord parameter, the
message is not dequeued from the message queue.

Chapter 7: System Unit APIs 287

CloseMbx—Close a Mailbox

[

CloseMbx——Close a Mailbox

288

Thisreleases the mailbox and deletesit if no other process has accessto it.

Functional Prototype

Rl C_ULONG Cl oseMox (RI C_MBXHANDLE MoxHandl e,
Rl C_ULONG Reserved);

Parameters
MbxHandle Input. Handle of the mailbox to close.

Reserved Input. Reserved parameter (must be 0).

Returns

RC_SUCCESS
RC_| NVALI D_HANDLE

RC_I NVALI D_RESERVED PARM
RC_NO_MBX_PROCESS
RC_NO_MORE_RES

RC_PI PES_NOT_CONFI GURED
RC_SYSTEM ERROR
RC_UNABLE_TO ACCESS_UNI T

Remarks

« If thecloseisissued by a process while other processes still have access to the
mailbox, the service simply removes access rights for the calling process.

« If thecalling processis the only process using the memory pool associated with the
mailbox, this memory pool is released by the mailbox process.

* In OS2, if the mailbox to be closed was created by the calling process, the semaphore
associated with the mailbox is released by the mailbox process.

* InAlX, the semaphore associated with the mailbox must be removed by the calling
process after it calls CloseMbx.

ARTIC960 Programmer’s Reference

Structure Definition

This appendix contains structure definitionsfor Rl C_CONFI G, RI C_VERDATA, and
Rl C_EXCEPT.

Appendix A: Structure Definition 289

RIC_CONFIG Structure

|
RIC_CONFIG Structure

Thefollowing is the structure definition for Rl C_CONFI G (configuration information for
the ARTIC960 adapter).

typedef struct R C Config
{

RI C_ULONG Reser vedO;

RI C_ULONG Al Bl D /* AIB ID */
RI C_ULONG Ful | W ndowLoc; /* Physi cal address */
RI C_ULONG Ful | W ndowSi ze; /* Size in bytes */
RI C_ULONG Tot al Menti ze; /* Size in bytes */
RI C_ULONG Reservedl[9] ;

RI C_ULONG MCBasel QAddr ; /* Base |/ O address */
RI C_CARDNUM Car dNum /* Logical card nunber */
Rl C_ULONG NumOf Menor yRegi ons;

RI C_ADDRESS RANGE Menor yRegi ons[MAX_VEM REG ONS] ;

RI C_ULONG NumOf | O_Regi ons;

RI C_ADDRESS_RANGE | O_Regi ons[MAX_| O_REG ONS] ;

unsi gned char Sl ot Num /* Physical slot number */
unsi gned char Unitl D /* SCB unit ID */

} RIC_CONFI G

ReservedO

ReservedO contains information about the adapter card type. It indicates the bus type, the
presence of data cache hardware, and the interface chip type. The following masks can be
used

RI C_CARD TYPE Indicatesthe bustype. Bustype values are:
R C_MCA Micro Channel

Rl C_PCI PCI (Peripheral Connect Interface)
RI C_DCACHE Indicates the presence of data cache hardware. Data cache hardware
values are:
0 Data cache hardware is not present.
1 Data cache hardware is present.

290 ARTIC960 Programmer’s Reference

RIC_CONFIG Structure

[

RICIF CHP Indicates the type of interface chip. Interface chip values are:
RIC_MAM Miami (onan ARTIC960 MCA or ARTIC960 PCI
adapter)
R C MP2P Miami PCI to PCI (on an ARTIC960Hx PCI adapter)
RI C RP i960Rx (on an ARTIC960Rx PCl adapter)
RI C_ RXD i960Rd (on an ARTIC960RxD PCI adapter)
RI C_NO P2P Indicates that peer-to-peer activity is not supported.

Defined Macros

The following macros can be used to determine card information.

* iSMCA

e isPCl

e isMIAMI
* iSRP

e isMP2P
* isRXD
For example:

RIC CONFIG ConfigDat a;
i SMCA(&Conf i gDat a)

Appendix A: Structure Definition 291

RIC_VERDATA Structure

|
RIC_VERDATA Structure

The following is the structure definition for RI C_VERDATA (version numbers of the
installed ARTIC960 software).

typedef struct RIC Version

{ .
uni on
{
RI C_ULONG Conbi nedVer;
struct RI C _Separ at eVer Separat eVer;
} Driver;
uni on
{
Rl C_ULONG Conbi nedVer ;
struct RI C _Separ at eVer Separat eVer;
} Lib;
uni on
{
RI C_ULONG Conbi nedVer;
struct RI C _Separ at eVer SeparateVer;
} Kernel;
uni on
{
Rl C_ULONG Conbi nedVer;
struct RI C _Separ at eVer Separat eVer;
} BaseSS;
uni on
{
Rl C_ULONG Conbi nedVer ;
struct RI C _Separ at eVer Separ at eVer;
} MChansSs;
uni on
{
Rl C_ULONG Conbi nedVer ;
struct RI C _Separ at eVer SeparateVer;
} SCBSS;

} Rl C_VERDATA

292 ARTIC960 Programmer’s Reference

RIC_EXCEPT Structure

RIC_EXCEPT Structure

The following is the structure definition for RI C_EXCEPT (the exception conditions for
the ARTIC960 adapters).

struct RI C_Except

{
RI C_ULONG

Rl C_ULONG

uni on

{
struct
struct
struct
struct
struct
struct
struct
struct
struct

};

Except i onCode;
Excepti onDat aSi ze;

RI C_AsyncEvent
RIC Invalid Intr
RI C_Dat a_Cor r upt
RI C Kern_Init

RI C MBXErrinfo
RI C SCBErrinfo
RIC MCErrinfo

RIC RPErrinfo

RI C HxErrlInfo

} Excepti onDat a;

Event | nf o;
I nvintr;
BadDat a;

Ker nl ni

MBXI nf o;
SCBI nf o;

MCI nf o;
RPI nf o;
Hx| nf o;

Appendix A: Structure Definition

293

RIC_EXCEPT Structure

[

294 ARTIC960 Programmer’s Reference

194

M essage File

Driver, Mailbox Process, and Utility Messages

The following messages are displayed by the ARTIC960 tools, drivers, and processes. See
Mailbox Process Messages and Return Codes on page 13 for alist of return codes for the
0OS/2 mailbox process.

Appendix B: Message File 295

RIC0001 « RIC0O006

[

RIC0001 Unrecognized option: “xx”

Explanation: The option xx is not a valid command line option. This message is followed by help messages
RIC0027-RIC0031.

Action: Correct the command line and reissue the command.

Source: Application Loader, Dump, Status, Configuration, Reset, OS/2 Driver, and Mailbox Process

RIC0002 Invalid parameter: “XXXXXxXXx"

Explanation: The parameter xxxxxxxx is invalid. Either a required parameter is missing or an optional parameter
has been improperly specified.

Action: Correct the parameter and reissue the command.

Source: Application Loader, Dump, Status, Configuration, OS/2 driver, and Mailbox Process

RIC0003 File “yyyyyyyy” not found

Explanation: File yyyyyyyy does not exist or is not in the specified directory.

Action: Verify that the file exists and is in the proper directory.

Source: Application Loader, Dump, Status, Configuration, and Mailbox Process

RIC0004 Error accessing file “yyyyyyyy”

Explanation: An error was received when attempting to access file yyyyyyyy.

Action: Verify that the file still exists and is accessible. If the file exists, make sure that no other applications
are accessing the file or have a lock on it. For output files, verify that the destination file is write
accessible and that the disk is not full.

Source: Applicatio Loader, Dump, Status, Configuration, and Mailbox Process

RIC0005 Invalid card number: nn

Explanation: The specified logical card number is invalid. The card number is either nonnumeric or out of range.

Action: Correct the card number and reissue the command.

Source: Application Loader, Dump, Status, Configuration, Reset

RIC0006 Insufficient storage

Explanation: There is not enough free storage to complete the request.

Action: On a load operation, this indicates that there is not enough free memory available on the card. Either
reduce the amount of memory required by the process, free up storage on the adapter, or install
more memory on the adapter.

During Mailbox Process initialization, this message indicates there is not enough system unit
memory to allocate the threads memory pools. Reduce the values set for any of the following in the
mailbox configuration parameter file:
MAX_GLOBAL_MAILBOX
MAX_REMOTE_MBX
MAX_REMOTE_MAILBOX_OPEN
MAX_REMOTE_MAILBOX_SEND
MAX_REMOTE_MAILBOX_RCV
MAX_NUM_OF_UNITS
Source: Application Loader, Mailbox Process
296 ARTIC960 Programmer’s Reference

RIC0007 « RIC0014

RIC0007 Invalid process name: “XXXXXXXX"

Explanation: The process name XxXxxXXxxx is too long.

Action: Rename the process and retry the command.

Source: Application Loader

RIC0008 Duplicate process name: “XXXXXXXXX"

Explanation: The process name xxxxxxxx is already active on the adapter.

Action: Either specify a different process name, or unload the active process and retry the command.

Source: Application Loader

RIC0009 Exception condition xxxxxxxx detected on card nn

Explanation: The adapter has detected exception condition xxxxxxxx (hex) on card nn.

Action: This message indicates that an unrecoverable exception has occurred on the adapter. Reset the
adapter and retry the operation. If the problem persists, call support personnel.

Source: Application Loader, Configuration, Reset, OS/2 driver.

RIC0010 No device response from card nn

Explanation: Adapter nn is not responding to commands.

Action: Check the state of the processes running on the adapter for severe error conditions. Reset the
adapter and retry the operation. If the problem persists, call support personnel.

Source: Application Loader, Dump, Configuration, Reset, Status

RIC0011 Dump of card nn in progress

Explanation: A dump of card nn is currently in progress. This message is displayed during an immediate dump
and after a triggered dump has been triggered by an error condition on the card.

Action: Wait for message indicating that the dump has been completed.

Source: Dump

RIC0012 Dump of card nn complete

Explanation: The dump of card nn is complete.

Action: Use the Status Utility to analyze the raw dump file. Reset the card to continue using it.

Source: Dump

RIC0013 Dump trigger set for card nn

Explanation: A dump of card nn has been set up to trigger on an NMI error from the card.

Action: No action is necessary. This message is followed by a message indicating that a dump has started
when the dump is triggered.

Source: Dump

RIC0014 Triggered dump of card nn cancelled

Explanation: The previously set up dump trigger for card nn has been canceled.

Action: To retrigger the card, call the dump utility again.

Source: Dump

Appendix B: Message File

297

RIC0015 « RIC0023

[

RIC0015 Triggered dump of card nn not pending
Explanation: There is no untriggered dump of card nn pending that can be canceled.
Action: None.
Source: Dump
RIC0016 Unexpected system error nnnn
Explanation: An operating system error condition has been received by the adapter firmware. The unexpected
error code is nnnn (decimal).
Action: Consult the appropriate operating system reference to determine the meaning of the error code.
Source: Application Loader, Dump, Status, Configuration, OS/2 driver, and Mailbox Process
RIC0019 Driver not installed
Explanation: The driver is not installed and running in the system. This occurs when a utility or mailbox process
attempts to access an ARTIC960 adapter and the device driver is not installed.
Action: Verify that the proper drivers are installed in the system and retry the operation.
Source: Application Loader, Dump, Status, Configuration, Reset, and Mailbox Process
RIC0020 Licensed Materials — Property of RadiSys
RadiSys ARTIC960 Adapter Support Version n.nn.n
(C) Copyright RadiSys Corporation yyyy, zzzz All rights reserved.
US Government Users Restricted Rights -
Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with
RadiSys Corporation.
XXXXXXXX initializing
Explanation: The driver or process xxxxxxxx is installing. yyyy, zzzz are the copyright years.
Action: None. This message is normally followed by a message that states that the driver is installed and
running.
Source: OS/2 driver
RIC0021 XXXXXXXXX installed and running
Explanation: The driver or process xxxxxxxx has installed successfully.
Action: None.
Source: 0OS/2 driver, and Mailbox Process
RIC0022 XxXxxxxxx successfully loaded from card nn
Explanation: The process xxxxxxxx was successfully unloaded from logical card nn.
Action: None.
Source: Application Loader
RIC0023 Process xxxxxxxx not found on card nn
Explanation: The process xxxxxxxx was not found on logical card nn and could not be unloaded.
Action: Correct the process name and call the command again.
Source: Application Loader, Status
298 ARTIC960 Programmer’s Reference

RIC0024 - RIC0027

RIC0024 XxXxxxxxx successfully started on card nn

Explanation: The process xxxxxxxx was successfully started on logical card nn.

Action: None.

Source: Application Loader

RIC0025 XXXXXXXX already started on card nn

Explanation: The process xxxxxxxx was already running on logical card nn.

Action: Either stop and restart the process or let it run.

Source: Application Loader

RIC0026 File format error in file “yyyyyyyy”. Internal error Xxxxxxxx

Explanation: The file yyyyyyyyy is not in the proper format. The Application Loader returns this when a process

file does not have the proper executable format. The Status utility returns this message when a
dump file does not have the proper format. The error code xx is an internal error code that indicates
the problem detected in the file.

Action: When reported by the Application Loader, recompile and relink the process in error with the proper
options. When reported by the Status utility, the dump file is probably corrupted; the card must be
dumped again.

