IMPLEMENTATION OF IEEE 802.15.4 PROTOCOL STACK FQRNUX.

by

Sandeep Sirpatil

A thesis submitted to the faculty of
The University of North Carolina at Charlotte
in partial fulfilment of the requirements
for the degree of Master of Science in the
Department of Electrical and Computer Engineering

Charlotte

2006

Approved by:

Dr. James M. Conrad

Dr. Ivan L. Howitt

Dr. Bharat S. Joshi

© 2006
Sandeep Sirpatil
ALL RIGHTS RESERVED

ABSTRACT

SANDEEP SIRPATIL. Implementation of IEEE 802.15.4of@col Stack for Linux.
(Under the direction of DR. JAMES M. CONRAD)

The IEEE 802.15.4 is a new wireless standard inired for low power, low cost
wireless communication with moderate data rates. ilitended to be used in embedded
applications for home/office automation, industgahtrol and sensor networks. In such
applications there is generally a need for a masiatroller, which will be responsible
for data acquisition and communicate with othetesys. Linux is gaining popularity as
an embedded operating system. There are many rredugintrollers / data acquisition
systems that use Linux as the operating systemserlhbentrollers could potentially be
used as the master controller for the wireless otwThis thesis work implements a
subset features of IEEE 802.15.4 for Linux operptaystem and develop a modular
expandable Linux platform for IEEE 802.15.4 wiralesystems. The developed software
stack is easily portable to other hardware platfoand operating systems. The system is

intended to be useful on research of various aspgdEEE 802.15.4 standard.

ACKNOWLEDGEMENTS

| would like to express my sincere gratitude armhthmy advisor, Dr. James M.
Conrad for his constant encouragement, supporthasicoelief in me for successful
completion of this thesis work. His approach anddgoce to solve the problems |
encountered were of significant help. | would al$@nkful to Dr Ivan L. Howitt and Dr
Bharat Joshi for accepting to be committee meméedsfor their advice and support.

| would like to express my sincere appreciation #mghk my friends Gajendra
Singh, Gurudatt Mysore, Michael Thomas and manwrstfor their support throughout.
| also want to thank the open source developer camitsnfor their efforts and dedication

without which this work would not have been possibl

TABLE OF CONTENTS

LIST OF FIGURES. ...t n e e e ne e e e e eees Vil
LIST OF TABLE. ... e e e e e e e e nennn e e e eennes viii
LIST OF ABBREVIATIONS. ...t et IX
CHAPTERL1: INTRODUCGCTION ...t s e e e e 1
1.1 MOUVALION ... emmee et e e e e e e e e e 2
1.2 CUIMENEWOIK ...t e e e e e e e 3
1.3 Completed ThESIS WOTKcccevvueeees mmmmmmeseeaeeeeeeeaeeaaseseeesnssnnnnnnnnnnnnnnns 5
1.4 Organization Of THESIS........cciiiiiiiieeeeeeeeeerrr e e e e e 6
CHAPTERZ: INTRODUCTION TO IEEE 802.15.4eiieiiieeeeeee e 7
2.1 Network TOPOIOGIES. ...ccoi i e eeeee e st 8
2.2 ATCRITECIUNE. ... et e e e 9
2.3 PHY SPECIfICALIONuvuiiiiiiii i e e e e e e e e e e e e e e eennneeeeees 10
2.4 MAC sublayer SPeCIfICAtIONmmmeeeerrnnnnninieeeeeeeeeeersseeeeeernnnnnn.. 12
24.1 MAC frame fOrmMaLtoooouimiiii e 13
24.2 Superframe StIUCIUIEuueeii i eeeeeeeeee e e e e e e e e e e ennes 14
243 Data transfer Model...............oooi e 15
244 CSMA-CA MECNANISIMceiiiiiiiiiieee e 18
2.4.5 Y=o | |V 19
CHAPTERS: HARDWARE DESCRIPTIONoouiiiiiiiieeeee e 20
3.1 System ArChItECIUIE......coii i 20
3.2 CC2420 — RF TraNSCEIVETccoieivieiieeeeeeeieeee et 20

3.3 CC2420DBK — Demonstration Board Kit.......cceoveueeeoeeeioeeeeeeeeeeeeaeeee 23

Vi

3.3.1 AtMel ATMEQGAL28L OVEIVIEWun s eeseenaaaaeeeeeeeaeeeeeeeeeennennns 24
34 TS-T200 OVEIVIEW.....cciiiiieeeeeiiiiie e eeeeee e e e e e e e e e 25
CHAPTERA4: SOFTWARE DESCRIPTION ...cocuiiiiii e 27
4.1 SYSEEIM SEIUP ...ttt e ettt e e e e e e e e e nne s 27
4.2 Atmel Development ENVIFONMENT........ccooiiiiiiiiiiiie el 82
4.2.1 AVR STUIO. ...t a e e 28
4.2.2 WINAVR Lt eaa e e e e 29
4.3 LiNUX ENVIFONMENT ...t 29
43.1 (@470 11,7/ o PP 30
4.4 SEACK OVEIVIEWccoiiiiiiiiiiiie it eeeee sttt e e e e e e e e e e eeenn e 31
44.1 Linux - Media Access CONIol (MAC) ... oo 32
4.4.2 Linux — Serial Line Internet Protocol (SLIR)...........ccovviiiiiiiiiiiiiiieneenn. 33
4.4.3 LINUX — Serial POItcvuiiiiiiiis it 34
4.4.4 ATMEGAL28L — MAC ...t et n e 4.3
4.4.5 ATMEQAL28L — SLIP ..o e 35
4.4.6 ATmegal28L — Serial driVerooviiiieiiieee e 35
4.5 MAC COMMUNICALION. ...cittiiiiieeeeeiie s immmmm e e e e e e e e e e e e e 36
4.6 TN oI (o] g (=2] (] o [T 38
CHAPTERS: CONCLUSION ... 41
5.1 FULUIE WOTK .ottt e e e e e e e e e 42
REFERENGCES. ...ttt e e et e e e e e e e e e eaa e e e eeeees 43

APPENDIX: CODE......coiiiiiiiiii et a e e a e e e 46

FIGURE 2.1:

FIGURE 2.2:

FIGURE 2.3:

FIGURE 2.4:

FIGURE 2.5:

FIGURE 2.6:

FIGURE 2.7:

FIGURE 2.8:

FIGURE 2.9:

vii

LIST OF FIGURES

Star and peer-to-peer NetWOrks [4].......oovveeeeiiiiiiiiiiie e, 8
LR-WPAN device architeCture [1]...ccceeeeeeeeeeeeeeeeieiieeeeeeiiiiiiee e 10
The channel structure in IEEE 802.18]4..........ccovvvviiiiiiiiiiieeeeeeeee, 11
The PHY packet StruCture [4].....cccoeeeeieiiee e 12
The format of a genral MAC frame [4]occ......coooviiiiiiiieeecee e 13

A MAC superframe StrUCIUIE [4] ... eeeeeeeeeeeeiiiiiiiiiiiieaeeeeeeeeeaaeeeen. 15
Communication to a coordinator in admeeenabled network [1] 16

Communication to a coordinator in a beacon enabled network [1] ... 16

Communication from a coordinator inemton enabled network [1]....... 17

FIGURE 2.10: Communication from a coordinator incabeacon enabled network [1]18

FIGURE 3.1:

FIGURE 3.2:

FIGURE 3.3:

FIGURE 4.1:

FIGURE 4.2:

FIGURE 4.3:

FIGURE 4.4:

FIGURE 4.5:

FIGURE 4.6:

FIGURE 4.7:

CC2420 simplified block diagram [6].........cccovvrvreeiiiriiiiiiiieiieeeeeeeen, 22
CC2420DB OVEIVIEW [5]..ciiiieeeriieeeeeeeeeerrriiiniiaaseeeaeeeaaesereeeseesnneennns 23
TS-7200 Hardware Components [8]ccceeeeieeieeeeeieeeieeeeeeeiiiin 6.2
SEEUP OVEIVIEW ...ttt e e e e e e e e e e e e e e e aaaas 28
Software structure and data floOW ceeeee..ocevveeeeiiii 32
The structure of MAC packet.........coeuuiiiiiiiiiiiecceeeeeeeeev e 32

Packet Transmission MeChaniSM .. e e eeeeeeeeeeeeeeeeeeeieeeeeieannnnn. 30

Packet receiving meChaniSM ... i iiiiiiieeceerre e e 37
TESt Program MENU......c.uuiieiemmmeii e eeteeeeeiseeeaiaeeeeiaeeesa e sennnnaeees 39
A received frame by teSt Program aee.oooeeevvieciiiiiiee e 39

viii

LIST OF TABLE

TABLE 2.1: Frequency bands and data rates [L}eeeeee.oooeeeeeeeeiiiiiieeiiiiiiiiiiieee e 11

ADC

AES

ALU

API

ARM

CC2420DB

CPU

CRC

CSMA-CA

DHCP

DLL

DSSS

ext2

FCS

FFD

FIFO

GTS

HAL

IDE

IDE

IEEE

IF

LIST OF ABBREVIATIONS

Analog to Digital Converter
Advanced Encryption Standard
Arithmetic and Logic Unit

Application Program Interface
Advanced RISC Machine

CC2420 Development Board
Central Processing Unit

Cyclic Redundancy Check

Carrier Sense Multiple Access with Collisiévoidance
Dynamic Host Configuration Protocol
Dynamic Link Library

Direct Sequence Spread Spectrum
Extended File System

Frame Check Sequence

Full Function device

First In First Out

Guaranteed Time Slots
Hardware Abstraction Layer
Integrated Drive Electronics
Integrated Development Environment
Institute of Electrical and Electronics Erggns

Intermediate Frequency

1=

ISM
ITU-T
JTAG
LAN
LR-WPAN
MAC
MFR
MHR
MIPS
MMU
MPDU
NFS
OHCI
0-QPSK
PA
PAN
PC
PDA
PHY
POSIX
PPDU

PSDU

Internet Protocol

Industrial, Scientific, and Medical
Telecommunication Standardization Sector
Joint Test Action Group

Local Area Network

Low-Rate Wireless Personal Area Networks
Medium Access Control Layer

MAC Footer

MAC Header

Million Instructions Per Second
Memory Management Unit

MAC Protocol Data Unit

Network File System

Open Host Controller Interface

Offset Quadrature Phase Shift Keying
Power Amplifier

Personal Area Network

Personal Computer

Personal Digital Assistant

Physical Layer

Portable Operating System Interface
PHY Protocol Data Unit

PHY Service Data Unit

PWM Pulse Width Modulation

RAM Random Access Memory

RF Radio Frequency

RFD Reduced Function Device

RISC Reduced Instruction Set Computer
RSSI Received Signal Strength Indication
RTC Real Time Counter

RXFIFO Receive First In First Out
SAP Service Access Points
SBC Single Board Computer

SDRAM Synchronous Dynamic RAM

SFD Start of Frame Delimiter

SLIP Serial Line IP

SPI Serial Peripheral Interface
SRAM Static Random Access Memory
SSH Secure Shell

TXFIFO Transmit First In First Out

UART Universal Asynchronous Receiver/Transmitter
USART Universal Synchronous Receiver Transmitter
USB Universal Serial Bus

WPAN Wireless Personal Area Network

CHAPTER1: INTRODUCTION

There has been tremendous growth in the field ofless communication during
the last decade. The wide acceptance of 802.1#atds for wireless local area network
(WLAN) and cellular phone networks have proved tloat cost wireless solutions are
feasible and acceptable. There are many applicatiwat require low cost, low data rate,
low power and inexpensive solution to network withi small area thus requiring a low
rate wireless personal area network (LR-WPAN). €here many proprietary solutions
that address these needs, but they are expenside imcompatible between
manufacturersThe IEEE 802.15.4 is a new standard for LR-WPANvjatimg a low cost
and less complicated solution. The expected appmites are home/office automation,
industrial sensors and control, distributed semsiworks and environment monitoring
[2].

The silicon implementation of the standard is irengive when compared to
other proprietary solutions, as the standard is @&l available to everyone. As a result
the chip making companies compete to develop &ibetoduct at a lower cost. The cost
of a wireless node is an important factor as sop@i@ations require large number of
nodes.

The ZigBee alliance, an association of companiegkiwg together to develop
ZigBee standard based products for monitoring ammtrol, has led to the increased

adoption of the IEEE 802.15.4 standard. The Zigaadard defines upper layer that are

built on the IEEE 802.15.4 standard. The aim ofZigBee alliance is to replace every
switchbox, electrical outlet and various sensorsaibuilding by wireless nodes that
communicate with each other even though manufatttoyedifferent manufacturers. This
standard is being widely adopted by the industny e numbers of products based on
the standard are increasing exponentially. The ZeBlliance is forecasting that in the
next four to five years time, there could be 50B&g devices per home and eventually as

many as 150 [15].

