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1 Introduction

Common Logic (CL) is an ISO standard published as “ISO/IEC 24707:2007 — Information technology —
Common Logic (CL): a framework for a family of logic-based languages” [12]. CL is based on untyped
first-order logic, but extends first-order logic in two ways: (1) any term can be used as function or
predicate, and (2) sequence markers allow for talking about sequences of individuals directly.1

The Heterogeneous Tool Set (HETS) is an open source software providing several kinds of tool support
for Common Logic:

1Strictly speaking, only the second feature goes beyond first-order logic.
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Figure 1: The HETS motherboard and some expansion cards

• a parser for the Common Logic Interchange Format (CLIF) — CLIF is a Lisp-like syntax for CL;

• a connection of CL to well-known first-order theorem provers like SPASS, darwin and Vampire, such
that logical consequences of CL theories can be proved;

• a connection of CL to the higher-order provers Isabelle/HOL and Leo-II in order to perform induc-
tion proofs in theories involving sequence markers;

• a connection to first-order model finders like darwin that allow one to find models for CL theories;

• support for proving interpretations between CL theories to be correct;

• a translation that eliminates the use of CL modules2. Since the semantics of CL modules is special
to CL, this elimination of modules is necessary before sending CL theories to a standard first-order
prover;

• a translation of the Web Ontology Language OWL to CL;

• a translation of propositional logic to CL.

This guide will introduce you to these functionalities of HETS. For the full functionalities of HETS, see
the HETS user guide [44].

2 The Heterogeneous Tool Set and Its Input Languages

The central idea of the Heterogeneous Tool Set (HETS) is to provide a general framework for formal
methods integration and proof management. One can think of HETS acting like a motherboard where
different expansion cards can be plugged in, the expansion cards here being individual logics (with their
analysis and proof tools) as well as logic translations. The HETS motherboard already has plugged in
a number of expansion cards (e.g., the theorem provers Isabelle, SPASS and more, as well as model
finders). Hence, a variety of tools is available, without the need to hard-wire each tool to the logic at
hand.

HETS consists of logic-specific tools for the parsing and static analysis of the different involved logics, as
well as a logic-independent parsing and static analysis tool for structured and architectural specifications

2Actually, we are using a revised semantics for modules, as proposed recently in [33].
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and libraries. The latter of course needs to call the logic-specific tools whenever a basic specification is
encountered.

HETS is based on the theory of institutions [16], which formalise the notion of a logic. The theory
behind HETS is laid out in [25]. A short overview of HETS is given in [27, 28].

HETS supports a number of input languages directly, such as Common Logic and OWL2 and HETCASL.
They will be described in the next sections.

2.1 Common Logic and the Common Logic Interchange Format (CLIF)

CLIF is specified in Annex A of the Common Logic standard [12]. HETS can directly read in files in CLIF
syntax, and also recursively reads in any imported files (cf. Sect. 8.1 for the syntax).

Common Logic itself does not support the specification of logical consequences, nor relative theory
interpretations, nor other features that speak about structuring and comparing logical theories. Michael
Grüninger has suggested certain special annotations comments for this purpose, which are supported by
HETS, see Sect. 8.1. Alternatively, CLIF syntax can be used for specifications within HETCASL files, or CLIF
files can be referred to within HETCASL files. HETCASL is a structuring language supporting relative theory
interpretations and other things, see Sect. 2.3 below.

2.2 OWL2

OWL2 is a W3C standard [3]. HETS can directly read in OWL2 files in all syntaxes (called “serialisa-
tions”) that the OWL API supports [2], including the native OWL XML syntax [31], the human-readable
Manchester syntax [21], as well as RDF [35]. The RDF data model has multiple possible syntaxes itself,
including RDF/XML [7] and the text-oriented Turtle syntax [8].

Since OWL2 does not support relative theory interpretations and other structuring features, such
things can only be expressed in HETCASL files. For this purpose, OWL2 Manchester syntax can be used
within HETCASL files, or OWL2 files can be referred to within HETCASL files.

2.3 HetCASL

For heterogeneous specification, HETS offers the Heterogeneous language HETCASL. HETCASL is not so much
a logic, but a meta language that can express relations of theories written in different logics, like logical
consequences, relative interpretations of theories, conservative extensions, translations of theories along
logic translations, etc.

HETCASL generalises the structuring constructs of CASL (Common Algebraic Specification Language [11,
29]) to arbitrary logics (if they are formalised as institutions and plugged into the HETS motherboard),
as well as to heterogeneous combinations of specifications written in different logics. See Fig. 1 for a
simple subset of the HETCASL syntax, where basic specifications are unstructured specifications or modules
written in a specific logic. The graph of currently supported logics and logic translations (the latter are
also called comorphisms) is shown in Fig. 2, and the degree of support by HETS in Fig. ??.

With heterogeneous structured specifications, it is possible to combine and rename specifications, hide
parts thereof, and also translate them to other logics. Architectural specifications prescribe the structure
of implementations. Specification libraries are collections of named structured and architectural specifi-
cations. Refinements express the fact the a specification is becoming more specific. All this is supported
by HETCASL. For details, see [24, 25, 29].

3 Logics supported by Hets

HETS supports a variety of different logics. The following are most important for use with Common Logic:

Common Logic is an ISO standard published as “ISO/IEC 24707:2007 - Information technology — Com-
mon Logic (CL): a framework for a family of logic-based languages” [12]. It is based on first-order
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Listing 1: Syntax of a simple subset of the heterogeneous specification language. BASIC-SPEC and
SYMBOL-MAP have a logic specific syntax, while ID stands for some form of identifiers.
SPEC ::= BASIC-SPEC %% logic-specific syntax, e.g. CLIF or Manchester syntax

| SPEC then SPEC %% extension of a spec with new symbols and axioms
| SPEC then %implies SPEC %% annotation: extension is logically implied
| SPEC with SYMBOL-MAP %% renaming of SPEC along SYMBOL-MAP
| SPEC with logic ID %% translation of SPEC to a different logic

DEFINITION ::= logic ID %% select a new logic for subsequent items
| spec ID = SPEC end %% give the name ID to SPEC
| view ID : SPEC to SPEC = SYMBOL-MAP end
%% interpretation of theories

| view ID : SPEC to SPEC = logic ID end
%% dto., but across different logics

LIBRARY = DEFINITION*

CL.Full#

HOL

SROIQ

FOL
(TPTP)

CFOL

CL.Seq#

CL.Fol#

CL.Imp#

th

red:       full higher-order logic

orange: some second-order constructs

yellow:  semi-decidable first-order logic

green:   decidable ontology language

inclusion

model-expansive comorphism

faithful comorphism

th       theoroidal comorphism

inf      comorphism generating infinite signatures

inf inf

th

th

th subinstitution

Figure 2: Graph of logics related to Common Logic that are currently supported by HETS.
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logic, but extends first-order logic in several ways. The Common Logic Interchange Format (CLIF)
provides a Lisp-like syntax for Common Logic. HETS currently only supports parsing CLIF. If you
need other dialects, send us a message and we will add them.

