Koala' oo

BIOS REFERENCE MANUAL

Version 1.0
K-Team S.A. Lausanne, 25 mai 1999

Documentation author

K-Team S.A.

Ch. de Vuasset, CP 111
1028 Préverenges
Switzerland

email: info@k-team.com
WWW: http://www.k-team.com

Trademark Acknowledgements

IBM PC: International Business Machines Corp.
Macintosh: Apple Corp.

SUN Sparc-Station: SUN Microsystems Corp.
LabVIEW: National Instruments Corp.

Khepera: K-Team S.A.

NOTICE:

» The contents of this manual are subject to change without notice.

» All efforts have been made to ensure the accuracy of the contents of this manual. How-
ever, should any errors be detected. In this case, please inform the K-Team S.A.

» The above notwithstanding K-Team S.A. can assume no responsibility for any errors
in this manual.

K-systermn

All information in this document
is preliminary and subject to change

Table of content

Table of CONtENT 1....
ADSIraCt . . . o 3.
Preliminary 3..
BIOS 0rganisationt 4.....
BasiC Managers, 4.....
General CONSIraiNtS o e 5....
Rules for building applications
BIOS . ., 8.
Table of CONtENT S....
Generalities 9..
COM . 15.
Table of content 15. ..
Generalities 16.
TIM 24
Table of cCONteNnt 24 . ..
Generalities 25.
MOT . 44
Table of CONtENT 44 . ..
Generalities 45 .
The PID implementation e
The speed profile generator
SENS . . 64
Table of CONtENT 64...
Generalities 65.
MG G . . 71
Table of content 71. ..
Generalities 72.
MM A 79
Table of CONteNt 79. ..
Generalities 80.
SER . e, 100
Table of content 100. .
Generalities 101
VAR 110
Table of content 110..
Generalities 111

K-Team http://www.k-team.com info@k-team.com May 25, 1999

K-system |

All information in this document
is preliminary and subject to change

UL . 124
Table of content 124 ..
Generalities
CTR . 135
Table of content 135..
Generalities 136
ST R 143
Table of CONtENT 143 ..
Generalities 144
RefereNCEeS o e 159,

K-Team http://www.k-team.com info@k-team.com May 25, 1999

K-systermn

All information in this document
is preliminary and subject to change

K-Team
http://www.k-team.com
info@k-team.com

Koala BIOS 1.0 Reference Manual

Rev. 1.00

Abstract

The high level of complexity of the Koala robot coupled with its multi-microcontroller architecture
[Fra91] and its multitasking capabilities requires a robust low level software named BIOS (Basic 1/Os
system). This document describes how this software is organised to manage all the system resources
and give all the necessary information to use them for building applications.

Preliminary

The reader is supposed to have a good knowledge of the MC68xxx programming and of MC68331 mi-
crocontroller hardware features [Mot89][Mot91][Mot92]. The program examples are shown in C and
in assembler CALM syntax [JDN86].

At the end of this document some examples will be shown to make the work with Koala easy.

1. CALM is the abbreviation for Common Assembler Language for Microprocessors which is one product
designed at LAMI-EPFL.

K-Team http://www.k-team.com info@k-team.com May 25, 1999 3

K-systermn

All information in this document
is preliminary and subject to change

BIOS organisation

Figure 1 shows the basic subdivision of the BIOS. Different managers were designed to control only a
specific part of the system (e.g. module MOT controls all the motion resources, module MSG controls
the network communications, TIM controls the multitasking, etc.).

APPLICATION
e e e e - —-—-—-—— = 1
1 COM ‘ Com. 1
1 manager '
TIM MOT VAR uio CTR SENS STR SER MSG MMA
Micro-kernel Motion Misc. and int. Universal 1/0 Control signals IR sensor String Serial Multi-pC net. Multi-puC bus
multi-tasking manager manager manager manager manager manager manager manager manager
manager
HARDWARE

Figure 1: General topology of the BIOS

The code is completely relocatable and is designed to allow an easy interface with a high level language
such as C.

Basic managers

As already mentioned, each physical part of the system is under the control of a specific manager. The
complete details of these modules will be presented later. Here is the list:

* BIOS: global core of the BIOS.

* MOT: Motor manager.

 SENS: infra-red sensor manager.

« COM: Host communication manager. Uses resources of SER, MSG or MMA.
» SER: serial link manager.

* MSG: multi-microcontroller network communication manager.

« MMA: multi-microcontroller parallel bus communication manager.

* VAR: misc device manager (jumpers, LEDs, etc.).

« UlO: general purpose /O manager

« CTR: control electronics manager (power supply, power consumption, etc.)
o TIM: multitasking manager.

» STR: string manager.

K-Team http://www.k-team.com info@k-team.com May 25, 1999 4

K-systermn

All information in this document
is preliminary and subject to change

General constraints

It is vital to observe the few rules below in order to realise robust applications. None of the Koala hard-
ware resources initialised and used by the BIOS should be modified.

* VBR register has to be initialised before using the BIOS. This is done during the start-up process.

» The parameters are stacked before the function calls; their size always takes on 32-bits even if only 8 or 16-bits are sig-
nificant.

» All the function calls can modify the following microcontroller registers: DO, D1, A0, Al, F. The BIOS never modifies
the other registers.

» If one call has to return one result, the register DO is used.

* BIOS uses TRAP #0 to TRAP #7.

Rules for building applications

All the programs that compose the Koala system as well as the user applications are under the control
of micro-kernel (TIM manager). This software architecture allows to run simultaneously as many as
32-tasks. The user who would like to write applications needs to be at ease with multi-tasking program-
ming methodology.

1. Using the BIOS managers

Before using the functions available inside the managers, the user has to initialise them. The BIOS and
TIM managers do not need to be initialised.

Here is an example to initialize the SER manager:

ser_reset();

2. Launching and killing processes

The BIOS does not include any memory management. For this reason and only for C applications, the
launching and the killing system calls are not directly managed by the TIM manager. An additional C
layer (including a couple of new system calls) is present between the application and the BIOS.

Here is an example

int32 status;
uint32 id;
static char textIdl]= “Process to ...\n\r”

status = install_task(textld, 800, procedure);
if (status € B) exit(@); /¥ Error, ... */
id = (Wint32)status;

status = kill_task(id);
if (status < B) exit(@); /* Error, ... ¥/

K-Team http://www.k-team.com info@k-team.com May 25, 1999 5

K-systermn

All information in this document
is preliminary and subject to change

3. Protection of the critical memory ressources

It is sometimes necessary to be sure that a memory structure is protected against some external writing
(ex. coming from an other task). To do that, critical resource accesses need to be encapsulated by lock
and unlock semaphore. During the encapsulation time, only the active task is executed.

Here is an example

/* WUriting process */

tim_lock(); /* This locks the time sharing */
for (i = @; i < KNBELEMENTS; i++)
vectorlil = ij

tim_unlock); /* This unlocks the time sharing */

/* Reading process */

tim_lock(); /* This locks the time sharing */
for (i = @; i < KNBELEMENTS; i++)
workVectorlil = vectorlil;

tim_unlock); /* This unlocks the time sharing */

K-Team http://www.k-team.com info@k-team.com May 25, 1999 6

K-systermn

All information in this document
is preliminary and subject to change

4. Protection of the critical 1/0Os ressources

As for the memory protection, 1/0Os need to be protected. To avoid to lock the time sharing for this pur-
pose, a couple of system calls are used to reserve and to release an I/Os channel. For the user an easi
implementation by a macro is available.

Here is an example

/* Process 1 */

RESERVE_COM /* This reserves the standard I/0s channel */
printf(“K-System B8 E. Franzi, K-Team S.A.\n”);
RELEASE_COM /* This releases the standard I/0s channel */

/* Process 2 */

RESERVE_COM /* This reserves the standard I/0s channel */
printf(“Khepera minirobot\n”);
RELEASE_COM /* This releases the standard I/0s channel */

K-Team http://www.k-team.com info@k-team.com May 25, 1999 7

K-systermn

All information in this document
is preliminary and subject to change

BIOS Rev. 1.00

K-Team
http://www.k-team.com
info@k-team.com

BIOS

BIOS manager

Family ID: °‘BIOS’

Table of content

bios_reset() . . ¢ ¢« ¢ i i i it i h d h h e e e e e e e . W10
bios_get_ident() . . . ¢ ¢ ¢ ¢ ¢ ¢ 4 e i e e e e e e e .. W11
bios_get_rev(O T
bios_get_system() ¢ ¢« ¢ ¢« ¢ ¢ et 4 e e e e e e o . 13
bios_restart_system® ¢ 00 000 0 e e .. W14

K-Team http://www.k-team.com info@k-team.com May 25, 1999

K-systermn

All information in this document
is preliminary and subject to change

Generalities

This module includes all the files necessary to manage a dedicated part of the system (“XYZ,ASI").
Moreover, all the input system calls to the different modules are managed by one table located at the
beginning of the BIOS code.

The system calls are performed by pushing into the stack the different parameters followed by a
“TRAP #0” and a number of 16-bits which codes the call. Obviously, the stack has to be readjusted
according to the number of parameters pushed. Here is an example:

push .32 Valuel ; first parameter

push.32 Value2 ; second parameter

trap #0 ;5 BIOS call

.16 Cal INumber s the number of the function
add .32 #4422, SP ; stack adjust

To improve the readability of the programs, the BIOS system call sequence can be replaced by a macro.

.MACRO CALL_BIOS

trap #0 ; call the BIOS

.16 %1 ;5 the number of the function
add .32 #4%%2, SP ; stack adjust

.ENDMACRO

The previous example becomes:

push .32 Valuel ; first parameter
push.32 Value2 ; second parameter
CALL_BIOS CallNumber,2 3 BIOS call

K-Team http://www.k-team.com info@k-team.com May 25, 1999 9

K-systermn

All information in this document
is preliminary and subject to change

bios_reset()

Init the resources of the module. DO NOT USE FOR APPLICATIONS!

This system call inits all the common resources used by the different “BIOS” modules. bios_reset() has
to be called before using any other system call. This system call is performed during the start-up.

Input (stacking order):

Output:

Call examples in assembler and C:

CALL_BIOS bios_reset,9 ; execute the function

bios_reset();

K-Team http://www.k-team.com info@k-team.com May 25, 1999 10

K-systermn

All information in this document
is preliminary and subject to change

bios_get_ident()

Get the pointer on an identifier string.

This system call returns the pointer on an "identifier" ASCII string (terminated with \0’) which indi-
cates the date and the revision number of the “BIOS”.

Input (stacking order):

Output:

Do identifier Pointer on the identifier string.

Call examples in assembler and C:

CALL_BIOS bios_get_ident,® ; execute the function
move .32 Do, {AR6}+identifier ; pointer on the identifier string

char *jdentifier;

identifier = bios_get_ident();

K-Team http://www.k-team.com info@k-team.com May 25, 1999 11

K-systermn

All information in this document
is preliminary and subject to change

bios_get_rev(

Get the BIOS version and revision.

This system call returns an ASCII identifier containing the version and revision of the "BIOS”.

Input (stacking order):

Output:

DOI31..24] "3" Uersion.
DR[23..161 "L Point.
DoIl15..8] "e" MSB revision.
Dol?..01 "B" LSB revision.

Call examples in assembler and C:

CALL_BIOS bios_get_rev,0 ; execute the function

move .32 D@, {A6}+version ; version
uint32 version;

version = bios_get_rev();

K-Team http://www.k-team.com info@k-team.com May 25, 1999 12

K-systermn

All information in this document
is preliminary and subject to change

bios_get_system()

Get the family identifier (type) of the system.

This system call returns the family identifier (type) of the device supported by the K-Team. Here is the
list of the available devices:

Input (stacking order):

Output:
Do family Family identifier.

Call examples in assembler and C:

CALL_BIOS bios_get_system,@ ; execute the function
move .32 D@, {A6}+family ; family identifier

uint32 family;

family = bios_get_system();

K-Team http://www.k-team.com info@k-team.com May 25, 1999 13

K-systermn

All information in this document
is preliminary and subject to change

bios_restart_system()

Perform a restart of the system.

This system call allows to restart the system. All the peripherals, memory and “BIOS” managers are
initialised. The function selected by the jumper is executed after this system call.

Input (stacking order):

Output:

Call examples in assembler and C:

CALL_BIOS bios_restart_system,8; execute the function

bios_restart_system();

K-Team http://www.k-team.com info@k-team.com May 25, 1999 14

K-systermn

All information in this document
is preliminary and subject to change

K-Team

comM Rev. 1.02

K-Team
http://www.k-team.com
info@k-team.com

COM

COM manager (i /o manager)

Family ID: °‘BIOS’

Table of content
com_reset()«

com_reserve_channel ()

com_release_channel () . .

com_send_buf fer(buffer, size)

com_receive_byte(d . . .
com_get_status_channel (O

http://www.k-team.com

info@k-team.com

May 25, 1999

.17
.18
.19
.20
.21
.22

15

K-system |

All information in this document
is preliminary and subject to change

Generalities

This module manages all the I/Os channels of the system. The user must only define (during the start-
up) which physical channel is active. The default channel is under the control of the SER manager Here
is an example:

RESERVE_COM /* if the channel is busy the task is switched */
printf(“K0S EFr. 99\n”);

RELERSE_COM

/* send by the active channel */

/* release the channel (for other tasks) * /

In this example the string is sent on the active channel. The COM manager redirects the communica-
tions according to some conditions during the start-up. Table 1 shows some conditions for the redirec-
tion at boot depending from the extension configuration. Other redirections (MMA) can be also used.

SER Radio turret Irda turret Other I/Os turrett Redirection to ...
Active Not active Not active Not active Channel SER
Active Active X X Channel Radio
Active X Active X Channel Irda
Active Active Active X Channel Radio
Active Active Active Active Channel Radio

Table 1: Redirection of the 1/0Os channels

K-Team

http://www.k-team.com

info@k-team.com

May 25, 1999

16

K-systermn

All information in this document
is preliminary and subject to change

The system calls are performed by pushing into the stack the different parameters followed by a soft-
ware TRAP #6 and a 16-bit number which codes the call. Obviously, the stack has to be readjusted
according to the number of parameters pushed. Here is an example:

push.32 Ualuel ; first parameter

push .32 Value2 ; second parameter

trap #6 3 COM call

.16 Cal INumber ;5 the number of the function
add .32 #4%2, SP ; stack adjust

To improve the readability of the programs, the COM system call sequence can be replaced by a macro.

.MACRO CALL_COM

trap #6 ;5 call the COM

.16 %1 ; the number of the function
add .32 #4x%2, SP ;5 stack adjust

.ENDMACRO

The previous example becomes:

push.32 Ualuel ; first parameter
push .32 Value2 ; second parameter
CALL_COM Cal INumber,2 ;3 COM call

K-Team http://www.k-team.com info@k-team.com May 25, 1999 17

K-system |

All information in this document
is preliminary and subject to change

com_reset()

Init of the resources of the manager.

This system call inits the manager.

Input:

Output:

Call examples in assembler and C:

CALL_COM COM_reset,©

com_reset();

; execute the function

K-Team http://www.k-team.com

info@k-team.com

May 25, 1999

18

K-systermn

All information in this document
is preliminary and subject to change

com_reserve_channel ()

Reserve the active channel.

This system call reserves the active channel for a transaction. The active channel is a critical resource
which can be shared with other tasks. An error is returned if the channel is busy.

Input (stacking order):

Output:
Do (%] Channel reserved and ready to operate.
Do -1 Channel busy.

Call examples in assembler and C:

CALL_COM com_reserve_channel,8; execute the function

test.32 Do 5
jump,mi R8”~Error s wait ...
int32 status;

status = com_reserve_channel ();

if (status < @) return -1;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 19

K-system |

All information in this document
is preliminary and subject to change

com_release_channel ()

Release the active channel.

This system call releases the active channel. The other tasks can now use this channel.