1.1 Motivation

The IEEE 802.15.4 is a relatively new standard g attracts new research on
its various aspects. Many universities are condgctesearch on the use of different
routing protocols, efficient energy use and coexisé issues of IEEE 802.15.4 with
other wireless technologies. The vast majorityapplications will require the use of
embedded devices. The embedded devices used IBER802.15.4 wireless nodes can
range from a small battery-powered sensor to aelaygntral controller with large
processing power and data storage ability. Theraenontroller can also provide user
interface, connect with other wired/wireless netkgoand control other devices. These
central controllers require an embedded operatstem for their operation as they have
to perform a variety of functions.

Linux is an open-source UNIX like kernel that canfleely distributed under the
terms of GNU General Public License (GPL). Linuxswspecifically developed as an
operating system for server/desktop environmentredtly there is a lot of interest
among the open source community to customize Lfouembedded applications. Linux

is growing as an embedded operating system of elmcause of its advantages such as,

no licensing fees, scalability, reliability, a largrogrammer base and community support
[12]. According to a survey conducted by Venturev@®epment Corporation, a
technology research and marketing firm, Linux ownlee highest percentage of new
embedded-development projects of any operatingsy§i 3]. Linux is used in industrial
controllers, network routers, commercial deviced home entertainment systems. These
devices are expected to include IEEE 802.15.4 essefunctionality in the near future.
There are many commercial implementations of IEEE.15.4 and ZigBee
stack. There are also a few community projects mgrkn implementing an open source
version of the IEEE 802.15.4 stack. The currentuses of these projects indicate that
development has almost come to a stop [25, 26,T2.lack of a working open source
implementation of the standard was a big motivafiactor to develop one and also

develop the setup as an embedded Linux wirelessla@wient platform.

1.2 Current Work

There are currently numerous research projectsumed in various aspects of
IEEE 802.15.4 standard. A paper titled “On the oStEEE 802.15.4 to enable wireless
sensor networks in building automation” [2] prowdan insight into the application of
the standard and its effects on building mainteeamenergy consumption, safety and
security. An article “Home networking with ZigBe¢28] presents the comparison of
Bluetooth, ZigBee, 802.11 and other proprietaryusohs and shows that ZigBee will
succeed where others failed in home networking.

The results of the work presented in a paper tittgaexistence of IEEE 802.15.4
with other Systems in the 2.4 GHz —ISM —-Band” [Bpw that IEEE 802.15.4 can co

exist with other networks , is robust and relialdeen in the presence of some

interference. Another paper titled “An Experimesrt Performance Study of IEEE
802.15.4 Wireless Networks” [11] presents the itssaf an experiment conducted to
evaluate the performance of various features sscliieect and indirect transmissions,
CSMA-CA mechanism, data payload size and beacorblethamode. The data
throughput, delivery ratio and received signalrgjte were investigated as performance
metrics. The results show that non beacon netwak better raw data rates and
utilization ratio as compared to beacon enabled/owds.

The hardware board developed by Mr. Assad [29] ansinexpensive IEEE
802.15.4 evaluation board. Mr. Rai [30] used tlisip in evaluating energy consumption
in IEEE 802.15.4 communication. Their work very gfal as it is very important to
determine energy consumption of wireless nodebe&sdre expected to operate for long
time on small batteries.

A paper titled “Embedded Linux Outlook in PostP@lustry” [14] presents an
analysis of embedded Linux in the industry, howcampares to other commercial
embedded OS. The paper concludes with a forecagtomth of industry adoption of
Linux and proposes standardization measures taiaustie growth. Linux is inherently a
non real-time OS; there have been many effortsdtb raal-time functionality to Linux
kernel. A paper titled “A Measurement-Based Anaysf the Responsiveness of the
Linux Kernel” [31] presents experiments conductedvarious non preemptible sections
of the kernel code and quantified its effects owrimupt latency. The results show the
user-space task do not influence the kernel's mespdime to external interrupts. In

general, many of the net applications, network cedrivers, several file systems even

under heavy fragmentation, do not represent saofrceresponsiveness and thus, Linux
can safely adopted in soft real time systems.

With kernel version 2.6.18, basic real-time supp®mow available in the main
kernel source and thus improves the real time pmadoce. With the growing

advancements in Linux, it is projected to contirtagrowth as an embedded OS.

1.3 Completed Thesis work

The work started with an investigation of IEEE &8®4. It is gaining wide
support from industry for its adoption and attragtnew research in various aspects of it.
Further investigation found no open source workimglementation of IEEE 802.15.4
for Linux. With Linux gaining foothold in embeddemperating systems mainly for it
being open source and the number of devices usmgxlis increasing everyday. Many
of these devices will need to add IEEE 802.15.4tionality to them and the current

work is expected to be helpful in this regard.

Many single board computers were considered anduaea for their
performance, features, price and software suppo8BC with inadequate support from
the manufacturer in the form of device drivers netmpatches and operating system will
require enormous individual effort. TS-7200 SBC vemdected for its features, good
support by the manufacturer and huge user commuiitg TS 7200 manufacturer
supports Debian distribution, it is well recognifedits stability and component package
management, it also has a large advanced user comyridebian version 3.0 (‘woody’)

was installed on a 512MB compact flash and TS-72@eédBoot boot loader was

configured accordingly. Debian hosts developmentlstofor large number of

programming languages this adds to the adaptabilitiye setup to any system.

The CC2420DBK was selected to be used as |IEEE B@Rfar its features and
availability of development tools for it in the labhe possible ways to interface CC2420
to the TS-7200 were (set of designs of system wevaJuated for their flexibility,
modularity and complexity, and the system was aegigo have a good balance of these

attributes.

A subset of IEEE 802.15.4 protocol was implemenfed Linux in C
programming language. A test program was develtpede the stack and communicate
with another IEEE 802.15.4 device. The setup isetiped as an embedded wireless
Linux platform.

The contribution of the work is to provide an omource GPL licensed IEEE
802.15.4 protocol stack and publish a paper onuibwk. The work also provides a test

setup to evaluate standard on Linux operating Byste

1.4 Organization of Thesis

The thesis report is divided into five chaptersafter 2 introduces the IEEE
802.15.4 protocol. It discusses various featuregwaork topologies, communication
mechanisms and layer of the protocol. Chapter 8ritess the hardware setup and the
features of the individual components. Chaptertbduces the software component. It
describes the software development environmentLihex environment, the software
stack developed and testing. Chapter 5 detaildtsesnd conclusions and suggests future

work.

CHAPTERZ2: INTRODUCTION TO IEEE 802.15.4

The IEEE 802.15 defines the Wireless Personal Atetwork (WPAN). The
Task Group 4 is working on defining a standardlfov rate WPAN (LR-WPAN). The
standard defines the physical (PHY) and medium sacceontrol (MAC) layer
specifications.

The devices that take part in a LR-WPAN can beeeithreduced function device
(RFD) or full function device (FFD). The FFD carkéaone of the three roles, a personal
area network (PAN) coordinator, a coordinator ateaxice. An FFD can communicate
with other FFDs or RFDs, while an RFD can commuei@aly with an FFD. An RFD is
intended for simple devices in the network, such aght switch; which does not operate
continuously or send large data and generally &s®sscwith a single FFD. Therefore an
RFD can be implemented with very minimum resourée$VPAN consists of two or
more devices within radio reach communicating angAme physical channel. A WPAN

shall include at least one FFD operating as the Eédtdinator of the network [1].

Star network Peer-to-pesr network

@ PAM coordinator @ Device =—» Communication flow

Figure 2.1: Star and peer-to-peer networks [4]

2.1 Network Topologies

A LR-PAN can be setup to operate in either of thw topologies; the star
topology or the peer-to-peer topology. As showmhim Figure 2.1, the PAN coordinator
forms the central node in the star topology. Ewvayice in the network communicates
with the central node. The PAN coordinator is ugedinitiate, terminate or route
communication around the network. The PAN coordingt the primary controller of the
network. All devices generally have a 64 bit exesh@dddress. This address can be used
or exchanged for a shorter address allocated byP#e coordinator when the device
associates with the PAN coordinator. The PAN cowttir may be powered by mains
outlet, while the devices generally are battery @@a. The applications of star topology
are home automation, personal computer (PC) paafdoys and games.

The peer-to-peer topology allows any device to comicate with any other
device within the radio reach, but requires a PANrdinator to form the network. This

topology allows formation of complex network configtions, such as mesh networking

topology. This type of topology is useful in applions such as industrial control and
monitoring, wireless sensor networks monitoring imnment, inventory and tracking.
This topology allows the network to be ad hoc, seffanizing and self healing. A device
may communicate with other devices out of its radkach by routing the message

through other devices.

2.2 Architecture

A set of layers is used to describe the architectiirthe LR-PAN. Each layer is
responsible for a logical part of the standard affiers services to the higher layers. The
layout of layers is based on the open systemscioeiection (OSI) seven-layer model.

An LR-WPAN device comprises of a PHY, which congthe radio frequency
(RF) transceiver along with its low-level controkainanism and a MAC sublayer that
provides access to the physical channel for aks$yqf transfers [1].

Figure 2.2 illustrates the layer arrangement in stendard. The upper layers
consists of network layer, which is responsible fetwork configuration and message
routing, and application layer, which provides th&ended functionality for the device.
An IEEE 802.2 Type 1 logical link layer (LLC) canaess the MAC sublayer through the
service specific convergence sublayer (SSCS) [bhg TR-WPAN architecture can be
implemented in either an embedded device or aviaaleequiring support of an external

device such as PC.

10

Upper Layers

8022 LLC
[sscs |

| ,

MAC

PHY

{Q&F?hyfs_;;fal Mediumj
e ——

Figure 2.2: LR-WPAN device architecture [1]

2.3 PHY specification

The PHY layer is expected to provide two servides: PHY data service and
PHY management service interfacing to the phydagr management entity (PLME).
The PHY data service allows the transmission andpton of PHY protocol data units
(PPDU) across the physical radio channel. The featwf PHY are activation and
deactivation of the radio transceiver, energy detec(ED), link quality indication,
channel selection, clear channel assessment (G@Axmission and reception of packets

across the physical medium.

11

Table 2.1: Frequency bands and data rates [1]

_— F"ebq“'e:"ﬂ' Spreading parameters Data parameters
an F :
(hlx) (MHz) ({::;EJ?:? Modulation B&E:ﬁe ?;::l:li:f: Symbals
BER/01S BEEE6R 6 300 BESE 20 B Binary
0015928 GO0 BESK 40 40 Binary
2450 2400-2483 5 2000 O-0PSE 250 625 16-ary
Ohthegonal
868/915 : 2 MHz
MHZPHY- Channel 0 Channels 1-10 4" "*
i'i i m f(MHZ)
868.0 868.6 902.0 928.0
2.4 GHz
PHY: Channels 11-26 == =2 bl
120 S 1] | | f (MHz)
2400.0 2483.5

Figure 2.3: The channel structure in IEEE 802.15]4

The standard offers two PHY options which differfiaquency bands and data
rate. TheError! Reference source not found. summarizes the frequency bands,
modulation and spreading technique.

The standard defines 27 channels, numbered 0 tac26ss the three frequency
bands, as illustrated in Figure 2.3. Sixteen cklnare available in the 2450 MHz band,
10 in the 915 MHz band and 1 in 868 MHz band. Télation between the channel
number and centre frequency is defined as:

F.=868.3 MHz fork =0, (kis the channel nwernb

12

Fe= 906 + 2(k-1) MHz fork = 1, 2, ..., 10

F.= 2405 + 5(k-11) MHz for k = 11, 12, ..., 26

8 PHY protocel -
data unit (PPDL)
Start-of- PHY PHY setvice
Preamble packet header data unit (PSDU)
delimiter

le—— & bytes r|- = 127 bytes -

PHY packet fields:
* Preamble (32 bits) — synchronization
* Start-of-packet delimiter (8 bits) — signify end of preamble
¢ PHY header {8 bits) — specify length of PSDU
= PSDU (= 127 bytes) — PHY layer payload

Figure 2.4: The PHY packet structure [4]

Figure 2.4 illustrates a PPDU. Each PPDU contairsyrechronization header
(SHR), which consists of a preamble and start aketadelimiter (SFD), a PHY header
(PHR) containing frame length information, and Pp&yload or PHY service data unit
(PSDU). The preamble field is used by the transreiw obtain chip and symbol
synchronization with an incoming message. The pbdarineld is composed of 32 binary
zeros. The SFD is an 8 hit field indicating the efighreamble and start of packet data.
The PHY header specifies the length of PSDU insyide PSDU field is variable and
carries the actual PHY packet. For all packet typekength five bytes or greater than

seven bytes, the PSDU contains the MAC sublayendrfd].

2.4 MAC sublayer specification

The MAC sublayer provides two services: the MACadsg¢rvice and the MAC

management service interfacing to the MAC sublayamagement entity (MLME)

13

service access point (SAP). The MAC data servicabkes the transmission and
reception of MAC protocol data units (MPDU) acrtiss PHY data service [1].

The features of the MAC sublayer are beacon managgnthannel access,
guaranteed time slot (GTS) management, frame \ama association and

disassociation.