OWL2 is the Web Ontology Language recommended by the World Wide Web Consortium (W3C, http:
//www.w3c.org); see [3]. It is used for knowledge representation on the Semantic Web [10].
Hets calls an external OWL2 parser written in Java to obtain the abstract syntax for an OWL file
and its imports. The Java parser also does a first analysis classifying the OWL ontology into the
sublanguages OWL Full (all of OWL, under the RDF semantics, undecidable [38]), OWL DL (all of
OWL, under the direct semantics [32]), and the so-called OWL Profiles (i.e. proper sublanguages)
OWL EL, OWL QL, and OWL RL [30]. Hets supports all except OWL Full. The structuring of the
OWL imports is displayed as a Development Graph.

Propositional is classical propositional logic, with the zChaff SAT solver [20] connected to it.

SoftFOL [23] offers several automated theorem proving (ATP) systems for first-order logic with equality:
(1) SPASS [46], see http://www.spass-prover.org; (2) Darwin [6], see http://combination.
cs.uiowa.edu/Darwin; (3) Vampire [37] see http://www.vprover.org; (4) Eprover [40],
see http://www.eprover.org; (5) E-KRHyper [36], see http://www.uni-koblenz.de/
~bpelzer/ekrhyper, and (6) MathServe Broker3 [47]. These together comprise some of the
most advanced theorem provers for first-order logic. SoftFOL is essentially the first-order inter-
change language TPTP [41], see http://www.tptp.org.

CASL extends many sorted first-order logic with partial functions and subsorting. It also provides induc-
tion sentences, expressing the (free) generation of datatypes. For more details on CASL see [29, 11].
For Common Logic, CASL can be seen as kind of transitional hub, linking Common Logic to other
logics, most importantly SoftFOL.

ISABELLE [34] is the logic of the interactive theorem prover Isabelle for higher-order logic.

THF is an interchange language for higher-order logic [9], similar to what TPTP is for first-order logic.
HETS connects THF to the automated higher-order prover Leo-II.

HasCASL is a higher order extension of CASL allowing polymorphic datatypes and functions. It is closely
related to the programming language Haskell and allows program constructs being embedded in
the specification. For Common Logic, HASCASL is mainly interesting as a transitional hub for paths
to the provers Isabelle and Leo-II.

RelScheme is a logic for relational databases [39].

Various logics are supported with proof tools. Proof support for the other logics can be obtained
by using logic translations to a prover-supported logic. For Common Logic, the paths to SoftFOL are
particularly interesting, because this offers an interface to standard first-order provers. Moreover, the
paths to THF and Isabelle offer interfaces to higher-order provers, which is essential if you want to prove
inductive theorems about sequences.

An introduction to CASL can be found in the CASL User Manual [11]; the detailed language reference
is given in the CASL Reference Manual [29]. These documents explain both the CASL logic and language
of basic specifications as well as the logic-independent constructs for structured and architectural spec-
ifications. The corresponding document explaining the HETCASL language constructs for heterogeneous
structured specifications is the HETCASL language summary [24]; a formal semantics as well as a user
manual with more examples are in preparation. Some of HETCASL’s heterogeneous constructs will be il-
lustrated in Sect. 7 below.

For further information on logics supported by HETS, see the HETS user guide [44].

3which chooses an appropriate ATP upon a classification of the FOL problem
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4 Logic translations supported by Hets

Logic translations (formalised as institution comorphisms [15]) translate from a given source logic to a
given target logic. More precisely, one and the same logic translation may have several source and target
sublogics: for each source sublogic, the corresponding sublogic of the target logic is indicated.

In more detail, the following list of logic translations involving Common Logic is currently supported
by HETS:

CommonLogic2CASL Coding Common Logic to CASL. Module elimination is applied be-
fore translating to CASL.

CommonLogic2CASLCompact Coding compact Common Logic to CASL. Compact Common Logic
is a sublogic of Common Logic where no sequence markers oc-
cur. Module elimination is applied before translating to CASL. We
recommend using this comorphism whenever possible because it
results in simpler specifications.

CommonLogicModuleElimination Eliminating modules from a Common Logic theory resulting in an
equivalent specification without modules.

OWL22CommonLogic Inclusion of OWL2 description logic
Prop2CommonLogic Inclusion of propositional logic
SoftFOL2CommonLogic Inclusion of first order logic
CASL2SoftFOL Coding of CASL.SuleCFOL=E to SoftFOL [23], mapping types to

soft types
CASL2SoftFOLInduction Same as CASL2SoftFOL but with instances of induction axioms

for all proof goals
CASL2SoftFOLInduction2 Similar to CASL2SoftFOLInduction but replaces goals with induc-

tion premises
CASL2Propositional Translation of propositional FOL

Those comorphisms can be chained, e.g., for theorem proving, you can translate Common Logic to
SoftFOL with CommonLogic2CASLCompact;CASL2SoftFOLInduction since there is no prover for
Common Logic or CASL.

For further information on logic translations supported by HETS, see the HETS user guide [44].

5 Getting started

The latest HETS version can be obtained from the HETS tools home page

http://www.dfki.de/sks/hets

Since HETS is being improved constantly, it is recommended always to use the latest version.
HETS is currently available (on Intel architectures only) for Linux and Mac OS X.
There are several possibilities to install HETS.

1. The best support is currently given via Ubuntu packages. For Ubuntu Lucid Lynx, enter the following
into a terminal:

sudo apt-add-repository ppa:hets/hets
sudo apt-add-repository \

"deb http://archive.canonical.com/ubuntu lucid partner"
sudo apt-get update
sudo apt-get install hets

For later Ubuntu versions, replace lucid by maverick, natty or oneiric.

This will also install quite a couple of tools for proving requiring about 800 MB of disk space. For a
minimal installation use apt-get install hets-core instead of hets.
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2. For Mac OS X 10.6 (Snow Leopard) we provide a meta package Hets.mpkg based on MacPorts
that will be extended by further tools for proving in the future.