Input (stacking order):

Output:

Call examples in assembler and C:

CALL_COM com_release_channel, @ ; execute the function

com_release_channel ()}

K-Team http://www.k-team.com info@k-team.com May 25, 1999

20

K-systermn

All information in this document
is preliminary and subject to change

com_send_buf fer(buffer, size)

Send one buffer via the active channel.

This system call sends one buffer of less that 500 bytes by the active channel. An error is returned (if
any).

Input (stacking order):

size Size of the buffer to send.
buf fer Pointer on the buffer.
Output:

Do (%] oK.

Do -1 Channel busy.

Do -2 Size of the buffer too big.
Do -3 Size of the buffer = @.

Do -4 Hardware error.

Call examples in assembler and C:

push .32 {RB}+size ; size of the buffer to send
push .32 #{A6 }+buffer ; pointer on the buffer
CALL_COM com_sens_buffer,2 ; execute the function
test.32 Do ;

jump,mi R8”~Error sy channel error

int32 status;

uint8 *buffer;

uint32 size;

status = com_sens_buffer(buffer, size);

if (status < @) return status;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 21

K-systermn

All information in this document
is preliminary and subject to change

com_receive_byte()

Receive one byte via the active channel.

This system call looks for the reception buffer of the active channel if one byte is available.

Input (stacking order):

Output:
Do
Do
Do

+16 ' 808NN nn = byte.
-1 Buffer empty.

-4 Hardware error.

Call examples in assembler and C:

K-Team

CALL_COM
test.32
jump,mi

move.8

int32
uints

com_receive_byte,
Do
R8”~Error

D@, {A6}+aByte

status;

aByte;

status = com_receive_byte();

if (status

< @) return status;

aByte = (uint8)status;

http://www.k-team.com

’

.
’

.
b

channel error

a character

info@k-team.com

; execute the function

May 25, 1999

22

K-systermn

All information in this document
is preliminary and subject to change

com_get_status_channel OO

Get the status of the active channel.

This system call looks for the status of the active channel.

Input (stacking order):

Output:

Do +xXxx0000000 1 Tx buffer not empty
Do +Xxxx000000 10 Rx buffer not empty
Do -4 Hardware error.

Call examples in assembler and C:

CALL_COM com_get_status_channel,® ; execute the function
test.32 Do ;

jump,mi R8”~Error s hardware error

int32 status;

status = com_get_status_channel ();

K-Team http://www.k-team.com info@k-team.com

May 25, 1999

23

K-systermn

All information in this document
is preliminary and subject to change

TIM Rev. 1.00

K-Team
http://www.k-team.com
info@k-team.com

TIM

TIM manager (multi-tasking kernel)

Family ID: °‘BIOS’

Table of content
timreset(d . . . ¢ .« ¢ .« o .

timmew_inst_task(textld, stack, procedure)

tim_remove_inst_task(id)

tim_suspend_task(time) .
tim_generate_event() . .
timwait_event(taskMask)

tim—get_id(O . . .
tim_get_ticcount(d

tim_run_kernel O .
timswitech_fast(.
tim_lock() e e e e
tim_unlock() o e e e

tim_define_association(reference, general)

tim_find_association(reference)
tim_remove_association(reference) . . .
timwait_sync(syncMask)

tim_get_task_des_ptr(> . . .

K-Team http://www.k-team.com

info@k-team.com

May 25, 1999

.26
.27
.28
.29
.30
.31
.32
.33
.34
.35
.36
.37
.38
.39
.40
.41
.42

24

K-systermn

All information in this document
is preliminary and subject to change

Generalities

This module manages the multitasking capabilities of the system. Thirty-two user tasks can be run si-
multaneously. The first task descripton the execution list (IDLE task) is always present and is ini-
tialised during the start-up; the user cannot operate with this task. The basic functions necessary to
operate with a multitasking kernel are implemented (task synchronisations, suspend tasks, global serv-
ices, etc.). Time sharing allows to switch the tasks after 5 ms. The management of the context change
is very fast; it takes only 1.5% of the CPU time. Figure 2 shows the main states of the task descriptors;
here is the way they work:

» The empty list has to be considered as a tank of usable task descriptors. As many as thirty-two task descriptors can be
used from this list.

» The execution list contains all the task descriptors that can run at a given time. This is the normal state for a task.

» The wait list contains all the task descriptors that have been suspended for a programmed time. This list is under the
control of the real time clock PIT (1 ms of resolution). When a timeout occurs for a task, its descriptors will be placed
again in the execution list.

» The event list contains all the task descriptors which are waiting for a software external event. The events have to be
generated by other task. When an event occurs, its descriptor will be placed again in the execution list.

» The sync list contains all the task descriptors that are waiting for a hardware external synchronisation. The synchroni-
sations are generated by hardware low level functions. When a synchronisation occurs, its descriptor will be placed
again in the execution list.

1. Atask descriptor is a structured memory representation of a task (or a process) on which the micro-kernel oper-
ates.

K-Team http://www.k-team.com info@k-team.com May 25, 1999 25

K-system |

All information in this document
is preliminary and subject to change

Empty list Exec list Wait list Event list Sync list
IDLE Proc.
ID 1<<0
ID = 1<<2
Vid
ID = 1<<3
e oo
ID = 1<<4
SRS RPN PR
ID = 1<<5
OR
ID = 1<<6 ;
ID = 1<<7 i
i [S—_
Vid
ID = 1<<8
S) U PR
A ———>
B ——>
<«— C
D >
<= E
F >
<= G
< H
A: tim_new_inst_task() E: Event
Place a task descriptor into the "Execution list" Place a task descriptor into the "Execution list"
B: tim_suspend_task() F: tim_wait_sync()
Suspend a task for a time; the task descriptor Suspend a task for an external event; the task descriptor
is moved into the "Wait list is moved into the "Sync list
C: Timeout G: External event
Place a task descriptor into the "Execution list" Place a task descriptor into the "Execution list"
D: tim_wait_event() H: tim_remove_task()
Suspend a task for an event; the task descriptor Place a task descriptor into the "Empty list"

is moved into the "Event listt

Figure 2: Possible states of a task descriptor

K-Team http://www.k-team.com info@k-team.com May 25, 1999

K-system |

All information in this document
is preliminary and subject to change

tim_reset()

Init of the resources of the module.

DO NOT USE FOR APPLICATIONS!

This system call inits the manager.

Input (stacking order):

Output:

Call examples in assembler and C:

CALL_BIOS tim_reset,® ; execute the function

tim_reset();

K-Team http://www.k-team.com info@k-team.com May 25, 1999

27

K-systermn

All information in this document
is preliminary and subject to change

timnew_inst_task(textld, stack, procedure)

Place a new task descriptor in the execution list. NOT USABLE FOR C APPLICATIONS!
Instead use install_task(textld, stackLength, procedure).

This system call places one task descriptor in the execution list. As many as thirty-two task descriptors
can be contained in the execution list. An error is returned if the execution list is full before the system
call.

For C applications the user should #$estal1_task(textId, stackLength, procedure)”. The
minimun stack length should be 800 (800 long words). However, the user can increase it according
with the number of local variables that his program uses.

Input (stacking order):

procedure Pointer on the task code.

stack Pointer on the stack.

textId Pointer on a string terminated with null “\@’.
Output:

Do 2%kQ, ,24k3 1 ID of the task descriptor.

Do -1 Too many task descriptors in the execution list.

Call examples in assembler and C:

push .32 #R 16”procedure ;s pointer on the task code
push .32 #R16"stack ;s pointer on the stack
push .32 #R 16" textId ;s pointer on an ASCII text
CALL_BIOS timmnew_inst_task,3 ; execute the function
test.32 Do ;
jump,mi R8”Error ;5 too many task descriptors
move .32 Do, {A6}+id ; id of the task descriptor
void procedure(void)

{

}
int32 status;
uint32 id;
static char textIdl]= “My task\n\r”

status = install_task(textld, 800, procedure);
if (status € B) exit(@); /¥ Error, ... */
id = (Wint32)status;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 28

K-systermn

All information in this document
is preliminary and subject to change

tim_remove_inst_task(id)

Remove a task descriptor. NOT USABLE FOR C APPLICATIONS! Instead use
kill_task(Cid).

This system call removes one task descriptor. An error is returned if the task descriptor does not exist.
For C applications the user should #se11_task(id>”.

Input (stacking order):

id ID of the task descriptor.

Output:

Do 2%kQ, ,24k3 1 ID of the task descriptor.

Do -1 The task descriptor does not exist.

Call examples in assembler and C:

push .32 {R6}+id ; ID of the task descriptor
CALL_BIOS tim_remove_inst_task, 1 ; execute the function

test.32 Do ;

jump,mi R8”Error ; the task descriptor does not exist
move .32 Do, {A6}+id ; id of the removed task descriptor
int32 status;

uint32 id;

status = kill_task(id);
if (status € @) exit(@; /* Error, ... */

K-Team http://www.k-team.com info@k-team.com May 25, 1999 29

K-systermn

All information in this document
is preliminary and subject to change

tim_suspend_task(time)

Suspend a task for a time.

This system call suspends the current task for a time. The time can be chosen inside an interval of 1 ms
to about 50 days (32-bits) with 1 ms of resolution!

Input (stacking order):
time Length of time.

Output:

Call examples in assembler and C:

push .32 {A6}+time ; length of time
CALL_BIOS tim_suspend_task, 1 ; execute the function

uint32 time;

tim_suspend_task(time);

K-Team http://www.k-team.com info@k-team.com May 25, 1999 30

K-systermn

All information in this document
is preliminary and subject to change

tim_generate_event()

Generate an event.

This system call generates an event used to synchronise other tasks. If a task was expecting a particulal
event (suspended inside the event list), it will be placed again in the execution list when the event oc-
curs.

Input (stacking order):

Output:

Call examples in assembler and C:

CALL_BIOS tim_generate_event,B ; execute the function

tim_generate_event();

K-Team http://www.k-team.com info@k-team.com May 25, 1999 31

K-systermn

All information in this document
is preliminary and subject to change

timwai t_event(taskMask)

Wait for an event.

This system call waits for an event generated by one or more other tasks. After this system call the cur-
rent task descriptor is placed in the suspended event list. Only an event generated by another|task car
place the suspended task descriptor in the execution list.

Input (stacking order):

taskMask Coding mask of the events which
have to synchronise this task.
The mask is usually the logical
OR between the ID numbers of the
task descriptors concerned.

Output:

Call examples in assembler and C:

move .32 {A6}+id1,D0 ;

or.32 {A6}+id13,D0 ; IDs task descriptors 1 and 13
push .32 Do ; wait for the task 1 or 13
CALL_BIOS tim_wait_event,1 ; execute the function

uint32 idl, id13;

tim_wait_event(idl|id13);

K-Team http://www.k-team.com info@k-team.com May 25, 1999 32

K-system |

All information in this document
is preliminary and subject to change

tim_get_idO

Return the task descriptor ID of the current task.

This system call returns the task descriptor ID number of the current task.

Input (stacking order):

Output:
id ID of the current task descriptor.

Call examples in assembler and C:

CALL_BIOS tim_get_id,0 ; execute the function

move .32 Do, {A6}+id ; id of the current task descriptor
uint32 id;

id = tim_get_idQ;

K-Team http://www.k-team.com info@k-team.com May 25, 1999

33

K-systermn

All information in this document
is preliminary and subject to change

tim_get_ticcount(

Return the number of tic count from the system call “tim_start_kernel”.

This system call returns the number of tic count from the systemt¢alls'tar t_kernel”. The value
is expressed in milliseconds.

Input (stacking order):

Output:

ticCount value of the tic count.

Call examples in assembler and C:

CALL_BIOS tim_get_ticcount,® ; execute the function
move .32 D@, {A6}+ticCount ; the value

uint32 ticCount;

ticCount = tim_get_ticcount(;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 34

K-system |

All information in this document
is preliminary and subject to change

tim—_run_kernel ()

Start the execution of the scheduled tasks. DO NOT USE FOR APPLICATIONS!

This system call starts the execution of the kernel.

Input (stacking order):

Output:

Call examples in assembler and C:

CALL_BIOS tim_run_kernel,® ; execute the function

tim_run_kernel (J;

K-Team http://www.k-team.com info@k-team.com May 25, 1999

35

K-systermn

All information in this document
is preliminary and subject to change

tim—switch_fast()

Stop the current task and switch to another one.

This system call stops immediately the execution of the current task and switches to another one. If
only one task descriptor is inside the execution list, the switched task will be rescheduled immediately.

Input (stacking order):

Output:

Call examples in assembler and C:

CALL_BIOS tim_switch_fast,0 ; execute the function

timswitch_fast();

K-Team http://www.k-team.com info@k-team.com May 25, 1999 36

K-systermn

All information in this document
is preliminary and subject to change

tim_lock()

Lock the time sharing.

This system call locks the time sharing. Only the current task is executed. The system call is useful to
protect critical resources (memory structures or 1/0O accesses).

Input (stacking order):

Output:

Call examples in assembler and C:

CALL_BIOS tim_lock,® ; execute the function

tim_lockO;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 37

K-system |

All information in this document
is preliminary and subject to change

tim_unlock()

Unlock the time sharing.

This system call unlocks the time sharing. If more than“amne_1ock (> ” system call was executed,
the same number 6t im_unlock () ” system calls has to be performed.

Input (stacking order):

Output:

Call examples in assembler and C:

CALL_BIOS tim_unlock,® ; execute the function

tim_unlock();

K-Team http://www.k-team.com info@k-team.com May 25, 1999 38

K-systermn

All information in this document
is preliminary and subject to change

tim_define_association(reference, general)

Define an association between a string and a general pointer.

This system call makes it possible to define an association between a 16 character string and a genera
32-bit pointer. This allows a task to export high level references. For example, task 1 manages every-
thing about the sensors; it can publish a pointer on a sensor table with a high level reference. All the
other tasks that need to work with sensors can obtain the sensor pointer via the global high level refer-
ence. The general table can contain 32 associations. An error is returned if the association table is full

before the system call.

Input (stacking order):

general

reference

Output:
De
Do

General pointer.
Pointer on a 16 char (max.) string

terminated with null “\@’.

[} Association created.

-1 Association table full.

Call examples in assembler and C:

push .32
push .32
CALL_BIOS
test.32

jump,mi
int32
static

uint32

status =

#{A6 }+general ; general pointer

#R 16”reference ; pointer on the reference
tim_define_association,2 ; execute the function

Do ;

R8”Error y too many associations
status;

char referencell = “Sensors”;

*general;

tim_define_association(reference, general);

if (status < @) return -1;

K-Team http://www.k-team.com info@k-team.com May 25, 1999

39

K-systermn

All information in this document
is preliminary and subject to change

tim_find_association(reference)

Look for an association.

This system call allows to get a general pointer referenced with a 16 character string. The string has to
match the information in the association table. An error is returned if there is no association.

Input (stacking order):
reference Pointer on a 16 char (max.) string

terminated with null “\@’.

Output:
Do <O -1 General pointer.
(8]%] -1 No association.

Call examples in assembler and C:

push .32 #R16"reference ;y pointer on the reference
CALL_BIOS tim_find_association, 1 ; execute the function
test.32 Do ;

jump,mi R8”~Error ; ho association

move .32 Do, A ; general pointer

int32 status;

uint32 *general ;

static char referencell = “Sensors”;

status = tim_find_association(reference);
if (status < @) return -1;

general = (Uint32 *)status;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 40

K-systermn

All information in this document
is preliminary and subject to change

tim_remove_association(reference)

Remove an association from the table.

This system call removes an association from the table. An error is returned if there is no such|associ-
ation

Input (stacking order):
reference Pointer on a 16 char (max.) string
terminated with null \@.

Output:
Do 5} Association removed.
DO -1 No association.

Call examples in assembler and C:

push .32 #R16"reference ;y pointer on the reference
CALL_BIOS tim_remove_association,1 ; execute the function
test.32 Do ;

jump,mi R8”~Error ; ho association
int32 status;
char *reference;

status = tim_remove_association(reference);
if (status < @) return -1;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 41

K-systermn

All information in this document
is preliminary and subject to change

tim_wait_sync(syncMask)

Hait for an external synchronisation.