2.4.1 MAC frame format

The MAC frame structure is designed to keep thepdexity at a minimum while
ensuring they are sufficiently robust to be trangedion a noisy channel. The general

format of a MAC frame is shown in the Figure 2.5.

Bytes: 2 1 0-20 Variable 2
Frame | Sequence | Address Frame check
(control | number infa Payload sequence
MAC ‘< - MAC header (MHR) MAC service data MAC footer
sublayer ‘ | unit (MSDU) {MFR} !
l\ MAC protocol data unit (MPDU)
{,-"' o - i
| ’ Synchgngftlon hgyger PHY service data unit (PSDU) ‘
PHY |
Iayer\\' |

PHY protocol data unit (PPDU) |

Figure 2.5: The format of a general MAC frame [4]

A MAC frame is composed of the MAC header (MHR), MAervice data unit
(MSDU), and MAC footer (MFR). The first field of ¢hheader is the frame control field.

It indicates the type of the MAC frame, specifiesniat of the address field, and controls

14

acknowledgement. The address field is variableeafjth O to 20 bytes. Based on the
frame type, the address field may contain sourcedastination addresses, no address or
destination address. A short 8 bit device addresdit IEEE device address may be
used [4].

The payload is of variable length with a restrintiaf 127 bytes for the complete
MAC frame. The data contained in payload is depenhde the frame type. The 802.15.4
MAC has four different frame types. These are theacon frame, data frame,
acknowledgement frame and MAC command frames warehused for MAC peer-to-
peer communication.

The sequence number field is used to identify sssgfoétransmission of a frame
when the received acknowledgment frame containssdrae sequence number. The
frame check sequence (FCS) is a 16 bit Interndtidiéecommunication Union —
Telecommunication Standardization Sector (ITU-T¢licyredundancy check (CRC) to

ensure data integrity [1].

2.4.2 Superframe structure

The standard allows the optional use of a supedratnucture illustrated in
Figure 2.6. The superframe is sent by the coordimadunded by network beacons. It is
divided into 16 equally sized slots. A device caam$smit at any time during the slot, but
must finish before the next superframe beacon.chamnel access during the time slots
is contention based. For low latency applicationgplications requiring specific data
bandwidth, the PAN coordinator may dedicate pogiohthe active superframe to that

application. These portions are called guaranteed slots (GTS). The GTS form the

15

contention free period (CFP), which always appéaha end of the contention access

period (CAP). All contention based transactions tnta@escomplete before the CFP begins.

Superframe beacons

-\-\""--__
=
e
Contentipn ! Contention
atcesd pefliod free peripd

Figure 2.6: A MAC superframe structure [4]

2.4.3 Data transfer model

There are three types of data transfer transactidresfirst one is the data transfer
to a coordinator in which a device transmits thead&he second transaction is the data
transfer from a coordinator to the device. Thedthiransaction is the data transfer

between the peer devices.

2.4.3.1 Data transfer to a coordinator

When a device needs to transfer data to a coodtinat a beacon enabled
network, it listens for the beacon, when the devieds a beacon it synchronizes to the
superframe structure. At an appropriate time ngnaits data using slotted CSMA-CA to
the coordinator. The coordinator may send an optiacknowledgement frame to

complete the transaction. This sequence is sumethitieFigure 2.7.

16

Coordinator

Beacon

Data

-

Acknowledgment
(optiomal)

Figure 2.7: Communication to a coordinator in adogaenabled network [1]

If the device is in a non-beacon enabled netwadrkansmits the data frame using
an unslotted CSMA-CA, to the coordinator. The camatbr may acknowledge
successful reception with an optional acknowledgméame. The sequence is

summarized in Figure 2.8.

| Coordinator | Device
< Data
Acknowledgment
(optional})

Figure 2.8: Communication to a coordinator in a beacon enabled network [1]

2.4.3.2 Data transfer from coordinator

When the coordinator needs to transfer data tovéceldan a beacon enabled
network, it indicates in the network beacon thatadmessage is pending. The device

periodically listens to the network beacon and m@ssage is pending, transmits a MAC

17

command requesting the data using slotted CSMA-T#e coordinator acknowledges
the successful reception of the data request flandevice by transmitting an optional
acknowledgement frame. The requested data frarmeissent by the coordinator using
slotted CSMA-CA. The device may send an optiondnawledgement frame. The

coordinator will then remove the frame from itg b§ pending frames in the beacon. The

sequence is summarized in Figure 2.9 [1].

Network
Device

Coordinator

Beacon

Data Request

Acknowledgment o

Data

=
<« Acknowledgment

Figure 2.9: Communication from a coordinator inea¢on enabled network [1]

When the coordinator needs to transfer data tovacelén a non beacon enabled
network, it stores the data and waits for the dewicmake contact and request the data.
The device will send a MAC command requesting tam dising unslotted CSMA-CA.
The coordinator may send an optional acknowledgérnframe indicating successful
reception of the request. If any data is pendihg,doordinator transmits the data using

unslotted CSMA-CA to the device, else it will seadzero length payload frame

18

indicating there is no data available. The devidenawledges successful receptions with

optional acknowledgement frame. The sequence isrsuiped in Figure 2.10.

Network
Device

Coordinator

< Data Request

Acknowledgment

=
Data

P

P Acknowledgment

Figure 2.10: Communication from a coordinator imoa beacon enabled network [1]

2.4.3.3 Peer-to-peer data transfers

In a peer-to-peer network, every device may compatai with every other
device within its radio reach. In order to achi¢vis effectively, the devices will need to
either turn their receiver on continuously or sylochize with each other. In the former
case, the devices can communicate using unslot8dACCA. In the latter case, other
synchronization measures have to be used. Deseripti such measures is left to the

upper layers to decide and is beyond the scopa®étandard.

2.4.4 CSMA-CA mechanism

The standard defines two types of channel accesboohe depending on the
network configuration. Non beacon enabled netwardes unslotted CSMA-CA method.
The device wishing to transmit data will wait forandom period of time. If the channel

is found idle, it shall transmit the data, elseéhé& channel was found to be busy, the

19

device waits for another random period of time befioying to access the channel again.
Acknowledgment frames are sent without using CSMRArechanism.

The beacon enabled networks use slotted CSMA-CAharesm where the
backoff slots are aligned with the start of thedoeatransmission. A device wishing to
transmit data during CAP, will locate the boundafyhe next backoff slot and then wait
for a random number of backoff slots. If the chdneebusy, following this wait, the
device waits for another random number of backédfssbefore trying to access the
channel again. If the channel is found idle, theickecan begin transmitting on the next
available slot. Acknowledgement and beacon framesant without using a CSMA-CA

mechanism [1].

2.4.5 Security

The MAC sublayer provides a baseline security megssuch as maintaining an
access control list (ACL) and symmetric cryptognapt protect transmitted frames. The
higher layers determine when security is to be @ddatle MAC sublayer and provide all

the necessary keying material to provide the sbcseirvices.

This chapter provided a brief introduction to tiieEE 802.15.4 standard. For a

complete specification, readers are advised ta tefthe reference [1].

CHAPTER3: HARDWARE DESCRIPTION

3.1 System Architecture

The aim was to use the existing hardware in the Kabping the cost down yet
maintaining modularity and expandability in the teys. The CC2420 DBK is a
demonstration kit from Chipcon consisting of a pair CC2420DB boards, each
containing a CC2420 IEEE 802.15.4 compliant RF dcaiver and an Atmel
ATmegal28L microcontroller. This kit was considered our familiarity with AVR
microcontrollers and easy availability of JTAGICKIihndebugger for microcontroller.

There are dozens of small single board computeagadne which are capable of
executing Linux on them varying is physical sizePWC speed and features. Our
requirements were low cost, easily expandable, goggort from the manufacturer and
community. A number of SBC’s were considered and7280 from Technologic

systems was selected.

3.2 CC2420 — RF Transceiver

Chipcon was one of the first companies to develsji@n implementation of the
standard in the form of CC2420 IC. The CC2420 isua single-chip 2.4GHz IEEE
802.15.4 complaint RF transceiver designed for pmwer and low voltage applications.
CC2420 includes a digital direct sequence spreadtspn base band modem providing a

spreading gain of 9dB and an effective data ra@b0fkbps.

21

The CC2420 provides extensive hardware supportptoket handling, data
buffering, burst transmissions, data encryptiontadauthentication, clear channel
assessment, link quality indication and packetrigninformation. These features reduce
the load on the host controller and allow CC2420 imterface with low-cost
microcontrollers. The CC2420 is designed as ans&®e peripheral.

Figure 3.1 illustrates a simplified block diagrarh @C2420, which features a
low- intermediate frequency (IF) receiver. The reed RF signal is amplified by the
low-noise amplifier (LNA) and down converted in guature (I and Q) to the IF. At IF
(2 MHz), the complex 1/Q signal is filtered and difipd, and then digitized by the
ADCs. Automatic gain control, final channel filteg, de-spreading, symbol correlation
and byte synchronization are performed digitallge ISFD pin goes high when a start of
frame delimiter has been detected. CC2420 buffeesimcoming data in a 128 byte
receive FIFO buffer. The user may read the FIF@ubgh the SPI interface. CRC is
verified in hardware while the RSSI and correlati@iues are appended to the frame.

CCA is available on a pin in receive mode [6].

22

i1
:“““ELF:EE.:E‘EEEEEDWEE__ _: I J
—

 p— |
il |'_'I\ Fs DIGITAL
/A /:: » ADC DEMODULATCR
T ! L Digitar RE 81 Serial
I - Galn Conirol H
[o 1 L tmage Suppression valtage
| - Channel Filtaring regulator
- Demodulation
I . Frama
L | | ! l\' ; =% ADC synchronization
- _T-EE‘E‘LNIHEL_____E____
SmarthF®

Sadal
microcontroller
Interface

1]/ 662420

Digital and
Anzlog test
interface

Figure 3.1: CC2420 simplified block diagram [6]

The CC2420 transmitter is based on direct up-camer The data is buffered in
a 128 byte transmit FIFO (separate from the recEBi#®). The preamble and start-of-
frame delimiter are generated by hardware. Eaclbel/@d bits) is spread using the IEEE
802.15.4 spreading sequence to 32 chips and otapile digital-to-analog converters
(DACs). An analog low-pass filter passes the sigoathe quadrature (I and Q) up-
conversion mixers. The RF signal is amplified ia rower amplifier (PA) and fed to the

antenna.

23

3.3 CC2420DBK — Demonstration Board Kit

The CC2420DBK Demonstration Board Kit includes tw@C2420DB
Demonstration Boards. These boards contain a CC24R0 necessary support
components, an Atmel ATmegal28L AVR microcontrgll@?2 Kbytes external RAM, a
PCB antenna, as well as a joystick, buttons and’&Hftat can be used to implement a
visual user application interface. The demonsiratboard is also furnished with

connectors for JTAG, ISP and direct access to CC2d2expansion [5].

-_3.‘3".."\-'c-hage |
reguiator

| avrise
| conmestor

Dejeck | e (SR RN CC2420 RE

External RAM
| Tx32KB

| Temp. sensor |

Figure 3.2: CC2420DB Overview [5]

24

Figure 3.2 illustrates the various features onGkR2420DB demonstration board.
The board serves as a development platform. Trem@nionboard voltage regulator,
which allows it to be powered by either a 9V battier portability or a wall adaptor of 4-
10V. It has a standard DB9 connector for RS232 camaation with the microcontroller
and headers for ISP and JTAG connections, which lmanused to program the
microcontroller and debug the application. The AgaE28L has the ability to interface
an external RAM; the board contains a 32KB exteR¥aM, which is quite sufficient for
the program. The board also features a 5-way jkstiuttons and LED’s. A small

potentiometer is connected to the on-chip ADC ofebal28L.

3.3.1 Atmel ATmegal28L Overview

The ATmegal28L is a low power CMOS 8-bit microcotiér based on the AVR
enhanced RISC architecture. By executing powerigtructions in a clock cycle, the
ATmegal28L achieves throughputs approaching 1 MpeE MHz. The AVR core
combines a rich instruction set with 32 generalppse working registers. All the 32
registers are directly connected to the Arithmetagic Unit (ALU), allowing two
independent registers to be accessed in one simgjtaction executed in one clock cycle
[7].

The ATmegal28L provides the following features:

128K bytes of in-system programmable Flash
* 4K bytes EEPROM

« 4K bytes SRAM

* Real Time Counter (RTC)

« 2USART

25

SPI port
8-channel, 10-bit ADC
Two 8-bit Timer/Counters and two 16-bit Timer/Coenst

JTAG test interface

3.4 TS-7200 overview

The TS-7200 is a compact, full-featured single daamputer (SBC. This board

was selected based on its features and the maatdagrovided good support for Linux

by providing precompiled Linux Kernel, Debian distrtion and tool-chain. This board is

small in size and priced economically.

