

 1

Don’t Click – Paint!
Using Toggle Maps to Manipulate Sets of Toggle Switches

Patr ick Baudisch
Integrated Publication and Information Systems Institute (IPSI)

German National Research Center for Information Technology (GMD)
64293 Darmstadt, Germany

+49-6151-869-854
baudisch@gmd.de

ABSTRACT
A toggle map is a set of toggle switches that allows the
manipulation of several switches with a single mouse
drag interaction. Because toggle switches are functionally
equivalent to black and white pixels interaction tech-
niques from paint programs can be adopted for this task.
A controlled experiment shows that toggle maps can
speed up interfaces containing many toggle switches such
as the interactive definition of user profiles. To maximize
time savings toggle maps have to be laid-out according to
co-occurrences between toggles. Efficiency gains result-
ing from the paint method open up new application areas
such as segmented interval sliders. As an example an ef-
ficient timer dialog is presented.

KEYWORDS
toggle map, toggle switch, user interface, efficiency, im-
age map, multiple select, painting

INTRODUCTION
Some applications, such as the interactive definition of
user profiles, require a large number of Boolean variables
to be set. To this purpose, toggle switches are often used
(Figure 1). However, setting a large number of toggle
switches can be time consuming. So how can toggle
switches be handled in an efficient way?

Spreadsheet programs, desktop GUIs and paint programs
provide means to select a number of items (cells, icons or
pixels respectively) with a single mouse drag operation.
These temporary selections define the range of the subse-
quent action, e.g. deletion.

Toggle switches can be handled the same way. First, a
number of switches is selected with a drag operation, then
an action such as set all can be performed. But toggle
switches are so simple that it makes sense to combine
selection and manipulation into a single interaction—let’s
paint toggle switches!

RELATED RESEARCH
Mary Valk, as well as Plaisant et al., have done interest-
ing work on the visual design of toggle switches [20, 21,
23]. Concepts and interfaces about entering times and
dates found in [3, 10, 13, 17] relate to the timer interface
presented in this article. Research about mouse dragging
can be found in [9], the involved basic research in the
original work by Fitts [8]. Since sets of toggle switches
have much in common with menus, research done on
menu layout can be transferred to toggle maps. For an
excellent overview over menu layout see [18, p. 261-
280]. See Chin [5,6] on bottom-up and top-down cluster-
ing approaches to menu layout. Layout of two-
dimensional menus according to item similarity or ac-
cording to frequency of co-occurrence is discussed by
McDonald et al. in [14, 16]. In [15] color-coding of menu
items is analyzed.

PAINTING
Since a toggle switch is functionally equivalent to a black
and white pixel, setting a whole dialog of toggle switches
is similar to painting a black and white image. Therefore
black and white paint tools found in painting programs
such as pencil, filled rectangle, polygon or line are di-
rectly applicable to toggle maps. Since selecting and
painting is syntactically equivalent, selection tools can be
used as well. They can be turned into painting tools by
automatically filling the selection. Figure 2 shows a vari-
ety of tools from a commercial painting program.

For most toggle map applications a single tool is suffi-
cient, although different applications favor different
tools. The pencil tool for example is most useful with a
smaller number of toggle switches laid-out in an irregular
pattern. The rectangle tool is especially effective if there
is a large number of toggle switches.

The painting mode defines how to manipulate painted-
over toggles. Extending toggle behavior into a paint mode
leads to simply inverting all painted-over toggles. More
useful is this slightly different mode: Only the first toggle
switch is inverted, subsequent toggles are set to the new
state of the first toggle switch. In this mode the rectangle
tool paints rectangles of set toggles if painting starts on
an unset toggle, otherwise it paints rectangles of unset

Wi t h Rober t Jacob’ s consent I have
submi t t ed t hi s ar t i c l e t wi ce t o UI ST
98: Besi de t hi s ar t i c l e t her e i s a
Technot e wi t h t he same t i t l e. I n case
t hi s ar t i c l e get s accept ed t he Tech-
not e wi l l aut omat i cal l y be r emoved!