This system call waits for an external synchronisation generated by some low-level actions. After this
system call the current task descriptor is placed in the suspended sync list. Only an event generated by
a low-level action can place the suspended task descriptor in the execution list.

Input (stacking order):

syncMask= 2**@ PID sample.

syncMask= 2%*] Trajectory terminated, on target.

syncMask= 2%%2 Message sent by MSG manager.

syncMask= 2**3 Message received by MSG manager.

syncMask= 2%%4 Message sent by SER manager.

syncMask= 2**3 Byte received by SER manager.

syncMask= 2%*p IR sensors sync (each sensors generate a sync).
syncMask= 2%**7 IR sensors sync (the sensor @ generates a sync).
syncMask= 2%*8 IRQ interruption.

Output:

Call examples in assembler and C:

push .32 {A6 }+syncMask y wait for ...
CALL_BIOS tim_wait_sync,1 ; execute the function
uint32 syncMask;

tim_wait_sync(syncMask);

K-Team http://www.k-team.com info@k-team.com May 25, 1999 42

K-systermn

All information in this document
is preliminary and subject to change

tim_get_task_des_ptr(

Return the pointer on the main task descriptor.

This system call returns the pointer on the main task descriptor structure.

Input (stacking order):

Output:
taskDescriptor main task descriptor pointer.

Call examples in assembler and C:

K-Team

CALL_BIOS tim_get_task_des_ptr,0 ; execute the function
move .32 D@, {A6 }+taskDescriptor ; the value

PROCDESC *taskDescriptor;

taskDescriptor = tim_get_task_des_ptr();

http://www.k-team.com info@k-team.com May 25, 1999

43

K-syste

All informatio

m Y

n in this document

is preliminary and subject to change

MOT

K-Team
http://www.k-
info@k-team

MOT

Rev. 1.01

team.com
.com

MOT manager (motion control)

Family ID:

‘BIOS’

Table of content

mot_reset()

mot_config_speed_lm(motorNb, kp, ki, kd)
mot_new_speed_Ilm(motorNb, speed) . .

mot_get_position(motorNb)
mot_get_speed(motorNb) .

mot_put_sensors_lm(motorNb, position)

mot_stop(>

mot_new_position_lm(motorNb, position)
mot_new_pwm—_lm(motorNb, pwm)
mot_new_speed_2m(speedl, speedd) . . e

mot_config_position_lm(motorNb, kp, ki, kd)
mot_put_sensors_2m(positionl, position@d) .
mot_new_position2m(positionl, positiond) .
mot_config_profil_lm(motorNb, maxSpeed, maxAcceleration)
mot_get_status(motorNb) .
mot_new_pwn2m(pwml, pwmd)

K-Team

http://www.k-team.com

info@k-team.com

May 25, 1999

.48
.49
.00
.ol
.92
.93
.4
<99
.96
.7
.08
.99
.60
.61
.62
.63

44

K-system |

All information in this document
is preliminary and subject to change

Generalities

This module controls all the resources necessary for the movement management. A classical PID con-
troller coupled with a trapezoidal speed generator is available and allows a good speed and position
control.

Motor O Motor 1

Figure 3: Motor number and direction position

K-Team http://www.k-team.com info@k-team.com May 25, 1999 45

K-systermn

All information in this document
is preliminary and subject to change

The PID implementation

Speed and position controllers are based on a numerical PID implementation.

S(K) = g (k) +u;(K) + ug(k) (Eq. 1)
e(K) = Reference Mesufe)k (Eq. 2)
up(k) = K Ce(k) (Eq. 3)
u(k) = u(k—1)+K, (K (Eq. 4)
ug(k) = Kqle(k) —e(k-1)] (Eq. 5)

» s(k)is the output of controller. Its value is coded on 32-bits but only 16-bits are used. The “PWM” hardware implemen-
tation allows to use only 8-bits of the total dynamic. Here are the correspdtiibigk) and the direction command

d(k) values
5’5(? for s(k<@2®-1)
PWM(K = ° (Eq. 6)
Epot[w} for s(k)=2
- >
] 2
d(k) = sgns(k)] (Eq. 7)

e(k)is the input error of the controller. Its value is coded on 32-bits but only 16-bits are used for the computation. If the
absolute value of the error is greater th&htBe cumulation surg; of the error of the integral part stops.
Up(k) is the proportional contribution for the output of the controlgris coded on 16-bits. The resultant product

(Eqg. 3) is coded on 32-bits.
U;(K) is the integral contribution for the output of the controlgiis coded on 16-bits. The resultant product (Eq. 4) iis

coded on 32-bits.
Ugq(K) is the integrate contribution for the output of the contrdigiis coded on 16-bits. The resultant product (Eq. 5)
is coded on 32-bits.

K-Team http://www.k-team.com info@k-team.com May 25, 1999 46

K-system |

All information in this document
is preliminary and subject to change

The speed profile generator

All the movements in the position control mode are under the control of the speed profile generator.
For each sample, the speed generator computes the next desired speed. According to the maximum ac
celeration and speed, a trapezoidal speed profile (figure 4) is generated using the mechanical equations.

v()

Dynamic changes of the trajectory

7

. Maximum speed

4

Maximum acceleration

p®

pfinal

pinitial

Figure 4: Speed and position movements

K-Team http://www.k-team.com info@k-team.com May 25, 1999 a7

K-system |

All information in this document
is preliminary and subject to change

mot_reset()

Init the resources of the manager.

This system system call inits the manager. The PID is initialised in the speed control mode.

Input (stacking order):

Output:

Call examples in assembler and C:

CALL_BIOS mot_reset,® ; execute the function

mot_reset();

K-Team http://www.k-team.com info@k-team.com May 25, 1999 48

K-systermn

All information in this document
is preliminary and subject to change

mot_config_speed_lm(motorNb, kp, ki, kd)

Initialise the speed PID coefficients for one motor.

This system call initialises the speed PID coefficients for one motor. As usual, the values stacked are
coded on 32-bits, but only the LSW is used for the PID. The following good PID coefficients, lab test-
ed, can be used for nearly all applications. An error is returned if the motor does not exist.

Proportional coefficient: kp = 1000
Integral coefficient: ki =800
Derivative coefficient: kd =100

Input (stacking order):

kd Derivative coefficient.

ki Integral coefficient.

kp Proportional coefficient.
mo torNb Number of the motor [@..11.
Output:

Do (%] oK.

Do -1 The motor does not exist.

Call examples in assembler and C:

push .32 {A6 }+kd ; derivative

push .32 {A6}+k i ; integral

push .32 {R6}+kp s proportional

push .32 {A6}+motorNb ; motor number

CALL_BIOS mot_config_speed_1m,4; execute the function
test.32 Do ;

jump,mi R8”Error ;5 the motor does not exist
int32 status;

uint32 motorNb, kp, ki, kd;

status = mot_config_speed_lm(motorNb, kp, ki, kd);

if (stautus < @) return -1;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 49

K-systermn

All information in this document
is preliminary and subject to change

mot_new_speed_1lm(motorNb, speed)

New speed for one motor.

This system call changes the speed of one motor. An error is returned if the motor does not exist.

Maximum forward speed: speed = +127 (units)
Maximum backward speed: speed = -128 (units)
The unit of the speed is: 0.03 mm/10 ms

Input (stacking order):

speed Speed value.

mo torNb Number of the motor [@..11.
Output:

Do (%] oK.

Do -1 The motor does not exist.

Call examples in assembler and C:

push .32 {A6 }+speed ; speed value

push .32 {A6 }+mo torNb 3 motor number

CALL_BIOS mot_new_speed_1m,2 ; execute the function
test.32 De ;

jump,mi R8”Error ; the motor does not exist
int32 status, speed;

uint32 motorNb;

status = mot_new_speed_lm(motorNb, speed);

if (stautus < @) return -1;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 50

K-systermn

All information in this document
is preliminary and subject to change

mot_get_position(motorNb)

Get the absolute position of one motor.

This system call returns the absolute position (coming from the incremental sensor) of one motor.
The unit of the position is: 0.03 mm.

Input (stacking order):

mo torNb Number of the motor [@..11.
Output:
Do position Absolute position value.

Call examples in assembler and C:

push .32 {A6 }+mo torNb 3 motor number

CALL_BIOS mot_get_position,1 ; execute the function
move .32 D@, {A6}+position 3 position value

int32 position;

uint32 motorNb;

position = mot_get_position(motorNb);

K-Team http://www.k-team.com info@k-team.com May 25, 1999 51

K-systermn

All information in this document
is preliminary and subject to change

mot_get_speed(motorNb)

Get the speed of one motor.

This system call returns the speed (difference of two absolute positions in one sample time) of one mo-
tor.

The unit of the speed is: 0.03 mm/10 ms.

Input (stacking order):

mo torNb Number of the motor [@..11.
Output:
Do speed Instantaneous speed.

Call examples in assembler and C:

push .32 {A6}+motorNb ; motor number

CALL_BIOS mot_get_speed, 1 ; execute the function
move .32 D@, {A6 }+speed ; speed value

int32 speed;

uint32 motorNb;

speed = mot_get_speed(motorNb);

K-Team http://www.k-team.com info@k-team.com May 25, 1999 52

K-systermn

All information in this document
is preliminary and subject to change

mot_put_sensors_Im(motorNb, position)

New absolute position for one motor.

This system call sets the value of the incremental sensor of one motor. An error is returned if the motor
does not exist.

The unit of the position: 0.03 mm.

Input (stacking order):

position Position value.

mo torNb Number of the motor [0..11.
Output:

Do (4] oK.

Do -1 The motor does not exist.

Call examples in assembler and C:

push .32 {R6}+posi tion ; position value

push .32 {A6 }+mo torNb 3 motor number

CALL_BIOS mot_put_sensors_1lm,2 ; execute the function
test.32 Do ;

jump,mi R8”~Error ;5 the motor does not exist
int32 status, position;

uint32 motorNb;

status = mot_put_sensors_lm(motorNb, position);

if (stautus < @) return -1;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 53

K-system |

All information in this document
is preliminary and subject to change

mot_stop()

Stop the motors and set PID coefficients to zero.

This system call immediately stops the two motors and sets the PID coefficients to zero.

Input (stacking order):

Output:

Call examples in assembler and C:

CALL_BIOS mot_stop,@ ; execute the function

mot_stopQ);

K-Team http://www.k-team.com info@k-team.com May 25, 1999

54

K-systermn

All information in this document
is preliminary and subject to change

mot_new_position_lm(motorNb, position)

New position for one motor.

This system call changes the position of one motor. An error is returned if the motor does not exist.

Maximum forward position:position = #21 (units)
Maximum backward position:position =3-12(units)
The unit of the position is: 0.03 mm

Input (stacking order):

position Position value.

mo torNb Number of the motor [@..11.
Output:

Do (%] oK.

Do -1 The motor does not exist.

Call examples in assembler and C:

push .32 {A6}+position 3 position value

push .32 {A6 }+mo torNb ; motor number

CALL_BIOS mot_new_position_1lm,2; execute the function
test.32 Do ;

jump,mi R8”~Error ;s the motor does not exist
int32 status, position;

uint32 motorNb;

status = mot_new_position_Im(motorNb, position);

if (stautus < @) return -1;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 55

K-systermn

All information in this document
is preliminary and subject to change

mot_new_pwm_Ilm(motorNb, pwm)

New pwm for one motor.

This system call changes the pwm of one motor. An error is returned if the motor does not exist.
Maximum forward pwm: pwm = +21 (units)
Maximum backward pwm: pwm = IZunits)

Input (stacking order):

pwm Pwm value.

mo torNb Number of the motor [@..11.
Output:

Do (%] oK.

Do -1 The motor does not exist.

Call examples in assembler and C:

push .32 {A6 }+puwm 5 pwm value

push .32 {A6 }+mo torNb 3 motor number

CALL_BIOS mot_new_pwm_1m,2 ; execute the function
test.32 Do 5

jump,mi R8”~Error ; the motor does not exist
int32 status, puwm;

uint32 motorNb;

status = mot_new_pwm_lm(motorNb, pwm);

if (stautus < @) return -1;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 56

K-systermn

All information in this document
is preliminary and subject to change

mot_new_speed_2m(speedl, speedd)

New speed for the two motors.

This system call changes the speed of the motors.

Maximum forward speed: speed = +127 (units)
Maximum backward speed: speed = -128 (units)
The unit of the speed is: 0.03 mm/10 ms

Input (stacking order):

speed@ Speed value.
speedl Speed value.
Output:

Call examples in assembler and C:

push .32 {A6 }+speedo ; motor @ speed value
push .32 {A6 }+speed1 ; motor 1 speed value
CALL_BIOS mot_new_speed—2m,2 ; execute the function

int32 speedd, speedl;

mot_new_speed_2m(speedl, speed®d);

K-Team http://www.k-team.com info@k-team.com

May 25, 1999

57

K-systermn

All information in this document
is preliminary and subject to change

mot_config—position_lm(motorNb, kp, ki, kd)

Initialise the position PID coefficients for one motor.

This system call initialises the position PID coefficients for one motor. As usual, the values stacked are
coded on 32-bits, but only the LSW is used for the PID. The following good PID coefficients, lab test-
ed, can be used for nearly all applications. An error is returned if the motor does not exist.

Proportional coefficient: kp =400
Integral coefficient: ki =4
Derivative coefficient: kd =400

Input (stacking order):

kd Derivative coefficient.

ki Integral coefficient.

kp Proportional coefficient.
mo torNb Number of the motor [@..11.
Output:

Do (%] oK.

Do -1 The motor does not exist.

Call examples in assembler and C:

push .32 {A6 }+kd ; derivative

push .32 {A6}+k i ; integral

push .32 {R6}+kp ; proportional

push .32 {A6}+motorNb ; motor number

CALL_BIOS mot_config_position_lm,4 ; execute the function
test.32 Do ;

jump,mi R8”Error ;y the motor does not exist
int32 status;

uint32 motorNb, kp, ki, kd;

status = mot_config_position_lm(motorNb, kp, ki, kd);

if (stautus < @) return -1;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 58

K-systermn

All information in this document
is preliminary and subject to change

mot_put_sensors_2m(positionl, position®)

New absolute position for the two motors.

This system call changes the value of one incremental sensor of the two motors.
The unit of the position: 0.03 mm.

Input (stacking order):

position® Position of the sensor 0.
positionl Position of the sensor 1.
Output:

Call examples in assembler and C:

push .32 {A6}+positiond ; position @
push .32 {RA6}+positionl ; position 1
CALL_BIOS mot_put_sensors_2m,2 ; execute the function

int32 position®, positionl;

mot_put_sensors_2m(positionl, position®d);

K-Team http://www.k-team.com info@k-team.com May 25, 1999

59

K-systermn

All information in this document
is preliminary and subject to change

mot_new_position2m(positionl, positiond)

New position for the two motors.

This system call changes the position of the two motors.
Maximum forward position: position = 21 (units)
Maximum backward position: position =3-12(units)
The unit of the position is: 0.03 mm

Input (stacking order):

position® Position of the motor 0.
positionl Position of the motor 1.
Output:

Call examples in assembler and C:

push .32 {A6 }+positiond ; position @
push .32 {R6}+positionl ; position 1

CALL_BIOS mot_new_position2m,2; execute the function

int32 position®, positionl;

mot_new_position_2m(positionl, positiond);

K-Team http://www.k-team.com info@k-team.com

May 25, 1999

60

K-systermn

All information in this document
is preliminary and subject to change

mot_config_profil_lm(motorNb, maxSpeed, maxAcceleration)

Set-up the coefficients of the profile controller for one motor.

This system call initialises the speed and the acceleration coefficients for the profile controller for one
motor. As usual, the values stacked are coded on 32-bits. The acceleration representation is coded in
fixed point 24.8 (24-bits integer and 8-bits fractionnary). The following good coefficients, lab tested,

can be used for nearly all applications. An error is returned if the motor does not exist.

