Vrije
Universiteit
Brussel

FACULTY OF SCIENCE
Department of Computer Science
Web & Information Systems Engineering

Feature Models Visualization Based on
Ontology Framework

Thesis submitted in fulfilment of the requirements for the degree of Master Computer Science.

Jose Evelio Martinez Saiz

Academic Year 2008-2009

Promotor : Prof. Dr. Olga De Troyer
Supervisor : Lamia Abo Zaid

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

Abstract

The goal of this project is the design and develepnof a tool for creating and visualizing
software variability by means of visualizing thevdlmpment of feature models. Allowing
for different user perspectives and thus usingedzffit views for visualizing feature models.
Visualization of feature models is not an easy.tdsle feature models is something more
than hierarchy of concepts due to the enrichmemtlefrelations between features and the
various attributes related to each concept. Fosdlreasons, it is not simple to create a
visualization that will display effectively all thiinformation and will, at the same time,

allow the user to perform easily various operationghe feature model.

All the information presented in this document igesearch and study of the actual
visualization techniques that can be applied infidlel of feature modeling visualization.
In addition, we studied some existing tools thabvalthe user to visualize and modify
feature models; this gave us overview about thte st the current situation in feature

modeling visualization.

To sum up, this deep analysis is expanded witthalinformation related on the design of
a feature modeling tool and based on the decistaken during the design of our
application. There does not exist a standard feamoiodel technique, so this study is
approached from a global point of view based orbtisac feature model requirements.

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

Declaration

| declare that this document and the accompanyodghave been composed by myself,
and describe my own work, unless otherwise ackmgektin the text. It has not been
accepted in any previous application for a degidéverbatim extracts have been
distinguished by quotation marks, and all sourcesimrmation have been specifically

acknowledged.

Signed,

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

Acknowledgments

| would first like to thank my project supervisbamia Abo Zaid, for her support, advice
and help during the entire project. Thanks as welher for proof reading parts of this
thesis and correcting some of the grammatical rheta

Thanks also to the head of the WISE Laboratoryf.Abo. Olga De Troyer, my promoter,
for her kindness, her willingness to help me a#l time, and allowing me to collaborate
the research of the VariBru project.

| would also like to thank my flatmates Marko R¢a@md Brett Terrell for giving me their
point of view in some details of this thesis, femlg by my side in tough times and for

being my friends.

Finally, | need to thank all my friends here, spdgi Andrea, Gianluca, Mari Carmen,
Paola, Rossella, Michela, Ole, Oliver, Susana, Sdramara, Ann-Sofie, Laura ... that
have been my family in Brussels during this founting But mostly, | want to express all
my gratitude to my mother and my sister, for thefmite love and for giving me the
opportunity to experience this great and unforda#a experience, the Erasmus

experience...

Jose Evelio Martinez Saiz

Vrije Feature Models Visualization Based on Ontology FEnaork
¥ Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis
Content
Y IO L o = [€0 s R 8.
[IO Lo 17 = I S SN 0.1
CHAPTER 1. INTRODUCGCTIONcc e ee ettt e e e et e et e e e et e et e e e st e e ean e eannaees 11
1.1. VARIABLE SOFTWAREMODELING......uuiitiieiiieeiit e e ee e e et e e et ee e e et e e e et e e eateeeeteeesteeeaneesnnaeeans 11
1.2. IMEOTIVATION ettt e et ettt e e et e e et e e e et e e e et e e et e e e st e e eaa s sanaeeean e eennassnnaaesnnns 12
1.3. PROBLEM STATEMENT .euuiitiiiit e et ee e e et e et te e e et e e e eaaae et e e s st e e eaa e s sanaeestnaeeanassnnaeeennaaesnnnaes 13
1.4. (@]] =lon 1/ =1 PRSPPI 13
1.5. OVERVIEW 11.iiiititie e e e ettt e e ettt e e e et e e e e e ettt e e e e e e e et s e e e e st e e e e e saan e eeesaan s eesensanneesestnnaeeesranaaaans 14
CHAPTER 2. BACKGROUND AND RELATED WORKcoiiiit e aeeeens 15
2.1. FEATURE M ODELSuiiii ettt eit e e et e e e et e e et e e et e e e et e e et e e et e e e et e e ean e e e an e e ean e eeanneetnaennnnaes 15
2.1.1. Components of @ Feature MOUEL..........uueiiiiiiiiieiee e 16
2.0.2. FRAIUIES. ...ttt e e e e e e e e et e et e e ea— et aaetaaaaaas 17
0 T TR AN 11 ¢ o 1V (=TSSP 19
2.1.4. Feature DEPENUENCIES.uuuiuitiiiiiiiitiet ettt e e e e e e e e e e e e e e e e eeneeaeees 20
2.2. RELATED VISUALIZATION TOOLS...cuuuiiitiieiieee it e e e e et e e e e e et e e et eeeaa e e et e e eaaeeeean e esnnaaeeas 21
2.2.1. Existing tools of Feature Model visualization..............cccouuuiiiiiiiiiiie e 22
2.2.1.1. Feature Modeling TOOI.......uuuiiiiiie e e e e s et e e e e e e s rreeeaeaaan 22
2.2.1.2. 0 RV T = 10 P UPPUPRRROE 23
2.2.1.3. Feature Modeling PIug-in fOr ECHPSE........uuiiiiiiiiiiiiiiiecs et 25
2214, DAL T 1 101 = TR TPTRRRTR 26
2.2.15. FAMA TOOI SUITE.....uuieiiiiie ettt e e e e s e e e e e e s st e e e e e e e e s e tbaaeaeeeeseaansbanees 27
2.2.2. Existing tools for Ontology VISUAIZAtION.eeviiiiieiieeeee e 28
2.2.2.1. (0] 1= [T PR 29
2.2.2.2. [011 1Y 2Nt 30
2.2.2.3. [T 1] [= 31
2.2.2.4. S22 SRS URR 32
2.2.3. ConClUSION Of the STUAY......coiiiiiiii e e e e e e e e e e e e e e e e e e s 33