 2

toggles. This allows users to over-paint fragmentized re-
gions with a single drag interaction, e.g. to set or reset a
whole map1. Since still at least the first toggle is inverted,
users always get visual feedback, which simplifies trial-
and-error learning. All interactions are triggered by a sin-
gle mouse button, allowing toggle maps using this paint-
ing mode to be run on a single button mouse system or on
touchscreen-based systems like palm-top computers.

Figure 2: Tools for differently shaped selections
(left) and tools for black and white painting (right).
Painting tools are pen, rubber, line, paint bucket
and copy stamp (All icon screenshots taken from
Adobe Photoshop [1]. Reproduced with the kind
permission of Adobe Systems Incorporated.)

REQUIREMENTS FOR APPLYING TOGGLE MAPS
Providing an additional painting function for sets of tog-
gle switches does not do “any harm”, but for them to be-
come real power tools the following requirements have to
be met.

1.) Individual items should bear no or only short de-
scriptions or names and should not require much

1 Actually, it can take up to two interactions. If within the bound-

ing box of all set switches at least one corner toggle is set then
the map can be reset at once by starting painting at this corner
toggle. Otherwise an additional click is required to set a corner
toggle first.

time for decision making. Otherwise users prefer to
release the mouse button and to click switches indi-
vidually.

2.) It must be possible to manipulate several toggle
switches per mouse drag. Otherwise there is no
speed-up. This requires two things: First, a signifi-
cant number of switches must be manipulated during
individual sessions. Toggle maps are therefore not
useful as menus, where usually only a single item per
usage is picked. Second, a significant frequency of
co-occurrence between toggles has to exist and to be
reflected by the layout (clustering) [15]. Setting dia-
logs, e.g. for customizing printing options of a word
processor, usually lack such co-occurrence relations
and are therefore not a good application area for tog-
gle maps.

LAYOUT
Toggle map layout has much in common with menu lay-
out. Similar to spatial menus, toggle maps profit from
two-dimensionality: Users can make use of visual recog-
nition and spatial memory. The goal of toggle map layout
is to maximize usage speed. In contrast to menus, toggle
maps not only help in reducing the cognitive effort for
finding items but also in reducing the manual effort for
picking items.

There are two basic layout concepts: Layout by subjec-
tive similarity of items and layout by frequency of co-
occurrence between items. These two approaches were
compared by McDonald et al. [14] who conducted ex-
periments on the layout of a simulated fast-food cash
register. Layout generation techniques applied in this ex-
periment can be used to layout toggle maps in a similar

Figure 1: Dialog allowing users to input their personal TV channel profile

 3

way. In the first part of the experiment (layout genera-
tion) subjects rated pairs of food items on the basis of
similarity (“How similar are these foods?”) and on the
basis of co-occurrence (“How well do these two foods go
together?”). The ratings were analyzed using non-metric
multidimensional scaling and disjoint cluster analysis.
Menu items were placed at the resulting coordinates with
boxes placed around them to serve as selectable areas on
a touch screen. In the second part of the experiment sub-
jects had to enter orders of one to four items each into
this simulated fast-food cash register. Usage speeds of the
similarity layout and the frequency of co-occurrence lay-
out were compared. McDonald et al. concluded “When
tasks involve multiple-item selections and minimum task-
execution time is important frequency of co-occurrence
offers greater efficiency” .

The results by McDonald et al. refer to menus—items
still had to be picked individually. Therefore these find-
ings should be even more clearly reproduced in the con-
text of toggle maps, where the grouping of items not only
allows them to be found more easily but also selected
more easily. Layout based on frequency of co-occurrence
therefore seems to be the method of choice to reduce
manual effort in using toggle maps. Kent L. Norman
summarizes: “ It is likely that in real-world applications
menu layouts based on frequency of co-occurrence are, in
general, superior to layouts based on similarity. ... Rating
of item relatedness by the users may result in structures
that are in some sense meaningful, but not appropriate to
the task at hand.” [18, p.272]. For good results toggle
map layouts can be constructed using bottom-up cluster-
ing [12]. Finding optimum layouts for toggle maps using
the rectangle tool is, on the other hand a difficult under-
taking. Here, frequently selected subsets should not only
be grouped but arranged in rectangles. This requirement
is not reflected by traditional clustering algorithms so that
new algorithms still have to be found.