Maximum of the speed: maxSpeed = 20 (units)
Maximum of the acceleration: maxAcceleration = 0.25 (units)
The unit of the speed is: 0.03 mm/10 ms

The unit of the acceleration is: 0.03 mm/(10 ms " 2)

Input (stacking order):
maxAcceleration
maxSpeed

mo torNb

Output:

Do (]

Do -1

Call examples in assembler and C:

Acceleration coefficient.
Speed coefficient.
Number of the motor [0..11].

oK.

The motor does not exist.

push .32 {A6 }+maxAcceleration ; acceleration

push .32 {A6 }+maxSpeed
push .32 {A6 }+mo torNb

; speed

sy motor number

CALL_BIOS mot_config—profil_1m,3 ; execute the function

test.32 Do

jump,mi R8”~Error ;s the motor does not exist
int32 status;
uint32 motorNb, maxAcceleration, maxSpeed;

status = mot_config_profil_lm(motorNb, maxSpeed, maxAcceleration);

if (stautus < @) return -1;

K-Team http://www.k-team.com

info@k-team.com May 25, 1999 61

K-systermn

All information in this document
is preliminary and subject to change

mot_get_status(motorNb)

Get the status of the motion for one motor.

This system call gives the status of the motion controller (speed and position) for one motor.

Input (stacking order):

mo torNb Number of the motor [@..11.
Output:
Do status Status of the motion.

2%kQ, , 2%k 15 error of the controller.

2%k 16, 2%k 17 mode (B = speed, 1 = position, 2 = PUM).

2%k 18 on target if mode = position.

Call examples in assembler and C:

push .32 {A6 }+mo torNb 3 motor number
CALL_BIOS mot_get_status,1 ; execute the function
move .32 D@, {A6}+status ; status of the motion
int32 status;

uint32 motorNb;

status = mot_get_status(motorNb);

if (stautus < @) return -1;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 62

K-systermn

All information in this document
is preliminary and subject to change

mot_new_pwm_2m(pwml, pwmBd)

New pwm for the two motors.

This system call changes the pwm of the two motors.

Maximum forward pwm: pwm
Maximum backward pwm: pwm

Input (stacking order):

pwm@ Pum of
pwm1 Pwm of
Output:

Call examples in assembler and C:

K-Team

push .32 {A6 }+pwmd
push .32 {A6 }+pum1
CALL_BIOS mot_new_pwm_2m,2

int32 pwm@, pwml;

mot_new_pwm_2m(pwml, pwm@d);

http://www.k-team.com

= +21 (units)
= Iunits)

the motor 0.

the motor 1.

s pum O

s pwm 1

; execute the function

info@k-team.com

May 25, 1999

63

K-systermn

All information in this document
is preliminary and subject to change

SENS Rev. 1.01

K-Team
http://www.k-team.com
info@k-team.com

SENS

SENS manager (IR sensors and analog manager)

Family ID: °‘BIOS’

Table of content

sens_reset(d o000 .
sens_get_reflected_value(sensorib)

sens_get_ambient_value(sensorNb) .
sens_get_pointer®
sens_get_ana_valueCinputNb)

K-Team http://www.k-team.com info@k-team.com

May 25, 1999

.66
.67
.68
.69
.70

64

K-system |

All information in this document
is preliminary and subject to change

Generalities

This module manages the eight IR sensors (figure 5) and all the analog inputs. The hardware which
controls the different phases of the IR sensor measure is completely under the control of this manager.

» Channel 0: is used to get the value "pulse light" of the left IR sensors.

» Channel 1: is used to get the value "ambient light" of the left IR sensors.
» Channel 2: is used to get the value "pulse light" of the right IR sensors.

» Channel 3: is used to get the value "ambient light" of the right IR sensors.
* Channels 4 to 9: user.

The sequence necessary to manage the IR sensors is divided into four phases.

Phase 0: read the ambient light value.

Phase 1: with a first sample/hold stores the ambient light.
Phase 2: turn on the LED of the selected sensor

Phase 3: read the ambient light + LED light value.

Sensors left LO to L7 ‘ Sensors right RO to R7

Top v‘iew

Figure 5: Position and number of the sendoeft sensors take the numbers O to 7, right sensors from 8 to
15.

K-Team http://www.k-team.com info@k-team.com May 25, 1999 65

K-system |

All information in this document
is preliminary and subject to change

sens_reset()

Init of the resources of the manager.

This system call inits the manager.

Input (stacking order):

Output:

Call examples in assembler and C:

CALL_BIOS sens_reset,0 ; execute the function

sens_reset();

K-Team http://www.k-team.com info@k-team.com

May 25, 1999

66

K-systermn

All information in this document
is preliminary and subject to change

sens_get_reflected_value(sensorNb)

Get the reflected value of one sensor.

This system call returns the reflected value of the sensor selected. The number 0 to 15 are used to selec
one sensor. An error is returned if the sensor does not exist.

Input (stacking order):

sensorNb Number of the sensor [0..15]1.
Output:

Do sensorValue Ualue of the sensor.

Do -1 The sensor does not exist.

Call examples in assembler and C:

push .32 {A6 }+sensorNb ; sensor number

CALL_BIOS sens_get_reflected_value,l; execute the function

test.32 Do ;

jump,mi R8”Error ; the sensor does not exist
move .32 D@, {A6 }+sensorValue ; sensor value

int32 status;

uint32 sensorValue, sensorNb;

status = sens_get_reflected_value(sensorib);
if (status < @) return -1;

sensorValue = (Uint32)status;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 67

K-systermn

All information in this document
is preliminary and subject to change

sens_get_ambient_value(sensoriNb)

Get the ambient value of one sensor.

This system call returns the ambient value of the sensor selected. The number 0 to 15 are used to selec
one sensor. An error is returned if the sensor does not exist.

Input (stacking order):

sensorNb Number of the sensor [0..15]1.
Output:

Do sensorValue Ualue of the sensor.

Do -1 The sensor does not exist.

Call examples in assembler and C:

push .32 {A6 }+sensorNb ; sensor number

CALL_BIOS sens_get_ambient_value,1 ; execute the function
test.32 Do ;

jump,mi R8”Error ; the sensor does not exist
move .32 D@, {A6 }+sensorValue ; sensor value

int32 status;

uint32 sensorValue, sensorNb;

status = sens_get_ambient_value(sensorNb);
if (status < @) return -1;

sensorValue = (Uint32)status;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 68

K-systermn

All information in this document
is preliminary and subject to change

sens_get_pointer()

Get the pointer on the "IRSENSOR" structure.

This system call returns the pointer on tHBSENSOR" structure; pointer + 0 to 15 are used to point
the value of the processed sensor (K x (Ambient - Pulsed)). Pointer + 16 to 31 are used to point the
value of the ambient light. Here is the sensor structure:

#define SENSORNB 16

#typedef struct {
uintl6 oProximi tySensor [SENSORNB 1;
uintl16 oAmbientL ightSensor [SENSORNB1I;
} IRSENSOR;

Input (stacking order):

Output:
(8]%] sensor Pointer on the structure sensor.

Call examples in assembler and C:

CALL_BIOS sens_get_pointer,@ ; execute the function
push .32 Do ;

pop .32 Al ;s pointer on sensor structure
IRSENSOR ‘ksensor;

sensor = sens_get_pointer();

K-Team http://www.k-team.com info@k-team.com May 25, 1999 69

K-systermn

All information in this document
is preliminary and subject to change

sens_get_ana_value(inputNb)

Get the value of one analog input.

This system call returns the value of the analog input selected. An error is returned if the input does not
exist. Ten channels are used:

Reserved (left reflected light value)
Reserved (left ambient light value)
Reserved (right reflected light value)
Reserved (right ambient light value)
User

User

User

User

User

User

Input (stacking order):

i nputNb Number of the analog input [@..9].
Output:

Do analogValue Analog value.

Do -1 The input does not exist.

Call examples in assembler and C:

push .32 {A6 }+inputNb ; nhumber of the input

CALL_BIOS sens_get_ana_value,l ; execute the function
test.32 Do ;

jump,mi R8”~Error ; the input does not exist
move .32 D@, {A6}+analogValue ; analog value

int32 status;

uint32 analogValue, inputNb;

status = sens_get_ana_value(inputNb);
if (status < @) return -1;

analogValue = (Uint32)status;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 70

K-systermn

All information in this document
is preliminary and subject to change

MSG Rev. 2.00

K-Team
http://www.k-team.com
info@k-team.com

MSG

MSG manager (local multi-microcontroller

Family ID: °‘BIOS’

Table of content

msg_reset()
msg_reserve_channel (channelNb
msg_release_channel (channelNb)
msg_send_message(mesgS, sizeS)

msg_receive_message(mesgR, sizeR)

msg_snd_rec_message(msgS, sizeS, msgR, sizeR, rep)

K-Team http://www.k-team.com

info@k-team.com

network

manager)

May 25, 1999

.73
.74
NS
.76
.77
.78

71

K-system |

All information in this document
is preliminary and subject to change

Generalities

This module manages all the communications between the main microcontroller of the system (master)
and the different microcontrollers (slaves) available on the network. The small local network controlled
by this module operates in a single master multi-slave configuration. The protocol is always supervised
by the master microcontroller (star topology). Figure 6 shows how a message is coded and the different
phases of the protocol.

Message format

Turret ID IL?QS:E“W tgggltg r?ﬁfetgseage Message byte 1 | Message byte 2 | Message byte n
Message level Byte level
Master Slave Master Slave
Start Tx Msg
@ e
100uS /D /D
Tx byte Rx byte
Master Slave <

End Rx byte

End Tx Msg End Rx Msg End Tx byte Timeout

He

Figure 6: Message format and protocol sequences

K-Team http://www.k-team.com info@k-team.com May 25, 1999 72

K-system |

All information in this document
is preliminary and subject to change

msg_reset()

Init of the resources of the manager.

This system call inits the manager.

Input (stacking order):

Output:

Call examples in assembler and C:

CALL_BIOS msg_reset,® ; execute the function

msg_reset();

K-Team http://www.k-team.com info@k-team.com

May 25, 1999

73

K-systermn

All information in this document
is preliminary and subject to change

msg_reserve_channel (channelNb)

Reserve the logical channel of the network.

This system call reserves the logical channel of the network for a transaction. The network is alcritical
resource which can be shared with other tasks. An error is returned if the channel is busy.

Input (stacking order):

channel1Nb Number of the logical channel.

Output:

Do (%] Channel reserved and ready to operate.
Do -1 The channel does not exist.

Do -2 The channel busy.

Call examples in assembler and C:

push .32 {A6 }+channe1Nb 3 channel number
CALL_BIOS msg_reserve_channel, 1l; execute the function
test.32 Do ;

jump,mi R8”Error s wait ...

int32 status;

status = msg_reserve_channel (channelNb);

i f (stautus < @) return -1;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 74

K-systermn

All information in this document
is preliminary and subject to change

msg_release_channel (channelNb)

Release the logical channel of the network.

This system call releases the logical channel of the network. The other tasks can now use this channel.

Input (stacking order):

channelNb Number of the logical channel.
Output:

Do 0 Channel released.

Do -1 The channel does not exist.

Call examples in assembler and C:

push .32 {A6 }+channe1Nb s channel number

CALL_BIOS msg_release_channel, 1l; execute the function
int32 status;

status = msg_release_channel (channelNb);

if (stautus < @) return -1;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 75

K-systermn

All information in this document
is preliminary and subject to change

msg_send_message(mesgS, sizeS)

Send one message.

This system call sends one message on the network. The status of this call is given back. An error is
returned if the message was not sent because of a time-out error.

Input (stacking order):

sizeS Size of the message.

messageS Pointer on the message.

Output:

Do 5} Message sent correctly.

Do -1 Message not sent because of a time-out error.

Call examples in assembler and C:

push .32 {A6}+sizeS ; size of the buffer
push .32 #{A6 }+messageS ; pointer on the message

CALL_BIOS msg_send_message, 2 ; execute the function

test.32 Do ;

jump,mi R8”Error ;5 time-out error
int32 status;

uints *messageS;

uint32 sizeS;

status = msg_send_message(messageS, sizeS);

i f (stautus < @) return -1;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 76

K-systermn

All information in this document
is preliminary and subject to change

msg_receive_message(mesgR, sizeR)

Receive one message.

This system call waits for one message on the network. The status of this system call is given back. An
error is returned if the message was not received because of a time-out error.

Input (stacking order):

sizeR Size of the message.

messageR Pointer on the message.

Output:

Do 5} Message received correctly.

Do -1 Message not received because of a time-out error.

Call examples in assembler and C:

push .32 {A6}+sizeR ; size of the buffer
push .32 #{A6 }+messageR ; pointer on the message
CALL_BIOS msg_receive_message,2; execute the function
test.32 D@ ;

jump,mi R8”Error ;5 time-out error
int32 status;

uints *messageR;

uint32 sizeR;

status = msg_receive_message(messageR, sizeR);

i f (stautus < @) return -1;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 77

K-systermn

All information in this document

is preliminary and subject

to change

msg—shd_rec_message(msgS, sizeS, msgR, sizeR, rep)

Send and receive on

e messdage.

This system call sends one message on the network and waits for an answer. An error is returned if the
message was not received because of a time-out error.

Input (stacking order):

rep
sizeR
msgR
sizeS
msgS
Output:
Do

Do

Call examples in assembler and C:

push .32
push .32
push .32
push .32
push .32
CALL_BIOS
test.32

jump,mi

int32
uints8
uint32

#2

{A6}+sizeR
#{A6 }+msgR
{A6}+sizeS
#{A6 }+msgS

Number of tries if error.

Size of
Pointer
Size of

Pointer

Message

Message

the message (to be received).
on the message (to be received).
the message (to be sent).

on the message (to be sent).

sent and received correctly.

not sent nor received because

of a time-out error (too many reps).

’

.
’

msg_snd_rec_message, S ;

Do

R8”Error

status;

*msgS, *msgR;

.
’

’

sizeS, sizeR, rep;

try 2 times

size of the buffer (R)
pointer on the message (R)
size of the buffer (S)
pointer on the message (S)

execute the function

time-out error

status = msg_snd_rec_message(msgS, sizeS, msgR, sizeR, rep);

if (stautus < @) return -1;

K-Team http://www.k-team.com

info@k-team.com May 25, 1999 78

K-systermn

All information in this document
is preliminary and subject to change

MMA Rev. 1.00

Franzi Edo.
K-Team S.A.
franzi@k-team.com

MMA

MMA manager (Multi Microcontroller Adapter manager)

Family ID: ‘BIOS’

Table of content

mma_reset() . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o e e e e e e o« o« . .81
mma_reserve_channel_B() . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o« o« o« o« o« o« o« o« o« .82
mma_reserve_channel_1() . . ¢ ¢« ¢« & ¢« ¢ ¢ ¢ ¢ o« ¢« ¢« « « « « .83
mma_reserve_channel_20() . ¢« ¢« ¢« ¢« ¢« ¢« ¢ ¢ ¢ o« o« o« ¢« o« « « « .84
mma_release_channel_B() . . ¢ ¢« ¢ ¢ ¢ ¢ ¢ ¢ o« o« o« ¢« o« o« o« o« 85
mma_release_channel_1() . . ¢« ¢« ¢« &« ¢« ¢« ¢ ¢ ¢ o« ¢« ¢« « « « « .86
mma_release_channel_20() . ¢« ¢« ¢ ¢« ¢ ¢ ¢ ¢ ¢ o« o o« o« o« o « o« .87
mma_send_buf fer_@(buffer, sized«88
mma—_send_buf fer_1(buffer, sized « ¢89
mma_send_buf fer_2(buffer, sized ¢« ¢ « ¢« ¢« « .« . .90
mma_receive_byte_B80() T !
mma_receive_byte_10) Y © V4
mma_receive_byte_20) Y
mma—_tx_status_B() . . . ¢ ¢ ¢ ¢ ¢t i i i e e e e e e e e e . 94
mma—_tx_status_1() . . ¢ ¢ ¢ ¢ ¢ ¢ v i i 4t 4 4 e e e e e o . 495
mma—_tx_status_2() . . ¢ ¢ ¢ ¢ ¢ ¢ i i it e e e e e e e o . .96
mma_rx_status_B() . . ¢ ¢ ¢ ¢ ¢ i i it e e e e e e e e e . W97
mma_rx_status_1() . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ i i 4 4 4 e e e e e« o« . .98
mma_rx_status_20() . . ¢ ¢ ¢ ¢ ¢ ¢ i i it e e e e e e e« . .99

Edoardo Franzi franzi@k-team.com May 25, 1999

K-systermn

All information in this document
is preliminary and subject to change

Generalities

This module manages the communications via the multi-microcontroller parallel channel MMA (Mul-
ti-Micro-controller Adapter). All the operations are executed by interruptions. The interface with the
MMA is achieved by using circular buffers; thus long waiting polling periods are avoided.