Source: Application Loader, Status

RIC0027 Correct syntax is:

-}}—L—J— ricload -C config_filename >«
path L -Q il

L_card_num— filename * |
-A “process_args”

_E -F arg_filename :'_

—— -D cache_option

—— -K stack_size
-L

L -W timeout _ 1

-N process_name

-O

—— -P priority
-T
-V

l— -W timeout —l

— -S process_name

— -T
L— -U process_name

Explanation: Application Loader utility syntax help message.
Action: Select the proper parameters and call the Application Loader.
Source: Application Loader

Appendix B: Message File 299

RIC0028 « RIC0032

[

RIC0028

-}}—L—J— ricdump card_num
path [-Q] ‘ [path 1
-C

Correct syntax is:

filename -A addr, len

-P PMC_cfdfile - I: I:I
-T
-0 out_file

Explanation: Dump utility syntax help message.
Action: Select the proper parameters and call the Dump utility.
Source: Dump
RIC0029 Correct syntax is:
> riccnfg -L card_numl >
I-path J -Q L card_num2 J |- -Ss1s2 J
-A
-P
-C config_filename
Explanation: SCB Configuration utility syntax help message.
Action: Select the proper parameters and call the SCB Configuration utility.
Source: Configuration
RIC0030 Correct syntax is:

-))—L—_l— ricstat
path

L -l il I:card_num |--S il

-F dump_file
L— -D dump_file
Explanation: Status utility syntax help message.
Action: Select the proper parameters and call the Status utility.
Source: Status
RIC0031 Correct syntax is:

-}}—L—J— ricreset ﬁm
path -Q

Explanation: Reset utility syntax help message.

Action: Select the proper parameters and call the Reset utility.
Source: Reset

RIC0032 Reset of card nn in progress

Explanation: A reset of card nn is in progress.

Action: None.

Source: Reset

300 ARTIC960 Programmer’s Reference

RIC0033 « RIC0040

RIC0033 Reset of card nn complete

Explanation: Card nn has been reset successfully.

Action: None.

Source: Reset

RIC0034 Reset of card nn failed

Explanation: Card nn failed to reset.

Action: Run diagnostics to determine the cause of the failure.

Source: Reset

RIC0035 Invalid microcode load

Explanation: The adapter kernel is not loaded.

Action: Make sure that the kernel is properly loaded before attempting to load another process.

Source: Application Loader

RIC0036 Peer communications between cards xx and yy successfully configured

Explanation: The SCB delivery pipe was successfully configured.

Action: None

Source: Configuration

RIC0037 Microcode error. Internal error xxxx

Explanation: The adapter kernel unexpectedly returned an error. xxxx is an internal error code.

Action: Verify that the kernel is properly loaded and there is enough memory available to satisfy Application
Loader requests. xxxx is an internal kernel error code that generally maps to a kernel return code. If
the problem persists, call support personnel.

Source: Application Loader, Configuration

RIC0038 Error accessing card nn. Internal error nnnn

Explanation: An unexpected error was returned by the device driver while accessing card nn. xxxx is an internal
error code that generally maps to a device driver return code.

Action: Call support personnel.

Source: Application Loader, Dump, Status, Configuration, and Reset

RIC0039 XXXXXXXX not installed, no adapters found

Explanation: The driver xxxxxxxx did not install because no ARTIC960 adapters were found.

Action: Verify that an adapter is installed before attempting to install the driver. If the problem persists, call
support personnel.

Source: OS/2 Driver

RIC0040 Dump on card nn already active

Explanation: An attempt to call the dump utility on card nn failed because dump was already active for that
adapter.

Action: Wait until the dump of the card has completed.

Source: Dump

Appendix B: Message File 301

RIC0041 « RIC0047

[

RIC0041 Peer communications not configurable with current hardware options

Explanation: The peer adapters could not be configured to communicate on a peer-to-peer basis due to the
configuration of the adapter. Either the adapter full memory window is not present, or it is in a
location that is inaccessible to the other peer adapter. This error can only be received in PS/2
systems.

Action: Use the Reference Diskette to configure the location of the adapter memory window to allow the two
adapters to communicate. In address constrained environments, it may be necessary to move an
adapter from a 16-bit slot to a 32-bit slot to enable the necessary configuration.

Source: Configuration

RIC0042 WARNING: Process mismatch

Explanation: The file to be loaded was compiled for a processor type that is different from the one on the
ARTIC960 adapter.

Action: Recompile the file for the appropriate processor type.

Source: Application Loader

RIC0043 Peer communications pipe size out of range

Explanation: The peer adapters could not be configured to communicate on a peer-to-peer basis because the
specified pipe size was too small.

Action: Increase the pipe size to the minimum size.

Source: Configuration

RIC0044 Process failed to initialize

Explanation: The process was loaded using the —W option of the Application Loader, and it failed to issue the
kernel service Completelnit function call in the specified time period.

Action: Correct the initialization error in the process.

Source: Application Loader

RIC0045 Process failed to initialize correctly. Error XXxxxxxx

Explanation: The process was loaded using the —W option of the Application Loader, and it passed a non-zero
error code on the kernel service Completelnit function call. xxxxxxxx contains the error code.

Action: Correct the initialization error in the process.

Source: Application Loader

RIC0046 Cards xx and yy are already configured

Explanation: The SCB pipes between units are already configured.

Action: Accept the configuration as defined or reset the adapter and reconfigure.

Source: Configuration

RIC0047 Configuration failed between xx and yy.

Explanation: The SCB pipe between units xx and yy is already configured.

Action: Verify the unit is not out of memory; if not, contact support personnel.

Source: Configuration

302 ARTIC960 Programmer’s Reference

RIC0048 « RIC0053

RIC0048 Correct syntax is:
[TT] RICMBX32 | ><¢
drive path -C config_filename —
|: [path]
-K

Explanation: Mailbox process syntax help message.

Action: Select the proper parameters and call the mailbox process.

Source: Mailbox Process

RIC0049 Unable to install interrupt handler for card nn

Explanation: The driver could not allocate the interrupt level for card nn. The driver allocates interrupt levels with
the share option. Therefore, another device has already allocated this interrupt level exclusively or
more than four cards tried to share the interrupt level.

Action: For micro channel, change the interrupt level for card nn using the reference diskette. For PClI, this
message indicates that a driver loaded prior to the ARTIC960 driver is claiming an interrupt as
non-shared. Install an updated driver that claims the interrupt as shared for this other device.

Source: OS/2 Driver

RIC0050 Resource xxxxxxxx already in use

Explanation: The process is unable to create xxxxxxxx because it is already being used by another person.

Action: Terminate any other process using this resource.

Source: Mailbox Process

RIC0051 XXXXXXXX already started on system unit

Explanation: The process xxxxxxxx was already running on the host machine.

Action: Either stop and restart the process, or let it run.

Source: Mailbox Process

RIC0052 Unable to set System Clock on card nn.

Explanation: The system clock could not be set on card nn

Action: Load the base device driver on the card.

Source: Application Loader

RIC0053 System Clock successfully started on card nn.

Explanation: The system clock was successfully started on card nn.

Action: None

Source: Application Loader

Appendix B: Message File 303

RIC0054 - RIC0061

[

RIC0054 Entry Point = Oxnnnnnnnn
Code = Oxnnnnnnnn
Data = Oxnnnnnnnn
BSS = Oxnnnnnnnn
Stack = Oxnnnnnnnn
Parameters = Oxnnnnnnnn
Explanation: Additional information about the task being loaded. Values are all in hexadecimal.
Action: None
Source: Application Loader
RIC0055 Timeout trying to configure with card nn.
Explanation: There was a timeout waiting for a response from card nn.
Action: Reset the adapter and reconfigure. Also, make sure all of the necessary subsystems are loaded on
the card before attempting to configure the SCB pipes.
Source: Configuration
RIC0056 nnn percent complete.
Explanation: nnn Percent complete of the dump.
Action: None
Source: Dump
RIC0057 XXXxXxxxx successfully loaded on card nn
Process Name = “yyyyyyyy”
Process ID = Oxnnnnnnnn
Explanation: The file xxxxxxxx was successfully loaded on logical card nn. The process name is yyyyyyyy and the
process ID is Oxnnnnnnnn (hex).
Action: None
Source: Application Loader
RIC0059 Peer communications between card nn and system unit successfully configured
Explanation: Peer communications between card nn and the system unit were successfully configured.
Action: None
Source: Configuration
RIC0060 Card nn and system unit area already configured
Explanation: Communications between card nn and the system unit area already configured.
Action: None
Source: Configuration
RIC0061 Configuration failed between card nn and system unit
Explanation: Configuration between card nn and the system unit failed.
Action: Reset the adapter and reconfigure.
Source: Configuration
304 ARTIC960 Programmer’s Reference

RIC0062 « RIC0069

RIC0062 Mailbox process successfully terminated.

Explanation: The Mailbox process was successfully terminated.

Action: None

Source: Mailbox Process

RIC0063 Mailbox process not running.

Explanation: The Mailbox process was not found and could not be terminated.

Action: None

Source: Mailbox Process

RIC0064 ROM error Oxnnnnnnnn detected on card nn.

Explanation: The adapter has detected ROM error Oxnnnnnnnn (hex) on card nn.

Action: This message indicates that an unrecoverable exception has occurred on the adapter. Reset the
adapter and retry the operation. If the problem persists, call support personnel.

Source: Application Loader, Configuration, Reset, OS/2 Driver

RIC0065 Symbol xxxxxxxx is undefined.

Explanation: The linker failed to understand the external symbol Xxxxxxxx

Action: Define symbol then recompile and link.

Source: Application Loader

RIC0066 XXXXXXXX Interrupt nesting disabled

Explanation: Interrupt nesting disabled in the driver through the —N command line switch.

Action: None

Source: OS/2 Driver

RIC0067 Pipe configuration failed between card nn and system unit.

Explanation: The configuration between card nn and the system unit failed.

Action: Reset the adapter and reconfigure. Also ensure that all of the necessary subsystems are loaded on
the card before attempting to configure the card.

Source: Configuration, Application Loader, Reset.

RIC0068 One or more of the required subsystems was not found for card nn.

Explanation: The card could not be configured because a required system was not found.

Action: Reset the adapter and load the necessary subsystems on the card before attempting to configure
the card.

Source: Reset, Application Loader, Configuration.

RIC0069 XXXXXXXX SCB transfers disabled

Explanation: Device driver data transfers through SCB are disabled. All transfers are done through programmed I/
O. This driver option is usually only configured for a development or debug environment.

Action: To enable device driver SCB transfers, remove the —S option from the device driver CONFIG.SYS
entry.

Source: OS/2 Driver

Appendix B: Message File 305

RIC0070 « RIC0O080

[

RIC0070 XXXXXXXX timeouts disabled
Explanation: Device driver timeouts for SCB transfers and commands to the card are disabled. This driver option
is usually only configured for a development or debug environment.
Action: To enable device driver timeouts, remove the —T option from the device driver CONFIG.SYS entry.
Source: OS/2 Driver
RIC0071 Down-level ROM version on card %1.
Explanation: The version of ROM on the adapter is down level and cannot be supported by the device driver.
Action: Update the ROM code on the adapter to a valid level.
RIC0072 Correct syntax is:
P [] ricmbx ><¢
path -C config_filename —
|: K [path :l
Explanation: Mailbox process syntax help message.
Action: Select the proper parameters and call the mailbox process.
Source: Mailbox process.
RIC0073 Timeout during mailbox initialization.
Explanation: Initialization of the mailbox process failed.
Action: Restart the process.
Source: Mailbox Process
RIC0075 Only 4 —A options can be specified.
Explanation: The ricdump utility only accepts four —A options at one time.
Action: Retry the command with four or fewer —A options.
Source: Dump
RIC0076 User must have root authority to execute ricmbx.
Explanation: ricmbx requires root authority for execution.
Action: Login with root authority, and reissue the command.
Source: Mailbox Process
RIC0079 Unable to register hardware for card nn
Explanation: The driver was unable to register hardware information with the operating system. Conflicting
settings and/or unsupported hardware options may be the cause of the problem.
Action: Verify adapter configuration and check that the operating system is at the required install level.
Source: Novell Driver
RIC0080 Warning: Unsupported option: XXXXXXXX
Explanation: The parameter Xxxxxxxx is not supported.
Action: No action is needed because the parameter xxxxxxxx is ignored.
Source: Configuration, Dump, Application Loader
306 ARTIC960 Programmer’s Reference

RIC0081 « RIC0100-RIC0299

RIC0081 Calibrating ARTIC 960/RP Timers using card nn

Explanation: Informational message notifying the user that the device driver is calculating the local bus speed
constant using the ARTIC 960/RP card displayed in the message.

Action: None

Source: OS/2 Driver

RIC0082 Unsupported option xxxxxxxx for this hardware.

Explanation: This option xxxxxxxx is not supported with the current hardware.

Action: Reissue the command without option XXXXXXxX.

Source: Dump

RIC0083 Dump process not followed correctly.

Explanation: One must first initiate a regular dump of the card before a dump of the PMC regions can be dumped.

Action: Reissue the command dumping the card first and then the PMC regions.

Source: Dump

RIC0084 Dump of PMC on card XXXXXXXX in progress.

Explanation: The PMC dump of card xxxxxxxx is currently in progress.