3. Then we have Java based HETS installer that we may drop in the future. Download a .jar file and
start it with

java -jar file.jar

Note that you need Sun/Oracle Java 1.4.2 or later. On a Mac, you can just double-click on the .jar
file, but you have to install the MacPorts libglade2 package (and all its dependencies) yourself.
In order to speed this up we provide a meta package libglade2.mpkg, too.

The installer will lead you through the installation with a graphical interface. It will download and
install further software (if not already installed on your computer):

Hets-lib specification library http://www.cofi.info/Libraries
uDraw(Graph) graph drawing http://www.informatik.uni-bremen.de/

uDrawGraph/en/
Tcl/Tk graphics widget system (version 8.4 or 8.5 must be installed before)
SPASS theorem prover http://spass.mpi-sb.mpg.de/
Darwin theorem prover should be installed manually from http://combination.

cs.uiowa.edu/Darwin/
ISABELLE theorem prover http://www.cl.cam.ac.uk/Research/HVG/

Isabelle/
(X)Emacs editor (for Isabelle) (must be installed manually)

4. If you do not have Sun/Oracle Java, you can just download the hets binary. You have to unpack
it with bunzip2 and then put it into some place covered by your PATH environment variable.
You also have to install the above mentioned software and set several environment variables, as
explained on the installation page.

5. You may compile HETS from the sources (they are licensed under GPL), please follow the link “Hets:
source code and information for developers” on the HETS web page, download the sources (as tarball
or from svn), and follow the instructions in the INSTALL file, but be prepared to take some time.

Depending on your application further tools are supported and may be installed in addition:

zChaff SAT solver http://www.princeton.edu/~chaff/zchaff.html
minisat SAT solver http://minisat.se/
Pellet OWL reasoner http://clarkparsia.com/pellet/
E-KRHyper theorem prover http://userpages.uni-koblenz.de/~bpelzer/ekrhyper/
Reduce computer algebra system http://www.reduce-algebra.com/
Maude rewrite system http://maude.cs.uiuc.edu/
VSE theorem prover (non-public)
Twelf http://twelf.plparty.org/

6 Analysis of Specifications

Consider the following Common Logic text written in CLIF:

(P x)
(and (P x) (Q y))
(or (Cat x) (Mat y))
(not (On x y))
(if (P x) (Q x))
(exists (z) (and (Pet x) (Happy z) (Attr x z)))
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HETS can be used for parsing and checking static well-formedness of specifications.
Let us assume that the example is in a file named Cat-AllInOne.clif.4 Then you can check the

well-formedness of the specification by typing (into some shell):

hets Cat-AllInOne.clif

HETS checks both the correctness of this specification with respect to the CLIF syntax, as well as its
correctness with respect to the static semantics. The following flags are available in this context:

-p, --just-parse Just do the parsing – the static analysis is skipped and no development graph is
created.

-s, --just-structured Do the parsing and the static analysis of (heterogeneous) structured specifi-
cations, but leave out the analysis of basic specifications. This can be used for prototyping issues,
namely to quickly produce a development graph showing the dependencies among the specifica-
tions (cf. Sect. 8) even if the individual specifications are not correct yet.

-L DIR, --hets-libdir=DIR Use DIR as a colon separated list of directories for specification li-
braries (equivalently, you can set the variable HETS_LIB before calling HETS).

There are more flags which can be used with HETS, see [44].

7 Heterogeneous Specification

HETS accepts plain text input files (for the presented logics) with the following endings:

filename extension default logic structuring language
.casl CASL CASL

.het CASL CASL

.owl OWL2 OWL2

.clf or .clif CommonLogic custom, see Sect. 8.1

Although the endings .casl and .het are interchangeable, the former should be used for libraries of
homogeneous CASL specifications and the latter for HETCASL libraries of heterogeneous specifications (that
use the CASL structuring constructs). Within a HETCASL library, the current logic can be changed, e.g., to
Common Logic in the following way:

logic CommonLogic

The subsequent specifications are then parsed and analysed as Common Logic specifications. Within
such specifications, it is possible to use references to named CASL specifications; these are then automat-
ically translated along the default embedding of CASL into Common Logic (cf. Fig. 2). (There are also
heterogeneous constructs for explicit translations between logics, see [24].)

The endings .clf and .clif are available for directly reading in Common Logic CLIF texts, as in
the example of Cat-AllInOne.clif. By contrast, in HETCASL libraries (ending with .het), the logic
Common Logic has to be chosen explicitly, and the CASL structuring syntax needs to be used:

library Cat

logic CommonLogic

spec Pred =
. (P x)

(and (P x) (Q y))

4This file can be found in the CommonLogic/Examples directory in the HETS library [1].
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spec Cat =
. (or (Cat x) (Mat y))

(not (On x y))
(if (P x) (Q x))

spec PetHappy =
Pred and Cat then
. (exists (z) (and (Pet x) (Happy z) (Attr x z)))
end

Note that the dot at the beginning of a line indicates that a new text begins. Hence, it is possible to
have multiple texts in a CASL specification.

This specification is the HETCASL-structured equivalent to the following three CLIF files:5

Pred.clif:

(cl-text Pred
(P x)
(and (P x) (Q y))

)

Cat.clif:

(cl-text Cat
(or (Cat x) (Mat y))
(not (On x y))
(if (P x) (Q x))

)

Spec.clif:

(cl-text PetHappy
(cl-imports Pred) (cl-imports Cat)
(exists (z) (and (Pet x) (Happy z) (Attr x z)))

)

Both can be directly used with HETS, where the former content would be in a file with the extension
.het and the latter in a file with one of the extensions .clf or .clif.6 This specification is divided
into three parts, which are linked to each other. These links and some more information can be seen in
the development graph of the file.

8 Development Graphs

Development graphs are a simple kernel formalism for (heterogeneous) structured theorem proving and
proof management.

A development graph consists of a set of nodes (corresponding to whole structured specifications
or parts thereof), and a set of edges called definition links, indicating the dependency of each involved

5Note that the “cl:text” syntax specified in the Common Logic standard [12] has subsequently been recorded as a defect [13], in
favor of “cl-text”. HETS supports both.

6These files can be found in the CommonLogic/Examples directory in the HETS library [1].
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structured specification on its subparts. Each node is associated with a signature and some set of local
axioms. The axioms of other nodes are inherited via definition links. Definition links are usually drawn
as black solid arrows, denoting an import of another specification.