Edoardo Franzi franzi@k-team.com May 25, 1999 80

K-system |

All information in this document

is preliminary and subject to change

mma_reset()

Init of the resources of the manager.

This system call inits the manager.

Input:

Output:

Call examples in assembler and C:

CALL_BIOS mma_reset,®

mma_reset();

; execute the function

Edoardo Franzi

franzi@k-team.com

May 25, 1999

81

K-systermn

All information in this document
is preliminary and subject to change

mma_reserve_channel _0()

Reserve the MMA @ channel.

This system call reserves the MMA 0 channel for a transaction. The MMA channel is a critical resource
which can be shared with other tasks. An error is returned if the channel is busy.

Input (stacking order):

Output:
Do (%] Channel reserved and ready to operate.
Do -1 Channel busy.

Call examples in assembler and C:

CALL_BIOS mma_reserve_channel_0,0 ; execute the function
test.32 Do ;

jump,mi R8”~Error s wait ...

int32 status;

status = mma_reserve_channel _BQO);

if (status < @) return -1;

Edoardo Franzi franzi@k-team.com May 25, 1999 82

K-systermn

All information in this document
is preliminary and subject to change

mma_reserve_channel _1()

Reserve the MMA 1 channel.

This system call reserves the MMA 1 channel for a transaction. The MMA channel is a critical resource
which can be shared with other tasks. An error is returned if the channel is busy.

Input (stacking order):

Output:
Do (%] Channel reserved and ready to operate.
Do -1 Channel busy.

Call examples in assembler and C:

CALL_BIOS mma_reserve_channel_1,0 ; execute the function
test.32 Do ;

jump,mi R8”~Error s wait ...

int32 status;

status = mma_reserve_channel_10);

if (status < @) return -1;

Edoardo Franzi franzi@k-team.com May 25, 1999 83

K-systermn

All information in this document
is preliminary and subject to change

mma_reserve_channel _2()

Reserve the MMA 2 channel.

This system call reserves the MMA 2 channel for a transaction. The MMA channel is a critical resource
which can be shared with other tasks. An error is returned if the channel is busy.

Input (stacking order):

Output:
Do (%] Channel reserved and ready to operate.
Do -1 Channel busy.

Call examples in assembler and C:

CALL_BIOS mma_reserve_channel_2,0 ; execute the function
test.32 Do ;

jump,mi R8”~Error s wait ...

int32 status;

status = mma_reserve_channel_20);

if (status < @) return -1;

Edoardo Franzi franzi@k-team.com May 25, 1999 84

K-system |

All information in this document
is preliminary and subject to change

mma—release_channel _B8()

Release the MMA @ channel.

This system call releases the MMA 0 channel. The other tasks can now use this channel.

Input (stacking order):

Output:

Call examples in assembler and C:

CALL_BIOS mma_release_channel_0,0 ; execute the function

mma_release_channel _B80);

Edoardo Franzi franzi@k-team.com May 25, 1999

85

K-system |

All information in this document
is preliminary and subject to change

mma—release_channel _1()

Release the MMA 1 channel.

This system call releases the MMA 1 channel. The other tasks can now use this channel.

Input (stacking order):

Output:

Call examples in assembler and C:

CALL_BIOS mma_release_channel_1,0 ; execute the function

mma_release_channel _10);

Edoardo Franzi franzi@k-team.com May 25, 1999

86

K-system |

All information in this document
is preliminary and subject to change

mma—release_channel _2()

Release the MMA 2 channel.

This system call releases the MMA 2 channel. The other tasks can now use this channel.

Input (stacking order):

Output:

Call examples in assembler and C:

CALL_BIOS mma_release_channel_2,0 ; execute the function

mma_release_channel _20);

Edoardo Franzi franzi@k-team.com May 25, 1999

87

K-systermn

All information in this document
is preliminary and subject to change

mma—send_buffer_B(buffer, size)

Send one buffer by the MMA @ channel.

This system call sends one buffer of less that 1024 bytes by the MMA 0 channel. An error is returned
(if any).

Input (stacking order):

size Size of the buffer to send.
buf fer Pointer on the buffer.
Output:

Do (%] oK.

Do -1 Channel busy.

Do -2 Size of the buffer excessive.
Do -3 Size of the buffer = @.

Call examples in assembler and C:

push .32 {A6}+size ; size of the buffer to send

push .32 #{A6 }+buf fer ; pointer on the buffer
CALL_BIOS mma_send_buffer_8,2 ; execute the function
test.32 Do ;

jump,mi R8”Error ;5 channel error

int32 status;

uints *buffer;

uint32 size;

status = mma_send_buffer_@(buffer, size);

if (status < @) return status;

Edoardo Franzi franzi@k-team.com May 25, 1999 88

K-systermn

All information in this document
is preliminary and subject to change

mma—send_buffer_1(buffer, size)

Send one buffer by the MMA 1 channel.

This system call sends one buffer of less that 1024 bytes by the MMA 1 channel. An error is returned
(if any).

Input (stacking order):

size Size of the buffer to send.
buf fer Pointer on the buffer.
Output:

Do (%] oK.

Do -1 Channel busy.

Do -2 Size of the buffer excessive.
Do -3 Size of the buffer = @.

Call examples in assembler and C:

push .32 {A6}+size ; size of the buffer to send

push .32 #{A6 }+buf fer ; pointer on the buffer
CALL_BIOS mma_send_buffer_1,2 ; execute the function
test.32 Do ;

jump,mi R8”Error ;5 channel error

int32 status;

uints *buffer;

uint32 size;

status = mma_send_buffer_1(buffer, size);

if (status < @) return status;

Edoardo Franzi franzi@k-team.com May 25, 1999 89

K-systermn

All information in this document
is preliminary and subject to change

mma—send_buffer_2(buffer, size)

Send one buffer by the MMA 2 channel.

This system call sends one buffer of less that 1024 bytes by the MMA 2 channel. An error is returned
(if any).

Input (stacking order):

size Size of the buffer to send.
buf fer Pointer on the buffer.
Output:

Do (%] oK.

Do -1 Channel busy.

Do -2 Size of the buffer excessive.
Do -3 Size of the buffer = @.

Call examples in assembler and C:

push .32 {A6}+size ; size of the buffer to send

push .32 #{A6 }+buf fer ; pointer on the buffer
CALL_BIOS mma_send_buffer_2,2 ; execute the function
test.32 Do ;

jump,mi R8”Error ;5 channel error

int32 status;

uints *buffer;

uint32 size;

status = mma_send_buffer_2(buffer, size);

if (status < @) return status;

Edoardo Franzi franzi@k-team.com May 25, 1999 90

K-systermn

All information in this document
is preliminary and subject to change

mma_receive_byte_B8()

Receive one byte by the MMA @ channel.

This system call looks for the reception buffer of the MMA 0O channel if one byte is available.

Input (stacking order):

Output:
Do +16 ' 808NN nn = byte.
Do -1 Buffer empty.

Call examples in assembler and C:

CALL_BIOS mma_receive_byte_0,0 ; execute the function

test.32 De ;

jump,mi R8”Error ;5 channel error
move .8 D@, {A6}+aByte ; a character
int32 status;

uint8 aByte;

status = mma_receive_byte_080);
if (status < @) return -1;

aByte = (uint8)status;

Edoardo Franzi franzi@k-team.com May 25, 1999 91

K-systermn

All information in this document
is preliminary and subject to change

mma_receive_byte_10)

Receive one byte by the MMA 1 channel.

This system call looks for the reception buffer of the MMA 1 channel if one byte is available.

Input (stacking order):

Output:
Do +16 ' 808NN nn = byte.
Do -1 Buffer empty.

Call examples in assembler and C:

CALL_BIOS mma_receive_byte_1,0 ; execute the function

test.32 De ;

jump,mi R8”Error ;5 channel error
move .8 D@, {A6}+aByte ; a character
int32 status;

uint8 aByte;

status = mma_receive_byte_10);
if (status < @) return -1;

aByte = (uint8)status;

Edoardo Franzi franzi@k-team.com May 25, 1999 92

K-systermn

All information in this document
is preliminary and subject to change

mma_receive_byte_2()

Receive one byte by the MMA 2 channel.

This system call looks for the reception buffer of the MMA 2 channel if one byte is available.

Input (stacking order):

Output:
Do +16 ' 808NN nn = byte.
Do -1 Buffer empty.

Call examples in assembler and C:

CALL_BIOS mma_receive_byte_2,0 ; execute the function

test.32 De ;

jump,mi R8”Error ;5 channel error
move .8 D@, {A6}+aByte ; a character
int32 status;

uint8 aByte;

status = mma_receive_byte_20);
if (status < @) return -1;

aByte = (uint8)status;

Edoardo Franzi franzi@k-team.com May 25, 1999 93

K-system |

All information in this document
is preliminary and subject to change

mma—tx_status_0(C)

Get the status of the MMA @ channel transmitter.

This system call looks for the status of the MMA 0 channel transmitter.

Input (stacking order):

Output:
Do 5} Buffer empty.
Do -1 Buffer not empty.

Call examples in assembler and C:

CALL_BIOS mma_tx_status_0,0 ; execute the function

test.32 Do ;
jump,mi R8”~Error ; buffer not empty
int32 status;

status = mma_tx_channel _B0);

if (status < @) return -1;

Edoardo Franzi franzi@k-team.com May 25, 1999

94

K-system |

All information in this document
is preliminary and subject to change

mma—tx_status_10)

Get the status of the MMA 1 channel transmitter.

This system call looks for the status of the MMA 1 channel transmitter.

Input (stacking order):

Output:
Do 5} Buffer empty.
Do -1 Buffer not empty.

Call examples in assembler and C:

CALL_BIOS mma_tx_status_1,0 ; execute the function

test.32 Do ;
jump,mi R8”~Error ; buffer not empty
int32 status;

status = mma_tx_channel_10);

if (status < @) return -1;

Edoardo Franzi franzi@k-team.com May 25, 1999

95

K-system |

All information in this document
is preliminary and subject to change

mma—tx_status_20)

Get the status of the MMA 2 channel transmitter.

This system call looks for the status of the MMA 2 channel transmitter.

Input (stacking order):

Output:
Do 5} Buffer empty.
Do -1 Buffer not empty.

Call examples in assembler and C:

CALL_BIOS mma_tx_status_2,0 ; execute the function

test.32 Do ;
jump,mi R8”~Error ; buffer not empty
int32 status;

status = mma_tx_channel_20);

if (status < @) return -1;

Edoardo Franzi franzi@k-team.com May 25, 1999

96

K-system |

All information in this document
is preliminary and subject to change

mma_rx_status_00)

Get the status of the MMA @ channel receiver.

This system call looks for the status of the MMA 0 channel receiver.

Input (stacking order):

Output:
Do 5} Buf fer
Do -1 Buffer

Call examples in assembler and C:

CALL_BIOS mma_rx_status_90,0 ;

test.32 De ;
jump,mi R8”Error ;
int32 status;

status = mma_rx_channel _B80);

if (status < @) return -1;

empty.
not empty.

execute the function

buffer not empty

Edoardo Franzi franzi@k-team.com May 25, 1999

97

K-system |

All information in this document
is preliminary and subject to change

mma_rx_status_10)

Get the status of the MMA 1 channel receiver.

This system call looks for the status of the MMA 1 channel receiver.

Input (stacking order):

Output:
Do 5} Buf fer
Do -1 Buffer

Call examples in assembler and C:

CALL_BIOS mma_rx_status_1,0 ;

test.32 De ;
jump,mi R8”Error ;
int32 status;

status = mma_rx_channel_10);

if (status < @) return -1;

empty.
not empty.

execute the function

buffer not empty

Edoardo Franzi franzi@k-team.com May 25, 1999

98

K-system |

All information in this document
is preliminary and subject to change

mma_rx_status_20)

Get the status of the MMA 2 channel receiver.

This system call looks for the status of the MMA 2 channel receiver.

Input (stacking order):

Output:
Do 5} Buf fer
Do -1 Buffer

Call examples in assembler and C:

CALL_BIOS mma_rx_status_2,0 ;

test.32 De ;
jump,mi R8”Error ;
int32 status;

status = mma_rx_channel_20);

if (status < @) return -1;

empty.
not empty.

execute the function

buffer not empty

Edoardo Franzi franzi@k-team.com May 25, 1999

99

K-systermn

All information in this document
is preliminary and subject to change

SER Rev. 1.00

K-Team
http://www.k-team.com
info@k-team.com

SER

SER manager (serial RS232 manager)

Family ID: °‘BIOS’

Table of content

ser_resel() . & ¢ ¢ i i i it e e e e e e e e e e e e e e . 102
ser_reserve_channel () . ¢ ¢« ¢« ¢« ¢« ¢ ¢ ¢ ¢ o o« o o o« o« o« « « o103
ser_release_channel () . ¢ ¢« ¢« ¢« ¢« ¢« ¢ ¢ o o o« o o« o« o« o« « « 104
ser_config(baudrate) e e e s & o s e s s e s s e e e e s . J105
ser_send_buf fer(buffer, sized ¢« ¢ . ¢ . . . 106
ser_receive_byte() 0 0 0 0 b e e e e e e e e e e . W 107
ser_tx_status() . . ¢ ¢ ¢ ¢ ¢ i i i e e e e e e e e o . . .108
ser_rx_status() . . ¢ ¢ ¢ ¢ i i i i i e e e e e e e e e . . L1009

K-Team http://www.k-team.com info@k-team.com May 25, 1999 100

K-systermn

All information in this document
is preliminary and subject to change

Generalities

This module manages the communications via the asynchronous serial channel SCI (Serial Communi-
cation Interface). All the operations are executed by interruptions. The interface with the SCI is
achieved by using circular buffers; thus long waiting polling periods are avoided. The format used is
fixed at 8-bits, 2-stop bits, no parity. Only the baudrate can be changed.

K-Team http://www.k-team.com info@k-team.com May 25, 1999 101

K-system |

All information in this document
is preliminary and subject to change

ser_reset()

Init of the resources of the manager.

This system call inits the manager. The baudrate is selected to 9600 bits/s.

Input:

Output:

Call examples in assembler and C:

CALL_BIOS ser_reset,® ; execute the function

ser_reset();

K-Team http://www.k-team.com info@k-team.com May 25, 1999 102

K-systermn

All information in this document
is preliminary and subject to change

ser_reserve_channel ()

Reserve the serial SCI channel.

This system call reserves the serial SCI channel for a transaction. The serial SCI channel is a critical
resource which can be shared with other tasks. An error is returned if the channel is busy.

Input (stacking order):

Output:
Do (%] Channel reserved and ready to operate.
Do -1 Channel busy.

Call examples in assembler and C:

CALL_BIOS ser_reserve_channel,@ ; execute the function
test.32 Do ;

jump,mi R8”~Error s wait ...

int32 status;

status = ser_reserve_channel ();

if (status < @) return -1;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 103

K-system |

All information in this document
is preliminary and subject to change

ser_release_channel ()

Release the serial SCI channel.