Vrije Feature Models Visualization Based on Ontology FEnaork
¥ Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis
CHAPTER 3. VISUALIZATION AND INTERACTION OF FEATURE MODELS...........cceiiieeeenn. 39
3.1. INITIAL REQUIREMENTS ANALYSIS 1ituiitiitiettieitietteeet et eestiesteesnesstesennesteesaeetaestassaaestaernaeeniesnnns 39
3.2. FIRST CONSIDERATION : 2-D VERSUS3-D.....ceeiiiteeee ettt ettt e e e e e 40
3.3. INFORMATION VISUALIZATION AND INTERACTION TECHNIQUES ..ivuiiiiiiiiiieeieeieeeteeteeeaeeaeennas 41
3.3.1. Information visualization MEethOS..........cccccuiiiiiiiiiic e e 41
3.3.1.1. [T [T 01 (= To I 1 N 42
3.3.1.2. AV Z=T 0T T [F=To [=T a g USSP UPRRPT 42
3.3.1.3. B =TS 110 o 0 43
3.3.14. L CCI] (0= OO P P PP PPPPPPPPPPPPPPIN 44
3.3.1.5. 4D N 017/ o1=T4 oTo) [Todh £ == TP OSPPRRP 45
3.3.1.6. (1T o I =] o (=TST=T a1 2= Lo PP PO SSUPRN 45
3.3.2. HUMaN—COMPULET INEEIACTION. e ettt e e e e e e e aaaaaeaens 46
3.3.2.1. EXPIICIt REPIESENTALIONveviiiie ittt e e e e e e e e e e e s r e e e e e s e s saabrareeaaaaaas 46
3.3.2.2. (070] o] g oo T[] o S PPRRPRRIIN a7
3.3.2.3. DetailsS 0N DEMANG......uuuuuiiiiiiiiiieie ettt e e e e et e et e e e e e e e e e e e e e e e e eeeeeeeeeeereeeesessrersreresssessreranees 48
3.3.24. Techniques based on big repreSeNntatiQNS.........coovi i 48
3.3.2.4. 1. INnCremental BrOWSINGueieiiie ittt e e ettt e e e e e e e et e e e e e e e e e ennneeeeeas 48
G TR T o T U ST o] 1 =) 49
3.4. SELECTED VISUALIZATION TECHNIQUES FOR FEATURE MODEL S.euuiiiviiiieiieiieeeeiee e eeieeeeneees 50
2t O I o 1= =T o 0 o T LY 52
3.4.1.1. [T =T o] g BV =T o (1] To o PP UEPPRPT 52
3.4.1.1.1. Features and attributes inside graph VIEW.............coouiiiiiiiiiiiee e 53
3.4.1.1.2. Feature dePENUENCIEScccueiiieieeee ettt e e e e et ee e e e e e s e ettt e e e e e e e e s aannneaeeeeaaeeeaannes 54
3.4.1.1.3. ComPOSItion NIEIArCRYcciiiiiiiiiiiiee e e e e e s ereees 55
3.4.1.2. Graph-VIEW INTEIACTIONeeiii it ittt ee e e ettt e e e e s e e e e e e e s st a e e e aaeeessaantbaeeeeaeeenansnes 57
3.4.1.2.1. Editing and deleting CONCEPLS.coiiiuiiiiiiiie et e e e e e e e e s e e nneranees 58
I S 1 s To [T o1 (= To I 1) PP PPUPRPR 60
3.4.2.1. Interaction with the iINdented liSt............oociiiiiiiie e 60
T B T I (=TT R 62
3.4.3.1. Editing Of the COMPONENTS. ...ttt a e e e e e e e e e e e sanees 64
3.5. SAVE AND RESTORE THE FEATURE MODELSvuiiiitniiiiieeet e eeieeeeteeeeteeeaaeessaaeesanaeseaneesanneesanns 65
3.5.1. XML as the model file format............coooiiiiiiii e 66
CHAPTER 4. FEATURE MODELING VISUALIZATION TOOL DESI GN ..coooviiiiiiiicieeceeee 68
4.1. INTERACTION BETWEEN VIEWS ...itituuiettettteeeseatunaeesestneeesessssasaesssstnnsaesessnnaesessnnseesessnnseneees 8.6
4.2. UML M ODEL FOR THE FEATURE MODELING VISUALIZATION TOOL .iivuiiviiiieireeieereeteeneeneennns 70
4.2.1. Graph-VIEW artifaCt.........cccuviiiiiiiiiiiiiiic e e e e e e ———————————— 70
4.2.2. LiSt-VIEW ArtifaCt.......ccee ittt eneannnanarane 72
4.2.3. Tre€-VIEW AITifAC.uuiiiiiiiiiiiiiiiiic e e e e e e e 73
4.3. ST = O 1] =S 74
4.3.1. Graph-VieW releVant USE CaSES.......uuuuuuiriririiiiierieeaeeaaiieiisssisasaeereeeeeesaaaaeaeasasssnsanansnnnnns 75
4.3.2. List-VieW relevant USE CasEsS.........ccouuuiuiiiiiiiiie et s s e e e e e e e e e e eee st s e e e eeaaaaeees 81
4.3.3. Tree-VieW releVant USE CaSES......ccccciiiiiiiiieiiiiie e e et eeee et e e e e e e e e e e e eeae s s 83
CHAPTER 5. IMPLEMENTATIONttt et e e e e e e et e e e et e e e e e e et e e e taaeaeananas 87
5.1. RIA AS THE ENVIRONMENT OF THE TOOL tuuitttttteeietittseseesssnnsessssinsessssssaseesesssnaesssssnaeesesnnns 87
Lo 00 I O 1Y ¢ T | PP 88
5.2. IMPLEMENTATION ENVIRONMENT L.uuituiittiitteitteitteetetteesettessneesasesnessnesnsesnessnsesnessnsesnsesnessnrees 88
5.3. SOFTWARE ARCHITECTURE ..uiiittiiiitieeeteeieie et eteeeeteeeeaae e s s s esaa e e eaa e s aaneeeaa e eeansesannseerneeernnnss 90

Vrije Feature Models Visualization Based on Ontology FEnaork
¥ Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

CHAPTER 6. CONCLUSIONS ...ttt ettt e e e e e s eeen e 91
6.1. SUMMERY ...ietteeeettetit e ae e e e e e e e ee e e eeeeeeatas e aa s e e e e e aeaee e e e e tetta s e e eeeeeeeeee et eneannntnnnanaeeaeeeeeeeennnras 91
6.2. L E S SONS LEARNT ctt et ettt et ettt e e e ettt s e e e et b s e et e et e e e e e tea e e e e e aeb s e e e es b e e e e eebareeanennan s e e eeeban s 92
6.3. FUTURE WORK .ttt ettt ettt ettt e e e e ettt s e e et s e e e e et s e e e ettt e e e e eabeeeeaeeban e e aeebnnneaee 93

REFERENGCES ...ttt ettt e et e e et e e et e e e e et e e e e e e e e e e e e nnnnnes 95,

APPENDIX: TOOL SCREENSHOTSt 99

Un

¥

Vrije

Feature Models Visualization Based on Ontology FEnaork

iversiteit Jose Evelio Martinez Saiz

Brussel Erasmus Single Honours Master Thesis
List of figures
Figure 1. Example of feature model [10]......ccceeeiiiiiiiiiii i 17
Figure 2. Czarnecki-Eisenecker Notation [L1] o oo 18
Figure 3. Feature Model Tool main WiNndOW [15]cceaa oo 22
Figure 4. Pure::variants Family Model Editing [20].........couvvviiiiiiiiiiiiieeeeeeeeeeeeeeeee, 24
Figure 5. Pure::variants graph VISUAIIZAtION ceeeeeeeeoeieeieeeeiiiiiieeeee e 25
Figure 6. Feature Modelling plug-in for EClipSeJ18.........cuvvviiiiiiiiiiiieeeeee, 24
Figure 7. Screenshot of XFeature t00l [21]. «ooeeaeerreiiiiiiiiieee e 27
Figure 8. FaMa TOOI SUILE [24]ceeeeveet e e e eeeeeeaaatttess s e s s e e e eeeaaeeeeseeeneesseeesessnnnns 28
Figure 9.The Protégé feature/Class DrOWSErcuuuueeciiiiiiiieeeeeeeeeeeeee s 29
Figure 10. OntoViz plug-in for Prot€geé [29] ...cceeeuiiiiiiiiiiiiiiiiiiieeieeieee e 31
Figure 11. GoSurfer: Molecular Function represeomat30]cooevvvviivniiiiiinnennem 32
Figure 12. 1SAVIZ €NVIFONMENT [27].....uvuees s sessseeeaeaeeeeeesseessnssssnnnnnnsssneeeeens 33
Figure 13. Venn Diagram [B5]........uuuu o eeeeeeeeeeeunnsnnnnaseeeseessasssesseeneesereesmmmmnnes 43
FIgure 14. Tre@mMap [B6] ..uuueeuuuoeieeee e eeeeee ettt e e e e e e e e e e e e e e e eeeeeeeeeeeeesennnnns 44
Figure 15. HyperboliC tre@ [S7] ..ot ee e 45
Figure 16. Example of graph model representation............cccccevvvvvvviiiiiiineeeeeeeeeeenn. 53
Figure 17. Different types of features.......ccoueee i 54
Figure 18. Representation of the hierarchy (nogUgmoUPS)........ccooeeeiiiiiiiiiiiiiiiiiieees 56
Figure 19. Grouping repreSentationcceuuueuiiiiiiiiie e s 56
Figure 20. Drawing TOOIDANuvuuieimmm e ettt s e e e e e e e e e e e e e e e ee e eeeeeeeeeeeeeennnnn 57
Figure 21. Representation of @ dePeNUENCY ..o cevvvrrrrnnniiiiieeeeaeeeesreeeeeessesneeeeseess D9
Figure 22. LiSt-VIEW repreSentationccooeeee i iieiiiiiiiiiiiiiiiess e e e e e e e e e e e e e 61
Figure 22. Deletion in indented lISt-VIEWcccceeioiiiiiiiiiiiiiiiiiii e 60

¥ Universiteit e o B e Evello Marines Saiz
Brussel Erasmus Single Honours Master Thesis
Figure 25. Toolbar Save/restore model.......cooo oo 65
Figure 26. File content of a feature representation..............cccccceeeieiiieeeeeeeeeeieeeeeeee, 67
Figure 27. Screenshot of the appliCation.......eeeeeeeeeeiiiiiiiiie e 69
Figure 28. UML Diagram graph-view artifacCt.............cccceeeiiiiiiiiiiiiiiiieceeeiiiii e 71
Figure 29. UML Diagram liSt-View artifaCt......cccc....ooevveiiiiiiiiiiiiiiiieeeeeeeeeeceeeeeee e 72
Figure 30. UML Diagram tree-view artifact............coooiviiiiiiiiiiiiiiiiiie e eeeeeeeeeee e 74
Figure 31. Relevant Use Cases Graph-VIEWccccceeiiiiiieiieeeieeeeeeeeeeiv e 75
Figure 32. Relevant Use Cases LISt-VIEWccccceerrriiiiiieieeeeeeeeeeeeeeiee s 81
Figure 33. Relevant Use Cases Tree-VIEWcccuviiiiiiiiiiiiiiiiiiiineeee e eeeeeeeeeeee e 83
Figure 34. Silverlight Architecture Model......ccc.ciiiiiiiiiii e 89
Figure 35. Software Architecture Modelccooeeuviiiiiiiiiie 90

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

List of tables

Table 1. Feature dependencies description [14].........oemmmeeeieriveiieiieeieennnnn e 20
Table 2. Focus of the @analySiS.......c.oe it e 21
Table 3. Representation of the components in feathadeling tools......................... 35
Table 4. Representation of components in ontologgieting tools..........................37
Table 5. Representation of dependencies marks...........ccooveeiiiiiie i i e veneennn, 55

Table 6. Relation between classes and hierarchi€S . cvv oo e 42

10

Vrije Feature Models Visualization Based on Ontology FEnaork

¥ Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis
Chapter 1

Introduction

1.1. Variable Software Modeling

Feature modeling [1] is a popular domain analysishmique, which analyzes
commonality and variability in a domain to develbghly reusable core assets for a
product line. . A software product line is definasl a set of software intensive systems
sharing a common, managed set of features thatfys#itie specific needs of a particular
market segment or mission and that are develomed & common set of core assets in a
prescribed way [2]. The development of softwaredpct lines emerged from the field of
software reuse (i.e. the process of creating softveystems from predefined software
components) [3]. This arise was caused becausmde obtaining benefits from reusing
software architectures (abstract concepts of el&hpeimstead of reusing individual
software components (elements). Feature modeliohnigues supports requirements

analysis and domain engineering in software protines.