Action: Wait for a message indicating that the PMC dump has completed.

Source: Dump

RIC0085 Dump of PMC on card xxxxxxxx complete.

Explanation: The PMC dump of card xxxxxxxx is complete.

Action: Use a binary editor to analyze the raw dump file. Reset the card to continue using it.

Source: Dump

RIC0086 The format of the configuration file is incorrect.

Explanation: The configuration specified has too many entries or the syntax of the entries is incorrect.

Action: Reduce the number of entries in the configuration file or correct the syntax of the entries in the
configuration file and reissue the command.

Source: Dump

RIC0087

Explanation: The format specified is incorrect.

Action: Correct the format and reissue the command.

Source: Dump

RIC0100-RIC0299

Explanation:
Action:
Source:

These messages are used in the status utility.

None
Status

Appendix B: Message File

307

RIC0300 « RIC0305

[

RIC0300 Correct syntax is:
»P——— ricsettr — card_num >
|-path J
et Lol el -
-l size
-W count -D ——class -E class
Explanation: Set Trace utility syntax help message.
Action: Select the proper parameters and call the Set Trace.
Source: Set Trace
RIC0301 Correct syntax is:
-}}—L—J— ricgettr — card_num >«
path L-O out_filename —1 L -E i
Explanation: Get Trace utility syntax help message.
Action: Select the proper parameters and call the Get Trace.
Source: Get Trace
RIC0302 Trace buffer successfully fetched from card nn in file ssssssss
Explanation: The trace buffer was successfully read from card number nn and written to a file name ssssssss.
Action: None
Source: Get Trace
RIC0303 Run ricfmttr to format and view the trace
Explanation: After a successful Get Trace, this message is displayed to instruct the user to run the Format Utility
to analyze the results of the trace.
Action: None
Source: Get Trace
RIC0304 Correct syntax is:

-})—L—_l— ricfmttr >
path |— -l in_filename —| |--O out_filenameJ |--C-class_filename J

Explanation: Format Trace utility syntax help message.

Action: Select the proper parameters and call the Format Trace.

Source: Format Trace

RIC0305 Trace uninitialized on card nn

Explanation: Get Trace failed to enable and/or disable a service class because the trace buffer was not previously
initialized on card number nn.

Action: Include —I on the ricgettr command line.

Source: Get Trace

308 ARTIC960 Programmer’s Reference

RIC0306 « RIC0400-RIC0460

RIC0306

Explanation:
Action:
Source:

The trace buffer is empty - no trace logged

The trace file is empty.
Run the card application to be traced, run Get Trace and rerun Format Trace.
Format Trace

RIC0307 — RIC0322

Explanation: These messages are used to format the trace buffer.

Action: None

Source: Format Trace

RIC0323 Trace input file successfully formatted

Explanation: The Trace Formatter successfully formatted the input trace file.
Action: None

Source: Format Trace

RIC0324 Invalid Service Class xxx: Valid Class Range <0 - 255>
Explanation: The service class specified xxx must be in the range 0 to 255.
Action: Select a valid service class and reenter command.

Source: Set Trace

RIC0325

Explanation: This message is used to format the trace buffer.

Action: None.

Source: Format Trace

RIC0326 Trace successfully set on card nn

Explanation: The Set Trace command was successfully executed on card number nn.
Action: None

RIC0350-RIC0399

Explanation:
Action:
Source:

These messages are used for the ROM Update Utility.
None
ROM Update

RIC0400-RIC0460

Explanation:
Action:
Source:

These messages are used for the RICDiag utility.
None
RICDiag

Appendix B: Message File

309

RIC0400-RIC0460 « RIC0400—-RIC0460

[

310 ARTIC960 Programmer’s Reference

O
194

Return, Error, and Exit Codes

This appendix contains a listing of the codes used by programs and applications in the
ARTIC environment. Return codes are returned by the various routines and services
provided by the ARTIC960 APIs. These codes are listed in alphabetic and numeric order.
The numeric listing includes a description of the exception condition.

Theterminal error codes for the adapter, returned by the kernel, and the exit codes,
returned by the system utilities, are listed in numeric order only.

Return Codes (Listed Alphabetically) on page 312
Return Codes (Listed Numerically) on page 316
Kernel Terminal Error Codes on page 325

Exit Codes for System Unit Utilities on page 327

Appendix C: Return, Error, and Exit Codes 311

Return Codes (Listed Alphabetically)

[

Return Codes (Listed Alphabetically)

Return Code VALUE

RC_ADAPTER_EXCEPTION 0x00010001
RC_ALREADY_INITIALIZED 0x00010209
RC_BAD_QUEUE_ELEMENT 0x80011601
RC_BAD_CONFIG_PARAM 0x00011201
RC_BUFFER_TOO_SMALL 0x00010019
RC_CALL_TERMINATED 0x00010105
RC_CANT_STOP_SHARING 0x00010303
RC_CLOSE_ENTRY_FAILURE 0x00010A04
RC_CMD_NOT_DELIVERED 0x00010E02
RC_DD_RC_OUT_OF RANGE 0x00010A06
RC_DEPENDENT_EVENTS 0x00010403
RC_DEVICE_DRIVER 0x00010206
RC_DMA_ TRANSFER_FAILED 0x00010021
RC_DUMP_ACTIVE 0x00010002
RC_DUMP_NOT_ACTIVE 0x00010009
RC_DUP_ASYNC_EVENT 0x00010D01
RC_DUP_RES HANDLES 0x00010503
RC_DUP_RES NAME 0x00010101
RC_ELEMENT_NOT_FOUND 0x00010802
RC_ENTITY_ALREADY_REGISTERED 0x00010010
RC_ENTITY_NOT_FOUND 0x00011102
RC_ENTITY_NOT_REGISTERED 0x00010011
RC_HANDLE_CLOSED 0x0001000A
RC_HOOK_ ALREADY_REGISTERED 0x00010F01
RC_HOOK_ NOT_REGISTERED 0x00010F02
RC_HW_ALREADY_ALLOCATED 0x00010C01
RC_HW_NOT_ALLOCATED 0x00010C02
RC_INVALID_ADDRESS 0x0001001A
RC_INVALID_ALIGNMENT 0x00010307
RC_INVALID_BASEPTR 0x00010302
RC_INVALID_CALL 0x00010104
RC_INVALID_CALLER_POSITION 0x00011004
RC_INVALID_CARD_NUMBER 0x0001000D
RC_INVALID_CMD_DEST 0x00010E01
RC_INVALID_COMMAND 0x00010E03
RC_INVALID_COUNT 0x00010014
RC_INVALID_ENTITY_NUMBER 0x00010012
RC_INVALID_EVN_MASK 0x00010501
RC_INVALID_FUNCTION_CODE 0x00010108
RC_INVALID_HANDLE 0x00010020
RC_INVALID_HOOK 0x00010F03
RC_INVALID_MBX BUFFER_ADDR 0x00010905
RC_INVALID_MEM_ACCESS 0x0001001B
RC_INVALID_MSG_BUFFER 0x00010908
RC_INVALID_NAME 0x00010015
RC_INVALID_NUM_RES 0x00011202

312 ARTIC960 Programmer’s Reference

Return Codes (Listed Alphabetically)

Return Code VALUE

RC_INVALID_OPTION 0x00010016
RC_INVALID_PIN 0x00010B04
RC_INVALID_PRIORITY 0x0001020A
RC_INVALID_PROCEDURE_ID 0x00011003
RC_INVALID_PROCESSID 0x00010106
RC_INVALID_RECEIVER 0x00010903
RC_INVALID_RESERVED_PARM 0x0001001C
RC_INVALID_SEM_COUNT 0x00010402
RC_INVALID_SEMHANDLE 0x00010910
RC_INVALID_SERVICECLASS 0x00011002
RC_INVALID_SIZE 0x0001001D
RC_INVALID_SUBALLOC_ADDR 0x00010304
RC_INVALID_TICKS 0x80011502
RC_INVALID_TIMEOUT 0x0001001E
RC_INVALID_TIMER 0x80011501
RC_INVALID_UNIT_NUMBER 0x0001000F
RC_INVALID_VECTOR 0x00010B01
RC _INVOKE_ENTRY_FAILURE 0x00010A05
RC_MBX_BUFFER_IN_QUEUE 0x0001090F
RC_MBX_EMPTY 0x00010906
RC_MC_BUS_FAULT 0x0001130F
RC_MC_CHAINING_EX ERR 0x00011309
RC_MC_CARD_SEL FDBACK_ERR 0x00011303
RC_MC_CHCK_ERR 0x00011302
RC_MC_DATA_PARITY_ERR 0x00011301
RC_MC_EXCEPTION_ERR 0x00011306
RC_MC_INVALID_COMBINATION 0x00011308
RC_MC_LOCAL BUS_PARITY_ERR 0x00011305
RC_MC_LOSS_OF CHANNEL ERR 0x00011304
RC_MC_MASTER_ABORT 0x0001130E
RC_MC_MEM_FAULT 0x00011310
RC_MC_POSTSTAT_EX_ERR 0x0001130A
RC_MC_SERR 0x0001130D
RC_MC_TARGET_ABORT 0x0001130C
RC_MC_TIMEOUT 0x00011307
RC_MEM_SHARING_ERROR 0x00010301
RC_MOVE_ASYNC_ALREADY_REG 0x80011402
RC_MOVE_ASYNC_HANDLER_NOT_REG 0x80011401
RC_MSG_BUFFER_NOT_FREED 0x00010902
RC_NAME_NOT_FOUND 0x00010103
RC_NEW_SEM_COUNT 0x00010401
RC_NO_ADAPTER_RESPONSE 0x00010003
RC_NO_BASE_DEVICE_DRIVER 0x00010701
RC_NO_ELEMENTS 0x0001000B
RC_NO_FLOAT_SUPPORT 0x00010208
RC_NO_MBX BUFFER 0x00010907
RC_NO_MBX PROCESS 0x00010909
RC_NO_MBX_ RECEIVER 0x00010901

Appendix C: Return, Error, and Exit Codes 313

[

Return Codes (Listed Alphabetically)

[

Return Code VALUE

RC_NO_MORE_DEV 0x00010A02
RC_NO_MORE_ENTITIES 0x00010013
RC_NO_MORE_EVNS 0x00010502
RC_NO_MORE_HOOKS 0x00010F04
RC_NO_MORE_MBX 0x00010904
RC_NO_MORE_MEM 0x00010306
RC_NO_MORE_PROC 0x00010207
RC_NO_MORE_QUEUES 0x00010803
RC_NO_MORE_REM_MBX 0x0001090D
RC_NO_MORE_RES 0x0001001F
RC_NO_MORE_RES_ON_REMOTE 0x0001090A
RC_NO_MORE_SEM 0x00010404
RC_NO_MORE_SIGS 0x00010602
RC_NO_MORE_TIMERS 0x00010704
RC_NO_RCV_BUFFER 0x0001090B
RC_NO_RES_ACCESS 0x00010102
RC_NO_SUCH_SIG_ID 0x00010601
RC_NOT DD _OR_SS 0x00010A01
RC_NOT_REGISTERED 0x00010D02
RC_OPEN_ENTRY_FAILURE 0x00010A03
RC_OWNER_CLOSED_SEM 0x00010406
RC_PCI_BAD REGISTER_NUMBER 0x00011403
RC_PCI_DEVICE_NOT_FOUND 0x00011404
RC_PCI_INVALID _COMMAND 0x00011402
RC_PCI_NO_BIOS 0x00011401
RC_PERF_TIMER_NOT_ENABLED 0x00010707
RC_PERMANENT_PROCESS 0x00010204
RC_PIPE_FULL 0x0001000C
RC_PIPES _NOT_CONFIGURED 0x00010017
RC_PROCESSES WAITING_ON_SEM 0x00010408
RC_PROCESS_ALREADY_STARTED 0x00010203
RC_PROCESS_NOT_LOADED 0x00010202
RC_PROCESS_NOT_STARTED 0x00010201
RC_PROCESS_ STOPPED 0x00010205
RC_QUEUE_EMPTY 0x00010801
RC_REMOTE_CFG_NOT_EST 0x0001090E
RC_RESET_ACTIVE 0x00010004
RC_RESET_FAILED 0x00010005
RC_SCB_INIT_ERROR 0x00011101
RC_SCB_TRANSFER_FAILED 0x00010006
RC_SEM_ALREADY_OWNED 0x00010407
RC_SEM_NOT_OWNED 0x00010409

RC_SU_INVALID_HANDLE 0x00000006 (OS/2)

0x00000009 (AIX)

RC_SU_OPEN_FAILED 0x0000006E (OS/2)

0x00000013 (AIX)

RC_SUCCESS 0x00000000
RC_SYSTEM_ERROR 0x00010007
RC_TIMEOUT 0x00010018

314 ARTIC960 Programmer’s Reference

Return Codes (Listed Alphabetically)

Return Code VALUE

RC_TIMER_IS_ACTIVE 0x00010702
RC_TIMER_IS_INACTIVE 0x00010703
RC_TIMER_OVERFLOWED 0x00010706
RC_TOD_NOT_ENABLED 0x00010705
RC_TRACE_NOT_INITIALIZED 0x00011001
RC_UNABLE_TO_ACCESS_UNIT 0x0001090C
RC_UNABLE_TO_CONVERT_ADDRESS 0x0001130B
RC_UNIT_NOT_FUNCTIONING 0x0001000E
RC_UNSUPPORTED_FUNCTION 0x00010107
RC_VECTOR_NOT_ALLOCATED 0x00010B03
RC_VECTOR_NOT_AVAILABLE 0x00010B02
RC_WRN_PIPES _NOT_CONFIGURED 0x00010008

Appendix C: Return, Error, and Exit Codes 315

[

Return Codes (Listed Numerically)

[

Return Codes (Listed Numerically)

See Mailbox Process Messages and Return Codes on page 13 for mailbox process return codes.