TS-7200 is based on the Cirrus EP9302 ARM9 CPle ER9302 features an

advanced 200 MHz processor design with a memoryagement unit (MMU) that

allows support for high level operating systemshsas Linux, Windows CE, and others

[8]. As a general-purpose controller, it providestandard set of peripherals on board.

Figure 3.3 illustrates the hardware components 47200 [8].

The features of TS-7200 are:

200 MHz ARM9 CPU with MMU

8 MB Strata Flash drive (16 MB Optional)

32 MB SDRAM (64 MB Optional)

True Integrated Drive Electronics (IDE) CompactsAl@ocket
2 USB 2.0 OHCI ports (12 Mbit/s max)

2 serial ports (up to 230 Kbaud)

10/100 Ethernet port

Watchdog Timer

26

* SPI bus interface

* PC/104 expansion bus

COMPACT FLASH INTERFACE PCM04 INTERFACE +5¥ POWER COM1DBa

IRE

W OKS AG+ i
550 @ " o

x

: g 100
---------- R | i AR | ETHERMET

JUMPERS COM2 BEAD LCSD STRATA DO EFO3ID2 ARMA
JTAG MAX19T FLASH 5Pl FROCESSOR

Figure 3.3: TS-7200 Hardware Components [8]

The TS-7200 features a true IDE compact Flash soékeompact Flash card in
the socket appears as a hard drive to the operatisggm. Compact Flash cards are
available in a wide range of capacities. A 512 M&dcis sufficient to install a
customized version of Debian Linux distribution. eThoard also features USB and
Ethernet ports which can be used to connect ta alévéces. This board serves right for

a PAN coordinator as it is expected to be the mastetroller.

CHAPTER4: SOFTWARE DESCRIPTION

4.1 System Setup

The setup consists of the CC2420DBK, TS-7200, gsktaptop, Router, and
two JTAGICE mkll debuggers. Figure 4.1 illustrathe setup. The laptop, desktop and
TS-7200 were connected to the router to form al lassa network (LAN). The desktop
computer is connected to one of the CC2420DB viaGICE mkll debugger. This setup
forms one node of the wireless network. The oth€2420DB and TS-7200 connected
via RS-232 form another node and this CC2420DBasnected to the Laptop via
another JTAGICE mklI.

The router is the dynamic host configuration proto(OHCP) server of the
network. The DHCP server was configured to assigeciic Internet Protocol (IP)
addresses to the desktop, laptop and TS-7200 wierk 192.168.100, 192.168.0.101

and 192.168.0.102 respectively.

28

=

Router

CATS

Figure 4.1: Setup overview

4.2 Atmel Development Environment

4.2.1 AVR Studio

AVR Studio is an Integrated Development Environm@DE) for assembling and
debugging AVR application in windows environmenitpiovides a project management
tool, source file editor and chip simulator anderfaces with the JTAGICE mkll for
downloading and debugging of applications. The Astiedio also has a symbolic source
level debugger, with features for Break Points,jaldes watch/ edit, single stepping.

Additional features can be added through the ugdugiins.

29

4.2.2 WIinAVR

WInAVR is a suite of executable, open source sakvwaevelopment tools for the
Atmel AVR series of microcontrollers hosted in wawes platform. The installation and
usage instructions can be found in the user mgd@adal
The software development tools include:
» Compilers
* Assemblers
* Linker
* Librarian
» File converters
e C Library
» Debugger

* In-Circuit Emulator software

Many support utilities.
All the software for the ATmegal28L microcontrolleras developed using

WInAVR tools version 20060421 and AVR Studio versib12b.

4.3 Linux Environment

The TS-7200 comes with TS-Linux embedded distrdputinstalled in the on-
board Flash memory. TS-Linux is a compact distiduytbased on Busybox, ideal for
small footprint. BusyBox combines tiny versionsnosany common Linux/UNIX utilities
into a single small executable. A full featured wirdistribution can also be run on either
the Network File System (NFS) root file system wstalled on a large CompactFlash

card.

30

The on-board Flash contains the TS-Linux kernelcWwhs a standard kernel with
patches to customize for this hardware. The versiothe on-board kernel was ts-8. A
newer version ts-10 based on standard kernel vetsih.26 was available and the on-
board Flash was updated with this version.

A 512MB CompactFlash card was formatted with thmed extended file system
(ext2) on a desktop running Linux via a USB — Coatpsh card reader. The
customized Debian 3.0 (Woody) distribution avakabin Technologic system website
was installed on the CompactFlash card. The cordtgan of the RedBoot bootloader
was updated to specify the CompactFlash card y#¢esm as the root file system to the
kernel.

There are many advantages of running a full fedtuneux distribution where the
associated tools, utilities, application and sofevadevelopment environment are
available. The Debian distribution; as a defaulisr@a secure shell (SSH) server. Any
SSH client could be used to login into this LinBuTTY is one such client and is
available as free software for many operating @mrirent including windows. Its easy to
install and configure [23]. A terminal over SSH wasferred over the standard terminal
available on the serial port, as this terminal viasnd to be more stable and the

applications were found to interact well with it.

4.3.1 Cygwin

Cygwin is a Linux-like environment for Windows.dbnsists of a Dynamic Link
Library (DLL) named cygwinl.dll, which acts as anwdation layer providing substantial

Portable Operating System Interface (POSIX) systalhfunctionality, and a collection

31

of tools, which provide a Linux look and feel. Maolythe Linux applications are ported
to execute in Cygwin environment [22].

An NFS server was installed in the Cygwin, the aftlation steps [17] by H.
Sparks were found helpful. It was setup to run exybrt a local folder “/usr/Sandy”. The
TS-7200 was configured to mount this folder at tmea“/mnt/laptop/” automatically on
boot up by adding an entry in the “/etc/fstab” filehis setup would make the folder
visible to both the systems, thus enabling file amplication sharing. Additional
installation and configuration information can loerd in the Linux NFS how to [16].

Technologic Systems provides Linux programming dobolchain) for Cygwin
environment. The toochain was installed on Cygwins allowing Linux applications for
TS-7200 to be built from the Cygwin environment.eTRygwin environment was
preferred over natively building applications on-T&)0, since the laptop computer

offered more computational resources.

4.4 Stack Overview

The software stack implementation is split into aots, one part of the stack is
implemented on the Linux side and the other pasides on the ATmegal28L
microcontroller. The Linux section implements thevide independent higher level
functionality of the stack. The device specifictparimplemented on the ATmegal28L.

This allows for easy porting to new 802.15.4 Rir$eivers.

32

A F Y

TE-F200 : CC2420DE
MAC ! MAC
Fy i ry i 1.
i Basic EF
y : z library
SLIF ! SLIF 4, T
3 ! 3 HAL
L T - ¢ t
e Serial | TART CO2450
Eermel ; ! i
Driver : Diriver

ES 232

Figure 4.2: Software structure and data flow

4.4.1 Linux - Media Access control (MAC)

As illustrated in the Figure 4.2, the softwarenglemented in layers. The Media
Access Control (MAC) layer is the top layer andpibvides a set of functions to
initialize, configure, control, send and receivelgas of data over the radio. The MAC
layer on the Linux side maintains the state andfigoration of the node. It

communicates with its counterpart on the microcaldr in the form of data packets.

FramelID FrameID Length Data
LZE LISE

FrameID:: 2 bytes
Length: 1 byt
Drata: 0 — 254 bytes

Figure 4.3: The structure of MAC packet

33

Figure 4.3 shows the structure of a MAC packetamsposed of 3 fields. The first
field, “FramelD” identifies the type of packet arsdof 2 bytes in length. The next field is
“Length”, a 1 byte field specifying the total lehgof the packet in bytes. The third field
“Data”, is the actual data, its length varies basedthe type of packet. The largest
number for the “Length” field can be 255 and thader i.e. “FramelD” and “Length”
fields take 3 bytes, consequently a maximum of Bgs is available for the “Data”
field.

The MAC layer defines a function called MAC_Proggswhich must be called
often. This function receives packets from SLIP g@ndcesses them accordingly. It is
best to place a call to this function in the inknioop part of the software, if the software

is multi-threaded a separate thread can be asstgreeccute this function periodically.

4.4.2 Linux — Serial Line Internet Protocol (SLIP)

The SLIP was designed to encapsulate IP datagrdmseard it over serial lines. It
encapsulates data to form frames so that the iegeand can differentiate the frames
and provide the data to the upper layers. SLIPopmitdefines two special characters:
“END” (octal 300) and “ESC” (octal 333). To sendpacket, a starting character of
“END “is sent first, it is followed by the data the packet. If a data byte is the same code
as “END” character, a two byte sequence of “ESGI antal 334 is sent instead. If it is
the same as an “ESC” character, a two byte sequain®SC” and octal 335 is sent
instead. After the entire data in the packet ig,s&@m “END” character is sent to end the

frame [9]. SLIP encapsulation drops corrupted pe;kbus ensuring that the MAC layer

34

always receives a complete data packet. SLIP imple protocol and causes very less

overhead.

4.4.3 Linux — Serial port

Serial port access in Linux is fairly simple andsyaEach serial port on the
system is available as a “ttyS#” device file, # resggnting the port number, O for
“COM1”, 1 for “COM2” and so on. These files are &ed under “/dev” directory. The
configuration for the serial port is stored in eusture “termios” which is defined in the
header file “termios.h”. The “COM2” of the TS-72@® connected to the CC2420DB,
which can be accessed by the device file “/deviMyA The serial port is configured for
sending and receiving of raw data bytes. The databz sent and received via write()
and read() functions respectively. The referende i@ a good guide for serial port

programming in Linux.

4.4.4 ATmegal28L — MAC

This layer complements the Linux’s MAC layer witlnplementation of device
specific functionality. The MAC layer receives MAltames from the SLIP layer and
processes them. When a 802.15.4 packet is regetvedvrapped with MAC frame and
sent to the Linux MAC layer through SLIP. This laygilizes the sample code provided
by Chipcon to communicate with CC2420. The currstdck code expects the
MAC_Process() function to be called in the infinidile loop of the microcontroller.
This function checks for a new 802.15.4 packetc@sses it, it then checks for any new

frame in the SLIP layer to process.

35

The sample code consists of Hardware definitioasfilHardware Abstraction
Layer (HAL) and Basic RF Library. The Hardware défon files define macros to the
registers in the microcontroller and CC2420, thuesviging an easier way to access the
hardware. To support program development, hardwbsgraction layer presents with
functions and macros to access most of the CC2d4@G0racrocontroller resources. These
functions and macros can be used without hardwaeeifsc knowledge. The Basic RF

library provides simple function to send and reee802.15.4 packets through CC2420.

4.4.5 ATmegal28L — SLIP

The SLIP layer functionality is the same as in XiSUSLIP layer. It encapsulates
every MAC frame being sent and unpacks every receivame and provides it to the

MAC layer. The current implementation buffers agggnMAC frame received.

4.4.6 ATmegal28L — Serial driver

The serial driver provides an interrupt based latfenechanism for transmitting
and receiving data. It implements two circular bugffor transmission and reception. The
data being transmitted is copied to the transmifebuand the transmit interrupt is
triggered. The transmit interrupt routine checksdo available data byte and copies it to
the transmit data register, if the transmit datlidous empty, it disables further interrupt
triggers. When a byte of data is received in theragiontroller, it triggers the receive

interrupt routine which copies the data byte tenee buffer.

36

45 MAC Communication

HNODE 1 NODE2
I I
Lirmx CC2R20DE CC2420DE
HBC
Drata >
___________ BT R ——
+_ g g g
- & clnowdedgetent
Acknowledgement (Dptional)
(Optional)

Figure 4.4: Packet Transmission Mechanism

Figure 4.4 illustrates the mechanism to send data fNode 1” to “Node 2. The
data packed into a MAC frame and wrapped with SkIBent from the TS7200 to the
CC2420DB. The microcontroller receives the framd alentifying as data to transmit,
sends it to CC2420 for transmission over radidhd&f acknowledgement option was set,
the microcontroller waits for an acknowledgemenmirfrthe other node before it times
out, If it receives an valid acknowledgement itfards it to the Linux MAC else it sends

an transmission error.

37

HODE1 HODEZ
I I
Lirmx CC220DE CC220DR
BEC
M- —-—cccccccccmassmmmm =
Data
................................... .
Acknowledgement
o« Data (Optional)

Figure 4.5: Packet receiving mechanism

Figure 4.5 illustrates the packet reception. Theddl 2" sends a data packet
addressed to “Node 1”. Upon receiving it, the CA2#Rerrupts the microcontroller. The
microcontroller gets the data from CC2420 buffef, the packet requested
acknowledgement, it sends an acknowledgement to4@CZor transmission. The
microcontroller then encapsulates the data withACMrame and sends it to the Linux

SBC.

38

Figure 4.6: The test setup.