Complementary to definition links, which define the theories of related nodes, theorem links serve for
postulating relations between different theories. Theorem links are the central data structure to represent
proof obligations arising in formal developments. Theorem links can be global (drawn as solid arrows)
or local (drawn as dashed arrows): a global theorem link postulates that all axioms of the source node
(including the inherited ones) hold in the target node, while a local theorem link only postulates that the
local axioms of the source node hold in the target node.

Both definition and theorem links can be homogeneous, i.e. stay within the same logic, or heteroge-
neous, i.e. the logic changes along the arrow.

Theorem links are initially displayed in red. The proof calculus for development graphs [26, 25] is
given by rules that allow for proving global theorem links by decomposing them into simpler (local and
global) ones. Theorem links that have been proved with this calculus are drawn in green by HETS. Local
theorem links can be proved by turning them into local proof goals. The latter can be discharged using a
logic-specific calculus as given by an entailment system for a specific institution. Open local proof goals
are indicated by marking the corresponding node in the development graph as red; if all local implications
are proved, the node is turned into green. This implementation ultimately is based on a theorem [25]
stating soundness and relative completeness of the proof calculus for heterogeneous development graphs.

Details can be found in the CASL Reference Manual [29, IV:4] and in [25, 26, 28].
The following options let HETS display the development graph of a specification library:

-g, --gui shows the development graph in a GUI window

-u, --uncolored no colours in shown graphs

The following additional options also apply typical rules from the development graph calculus to the
final graph and save applying these rules via the GUI.

-A, --apply-automatic-rule apply the automatic strategy to the development graph. This is what
you usually want in order to get goals within nodes for proving.

-N, --normal-form compute all normal forms for nodes with incoming hiding links. (This may take
long and may not be implemented for all logics.)

For a summary of the types of nodes and links occurring in development graphs, see the HETS user
guide [44].

Most of the pull-down menus of the development graph window are uDraw(Graph)-specific layout
menus; their function can be looked up in the uDraw(Graph) documentation7. The Edit menu is the
only exception. With choosing Edit→Proofs→Auto-DG prover, you can can prove red theorem links
(which may be generated by relative interpretations of theories). Actually, this will generate new proof
obligations at some node, which then can be discharged there. Moreover, the nodes and links of the
graph have attached pop-up menus, which appear when clicking (and holding) the right mouse button.
The node menus “Prove” and “Check consistency” are the most important ones. With “Add sentence”, you
can add axioms and proof goals on the fly. For a detailed explanation of the menus see the HETS User
Guide [44].

8.1 Relations between Common Logic Texts

HETS supports several relations between Common Logic Texts. However only one of them, the impor-
tation, is defined in ISO/IEC 24707:2007 [12], and has a syntax within Common Logic. All the other
relations are unofficial extensions used e.g. by the Common Logic Repository COLORE [17], and repre-
sented externally of Common Logic texts. COLORE currently represents them in external XML documents,

7see http://www.informatik.uni-bremen.de/uDrawGraph/en/service/uDG31_doc/.
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and any required symbol maps in external CLIF files. HETS, in contrast, allows for declaring them as views
within HETCASL files, outside of specifications, as can be seen from the syntax specification in List. 1.

Importation is defined in ISO/IEC 24707:2007 [12] as virtual copying of a resource. In HETS a whole
file is “copied” into the importing specification. Hets cannot currently handle cyclic imports. If you
really need them, send us a message at hets@informatik.uni-bremen.de, and we will fix it.

Using CLIF, you can import someFile.clif via

(cl-imports someFile.clif)

Omitting the file extension will also succeed. In this case HETS will look for a file called someFile.clif
in first place and then for someFile.clf in the current directory and then in the library paths.

HETS also supports URIs for importing resources. The allowed URI schemes are file:, http: and
https:.

(cl-imports file:///absolute/path/to/someFile.clif)
(cl-imports http://someDomain.com/path/to/someFile.clif)
(cl-imports https://someDomain.com/path/to/someFile.clif)

The importation is indicated by a global definition link (black arrow) in the development graph.

Relative interpretation is formally defined in [19]. Informally, one module relatively interprets those
“modules whose theorems are preserved within the current module through [a] mapping. There
exists a mapping between modules such that all theorems of the other module hold in the current
module after the mapping is applied.” [18]

HETS represents relative interpretation by a theorem link (red arrow) in the development graph.

The HETCASL syntax for relative interpretations is

view v : someCLText to someTargetCLText end

or

view v : { someCLText with <symbol map (see below)> } to someTargetCLText end

where a symbol map allows for renaming symbols, e.g.

name1Old |-> name1New, name2Old |-> name2New.

We provide a concrete examples in Sect. 8.2 below.

Just as with imports (see above), HETS supports different types of references to resources here, such
as URIs.

Non-conservative extension is informally defined as follows: One module non-conservatively extends
other modules, if its “axioms entail new facts for the shared lexicon of the [other] module(s). [That
is, the] shared lexicon between the current module and a [non-conservatively extended] module
are not logically equivalent with respect to their modules.” [18].

HETS represents non-conservative extension by a theorem link (red arrow) in the development
graph.

Just as with imports (8.1), HETS supports different types of references to resources here, as e.g.
URIs.

Inclusion is not a relation between theories. However inclusion can useful. It is used to show other
theories in the development graph, without any connection to the current theory.

For loading such theories, HETCASL employs the same syntax as for loading theories that are con-
nected to other theories, i.e. on loading theories, HETS does not care about their relations:
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from library get spec1, . . . , specn

Except for importation and inclusion, you can specify an optional symbol map (name map) in a
relation.8 Names from the target file are mapped to names from the current file (including the translation
file, if the relation uses one). Note that is is possible to use cyclic relations in HETS. Only the cyclic
importation is not supported.

8.2 Examples

This section introduces several typical examples of using Common Logic ontologies with HETS.