Return Code Description
0x00000000 RC_SUCCESS
No error occurred.
0x00000006 RC_SU_INVALID_HANDLE
In OS/2, an invalid handle was passed to the API call.
0x00000009 RC_SU_INVALID_HANDLE
In AIX, an invalid handle was passed to the API call.
0x00000013 RC_SU_OPEN_FAILED
In AlX, this error indicates the driver is not installed.
0x0000006E RC_SU_OPEN_FAILED
In OS/2, this error indicates the driver is not installed.
0x00010001 RC_ADAPTER_EXCEPTION
A terminal adapter exception condition has been detected on the adapter.
0x00010002 RC_DUMP_ACTIVE
The command was aborted by a dump of the adapter or the request or command cannot be
issued because a dump is active.
0x00010003 RC_NO_ADAPTER_RESPONSE
This error indicates a severe adapter error. This code is returned when the adapter fails to pass
the power-on self test at power on or after a reset.
0x00010004 RC_RESET_ACTIVE
A reset is currently active on the destination unit.
0x00010005 RC_RESET_FAILED
The card failed to reset properly. This error usually indicates defective hardware. This error may
also be returned because of either user-specified timeouts or internal driver timeouts during
API calls.
0x00010006 RC_SCB_TRANSFER_FAILED
An error occurred when trying to transfer data using a subsystem control block.
0x00010007 RC_SYSTEM_ERROR
An unexpected system error occurred. Under AlX, more information about the error condition can
be found in errno.
0x00010008 RC_WRN_PIPES_NOT_CONFIGURED
The operation completed successfully even though there is no subsystem control block (SCB)
pipe configured to communicate with the adapter.
0x00010009 RC_DUMP_NOT_ACTIVE
A dump command was called without first activating the dump.
0x0001000A RC_HANDLE_CLOSED
Another thread within the process closed the process’ handle, which forces any threads using that
handle to abort with this error. The SCB entity is also deregistered.
0x0001000B RC_NO_ELEMENTS
This error is returned on a dequeue SCB call when no elements are available to be dequeued.
0x0001000C RC_PIPE_FULL
* The element cannot be enqueued at this time because the destination pipe is full.
* The SCB pipe was full when attempting to enqueue a control element.
0x0001000D RC_INVALID_CARD_NUMBER

* The requesting card is not one of the cards specified in the move system bus operation.
« The logical card number is out of range or invalid.
* The requested operation is not supported on this card in this environment.

316 ARTIC960 Programmer’s Reference

Return Codes (Listed Numerically)

Return Code

Description

0x0001000E RC_UNIT_NOT_FUNCTIONING

« The peer unit involved in the operation is not functioning. A timeout error occurred accessing
the unit or waiting for a response from the unit.

« A timeout occurred when trying to send or receive an SCB element to the unit.

0x0001000F RC_INVALID_UNIT_NUMBER

« The unit number is beyond the range of acceptable unit numbers.

¢ Aninvalid unit number was passed.
0x00010010 RC_ENTITY_ALREADY_REGISTERED

The entity is already registered.
0x00010011 RC_ENTITY_NOT_REGISTERED

The entity number passed by the caller is invalid. The entity number has not been registered.

0x00010012 RC_INVALID_ENTITY_NUMBER

Entity zero is reserved by the system for the system management entity.

0x00010013 RC_NO_MORE_ENTITIES
The number of entities registering has exceeded the maximum (8).
0x00010014 RC_INVALID_COUNT

« The count parameter is out of range.

¢ The mailbox message count is incompatible with the previously created mailbox.

0x00010015 RC_INVALID_NAME

The name used to create or open a resource exceeds the maximum size.

0x00010016 RC_INVALID_OPTION

« Aninvalid user option was selected, possibly through an OptionWord parameter.

¢ Aninvalid option was passed on the call.
0x00010017 RC_PIPES_NOT_CONFIGURED

* SCB pipes are not configured for this unit (after a reset).

* The SCB pipes to the destination unit are no longer configured.
0x00010018 RC_TIMEOUT

« The semaphore wait timed out before the process was awakened. This may occur during an
explicit call to RequestSem or implicitly through another call that waits on a semaphore for the
process.

« The operation timed out before it could complete successfully.

0x00010019 RC_BUFFER_TOO_SMALL

« The buffer provided by the caller is too small. The buffer will be filled up to its size.

* The supplied memory buffer is not large enough to receive the entire buffer of the data
requested.

0x0001001A RC_INVALID_ADDRESS

* The adapter address is out of range.

¢ Aninvalid adapter address was specified. The invalid address can be either a bad memory or I/
O address.

0x0001001B RC_INVALID_MEM_ACCESS

« The memory access on the address passed by the user is not appropriate for the action to be
taken. The user should check system bus as well as 80960 access.

« The application does not have proper access to the supplied memory buffer or the driver was
unable to pin the physical memory to perform the necessary DMA request. Note that in 16-bit
0S/2, applications will not receive this return code. Instead, 16-bit OS/2 terminates the process
with a trap. In 32-bit 0S/2, threads have the ability to get control through an exception handler
when the driver reports this error.

0x0001001C RC_INVALID_RESERVED_PARM

A non-zero reserved parameter was passed. Reserved parameters must be zero.

Appendix C: Return, Error, and Exit Codes 317

[

Return Codes (Listed Numerically)

[

Return Code

Description

0x0001001D

RC_INVALID_SIZE

« Size of request exceeds amount of memory allocated or size is 0.

« Mailbox message unit size is incompatible with previously created mailbox.
« Size specified for a system bus operation exceeds maximum allowed.

e The size of a passed parameter was invalid (out of range).

0x0001001E

RC_INVALID_TIMEOUT
The timeout value given must be between 0 and OXFFFF or —1.

0x0001001F

RC_NO_MORE_RES

« Either no more of the resource is available for allocation, or not enough internal kernel control
blocks are available to handle the allocation. If the latter is true, increasing the maximum value
for the resource type removes this constraint.

« All available internal Mailbox Process resources have been allocated.

0x00010020

RC_INVALID_HANDLE

« Aninvalid resource handle was passed to a resource service. The user can use only handles
returned by the Create and Open services. In addition, implicit semaphore handles returned by
CreateQueue and CreateMbx cannot be passed directly to ReleaseSem or RequestSem. They
can be passed only to WaitEvent. To wait on a single implicit semaphore, use GetQueue or
ReceiveMbx.

¢ Aninvalid semaphore handle or an invalid lock was passed to the API call.

0x00010021

RC_DMA_TRANSFER_FAILED

RICRead or RICWrite attempted to obtain direct memory access to the data and a
failure was reported by the operating system. This is an AlX-only return code.

0x00010101

RC_DUP_RES_NAME
The same name cannot be used to create two resources of the same type. Resources of
different types can have identical names.

0x00010102

RC_NO_RES_ACCESS
¢ The requester does not have access to the resource.
¢ Global mailboxes of the same name exist on two or more units.

0x00010103

RC_NAME_NOT_FOUND

« The open resource hame does not match any previously created resources. If a mailbox name
was specified using the global search option, this message indicates that a global mailbox
matching the resource name was not found on a remote unit. This could be because the
mailbox was never created, because SCB pipes for the remote unit are not configured, or
because the remote unit is not functioning.

¢ The requested name does not exist or could not be found within the specified domain. The
domain is limited to the SCB pipes configured. The query may have failed due to a timeout
waiting for the SCB pipes to change to a not-full state.

0x00010104

RC_INVALID_CALL
The called service is not available from the caller’s environment, for example, calling a
blocking service in an interrupt handler.

0x00010105

RC_CALL_TERMINATED

The subsystem that was called has been stopped. This error occurs when a process
was executing as an extension of the caller’s process and is stopped.

0x00010106

RC_INVALID_PROCESSID
The process ID parameter specified was invalid.

0x00010107

RC_UNSUPPORTED_FUNCTION
The function number used for the calling SVC call is invalid.

318 ARTIC960 Programmer’s Reference

Return Codes (Listed Numerically)

Return Code

Description

0x00010108

RC_INVALID_FUNCTION_CODE

The function number passed to QueryCallAddress is out of range. This may also be
returned if a service is called directly using InvokeDev, and an invalid function number is
passed.

0x00010201

RC_PROCESS NOT_STARTED
The process being stopped is not started as yet.

0x00010202

RC_PROCESS_NOT_LOADED
Only a previously loaded process can be started or unloaded.

0x00010203

RC_PROCESS_ALREADY_STARTED
The process has already been started.

0x00010204

RC_PERMANENT_PROCESS
The process has declared itself as permanent and cannot be stopped or unloaded.

0x00010205

RC_PROCESS_STOPPED
The process is already stopped.

0x00010206

RC_DEVICE_DRIVER
Only a device driver/subsystem or the kernel can stop a device driver/subsystem.

0x00010207

RC_NO_MORE_PROC
No more process management resources are available to create a new process.

0x00010208

RC_NO_FLOAT SUPPORT
The adapter does not support floating point.

0x00010209

RC_ALREADY_INITIALIZED
Process has already called issued a Completelnit.

0x0001020A

RC_INVALID_PRIORITY
The process is trying to use a reserved or out of range priority.

0x00010301

RC_MEM_SHARING_ERROR

The memory cannot be opened because it was not made sharable by the creating
process.

0x00010302

RC_INVALID_BASEPTR
The memory base pointer is invalid.

0x00010303

RC_CANT_STOP_SHARING

The memory protection on the allocated memory cannot be made non-sharable because multiple
processes have access to the memory.

0x00010304

RC_INVALID_SUBALLOC_ADDR

The suballocation block cannot be freed because the suballocation block pointer is
invalid.

0x00010306

RC_NO_MORE_MEM
There is no more memory or not enough contiguous memory to complete the allocation request.

0x00010307

RC_INVALID_ALIGNMENT
The process is trying to allocate memory on a boundary that is not possible.

0x00010401

RC_NEW_SEM_COUNT

When SetSemCount is called for a semaphore that has processes waiting on it, the
processes are awakened with this return code.

0x00010402

RC_INVALID_SEM_COUNT
An invalid semaphore count was passed to SetSemCount.

0x00010403

RC_DEPENDENT_EVENTS

The semaphore could not be closed because events still exist that depend on the
semaphore. Close the events before attempting to close the semaphore.

Appendix C: Return, Error, and Exit Codes 319

[

Return Codes (Listed Numerically)

[

Return Code

Description

0x00010404

RC_NO_MORE_SEM
No more semaphores can be allocated. All available semaphores have been allocated.

0x00010406

RC_OWNER_CLOSED SEM
The process that owned a mutex semaphore closed it, or a process was stopped while it
owned the mutex semaphore. The code and data serialized by the mutual exclusion
semaphore may be in an state that cannot be determined.

0x00010407

RC_SEM_ALREADY_OWNED
The process requesting the mutual exclusion semaphore already owns that semaphore.

0x00010408

RC_PROCESSES_WAITING_ON_SEM

Returned when calling SetSemCount. This is a warning to the process that other
processes were waiting on this semaphore.

0x00010409

RC_SEM_NOT_OWNED
The semaphore is not owned by the process trying to release it.

0x00010501

RC_INVALID_EVN_MASK
Invalid wait mask passed to WaitEvent.

0x00010502

RC_NO_MORE_EVNS
All available events have been created.

0x00010503

RC_DUP_RES_HANDLES
Duplicate semaphore handles were passed to CreateEvent.

0x00010601

RC_NO_SUCH_SIG_ID
There was no process to receive the signal.

0x00010602

RC_NO_MORE_SIGS
All signal resources are allocated.

0x00010701

RC_NO_BASE_DEVICE_DRIVER
The service failed because the base subsystem or device driver is not installed.

0x00010702

RC_TIMER_IS_ACTIVE
The TimeOfDay or Performance timers cannot be started because it is active.

0x00010703

RC_TIMER_IS_INACTIVE
The time-of-day or performance timer cannot be stopped because it is inactive.

0x00010704

RC_NO_MORE_TIMERS
All the timers have been allocated.

0x00010705

RC_TOD_NOT_ENABLED
The time of day timer was not enabled using the TIME_OF_DAY parameter in the kernel
configuration file.

0x00010706

RC_TIMER_OVERFLOWED
The performance timer has already expired.

0x00010707

RC_PERF_TIMER_NOT_ENABLED
The performance timer was not enabled using the PERFORMANCE_TIMER parameter in the
kernel configuration file.

0x00010801

RC_QUEUE_EMPTY
The queue was empty and no elements were added before the timeout expired on the
call to GetQueue.

0x00010802

RC_ELEMENT _NOT_FOUND
SearchQueue did not find the element in the queue.

0x00010803

RC_NO_MORE_QUEUES
All queues are allocated.