4.6 Setup for testing

The system was setup as described in the sectloardl. illustrated in Figure 4.1.
The sample demo program provided by Chipcon for420DB was used in testing. The
program establishes a point-to-point RF link betwaevo CC2420DB nodes for
communication using the 802.15.4 MAC frames. Thagmm uses 0x2420 as the PAN
ID of the nodes and uses channel 26. The shoreaddf the node is selected based on
the joystick position, if it was pressed down arslaaldress of 0x1234 is selected else if
moved in any direction an address of 0x5678 iscsaetefor the node at startup. If the
potentiometer is turned or the joystick centre dmwtis held down, a data packet
containing the potentiometer value is sent to ttieronode, which is used to control the
Pulse Width Modulation (PWM) duty cycle thus effeety controlling the brightness of
the Orange LED.

The standalone “Node 2” was programmed with thepsardemo program. For
the “Node 1", a test program was written which wbekecute on the Linux SBC and use

the stack to communicate with the “Node2”. The fsigram would perform the same

39

functionality as the demo program, but uses usputé for the PWM duty cycle and

displays the contents on the received packets.

Figure 4.7: Test program menu

Figure 4.7 shows the menu system of the test pnogkdenu option 1 sends a
packet to “Node 2” with a user input value for /M duty cycle and the node address.
Upon receiving the packet “Node 2” would update BweM duty cycle value and can be
noticed on the brightness of the LED. Other fumudi of the test program were tested

similarly by making appropriate changes on the denegram of “Node 2”.

i2 00 00 01 OF Ok 01 02 03 04 05 06 07 08 09

CV_PACEET 0O00A

ength: 10
02 03 04 05 06 07 05 09 00 :: End of Frame::

Figure 4.8: A received frame by test program

40

Figure 4.8 shows the contents of a received pamkétNodel” from “Node 2”.
The test program displays the various fields assediwith the packet received, it also

displays the raw bytes of the packet.

CHAPTERS: CONCLUSION

The objectives of the thesis work has been achiewitdthe implementation of
subset features of IEEE 802.15.4 features on axLBBC and demonstrate the use of
such a controller in LR-PAN. The SBC with Linux getand the development tools form
the embedded Linux development system. The completiem with the hardware setup
and the software stack can be used in the followiags.

» Serves as an embedded Linux development systemth@tldevelopment tools,
other interfaces such as Ethernet and USB, and agplications.
« Can be used in investigating and developing uppgerl protocols such as

ZigBee.

» Evaluating various aspects of IEEE 802.15.4 prdtoco

* As a tool in the study of co-existence of IEEE 8824 with other wireless
standards.

* As a packet logger/analyzer in IEEE 802.15.4 néta/o

* As an educational tool in teaching LR-PAN and endeeldLinux.

e« As a valuable resource in the ongoing researchE&EI 802.15.4 at UNC

Charlotte.

42

5.1 Future work

This thesis work can be extended in many ways.staek can be enhanced with
the support for beacon enabled networks. The cumenrsion lacks support for security
features, which can be implemented.

The stack can be ported to operating systems ssidlindows CE, which is
another popular embedded operating system. As Wisd2E is widely used in personal
digital assistants and cell phones, IEEE 802.15réless functionality can be added to

such devices.

REFERENCES

[1] Institute of Electrical and Electronic Engineens¢.| "IEEE Std. 802.15.4-
2003, IEEE Standard for Information Technology 4e€emmunications and
Information Exchange between Systems — Local andrdgelitan Area
Networks — specific Requirements — Part 15.4 : Wa® Medium Access
Control (MAC) and Physical Layer (PHY) Specificats for Low Rate
Wireless Personal Area Networks (LR-WPAN)”
http://standards.ieee.org/getieee802/download/802-2003.pdf

[2] J.A. Gutierrez, “On the use of IEEE 802.15.4 to bdmawireless sensor
networks in building automationProc.of IEEE Int. Conf. Personal, Indoor
and Mobile Radio Communications (PIMRC’04Barcelona, Spain
September 2004, Vol 3 pp. 1865-1869.

[3] A. Sikora, V.F. Groza, “Coexistence of IEEE 8024l%ith other Systems in
the 2.4 GHz- ISM-BandProc. of IEEE — Instrumentation and Measurement
Technology Conference (IMTC'Q5pttawa, Canada May 2005, pp 1786-
1791.

[4] E. Callaway, P. Gorday, L. Hester, J.A.Gutierrez N\eve B. Heile, V.Bahl
“Home Networking with IEEE 802.15.4: A DevelopingaSdard for Low-
Rate Wireless Personal Area NetworkiE2EE Communication Magazine,
August 2002.

[5] Chipcon, “User Manual Rev1.3 SmartRF ® CC2420DBKridastration
Board Kit”
http://www.chipcon.com/files/CC2420DBK_User_Manual 3.pdf

[6] Chipcon, “SmartRF® CC2420: 2.4GHz IEEE802.15.4/2gb RF
Transceiver,” http://www.chipcon.com/files/CC242(atR Sheet_1 4.pdf

[7] ATMEL, ATMEGA 128L AVR 8-Bit RISC - Datasheet
http://www.atmel.com/dyn/resources/prod_documents2d67.pdf

[8] TS-7200 Datasheet. http://www.embeddedarm.com/Mafis& 200-
datasheet.pdf

[9] G. Frerking, “Serial programming HOW TO”.
http://tldp.org/HOWTO/Serial-Programming-HOWTO/

[10] J. Romkey “RFC 1055 - Nonstandard for transmissiilf® datagrams over
serial lines: SLIP” http://www.fags.org/rfcs/rfc1BHtml

44

[11] J. Lee, “ An Experiment on Performance Study &EEEB02.15.4 Wireless
Networks”Proc. ofEmerging Technologies and Factory Automatia005
Volume 2, 19-22 Sept. 2005 Page(s):451-458

[12] A. Lennon, “Embedding Linux’lEE Reviewolume 47, Issue 3, May 2001
Page(s):33 — 37

[13] D. Geer, “Survey: Embedded Linux Ahead of the Pdistributed Systems
Onling IEEE Volume 5, Issue 10, Oct. 2004 Page(sB3 —

[14] S. Hong, “Embedded Linux Outlook in the PostPC bty Proc. of Object-
Oriented Real-Time Distributed Computjr&903. 14-16 May 2003
Page(s):37 — 40

[15] C. Evans-Pughe, “Bzzzz zzz [ZigBee wireless staljldEE Review
Volume 49, Issue 3, March 2003 Page(s):28 — 31

[16] C. Smith “Linux NFS-HOWTOQO" http://nfs.sourceforgetmfs-howto/

[17] H. Sparks' Cygwin NFS Server HOWTO”
http://www.csparks.com/CygwinNFS/index.xhtml

[18] A. Rodland, “Novice's Guide to AVR Development”
http://www.atmel.com/dyn/resources/prod_documenisae.pdf
[19] C. O'Flynn, “Downloading, Installing and ConfiguginvinAVR”

http://winavr.sourceforge.net/install_config_WinA\filf

[20] TS-7200 User’s Manual http://www.embeddedarm.conmivds/ts-7200-
manual-rev2.2.pdf

[21] Linux for ARM on TS-7000 User's Guide
http://www.embeddedarm.com/Manuals/linuxarm-guiee2:0.pdf

[22] Cygwin User/s guide http://cygwin.com/cygwin-ug-ieggwin-ug-net.html
[23] PUTTY user manual http://www.putty.nl/0.58/htmldoc/

[24] WIinAVR manual http://winavr.sourceforge.net/instalbnfig_ WinAVR.pdf
[25] Linux wireless sensor LAN project http://linux-8a8-4.sourceforge.net/

[26] Universal ZigBee Stack http://sourceforge.netipety/zigzagbee/

[27]

[28]

[29]

[30]

[31]

45

ZigBuzz http://sourceforge.net/projects/zigbuzz/

M. Galeev, “Home Networking with ZigBee”
http://www.embedded.com/showArticle.jhtml?articlell8902431

A. H. Ansari “Hardware Development of an Embeddedelgss Evaluation
Board”, MS ThesisUniversity of North Carolina - Charlotiddec. 2005.

R. Rai "IEEE 802.15.4 Protocol Implementation aneasurement of Current
Consumption”, M.S Thesi&lniversity of North Carolina- CharlotieDec.
2005.

M. Marchesotti, M. Migliardi, R. Podesta, “A Measunent-Based Analysis
of the Responsiveness of the Linux Kerretdoc. of International
Symposium and Workshop on Engineering of CompusedBSystem&7-

30 March 2006.

APPENDIX

ATmegal?8L code

* *kkkkkkk * *kkkkkkk * *kkkkkkk * *kkkkkk

File Name: MAC.h *
Version: 0.1 *
Author: Sandeep Sirpatil *
License: GNU General Public License..............
Purpose: This file contains constansta for MAC

and function prototypes

* 0% % X F X X T3

* % %

kkkkkkkkkhkkkhkkhkkkhkkkhkkkhhkkhhkkkhkkkhkkkhhkkkhkkkkk ******/

#ifndef MAC_H
#define MAC_H

/I Define Frame IDs

#define MAC_SET_PAN_ID
#define MAC_GET_PAN_ID
#define MAC_SET_ADDR
#define MAC_GET_ADDR
#define MAC_SET_CHANNEL
#define MAC_GET_CHANNEL
#define MAC_SET_RECEIVER
#define MAC_GET_RECEIVER
#define MAC_XMIT_PACKET
#define MAC_RECV_PACKET
#define MAC_SET_ACK 11
#define MAC_GET_ACK 12

NP

ool h W

= © ™y

/I FramelD + length + seqNum+SrcAdd+srcPanID+AckReq +Rssi+length
112 +1 +1 +2 +2 +1 +1 +1=

11

#define MAC_RECV_PKT_OVERHEAD 11

int MAC_Init();

int MAC_Process();

#endif // MAC_H

/************** E N D * *kkkkkkk * *kkkkkkk *******/

/** K*kkkkkk

* File Name: MAC.c *

Version: 0.1 *

Author: Sandeep Sirpatil *

License: GNU General Public License..............

Purpose: This file implements the device specific
functionality of IEEE 802.15.4

E o I I

*kkkkkkk * *kkkkkkk * *kkkkkkk * *kkk ******/

#include "include.h"
#include "SLIP.h"
#include "MAC.h"

#define SLIP_TX_BUF_SIZE 140
#define SLIP_RX_BUF_SIZE 140

/I Structure for local copy of the received packet

/I This RX Struct will get written into when a pack

radio.

/I This copy of the received packet should be used
processing.

volatile BASIC_RF_RX_INFO rf_rcv_info;

UINT8 rf_rx_buffer[BASIC_RF_MAX_PAYLOAD_SIZE];
volatile UINT8 received_newFrame;

UINTS slip_TxBuff[SLIP_TX_BUF_SIZE];
UINTS slip_RxBUff[SLIP_RX_BUF_SIZE];
BASIC_RF_TX_INFO rf_Tx_Info;

UINTS rf_Tx_Buffer[BASIC_RF_MAX_PAYLOAD_SIZE];

/lextern volatile BASIC_RF_TX_INFO rf_Tx_Info;

/I Initialize function

int MAC_Init(){
rf_rcv_info.pPayload = rf_rx_buffer;
rf_Tx_Info.pPayload = rf_Tx_Buffer;

received_newFrame = FALSE;
return O;

}

/I Primarily handles packets to be received by SLIP
radio.
/I and handle packets received via radio to be sent

int mac_pr_ctr =0;

int MAC_Process(){
UINT16 slipRxLength;
int i=0;

if(received_newFrame == TRUE){ // got a new frame

/I Make a new SLIP frame and send it

et is received from

for further

and transmitted via

over SLIP.

from radio

slip_TxBuff[0] = LOWER_BYTE(MAC_RECV_PACKET);
slip_TxBuff[1] = UPPER_BYTE(MAC_RECV_PACKET);

slip_TxBuff[2] = MAC_RECV_PKT_OVERHEAD +

rf_rcv_info.length;
slip_TxBuff[3] = rf_rcv_info.seqNumber;

a7

48

slip_TxBuff[4] = LOWER_BYTE(rf_rcv_info.srcAddr);
slip_TxBuff[5] = UPPER_BYTE(rf_rcv_info.srcAddr);

slip_TxBuff[6] = LOWER_BYTE(rf_rcv_info.srcPanld)
slip_TxBuff[7] = UPPER_BYTE(rf_rcv_info.srcPanld)
slip_TxBuff[8] = rf_rcv_info.ackRequest;

slip_ TxBuff[9] = rf_rcv_info.rssi;

slip_TxBuff[10] = rf_rcv_info.length;

memcpy(
&slip_TxBUfffMAC_RECV_PKT_OVERHEAD],rf_rcv_info.pPa yload,rf_rcv_info.le
ngth);

/ffor (i=0; i< rf_rcv_info.length; i++){
I slip_TxBufffMAC_RECV_PKT_OVERHEAD+i] =
rf_rcv_info.pPayload]i];
1