The need of this technique lies in the fact tha thumber of possible configurations
quickly grows as the variability increases, resgjtin an increasing complexity. Therefore
organizations need support for the developmenhe$d kinds of products. The existence
of many articles related to this technique givea ggobal idea about the importance of the
technique for modeling software product lines. Hoeere there are only a few tools

supporting variability modeling. Although featureodels have been around since the

11

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

1990's, visualizing feature modeling using GUI ®a quite recent. In this thesis, we
describe the design and implementation of a GUIl fimocreating and maintaining feature

models in a visual way.

1.2. Motivation

The result of the applying the feature modelinghtegue to model a certain
variability problem is a feature model. Feature mled4] are crucial for the development
of variable software, correct feature models leaddrrect products. Thus there is a need
for tools that allow specifying, verifying, and cecting feature models. The best way to
support the user is by providing a tool that allowscreate and to manipulate feature
models in a visual way. However, the visualizatidrieature models is not an easy task. In
industrial cases, the number of features can bg laege and then it becomes difficult to
provide a good visualization of such a model. Theranfeatures are needed in the
visualization of the model, the more complicated tlmawings will become and the more
difficult it will be to understand and to manipwdathe content of the model. In addition to
the large amount of features, the visualizationukh@lso support the specification and
visualization of all necessarily details (attritajtefeature dependencies, feature
and/or/alternative hierarchies), so the problenobexs more complicated because showing
all this information together may result in diagsathat are too complex to understand and

manipulate and therefore unusable.

In this project our objective was to identify, frosmHCI perspective, the best method to
visualize feature models and interact with themaddition, for the sake of interoperability
and ease of use in a distributed setting it wasired to develop such a tool using Rich

Internet Application (RIA) technology [5]

12

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

1.3. Problem statement

This work relates both feature modeling technigaed information visualization
techniques. We try to provide the best possiblev{gg that visualize feature models and
thus ease the modeling process. Visualizing arepeesenting feature models in industrial
models, where the number of components includedceoras becomes very large, which
is not an easy task. Therefore we foresee visuaizacalability as an important issue for

any good feature modeling visualization tool.

As commented previously (ssection 1.2, the number of components in our model tends
to grow, so the need to achieve a good representatiodel for visualizing clearly the
global contents of the model rises. Furthermore, ttol should allow for flexible user

interaction the underlying model.

The visualization of the feature model also musttcimathe needs required for the
stakeholders. Due to the fact that a concept carefpesented by different valid models;
another problem confronting modelers is to decidgciv of them is better for satisfying
their requirements. In addition, sometimes a go@y w represent the model uses the
combination of various visualizations. This factreases the visualization problem in
terms of complexity because of the necessity t@rektthe study with all the possible

combinations of visualization views providing thashronization between them.

1.4. Obijectives
The main goal of this project is to create an effecand useful application that
solves the problems indicated previously, runnim@ ibrowser as a RIA and with a good

response time. In particular, two specific objeesivan be defined for the tool:

Usablein that with this application (tool) the user carate, modify, save and load feature
models in a visual way. The creation means thetiaddof features, the links between

13

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

features (hierarchical links and feature dependshciand the addition of attributes for

features.

Efficient in that with the visualization of the model theeugan understand in an easy
manner all available information. Also the interactbetween the user and the different
components of the model should be supported byithualization.

1.5. Overview

The remainder of the document is distributed ie fthapters as follows:

» Chapter 2: Background and related wonsrovides the information about what is a
feature model, and the components related to ie diapter also includes a report
about the research of different tools in featuredeting and other visualization tools
such as ontology visualization.

» Chapter 3: Visualization and interaction of featumeodels shows the requirements
related to the design of our feature modeling téoladdition, the chapter includes an
extensive explanation about the design of the &oal justification of the decisions
taken during this process.

» Chapter 4: Tool Designincludes the architecture of the system, the (Gses of the
tool and its UML structure.

» Chapter 5: Implementationgives an overview of the technology used for the
implementation and provides the tool design stmectu

» Chapter 6: Discussion and conclusian, this section we discuss the lessons learned

from this project and give some recommendation$ufiure work.

14

Vrije Feature Models Visualization Based on Ontology FEnaork

¥ Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis
Chapter 2

Background and related work

2.1. Feature Models

In a global context, we can consider a feature maslean approach for capturing
variable properties and functionalities of concegotsl commonalties in software systems
and product lines. The function of the feature nhadeto express the requirements

regarding the variability using a high-level of atbstion.

Variability is an abstract concept difficult to dam theoretically. We can imagine a
factory that creates products with certain aspietscan be variable. These products with
variable aspects are called product lines [6]. Banging some of these aspects in a
product, we obtain a differenproduct variant In case the factory needs to offer
specializations of the products to achieve cerguirements at the end of its development,
the need of variability study arises. Each aspé¢he product that can vary is called as
variation point [6]of the product. So, the usefulness of variabiktyvhen configuring this
variation point the product line ends as a differ@nbduct variant For example, consider
a car product line in the case of automobile congsarif different cars are produced with
different door types and numbers as an example 2el3por Coupe 4-Door Sedan...)
then we call the door aariation pointand each different type of door is calledaiant.

We can obtain different products (cars) from thefiguration of thisvariation point.

15

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

Continuing with the theme, a feature model triesejoresent the variability requirements
with certain abstraction. The interdependenciesvéet the common and variable
properties (called features) and the organizatiothem into a coherent model are one of
the key points to structure in a feature modeketjuirements and solutions are isolated
structures, then the modeling can be a bridge wharmects these structures together.
Depending on the accuracy and precision of theufeadefinition, the model can become
more robust. Because of this, also the descrippibthe relations between the features

becomes more precise in the model.

More formally, we can say that a feature is a comnmbention of a concept or a general
idea derived or inferred from a specific produogeli[7]; that is as a standard definition, a
distinguishing characteristic of a software itemg(e performance, portability, or
functionality) [8]. The relations between thesetamges give the meaning of the global
concept, and the properties of these instancesméattnation to the elements.

Feature models are usually represented in a gralphay by means of a tree like diagram.

2.1.1. Components of a Feature Model

To understand a feature model it is essential taptehend the components that
form a feature model. The basic structure of featnodels is a tree representation, where
primitive nodes are leaves linked with compouneriiar nodes [9]. The representation of
these links varies depending on the notation tiatodeler uses. In the next subsections,
the descriptions of the three basic components st construction of a Feature Model

are described: features, attributes and featureratmcies.

16

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

Help system

(o]
Location Language Topic structuring Context-sensitive

. help
/\"‘””
English Spanish
Local Online
|

Table of Index Search
contents

Figure 1. Example of feature model [10].

2.1.2. Features

Each concept of the model represents a featurg.atconcept that gives a part of
the information of the complete model and it issidered as one of the basic components
of a feature model. Features are involved in aohetonnections or arcs that represents
relations between the different features and dilvegglobal meaning of the model. Some of
the connections represent the composition hierarohythe model which provides
information about the specialization of a produce![9]. From the root, a reader of the
model gets the general product. Then, when startirxplore descending to the next level
of nodes in the tree, more details of the prodechmonents and functions and variations

are explored.

Figure 1is an example of a feature model; the root ‘Helst&m’ is a generalized

description of the required product, descendintheancomponent hierarchy of the model,
and arriving to the leaves of the tree (each coitipasof constraints is represented as a
node) more specific descriptions of the productstu@vn. Thus, the root of the tree, as the

name indicates, is a more global concept thanniegior features.