320 ARTIC960 Programmer’s Reference

Return Codes (Listed Numerically)

Return Code

Description

0x00010901 RC_NO_MBX_RECEIVER
No receiver is present for the mailbox. The mailbox has been closed.
0x00010902 RC_MSG_BUFFER_NOT_FREED
* The message buffer was not returned to the pool even though the buffer return option was set
in SendMbx.
« Sender and receiver are sharing memory, and copy option was not used. Receiver should free
buffer when finished with the message.
0x00010903 RC_INVALID_RECEIVER
Only the creating process can receive messages from a mailbox.
0x00010904 RC_NO_MORE_MBX
All available mailboxes have been allocated.
0x00010905 RC_INVALID_MBX_BUFFER_ADDR
* The message buffer pointer was invalid.
¢ Aninvalid mailbox buffer pointer was passed to FreeMbxBuffer.
0x00010906 RC_MBX_EMPTY
There are no messages in the mailbox.
0x00010907 RC_NO_MBX_BUFFER
* There is not enough memory left in the mailbox pool to allocate the buffer.
« There are no more available mailbox buffers in the pool.
0x00010908 RC_INVALID_MSG_BUFFER
The message is not in the message pool associated with the open of this mailbox or the
message has been freed.
0x00010909 RC_NO_MBX_PROCESS
The mailbox process is not loaded.
0x0001090A RC_NO_MORE_RES_ON_REMOTE
< A RC_NO_MORE_RES error was received from the remote unit on a remote mailbox operation.
« During an open mailbox, the remote unit did not have enough available internal Mailbox
Process resources to satisfy the request.
0x0001090B RC_NO_RCV_BUFFER
The destination mailbox has no receive buffers to accept the message.
0x0001090C RC_UNABLE_TO_ACCESS_UNIT
This unit is unable to perform the requested operation with the peer unit. Possible
reasons are adapter exception, dump active, reset active, peer unit not functioning.
0x0001090D RC_NO_MORE_REM_MBX
All of the remote mailboxes have been allocated.
0x0001090E RC_REMOTE_CFG_NOT_EST
A global search for the named mailbox cannot be made because the remote
configuration has not been established. This could be because the Configuration Utility
has not successfully established system unit <-> adapter SCB pipes, because the
system bus I/0 Subsystem has not been installed successfully on the adapter, or
because the SCB Subsystem has not been installed successfully on the adapter.
0x0001090F RC_MBX_BUFFER_IN_QUEUE
The buffer is queued currently to a mailbox and has not been received by the mailbox
creator.
0x00010910 RC_INVALID_SEMHANDLE

Cannot access the semaphore handle.

Appendix C: Return, Error, and Exit Codes 321

[

Return Codes (Listed Numerically)

[

Return Code Description
0x00010A01 RC_NOT_DD_OR_SS
This process is not a device driver or subsystem, but is attempting to use a service
restricted to device drivers and subsystems.
0x00010A02 RC_NO_MORE_DEV
No more device drivers/subsystems can be created.
0x00010A03 RC_OPEN_ENTRY_FAILURE
The open entry routine failed for the subsystem or device driver.
0x00010A04 RC_CLOSE_ENTRY_FAILURE
The close entry routine failed for the subsystem or device driver.
0x00010A05 RC_INVOKE_ENTRY_FAILURE
The call entry routine failed for the subsystem or device driver.
0x00010A06 RC_DD_RC_OUT_OF RANGE
A subsystem or device driver has returned a value out of the range specified for use by
subsystems and device drivers. The acceptable range is 0XFFFF0000 through
OXFFFFFFFFE
0x00010B01 RC_INVALID_VECTOR
The process is trying to allocate a vector greater than 255.
0x00010B02 RC_VECTOR_NOT_AVAILABLE
The requested vector number is not available.
0x00010B03 RC_VECTOR_NOT_ALLOCATED
The requester is trying to return or set a vector that was never allocated.
0x00010B04 RC_INVALID_PIN
The valid range of external interrupt pin numbers is from 0 to 7.
0x00010C01 RC_HW_ALREADY_ALLOCATED
The requested hardware name is already allocated.
0x00010C02 RC_HW_NOT_ALLOCATED
The requester is returning a hardware resource that was not previously allocated.
0x00010D01 RC_DUP_ASYNC_EVENT
A process can register an async handler for an event only once. If a process wants to
change the address of its async handler, then it should de-register the async handler
before re-registering it.
0x00010D02 RC_NOT_REGISTERED
A process is trying to deregister an asynchronous event for which it is not registered.
0x00010E01 RC_INVALID_CMD_DEST
The destination process ID for the command is invalid.
0x00010E02 RC_CMD_NOT_DELIVERED
The command could not be delivered to the destination process.
0x00010E03 RC_INVALID_COMMAND
The command is invalid.
0x00010F01 RC_HOOK_ALREADY_REGISTERED
The hook has already been registered by the calling process.
0x00010F02 RC_HOOK_NOT_REGISTERED
The process is trying to deregister a hook that it has not registered.
0x00010F03 RC_INVALID_HOOK
The process is trying to register an invalid hook.
0x00010F04 RC_NO_MORE_HOOKS

All available hooks are already registered.

322 ARTIC960 Programmer’s Reference

Return Codes (Listed Numerically)

Return Code

Description

0x00011001 RC_TRACE_NOT_INITIALIZED
A call to EnableTrace or DisableTrace was made without a successful call to InitTrace.
LogTrace specified a service class that was not enabled.
0x00011002 RC_INVALID_SERVICECLASS
The range of valid service classes is from 0 to 255.
0x00011003 RC_INVALID_PROCEDURE_ID
The Procedure ID specified is not valid for the service class.
0x00011004 RC_INVALID_CALLER_POSITION
The caller position is not within the valid range of values.
0x00011101 RC_SCB_INIT_ERROR
The reply to an Initialize SCB Pipe command is responding with an error element.
0x00011102 RC_ENTITY_NOT_FOUND
The named entity was not found on the remote unit.
0x00011201 RC_BAD_CONFIG_PARAM
Invalid parameter passed to kernel through configuration file.
0x00011202 RC_INVALID_NUM_RES
The configuration parameters passed were such that the required number of resources
exceeded the kernel’s limit.
0x00011301 RC_MC_DATA_PARITY_ERR
A system bus data parity error was returned on a Micro Channel operation.
0x00011302 RC_MC_CHCK_ERR
A channel check was returned on a system bus operation.
0x00011303 RC_MC_CARD_SEL_FDBACK_ERR
A card selected feedback error was returned on a system bus .
0x00011304 RC_MC_LOSS_OF CHANNEL ERR
A loss of channel error was returned on a system bus operation.
0x00011305 RC_MC_LOCAL_BUS_PARITY_ERR
A local bus parity error was returned on a system bus operation.
0x00011306 RC_MC_EXCEPTION_ERR
An exception error was returned on a system bus operation.
0x00011307 RC_MC_TIMEOUT
A timeout occurred on a system bus operation or waiting for DMA resources.
0x00011308 RC_MC_INVALID_COMBINATION
An invalid combination error was returned on a system bus operation.
0x00011309 RC_MC_CHAINING_EX_ERR
A list-chaining exception error was returned on a system bus operation.
0x0001130A RC_MC_POSTSTAT_EX_ERR
A posted status exception error was returned on a system bus operation.
0x0001130B RC_UNABLE_TO_CONVERT_ADDRESS
The system bus address does not correspond to a local card address.
0x0001130C RC_MC_TARGET_ABORT
A target abort error was returned on a system bus operation on the ARTIC960 PCI card.
0x0001130D RC_MC_SERR
A SERR# error was returned on a system bus operation on the ARTIC960 PCI card.
0x0001130E RC_MC_MASTER_ABORT

A master abort error was returned on a system bus operation on the ARTIC960Rx PCI
card.

Appendix C: Return, Error, and Exit Codes 323

[

Return Codes (Listed Numerically)

[

Return Code Description
0x0001130F RC_MC_BUS_FAULT
A bus fault error was returned on a system bus operation on the ARTIC960Rx PCI card.
0x0001310 RC_MC_MEM_FAULT
A memory fault error was returned on a system bus operation on the ARTIC960Rx PCI
card.
0x00011401 RC_PCI_NO_BIOS
PCI driver not installed or card does not have a local PCI bus.
0x00011402 RC_PCI_INVALID_COMMAND
An invalid IOCTL number was issued to the PCI driver. This happens only when the
driver library services are not being used.
0x00011403 RC_PCI_BAD_REGISTER_NUMBER
An invalid configuration register number was specified.
0x00011404 RC_PCI_DEVICE_NOT_FOUND
The PCI device is not present.
0x80011401 RC_MOVE_ASYNC_HANDLER_NOT_REG
The service called requires an async handler to be registered.
0x80011402 RC_MOVE_ASYNC_ALREADY_REG
The subsystem name is already registered as a move async handler.
0x80011501 RC_INVALID_TIMER
A bad timer number was given to the base subsystem.
0x80011502 RC_INVALID_TICKS
The base subsystem attempted to start a hardware timer with zero ticks.
0x80011601 RC_BAD_QUEUE_ELEMENT

An internal link list is invalid or corrupted.

324 ARTIC960 Programmer’s Reference

Kernel Terminal Error Codes

Kernel Terminal Error Codes

Error Code Description
0x0020 TERMERR_MC_IO_FAIL
System bus 10 subsystem failure.
0x0021 TERMERR_SCB_FAIL
SCB subsystem failure.
0x0022 TERMERR_EXTMAIL_FAIL
External mailbox failure.
0x0023 TERMERR_INVALID_INTR
Hardware interrupt occurred. No second-level handler was installed.
0x0024 TERMERR_WATCHDOG
Watchdog timeout.
0x0025 TERMERR_PARITY
A parity error has occurred. It is one of the following: multiple-bit ECC error, AIB bus
read parity error with 80960 master, and local bus parity for ARTIC960 32-bit Memory
Controller Chip, system bus Interface Chip, and CFE Local Bus/AIB Interface Chip.
0x0026 TERMERR_MEM_PROCESSOR
Memory-protection violation with 80960 master occurred at interrupt time.
0x0027 TERMERR_MEM_MICROCHANNEL
Memory-protection violation with system bus master.
0x0028 TERMERR_MEM_AIB
Memory-protection violation with AIB master.
0x0029 TERMERR_ASYNC_NO_MORE_RES
No more async event resources could be allocated because the internal pools are
exhausted. The event cannot be processed.
0x002A TERMERR_PROCESSOR
Program has attempted to perform an illegal operation on an architecture-defined data
type or a typed data structure.
0x002B TERMERR_DATA_CORRUPTION
The kernel found its internal data structures corrupted.
0x002C TERMERR_KERNEL_INIT
Kernel initialization error.
0x002D TERMERR_NMI_INTERRUPT
An NMI interrupt occurred on an ARTIC960Rx adapter.
0x002E TERMERR_PLX_INTERRUPT
PLX caused an error on an ARTIC960HXx adapter.
0x1001 TERMERR_NO_MORE_MEM
There is not enough memory left in the internal pools to perform the operation.
0x1002 TERMERR_MC_ERR
An error occurred on a system bus operation.
0x1003 TERMERR_NO_MORE_SEM
There is no semaphore available to perform the operation.
0x1004 TERMERR_NO_MORE_QUEUES
There is no queue available to perform the operation.
0x1005 TERMERR_NO_MORE_TIMERS

There is no timer available to perform the operation.

Appendix C: Return, Error, and Exit Codes 325

Kernel Terminal Error Codes

[

Error Code Description
0x1006 TERMERR_DATA_PARITY
A data parity error was returned on a system bus operation.
0x1007 TERMERR_CHCK
A channel check error was returned on a system bus operation.
0x1008 TERMERR_CARD_SEL_FDBACK
A data card selected feedback error was returned on a system bus operation.
0x1009 TERMERR_LOSS_OF_CHANNEL
A loss of channel error was returned on a system bus operation.
0x100A TERMERR_LOCAL_BUS_PARITY
A local bus parity error was returned on a system bus operation.
0x100B TERMERR_EXCEPTION
A local exception error was returned on a system bus operation.
0x100C TERMERR_TIMEOUT
A timeout error was returned on a system bus operation.
0x100D TERMERR_PIPE_ACCESS
A system bus error was returned while trying to enqueue an SCB element.
Note: This error can occur in RISC systems if the secondary arbitration level is not configured.
See ARTIC960 Support for AIX on page 10.
0x100E TERMERR_PIPE_TIMEOUT
A system bus timeout error occurred while trying to enqueue an SCB element.
0x100F TERMERR_INVOKING_RIC_MCIO
An error occurred trying to open or call the system bus Subsystem.
0x1010 TERMERR_INVOKING_RIC_SCB

An error occurred trying to open or call the system bus Subsystem.

Refer to the ARTIC960 Programmer’s Guide for more information about terminal errors.

326 ARTIC960 Programmer’s Reference

Exit Codes for System Unit Utilities

Exit Codes for System Unit Utilities

The following exit codes are listed by decimal value.