SLIP_Send(slip_TxBuff,
MAC_RECV_PKT_OVERHEAD+rf_rcv_info.length);

mac_pr_ctr++;

received_newFrame = FALSE; // clear flag

}

/I check for new any frames received on SLIP and p rocess them
SLIP_process();

if(SLIP_getFrame(slip_RxBuff, &slipRxLength) ==0) {

/l got a SLIP frame process it
unsigned int frameld,;
frameld = GET_INT(slip_RxBuff[1], slip_ RxBuf flo]D);

switch(frameld){
case MAC_SET_PAN_ID {
UINTS8 n;
UINT16 panid =
GET_INT(slip_RxBuff[4],slip_RxBuff[3]);
rfSettings.panld = panid;

halRfWaitForCrystalOscillator();
DISABLE_GLOBAL_INT();
/[FASTSPI_WRITE_RAM_LE(&myAddr,
CC2420RAM_SHORTADDR, 2, n);

FASTSPI_WRITE_RAM_LE(&panid, CC2420RAM_PANID , 2, N);
ENABLE_GLOBAL_INT();
}
break;
case MAC_GET_PAN_ID:
break;
case MAC_SET_ADDR {
UINT8 n;
UINT16 addr =

GET_INT(slip_RxBuff[4],slip_RxBuff[3]);
rfSettings.myAddr = addr;

halRfWaitForCrystalOscillator();
DISABLE_GLOBAL_INT();

FASTSPI_WRITE_RAM_LE(&addr, CC2420RAM_SHORTA DDR, 2,

ENABLE_GLOBAL_INT();
}

break;

case MAC_GET_ADDR:
break;

case MAC_SET_CHANNEL:
I/l check channel range 11-26 valid
if(10 < slip_ RxBuff[3] && slip_ RxBuff[3] <27){
DISABLE_GLOBAL_INT();
I if on turn it off
if(rfSettings.receiveOn)
FASTSPI_STROBE(CC2420_SRFOFF);
halRfSetChannel(slip_ RxBuff[3]);
if(rfSettings.receiveOn)
FASTSPI_STROBE(CC2420_SRXON);
ENABLE_GLOBAL_INT();

}

break;
case MAC_GET_CHANNEL:
break;

case MAC_SET_RECEIVER:

if(slip_RxBuff[3]==0){ // rx off
basicRfReceiveOff();
/IDISABLE_GLOBAL_INT();
/I[FASTSPI_STROBE(CC2420_SRFOFF);
//ENABLE_GLOBAL_INT();

Yelse if(slip_RxBuff[3]==1){ // rx on
basicRfReceiveOn();
/IDISABLE_GLOBAL_INT();
/I[FASTSPI_STROBE(CC2420_SRXON);
//ENABLE_GLOBAL_INT();

break;

case MAC_GET_RECEIVER:
break;

case MAC_XMIT_PACKET:{ // receive from sli p and send it

via radio

rf_Tx_Info.destAddr =
GET_INT(slip_RxBuff[4],slip_RxBuff[3]);

rf_Tx_Info.ackRequest = slip_ RxBuff[5];

rf_Tx_Info.length = slip_ RxBuff[6];

memcpy(rf_Tx_Info.pPayload,
&slip_RxBuff[7],slip_RxBuff[6]);

/IbasicRfSendPacket(rf_Tx_Info);

if(basicRfSendPacket(&rf_Tx_Info)){ //TODO:
return status via SLIP

TOGGLE_YLED();

49

telse{
TOGGLE_RLED();
}

}

break;

case MAC_RECV_PACKET:
break;
}

}

return O;

UINT16 rx_cntr =0;

BASIC_RF_RX_INFO* basicRfReceivePacket(BASIC_RF_RX_
1l int i=0;

// Adjust the led brightness
/I PWMO_SET _DUTY_CYCLE(pRRI->pPayload[0]);

// Blink the green LED

/I SET_GLED();

/I halWait(10000);

/I CLR_GLEDY();
rf_rcv_info.seqNumber = pRRI->segNumber;
rf_rcv_info.srcAddr = pRRI->srcAddr;
rf_rcv_info.srcPanld = pRRI->srcPanld;
rf_rcv_info.length = pRRI->length;

rf_rcv_info.ackRequest = pRRI->ackRequest;
rf_rcv_info.rssi = pRRI->rssi;
memcpy(rf_rcv_info.pPayload, pRRI->pPayload, pRRI-

received_newFrame = TRUE;
TOGGLE_GLED();
rx_cntr++;

1 for(i=0; i<pRRI->length;i++){

1 rf_rcv_info.pPayload[i]= pRRI->pPayload]i];
1 }

/I Continue using the (one and only) reception
return pRRI;

} /I basicRfReceivePacket

/************** E N D * *kkkkkkk * *kkkkkkk

INFO *pRRI) {

>length);

structure

*******/

50

* *kkkkkkk * *kkkkkkk * *kkkkkkk *

File Name: SLIP.h

Version: 0.1

Author: Sandeep Sirpatil *

License: GNU General Public License..............

Purpose: This file contains SLIP configuration
and function prototypes

* 0% X 3k F X X T3

*

kkkkkkkkkhkkkhkkkhkkkhkkkhkkkhhkkhhkkkhkkkhkkkhhkkkhkkkkk

#ifndef SLIP_H
#define SLIP_H

#define END 0300 /*indicates end of
#define ESC 0333 /*indicates byte s
#define ESC_END 0334 /[*ESC ESC_END mean
#define ESC_ESC 0335 /*ESC ESC_ESC mean

int SLIP_Init();
int SLIP_Send(unsigned char *buf, int length);
void SLIP_process();

int SLIP_getFrame(UINT8 *buf, UINT16 *size);

#endif // SLIP_H

/************** E N D kkkkkkkkkkkkkkkkhkkkkhkkkkkkkkk

/**

File Name: SLIP.c

Version: 0.1

Author: Sandeep Sirpatil *

License: GNU General Public License..............

Purpose: This file implements SLIP layer and
uses UART layer as serial driver

L R

#include <include.h>
#include "USART.h"
#include "SLIP.h"

#define SLIP_TXBUF_SIZE 200
#define SLIP_RXBUF_SIZE 250

UINTS slip_xmit_buf[SLIP_TXBUF_SIZE];
UINTS8 rx_lastByte;

*kkkkkk

******/

packet */

tuffing */

s END data byte */
s ESC data byte */

*******/

K*kkkkkk

******/

51

struct Slip_Rcv_Frame{
UINT8 buffer[SLIP_RXBUF_SIZE];
UINT16 length;
UINT8 isEmpty;
UINTS8 writeFlag;

}1
struct Slip_Rcv_Frame slip_rcv_frame;

int SLIP_Init(){
slip_rcv_frame.isEmpty = TRUE;
slip_rcv_frame.length = 0O;
slip_rcv_frame.writeFlag = FALSE;

return O;
}
int SLIP_Send(unsigned char *buf, int length){
int idx=0;
int i=0;
slip_xmit_buf[idx] = END;
idx++;
for(i=0;i<length;i++){
if(idx+2 >SLIP_TXBUF_SIZE){
return -1; // Buffer overflow
}
switch(buf[i]){
case END:
slip_xmit_buf[idx] = ESC;
idx++;
slip_xmit_buf[idx] = ESC_END;
idx++;
break;
case ESC:
slip_xmit_buf[idx] = ESC;
idx++;
slip_xmit_buf[idx] = ESC_ESC;
idx++;
break;
default:
slip_xmit_buf[idx] = buf{i];
idx++;
}
}
slip_xmit_buf[idx] = END;
idx++;
return(USART1_Send(idx, slip_xmit_buf));
}

int SLIP_getFrame(UINT8 *buf, UINT16 *size){
UINT16 i;

52

53

Il check the frame status
if(slip_rcv_frame.isEmpty == FALSE){ // containe a new frame.
I/l If new frame is available, copy the data and cl ear the
receiveframe
for(i=0;i<slip_rcv_frame.length; i++){
buf[i] = slip_rcv_frame.bufferfi;
}

*size = slip_rcv_frame.length;
slip_rcv_frame.isEmpty = TRUE;

return O;

telse{ /I If no new frame avialable retunr -1

return -1;

}
}
/* This function is to be called as many times as p ossible.

It checks the receiveframe, if found empty, it tri es to get data
from the

USART layer and assemble a new frame.*/

void SLIP_process(){
UINTS ch;
int moredata =1;

if(slip_rcv_frame.isEmpty == TRUE){

if(slip_rcv_frame.writeFlag == FALSE){ // begi nning of a new
frame
slip_rcv_frame.length = 0;
}
while(moredata == TRUE){ // a getdata flag
if(USART1_Recv(&ch) ==0){ // if a byte is received then
process it
switch(ch){
case END:
if(slip_rcv_frame.writeFlag == FALSE){ //start
of new frame
slip_rcv_frame.writeFlag = TRUE; //
indicate the write is in progress
Yelse{ // End of frame receive d.
slip_rcv_frame.isEmpty = F ALSE; /I

indicate a new frame is stored.

slip_rcv_frame.writeFlag =
FALSE;

moredata = FALSE; // end t he while loop
}

break;

case ESC:

rx_lastByte = ESC; /[keep ar
break;

case ESC_END:
if(rx_lastByte == ESC){

slip_rcv_frame.buffer[slip_rcv_frame.length] = END;
slip_rcv_frame.length++;
rx_lastByte = 0O;
lelse{ // TODO: handle error
}

break;

case ESC_ESC:
if(rx_lastByte == ESC){

slip_rcv_frame.buffer[slip_rcv_frame.length] = ESC;
slip_rcv_frame.length++;
rx_lastByte = 0O;
lelse{ // TODO: handle error
}

break;

default:
slip_rcv_frame.buffer[slip_rcv

slip_rcv_frame.length++;

telse{ // no more data in Queue
moredata = FALSE;

}
} /1 while
}
}

/************** E N D * *kkkkkkk * *kkkkkkk

/**

File Name: USART.h

Version: 0.1

Author: Sandeep Sirpatil *

License: GNU General Public License..............

Purpose: Provides varios configuration options fo
UART driver.

* ok X X X X X

#ifndef USART_H
#define USART_H

/l#define USART_2XMODE 1; // Puts USART in 2x mod
#ifdef USART_2XMODE

/I (CPUCLOCK / 8*baud) -1
#define UART_BAUD_2K4 416

ecord of it

_frame.length]

*******/

K*kkkkkk

*
r*

*

******/

e. not preferred.

54

#define UART_BAUD_4K8
#define UART_BAUD_9K6
#define UART_BAUD_14K4
#define UART_BAUD_19K2
#define UART_BAUD_28KS8
#define UART_BAUD_38K4
#define UART_BAUD_57K6
#define UART_BAUD_76KS8
#define UART_BAUD_115K2
#define UART_BAUD_230K4
#define UART_BAUD_250K
#define UART_BAUD_500K
#define UART_BAUD_1M

#else

/I (CPUCLOCK / 16*baud) -1
#define UART_BAUD_2K4
#define UART_BAUD_4K8
#define UART_BAUD_9K6
#define UART_BAUD_14K4
#define UART_BAUD_19K2
#define UART_BAUD_28K8
#define UART_BAUD_38K4
#define UART_BAUD_57K6
#define UART_BAUD_76K8
#define UART_BAUD_115K2
#define UART_BAUD_230K4
#define UART_BAUD_ 250K
#define UART_BAUD_500K
Il #define UART_BAUD_1M

#endif

#define XMIT_BUF_SIZE 250
#define RECV_BUF_SIZE 250

extern volatile UINT8 uart_xmit_buf[XMIT_BUF_SIZE
extern volatile UINT8 uart_xmit_buf[RECV_BUF_SIZE

UINT8 USART1_Send(UINT8, UINT8*);
UINT8 USARTZL_Init(UINT8 , UINTS, UINTS, UINT8);
UINT8 USART1_Recv(UINT8*);

#endif

207
103
68
51
34
25
16
12
8

3
3
1

0

6
3
1

1

0

0 // not support

/************** E N D * *kkkk

*

ed

*******/

55

* *kkkkkkk * *kkkkkkk * *kkkkkkk *

File Name: USART.c

Version: 0.1

Author: Sandeep Sirpatil *
License: GNU General Public License..............
Purpose: A circular buffer device driver for UAR

* 0% X 3k F X X T3

*

kkkkkkkkkhkkkhkkhkkkhkkkhkkkhhkkhkkkhhkkkhkkkhkkkhkkkkk

#include <include.h>
#include "USART.h"

#define UARTL_TX_INT_ENABLE() do{UCSR1B |=
(0)
#define UARTL_TX_INT_DISABLE() do { UCSR1B &=
(0)

volatile UINT8 uart_xmit_buf[XMIT_BUF_SIZE];
volatile UINT8 uart_recv_buf[RECV_BUF_SIZE];
volatile UINT16 uart_Recv_Ridx =0;
volatile UINT16 uart_ Recv_Widx =0;

volatile UINT16 uart_Xmit_Ridx =0;
volatile UINT16 uart_Xmit_Widx =0;

volatile UINT16 txISRCntr =0;
volatile UINT16 rxISRCntr =0;
volatile UINT8 rxChar =0;