In addition, the sub-features get a type dependimgheir type of involvement in the

hierarchy. Every feature can have only one hiesarefation that gives the type. In our
case we consider four types of features, whichdapending of the hierarchy: mandatory,
optional, alternative and or. In the majority ofetlieature model representations, the

17

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

hierarchy relation used to be represented usingakegtion Czarnecki-Eisenecker [11] (see
Figure 2.

a) Optional b) Mandatory

A

c) Alternative d) OR

Figure 2. Czarnecki-Eisenecker notation [11].

An optional features the specialization of the feature that may aymot be chosen in the
final product when its parent is included in theafiproduct. In the graphical representation,
this type of features is represented by a simplpeddom the parent feature optionally
ending with an empty-fill circle (sdagure 2, 3.

In the second type, theandatory featurethe specialization of the feature must be
included in the final product if its parent featuseincluded. The no inclusion of the

mandatory feature in the final product implies &lsat its parent feature is not included. In
the graphical representation, this type of featsreepresented by a simple edge from the

parent feature ending with a black-fill circle (¥&gure 2, .

The alternative featureonly gets reason of existence if it is includediset of alternative
options. This means that this set of componentesept the different alternatives of their
parent concept (every feature apart of the grogpntameaning). In case the parent of the
set is included in the product definition; then @&ka one of the features from the

alternative group is included as a specializatibmhe parent’s concept. In the graphical

18

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

representation, each set of alternative featuresegoresenting by an arc that encompasses
all the edges that connects the parent featurethatidifferent features (séegure 2, 9.

Finally theor-featureis meaningful only if the component is groupec iset ofor-features

If the parent feature is included in the final proddefinition, then any non-empty subset
from the or-group is also included in the produictthe graphical representation, each set
of or-featuresis representing by edges that connects the pteanire with the or-features

and a black-fill arc that encompasses all theseections (se€igure 2, d.

Features used to have characteristics. These thastcs give extra information and are
called attributes, so each feature may contaistafiattributes (or no attributes).

2.1.3. Attributes

Attribute is any characteristic related to featutlest adds information about the

description of the feature and can be measured [12]

There are many ways to classify the attributegpes$ depending on the needs of the model.
In our case, the modeler can distinguish betwessettypes of attributes depending of its

functionality and meaning:

» The first type, calledquality attribute [13], is the inherent or distinguishing
characteristic which is measurable in an abstratmar. In addition, the modeler
has to provide rules for measuring this type affaite (e.g. security, usability ...).

» The second typeguantity attribute is the characteristic that is measurable
mathematically (e.g. weight, age ...).

» Theextra-functional attributg12] of a feature is the characteristic definedtiog
relation of one or more attributes related to thesture (e.g. ‘age = 24,
‘height/width > 0.5 ...).

19

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

» To finalize, theexternal attributeis the characteristic that gets its value from an

external application or device.

2.1.4. Feature Dependencies

In addition of the connections that represent tremosition hierarchy of the model,
it may be possible to add additional relations leenv features to increase the global
meaning of the model. In fact, these connectioms alao be considered as attributes of
features, because they also add additional infoomato a feature. However, as they
involve more than one feature they are expressplicély between features by means of

dependencies.

There are a lot of possible types of feature depeaids, in principle as many as the user
needs. Each relation has got a meaning to usehsn & feature is linked with another
feature (is not allow to link the same feature) ghebal context of the model is modified
and gets a new vision. The following table giveg tbxplanation of the types of

dependencies considered in our research.

Dependency name Meaning
Featurel excludes Feature2 when Featurel and ERatamnot occur together.
Excludes Ex. “Raining day"[excludes]“Sunny day”.
Featurel extends Feature2 if Featurel adds tatfetidnality of Feature2.
Extends Ex. “Full registration”[extends]“Simple registration”.
Featurel includes Feature2 if Featurel containsifesa
includes Ex.“Add usernamelincludes] "Check user name exists”.
Incompatible When Featurel is mutual exclusive due to a conflittt Feature2, it is considered that Featurel is
incompatible with FeatureEx. “Advanced graphicsfincompatiblewith] “Basic graphic controller”
Requires Featurel requires Feature2 when Featurel is furadlyocdependent on Feature?2.
Ex. “Advanced editorrequires] “Spelling checker”.
Featurel uses Feature2 then there is a dependdatigm, so logically if Featurel is required then
Uses Feature2 should also be required.
Ex “Search”[uses]“Provide hints”.
Constraint used to indicate that two features la@esame.
Same Ex. “Advanced graphicgsame]“AG”

Tablel. Feature dependencies description

20

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

Two features cannot be given the same type of dEpmy between them, because of the
strict meaning of each role. On the other hand, feaiures can get different type of
dependency, for example: “Add usernanfi@tludes] "Check user name exists” / “Add

usernameluses] "Check user name exists”.

2.2. Related Visualization Tools

There exist some tools that allow the manipulataod visualization of feature
models. The purpose of this section is to preseditstudy some techniques of visualization
based on the tools studied. In addition, thesestaoé analyzed with the requirement to
achieve an effective view model in mind. The gdathis study was to gain insight on the

visualization problem and to obtain some usefuhsdi®r the design of our tool.

The analysis presented in the next sections isdbasehow the visualization of the
different components is done and how the user campulate these components. Speaking

about components, we mean speaking about featlependencies or attributes.

Therefore, the focus of the study is on the vigagion and manipulation of features,
attributes, dependencies and hierarchy, as thesdhar basic components of a feature

model. InTable 2 there is an overview of the relevant detailsttmlg about the tools.

Component Important details to analyse

Feature Representation of the feature in the vizatédin, interaction with the user.
Attribute Is it visualized in the model? How isvisualized?

Dependency Is it visualized in the model? Differstiin between the different types.
Hierarchy Is it visualized in the model? Differezition between the different types.

Table . Focus of the analy:

21

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

2.2.1. Existing tools of Feature Model visualization

The next sections present some tools accordingfereht visualization categories.
In fact, the presentations of the characteristelated to each tool are a deep study of
different visualization categories. For example, tesearch the Feature Modeling Tool [15]
[16] is an overview of the combination of the trepresentation and the indented list.
Other tools presented are Feature Modeling Plugrikclipse [17] [18], Pure::variants [19]
[20] or XFeature [21].

2.2.1.1. Feature Modeling Tool

Feature Modeling Tool [15] [16] allows creating ti@@ models from inside Visual
Studio IDE. The representation of feature modeldased in two visualizations: the
indented list and the tree structure. In the lefte sof the window (sed-igure 3 is
presented the feature model’s hierarchy as an teddist where the nodes represent the

features.

wnoog [voqeaL ¢

[eupmo we

B
B Credit CardInform...
Fanmrn <0-1»

Figure 3. Feature Model Tool main window [15]

22

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

The modeler can recognize the hierarchy compositiom this representation and also

distinguish or-groups and alternative-groups duéhouse of a new node in the list that

contains as child the features of the related grblgpvever, the introduction of a new node

that represents the existence of a group of feattaa be confused with the actual features
when comprehending the hierarchy composition §b aheans adding an extra level to the
indented list).

The central window represents the modeler's desighere it is allowed to
add/modify/delete features. The representation aseth on a tree, where the links
symbolize the hierarchy component and the nodedslre features. All the changes

produced on this representation will propagateraatally to the other views.

One inconvenience of this view relates on the nisnalization of the feature dependencies,
so the main functionality of the representatios lrethe basis to show the information in a
hierarchical form, as well as in the indented l@nhe of the tools disadvantages is the
excessive use of two similar views that represeatinformation in a hierarchical manner.

The tool could have placed more emphasis on repia@sens that show other information.

In addition, this tool can be considered more dufeaconfiguration tool than a feature
modeling tool. The leave nodes of the indentedplisvide a check box to select different
combinations of features with the aim of obtainthfferent product lines. This means that
the design for representing the model is basedtloer sequirements than in our case (we
focus more on providing aid for creation of feataredels). Therefore, it is assumed that

this type of representation probably is not the trappropriate solution for our problem.

2.2.1.2. Pure::variants

Pure::variants [19] [20] is a feature modeling tomated by pure-systems GmbH

setup in 2001 as a spin-off from the Otto-von-CaletUniversitat Magdeburg and the

23

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

Fraunhofer Instituts Rechnerarchitektur und Sofétechnik. The application is based on
Eclipse, an open source community whose projeatsfacused on building an open
development platform comprised of extensible framds [22], and the main functionality

of it is to be used as a framework for the desiigoroduct line architectures.

The modeling development on the tool is based enalthical structures, consisting of
items related to the different components (featuegtribute - dependency) those make up
the final model. These logical items can be augsteriased on the user needs and

preferences.