Exit Code Description
0 RC_UTIL_SUCCESS
The utility command executed successfully.
1 RC_UTIL_INVALID_CARD_NUMBER
The specified logical card number is invalid. The card number is either non-numeric or
out of range.
2 RC_UTIL_RESET_FAILED
The card failed to reset due to an exception condition detected on the card.
3 RC_UTIL_ACCESS_ERROR
An unexpected error was returned by the device driver while accessing the card.
4 RC_UTIL_NO_ADAPTER_RESPONSE
The adapter is not responding to commands.
5 RC_UTIL_NOT_INSTALLED
The driver is not installed and running in the system. This occurs when a utility or
mailbox process attempts to access an adapter and the device driver is not installed.
6 RC_UTIL_ADAPTER_EXCEPTION
The adapter has detected an exception condition.
7 RC_UTIL_ALREADY_STARTED
The process was already running on the adapter.
8 RC_UTIL DUP_RES_NAME
A process with the same name has already been loaded on the adapter.
9 RC_UTIL_FILE_ACCESS
An error was received when attempting to access a file.
10 RC_UTIL_FILE_FORMAT
A file is not in the proper format. The Application Loader returns this message when a
process file does not have the proper executable format. The status utility returns this
message when a dump file does not have the proper format. The trace formatter returns
this message when the input trace file is not in the proper format.
11 RC_UTIL_FILE_NOT_FOUND
A file does not exist or is not in the specified directory. Under AlX, it may indicate a file
permissions problem.
12 RC_UTIL_INVALID_CMDLINE_OPTION
An option is not a valid command line option.
13 RC_UTIL_INVALID_CMDLINE_PARM
A parameter is invalid. Either a required parameter is missing or a optional parameter
has been improperly specified.
14 RC_UTIL_INVALID_MICROCODE
The RadiSys ARTIC960 kernel is not loaded.
15 RC_UTIL_INVALID_NAME
The process name is too long.
16 RC_UTIL_MICROCODE_ERROR
The kernel unexpectedly returned an error.
17 RC_UTIL_NAME_NOT_FOUND

The process was not found on the adapter and could not be unloaded.

Appendix C: Return, Error, and Exit Codes 327

[

Exit Codes for System Unit Utilities

[

Exit Code Description

18 RC_UTIL_NOT_PENDING
There is no triggered dump pending on the adapter that can be canceled.

19 RC_UTIL_NO_MORE_MEM
There is not enough free storage to complete the request.

20 RC_UTIL_PIPE_ALREADY_CONF
The SCB pipes between units are already configured.

21 RC_UTIL_PIPE_CONF_FAILED
Configuration failed between the adapter and the system unit.

22 RC_UTIL_PIPE_SIZE_OUT_OF RANGE
The peer adapters could not be configured to communicate on a peer-to-peer basis
because the specified pipe size was too small.

23 RC_UTIL_PIPE_UNCONF
The peer adapters could not be configured to communicate on a peer-to-peer basis
because of the configuration of the adapter. Either the adapter full memory window is
not present, or it is in a location that is inaccessible to the other peer adapter. This error
can be received only in PS/2 systems.

24 RC_UTIL_PROC_DID_NOT_INIT
The process was loaded using the —W option of the Application Loader and it failed to
issue the kernel Completelnit() call in the specified time period.

25 RC_UTIL_PROC_INIT_ERROR
The process was loaded using the —\W option of the Application Loader, and it passed a
non-zero error code on the kernel Completelnit() call.

26 RC_UTIL_PROC_MISMATCH
The file to be loaded was compiled for a processor type that is different from the adapter
type.

27 RC_UTIL_SYSTEM_ERROR
An operating system error condition has been received by the software.

28 RC_UTIL_UNIT_NOT_FUNCTIONING
The peer adapters could not be configured to communicate on a peer-to-peer basis
because of the configuration of the adapter. Either the adapter full memory window is
not present, or it is in a location that is inaccessible to the other peer adapter.

29 RC_UTIL_WRNHELP_GIVEN
Appropriate syntax diagram is displayed for the selected utility.

30 RC_UTIL_RESOURCE_BUSY
The process is unable to create the resource because it is already being used by
another process.

31 RC_UTIL_TIMESET_ERROR
There was a timeout waiting for a response from the adapter.

32 RC_UTIL_SNGL_PIPE_ALRDY_CONF
Peer communications between the adapter and the system unit were successfully
configured.

33 RC_UTIL_NOT_RUNNING
The mailbox process was not found or could not be terminated.

34 RC_UTIL_SNGLPIPE_CONF_FAILED
Configuration failed between the adapter and the system unit.

35 RC_UTIL_SUBSYSTEM_NOT_FOUND

The specified subsystem was not found.

328 ARTIC960 Programmer’s Reference

Exit Codes for System Unit Utilities

Exit Code Description
36 RC_UTIL_FILL_ROM_FAILED
Fill ROM failed during the ROM update process on the adapter.
37 RC_UTIL_ERASE_ROM_FAILED
Erase ROM failed during the ROM update process on the adapter.
38 RC_UTIL_WRITE_ROM_FAILED
Write ROM failed during the ROM update process on the adapter.
39 RC_UTIL_CHECKSUM_FAILED
Checksum procedure failed during the ROM update process on the adapter.
40 RC_UTIL_DATA_COMPARE_FAILED
ROM Update on the adapter failed. After the new image was written to the ROM, a
comparison was done with the ROM image supplied. This comparison failed.
41 RC_UTIL_INVALID VPD_DATA
Invalid data was detected in the VPD data file.
42 RC_UTIL_INVALID_VPD_FILE
Invalid VPD file format. The VPD file specified does not conform to the required format.
43 RC_UTIL_INVALID_SERIAL_NUMBER
The serial number specified is invalid.
44 RC_UTIL_AIB_VPD_NOT_FOUND
VPD information not found in the file specified.
45 RC_UTIL_AIB_NOT INSTALLED
AIB option is not installed. An attempt was made to update a card that is not installed.
46 RC_UTIL_INVALID_MFG_ID_NUMBER
The manufacturer ID specified is invalid.
47 RC_UTIL_BASE_VPD_NOT_FOUND
VPD information not found in the file.
48 RC_UTIL_UNSUPPORTED_OPTION
e The option listed is not supported.
e The option is not supported in this environment.
49 RC_UTIL_INVALID_ROM_FILE
ROM image file specified for ROM update is not valid for the specified card.
50 RC_UTIL_ROM_FILE_WARNING
The specified ROM image file cannot be positively identified for the specified card.
51 RC_UTIL_ PROTECT_ROM_SECTOR
One of the sectors of the flash is write protected and cannot be updated by the ROM
update utility.
52 RC_UTIL_NO_ROM_FOR_PMC
The PMC card does not have ROM. Cannot update the PMC ROM.
53 RC_UTIL_UNSUPPORTED_OPT_HARDWARE
The option listed is not supported on the current hardware.
54 RC_UTIL_DUMP_PROCESS_ERROR
A regular dump on the card was not initiated before the PMC dump was requested.
55 RC_UTIL_DUMP_CONFIG_ERROR
The config file specified for the PMC dump has too many entries.
56 RC_UTIL_PARM_SYNTAX_ERROR
The format of the parameter is incorrect.
58 RC_UTIL_NO_MORE_ROM

The image is too large for the ROM size.

Appendix C: Return, Error, and Exit Codes 329

[

Exit Codes for System Unit Utilities

[

Exit Code Description

59 RC_UTIL_OEM_ROM
The image is non-RadiSys.

330 ARTIC960 Programmer’s Reference

Glossary

A

AAL: ATM Adaptation Layer — Enhances the services provided by the ATM Layer to support
functions required by the next higher level.

B

BIB: Backward indicator bit

C

calling processes:
Processes that open asignal with aNULL EntryPoint. See receiving process.

counting semaphore:
Semaphore used for synchronizing processes, such as synchronizing a producer-consumer
pair of processes.

DMA: Direct memory access

E

explicit semaphore:
Semaphore that is decremented before control returns to the process.

H
HAL: Hardware abstraction layer

HPFS: High performance file system

I

ICE: 80960 interactive computing environment

implicit semaphore:
Semaphoresthat are decremented when the process calls the appropriate resource services,
such as removing a queue e ement or mailbox message.

Glossary 331

MVDM: Multiple virtual DOS machines

MP Safe: Multiprocessing safe

mutex: Mutual exclusion semaphores used for serializing access to code or data structures.
@)

OSSs: On-card STREAMS subsystem

R

RDT: Resource Descriptor Table

receiving processes:
Processes that open asignal with anon-NULL EntryPoint. See calling processes.

ricmbx: The mailbox process for AlX that is a daemon process that works in conjunction with the
device driver to handle remote mailbox processing.

RICMBX32.EXE:
Themailbox processfor OS/2 that isadetached processthat workswith the physical device
driver to handle remote mailbox processing.

ROM: Read only memory

S

SCB: Subsystem Control Block

SAL: STREAMS Access Library

semval: AlX variable. For information on semval, see /usr/include/sys/sem.h.
SMP: Symmetric multiprocessing

system executables:
A collectivetermfor the kernel and related subsystemsthat must be loaded onto the adapter
before any application processes are |oaded.

332 ARTIC960 Programmer’s Reference

| ndex

O

A

access violation 267, 269
adapters, supported (chart) 1
address

convert system bus 181

destination 178

element 102

fault code 142

/07,10

physical system bus 178
addressability, get memory 67
AIX mailbox process syntax 11
alignment values, block 64
alignment, memory boundary 75
allocate

free mailbox buffer 282

memory for trace buffer 150

message units 104

resources 95

timer 5
AllocHW -- Allocate a Hardware Device 134
AllocVector -- Allocate an Interrupt Vector 128
AllocVectorMux -- Allocate an Interrupt Vector 129
ANSI C end of lineffile 198
ANSI C functions support 173
APls

base services 264

mailbox 276

system unit return codes 312, 316
application loader

description 196

messages and exit codes 199

sample calls 200

syntax 196
arguments within quotes 196
arithmetic-controls (AC) register 142
ARTIC960 services 15
ARTIC960 Support for AIX 10
ARTIC960 Support for 0S/2 7
ARTIC960 Support for Windows NT 14
assign

logical card numbers 195

name to event word 58

name to memory 105
process name 34
queue name 95
semaphore name 51
timer 84

async handler
deregister 145
register 139

asynchronous events
DeregisterAsyncHandler 145
notification 138
RegisterAsyncHandler 139

B

base APIs
RICClose 266
RICGetConfig 272
RICGetException 274
RICGetVersion 273
RICOpen 265
RICRead 267
RICReset 271
RICWrite 269

base device driver configuration 6

base kernel services 21

bit map alocation 75

bits, defined 27

blank linesin file 196, 208

block
alignment values 64
cal parameter 127
size of 69

books, reference xv

buffer trace 150

byte swapping 268, 270

C
C functions, ANSI, support 173
cal
device driver 7
kernel 1
mailbox process 8
calling process 116

333

cals, ANSI Clibrary 173
card configuration information, getting 28
change
adapter attributesusing SMIT 11
memory protection 70, 71
process priority 42
close semaphore 53
CloseDev -- Close a Subsystem or Device Driver 126
CloseEvent -- Release Access to an Event Word 60
CloseMbx -- Close aMailbox 114, 288
CloseMem -- Remove Addressability to Memory 68
CloseQueue -- Close a Queue 97
CloseSem -- Close a Semaphore 53
CloseSig -- Closea Signa 119
CloseSwTimer -- Return a Software Timer 85
collect memory 82
CollectMem -- Collect Memory 82
commands, kernel
common header 164
DeRegisterResponseMbx 167
overview 163
QueryProcessStatus 168
RegisterResponseMbx 166
StartProcess 171
StopProcess 170
UnloadProcess 169
common header, kernel commands 164, 165
Completelnit--Mark Process as Completely Initialized
23
compress dump data 202
CONFIG.SYS7
configuration
ARTIC960 Support for AIX 10
ARTIC960 Support for 0S/2 7
ARTIC960 Support for Windows NT 14
device driver/subsystem 6
driver, PCI bus 2, 332
file entry format 208
for adapter, SCB 271
get hardware data 272
kernel 1
kernel/subsystem 4
subsystems 6
system bus 1/O subsystem 6
utility 207
constants, defined 65
control information, kernel 77
conventions, notational Xiv
ConvertCardToMC -- Convert Card Address to System
Bus Address 182
ConvertMCToCard -- Convert System Bus Address to
Card Address 181
corruption, data structure 77
count, set semaphore 57

334 ARTIC960 Programmer’s Reference

counting semaphore 50
create

access rights 65

binary file name 203

event word 58

mailbox 104, 277

memory 64

memory type 80

process 34

queue 95

semaphore 51, 105

signal 115

software timer 84
CREATE_CACHE_DATA option 35
CreateDev -- Register a Subsystem or Device Driver 122
CreateEvent -- Create an Event Word 58
CreateMbx -- Create a Mailbox 104, 277
CreateMem -- Allocate Memory 64
CreateProcess -- Create a Process 34
CreateQueue -- Create a Queue 95
CreateSem -- Create a Semaphore 51
CreateSig -- Create a Signa 115
CreateSwTimer -- Allocate Software Timer 84
critical code section 47

D

data cache
enable 5
i960 197
options 197
data steering 270
DATA_CACHE parameter 80
decimal values, parameter 195
default pipe size 207
delete
event 60
extraneous quotes in argument 196
mailbox 288
DeregisterAsyncHandler -- Deregister an Async Handler
145
DeregisterHook -- Deregister an Entry Point for a Hook
148
DeRegisterResponseMbx command 167
device driver/subsystem
AllocVector 128
AllocVectorMux 129
asynchronous event notification 138
CloseDev 126
configuration 6
CreateDev 122
DeregisterAsyncHandler 145
DeregisterHook 148
driver call syntax, OS/2 Support 7