This system call releases the serial SCI channel. The other tasks can now use this channel.

Input (stacking order):

Output:

Call examples in assembler and C:

CALL_BIOS ser_release_channel,® ; execute the function

ser_release_channel ()}

K-Team http://www.k-team.com info@k-team.com May 25, 1999 104

K-systermn

All information in this document
is preliminary and subject to change

ser_config(baudrate)

Set-up the baudrate.

This system call allows to change the baudrate of the serial SCI channel; eight possibilities are availa-
ble. An error is returned if the baudrate does not exist.

Input (stacking order):

baudrate ©->9600 B.
1->600 B.
2->1200 B.
3->4800 B.
4->9600 B.
5->19200 B.
6->38400 B.
7->57600 B.
8->115200 B.
9->230400 B.

Output:

Do (4] oK.

DO -1 The baudrate does not exist.

Call examples in assembler and C:

push .32 {A6 }+baudrate ; baudrate

CALL_BIOS ser_config,l ; execute the function
test.32 Do ;

jump,mi R8”~Error ; the baudrate does not exist
int32 status;

uint32 baudrate;

status = ser_config(baudrate);
if (status < @) return -1;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 105

K-systermn

All information in this document
is preliminary and subject to change

ser_send_buffer(buffer, size)

Send one buffer by the serial SCI channel.

This system call sends one buffer of less that 500 bytes by the serial SCI channel. It is under the control
of the Tx interruption. An error is returned (if any).

Input (stacking order):

size Size of the buffer to send.
buf fer Pointer on the buffer.
Output:

Do (%] oK.

Do -1 Channel busy.

Do -2 Size of the buffer excessive.
Do -3 Size of the buffer = @.

Call examples in assembler and C:

push .32 {A6}+size ; size of the buffer to send

push .32 #{A6 }+buf fer ; pointer on the buffer
CALL_BIOS ser_send_buffer,2 ; execute the function
test.32 Do ;

jump,mi R8”Error ;5 channel error

int32 status;

uints *buffer;

uint32 size;

status = ser_send_buffer(buffer, size);

if (status < @) return status;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 106

K-systermn

All information in this document
is preliminary and subject to change

ser_receive_byte()

Receive one byte by the serial SCI channel.

This system call looks for the reception buffer of the serial SCI channel if one byte is available. This
system call is under control of the Rx interruption.

Input (stacking order):

Output:
Do +16 ' 800BBBNN nn = byte.
Do -1 Buffer empty.

Call examples in assembler and C:

CALL_BIOS ser_receive_byte,@ ; execute the function

test.32 Do 5

jump,mi R8”~Error sy channel error
move .8 D@, {A6}+aByte ; a character
int32 status;

uints aByte;

status = ser_receive_byte();
if (status < @) return -1;

aByte = (uint8)status;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 107

K-system |

All information in this document
is preliminary and subject to change

ser_tx_status()

Get the status of the serial SCI channel transmitter.

This system call looks for the status of the serial SCI channel transmitter.

Input (stacking order):

Output:
Do 5} Buffer empty.
Do -1 Buffer not empty.

Call examples in assembler and C:

K-Team

CALL_BIOS ser_tx_status,@ ; execute the function

test.32 Do ;
jump,mi R8”~Error ; buffer not empty
int32 status;

status = ser_tx_channel O);

if (status < @) return -1;

http://www.k-team.com info@k-team.com May 25, 1999

108

K-systermn

All information in this document
is preliminary and subject to change

ser_rx_status()

Get the status of the serial SCI channel receiver.

This system call looks for the status of the serial SCI channel receiver.

Input (stacking order):

Output:
Do 5} Buffer empty.
Do -1 Buffer not empty.

Call examples in assembler and C:

CALL_BIOS ser_rx_status,@ ; execute the function
test.32 De ;

jump,mi R8”Error ; buffer not empty
int32 status;

status = ser_rx_channel O);

if (status < @) return -1;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 109

K-systermn

All information in this document
is preliminary and subject to change

VAR Rev. 2.00

K-Team
http://www.k-team.com
info@k-team.com

UAR

UAR manager (misc. and interruption

Family ID: °‘BIOS’

Table of content

var_reset()
var_get_jumper() . .
var_on_led(ledNb) . .
var_off_led(ledNb) .
var_change_led(1edNb)
var_set_irq—vector (procedure)
var_enable_irq(>
var_disable_irq(>

var_set_exception_vector(procedure, exceptionNb)

var_cpu—_speed(CPUSpeedValue) .
var_get_extension(address) . .

manager)

var_put_extension(address, binaryValue)

K-Team http://www.k-team.com

info@k-team.com

May 25, 1999

. 112
. 113
. 114
. 115
. 116
. 117
. 118
. 119
. 126
. 121
. 122
. 123

110

K-system |

All information in this document
is preliminary and subject to change

Generalities

This module manages different low level resources such as jumper reading, LEDs control and the user
external interruption. The parallel extension bus of the system is also under the control of this module.

1

LedO0 Led1l Led?2 selector

Figure 7: LED and jumper definitions

K-Team http://www.k-team.com info@k-team.com May 25, 1999 111

K-system |

All information in this document
is preliminary and subject to change

var_reset()

Init of the resources of the manager.

This system call inits the manager.

Input (stacking order):

Output:

Call examples in assembler and C:

CALL_BIOS wvar_reset,® ; execute the function

var_reset();

K-Team http://www.k-team.com info@k-team.com May 25, 1999 112

K-system |

All information in this document
is preliminary and subject to change

var_get_jumper ()

Get the value of the selector.

This system call returns the state values of the selector of the main board.

Input (stacking order):

Output:

Do jumperValue State of the jumpers.

Call examples in assembler and C:

CALL_BIOS wvar_get_jumper,0
move .32 D@, {A6}+jumperValue

uint32 jumperValue;

jumperValue = var_get_jumper();

K-Team http://www.k-team.com info@k-team.com

s Jjumper value

; execute the function

May 25, 1999

113

K-systermn

All information in this document
is preliminary and subject to change

var—_on_led(1edNb)

Turn on one LED.

This system call turns on a selected LED. An error is returned if the LED does not exist.

Input (stacking order):

ledNb Number of the LED.
Output:

Do (%] oK.

Do -1 The LED does not exist.

Call examples in assembler and C:

push .32 {A6 }+1edNb ;

CALL_BIOS wvar_on_led, 1l ; execute the function
test.32 Do ;

jump,mi R8”~Error ; the LED does not exist
int32 status;

uint32 1edNb;

status = var_on_led(ledNb);

if (status < @) return -1;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 114

K-systermn

All information in this document
is preliminary and subject to change

var_off_led(1edNb)

Turn off one LED.

This system call turns off a selected LED. An error is returned if the LED does not exist.

Input (stacking order):

ledNb Number of the LED.
Output:

Do (%] oK.

Do -1 The LED does not exist.

Call examples in assembler and C:

push .32 {A6}+1edNb H

CALL_BIOS var_off_led, 1 ; execute the function
test.32 De ;

jump,mi R8”Error ; the LED does not exist
int32 status;

uint32 TedNb;

status = var_off_led(ledNb);
if (status < @) return -1;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 115

K-systermn

All information in this document
is preliminary and subject to change

var_change_led(1edNb)

Change the state of one LED.

This system call toggles the state of one selected LED. An error is returned if the LED does nat exist.

Input (stacking order):

ledNb Number of the LED.
Output:

Do (%] oK.

Do -1 The LED does not exist.

Call examples in assembler and C:

push .32 {A6 }+1edNb ;

CALL_BIOS wvar_change_led, 1 ; execute the function
test.32 Do ;

jump,mi R8”~Error ; the LED does not exist
int32 status;

uint32 1edNb;

status = var_change_led(ledNb);

if (status < @) return -1;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 116

K-systermn

All information in this document
is preliminary and subject to change

var_set_irq—vector (procedure)

Attribute one procedure to the user interruption.

This system call initialises the user interruption vector with the address of one procedure. The return
code of the procedure has to beras” and not &RTSF”.

Input (stacking order):

procedure Pointer on the procedure.

Output:

Call examples in assembler and C:

push .32 #R 16”procedure ;

CALL_BIOS wvar_set_irq_vector,1 ; execute the function

void procedure(void)

var_set_irq_vector(procedure);

K-Team http://www.k-team.com info@k-team.com May 25, 1999 117

K-system |

All information in this document
is preliminary and subject to change

var_enable_irq()

Enable the user interruption.

This system call enables the user interruption.

Input (stacking order):

Output:

Call examples in assembler and C:

CALL_BIOS wvar_enable_irq,® ; execute the function

var_enable_irqQ);

K-Team http://www.k-team.com info@k-team.com May 25, 1999 118

K-system |

All information in this document
is preliminary and subject to change

var_disable_irqQO

Disable the user interruption.

This system call disables the user interruption.

Input (stacking order):

Output:

Call examples in assembler and C:

CALL_BIOS wvar_disable_irq,@ ; execute the function

var_disable_irqQ;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 119

K-systermn

All information in this document
is preliminary and subject to change

var_set_exception_vector(procedure, exceptionNb)

Attribute one procedure to an exception vector number.

This system call initialises an exception vector number with the address of one procedure. The return
code of the procedure has to4sFsrF”. An error is returned if the exception does not exist.

Input (stacking order):

exeptionNb Number of the exception.
procedure Pointer on the procedure.
Output:

Do (%] oK

Do -1 The exception does not exist

Call examples in assembler and C:

push .32 {A6 }+exceptionNb ; exception number
push .32 #R 16”procedure ;
CALL_BIOS wvar_set_exception,2 ; execute the function
test.32 Do 5
jump,mi R8”~Error ; the exception does not exist
void procedure(void)
{
}
int32 status;
uint32 exceptionNb;

status = var_set_exception(procedure, exceptionNb);

if (status < @) return -1;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 120

K-systermn

All information in this document
is preliminary and subject to change

var _cpu_speed(CPUSpeedValue)

Change the speed of the CPU. !!! Avoid using this system call!!!

This system call changes the speed of the CPU. It has to be used very carefully; in fact, there are other
devices which are influenced when the speed is changed (serial baudrate in particular). An error is re-
turned if the speed does not exist.

Input (stacking order):

CPUSpeedValue Speed number.
@ = 16,78 MHz.
1 = 8.38 MHz.
Output:
Do (] oK.
Do -1 The speed does not exist.

Call examples in assembler and C:

push .32 {A6 }+CPUSpeedValue s the speed value

CALL_BIOS wvar_cpu_speed, 1 ; execute the function
test.32 Do ;

jump,mi R8”~Error ; the speed does not exist
int32 status;

uint32 CPUSpeedValue;

status = var_cpu_speed(CPUSpeedValue);
if (status < @) return -1;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 121

K-systermn

All information in this document
is preliminary and subject to change

var_get_extension(address)

Read on the extension bus.

This system call allows to read the extension bus of the system. The address is relative to the beginning
of the memory-space [0..63].

Input (stacking order):

address Relative address [0..631].
Output:
binaryValue 0x00v0BrBbb .

Call examples in assembler and C:

push .32 {A6 }+address ;

CALL_BIOS wvar_get_extension,1 ; execute the function
move .8 {A6 }+binaryValue ; the value

#define ioport[10] = Bx10

uint32 binaryValue, *address;

address = (Uint32 *)ioport;

binaryValue = var_get_extension(address);

K-Team http://www.k-team.com info@k-team.com May 25, 1999 122

K-systermn

All information in this document
is preliminary and subject to change

var_put_extension(address, binaryValue)

Write on the extension bus.

This system call allows to write values on the extension bus of the system. The address is relative to
the beginning of the memory-space [0..63].

Input (stacking order):

binaryValue 0x00808vBbb .
address Relative address [0..631].
Output:

Call examples in assembler and C:

push .32 {A6 }+binaryValue ; the value

push .32 {A6 }+address ;

CALL_BIOS wvar_put_extension,2 ; execute the function
#define ioportl10]1 = Bx10

uint32 binaryValue, *address;

address = (int32 *)ioport;

var_put_extension(address, binaryValue);

K-Team http://www.k-team.com info@k-team.com May 25, 1999 123

K-systermn

All information in this document
is preliminary and subject to change

uIo Rev. 1.00

K-Team
http://www.k-team.com
info@k-team.com

UIO

UIO manager (general INPUT / OUTPUT manager)

Family ID: °‘BIOS’

Table of content

uioreset®d
uio_on_out(outNbr) .« .
uio_off_out(outNbr) . .
uio_change_out(outNbr>

U|o_get_|nputs() . e e

uio_set_msk_irq—inputsCinterrup thsk)

uio_ack_irg—inputs(ackMask) .
uio_get_status_irqg_inputs() .
uio_get_input_stateCinputNbr)

K-Team http://www.k-team.com

info@k-team.com

May 25, 1999

. 126
. 127
. 128
. 1209
. 136
. 131
. 132
. 133
. 134

124

K-system |

All information in this document
is preliminary and subject to change

Generalities

This module manages the digital I1/O port available on Koala. The analog channels are managed by the
SENS manager.: channel 0 on the I/O port correspond to channel 4 of the A/D converter.

Analog inputs
| Vref Reference voltage 4.096V
ANAS5 Analog channel

ANAO Analog channel 0
|| GNA Analog ground

] DIN11 Digital input 11

ioooooooooooo| |oooooood|

L IEDINO Digital input 0
Digital Inputs
Digital CMOS outputs

VCC +5V (2 outputs)
DCO3 CMOS output channel 3

P | m— =T
) i]
% — T
H 5
1 \\
i \
\

DCOO0 CMOS output channel 0
GND Digital ground (2 outputs)

BATT +12V battery voltage (2 outputs)
I?PO? Digital power output channel 7

—

If)POO Digital power output channel 0
GND Power ground (2 outputs)

I_Digital open collector outputs

|6ooooooooooo| |[ooooo000

Figure 8: General I/O port definitions

K-Team http://www.k-team.com info@k-team.com May 25, 1999 125

K-system |

All information in this document
is preliminary and subject to change

uio_reset()

Init of the resources of the manager.

This system call inits the manager.

Input (stacking order):

Output:

Call examples in assembler and C:

CALL_BIOS uio_reset,® ; execute the function

var_reset();

K-Team http://www.k-team.com info@k-team.com May 25, 1999 126

K-systermn

All information in this document
is preliminary and subject to change

uio_on_out(outNbr)

Set ON a digital output.

This system call switch ON a digital output. Outputs number 0 to 8 correspond to the 8 digital power
outputs. Outputs number 9 to 11 correspond to the 4 CMOS outputs.

Input (stacking order):

outNbr Output number

Output:

Do (4] oK.

Do -1 The output does not exist.

Call examples in assembler and C:

push .32 {A6 }+outNbr H

CALL_BIOS uio_on_out,1 ; execute the function
test.32 Do ;

jump,mi R8”Error ;5 the output does not exist
int32 status;

uint32 outNbr;

status = uio_on_outCoutNbr);

if (status < @) return -1;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 127

K-systermn

All information in this document
is preliminary and subject to change

uio_off_out(outNbr)

Set OFF a digital output.

This system call switch OFF a digital output. Outputs number 0 to 8 correspond to the 8 digital power
outputs. Outputs number 9 to 11 correspond to the 4 CMOS outputs.

Input (stacking order):

outNbr Output number

Output:

Do (4] oK.

Do -1 The output does not exist.

Call examples in assembler and C:

push .32 {A6 }+outNbr H

CALL_BIOS uio_off_out, 1 ; execute the function
test.32 Do ;

jump,mi R8”Error ;5 the output does not exist
int32 status;

uint32 outNbr;

status = uvio_off_out(outNbr);

if (status < @) return -1;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 128

K-systermn

All information in this document
is preliminary and subject to change

uio_change_out(outNbr)

Change the state of a digital output.