Fe Edt Navigste Search Vadant Proje:t Run Window Heby
% E-lq- 4

2 v = 0| Bsimple.vem 2
~

Similar to one of the representations of the

previous tool, the items are situated as nodes
in an indented list. Each check-box placed

near each component is used to configure a

product line from the feature model. Thus, the

user is allowed to display a final result of a

product line, if he or she selects some

configuration by the use of these check-boxes
Figure 4. Pure::variants Family Model Editing

[20] (seeFigure 4.

Pure::variants adds the possibility to represeet tftodel by graph visualizations [19].
Although some common editing operations (editirgdgletion) are supported by the tool,
this view is primary intended for understanding tih@del and printing the solution.

The model presents the different representatideaitires by boxes containing the name of

the feature and an associated icon for differangateatures by their type. On the other
hand, the hierarchical component representatios aisews to make the parent-child links.

24

Vrije
Universiteit
Brussel

¥

Feature Models Visualization Based on Ontology FEnaork
Jose Evelio Martinez Saiz
Erasmus Single Honours Master Thesis

Notation :

[3
& mandatory feature | | # optional feature | | ¥ atternative festure | | # or festure

chllds child 2

chlld 2
chllds child 3
child 3 <
1 childs child 4
Dh“d 1 4 Requires: 'F2'

—
4% Recommends: 'F2'———_|

& Conflicts: T2
4@ Discourages: 'F2'——"|

4 Influences: 'F2' /

4 Conditional Reguires: 'F2'q
—» Requests Provider: 'F2'

Figure 5. Pure::variants graph visualization

Although the representation seems to be poor iteconthe graph visualization adds an

interesting functionality to visualize the featwlependencies. The boxes can be expanded

to visualize the dependencies using colored cororetihes between the related elements,

where the color of the connection line dependsherrelation (se€igure 5).

The possibility to visualize these dependenciesggihe model more information meaning

better overall understanding of the representat®n.the other hand, the model could

become unintelligible if there are many expandediespbecause of this big representation.

=% EShop
= “® Payment
-% PaymentTypes
= A

[creditCard
[A behitcard
O Purchaseorder
[# FraudDetection
= [Shipping
[
=-A

= [customMethads
=& [0.,*] Method (String)
‘e FlatRats Float)
= Method (FreeShipping' : String)
: ‘e FlatRate ('0.0' : Float)
= # Method (‘StandardShipping' @ String)
‘e FlatRate (10.0': Float)
#- [ShippingGateways
= *® PasswordPolicy
= "# Expiration
[

[A nDays (30" : Integer)
[Mever

- *# Chars

BB <2-4>

[LowerCase
A UpperCasa
[Digits
[SpecialChars

Figure 6. Feature
Modelling plug-in for
Eclipse [18].

the information about the node (attributes, desorip...

2.2.1.3. Feature Modeling Plug-in for Eclipse

Feature Modeling Plug-if17] [18] is an Eclipse [22]
plug-in that represents feature models based andemted list.
The design of the tool is very similar with the wabotool
(Feature Modeling Tool [15] [16Chapter 2.2.1)1 The nodes
of the visualization represent the features; als® dr-groups
and alternative-groups are placed under a new ribde

informs about the type of the grouping.

When the user clicks on a feature, an auxiliarydew shows

etc). In addition, the feature

25

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

dependencies are not presented in the model: iheneother window that informs about

their existence and their information.

As with the Feature Modeling Tool [15] [16] (seection 2.2.1.), the purpose of this tool
is to configure different product lines from theresentation of the model. Therefore, once
more it is assumed that this representation prgtiabiot the most appropriate solution for

our problem.

2.2.1.4. XFeature

XFeature [21] is another plug-in for the Eclipsatfdrm [22], tool which supports
feature modeling of product families. Ondrej Rohdikd Alessandro Pasetti froR&P
Software GmbHand the Automatic Control Laboratoryof ETH-Zurich designed and
developed the XFeature tool to demonstrate a caorfoe@utomating the modelling and

configuration process of reusable software asseagool.

The visualization of the feature model in the t@mbased on a tree-structure, where the

nodes represent the features and the links tharhley composition (sdeigure 7).

The modeller has to indicate the cardinality of tleé&tions using the auxiliary points
placed on the origin of the links. Therefore, depeg on this cardinality the modeler can
get the type of the feature; for example, the omtideatures are linked with the cardinality
<0...1> and mandatory with <1...1>. In addition, Sheauxiliary points represent the
grouping of features (alternative - or) when thigiarpoint of the links are shared.

26

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis
5 Mawigator @ IcstControlSystem.xdm % IcsrControlSystem, xfm
EE v
£ buid.xml
|| TesrContralSystem. gcd / \
e TesrtontrolSystem, xdm i
Iy IcsrControlSystem, xfm i SelfTest |
Lo} Tewrcontrolsysternapp xdm & Em————— T 2
Ty IcsrControlSystemapp xfm v - - ‘
&3 IesrCantrolsystemApp xfmm <112 Mi> <1 T
& budam eHTestMarcoDefinition
ICSR. xdm
ICSR, xfmm T = 1
Lot IesrxdmGen, xsl T Processor [= Sensor m
!<:§, IcsrfamGen, xs| . r .‘
]
<1.1=
2= outline 5 B

=Ly AliCaverageTestOFIcsrSampleModel
=i [0 SpacecraftControlSystam
- gSensors
- gActuators

BN

Inter

<1.1>

ifTest |
;

<0.1>
|A(illl(IeAl:llm|0r i : Seiffest |
L]

=0 Acator Tasks ErrorLog Problems = Praperties 5o v
=1 ghActuakarOptions
[atitudeActuator Property walue]
= ¢ goelfTest =1 Basic [14]
) SelfTest FeatureCardinality piges
= gProcessors name | value Processor
=] Processor = ComponentPropertySet
= glntbem StatusProperty provided
[InternalMemerySize | ¥ TypeProperty OR_Pracessor

Figure 7. Screenshot of XFeature tool [21].

The notation based in cardinalities is a good smiufor the representation because the user
gets the type of the feature and its group fromséw@me component (the ellipse). On the
other hand, at first glance it is difficult to digguish the different types from the
representation; the modeler has to relate the maityi with the type, imposing sometimes

a big mental effort for the user.

To finalize, the existence of attributes are repnésd as a red-fill ellipses placed near the
features. Thus, the modeler can recognize in theesentation that a feature has related

attributes from the situation of this ellipse.

2.2.1.5. FaMa Tool Suite

FaMa Tool Suite (FaMaTS) is a tool for the autordasmalysis of variability
models [23]. The application provides an extensibi@mework for easily reading
variability models, and automating (also used semi automated way) the configuration
of a final product.

27

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

As the majority of the feature modelling applicasp FaMa Tool Suite uses GUI tree (tree
structure in indented list) as a representatioim@imodel. The difference in this case lies in
the process of modeling; the user has to develegtifucture of the feature model writing
it in an XML". Then, the tools read the document and visuatizecontent of it like in the

Figure 8 allowing the user to interact with the represtorta

The nodes represent the features, relations, an(= < fetretos

=+ . Root : James
. = 1 Binary Relation : R1
cardinalities of relations in the model. In thisseathe X Cordinalty : [1.1]
[Solitary Feature : User-Management
. = Binary Relation : R3
modeller obtains the type of the feature by theenod S g
Solitary Feature : WSInterface

. - - - - +:1 inary Relation §
cardinality that each feature contains as a desmnip g o
= -i Binary Relation : R7

XY Cardinality : [1..1]

In addition, all the features that form a group are i i i - T

= Set Relation : RS
contained inside the relation nodes. Furthermdre, t i Sl i
Grouped Feature : Forum

hierarchy component is based on the indentionhef t 1] o sl Eonmmirmgemest

Grouped Feature : Repository

Calendar

. --» Requires : RE1
||St €% Exdudes : EX1

Figure 8. FaMa Tool Suite [24]

2.2.2. Existing tools for Ontology visualization

The motivation of researching ontology visualizattools is due to the existence of
a big quantity of them and the many similaritiesn@en this type of tools and the feature
modeling tools [25].
A commonly accepted definition done by Gruber [28] ontology is the “explicit
specification of a conceptualization”. Ontology uvadization tries to represent the
semantics of concepts and the relationships betwesn using a descriptive notation. As
commented previously, a basic feature model is alsoncept description technique [25]
where its representation is quite similar to thdt omtologies (features linked by
dependencies and parent-child like relations). &loee, the study of the following tools is

useful for our purpose, because ideas implememtaxshtology visualization gives insight

! The Extensible Markup Language (XML) is a gengnadposespecificationfor creating custom markup
languages.

28

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

on how to represent rich complicated informationcures which also apply to the case of

representing feature models.

In this case, the study is done from the featurdehpoint of view; i.e. the components of
ontology can be used to represent the componenés feature model. Thus, instead of
referring to classes we will refer to features. AAldtributes and hierarchy are considered

instead of properties and taxonomy classificati@spectively.
As in the research of feature modeling tools, tinelysis based on different visualization
categories. For example, the research in Protéggig2an overview of the indented list

model representation characteristics. Other tomsented are GoSurfer [28], IsaViz [29]

and OntoViz [30], among others.