In some applications cognitive user effort can be signifi-
cantly higher than the manual effort, e.g. if items bear
complex descriptions or if the dialog is to be used mostly
by first-time users. In such a situation layout should sacri-
fice part of its potential to the reduction of the cognitive
user effort for finding and deciding. In such a situation
layout based on subjective similarity can be useful. Simi-
larity-based layouts are more common and appear more
natural to users [15].

Another strategy to reduce cognitive effort is to empha-
size grouping of items graphically. Graphical highlighting
can help users to recognize related items as a group and
thus to choose whole groups of items at once. In Figure 1
grouping is done by using columns, and blocks within
columns. In the example shown in Figure 3 TV channels
are grouped according to their geographical locations (for
details on semantic space layout see [18, p. 269]).
McDonald et al. conducted experiments on using color-
coding to highlight groups of menu items [15]. They were

not able to show a positive effect of color-coding on rec-
ognition speed, but there are indications that these results
were caused by a side-effect of their color-coding mecha-
nism, i.e. the poorer readability of item names on the col-
ored menu buttons. See the results section at the end of
this article for more unexpected results about graphical
highlighting of grouping.

Figure 3: Toggle map offering German TV chan-
nels grouped according to their geographical lo-
cations. The black line shows one possible path
to activate the highlighted switches with a single
mouse interaction using a pen tool.

DON’T MOVE BOUNDARIES, PAINT AREAS!
Since large numbers of toggles are rendered manageable
using the toggle maps concept, this opens another promis-
ing application area: When a continuous variable like
time is segmented it can be represented as a set of toggle
switches. The toggle switches in turn can be manipulated
as a toggle map.

Figure 4: A toggle map timer interface. It allows
users to input intervals for a whole week. Intervals
of set switches are labeled as single intervals to
reduce cluttering.

Figure 4 shows a toggle map timer interface. Program-
ming the shown state (e.g. controlling house lighting dur-
ing absence) is possible with only three rectangle paint
operations. At the shown moment the time intervals for
the weekend are enlarged by adding the hours starting at
9 o’clock. When the mouse button is released old and

 4

new intervals unite automatically. Figure 5 shows how
this works.

a. b.

c. d.

Figure 5: Scaling a toggle map interval only re-
quires painting the addition. Touching or overlap-
ping intervals unite automatically.

The main conceptual difference between toggle map in-
terval sliders and handle-based interval sliders (Figure 6)
is the same as between painting and drawing. Toggle map
sliders work on segments while traditional interval sliders
work on boundaries. Painting deals with surfaces while
drawing deals with contours.

Figure 6: Slider element of the touchscreen VCR
timer dialog by Plaisant et al. [19, 22, p.214]. On-
and Off-Flags can be taken from the containers at
the top left and be dragged onto the time scale.

Preliminary user tests showed that toggle map interval
sliders are highly efficient, especially when several inter-
vals can be manipulated at once. Sweeping across several
days allows users to directly input quantified task descrip-
tions like “For all days of the week... but on Fridays and
Saturdays...” .

Unlike classical interval sliders toggle maps can do with-
out any handles. Enlarging an interval only requires paint-
ing the addition. In a similar way intervals can be short-
ened or even divided. Furthermore toggle map interval
sliders are especially easy to read, because a large share
of the screen surface is used for visual feedback. And
finally, like all toggle maps, they generate feedback on
every possible user interaction, which simplifies trial and
error learning.

The limited granularity of toggle maps may not be ac-
ceptable for some applications. To overcome this prob-
lem, again techniques from paint programs can be used:
Since time intervals and bitmap images are both digitized
continuums of limited resolution, zooming and scrolling
can be transferred from pixel painting to toggle maps.
Zooming-in magnifies pixels/toggles and thereby splits
them into several finer segments.