/* Initialize

UINT8 baud

UINT8 databits = Num of databits, generally 8
UINT8 stopbits = Num of stop bits, generally 1
UINT8 parity = 0-no parity, 1-even, 2- odd

*/

UINT8 USARTZL_Init(UINT8 baud, UINT8 databits, UINT
parity }{

56

*kkkkkk

”*
T'*

*

******/

BM(UDRIE1); } while

~BM(UDRIEL); } while

8 stopbits, UINT8

/INIT_UART1(UART_BAUDRATE_9K6,(UART_OPT_8 BITS_PER _CHAR||UART_OPT_ONE_

STOP_BIT||UART_OPT_NO_PARITY));
/Il disable global int
DISABLE_GLOBAL_INT();
UBRR1H = (unsigned char) baud >>8;
UBRRL1L = baud,;

UCSRI1A &= ~0x01; // Multi procesor disable
UCSRI1B = 0; // default state
UCSRI1C = 0x06; // default

#ifdef USART_2XMODE
UCSRI1A |= BM(U2X1);

57

#else
UCSR1A &= ~BM(U2X1);

#endif

switch(databits){

case 5:
UCSR1C &= ~BM(UCSZ10);
UCSR1C &= ~BM(UCSZ11);
UCSR1B &= ~BM(UCSZ12);
break;

case 6:
UCSRI1C |= BM(UCSZ10);
UCSR1C &= ~BM(UCSZ11);
UCSR1B &= ~BM(UCSZ12);
break;

case 7.
UCSR1C &= ~BM(UCSZ10);
UCSR1C |= BM(UCSZ11);
UCSR1B &= ~BM(UCSZ12);
break;

case 8:
UCSRI1C |= BM(UCSZ10);
UCSR1C |= BM(UCSZ11);
UCSR1B &= ~BM(UCSZ12);
break;

case 9:
UCSRI1C |= BM(UCSZ10);
UCSR1C |= BM(UCSZ11);
UCSR1B |= BM(UCSZ12);
break;

default:
return -1,

}

if(stopbits ==1){

UCSR1C &= ~BM(USBS1);
lelse if (stopbits ==2){

UCSR1C |= BM(USBSL1);
else{

}

if (parity ==0){
UCSR1C &= ~BM(UPM11);
UCSR1C &= ~BM(UPM10);

return -1;

lelse if (parity==1){ // even
UCSR1C |= BM(UPM11);
UCSR1C &= ~BM(UPM10);

lelse if (parity ==2){ // odd
UCSR1C |= BM(UPM11);
UCSR1C |= BM(UPM10);

else{
return -1;

}

UCSR1B |= (BM(RXEN1)|BM(RXCIEL)); // rx | int enab
UCSRI1B |= BM(TXENL); //tx enable

/Il Initialize
ENABLE_GLOBAL_INT();
return O;

}

[* Starts the interrupts for transmission*/
void USART1_startTx(UINT8 ch){

}

/* send function*/

UINT8 USART1_Send(UINT8 numBytes, UINT8* arry){
UINT16 i=0;
UINT16 xmit_Widx =0;
xmit_Widx = uart_Xmit_Widx; // local copy

for (i=0;i<numBytes; i++){

if(xmit_Widx+1 == uart_Xmit_Ridx ||(xmit_Widx+1
XMIT_BUF_SIZE && luart_Xmit_Ridx)){
return -1; // buffer full

uart_xmit_buf[xmit_Widx]= arryf[i];
xmit_ Widx++;
if(xmit_Widx == XMIT_BUF_SIZE) xmit_Widx = 0; //

}

uart_Xmit_Widx = xmit_Widx; // restore the pointer
/l enable TX int

UART1_TX_INT_ENABLE();

return O;

UINT8 USART1_Recv(UINT8 *ch){
if(luart_Recv_Ridx == RECV_BUF_SIZE) uart_Recv_Ridx
if(luart_Recv_Ridx == uart_Recv_Widx){

return -1;
telse{
uart_Recv_Ridx++;
*ch = vart_recv_bufluart Recv_Ridx-1];
return O;
}

loop back

58

/* Interrupt routine for Receive */
ISR(USART1_RX_vect){
UINT8 ch;

if(luart_Recv_Widx+1 == uart_Recv_Ridx ||(uart_Recv

==RECV_BUF_SIZE && !uart_Recv_Ridx)}{
/I err cntr ++
/l dummy read ?7?

ch = UDR1;
telse{
uart_recv_bufluart_ Recv_Widx] = UDR1;
uart_ Recv_Widx++;
if(luart_Recv_Widx==RECV_BUF_SIZE) uart_Recv_Widx
}

}

/* ISR for TX*/
ISR(USART1_UDRE_vect){
tXISRCntr++;

if(uart_Xmit_Ridx == XMIT_BUF_SIZE)
uart_Xmit_Ridx = 0; // loop back
if(uart_Xmit_Ridx == uart_Xmit_Widx){
UART1_TX_INT_DISABLE();
telse{
uart_Xmit_Ridx++;
UDR1 = vart_xmit_buf[uart_Xmit_Ridx-1];

}

/************** E N D kkkkkkkkkkkkkkkkhkkkkhkkkkkkkkk

File Name: util.h

Version: 0.1

Author: Sandeep Sirpatil

License: GNU General Public License..............
Purpose: provides utility macros

* % X 3k X X X T3

*

kkkkkkkkkhkkkhkkhkkkhkkkhkkkhhkkhkkkhkkkhkkkhkkkhkkkkk

#ifndef UTIL_H
#define UTIL_H

#define LOWER_BYTE(X) ((unsigned char)(x & 0xFF))
#define UPPER_BYTE(x) ((unsigned char)((x & 0xFFO0O0)

#define GET_INT(X,y) ((((UINT8)x)<<8) |((UINT8)y))
#endif // UTIL_H

/************** E N D * *kkkkkkk * *kkkkkkk

*******/

*kkkkkkk

*******/

>>8))

*******/

_ Widx+1

59

Linux Code:

/**

File Name: main.c

Version:; 0.1

Author: Sandeep Sirpatil

License: GNU General Public License
Purpose: Sample test application

* ok X % X F X

*kkkkkkk * *kkkkkkk * *kkkkkkk * *kkk

#include "include.h"
#include <errno.h>
void sig_catcher(int sig);

void menu();
int main(){

unsigned char ch,rxBuf[50],txBuf[50];
int rxLen =0;

int rtn;

txBuf[0] = 'A’;
txBuf[1] = 'B;
txBuf[2] = ESC;
txBuf[3] = 'D’;
txBuff4] = 'E';
txBuf[5] = 'F;

K*kkkkkk

******/

if(signal(SIGINT,sig_catcher)== SIG_ERR){
fprintf(stderr,"Sigset cannot set SIGINT");

}

SLIP_Init();
/I SLIP_Send(txBuf,6);

while(1){

SLIP_Process();

rtn = SLIP_Recv(rxBuf,&rxLen);

if(rtn ==0){
fprintf(stderr,"Got a packet\n");
printBuf(rxBuf,rxLen);
printPacket(rxBuf,rxLen);
clearBuf(rxBuf,rxLen);

}

if(rxBuf[0] =="X")
break;

ch = getchar();

if(ch =="z")({
SLIP_Send(txBuf,6);

}else if(ch=="m"{
menu();

}else if(ch =="a"){

60

int duty;
fprintf(stderr,"inside");
txBuf[0]= LOWER_BYTE(MAC_XMIT_PACKET);
txBuf[1]= UPPER_BYTE(MAC_XMIT_PACKET);
txBuf[2]= 17; // length
txBuf[3]= 0x34;
txBuf[4]= 0x12;
txBuf[5]=TRUE; // ack request
txBuf[6]=10;
/[duty = getchar();
/[duty = getchar();

[ffprintf(stderr,” before Errno %d %d", errno,rtn);
scanf("%d",&duty);

[Irtn = fscanf(stdin, "Duty cycle %d",& duty);
[[fprintf(stderr,"Errno %d %d",errno,rt n);

tXBuf[7]=LOWER_BYTE(duty);
/I txBuf[7]=0xDE;

SLIP_Send(txBuf,17);

}
fprintf(stderr,".");
sleep(1);

}
SLIP_Term();

return O;

}

void sig_catcher(int sig){
fprintf(stderr,"SIG caught");
SLIP_Term();

exit(EXIT_FAILURE);
perror("SIGINT: port closed and exit.");

}

void menu(){
unsigned char txBuf[50];
int menu;
fprintf(stderr,"\n## Menu System ##\n");
fprintf(stderr, "1) Send Packet \n");
fprintf(stderr,"2) Set Channel \n");
fprintf(stderr,"3) set Short Address\n");
fprintf(stderr,"4) set Receiver control \n");
fprintf(stderr,"5) set PAN ID \n");
scanf("%d",&menu);
switch(menu){
case 1
int add=0,duty;
txBuf[0]= LOWER_BYTE(MAC_XMIT_PACKET);
txBuf[1]= UPPER_BYTE(MAC_XMIT_PACKET);
txBuf[2]= 17; // length

61

txBuf[3]= 0x34;
txBuf[4]= 0x12;
txBuf[5]=TRUE; // ack request
txBuf[6]=10;
fprintf(stderr,” Dest Addr in hex");
scanf("%X",&add);
if(add!=0){
txBuf[3] =LOWER_BYTE(add);
txBuf[4] =UPPER_BYTE(add);
}
fprintf(stderr,"LED Duty Cycle ");
scanf("%d",&duty);
txBuf[7]=LOWER_BYTE(duty);
SLIP_Send(txBuf,17);
fprintf(stderr,"\n");
Jbreak;
case 2
int chnl =0;
txBuf[0]= LOWER_BYTE(MAC_SET_CHANNEL);
txBuf[1]= UPPER_BYTE(MAC_SET_CHANNEL);
txBuf[2]= 4; /] length
fprintf(stderr,"\nChannel range 11-26 : ");
scanf("%d",&chnl);
while((chnl < 11)]|| (chnl > 26)){
fprintf(stderr,"\nIncorrect Channel ");
scanf("%d",&chnl);
}
txBuf[3] = LOWER_BYTE(chnl);
SLIP_Send(txBuf,4);

Jbreak;

case 3
int addr;
txBuf[0]J=LOWER_BYTE(MAC_SET_ADDR);
txBuf[1]J=UPPER_BYTE(MAC_SET_ADDR);
txBuf[2]=5;
fprintf(stderr,"\nNode address in Hex:");
scanf("%X",&addr);
txBuf[3] = LOWER_BYTE(addr);
txBuf[4] = UPPER_BYTE(addr);
SLIP_Send(txBuf,5);
Jbreak;

case 4:{
int rxCntrl;
txBuf[0]=LOWER_BYTE(MAC_SET_RECEIVER);
txBuf[1]J=UPPER_BYTE(MAC_SET_RECEIVER);
txBuf[2]=4;
fprintf(stderr,"\nReceiver control 1-On , 0-Off");
scanf("%d",&rxCntrl);
while((rxCntrl!=0) &&(rxCntrl'=1))}{

fprintf(stderr,"\nIncorrect:");
scanf("%d",&rxCntrl);

}
tXBuf[3]=LOWER_BYTE(rxCntrl);
SLIP_Send(txBuf,4);
Jbreak;

case 5

63

int panld;
txBuf[0]=LOWER_BYTE(MAC_SET_PAN_ID);
txBuf[1]J=UPPER_BYTE(MAC_SET_PAN_ID);
txBuf[2]=5;
fprintf(stderr,"\nSet PanID in HEx ");
scanf("%X",&panld);
txBuf[3]=LOWER_BYTE(panld);
txBuf[4]=UPPER_BYTE(panid);
SLIP_Send(txBuf,5);
Jbreak;

default:
fprintf(stderr,"Incorrect choice");

khkhkkhhkhhkkkk * *kkkkkkk * *kkkkkkk *kkkkkk
/ END /

/** K*kkkkkk

File Name: MAC.h *
Version: 0.1 *
Author: Sandeep Sirpatil *
License: GNU General Public License..............
Purpose: This file contains constants for MAC

and function prototypes

b R S

*kkkkkkk * *kkkkkkk * *kkkkkkk * *kkk ******/

#ifndef MAC_H
#define MAC_H

#define MAC_SET_PAN_ID
#define MAC_GET_PAN_ID
#define MAC_SET_ADDR
#define MAC_GET_ADDR
#define MAC_SET_CHANNEL
#define MAC_GET_CHANNEL
#define MAC_SET_RECEIVER
#define MAC_GET_RECEIVER
#define MAC_XMIT_PACKET
#define MAC_RECV_PACKET
#define MAC_SET_ACK 11
#define MAC_GET_ACK 12

NP

oo h W

= © ™y

/I FramelD + length + seqNum+SrcAdd+srcPanID+AckReq +Rssi+length
112 +1 +1 +2 +2 +1 +1+1=

11

#define MAC_RECV_PKT_OVERHEAD 11

#endif //IMAC_H

/************** E N D * *kkkkkkk * *kkkkkkk *******/

* *kkkkkkk * *kkkkkkk * *kkkkkkk *

File Name: SLIP.h

Version: 0.1

Author: Sandeep Sirpatil *

License: GNU General Public License..............