2.2.2.1. Protége

Protégé [27] is an open-source platform useful

<6, Ontology1231266123346.0wl (http://www.semanticweb.org/ontalo)

for the Constructlon of domaln models and File Edit Ontologies Reasoner Tools Refactor Tabs View

@K} |® Ontology 1231266123345 ow! -
knowledge-based applications with ontologies. | e e | oo ouecpommie | oares

———— —
!, Infemed class hierarchy | [Glass Annctations

Protégé implements a rich set of structures and et 2

Annatations

actions that support the visualization of ontolsgie [2s]2]]
V- . Thing 7
various representation formats. - —

Controll_parameter Equivalent classes
Get_name
Get_password
v-- @ Registration

One of the structural techniques that Protégé fmses . M Fasaword Login

& G E-mail

the visualization of ontologies is based on the =

Exists_the name

Inherited anonymot

Individuals

indented list. Protégé window allows the user to

explore a tree-view representation of the featumes Figure 9. The Protégé feature/class
the model. Each node of the tree represents aréeatu browse
which can be expandable showing the rest of theeld@atures under the hierarchy, or

retractable hiding it (sefeigure 9.

29

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

In this case, the comprehension to understandtthetgre of the hierarchy is easy for the
user. The child features are placed under theemiarand indented to the right; so if the
user expands all the nodes from the model, theeseptation becomes a complete view of

the feature hierarchy.

Corresponding to the other components in the matiel, visualization of attributes is
displayed in a separate window. For the user,nttag be inconvenient due to the difficulty
required to match each attribute with its featlmeaddition, there exists no visualization of
the dependencies; Protégé only supports the additid modification of them through the

properties window.

2.2.2.2. OntoViz

The second tool analyzed, OntoViz, [30] is a pop&eotégée visualization plug-in
with support of GraphViz [31] library. In this cadbe ontology is presented as 2-D graph
visualization where the nodes represent the femtimeaddition to the name of the feature,

each node contains inside its attributes and peni@encies using labeled links.

The user is allowed to select which features walldisplayed, as well as prune some parts
of the ontology from the panel situated in the k&fte. When the user clicks the right
button of the mouse on the view, OntoViz show axilewy window for zooming-in and

zooming-out the content of the visualization.

30

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

Figure 10. OntoViz plug-in for Protégé [30]

The inconvenience of this type of representatioives from the amount of data that the
tool displays. The visualization sometimes becorhesd to manipulate when the

underlying visualized information exceeds a cerliamit.

In addition, when one feature contains severaibatis the size of its node becomes huge
while other features without attributes maintaie game size. This sometimes generates
problems to understand the model. It is easierigtnduish some features from others in
the representation. Also, the model provides teréam level of differentiation in number

of attributes between the features, when it shaotdccur.

Besides, the use of the zoom is required to vizedhe smaller nodes because of the
irregularity in the size of the features. This me#mat from some perspectives the user is
allowed to recognize some part of the nodes thatpose the model and for the rest is

necessary the use of the zoom.

2.2.2.3. GoSurfer

GoSurfer [28] is a data mining tool for visualizi®D [32] data, i.e. sequences of
genome-wide computationlthough GoSurfer is not a common tool to repnése

ontologies, it has a characteristic way to showctir@ent of the input data. In this case, the

31

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

particularity lies in the way showing the large rhenof nodes using a top down tree (see
Figure 11J).

‘‘‘‘‘‘‘

Figure 11. GoSurfer: Molecular Function represénita30]

The highlight of this representation is that therusan distinguish without problems the
hierarchy of the model, even with a big amount ofies. The key is to situate the nodes
according with the level of each one in the hidmgrgresenting a precise structured tree

model.

On the other hand, sometimes this representatiompi@iuce anti-aesthetic trees, e.g. if in
a big hierarchy the majority of nodes belong to sheme level the tree becomes small and

very wide.

2.2.2.4. IsaViz

IsaViz [27] is a visual environment for browsingdaauthoring RDF ontologies. A
common representation of ontology in IsaViz is acfelabeled ellipses representing the
ontology concepts, a set of links representing ltieearchy, another set of labeled links
representing the role relations, and a set of ngi¢a linked to the nodes (ellipses/features)

representing the attributes.

32

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

In IsaViz there also exists the problem of the dagmount of data shown on the
visualization. If some features have several atteb the graph becomes huge containing
many elements and connections (one rectangle akdfdr every new attribute). For
example, if a feature has got four attributes, twerarchical links and two feature
dependencies, it means that from this node emexdetal of an eight links to eight new
features (in case there are no features used tancifferent relations).

Cra
=
S
o&o— =
. = e
I —— 1| I
| =]
oy [
== e
eoe
Stylesheets Quick 1 FSL |
rRON (00wt owa) > 0 s g
(s}
Evaoate Erpe E - @ rote Oan [Load RoFSiOM. (ROFSIOWL setings
Ms -

Figure 12. IsaViz environment [27]

2.2.3. Conclusion of the study

Studying related tools was the starting point @& tresign of our tool. From the
conclusions (more details later) of this work, weeady get some first ideas on how to
design our tool. On the other hand, the informabbitained in this way is quite limited,
and a more theoretical study in the area of infdionavisualization was considered useful.

This will be given insection 2.3and2.4.

In this section, we have looked at different featunodeling visualization tools to
understand the existing support given to softwaceleters developing variable software

and thus help us identify the shortcomings of thesés from a HCA prospectiveTable 3

2 Human—computer interaction (HCI) is the studyraéiaction between people (users) and computers.

33

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

summarizes the major characteristics of the exsteature modelling tools. From the
study of this table, we can extract some notesrdegyg the representation of the feature

models in existing feature modeling tools:

» It seems that the common visualization view to espnt feature models is the
indented list. Different components and informatadrihe feature model can easily
be represented within the list, although this situasometimes causes large lists.
This leads to the loss of the hierarchical strietoir the information and makes it

difficult for the user to follow.

» Most of the existing feature modeling tools areimaped for configuration of
feature models rather than design of feature moddlas the indented list view
usually contains check boxes for configuring digfgrproduct lines from the model.
This is one of the reasons that this representatidades all the information. The
modeler is allowed to select or deselect all thesfie information for the good

configuration of product lines.

» Some of the existing feature modeling tool tenthdawe more than one method for
visualizing the model, while the indented list nmegthis similar in all the tools.
Some tools contain other visualizations which hedditional information that was
not possible to represent in an indented list. &oegplly, each tool will require a
different type of supporting representation depegdin the needs of the users and
the level of support it provides for visually moael variability represented by

feature models.

From our point of view, the above tools are optiZor configuration of feature models
rather than feature modeling design. For exampleot essential to use an indented list
view because a feature model design tool not pesvithe possibility to configure the
product line (it maybe included on a different vider example a configuration view).
Even, the inclusion of all the components in th#eimted list seems excessive and difficult

to understand.

34

Vrije

¥

Universiteit

Feature Models Visualization Based on Ontology Fnaork
Jose Evelio Martinez Saiz

Brussel Erasmus Single Honours Master Thesis
Tool Method Features Hierarchical component Dependencies Attriltes
T|L |G | Comments T| L| G| Comments T| L| G| Comments T| L| G| Comments
List: The child nodes are placed List:
indented to the right from the parent. List: Represented as Represented as
While the grouping of features is an item placed inside an item placed
Indented List + Represented as an represented as a new item indicating the feature inside the
Tree v |v | 8 | iteminthelist,and | ¢/ | ¢/ | 8 | the group-type, which also includes | 8 | ¢/ | 8 | representation. 8| v | 8| feature
Feature representation. as a node in the tree. the features indented to the right. representation.
Modeling Tool Tree: No
Tree: Represented by links using the representation. Tree: No
common notation. representation.
List: Placed as an
List: The child nodes are placed item inside the List: Placed as
Indented List List: Represented as indented to the right from the parent. feature an i't em inside
2 (main V\r/]indow) an item. No representation of grouping. representation. the feature
o | pure:variants | + Grap .
‘Elure variants | representation ® vV Graph: Represented ® vV Graph: Black-stroke arrows linking ® vV Graph: The nodes ® | v | % | representation.
(auxiliary as a box. Icon inside the different features. No can be expanded Graph: No
window). it indicating the type. differentiation between different showing colored represéntation
groups. links representing the '
dependencies.
University of
Waterloo The child nodes are placed indented|to d
the right from the father. While the Represente as
% . Represented as an grouping of features is represented as _Represente(_i asan an .'tem placed
Feature Indented List. | % | v/ | % item in the list. X |V X newitem indicating the group-type ® | v | % | itemplacedinside the % | / | ® | inside the
Modeling which also includes the features feature-item related. feature-item
Plug-in for indented to the right. related.
Eclipse
Black-stroke arrows to represent the
hierarchical component. The grouping
of features is represented from an Red-fill ellipse
coo origin point where the links of the situated near
X Tree . vV I 8| Repre_sented asa VI % % grogup gmerge. ® | % | & | Norepresentation. v | 8 | 8 | the box that
XFeature representation. node in the tree. re
presents the
Uses cardinality to give the modeler related feature.
the information about the existence of
groups and the type of features.
FaMa The phild nodes are placed indented|to
Indented List Reprgsenteq asa the right from their pa!’ent.. Fea_turgs Represented as a No _
b |V | 8| 8 | nodein the list. vV | 8 | 8 | form the same group is placed insidg ¢/ | ¥ | 8 | node. X | R | 8 | representation.
FAMA the same node relation.