FUZZY MAPS
Some applications require entering more information than
can be expressed using toggle switches: User profiles can
contain several degrees of liking and disliking, allergy
tests result in skin reaction of different intensities, multi-

user calendars may work on probabilities. To reflect these
requirements in a user interface, pixel painting again de-
livers the metaphors. As black and white pixels are simi-
lar to Boolean values, gray-scale pixels are similar to
fuzzy values. Replacing toggle switches with elements
that can represent multiple distinct values turns toggle
maps into “ fuzzy maps” . To manipulate fuzzy maps the
described black and white painting tools can be comple-
mented with the gray-scale painting tools shown in Figure
7. The airbrush, for example, works like a pencil but in-
creases the value of fuzzy elements the longer they are
painted over. One possible painting mode for airbrush
painting is to incrementally paint with the left mouse but-
ton and to incrementally “erase” with the right mouse
button. The advantage of tools like the air-brush is that
they allow users to work on profiles as a whole instead of
adjusting individual elements.

Figure 7: Painting tools for grayscale images (air-
brush, gradient tool, smoothing, brush).

IMPLEMENTATION
Since today’s operating systems do not define any drag
method on toggle switches, the described interaction
techniques can be integrated without any conflicts with
existing applications.

The prototypes described in this article were imple-
mented as Java applets. Applet syntax was derived from
the calling format of html image maps [7]. An Image map
is a menu that is implemented as an image providing a set
of html links. A link is followed when its associated re-
gion within the image is clicked. Since toggle maps deal
with switches, not buttons, they have to display two dif-
ferent states for each item. Therefore toggle maps require
two bitmap parameters instead of one. The first contains
the appearance of the map where all switches are unset,
the second contains the state where all switches are set.
Similar to image maps, dimensions of the individual tog-
gle switch regions are passed as parameters. The ap-
proach to render switches on fore- and background im-
ages guarantees full freedom of the graphical design. At
the same time it allows to reuse all Java classes without
modification—only images and toggle switch regions
have to be changed.

 5

Figure 8: Implementation of a toggle map requires
a background and a foreground image.

EXPERIMENT
To verify the validity of our concepts we conducted a
controlled experiment on different interfaces allowing the
selection of subsets of channels from a TV channel user
profile dialog.

Subjects
Subjects were 74 persons from computer rooms at the
Darmstadt University of Technology who volunteered in
the experiment. Subject ages ranged from 15 to 55, 32%
were female. All subjects had at least some previous com-
puter experience. There was no significant influence of
age, sex, education and computer experience on perform-
ance during the experiment.

To acquire the theoretical optimum performance we
trained four expert users from our lab on performing all
individual tasks on the different interface versions.

Apparatus and material
Experiments were run on Toshiba Tecra 740 CDT note-
book computers with a 13.3 inch (33.8 cm) TFT color
display and an external two-button mouse. The operating
system was Microsoft Windows 95. Screen resolution
was adjusted to 1024 x 768 pixels. Interfaces were pro-
grammed in Java and were run on a Microsoft Internet
Explorer 4. Interfaces had a screen size of 24.5 cm x 12.5
cm. Individual toggle switches where 30 mm x 7 mm
large.

Interfaces
Four different versions of the TV channel user profile
dialogs were included in the experiment. Interfaces were
similar in several aspects. They offered 61 channels re-
ceivable in Germany that were grouped in a table-like
interface.

Interfaces differed in the following two aspects. The first
two interfaces used switches in Windows-style as shown
in Figure 1, while the last two interfaces used button-style
switches as shown in Figure 9. Both types of switches
were functionally equivalent and had the same sensitive
regions. Interfaces one and three allowed manipulation of
several switches at once using a rectangle paint tool,

while interfaces two and four only permitted clicking in-
dividual switches.

Figure 9: TV channel user profile dialog with but-
ton-style toggle switches.

Procedures
Subjects were randomly assigned to one of eight groups.
Groups were defined by the three variables paint/click,
graphical toggle style and layout as shown in Table 1.
The twelve items to select in the “good layout” condition
were grouped in three larger blocks (= high frequency of
co-occurrence between items). In the “poor layout” con-
dition they were more distributed (three single items,
three groups of two and one group of three).