InvokeDev 127
messages 8, 295
OpenDev 125
QueryHW 137
RegisterAsyncHandler 139
RegisterHook 147
ReturnHW 136
ReturnVector 133
ric baserd, file 1
RICIO16.SYS 7
SetVector 131
support 121
diagnostic dump 202
disable interrupts/preemptions 47
DisableTrace service 152
Dispatch -- Cause a Dispatch Cycle 49
DMA (Direct Memory Access) 10
driver messages 295
dump utility
description 202
file decomprsesion 202
format 225
messages and return codes 206
modes 202
syntax 202

E

e-mail address, RadiSys xv
enable interrupts/preemptions 48
EnableTrace service 151

end access to adapter 266
end-of-line sequence 196

EnterCritSec -- Enter Critical Section 47

entry point
deregister hook 148
interrupt vector 131
register hook 147
error
bus 204
codes, kernel terminal 325
messages 295
POST load 199
event
notification, asynchronous 138
wait for 61
event word
creating 58
deleting 60
open access to 59
rel ease/close access to an 60
executablefiles 1
executing process, get ID 44
exit codes, system unit utilities 327

exit routine, setting process 41
ExitCritSec -- Exit Critical Section 48
expired process 233

F

faults, processor 140

file entry format, configuration 208

find PCI device 187

flags, access 70

Format Trace utility 217

format, big-endian/little-endian 270
FreeMbxBuffer -- Free Mailbox Buffer 109, 283
FreeMem -- Free Memory 81

FreeSuballoc -- Free Suballocated Memory 78
functional prototype 31

G

get

adapter handle 265

addressability to memory 67

hardware configuration data 272

memory suballocation 77

ROM information 28

semaphore count 56

software version numbers 273
Get Trace utility 215
GetMbxBuffer -- Get a Free Mailbox Buffer 108, 282
GetProcessData -- Get Process Data 46
GetQueue -- Get or Peek at an Element on a Queue 100
GetSuballoc -- Suballocate Memory 77
Getsuballocsize -- Return Size of Suballocation Pool 79

H

hardware device

query status of 137

return a 136
header, kernel commands common 164, 165
help xv
hexadecimal value, parameter 195
high performance file system (HPFS) 198
hooks

DeregisterHook 148

overview 146

RegisterHook 147
HPFS (high performance file system) 198
HxInfo 143

1960 data cache 197
ID
get process 44
PCI device 186

Index 335

[

immediate dump mode 202
InitSuballoc -- Prepare a Block of Memory for
Suballocation 75

InitTrace 150
interface routines 264
interrupt vector

allocate 128, 129

entry point, set new 131

return 133
interrupts/preemptions, disabling 47
invocation

device driver 7

kernel 1

mailbox process 8

InvokeDev -- Call a Subsystem or Device Driver 127

InvokeSig -- Call aSignal 120

K

kernel 151
base services 21

cal 1

configuration 4

control information 77

loading 1

parameters 4

process management 22

process synchronization 50

return codes 316

ric kern.rel, file 1

services, modes 15

terminal error codes 325

trace information 150, 155
kernel commands

common header for responses 165

DeRegisterResponseMbx 167

overview 163

QueryProcessStatus 168

RegisterResponseMbx 166

StartProcess 171

StopProcess 170

UnloadProcess 169
keywords 4

L

library routines
ANSI C functions support 173
ConvertCardToMC 182
ConvertMCToCard 181
MoveMCData 177
ProcessSleep 175

load application
description 196
messages and exit codes 199

336 ARTIC960 Programmer’s Reference

sample calls 200
syntax 196
loading/configuring ARTIC960 Support 1
log trace information 153
logical card numbers 178, 182
LogTrace service 153

M

mailbox
allocate free buffer 282
APIs, system unit 276
CloseMbx 114
create 277
CreateMbx 104
FreeMbxBuffer 109
GetMbxBuffer 108
messages 295
open 280
OpenMbx 106
process, start 8, 11
put messagein 284
ReceiveMbx 112
release/del ete 288
return buffer 283
SendMbx 110
type 104
MallocMem -- Allocate Memory 80
MEM_DCACHE parameter 80
memory
addressability to allocated, open/get 67
alignment 75
alocate 64, 80
close/remove addressability to allocate 68
collect 82
free 81
free suballocated 78
free, query 74
get suballocation 77
get/remove addressability 68
management 63
protection 70, 140
protection services 1
protection, query 72, 73
resize allocated 69
suballocation 75
transfer 267, 269
memory management
CloseMem 68
CollectMem 82
CreateMem 64
FreeMem 81
FreeSuballoc 78
GetSuballoc 77

GetSuballocSize 79
InitSuballoc 75
MallocMem 80
OpenMem 67
QueryFreeMem 74
QueryMemProt 72
QueryProcMemProt 73
ResizeMem 69
SetMemProt 70
SetProcMemProt 71
messages
Configuration utility 209
driver/mailbox/utility 295
Format Trace 218
Get Trace 216
loader 199
put into mailbox 284
quiet mode 196
read/receive mailbox 286
Set Trace 214
Status utility 225
Status utility interactive 223
modes, kernel service 15
move system bus data 177
MoveM CData -- Move system bus Data 177
move-mode SCB pipes 207
MP Safe (multiprocessing safe) driver 11
Multiple Virtual DOS Machines (MVDM) 7
mutex semaphores 50
mutual exclusion semaphore 50
MVDM (Multiple Virtual DOS Machines) 7

N

name
mailbox 277
memory 278, 281
queue 95

notational conventions Xxiv

null-terminated strings 35

O
open
access to event word 59
mailbox 280
RadiSys ARTIC960 adapter 265
semaphore 52

OpenDev -- Open a Subsystem or Device Driver 125
OpenEvent -- Open Access to an Event Word 59

OpenMbx -- Open aMailbox 106, 280

OpenMem -- Get Addressability to Allocated Memory

67
OpenQueue -- Open a Queue 96
OpenSem -- Open a Semaphore 52

OpenSig -- Open a Signal 117

P

parameter
DATA_CACHE 80
MEM_DCACHE 80
separators 4
peek at queue 100
peer process, creating 34
peer-to-peer communication 207
performance timer
read current time 93
start 91
physical system bus address 178
pipe size, default 207
pipes, configure SCB 207
POST error, load 199
primary process state bits 27
priority
process 42, 198
query process 43
process
change memory protection 71
Completelnit 23
control block 23
faults 140
ID, getting 44
instance data, location 45
instance data, returned 46
management services 22
mark as completely initialized 23
messages 295
peer, creating 34
ProcessSleep 175
query memory protection 73
resuming 40
setting exit routine 41
starting 36
status, getting 25
suspending 39
synchronization services 50
unloading 38
process communication
CloseMbx 114
CloseQueue 97
CloseSig 119
CreateMbx 104
CreateQueue 95
CreateSig 115
FreeMbxBuffer 109
GetMbxBuffer 108
GetQueue 100
InvokeSig 120

Index 337

Openmbx 106
OpenQueue 96
OpenSig 117
PutQueue 98
ReceiveMbx 112
SearchQueue 102
SendMbx 110

process management
Completelnit 23
CreateProcess 34
Dispatch 49
EnterCritsec 47
ExitCritSec 48
GetProcessData 46
QueryCardinfo 28
QueryConfigParams 31
QueryPriority 43
QueryProcessinExec 44
QueryProcessStatus 25
ResumeProcess 40
SetExitRoutine 41
SetPriority 42
SetProcessData 45
start/stop process 37
StartProcess 36
SuspendProcess 39
UnloadProcess 38

process synchronization
CloseEvent 60
CloseSem 53
CreateEvent 58
CreateSem 51
OpenEvent 59
OpenSem 52
QuerySemCount 56
ReleaseSem 54
RequestSem 55
SetSemCount 57
WaitEvent 61

process type, signaling 116

process-controls (PC) register 142

ProcessSleep -- Sleep a Process 175

programming interface, mailbox 276

publications, reference xv

put message into mailbox 284

PutQueue -- Put an Element into a Queue 98

Q

query
exception conditions 274
free memory 74
memory protection 72
process priority 43

338 ARTIC960 Programmer’s Reference

QueryCardinfo -- Get the Card Configuration
Information 28
QueryConfigParams -- Get the Configuration
Parameters 31
QueryFreeMem -- Query Free Memory 74
QueryHW -- Query Status of Hardware Device 137
QueryMemProt -- Query Memory Protection 72
QueryPriority -- Query the Priority of the Process 43
QueryProcessinExec -- Get ID of Process in Execution
44
QueryProcessStatus -- Get the Process Status 25, 168
QueryProcMemProt -- Query aProcess' s Memory
Protection 73
QuerySemCount -- Get a Semaphore Count 56
QuerySystemTime -- Get the Time of Day 90
queue
CloseQueue 97
CreateQueue 95
GetQueue 100
name 95
OpenQueue 96
PutQueue 98
SearchQueue 102
quiet dump operation 202
quiet mode 196, 208
guote in parameter 197

R

RadiSys, contacting xv
RDT, Resource Descriptor Table 135
read
16-bit word from PCI space 189
32-bit doubleword from PCI space 190
byte from PCI space 188
data from adapter memory 267
mailbox message 286
ReadPerfTimer -- Read Current Time of the
Performance Timer 93
realtime multitasking kernel 21
receive mailbox message 286
ReceiveMbx -- Receive aMessage 112, 286
receiving process 116
record description 220, 221
records, Format Trace utility 219
reference publications xv
Register asynch handler service 139
register, PC and AC 142
RegisterHook -- Register an Entry Point for aHook 147
RegisterResponseM bx command 166
release
access to memory 68
mailbox 288
release access

to event word 60
ReleaseSem -- Release a Semaphore 54
remove
queue el ement 102
response mailbox 167
RequestSem -- Request a Semaphore 55
reset utility 210
resize allocated memory 69
ResizeMem -- Reallocate Memory 69
responses, common header 165
resume process 40
ResumeProcess -- Resume a Process 40
return
hardware device 136
hardware device status 137
interrupt vector 133
mailbox buffer 283
memory pages 82
size of suballocation pool 79
software timer 85
return codes
Configuration utility 209
Get Trace 216
listed al phabetically 312
listed by values 316
loader 199
Set Trace 214
system unit API 312, 316
terminal error, kernel 325
ReturnHW -- Return a Hardware Device 136
ReturnV ector -- Return an Interrupt Vector 133
ric_base.rel, system executable file 1
RIC_CONFIG structure 290
ric_ess.rel, system executable file 2
RIC_EXCEPT structure 293
ric_kdev.rel, system executable file 1
ric_kern.rel, kernel file 1
ric_mcio.rel, system executablefile 1, 2
ric_oss.rel, system executable file 2
ric_pci.rel, system executable file 2
ric_sch.rel, system executablefile 2
RIC_VERDATA structure 292
RICCLOSE -- Close a RadiSys ARTIC960 Adapter 266
RICGetConfig -- Get Configuration Information 272
RICGetException -- Get Exception Status 274
RICGetVersion -- Get Version Number 273
RICIO16.SYS, device driver 7
RICLOAD application loader 196
RICOpen -- Open a RadiSys ARTIC960 Adapter 265
RICRead -- Read from RadiSys ARTIC960 Memory
267
RICReset -- Reset a Radi Sys ARTIC960 Adapter 271
RICWrite -- Write to RadiSys ARTIC960 Memory 269
ROM (Read Only Memory) 13

ROM data structure, get data from 28
RPInfo 143

S

sample
format trace call 218
formatted dump 226
loader calls 200

SCB (subsystem control block)
configuration 6
Configuration utility 207
file (ric_sch.rel) 2
parameters 6

search queue for element 102

SearchQueue -- Search a Queue for an Element 102

semaphore
closing/deleting 53
creating 51
get count 56
name 51
opening 52
releasing 54
requesting 55
set count 57
types 50
semval, AlX variable 278
SendMbx -- Send a Message 110, 284
sequence translation rules 198
service class names 217
services
AllocHW 134
AllocVector 128
AllocVectorMux 129
CloseDev 126
CloseEvent 60
CloseMbx 114
CloseMem 68
CloseQueue 97
CloseSem 53
CloseSig 119
CloseSwTimer 85
CollectMeM 82
Completelnit 23
CreateDev 122
CreateEvent 58
CreateMbx 104
CreateMem 64
CreateProcess 34
CreateQueue 95
CreateSem 51
CreateSig 115
CreateSwTimer 84
DeregisterAsyncHandler 145