Table 3. Representation of the components in featwdeling tools

(T: tree representation, L: indented list, G: gragbresentation)

35

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

We also studied other visualization of data in eté#ht domains such as ontologies.
Ontology modeling tools also have to deal with mesamount of data structured in a rich
hierarchical mannerTable 4provides the representation of the component$ ontology

modeling tools; the aim of this study was to gaame experiences in how other domains

dealt with the scalability issue when visualizingplvledge.

36

Vrije

¥

Universiteit

Feature Models Visualization Based on Ontology Fnaork
Jose Evelio Martinez Saiz

Brussel Erasmus Single Honours Master Thesis
Tool Method Features Hierarchical component Dependencies Attriltes
T|L |G | Comments T| L| G| Comments T| L| G| Comments T| L| G| Comments
J No
@ z;ﬁizztﬁggs nodes in Child nodes are placed representation.
Indented List. X v R expandable’and ® | v | 8 | under their parent and indented tothe 3¢ | 3 | & | No representation. % | 8 | 8 | Displayedina
Protégé retractable tree. right separate
window.
] Child nodes are placed under the . .
<é Tree Represented with) ; - Represented with Displayed on
OntoViz representation. AR AR rectangle nodes. AR AR ﬁ,?&em ones and linked with an "isa” | v/ | % | % labeled links. AR AR the node.
Represented as tree
nodes. No
Tree Selected nodes are Represented as an representation.
OoUIL eI representation v | 8 | 8 | marked with numberg ¢/ | 8 | 8 | Nodes are linked to their parents. v | 8 | 8 | itemplacedinsidethe 9 | 8 | 8 | Displayedina
GoSurfer P : with their labels feature-item related. separate
listed underneath the window.
tree structure.
Displayed as
- rectangle nodes
%C'E linked to the
Tree Represented as Nodes are placed under their parent Represented with instance with a
representation. AR AR labeled ellipses. AR AR nodes. AR AR labeled links. AR AR link labeled,
lsaViz including in this
link the name
of the attribute.

Table 4. Representation of components in ontologgleating tools.
(T: tree representation, L: indented list, G: gragpresentation)

37

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

Lessons learned from these ontology modeling taxds

> Firstly: Based in feature modeling quality, thereesl not exist one specific
visualization method that seems to be the mostleiagblution for visualizing
feature models. Rather a good tool is one that igesv different views
(visualization options) to allow the user to gairm flexibility when modeling.
Furthermore switching between these modeling vigwaild be allowed.

» Secondly: A good visualization tool should provideme efficient searching
mechanism or querying for features with certainpprées in the model and, thus,
ease the modeling task in the case of very largaufe models. The majority of
ontology visualization tools provide some functilityathat implements this
function. Browsing sometimes is not powerful enoudgh searching for specific

features in large visualizations.

» Thirdly: We found quite large symmetries betweegpresenting ontology concepts
and features in feature models. Similarly featugpethdencies resemble properties
linking ontology concepts. The component that isrendifficult to represent in

feature model is the attribute.

Three types of representations are the most apptepior representing rich knowledge

representation models: the tree, the graph anohtlemted list.

38

Vrije Feature Models Visualization Based on Ontology FEnaork

¥ Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis
Chapter 3

Visualization and interaction of feature models

3.1. |Initial requirements analysis

Designing a tool for visualization and interactiminfeature models should be done
keeping usability in mind. To obtain a good us#filit is necessary to consider the target
users of the tool as well as the tasks that thedioould support [33]. Therefore, we first
have to study the future users of the tool andr ttegjuirements to be able to achieve an
optimal and effective design for our visualizatimol. In our case, the target users of the
tool are ICT professionals, as well as other ptesls with no or little knowledge in
developing feature models. Also during the develepimof the visualization tool, we

always have taken into account the fact that tbevdl be used by these types of users.

As the type of visualization used will be criticlr the usability of the tool, it was
necessary to first perform a study of the differguissible types of feature model
visualizations. The final decision taken after thigdy is described in the next pages and
looks for (1) the simplicity of the tool, (2) thatuitive understanding as well as (3) easy
interaction and (4) a comfortable user experience.

39

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

Starting from the observation that the target usgltde ICT professionals, as well
as other professionals with no or little knowledgedeveloping feature models, we can

derive the following basic requirements:

1. A non-experienced user has to be able to use tileatm understand what he can
do with it with minimal training.

2. The visualization used in the tool has to showhalpossible information contained
in a feature model, without resulting in a visua¢doad.

3. The user should be able to manipulate easily tfierdhnt components of the model.
Move, edit or delete are basic actions that théertagst support.

4. Save and load feature models from a file are nacgssctions of the tool, as the
development of the models may be spread over time.

5. Good response times are necessary: the actionsheofuser must have an
instantaneous response from the tool.

6. Interaction with the components of the model regmés the power of the tool. The
more actions take place inside the model representanstead of in auxiliary
windows, the more intuitive the use of the tooll\wgcome.

7. To avoid the need for installing software, which ymbhe difficult for non-

experienced users, the tool has to run in a brawser
These requirements are only the basic ones. Duh@glevelopment of the design, more

requirements were added, because of the programeniigonment used or because a new

issues that emerged at that time.

3.2. First consideration: 2-D versus 3-D

The first question that arises in the design ofisualization tool is whether
representation should be in 2-D or be in 3-D. A# tools studied ichapter 2are using a
2-D visualization, and the existence nowadays Bf ®ols for feature modeling is almost

obsolete.

40

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

The idea of developing a 3-D visualization was alided mainly because of the difficult

manipulation of 3-D models. The reason of this a@iding was based on the next points:

» Both the screen and the mouse are 2-D devicesthese ones it is difficult to
achieve a real 3-D visualization.

» It is difficult to manipulate 3-D spaces with therent interaction techniques.
Almost all the well-known types of manipulatione dvased on 2-D applications
(e.g., scrolling, dragging).

» Navigation in a 3-D model is not easy and the fisglr needs to get acquainted to
this. This would complicate his task of creatingreot feature models significantly
and would increase the learning time, which isanftict with the first requirement.

» 3-D is not yet supported by default browsers. Tleeg special plug-ins would be
needed to visualize 3-D in a browser environmentréhtly, only little software is
available that supports this. As requirement 7estdlhat the tool should run in a
standard browser without the need to install spedbftware, this could be a
problem. In addition, the software and the impletagon needed for 3-D usually
needs extra non-standard tools, and requires da-hardware to have good

response times.

3.3. Information visualization and interaction techniques

3.3.1. Information visualization methods

In our effort to gather all possible informatiorr the design, we also present the
following recompilation of other type of informatiovisualization (InfoVis) methods
useful for our tool. These techniques can be usefukthe field of feature model
visualization, and were taken in account in thegtesf the tool (se€hapter 3.

41

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

3.3.1.1. Indented List

The technique of the indented list is based onracat correlation of a set of items
that can be indented to the right in different IlsvErom the feature modeling visualization
point of view, the natural representation of thethod allows the modeler to position the
different items (features) according to the hidnaral structure. For instance, if one feature
is the specification of another feature, the inddnist represents this specification as a

sub-item indented to the right from the positiontsftem father.

A list can contain a large number of different i&grso the rest of the components in a
feature model (attributes, dependencies, typespearpresented and placed inside the list.
Nevertheless, when the feature model containgge lammber of components, the inclusion

of all these components can generate huge lisysinefficient to modeler’s work.

In addition, this problem supposes a big effort tfug reader to find and differentiate the
types of items. For example, the inclusion of alisgible feature model components
supposes at least five different types of itemst(fiee, type of feature, hierarchical

grouping, attribute, feature dependency).