This system call changes the state of a digital output. Outputs number O to 8 correspond to the 8 digital
power outputs. Outputs number 9 to 11 correspond to the 4 CMOS outputs.

Input (stacking order):

outNbr Output number

Output:

Do (4] oK.

Do -1 The output does not exist.

Call examples in assembler and C:

push .32 {A6 }+outNbr H

CALL_BIOS uio_change_out, 1 ; execute the function
test.32 Do ;

jump,mi R8”Error ;5 the output does not exist
int32 status;

uint32 outNbr;

status = uio_change_out(outNbr);

if (status < @) return -1;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 129

K-systermn

All information in this document
is preliminary and subject to change

uio—get_inputs()

Get the values of the digital inputs.

This system call returns the state values of the digital inputs. Bit 0 to 11 correspond to the state of inputs
Oto 11.

Input (stacking order):

Output:
Do inputsValue State of the digital inputs.

Call examples in assembler and C:

CALL_BIOS uio_get_inputs,® ; execute the function
move .32 D@, {A6}+inputsValue ; general input value
uint32 inputsValue;

inputsVUalue = uio_get_inputsQ;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 130

K-systermn

All information in this document
is preliminary and subject to change

uio_set_msk_irq—inputsCinterruptMask)

Set the interrupt mask on the general input port.

This system call sets the mask which enable or disable general input to become interrupt request lines.
Bits 0 to 11 are the mask bits for inputs 0 to 11. Interrupt are generated if the bit is set to 1, are masked
if set to 0.

Input (stacking order):
interruptMask mask enabling/disabling the interrupt

Output:

Call examples in assembler and C:

push .32 {A6}+interruptMask H

CALL_BIOS uio_set_msk_irg—inputs,1 ; execute the function
uint32 interruptMask;

uio_set_msk_irq_inputs(interruptMask);

K-Team http://www.k-team.com info@k-team.com May 25, 1999 131

K-systermn

All information in this document
is preliminary and subject to change

uio_ack_irq—inputs(ackMask)

Acknowledge the interrupt on the general input port.

This system call acknowledge one or more interrupts coming from the general input lines. Bits 0 to 11
are the acknowledge bits for inputs 0 to 11. Writing a O to a bit acknowledge the corresponding inter-
rupt and clear it.

Input (stacking order):
ackMask acknowledge mask clearing the interrupt

Output:

Call examples in assembler and C:

push .32 {A6 }+ackMask H

CALL_BIOS uio_ack_irg—inputs, 1 ; execute the function
uint32 ackMask

uio_ack_irq—inputs(ackMask);

K-Team http://www.k-team.com info@k-team.com May 25, 1999 132

K-systermn

All information in this document
is preliminary and subject to change

uio—get_status_irq_inputs(

Get the status of the interrupt inputs.

This system call returns the state values of the interrupts corresponding to the general inputs. Bit O to
11 correspond to the state of inputs 0 to 11.

Input (stacking order):

Output:
Do interruptValue State of the interrupts.

Call examples in assembler and C:

CALL_BIOS uio_get_status_irq—inputs,@ ; execute the function

move .32 D@, {A6}+interruptValue ; general input value
uint32 interruptValue;

interruptValue = uio_get_status_irq_inputsQ;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 133

K-systermn

All information in this document
is preliminary and subject to change

uio_get_input_stateCinputNbr)

Get the value of one digital input.

This system call returns the state values of one digital input.

Input (stacking order):

i nputNbr input number

Output:

Do state oK.

Do -1 The input does not exist.

Call examples in assembler and C:

push .32 {A6 }+inputNbr ;

CALL_BIOS uio_get_input_state, 1; execute the function
test.32 Do ;

jump,mi R8”~Error ; the input does not exist
int32 status;

uint32 inputNbr;

status = uvio_get_input_stateCinputNbr);
if (status < @)

return -1;
else

return status;

K-Team http://www.k-team.com info@k-team.com May 25, 1999

134

K-systermn

All information in this document
is preliminary and subject to change

CTR Rev. 1.00

K-Team
http://www.k-team.com
info@k-team.com

CTR

CTR manager (control signals manager)

Family ID: °‘BIOS’

Table of content

ctrreset() . . . L L 0 0 e e e e e e e d e e e e e e e e . L 137
ctr_get_ana_value(ctrChannel> « . .« « .+ . « . .138
ctr_reserve_channel ¢ ¢ ¢« ¢ ¢ ¢ ¢ ¢« ¢« « « « .+ 139
ctrrelease_channel) ¢« ¢« ¢ ¢ ¢ ¢ ¢« ¢ ¢ ¢« ¢« « « « o140
ctr_get_eeprom(address) . . . ¢« ¢« ¢« ¢ ¢« ¢ ¢ « ¢+ e o .« . . 141
ctr_put_eeprom(address, binargValue)142

K-Team http://www.k-team.com info@k-team.com May 25, 1999 135

K-systermn

All information in this document
is preliminary and subject to change

Generalities
This module manages the control signals for the Koala robot, including the general power consump-

tion, the motor power consumption and the management of specific devices related to this (battery eep-
rom, for instance).

K-Team http://www.k-team.com info@k-team.com May 25, 1999 136

K-system |

All information in this document
is preliminary and subject to change

ctr_reset()

Init of the resources of the manager.

This system call inits the manager.

Input (stacking order):

Output:

Call examples in assembler and C:

CALL_BIOS ctr_reset,® ; execute the function

ctr_resetQ;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 137

K-systermn

All information in this document
is preliminary and subject to change

ctr_get_ana_value(ctrChannel)

Get the value of a CTR analog channel.

This system call returns the value of the analog channel selected. An error is returned if the input does
not exist. Six channels are used:

0: Battery voltage (measure unit: 20 mV).

General consumption current (measure unit: 8 mA).
Ambient temperature (measure unit: 0.1° C).

Left motor current (measure unit: 4 mA).

Right motor current (measure unit: 4 mA).

Battery temerature (measure unit: 0.1° C).

Input (stacking order):

ctrChannel Number of the analog CTR channel I[@..5]1.
Output:

Do analogValue Analog value.

Do -1 The input does not exist.

Call examples in assembler and C:

push .32 {A6 }+ctrChannel ; number of the input

CALL_BIOS sens_get_ana_value, 1l ; execute the function
test.32 Do ;

jump,mi R8”Error ; the input does not exist
move .32 D@, {A6}+analogValue ; analog value

int32 status;

uint32 analogValue, ctrChannel;

status = sens_get_ana_value(ctrChannel);
if (status < @) return -1;

analogValue = (Uint32)status;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 138

K-systermn

All information in this document
is preliminary and subject to change

ctr_reserve_channel ()

Reserve the battery EEPROM channel.

This system call reserves the channel for a transaction with the EEPROM of the battery. The EEPROM
channel is a critical resource which can be shared with other tasks. An error is returned if the channel
is busy.

Input (stacking order):

Output:
Do (%] Channel reserved and ready to operate.
Do -1 Channel busy.

Call examples in assembler and C:

CALL_BIOS ctr_reserve_channel,® ; execute the function
test.32 Do ;

jump,mi R8”Error s wait ...

int32 status;

status = ctr_reserve_channel ();
if (status < @) return -1;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 139

K-system |

All information in this document
is preliminary and subject to change

ctr_release_channel ()

Release the battery EEPROM channel.

This system call releases the EEPROM channel. The other tasks can now use this channel.

Input (stacking order):

Output:

Call examples in assembler and C:

CALL_BIOS ctr_release_channel,® ; execute the function

ctr_release_channel O);

K-Team http://www.k-team.com info@k-team.com May 25, 1999 140

K-systermn

All information in this document
is preliminary and subject to change

ctr_get_eeprom(address)

Read a 16 bit word on the battery EEPROM.

This system call allows to read the battery EEPROM. The address is relative to the beginning of the
memory-space.

Input (stacking order):

address Relative address.
Output:
binaryValue 0x00vebbbb .

Call examples in assembler and C:

push .32 {A6 }+address ;

CALL_BIOS ctr_get_eeprom,1 ; execute the function
move .8 {A6 }+binaryValue ; the value

#define ioport[10] = Bx10

uint32 binaryValue, *address;

address = (Uint32 *)ioport;

binaryValue = ctr_get_eeprom(address);

K-Team http://www.k-team.com info@k-team.com May 25, 1999 141

K-systermn

All information in this document
is preliminary and subject to change

ctr_put_eeprom(address, binaryValue)

Hrite a 16 bit word on the battery EEPROM.

This system call allows to write values on the battery EEPROM. The address is relative to the| begin-
ning of the memory-space.

Input (stacking order):

binaryValue 0x00vebbbb .
address Relative address.
Output:

Call examples in assembler and C:

push .32 {A6 }+binaryValue ; the value

push .32 {A6 }+address ;
CALL_BIOS ctr_put_eeprom,2 ; execute the function
uint32 binaryValue, *address;

ctr_put_eeprom(address, binaryValue);

K-Team http://www.k-team.com info@k-team.com May 25, 1999 142

K-systermn

All information in this document
is preliminary and subject to change

STR Rev. 1.00

K-Team
http://www.k-team.com
info@k-team.com

STR

STR manager (string and ascii conversion manager)

Family ID: °‘BIOS’

Table of content

strreset() . . . L 0 0 0 0 e e e e e d d e e e e e e e e . 145
str_cnut_dascii_bin32(binary, ascii, paramiNb)146
str_cnut_dascii_bin8(binary, ascii, paramNb) e 1 4
str_cnut_bin32_dascii(ascii, binary, paramNb)148
str_cnut_bin8_dascii(ascii, binary, paramNb) e+ e« + « o . o140
str_get_size_asciifascii) . « ¢« ¢« ¢« ¢ ¢« ¢ ¢ ¢ ¢ o« o+« . . 100
str_skip—parm_protocol(ascii, paramNb) e+ e s e e s « o . o151
str_cnvt_uvbin_dascii(ascii, binargValue)152
str_skip—parm(ascii, paramiNb> < . . « + .« « . 133
str_cnvt_uvbin-hascii(ascii, binargVglued154
str_cnut_hascii_bin32(binary, ascii, paramib)155
str_cnut_hascii_bin8(binary, ascii, paramNb) e e e e . o . 156
str_cnut_bin32_hasciilascii, binary, parampNb)157
str_cnut_bin8_hascii(ascii, binary, paramNb) « + « + « « . o158

K-Team http://www.k-team.com info@k-team.com May 25, 1999 143

K-systermn

All information in this document
is preliminary and subject to change

Generalities

This module operates particular string conversions which can be very useful when we have a connec-
tion with visualisation software tools. Formatted ASCII to binary as well as binary to ASCII conver-
sions are realised. Here are general ASCII and binary string formats:

ASCII:
(Sgn) Para. 1, (Sgn) Para. 2, (Sgn) Para. 3,\r\n\O

Ex.
-123, +4567, 234236, 0, -5\r\n\0

Binary:
OxPara. 1 OxPara. 2 OxPara. 3 OxPara. n

Ex.
0x1 0x3 -0x4 0x23

K-Team http://www.k-team.com info@k-team.com May 25, 1999 144

K-system |

All information in this document
is preliminary and subject to change

str_reset()

Init of the resources of the manager.

This system call inits the manager.

Input:

Output:

Call examples in assembler and C:

CALL_BIOS str_reset,® ; execute the function

str_reset(;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 145

K-systermn

All information in this document
is preliminary and subject to change

str_cnvt_dascii_bin32(binary, ascii, paramNb)

Conversion from an ASCII (decimal) formatted buffer to a 32-bit binary one.

This system call converts an ASCII (decimal representation) formatted buffer to a 32-bit binary one.
An error is returned if the buffer is inconsistent. Here is an example:

ASCIl in: 10, 1, 4, 4, 66\r\n\O
Parameter number: 3
Binary out: OxA, 0x1, Ox4

Input (stacking order):

paramNb Number of parameters.

asci i Pointer on the ASCII buffer.
binary Pointer on the binary buffer.
Output:

Do 0 Conversion OK.

Do -1 Format of the buffer inconsistent.

Call examples in assembler and C:

push .32 {A6 }+paramNb ; humber of parameters

push .32 #{A6 }+asci i ; pointer on an ASCII buffer
push .32 #{A6 }+binary ; pointer on a binary buffer
CALL_BIOS str_cnut_dascii_bin32,3 ; execute the function
test.32 De ;

jump,mi R8”~Error ; buffer format error

int32 status;

uint32 *binary, paramNb;

char *ascii;

status = str_convert_dascii_bin32(binary, ascii, paramhNb);

if (status < @) return -1;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 146

K-systermn

All information in this document
is preliminary and subject to change

str_cnvt_dascii_bin8(binary, ascii, paramNb)

Conversion from an ASCII (decimal) formatted buffer to an 8-bit binary one.

This system call converts an ASCII (decimal representation) formatted buffer to an 8-bit binary one.
An error is returned if the buffer is inconsistent. Here is an example:

ASCIl in: 10, 1, 4, 4, 66\r\n\O
Parameter number: 3
Binary out: 0x10, Ox1, Ox4

Input (stacking order):

paramNb Number of parameters.

asci i Pointer on the ASCII buffer.
binary Pointer on the binary buffer.
Output:

Do 0 Conversion OK.

Do -1 Format of the buffer inconsistent.

Call examples in assembler and C:

push .32 {A6 }+paramNb ; humber of parameters

push .32 #{A6 }+asci i ; pointer on an ASCII buffer
push .32 #{A6 }+binary ; pointer on a binary buffer
CALL_BIOS str_cnvt_dascii_bin8,3 ; execute the function
test.32 (]3] ;

jump,mi R8”Error ;y buffer format error

int32 status;

uints *binary;

char *gsci i,

uint32 paramNb;

status = str_cnut_dascii_bin8(binary, ascii, paramNb);

if (status < @) return -1;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 147

K-systermn

All information in this document
is preliminary and subject to change

str_cnvt_bin32_dascii(ascii, binary, paramNb)

Conversion from a 32-bit binary buffer to an ASCII (decimal) formatted one.

This system call converts a 32-bit binary buffer to an ASCII (decimal representation) formatted one.
Here is an example:

Binary in: OxA, 0x1, 0x4, 0x324, 0x345, 0x43
Parameter number: 3
ASCII out: 10, 1, 4\r\n\O

Input (stacking order):

paramNb Number of parameters.

binary Pointer on the binary buffer.
asci i Pointer on the ASCII buffer.
Output:

Call examples in assembler and C:

push .32 {A6 }+paramNb ; number of parameters

push .32 #{A6 }+binary ; pointer on a binary buffer
push .32 #{A6 }+asci i ; pointer on an ASCII buffer
CALL_BIOS str_cnvt_bin32_dascii,3 ; execute the function

char *gsci i,

uint32 *binary, paramNb;

str_convert_bin32_dascii(ascii, binary, paramNb);

K-Team http://www.k-team.com info@k-team.com May 25, 1999 148

K-systermn

All information in this document
is preliminary and subject to change

str_cnvt_bin8_dascii(ascii, binary, paramNb)

Conversion from an 8-bit binary buffer to an ASCII (decimal) formatted one.

This system call converts an 8-bit binary buffer to an ASCII (decimal representation) formatted one.
Here is an example:

Binary in: OxA, 0x1, 0x4, 0x24, 0x35, 0x43
Parameter number: 3
ASCII out: 10, 1, 4\r\n\O

Input (stacking order):

paramNb Number of parameters.

binary Pointer on the binary buffer.
asci i Pointer on the ASCII buffer.
Output:

Call examples in assembler and C:

push .32 {A6 }+paramNb ; number of parameters

push .32 #{A6 }+binary ; pointer on a binary buffer
push .32 #{A6 }+asci i ; pointer on an ASCII buffer
CALL_BIOS str_cnvt_bin8_dascii,3 ; execute the function

char *gsci i,

uints *binary;

uint32 paramNb;

str_cnvt_bin8_dascii(ascii, binary, paramNb);

K-Team http://www.k-team.com info@k-team.com May 25, 1999 149

K-systermn

All information in this document
is preliminary and subject to change

str_get_size_ascii(ascii)

Get the size of an ASCII buffer.