Index 339

DeregisterHook 148
DisableTrace 152
Dispatch 49
EnableTrace 151
EnterCritSec 47
ExitCritSec 48
FreeMbxBuffer 109
FreeMem 81
FreeSuballoc 78
GetMbxBuffer 108
GetProcessData 46
GetQueue 100
GetSuballoc 77
GetSuballocSize 79
InitSuballoc 75
InitTrace 150
InvokeDev 127
InvokeSig 120
LogTrace 153
MallocMem 80
OpenDev 125
OpenEvent 59
OpenMbx 106
OpenMem 67
OpenQueue 96
OpenSem 52
OpenSig 117
PutQueue 98
QueryCardinfo 28
QueryConfigParams 31
QueryFreeMem 74
QueryHW 137
QueryMemProt 72
QueryPriority 43
QueryProcessinExec 44
QueryProcessStatus 25
QueryProcMemProt 73
QuerySemCount 56
QuerySystemTime 90
ReadPerfTimer 93
ReceiveMbx 112
RegisterAsyncHandler 139
RegisterHook 147
ReleaseSem 54
RequestSem 55
ResizeMem 69
ResumeProcess 40
ReturnHW 136
ReturnVector 133
SearchQueue 102
SendMbx 110
SetExitRoutine 41
SetMemProt 70
SetPriority 42

340 ARTIC960 Programmer’s Reference

SetProcessData 45
SetProcMemProt 71
SetSemCount 57
SetSystemTime 89
SetVector 131
StartPerf Timer 91
StartProcess 36
StartSwTimer 86
StopPerfTimer 92
StopProcess 37
StopSwTimer 88
SuspendProcess 39
UnloadProcess 38
WaitEvent 61

bits 27

configuration parameters 31

exit routine 41

process instance data 45

process priority 42

time of day on adapter 198

trace buffer 150
Set Trace utility 213
SetExitRoutine -- Set the Exit Routine for the Process 41
SetMemProt -- Change Memory Protection 70
SetPriority -- Set the Priority of the Process 42
SetProcessData -- Set Process Data 45
SetProcMemProt -- Change a Process's Memory

Protection 71

SetSemCount -- Set a Semaphore Count 57
SetSystemTime -- Set the Time-of-Day Clock 89
SetVector -- Set aNew Interrupt Vector Entry Point 131
signal

CloseSig 119

InvokeSig 120

OpenSig 117
signaling types 116
size

memory block 69

memory to allocate 77

return suballocation pool 79

smallest allocatable message 104
sleep aprocess 175
software timer

close/return 85

create/allocate 84

start 86

stop 88
standard input/output devices 223
start

allocated block alignment 64

mailbox process 8, 11

performance timer 91

priority process 198

process 36
process examples 200
software timer 86
STARTED/STOPPING states 27
StartPerf Timer -- Start the Performance Timer 91
StartProcess -- Start a Process 36, 171
StartSwTimer -- Start a Software Timer 86
status utility
description 223
interactive message examples 227, 253
main menu 228
status, get process 25
stop
performance timer 92
process 37
software timer 88
StopPerfTimer -- Stop the Performance Timer 92
StopProcess -- Stop a Process 37, 170
StopSwTimer -- Stop a Software Timer 88
structure, RDT 135
suballocation
free memory 78
GetSuballoc 77
GetSuballocSize 79
prepare memory block 75
Subsystem Control Block (SCB) 2, 332
summary
ARTIC960 services 15
kernel services 15
support xv
supported adapters 1
suspend process 39
SuspendProcess -- Suspend a Process 39
syntax
Configuration utility 208
Format Trace 217
Get Trace 215
mailbox process 11
Reset utility 210
Set Trace 213
Status utility 224
system businterface
ConvertCardToMC 182
ConvertMCToCard 181
1/O subsystem parameters 6
MoveMCData 177
ric_mcio.rel, I/0 subsystem file 2
system executables 1
system time 198
system unit APIs
base
RICClose 266
RICGetConfig 272
RICGetException 274

RICGetVersion 273
RICOpen 265
RICRead 267
RICReset 271
RICWrite 269
mailbox
CloseMbx 288
CreateMbx 277
FreeMbxBuffer 283
GetMbxBuffer 282
OpenMbx 280
ReceiveMbx 286
SendMbx 284

T

technical support xv
terminate access to adapter 266
time-of-day
clock, setting the 89
query system 90
timeout value, mailbox 5
timer
services 83
trace buffer 150
trace control block record 219
trace information
disable 152
enable 151
logging 153
trace utilities 212
transport services 1
triggered dump mode 202
troubleshooting xv

U

UnloadProcess -- Unload a Process 38, 169
URL, RadiSys xv
utility
application loader 196
configuration 207
dump 202
format trace 217
get trace 215
messages 295
reset 210
set trace 213
Status 223
trace 212

\%
VPD (Vita Product Data) 261

Index 341

wW

wait for exception conditions 274
wait for semaphore 55
WaitEvent -- Wait on an event 61
word swapping 268, 270
World-Wide Web, accessing RadiSys xv
wrap trace buffer 213
write
32-hit doubleword to PCI space 193
byte to PCI space 191
data to adapter memory 269
word to PCI space 192

342 ARTIC960 Programmer’s Reference

	Contents
	Figures
	Tables
	About This Book
	Guide Contents
	Notational Conventions

	Where to Get More Information
	Reference Publications
	Developer’s Assistance Program

	Chapter 1. Loading and Configuring
	Supported Adapters
	Kernel and Subsystems
	Kernel Performance Considerations
	Configuration Parameters

	ARTIC960 Support for OS/2
	Supported ARTIC960 Configurations
	Device Driver Installation
	Mailbox Process (RICMBX32.EXE)

	ARTIC960 Support for AIX
	Supported ARTIC960 Configurations
	Device Driver Installation
	Mailbox Process (ricmbx)
	Error Logging
	Trace Facility

	ARTIC960 Support for Windows NT
	Supported ARTIC960 Configurations
	Device Driver Installation
	Mailbox Process
	Event Logging

	Chapter 2. ARTIC960 Kernel Services
	Summary of Services
	Parameter Types

	Chapter 3. Base Kernel Services
	Process Management Services
	CompleteInit—Mark Process as Completely Initialized
	QueryProcessStatus—Get the Process Status
	QueryCardInfo—Get the Card Configuration Information
	QueryConfigParams—Get the Configuration Parameters
	CreateProcess—Create a Process
	StartProcess—Start a Process
	StopProcess—Stop a Process
	UnloadProcess—Unload a Process
	SuspendProcess—Suspend a Process
	ResumeProcess—Resume a Process
	SetExitRoutine—Set the Exit Routine for the Process
	SetPriority—Set the Priority of the Process
	QueryPriority—Query the Priority of the Process
	QueryProcessInExec—Get ID of Process in Execution
	SetProcessData—Set Process Data
	GetProcessData—Get Process Data
	EnterCritSec—Enter Critical Section
	ExitCritSec—Exit Critical Section
	Dispatch—Cause a Dispatch Cycle

	Process Synchronization Services
	CreateSem—Create a Semaphore
	OpenSem—Open a Semaphore
	CloseSem—Close a Semaphore
	ReleaseSem—Release a Semaphore
	RequestSem—Request a Semaphore
	QuerySemCount—Get a Semaphore Count
	SetSemCount—Set a Semaphore Count
	CreateEvent—Create an Event Word
	OpenEvent—Open Access to an Event Word
	CloseEvent—Release Access to an Event Word
	WaitEvent—Wait on an Event

	Memory Management Services
	CreateMem—Allocate Memory
	OpenMem—Get Addressability to Allocated Memory
	CloseMem—Remove Addressability to Memory
	ResizeMem—Reallocate Memory
	SetMemProt—Change Memory Protection
	SetProcMemProt—Change a Process’ Memory Protection
	QueryMemProt—Query Memory Protection
	QueryProcMemProt—Query a Process’ Memory Protection
	QueryFreeMem—Query Free Memory
	InitSuballoc—Prepare a Block of Memory for Suballocation
	GetSuballoc—Suballocate Memory
	FreeSuballoc—Free Suballocated Memory
	GetSuballocSize—Return Size of Suballocation Pool
	MallocMem—Allocate Memory
	FreeMem—Free Memory
	CollectMem—Collect Memory

	Timer Services
	CreateSwTimer—Allocate a Software Timer
	CloseSwTimer—Return a Software Timer
	StartSwTimer—Start a Software Timer
	StopSwTimer—Stop a Software Timer
	SetSystemTime—Set the Time�of�Day Clock
	QuerySystemTime—Get the Time of Day
	StartPerfTimer—Start the Performance Timer
	StopPerfTimer—Stop the Performance Timer
	ReadPerfTimer—Read Current Time of the Performance Timer

	Process Communication Services
	CreateQueue—Create a Queue
	OpenQueue—Open a Queue
	CloseQueue—Close a Queue
	PutQueue—Put an Element into a Queue
	GetQueue—Get or Peek at an Element on a Queue
	SearchQueue—Search a Queue for an Element
	CreateMbx—Create a Mailbox
	OpenMbx—Open a Mailbox
	GetMbxBuffer—Get a Free Mailbox Buffer
	FreeMbxBuffer—Free Mailbox Buffer
	SendMbx—Send a Message
	ReceiveMbx—Receive a Message
	CloseMbx—Close a Mailbox
	CreateSig—Create a Signal
	OpenSig—Open a Signal
	CloseSig—Close a Signal
	InvokeSig—Call a Signal

	Device Driver/Subsystem Services
	CreateDev—Register a Subsystem or Device Driver
	OpenDev—Open a Subsystem or Device Driver
	CloseDev—Close a Subsystem or Device Driver
	InvokeDev—Call a Subsystem or Device Driver
	AllocVector—Allocate an Interrupt Vector
	AllocVectorMux—Allocate an Interrupt Vector
	SetVector—Set a New Interrupt Vector Entry Point
	SetVectorMux—Set an Interrupt Vector
	ReturnVector—Return an Interrupt Vector
	AllocHW—Allocate a Hardware Device
	ReturnHW—Return a Hardware Device
	QueryHW—Query Status of Hardware Device

	Asynchronous Event Notification Services
	RegisterAsyncHandler—Register an Async Handler
	DeregisterAsyncHandler—Deregister an Async Handler

	Hook Services
	RegisterHook—Register an Entry Point for a Hook
	DeregisterHook—Deregister an Entry Point for a Hook

	Kernel Trace Services
	InitTrace—Initialize a Trace Buffer
	EnableTrace—Enable Tracing of Service Classes
	DisableTrace—Disable Tracing of Service Classes
	LogTrace—Log Trace Information
	Kernel Trace Information

	Chapter 4. Kernel Commands
	Common Headers for Commands and Responses
	RegisterResponseMbx—Register a Command Response Mailbox
	DeRegisterResponseMbx—Deregister a Command Response Mailbox
	QueryProcessStatus—Get the Process Status
	UnloadProcess—Unload a Process
	StopProcess—Stop a Process
	StartProcess—Start a Process

	Chapter 5. Adapter Library Routines
	ANSI C Functions
	Miscellaneous Service
	ProcessSleep—Sleep a Process

	System Bus Interface Services
	MoveMCData—Move System Bus Data
	ConvertMCToCard—Convert System Bus Address to Card Address
	ConvertCardToMC—Convert Card Address to System Bus Address

	PCI Local Bus Configuration Device Driver Services
	pciBiosPresent—Query PCI Driver Presence
	pciFindDevice—Find a PCI Device by Vendor and Device ID
	pciFindClassCode—Find a PCI Device by PCI Class Code
	pciReadConfigByte—Read a Byte from PCI Configuration Space
	pciReadConfigWord—Read a Word from PCI Configuration Space
	pciReadConfigDWord—Read a Doubleword from PCI Configuration Space
	pciWriteConfigByte—Write a Byte to PCI Configuration Space
	pciWriteConfigWord—Write a Word to PCI Configuration Space
	pciWriteConfigDWord—Write a Doubleword to PCI Configuration Space

	Chapter 6. System Unit Utilities
	Application Loader (ricload) Utility
	Application Loader Syntax
	Application Loader Messages and Exit Codes
	Examples of Application Loader Calls

	Dump Utility
	Dump Syntax
	Dump Messages and Exit Codes

	Configuration Utility
	Configuration Syntax
	Configuration Messages and Exit Codes

	Reset Utility
	Reset Syntax
	Reset Messages and Exit Codes

	Trace Utilities
	Set Trace Utility
	Get Trace Utility
	Format Trace Utility

	Status Utility
	Status Syntax
	Status Messages and Exit Codes
	Status Dump Format
	Status Interactive Messages
	Examples of Interactive Messages

	Chapter 7. System Unit APIs
	Base API
	RICOpen—Open an ARTIC960 Adapter
	RICClose—Close an ARTIC960 Adapter
	RICRead—Read from ARTIC960 Memory
	RICWrite—Write to ARTIC960 Memory
	RICReset—Reset an ARTIC960 Adapter
	RICGetConfig—Get Configuration Information
	RICGetVersion—Get Version Number
	RICGetException—Get Exception Status

	Mailbox API
	CreateMbx—Create a Mailbox
	OpenMbx—Open a Mailbox
	GetMbxBuffer—Get a Free Mailbox Buffer
	FreeMbxBuffer—Free Mailbox Buffer
	SendMbx—Send a Message
	ReceiveMbx—Receive a Message
	CloseMbx—Close a Mailbox

	Appendix A. Structure Definition
	RIC_CONFIG Structure
	RIC_VERDATA Structure
	RIC_EXCEPT Structure

	Appendix B. Message File
	Driver, Mailbox Process, and Utility Messages

	Appendix C. Return, Error, and Exit Codes
	Return Codes (Listed Alphabetically)
	Return Codes (Listed Numerically)
	Kernel Terminal Error Codes
	Exit Codes for System Unit Utilities

	Glossary
	Index