“Good layout” “Poor layout”

Paint Click Paint Click

Button-Style

Windows-Style

Table 1: The eight subject groups in the experi-
ment

All subjects were given the same general instructions. To
test true applicability with first-time users, subjects were
not provided with any training and were not allowed to
see the interfaces before the experiment. The four groups
using paint interfaces were given the additional instruc-
tion “This dialog allows you to set or reset several
switches at once by dragging the mouse with depressed
button.”

Subjects had to select three sets of twelve TV channels
each from their interface. Performance was measured as
time to complete the task. Each selection process was
recorded individually. To exclude times for reading task
lists during the experiment, subjects had to learn channel
lists by heart before using the interface. The three selec-
tion tasks consisted of different sub-tasks. The first selec-
tion task required a) learning how to operate the inter-
face, b) finding the right toggle switches and c) setting
the switches. In the second task, subjects were given a
different set of channels2. Since users already knew how

2 Half of the subjects got the two involved sets in inverse
order to avoid effects based on differences between sets.

 6

to operate the interface the second time, this task con-
sisted only of b) finding the right toggle switches and
c) setting the switches. For the third selection task sub-
jects were asked to select the same channels from the
second task again. This time users already knew where to
find the switches, thus the task was only c) setting the
switches. Calculating the differences between these times
allowed the times for the three subtasks a, b and c to be
separated. After each selection users had to reset all tog-
gle switches. Times for resetting were recorded as well.

After the experiment subjects had to fill in a question-
naire about their subjective satisfaction. Then they had an
opportunity to try out the other three interface types (dif-
ferent toggle switch style and/or different possibility to
paint) and selected which of the four interfaces they pre-
ferred. The overall session lasted about 20 minutes.

Expert users did not participate in the three phase
conception. They had to complete all sixteen tasks (the
eight groups x two different sets) in random order. They
were given two trials on each interface to reduce the
effect of outliers.

Hypothesis
1. Users provided with a painting method should per-

form better than those clicking switches individually.
This should hold for first-time users as well as for
experts.

2. Because more switches can be manipulated at once,
differences in performance between paint group and
click group should be higher in the “good layout”
condition.

3. The button-style toggle switches should give better
optical feedback and allow for a better use of spatial
memory. Especially when entering the same set of
items a second time, button-style groups should
therefore perform better.

4. Rectangle painting allows users to reset the whole
map so efficiently that a “ reset all” button becomes
dispensable.

RESULTS
Analysis of the timed tasks was done using t-tests. First-
time users: During the first two selection tasks subjects in
the paint groups performed slightly better, but none of the
differences was significant due to high variations in times
for finding items. Learning times, i.e. differences between
the completion times for the first two tasks, did not show
any significant differences.

The third selection task (selecting the same set of items
again) contained only the manual effort for setting
switches. Here the speed-up of painting showed clearly.
Figure 10 shows the average task completion times. Dif-
ferences in the “good layout” condition are significant at
p<0.001. In the poor layout condition differences are not
significant due to two outliers in the paint group that re-

quired 12 seconds more than the next faster user in their
group.

Figure 10: Average task completion times in sec-
onds for first-time users

The results in the experts group showed the same trends
as the first-timers. In the “good layout” condition painting
users required an average of 1.97 seconds for task com-
pletion, which is more than twice as fast as the 4.1 sec-
onds of the click-only group (significant at p< 0.001). In
the “poor layout“ condition paint users were, at 4.86 sec-
onds, only slightly faster than the click-only group at 5.5
seconds (significant at p<0.01).

In all first-time user and expert user groups, layout had a
significant (p<0.01) interaction with task completion
time. The performance gain was always highest in the
“good layout” groups, i.e. if more switches could be ma-
nipulated per mouse interaction.

When asked about their preference for any of the four
interfaces styles, 88% of all subjects chose an interface
providing a painting method. This ratio was independent
of the interface type used during the experiment. The
preference for interfaces with painting method was espe-
cially high in the “good layout” groups.

Subjects using the button-style toggles did not perform
better than subjects using the Windows-style toggles. The
only advantage of the button-style toggles was that 78%
of all subjects subjectively preferred it. This style was
described as being easier to read and as providing a better
overview.