8.2.1 Renaming Symbols with Symbol Maps

This example has two almost identical Common Logic texts, upper.clif and lower.clif; these can
be found in the CommonLogic/Examples directory in the HETS library [1]. The only difference in
the actual axioms is that upper.clif uses uppercase predicates while lower.clif uses lowercase
predicates:

upper.clif:

(cl-text upper
(forall (x y) (iff (A x y)

(B x y)))
)

lower.clif:

(cl-text lower
(forall (x y) (iff (a x y)

(b x y)))
)

The heterogeneous library CommonLogic/Examples/SymbolMap.het in the HETS library [1] es-
tablishes a mapping (actually: a relative interpretation) between these two Common Logic texts:

library SymbolMap

logic CommonLogic

from upper get upper
from lower get lower

view v : { lower with a |-> A , b |-> B } to upper
view w : { upper with A |-> a , B |-> b } to lower

A symbol map only needs to list those names that differ between the source and the target ontology;
the other names (none in this concrete case) are implicitly the same. A mapping of a single name is
defined with “nameInTargetFile |-> nameInCurrentFile”; multiple mappings are separated by
commas. Note that in Common Logic, a comma can be part of a name. Hence a space must be placed
between the separation-comma and a name.

8While the “copy” semantics of Common Logic importations does not permit renamings, HETCASL’s extension mechanism offers
an alternative possibility to reuse ontologies and rename some of their symbols, using the “importedSpec with name1Old |->
name1New, name2Old |-> name2New then importingSpec” syntax.
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AtomlessBooleanLattice

BooleanLattice

RegionBooleanContactAlgebra
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ComplementedLattice
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PseudocomplementedLattice WeakContactAlgebra

DistributiveContactAlgebra

Figure 3: Boolean algebras and lattices in COLORE (subgraph)

8.2.2 Relative Interpretation in COLORE

We give two examples for relative interpretation: one from COLORE (in this section), and one standalone
one (in Sect. 8.2.3).

The COLORE [17] module RegionBooleanContactAlgebra relatively interprets the module Atomless-
BooleanLattice. These two modules specify axioms about booleans; thus, they have the same signa-
ture. In the graph of imports, they have several common imported modules (e.g. BoundedDistributive-
Lattice), but no common importing module, as can be seen from Fig. 3.

For use with HETS, we have made a dump of the COLORE contents available in CommonLogic/colore
in the HETS library [1]. The HETCASL variant of expressing the relative interpretation can be found in
CommonLogic/Examples/COLORE-RelativeInterpretation. Here, it is not necessary to rename
symbols, as both modules have the same signature.

For easier understanding, the HETCASL implementation includes literal copies of the RegionBoolean-
ContactAlgebra and AtomlessBooleanLattice modules; actually, they could as well have been
included from their respective files using from ... get ....

library COLORE-RelativeInterpretation

logic CommonLogic

from CommonLogic/colore/lat/BooleanLattice get BooleanLattice
from CommonLogic/colore/ca/BooleanContactAlgebra get BooleanContactAlgebra

spec AtomlessBooleanLattice =
BooleanLattice

then
. (forall (x)
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(exists (y)
(and (not (= y 0))

(leq y x))))
end

spec RegionBooleanContactAlgebra =
BooleanContactAlgebra

then
. (forall (x)

(if (and (not (= x 0))
(not (= x 1)))

(exists (y)
(and (complement x y)

(C x y)))))
end

view v : AtomlessBooleanLattice to RegionBooleanContactAlgebra

8.2.3 Relative Interpretation (Standalone Example)

This example defines a partial order twice: once as an extension of a strict partial order, and once directly.
Then, we connect both definitions by a view that expresses the relative interpretation.

The source is available as CommonLogic/Examples/Partial_Orders.het directory in the HETS

library [1].

logic CommonLogic

spec Strict_Partial_Order =
%% strict
. (forall (x)

(not (lt x x)))
%% asymmetric
. (forall (x y)

(if (lt x y)
(not (lt y x))))

%% transitive
. (forall (x y z)

(if (and (lt x y)
(lt y z))

(lt x z)))
end

spec Partial_Order_From_Strict_Partial_Order =
Strict_Partial_Order

then
%% define "less or equal" in terms of "less than"’
. (forall (x y)

(iff (le x y)
(or (lt x y)

(= x y))))
end

spec Partial_Order =
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%% reflexive
. (forall (x)

(le x x))
%% antisymmetric
. (forall (x y)

(if (and (le x y)
(le y x))

(= x y)))
%% transitive
. (forall (x y z)

(if (and (le x y)
(le y z))

(le x z))))
end

view v : Partial_Order to Partial_Order_From_Strict_Partial_Order

8.2.4 Ontology-based Ambient Assisted Living Services and Devices

Consider the following ambient assisted living (AAL) scenario:

Clara instructs her wheelchair to get her to the kitchen (next door to the living room. For
dinner, she would like to take a pizza from the freezer and bake it in the oven. (Her diet is
vegetarian.) Afterwards she needs to rest in bed.

Existing ontologies for ambient assisted living (e.g. the OpenAAL9 OWL ontology) cover the core of these
concepts; they provide at least classes (or generic superclasses) corresponding to the concepts highlighted
in bold. However, that does not cover the scenario completely. In particular, there are relevant concepts
(here: space and time, underlined), which are not covered at the required level of complexity. OpenAAL
says that appointments have a date and that rooms can be connected to each other, but not what ex-
actly that means. Foundational ontologies and spatial calculi, often formalized in first-order logic, cover
space and time at the level of complexity required by a central controller of an apartment and by an
autonomously navigating wheelchair.

More concretely, Common Logic is useful in this scenario for expressing knowledge on the arrange-
ment of rooms, e.g. as follows in a first-order formalization of an RCC-style spatial calculus:

∀a1, a2.equal(a1, a2) Y overlapping(a1, a2) Y bordering(a1, a2) Y disconnected(a1, a2)Y

proper_part_of(a1, a2) Y proper_part_of(a2, a1)

(“Two areas in a house (e.g. a working area in a room) are either the same, or intersecting, or bordering,
or separated, or one is a proper part of the other.”)

The following listing shows a relevant excerpt of the heterogeneous specification, which can be found
under Ontology/Examples/AAL.het in the HETS library [1]. The key features include:

• Heterogeneous specification allows for reusing the OpenAAL OWL ontology, but at the same time
formalizing a first-order spatial calculus.

• In particular, the compact representation of mutual disjointness chosen here makes use of Common
Logic’s sequence markers.

• As Common Logic module extends the previously imported OWL ontology, it has access to all enti-
ties of the OWL ontology by name; in particular, we can specify that two rooms are connected (in
terms of the OpenAAL terminology) if certain conditions in terms of our Common Logic module, or
certain conditions in terms of OpenAAL hold.