This system call returns the size of an ASCII buffer. The character \0’ is not counted.

Input (stacking order):

ascii Pointer on the ASCII buffer.
Output:
size Size of the buffer.

Call examples in assembler and C:

push .32 #{A6 }+asci i ; pointer on an ASCII buffer

CALL_BIOS str_get_size_ascii,l ; execute the function
move .32 Do, {A6}+size 3 the value

uint32 size;

char *gsci i,

size = str_get_size_ascii(ascii);

K-Team http://www.k-team.com info@k-team.com May 25, 1999 150

K-systermn

All information in this document
is preliminary and subject to change

str_skip—parm_protocol (ascii, paramNb)

Skip parameters (and their separators “,”) from an ASCII buffer.

This system call skips parameters from an ASCII buffer. The buffer is formatted as the standard pro-
tocol (Paral,Para2, ..). The parameter separator is also skipped. An error is returned if there are too
many parameters. Here is an example:

ASCIl in: 10, 23455, 4, 456, +23\r\n\O
Parameter number: 4
ASCII| out: +23\r\n\0

Input (stacking order):

paramNb Number of parameters.

ascii Pointer on the ASCII buffer.

Output:

ascii Pointer at the end of the ASCII buffer.
Do -1 Too many parameters.

Call examples in assembler and C:

push .32 {A6 }+paramNb ; humber of parameters

push .32 #{A6}+asci i ; pointer on an ASCII buffer
CALL_BIOS str_skip—parm_protocol,2 ; execute the function
test.32 Do ;

jump,mi R8”Error y too many parameters

int32 status;

char *gscii,

uint32 paramNb;

status = str_skip_parm_protocol(ascii, paramNb);

if (status < @) return -1;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 151

K-systermn

All information in this document
is preliminary and subject to change

str_cnvt_ubin_dascii(ascii, binaryValue)

Conversion of a single 32-bit value to an ASCII buffer (decimal mode).

This system call converts a single 32-bit value to a decimal ASCII buffer. Here is an example:

Binary value in: 0x10A34
ASCII out: 68148

Input (stacking order):

binaryValue Binary value.

asci i Pointer on the ASCII buffer.

Output:

asci i Pointer at the end of the ASCII buffer.

Call examples in assembler and C:

K-Team

push .32 {A6}+binaryValue ; binary value

push .32 #{A6 }+asci i ; pointer on an ASCII buffer
CALL_BIOS str_cnut_ubin_dascii,2 ; execute the function

char *ascii;

uint32 binaryValue;

ascii = str_cnvt_ubin_dascii(ascii, binaryValue);

http://www.k-team.com info@k-team.com May 25, 1999

152

K-systermn

All information in this document
is preliminary and subject to change

str_skip—parm(ascii, paramNb)

Skip parameters (and their separators “SP”) from an ASCII buffer.

This system call skips parameters from an ASCII buffer. The buffer is formatted as the standard pro-
tocol (Paral Para2 ..). The parameter separator is also skipped. An error is returned if there are too
many parameters. Here is an example:

ASCIl in: 10 23455 4 456 +23\r\n\0
Parameter number: 4
ASCII| out: +23\r\n\0

Input (stacking order):

paramNb Number of parameters.

ascii Pointer on the ASCII buffer.
Output:

Do (%] Skipping OK.

Do -1 Too many parameters.

Call examples in assembler and C:

push .32 {A6 }+paramNb 3 number of parameters

push .32 #{A6}+asci i ; pointer on an ASCII buffer
CALL_BIOS str_skip—parm,2 ; execute the function
test.32 Do ;

jump,mi R8”Error ;5 too many parameters

int32 status;

char *gscii,

uint32 paramNb;

status = str_skip_parm(ascii, paramNb);
if (status < @) return -1;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 153

K-systermn

All information in this document
is preliminary and subject to change

str_cnvt_ubin_hascii(ascii, binaryValue)

Conversion of a single 32-bit value to an ASCII buffer (hexadecimal mode).

This system call converts a single 32-bit value to an hexadecimal ASCII buffer. Here is an example:
Binary value in: 0x10A34
ASCII out: 10A34

Input (stacking order):

binaryValue Binary value.

asci i Pointer on the ASCII buffer.

Output:

asci i Pointer at the end of the ASCII buffer.

Call examples in assembler and C:

push .32 {A6}+binaryValue ; binary value

push .32 #{A6 }+asci i ; pointer on an ASCII buffer
CALL_BIOS str_cnut_uvbin_hascii,2 ; execute the function

char *ascii;

uint32 binaryValue;

ascii = str_cnvt_ubin_hascii(ascii, binaryValue);

K-Team http://www.k-team.com info@k-team.com May 25, 1999 154

K-systermn

All information in this document
is preliminary and subject to change

str_cnvt_hascii_bin32(binary, ascii, paramNb)

Conversion from an ASCII (hexadecimal) formatted buffer to a 32-bit binary one.

This system call converts an ASCII (hexadecimal representation) formatted buffer to a 32-bit binary
one. An error is returned if the buffer is inconsistent. Here is an example:

ASCIl in: 10, 1, 4, 4, 66\r\n\O
Parameter number: 3
Binary out: 0x10, Ox1, Ox4

Input (stacking order):

paramNb Number of parameters.

asci i Pointer on the ASCII buffer.
binary Pointer on the binary buffer.
Output:

Do 0 Conversion OK.

Do -1 Format of the buffer inconsistent.

Call examples in assembler and C:

push .32 {A6 }+paramNb ; humber of parameters

push .32 #{A6 }+asci i ; pointer on an ASCII buffer
push .32 #{A6 }+binary ; pointer on a binary buffer
CALL_BIOS str_cnut_hascii_bin32,3 ; execute the function
test.32 Do ;

jump,mi R8”~Error ; buffer format error

int32 status;

uint32 *binary, paramNb;

char *ascii;

status = str_convert_hascii_bin32(binary, ascii, paramhNb);

if (status < @) return -1;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 155

K-systermn

All information in this document
is preliminary and subject to change

str_cnvt_hascii_bin8(binary, ascii, paramNb)

Conversion from an ASCII (hexadecimal) formatted buffer to an 8-bit binary one.

This system call converts an ASCII (hexadecimal representation) formatted buffer to an 8-bit binary
one. An error is returned if the buffer is inconsistent. Here is an example:

ASCIl in: 10, 1, 4, 4, 66\r\n\O
Parameter number: 3
Binary out: 0x10, Ox1, Ox4

Input (stacking order):

paramNb Number of parameters.

asci i Pointer on the ASCII buffer.
binary Pointer on the binary buffer.
Output:

Do 0 Conversion OK.

Do -1 Format of the buffer inconsistent.

Call examples in assembler and C:

push .32 {A6 }+paramNb ; humber of parameters

push .32 #{A6 }+asci i ; pointer on an ASCII buffer
push .32 #{A6 }+binary ; pointer on a binary buffer
CALL_BIOS str_cnvt_hascii_bin8,3 ; execute the function
test.32 (]3] ;

jump,mi R8”Error ;y buffer format error

int32 status;

uints *binary;

char *gsci i,

uint32 paramNb;

status = str_cnut_hascii_bin8(binary, ascii, paramNb);

if (status < @) return -1;

K-Team http://www.k-team.com info@k-team.com May 25, 1999 156

K-systermn

All information in this document
is preliminary and subject to change

str_cnvt_bin32_hascii(ascii, binary, paramNb)

Conversion from a 32-bit binary buffer to an ASCII (hexadecimal) formatted one.

This system call converts a 32-bit binary buffer to an ASCII (hexadecimal representation) formatted
one. Here is an example:

Binary in: OxA, 0x1, 0x4, 0x324, 0x345, 0x43
Parameter number: 3
ASCII out: A, 1, 4\r\n\O

Input (stacking order):

paramNb Number of parameters.

binary Pointer on the binary buffer.
asci i Pointer on the ASCII buffer.
Output:

Call examples in assembler and C:

push .32 {A6 }+paramNb ; number of parameters

push .32 #{A6 }+binary ; pointer on a binary buffer
push .32 #{A6 }+asci i ; pointer on an ASCII buffer
CALL_BIOS str_cnvt_bin32_hascii,3 ; execute the function

char *gsci i,

uint32 *binary, paramNb;

str_convert_bin32_hascii(ascii, binary, paramNb);

K-Team http://www.k-team.com info@k-team.com May 25, 1999 157

K-systermn

All information in this document
is preliminary and subject to change

str_cnvt_bin8_hascii(ascii, binary, paramNb)

Conversion from an 8-bit binary buffer to an ASCII (hexadecimal) formatted one.

This system call converts an 8-bit binary buffer to an ASCII (hexadecimal representation) formatted
one. Here is an example:

Binary in: OxA, 0x1, 0x4, 0x24, 0x35, 0x43
Parameter number: 3
ASCII out: A, 1, 4\r\n\O

Input (stacking order):

paramNb Number of parameters.

binary Pointer on the binary buffer.
asci i Pointer on the ASCII buffer.
Output:

Call examples in assembler and C:

push .32 {A6 }+paramNb ; number of parameters

push .32 #{A6 }+binary ; pointer on a binary buffer
push .32 #{A6 }+asci i ; pointer on an ASCII buffer
CALL_BIOS str_cnvt_bin8_hascii,3 ; execute the function

char *gsci i,

uints *binary;

uint32 paramNb;

str_cnvt_bin8_hascii(ascii, binary, paramNb);

K-Team http://www.k-team.com info@k-team.com May 25, 1999 158

K-systermn

All information in this document
is preliminary and subject to change

References

[JDN86] "Common Assembly Language for Microprocessors", Jean-Daniel Nicoud and Patrick F&h, Swiss Federal
Institute of Technology (LAMI), December 1986.

[Mot89] "Central Processor Unit Reference Manual", Ref. CPU32RM/AD, Motorola INC., 1989.

[Mot91] "MC68331 User's Manual", Ref. MC68331UM/AD, Motorola INC., 1991.

[Mot92] "Programmer’s Reference Manual”, Ref. M6B000PM/AD Rev. 1, Motorola INC., 1992.

[Fra91l] "Systéme multiprocesseur pour la commande de robots", Report R91.50, Edoardo Franzi, Swiss| Federal

Institute of Technology (LAMI), August 1991.

K-Team http://www.k-team.com info@k-team.com May 25, 1999 159

	Table of content
	Koala BIOS 1.00 Reference Manual
	Rev. 1.00
	Abstract
	Preliminary
	At the end of this document some examples will be shown to make the work with Koala easy.
	BIOS organisation
	Basic managers
	General constraints
	Rules for building applications
	BIOS
	Table of content
	Generalities
	bios_reset()
	bios_get_ident()
	bios_get_rev()
	bios_get_system()
	bios_restart_system()
	COM
	Table of content
	Generalities
	Table 1: Redirection of the I/Os channels
	com_reset()
	com_reserve_channel()
	com_release_channel()
	com_send_buffer(buffer, size)
	com_receive_byte()
	com_get_status_channel()
	TIM
	Table of content
	tim_wait_sync(syncMask)
	tim_get_task_des_ptr()
	Generalities
	tim_reset()
	tim_new_inst_task(textId, stack, procedure)
	tim_remove_inst_task(id)
	tim_suspend_task(time)
	tim_generate_event()
	tim_wait_event(taskMask)
	tim_get_id()
	tim_get_ticcount()
	tim_run_kernel()
	tim_switch_fast()
	tim_lock()
	tim_unlock()
	tim_define_association(reference, general)
	tim_find_association(reference)
	tim_remove_association(reference)
	MOT
	Table of content
	Generalities
	The PID implementation
	The speed profile generator
	mot_reset()
	mot_config_speed_1m(motorNb, kp, ki, kd)
	mot_new_speed_1m(motorNb, speed)
	mot_get_position(motorNb)
	mot_get_speed(motorNb)
	mot_put_sensors_1m(motorNb, position)
	mot_stop()
	mot_new_position_1m(motorNb, position)
	mot_new_pwm_1m(motorNb, pwm)
	mot_new_speed_2m(speed1, speed0)
	mot_config_position_1m(motorNb, kp, ki, kd)
	mot_put_sensors_2m(position1, position0)
	mot_new_position_2m(position1, position0)
	mot_config_profil_1m(motorNb, maxSpeed, maxAcceleration)
	mot_get_status(motorNb)
	mot_new_pwm_2m(pwm1, pwm0)
	SENS
	Table of content
	sens_get_ana_value(inputNb)
	Generalities
	sens_reset()
	sens_get_reflected_value(sensorNb)
	sens_get_ambient_value(sensorNb)
	sens_get_pointer()
	MSG
	Table of content
	msg_snd_rec_message(msgS, sizeS, msgR, sizeR, rep)
	Generalities
	msg_reset()
	msg_reserve_channel(channelNb)
	msg_release_channel(channelNb)
	msg_send_message(mesgS, sizeS)
	msg_receive_message(mesgR, sizeR)
	MMA
	Table of content
	Generalities
	mma_reset()
	mma_reserve_channel_0()
	mma_reserve_channel_1()
	mma_reserve_channel_2()
	mma_release_channel_0()
	mma_release_channel_1()
	mma_release_channel_2()
	mma_send_buffer_0(buffer, size)
	mma_send_buffer_1(buffer, size)
	mma_send_buffer_2(buffer, size)
	mma_receive_byte_0()
	mma_receive_byte_1()
	mma_receive_byte_2()
	mma_tx_status_0()
	mma_tx_status_1()
	mma_tx_status_2()
	mma_rx_status_0()
	mma_rx_status_1()
	mma_rx_status_2()
	SER
	Table of content
	ser_rx_status()
	Generalities
	ser_reset()
	ser_reserve_channel()
	ser_release_channel()
	ser_config(baudrate)
	ser_send_buffer(buffer, size)
	ser_receive_byte()
	ser_tx_status()
	VAR
	Table of content
	var_put_extension(address, binaryValue)
	Generalities
	var_reset()
	var_get_jumper()
	var_on_led(ledNb)
	var_off_led(ledNb)
	var_change_led(ledNb)
	var_set_irq_vector(procedure)
	var_enable_irq()
	var_disable_irq()
	var_set_exception_vector(procedure, exceptionNb)
	var_cpu_speed(CPUSpeedValue)
	var_get_extension(address)
	UIO
	Table of content
	Generalities
	uio_reset()
	uio_on_out(outNbr)
	uio_off_out(outNbr)
	uio_change_out(outNbr)
	uio_get_inputs()
	uio_set_msk_irq_inputs(interruptMask)
	uio_ack_irq_inputs(ackMask)
	uio_get_status_irq_inputs()
	uio_get_input_state(inputNbr)
	CTR
	Table of content
	Generalities
	ctr_reset()
	ctr_get_ana_value(ctrChannel)
	ctr_reserve_channel()
	ctr_release_channel()
	ctr_get_eeprom(address)
	ctr_put_eeprom(address, binaryValue)
	STR
	Table of content
	str_cnvt_bin8_hascii(ascii, binary, paramNb)
	Generalities
	str_reset()
	str_cnvt_dascii_bin32(binary, ascii, paramNb)
	str_cnvt_dascii_bin8(binary, ascii, paramNb)
	str_cnvt_bin32_dascii(ascii, binary, paramNb)
	str_cnvt_bin8_dascii(ascii, binary, paramNb)
	str_get_size_ascii(ascii)
	str_skip_parm_protocol(ascii, paramNb)
	str_cnvt_vbin_dascii(ascii, binaryValue)
	str_skip_parm(ascii, paramNb)
	str_cnvt_vbin_hascii(ascii, binaryValue)
	str_cnvt_hascii_bin32(binary, ascii, paramNb)
	str_cnvt_hascii_bin8(binary, ascii, paramNb)
	str_cnvt_bin32_hascii(ascii, binary, paramNb)
	References