Purpose: This file contains SLIP configuration
and function prototypes

* 0% X 3k F X X T3

*

kkkkkkkkkhkkkhkkkhkkkhkkkhkkkhhkkhhkkkhkkkhkkkhhkkkhkkkkk

#ifndef SLIP_H
#define SLIP_H

/* SLIP definitions */

#define END 0300 /*indicates end of

#define ESC 0333 /*indicates byte s

#define ESC_END 0334 /*ESC ESC_END mean
*/

#define ESC_ESC 0335 /*ESC ESC_ESC mean
*/

#define SLIP_TX_BUFF_SIZE 250
#define SLIP_RX_BUFF_SIZE 500
#define FRAME_SIZE 250

[* Serial port definitions */
#define BAUD_RATE B9600

/l#define BAUD_RATE B57600
/l#define BAUD_RATE B115200
/l#define BAUD_RATE B230400

#define PORT “/dev/ttyAM1"

/* Function declerations*/
int SLIP_Init();
int SLIP_Term();

int SLIP_Process();
int SLIP_Send(unsigned char *buf, int len);
int SLIP_Recv(unsigned char *buf,int *length);

#endif //SLIP_H

/************** E N D * *kkkkkkk * *kkkkkkk

/**

File Name: SLIP.c

Version: 0.1

Author: Sandeep Sirpatil *
License: GNU General Public License..............
Purpose: This file implements SLIP Layer

L T S

/* The file contains the code to interface to the s

*kkkkkk

******/

packet OxCO */
tuffing OxDB */
s END data byte OxDC

s ESC data byte 0xDD

*******/

K*kkkkkk

******/

erial port

64

and send and receive SLIP frames*/
#include "include.h"

/I Receive Circular buffer
static int rx_rdldx =0;
static int rx_wrldx = 0;
static unsigned char rx_buffer[SLIP_RX_ BUFF_SIZE];
static unsigned char rx_lastByte;
struct rxFrame{
unsigned char buffer[FRAME_SIZE];
int length;
int iSEmpty;
int writeFlag;

k

struct rxFrame rx_frame;
struct termios oldconfig, newconfig;
int fd;

/* Function definitions of local functions */
int port_Open();

int port_Close();

int rx_putByte(char c);

int rx_getByte(unsigned char *c);

int SLIP_Init(){
rx_frame.isEmpty = TRUE;
rx_frame.writeFlag = FALSE;
rx_frame.length =0;
fd=0;
return (port_Open());

}

int SLIP_Term(){
return (port_Close());

int port_Open(){

int ret;

/* O_NOCTTY - this is not the controlling termi
Cntr-C will close process */

/* O_NDELAY or O_NONBLOCK - Do not care abt DC
non blocking read*/

/Ifd = open("/dev/ttyAM1", O_RDWR | O_NOCTTY |

fd = open(PORT, O_RDWR | O_NOCTTY | O_NDELAY);

if(fd == -1){

return -1; // port open failed

tcgetattr(fd, &oldconfig); // save the old conf

nal program else
D line status and

O_NDELAY);

65

tcgetattr(fd, &newconfig);

/I Set the port speed parameters
cfsetispeed(&newconfig, BAUD _RATE);
cfsetospeed(&newconfig, BAUD_RATE);
// 8N1

newconfig.c_cflag &= ~PARENB;
newconfig.c_cflag &= ~CSTOPB;
newconfig.c_cflag &= ~CSIZE;
newconfig.c_cflag |= CS8;

newconfig.c_cflag &= ~CRTSCTS; // No Flow contr

newconfig.c_cflag |= (CLOCAL | CREAD); // local

change and enable receiver

}

Il set line parameters for raw input; ie no pro

newconfig.c_lIflag &= ~(ICANON |ECHO|ECHOE] ISIG

/l Input flags
newconfig.c_iflag &= ~(IXON|IXOFF |IXANY);

[/l Output flags

newconfig.c_oflag &= ~OPOST,; // raw output
Il set the new options to the port

ret = tcsetattr(fd, TCSANOW, &newconfig);

return O;

int port_Close(){

}

Ilrestore old port settinngs
if(fd!=0 && fd!=-1){
tcsetattr(fd, TCSANOW, &oldconfig);
close(fd);
fprintf(stderr,"Port closed\n");
return O; // test

}

return -1;

/* Max packet size is about 150 bytes

sends a packet through the serial port frammed
*/

int SLIP_Send(unsigned char *buf, int len){

unsigned char slipBuff[SLIP_TX_BUFF_SIZE];

int idx=0;

inti;

/* send an initial END character to flush out
* have accumulated in the receiver due to lin
*/

slipBuff[idx] = END;

idx++;

for(i =0; i<len ;i++){

if(idx+2 > SLIP_TX_BUFF_SIZE){
return -1; // buffer overflow
}

ol
line no ownew

cessing

);

in slip protocol

any data that may
e noise

66

switch(buf[i]){

/I data equals END, then send ESC follo

case END:
slipBuff[idx] = ESC;
idx++;
slipBuff[idx] = ESC_END;
idx++;
break;

case ESC:
slipBuff[idx] = ESC;
idx++;
slipBuff[lidx] = ESC_ESC;
idx++;
break;

default:
slipBuff[idx] = buffi];
idx++;

}

slipBuff[idx] = END; // end of frame

idx++;

[lprintBuf(slipBuff,10); // debug

if(idx == write(fd,slipBuff,idx)){
fprintf(stderr,"write succ\n");
return O; // write success

Jelse {
return -1; // write failure

}
}

int SLIP_Recv(unsigned char *buf,int *length){
inti;
if(rx_frame.isEmpty ==FALSE)
for(i=0;i<rx_frame.length;i++){
buf[i] = rx_frame.buffer]i];
}
*length = rx_frame.length;
rx_frame.isEmpty = TRUE;

telse{
return -1; // no new frame

}

return O;

}

[* Serial receive Queue management functions */

int rx_putByte(char c){
if(rx_wrldx+1 ==rx_rdldx || (rx_wrldx+1 == SLIP
Irx_rdldx)) {
return -1; // Queue full

rx_buffer[rx_wrldx] = c;
rx_wrldx++;
if(rx_wrldx ==SLIP_RX_BUFF_SIZE){

wed by END

_RX_BUFF_SIZE &&

67

rx_wrldx =0;

}

return O;

int rx_getByte(unsigned char *c){

if(rx_rdldx == SLIP_RX_BUFF_SIZE){
rx_rdldx = 0; // reset it

if(rx_rdldx == rx_wrldx){
return -1; // Queue empty

}

rx_rdldx++;

*c = rx_buffer[rx_rdldx -1];

return O;

/I Should be called periodically to process the inp
int SLIP_Process(){

unsigned char buffer[50],ch;
int rtn=0, i=0;
int moredata = 1;

rtn = read(fd, &buffer, 50);
[lprintf("Slip read return %d ",rtn);
[ffprintf(stderr,"f-Slip read return ");
if(rtn >0){
for(i=0; i<rtn; i++){
rx_putByte(bufferl[i]);
/I TODO: need to take care of Queue ful

}

Il check the current frame status, if empty, lo

if(rx_frame.isEmpty == TRUE){
if(rx_frame.writeFlag == FALSE){ // beginni
rx_frame.length = 0;

}
while(moredata == TRUE){ // a getdata flag
if(rx_getByte(&ch) ==0){ // if a byte i
process it
switch(ch){
case END:
if(rx_frame.writeFlag ==FAL

frame

rx_frame.writeFlag = TR

write is in progress

}else{ // End of frame rece
rx_frame.isEmpty = FALS

frame is stored.

rx_frame.writeFlag = FA
moredata = FALSE; // en
[fprintf(stderr,"slip

ut buffer

| condition

ad new frame

ng of a new frame

s received then

SE){ //start of new
UE; // indicate the

ived.
E; // indicate a new

LSE;
d the while loop
got a frame\n");

68

break;
case ESC:
rx_lastByte = ESC; // keep

break;

case ESC_END:
if(rx_lastByte == ESC){
rx_frame.buffer[rx_fram
rx_frame.length++;
rx_lastByte = 0O;
lelse{ // TODO: handle erro
}
break;
case ESC_ESC:
if(rx_lastByte == ESC){
rx_frame.buffer[rx_fram
rx_frame.length++;
rx_lastByte = 0O;
lelse{ // TODO: handle erro
}
break;
default:
rx_frame.buffer[rx_frame.le
rx_frame.length++;

}else{ // no more data in Queue
moredata = FALSE;

}
} /i while
}

return O;

}

/************** E N D * *kkkkkkk * *kkkkkkk

/**

File Name: util.h
Version: 0.1
Author: Sandeep Sirpatil *

License: GNU General Public License..............
Purpose: This file contains utility macros
and function prototypes

* ok X X X X X

#ifndef UTIL_H
#define UTIL_H

#define LOWER_BYTE(X) ((unsigned char)(x & 0xFF))
#define UPPER_BYTE(x) ((unsigned char)((x & 0xFFO0O0)

Il x- MSB y-LSB

#define GET_INT(x,y) ((((unsigned char)x)<<8) |((u
void printBuf(unsigned char *buf, int len);

void clearBuf(unsigned char *buf, int len);

arecord of it

e.length] = END;

e.length] = ESC;

ngth] = ch;

*******/

K*kkkkkk

******/

>>8))

nsigned char)y))

69

void printPacket(unsigned char *buf, int len);
#endif

/************** E N D kkkkkkkkkkkkkkkkhkkkkhkkkkkkkkk

/* *kkk * *kkkkkkk * *kkkkkkk * *kkkk

* File Name: SLIP.h

* Version: 0.1

* Author: Sandeep Sirpatil

* License: GNU General Public License..............
* Purpose: This file utility functions

*

*

kkkkkkkkkhkkkhkkhkkkhkkkhkkkhhkkhkkkkhkkkhkkkhkhkkkhkkkkk

#include "include.h"

/* Printf the contenets of buffer in Hex to stderr*

void printBuf(unsigned char *buf, int len){
int i
fprintf(stderr,"# ");
for(i=0; i<len; i++){
fprintf(stderr,"%02X ", buf[i]);

fprintf(stderr,” ::");
}

void clearBuf(unsigned char *buf, int len){
int i=0;
for(i=0;i<len;i++){
buf[i] = 0;
}
}

void printPacket(unsigned char *buf, int len){
unsigned int frameld;
frameld = GET_INT(buf[1], buf[0]);
switch(frameld){
case MAC_SET PAN_ID:
break;
case MAC_GET_PAN_ID:
break;
case MAC_SET _ADDR :
break;

case MAC_GET_ADDR:
break;

case MAC_SET_CHANNEL:
break;

case MAC_GET_CHANNEL:
break;

case MAC_SET_RECEIVER:
break;

case MAC_GET_RECEIVER:
break;

case MAC_XMIT_PACKET:
break;

70

*******/

*kkkkkk

******/

case MAC_RECV_PACKET:

fprintf(stderr,"\n Packet Received:\n")

fprintf(stderr,” Frame Id : MAC_RECV_PA
%04X\n",frameld);

fprintf(stderr,” Frame Length: %u\n",bu

fprintf(stderr,” Frame Seq num: %u\n",b

fprintf(stderr,” Frame SrcAddr:
%04X\n",GET_INT(buf[5],buf[4]));

fprintf(stderr," Frame SrcPANId:
%04X\n",GET_INT (buf[7],buf[6]));

fprintf(stderr,” Frame ACK Request: %02

fprintf(stderr,” Frame RSSI: %d\n", buf

fprintf(stderr,” Frame Pkt Length: %u\n

printBuf(&buf[11],buf[10]);

fprintf(stderr,” End of Frame::\n");

break;
case MAC_SET_ACK:
break;
case MAC_GET_ACK:
break;
default:
fprintf(stderr," Case fail in func \"pr

}
}

/************** E N D kkkkkkkkkkkkkkkkhkkkkhkkkkkkkkk
/**

* File Name: include.h

Version: 0.1

Author: Sandeep Sirpatil *

License: GNU General Public License..............

Purpose: A general include file for the whole
application

L I R

*

*kkkkkkk * *kkkkkkk * *kkkkkkk * *kk%

#ifndef INCLUDE_H

#define INCLUDE_H

/I general definitions used in the stack
#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <termios.h>

#include <stdio.h>

#include <signal.h>

#include <unistd.h>
#include <stdlib.h>
#include <errno.h>

#include "util.h"
#include "SLIP.h"
#include "MAC.h"

CKET

f2));
uf{3]);

X\n", buf[8]);

[9D);
" buf[10]);

intPacket\" \n");

*******/
K*kkkkkk

******/

71

#ifndef TRUE
#define TRUE 1
#endif

#ifndef FALSE

#define FALSE 0
#endif

#endif // INCLUDE_H

khkhkkhkkhhkkkk * *kkkkkkk * *kkkk
/ END

*******/

72