LESSONS LEARNED
First-time users needed an average of 6.6 seconds to reset
maps, which was much longer than expected. This con-
tradicts the fourth hypothesis with respect to first-time
users. Expert users never needed more than a second to
reset the whole map. This enormous difference between
first-timers and expert users was caused by the fact that
only two out of the 37 of first-timers provided with a
painting method figured out, how to reset whole sets with
a single paint interaction. Most first-time users reset the
map column per column, others reset the map exactly in

14,3

10,2

16,0

6,4

0

2

4

6

8

10

12

14

16

18

paint click
good layout

paint click
poor layout

 7

the same way they had set it. When we investigated this
phenomenon we determined:

1. Users avoided painting over unset toggle switches,
because they expected them to become set when
painting over them (“ invert” paint mode). When dis-
cussing this effect after the experiment subjects rated
the actually implemented paint mode as more useful,
but stated that “ invert” paint mode would be more
common. Expectation of “ invert” paint mode was es-
pecially common for computer experts.

2. The column layout of the channel selection applet
kept users from painting across columns. While the
columns helped grouping switches they kept users
from understanding the two-dimensional nature of
the interface.

The second finding was of even larger scope: Subjects
seemed to derive a mental model of possible interactions
from the first interaction they performed. Users who
could apply painting for their first interaction (that was
possible in the “good layout” conditions) were much
more likely to make use of the painting function during
the rest of the experiment. Users who started by clicking
were more likely to keep on clicking even when painting
could be usefully applied later. Some subjects even kept
on clicking to reset maps.

Can we keep first-time users from expecting a different
paint mode? Maybe it just takes some extra time for them
to examine their expectations and to discover the addi-
tional functionality hidden in the actually implemented
paint mode. Only an experiment containing a longer list
of tasks can clarify that. On the other hand we surely
have to reconsider the misleading layout, i.e. the columns
in the presented example. To check the restricting influ-
ence of the column layout we added another reset-task at
the end of the experiment. Before this task we gave sub-
jects the hint “ It is possible to paint across columns”
which caused 27 out of 37 paint method users to discover
the optimum reset strategy and let the average task com-
pletion time drop to one third (2.12 seconds). Obviously
graphical highlighting of grouping should be used with
care.

CONCLUSION AND FUTURE WORK
Toggle maps profit from defining a drag method on tog-
gle switches—an interaction still undefined in today’s
operating systems. Experimental results suggest that de-
fining such a drag method as toggle switch “painting”
leads to performance improvements and increased sub-
jective satisfaction. Efficiency gains resulting from the
paint method open up new application areas such as seg-
mented interval sliders.

To apply toggle maps successfully, layout requires addi-
tional attention. Relations within the set, first of all fre-
quency of co-occurrence, have to be determined and
translated into layout. Layout enhancements such as
graphical grouping have to be considered carefully. They

can help users in reducing cognitive costs but can as well
mislead users to restrict their interactions to the high-
lighted structures.

Future work will include automated toggle map layout,
applications on palm top computers and controlled ex-
periments on toggle map interval sliders. More parame-
ters like painting methods, layout types and graphical
grouping will be formally evaluated. The experiment pre-
sented in this article can therefore only be a first step in
understanding the involved variables.

All toggle map dialogs in this article were developed as
part of the TV-program recommender project at GMD-
IPSI [2]. They can be freely downloaded from
http://www. darmstadt.gmd.de/~baudisch/Publi-
cations/ToggleMaps

ACKNOWLEDGMENTS
I thank Dieter Böcker, Ulrich Thiel and Barbara Lutes for
their support. Special thanks to my students Robert
Werner and Matthias Eilers for the implementation, Hen-
ning Meyer for conducting the user tests and Tom Stölt-
ing, the art director of TV TODAY, for his contribution
to the graphical design of the applets shown in this arti-
cle.