9http://openaal.org

15

http://openaal.org


library AAL

logic OWL

from OpenAALOntology get httpwwwdfkideskshetsontologyunnamed |-> OpenAAL
%% this is the default name that Hets assigns to unnamed ontologies,
%% but we rename it to something nicer

spec OurAAL =
%% Import the OpenAAL OWL ontology.
OpenAAL
... %% some other extensions not shown here
%% Extend it by an RCC-style spatial calculus
%% formalized in first order logic.
then logic CommonLogic : {
. (forall (a1 a2)

(or (equal a1 a2)
(overlapping a1 a2)
(bordering a1 a2)
(disconnected a1 a2)
(proper_part_of a1 a2)
(proper_part_of a2 a1)))

%% mutual disjointness of predicates (need this for an exclusive or)
. (forall (p)

(mutually-disjoint p))
. (forall (p q ...)

(iff (mutually-disjoint p q ...)
(and (forall (...x)

(not (and (p ...x) (q ...x))))
(mutually-disjoint p ...)
(mutually-disjoint q ...))))

%% a utility predicate for talking about inverse relations
%% (similar to owl:inverseOf)
. (forall (r x y)

(iff ((converse r) x y) (r y x)))
%% make the above "or" exclusive
. (mutually-disjoint equal overlapping bordering disconnected

proper_part_of (converse proper_part_of))
%% if some RCC relations hold (so far it would also work in OWL)
%% or if there is a door that connects two rooms, then ...
%% (the latter would only work in OWL if we used an explicit subproperty
%% is-door-of of is-in-room; then we could chain "inverse is-door-of"
%% and "is-door-of", but otherwise we wouldn’t be able to restrict the
%% "connecting element" to a Door)
. (forall (a1 a2)

(if (or (equal a1 a2)
(overlapping a1 a2)
(proper_part_of a1 a2)
(proper_part_of a2 a1)
(exists (door)
(and (Door door)

(is-in-room door a1)
(is-in-room door a2)))

)
(is-connected-to-room a1 a2)))
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8.2.5 Heterogeneous Views from OWL to Common Logic

In the previous example, we established a link between an OWL ontology and a Common Logic ontol-
ogy by reusing elements of the signature of the OWL ontology (concretely: OpenAAL’s is-in-room
predicate) in the Common Logic ontology.

HETCASL’s view mechanism offers an alternative to that. A view from one ontology to another ontology
in the same logic has been shown in Sect. 8.2.2, but it is also possible to have views across logics, as long
as there is a translation between these logics that is known to HETS (cf. Sect. 4).

The following example, which is available as Ontology/Examples/TimeInOWLandCL.het in the
HETS library [1], establishes a view between the OWL Time ontology and its reimplementation in Common
Logic, using the “OWL22CommonLogic” translation:

logic OWL
spec TimeOWL =

Class: TemporalEntity
ObjectProperty: before

Domain: TemporalEntity
Range: TemporalEntity
Characteristics: Transitive

end

logic CommonLogic
spec TimeCL =
%% CommonLogic equivalent of Domain and Range above
. (forall (t1 t2)

(if (before t1 t2)
(and (TemporalEntity t1)

(TemporalEntity t2))))
%% CommonLogic equivalent of Transitive above
. (forall (t1 t2 t3)

(if (and (before t1 t2)
(before t2 t3))

(before t1 t3)))
%% A new axiom that cannot be expressed in OWL
. (forall (t1 t2)

(or (before t1 t2)
(before t2 t1)
(= t1 t2)))

end

view TimeOWLtoCL : { TimeOWL with logic OWL22CommonLogic } to TimeCL
%% As OWL22CommonLogic is the default translation,
%% it is optional to specify it.

9 Proofs with HETS

The proof calculus for development graphs (Sect. 8) reduces global theorem links to local proof goals.
You can do this reduction by clicking on the Edit-menu in the development graph window and selecting
Proofs/Auto-DG-Prover. Local proof goals (indicated by red nodes in the development graph) can be
eventually discharged using a theorem prover, i.e. by using the “Prove” menu of a red node.

The graphical user interface (GUI) for calling a prover is shown in Fig. 5 — we call it “Proof Man-
agement GUI”. The top list on the left shows all goal names prefixed with their proof status in square
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brackets. A proved goal is indicated by a ‘+’, a ‘–’ indicates a disproved goal, a space denotes an open
goal, and a ‘×’ denotes an inconsistent specification (aka a fallen ‘+’; see below for details).

Figure 4: Prove local proof obligation

Figure 5: HETS Goal and Prover Interface Figure 6: Interface of Vampire Prover

If you open this GUI when processing the goals of one node for the first time, it will show all goals as
open. Within this list you can select those goals that should be inspected or proved. The GUI elements
are the following:

• The button ‘Display’ shows the selected goals in the ASCII syntax of this theory’s logic in a separate
window.

• By pressing the ‘Proof details’ button a window is opened where for each proved goal the used
axioms, its proof script, and its proof are shown — the level of detail depends on the used theorem
prover.
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• With the ‘Prove’ button the actual prover is launched. The provers are described in more detail in
the HETS user guide [44].

• The list ‘Pick Theorem Prover:’ lets you choose one of the connected provers (among them ISABELLE,
MathServe Broker, SPASS, Vampire, and zChaff, described below). By pressing ‘Prove’ the selected
prover is launched and the theory along with the selected goals is translated via the shortest possible
path of comorphisms into the prover’s logic.

• The pop-up choice box below ‘Selected comorphism path:’ lets you pick a (composed) comorphism
to be used for the chosen prover. If the specification does not contain any sequence markers, it
is possible to use the comorphism CommonLogic2CASLCompact which results in a simpler CASL

specification. We recommend using this comorphism whenever possible.

• Since the amount and kind of sentences sent to an ATP system is a major factor for the performance
of the ATP system, it is possible to select in the bottom lists the axioms and proven theorems that
will comprise the theory of the next proof attempt. Based on this selection the sublogic may vary
and so do the available provers and the comorphism paths leading to provers. Former theorems that
are imported from other specifications are marked with the prefix ‘(Th)’. Since former theorems do
not add additional logical content, they may be safely removed from the theory.

• If you press the bottom-right ‘Close’ button the window is closed and the status of the goals’ list is
integrated into the development graph. If all goals have been proved, the selected node turns from
red into green.

• All other buttons control selecting list entries.

In order to prove or disprove a theorem, it needs to be declared as proof obligation. This is done by
the keyword %implied at the end of a text:

logic CommonLogic

spec ToProve =
. (P x)

(and (P x) (Q y))
. (Q y) %implied %(correct)%
. (P y) %implied %(incorrect)%
end

In this specification10 the theorems, annotated (named) by correct and incorrect are the ones,
that can be proven or disproven. Note that they are separate texts inside the specification ToProve. The
annotations are optional. For proving, they are the names shown in the “Axioms to include” section of
the prover interface (Fig. 5).

The same specification can be written down in CLIF:

(cl-text axiom
(P x)
(and (P x) (Q y))

)

(cl-text correct
(Q y)

) %implied

(cl-text incorrect (P y)) %implied

10HelloWorldExamples/ToProve.het in the HETS library [1]
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In CLIF, there is no notion of proof obligation. Hence the %implied keyword of HETS must be used, and
thus the specification is not pure CLIF. Because the texts have names, these are also used in the prover
interface. Otherwise, HETS invents names.

9.1 Consistency Checker

Since proofs are void if specifications are inconsistent, the consistency should be checked (if possible for
the given logic) by the “Consistency checker” shown in Fig. 8. This GUI is invoked from the ‘Edit’ menu
as it operates on all nodes.

The list on the left shows all node names prefixed with a consistency status in square brackets that is
initially empty. A consistent node is indicated by a ‘+’, a ‘–’ indicates an inconsistent node, a ‘t’ denotes a
timeout of the last checking attempt.

Figure 7: Selection of consistency checker Figure 8: HETS Consistency Checker Interface

For some selection of nodes (of a common logic) a model finder should be selectable from the ‘Pick
Model finder:’ list. Currently only for “darwin” some CASL models can be re-constructed. When pressing
‘Check’, possibly after ‘Select comorphism path:’, all selected nodes will be checked, spending at most the
number of seconds given under ‘Timeout:’ on each node. Pressing ‘Stop’ allows to terminate this process
if too many nodes have been chosen. Either by ‘View results’ or automatically the ‘Results of consistency
check’ (Fig. 9) will pop up and allow you to inspect the models for nodes, if they could be constructed.

9.2 Automated Theorem Proving Systems
(Logic SoftFOL)

All ATPs integrated into HETS share the same GUI, with only a slight modification for the MathServe
Broker: the input field for extra options is inactive. Fig. 10 shows the instantiation for SPASS, where in the
top right part of the window the batch mode can be controlled. The left side shows the list of goals (with
status indicators). If goals are timed out (indicated by ‘t’) it may help to activate the check box ‘Include
preceding proven theorems in next proof attempt’ and pressing ‘Prove all’ again.

On the bottom right the result of the last proof attempt is displayed. The ‘Status:’ indicates ‘Open’,
‘Proved’, ‘Disproved’, ‘Open (Time is up!)’, or ‘Proved (Theory inconsistent!)’. The list of ‘Used Axioms:’
is filled by SPASS. The button ‘Show Details’ shows the whole output of the ATP system. The ‘Save’ buttons
allow you to save the input and configuration of each proof for documentation. By ‘Close’ the results for
all goals are transferred back to the Proof Management GUI.

The MathServe system [47] developed by Jürgen Zimmer provides a unified interface to a range
of different ATP systems; the most important systems are listed in Tab. 1, along with their capabilities.
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Figure 9: Consistency checker results

ATP System Version Suitable Problem Classesa

DCTP 10.21p effectively propositional
EP 0.91 effectively propositional; real first-order, no

equality; real first-order, equality
Otter 3.3 real first-order, no equality
SPASS 2.2 effectively propositional; real first-order, no

equality; real first-order, equality
Vampire 8.0 effectively propositional; pure equality, equal-

ity clauses contain non-unit equality clauses;
real first-order, no equality, non-Horn

Waldmeister 704 pure equality, equality clauses are unit equal-
ity clauses

a The list of problem classes for each ATP system is not exhaustive, but only the most ap-
propriate problem classes are named according to benchmark tests made with MathServe
by Jürgen Zimmer.

Table 1: ATP systems provided as Web services by MathServe

These capabilities are derived from the Specialist Problem Classes (SPCs) defined upon the basis of logical,
language and syntactical properties by Sutcliffe and Suttner [42]. Only two of the Web services provided
by the MathServe system are used by HETS currently: Vampire and the brokering system. The ATP systems
are offered as Web Services using standardised protocols and formats such as SOAP, HTTP and XML.
Currently, the ATP system Vampire may be accessed from HETS via MathServe; the other systems are only
reached after brokering.

For details on the ATPs supported, see the HETS user guide [44].

9.3 Interactive Theorem Proving Systems

The main interative theorem proving system integrated into HETS is ISABELLE [34], an interactive theorem
prover. It is more powerful than ATP systems, but also requires more user interaction. In particular,
Isabelle can be used to perform induction proofs about Common Logic theories involving sequence mark-
ers.
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Figure 10: Interface of the SPASS prover
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ISABELLE has a very small core guaranteeing correctness, and its provers, like the simplifier or the
tableaux prover, are built on top of this core. Furthermore, there is over fifteen years of experience with
it, and several mathematical textbooks have been partially verified with ISABELLE.

ISABELLE is a tactic based theorem prover implemented in standard ML. The main ISABELLE logic (called
Pure) is some weak intuitionistic type theory with polymorphism. The logic Pure is used to represent
a variety of logics within ISABELLE; one of them being HOL (higher-order logic). For example, logical
implication in Pure (written ==>, also called meta-implication), is different from logical implication in
HOL (written ->, also called object implication).

It is essential to be aware of the fact that the ISABELLE/HOL logic is different from the logics that are
encoded into it via comorphisms. Therefore, the formulas appearing in subgoals of proofs with ISABELLE

will not conform to the syntax of the original input logic. They may even use features of ISABELLE/HOL such
as higher-order functions that are not present in an input logic like CASL.

ISABELLE is started with ProofGeneral [5, 4] in a separate Emacs [14, 43]. The ISABELLE theory file con-
forms to the Isabelle/Isar syntax [34]. It starts with the theory (encoded along the selected comorphism),
followed by a list of theorems. Initially, all the theorems have trivial proofs, using the ‘oops‘ command.
However, if you have saved earlier proof attempts, HETS will patch these into the generated ISABELLE theory
file, ensuring that your previous work is not lost. (But note that this patching can only be successful if
you do not rename specifications, or change their structure.) You now can replace the ’oops’ commands
with real ISABELLE proofs, and use Proof General to step through the proofs. You finish your session by
saving your file (using the Emacs file menu, or the Ctrl-x Ctrl-s key sequence), and by exiting Emacs
(Ctrl-x Ctrl-c).