REFERENCES
1. Adobe Photoshop 4.0 User Manual, Adobe Systems

Incorporated, San Jose, CA, 1996

2. Baudisch, P., Recommending TV programs on the
Web: How far can we get at zero user effort, to appear
in: Proceedings of Recommender Systems 98, Work-
shop within AAAI 98, Madison, Wisconsin, 1998

3. Beard, D., Humm, A., A visual calendar for schedul-
ing small group meetings. technical report, Depart-
ment of Computer Sciences, Technical report, De-
partment of Computer Sciences, Univ. of North Caro-
lina at Chapel Hill, 1989

4. Card, S., Moran, T. and Newell, A. (1983), The Psy-
chology of Human-Computer Interaction, Hillsdale,
NJ: Lawrence Erlbaum Associates

5. Chin, J.P., Mental Models: Hierarchical Organization
of computer menu functions, derived from top-
down/bottom-up processing. Master thesis, University
of Maryland, College Park, MD, 1986

6. Chin, J.P., Top-down and bottom-up menu design,
Proceedings of the Second international Conference
on Human/Computer Interaction, p.144, Honolulu,
HI, 1987

7. Durding, B.M., Becker, C.A., and Gould, J.D., Data
organization. Human Factors, 19, 1-14, 1977

8. Fitts, P.M., “The information capacity of the human
motor system is controlled by the amplitude of move-
ment” , Journal of Experimental Psychology, 7 0, 93-
242, 1954

 8

9. Gillian, D.J., Holden, K., Adam, S., Rudisill, M.,
Magee, L., How does fitts’ law fit pointing and drag-
ging?, CHI’90 Conference Proceedings: Human Fac-
tors in Computer Systems (p.227-234), New York,
ACM, 1990

10. Gould, J., Boies, S., Meluson, A., Rasamny, M., and
Vosburgh, A., Entry and selection methods for speci-
fying dates, Human Factors, 1989, 31(2), 199-214

11. Image Maps: Online documentation at http://theory.
lcs.mit.edu/~boyko/imagemap.html

12. Lindsey, P.H., and Norman, D.A., Human information
processing, New York: Academic Press, 1977

13. Mac Carthy J.R., A Matter of Time - the Story of the
Watch, Harper & Brothers, 1947

14. McDonald, J.E., Dayton, T., McDonald, D.R., Adapt-
ing menu layout to tasks (MCCS-86-78). Las Cruces,
NM: Memoranda in Computer and Cognitove Sci-
ence, Computer Research Laboratory, New Mexico,
State University, 1986

15. McDonald, J.E., Molander, M.E., and Noel, R.W.
Color coding categories in menues. CHI’88 Confer-
ence Proceedings: Human Factors in Computer Sys-
tems (p.101-106), New York, ACM, 1988

16. McDonald, J.E., Stone, J.D., Liebolt, L.S., (1982)
Evaluating a method for structuring the user-system
interface. Proceedings of the Human Factors Soci-
ety—26th Meeting (p. 551-555). Santa Monica, CA:
Human Factors Society.

17. Norman, D.A., The Psychology of Everyday Things,
Basic Books, New York, 1988

18. Norman, K. L., The Psychology of Menu Selection:
Designing cognitive control at the human/computer
interface, Norwood, New Jersey, Ablex, 1991

19. Plaisant, C., Shneiderman, B., Battaglia, J., Schedul-
ing home control devices: A case study of the transi-
tion from the research project to a product, Technical
report 90-10, University of Maryland, 1995, available
online at http://www.cs.umd.edu/hcil

20. Plaisant, C., Wallace, D., Touchscreen Toggle Design,
CHI’92 Conference Proceedings: Human Factors in
Computer Systems (p.667-668), New York, ACM,
1992

21. Plaisant, C., Wallace, D., Touchscreen Toggle
Switches: Push or slide? Design issues and usability
study. University of Maryland technical report CAR
TR-521, CS-TR-2557, 1990

22. Shneiderman, B., Designing the User Interface:
Strategies for effective human-computer interaction,
Third edition, Reading MA: Addison-Wesley, 1998

23. Valk, A.M., An experiment to study touchscreen “but-
ton” design, Proceedings of the Human Factors Soci-
ety, 29, 127-131, 1985