10 Reading, Writing and Formatting

HETS provides several options controlling the types of files that are read and written.

-i ITYPE, --input-type=ITYPE Specify ITYPE as explicit type of the input file.

exp files contain a development graph in a new experimental OMDoc format. prf files contain
additional development steps (as shared ATerms) to be applied on top of an underlying develop-
ment graph created from a corresponding env, casl, or het file. hpf files are plain text files
representing heterogeneous proof scripts. The contents of a hpf file must be valid input for HETS in
interactive mode. (gen_trm formats are currently not supported.)

The possible input types are:

casl
| het
| owl
| hs
| exp
| maude
| elf
| hol
| prf
| omdoc
| hpf
| clf
| clif
| xml
| [tree.]gen_trm[.baf]

-O DIR, --output-dir=DIR Specify DIR as destination directory for output files.

-o OTYPES, --output-types=OTYPES OTYPES is a comma-separated list of output types:
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prf
| env
| omn
| clif
| omdoc
| xml
| exp
| hs
| thy
| comptable.xml
| (sig|th)[.delta]
| pp.(het|tex|xml|html)
| graph.(exp.dot|dot)
| dfg[.c]
| tptp[.c]

The env and prf formats are for subsequent reading, avoiding the need to re-analyse downloaded
libraries. prf files can also be stored or loaded via the GUI’s File menu.

The omn option [21] will produce OWL files in Manchester Syntax for each specification of a struc-
tured OWL library.

The clif option will produce Common Logic files in CLIF dialect for each specification of a Com-
mon Logic library.

The omdoc format [22] is an XML-based markup format and data model for Open Mathematical
Documents. It serves as semantics-oriented representation format and ontology language for math-
ematical knowledge. Although this is still in experimental state, Common Logic theories can be
exported to and imported from OMDoc.

The xml option will produce an XML-version of the development graph for our change management
broker.

The exp format is the new experimental omdoc format.

The hs format is used for Haskell modules. Executable CASL or HASCASL specifications can be trans-
lated to Haskell.

When the thy format is selected, HETS will try to translate each specification in the library to ISABELLE,
and write one ISABELLE .thy file per specification.

When the comptable.xml format is selected, HETS will extract the composition and inverse ta-
ble of a Tarskian relation algebra from specification(s) (selected with the -n or --spec option).
It is assumed that the relation algebra is generated by basic relations, and that the specification
is written in the CASL logic. A sample specification of a relation algebra can be found under
Calculi/Space/RCC8.het in the HETS library [1]. The output format is XML, the URL of the
DTD is included in the XML file.

The sig or th option will create HETCASL signature or theory files for each development graph
node. (The .delta extension is not yet supported.)

The pp format is for pretty printing, either as plain text (het), LATEX input (tex), HTML (html) or
XML (xml). For example, it is possible to generate a pretty printed LATEX version of Cat.clif by
typing:

hets -v2 -o pp.tex Cat.clif

This will generate a file Cat.pp.tex. It can be included into LATEX documents, provided that the
style hetcasl.sty coming with the HETS distribution (LaTeX/hetcasl.sty) is used.

The format pp.xml represents just a parsed library in XML.
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Formats with graph are reserved for future usage.

The dfg format is used by the SPASS theorem prover [46].

The tptp format (http://www.tptp.org) is a standard exchange format for first-order theorem
provers.

Appending .c to dfg or tptp will create files for consistency checks by SPASS or Darwin respec-
tively.

For all output formats it is recommended to increase the verbosity to at least level 2 (by using the
option -v2) to get feedback which files are actually written. (-v2 also shows which files are read.)

-t TRANS, --translation=TRANS chooses a translation option. TRANS is a colon-separated list
without blanks of one or more comorphism names (see Sect. 4)

-n SPECS, --spec=SPECS chooses a list of named specifications for processing

-w NVIEWS, --view=NVIEWS chooses a list of named views for processing

-R, --recursive output also imported libraries

-I, --interactive run HETS in interactive mode

-X, --server run HETS as web server (see Sect. 11)

-x, --xml use XML-PGIP11 packets to communicate with HETS in interactive mode

-S PORT, --listen=PORT communicate with HETS in interactive mode by listening to the port PORT

-c HOSTNAME:PORT, --connect=HOSTNAME:PORT communicate with HETS in interactive mode via
connecting to the port on host HOSTNAME

-d STRING, --dump=STRING produces implementation dependent output for debugging purposes only
(i.e. -d LogicGraph lists the logics and comorphisms)

11 Hets as a web server

Large parts of HETS are now also available via a web interface. A running server should be accessible on
http://pollux.informatik.uni-bremen.de:8000/. It allows to browse the HETS library, upload
a file or just a HETCASL specification. Development graphs for well-formed specifications can be displayed
in various formats where the svg format is supposed to look like the graphs displayed by uDrawGraph.
Besides browsing, the web server is supposed to be accessed by other programs using queries. The
possible queries are described at http://trac.informatik.uni-bremen.de:8080/hets/wiki/
RESTfulInterface.

For details on this topic, see the HETS user guide [44].

12 Miscellaneous Options

-v[Int], --verbose[=Int] Set the verbosity level according to Int. Default is 1.

-q, --quiet Be quiet – no diagnostic output at all. Overrides -v.

-V, --version Print version number and exit.

-h, --help, --usage Print usage information and exit.

11Proof General Interface Protocol

25

http://www.tptp.org
http://pollux.informatik.uni-bremen.de:8000/
http://trac.informatik.uni-bremen.de:8080/hets/wiki/RESTfulInterface
http://trac.informatik.uni-bremen.de:8080/hets/wiki/RESTfulInterface


+RTS -KIntM -RTS Increase the stack size to Int megabytes (needed in case of a stack overflow).
This must be the first option.

-l LOGIC, --logic=LOGIC chooses the initial logic, which is used for processing the specifications
before the first logic L declaration. The default is CASL.

-e ENCODING, --encoding=ENCODING Read input files using latin1 or utf8 encoding. The default is
still latin1.

--unlit Read literate input files.

--relative-positions Just uses the relative library name in positions of warning or errors.

-U FILE, --xupdate=FILE update a development graph according to special XML update informa-
tion (still experimental).

-m FILE, --modelSparQ=FILE model check a qualitative calculus given in SparQ lisp notation [45]
against a CASL specification
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