3.3.1.2. Venn diagrams

Designed by John Venn around 1880, the Venn diaf@dirs an illustration of the
relationships between and among sets or groupsbgcis that share some or all
characteristics. The principle of the diagram estise of regions to represent classes or sets.
These regions use to be represented with ellipgeshweould be overlapping with each

other depending on the relationships between #esek or sets (sEgure 13.
This idea can be adapted to represent the strucfuadeature model. The features can be

displayed as regions in the diagram and the hieyacomponent can use the structure of

this method. For example, a father-child relatigpstan be represented in the model as a

42

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

large region (the father) that contains a smakgian (the child). The solution in case of
the hierarchy could be the use of different colaregions (e.g. circles red-filled suggests
that they include lower levels). To navigate in therarchical representation, the modeler
only has to click in a region that will be magndjewith the use of animation, making its

contents visible.

One of the disadvantages of this technique
the difficulty to distinguish the types of
features. Although this technique allows
playing with the sizes and the colors of the
regions, these possibilities are already use
to represent the hierarchy component. Thus

the method must use Ilow-efficiency

solutions for user's point of view, in order to

achieve the representation of these types. Figure 13. Venn Diagram [35]

3.3.1.3. Tree structure

A tree structure allows the modeler to represeertanchical natures of a structure in

a graphical form, which is formed by a series aesconnected by links between them.

In the field of feature modeling tools, this methafdsisualization is most widely used. The
hierarchical nature of the structure is valid fepmresenting the hierarchy component of
feature models, although it must make use of soot&tion applied to distinguish between

the different types of relationships (normally Gesski-Eisenecker notation [11]).

On the other hand, the model can not include feati@pendencies represented as links.

The nature of the tree structure prohibits douldenections between nodes or links that

43

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

%

create closed pathi the structure. Hence, it is not possible taialize the feature model
as a natural tree, if the modeler wants to reptedeth feature dependencies and

hierarchical component with links.

3.3.1.4. Treemap

Treemap [36] is a space-filling visualization tls&iows nodes as a rectangle area
organized in a hierarchical structure by size amldrecoding. The representation enables

users from its composition to compare sizes of a@hel sub-trees (ségyure 14.

This technique was proposed by Baehrecke ar"1d

Babaria as a tool for visualizing the GO

ontology [32] (2004). In the application of this|§
method, the features can be represented |
colored squares of size proportional to

selected attribute. In addition, labels can big

ol tetdaes [brosumcnairy e iidsl

displayed up to a certain depth. For theSas g ‘ S
hierarchy component, lower level nodes can LS

placed inside their parent nodes.

One of the disadvantages of using this technique

for feature modeling visualization is the difficulio represent the feature dependencies and
the attributes. The structure of the model onlyptes the representation of components
and its hierarchical relationships furthermore deattype groups will be difficult to

represent.

% Jumping from node to node by the use of the waiatiips, and visiting the nodes only one times it i
possible to arrive to the starting node visitedvjmesly

44

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

Moreover, the use of coloration and proportionaésiare not powerful enough to represent
the rest of the components. It means that the oplipn to display these components is by

the use of auxiliary windows.

3.3.1.5. 2D hyperbolic tree

The hyperbolic tree technique defines a visualirathethod for a graph based on a

hyperbolic geometric transformation [37].

Referring to features and their hierarchical stiustthe

T i
root of the tree (representing the root of the Uit M;u
L:".‘ T Ordily 1g grrwaal P ——
model) is initially placed in the middle of a citauarea RNl
with the child nodes placed around it, their chititles | " P
placed around them and so on (Bégure 15. T o el
T A 4™
This technique is not appropriate enough for oweca | -~ 4 © i@
Compared with the classic tree representation ndethc

the hyperbolic tree entails the loss of the nattmeg Figure 15. Hyperbolic tree [37]
structure. In other words, the representation seaore
like a graph than like a tree for the user pointiefv, while in our case our tool is looking

for the comprehension by the users of the treatuahical structure.

3.3.1.6. Graph representation

The graph representation is an illustration that b& understood as a set of

connected or non connected nodes with links betwssm.

45

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

A feature model represented with this method mehespossibility to visualize both
hierarchical links and feature dependencies agdioakhips; as well we have to provide

some notation on the edges to distinguish the ywes of links.

Thus, the clearest way to adapt the feature mod#l the graph method is by the

representation of the features as nodes and tinartidécal components and dependencies
as relationships (commented previously). On theerotand, there is a wide range of
possibilities for interpreting the rest of the mbdemponents. As an example, attributes
can be represented as new nodes linked with tlagecefeature or as descriptions placed
inside the feature. So, the representation may weagording to the necessities of the

feature modeling tool.

3.3.2. Human—computer interaction

Interaction between human and computer is at thet lné the modern information
visualization [38]. One of the principles that wéolowed in the design of the tool (see
Chapter 3 was to allow as much as possible interaction betwthe user and the
representation of the feature model. The moreawstem with the visualization is possible
the easier it will be for the user to managemeatrtitodels. The next sections present an

overview of some HCI techniques that were helpdulthe design of the tool.

3.3.2.1. Explicit Representation

Explicit Representation refers to drawing methodsctv display the hierarchy as
links between nodes [39]. The goal of this techaigs represent the information as
intuitive as possible. In the case of feature nmdéhe best way to represent the
hierarchical relations and dependencies is by #eeai links between nodes representing

the features.

46

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

In addition, the possibility to represent the linksdifferent ways (e.g. curves, straight
lines ...) provides the possibility to differentiabetween type of relations. For feature
modeling, this possibility can be applied to represdifferent types of relations. The
modeler would then see the difference between ttypes of relationships: hierarchical
links, feature dependencies, and attributes rekatdéeatures; each represented by means of

a different link representation.

From my point of view, it is more intuitive to prioke as the nodes of the model only the
representation of features. Therefore, it obvidltesuse of links to represent the related

attributes of features; otherwise these attribabesild remain as nodes.

3.3.2.2. Color coding

The encoding based on colors adds another lay@nfafmation for visualizing
information [39]. The colors can be used to providéormation about the state of

components or to differentiate between types offmmments.

This technique can be used at different momentmgldeature modeling, and could help
the modeler in the development process of a feathodels. For example, when the user
clicks on a node to add a hierarchical link, notteg can be linked (features not linked
with the same link type) could change their fillamo This could help the modeler to
recognize from the visualization the set of nodhet tan be related by e.g., the hierarchical
link.

In addition, the coloring of features or dependesaan also be useful distinguishing their

types (each type can be associated with a colblrefore, this method can be applied in

many different ways when visualizing feature maaigli

a7

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

3.3.2.3. Details on Demand

Sometimes it is hard to represent all informatioapgically in the visualization,
because of the large size of its representatiobecause of the abstract meaning of the
information (difficult to obtain a clear represema). In these cases, the use of the
techniqueDetails on Demandould be a good solution for the problem.

This technique refers to the facility whereby thaksholder can choose to display
additional detailed information at a point whergs tthata would be useful [39]. In the case
of feature modeling, for example, the represematibthe attributes can create a problem
when a feature contains a large list of attributieis, then by using this technique we show

information about attributes only when the useniseed of it or requests it.

3.3.2.4. Techniques based on big representations

The modeler may have difficulty understanding thedei’'s representation when it
contains a large amount of components. In additdepending on the number of
components contained in the visualization, theldigpg of all this information becomes a
difficult task for the tool because of the sma#lesof these components when visualizing
the full of content.

The next sub-sections present two techniques thab tbring solutions to such problems:

Incremental BrowsingandFocus + Context

3.3.2.4.1.Incremental Browsing

Incremental browsing is a technique used to sabwveesaspects in these cases. The

method is based on the filtering the content ofréresentation by limited sections of the

48

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

visualized structure displayed [39]. The rest o tlepresentation is hidden and can be

showed when modeler’s desire to.

In feature modeling, the high-level nodes of therdwsichy component can be displayed as a
starting point. The modeler can visualize the m@sthe hierarchy as he explores the

visualization by the use of mouse events appliethercomponents.

The representation sometimes can provide a leveiistihction between the components in
different levels, for making the distinction betweef the hierarchy’s components easier.
On the other hand, sometimes this solution beca@sblem in the case of models with a
high number of levels. For instance, if the repnésigon of the feature model is based on a
graph, the incremental browsing of the informatgpace is based on visualizing only
limited sections of the whole graph [40]; accordinghe user clicks, the rest of the graph

is visualized.

3.3.2.4.2.Focus + Context

To quote Ddursteler [41]:The main problem of information visualization i th
insufficient space, which restricts the user inwgimg detail and context contemporaneous,
is called “presentation problem”. The Focus + Coxttesystem allows the user to show
detailed information linked with the context, bgahaving the possibility to focus on other

information by interacting with the system.’

This technique tries to display contextual inforimatwithout the loose of the modeler’'s
relative orientation when zooming into a big reprgation. The use of the zoom and pan
allow the modeler to scale the view and presereeftitus of the content. In addition,
sometimes it is useful to provide the visualizatimol with multiple windows or
viewpoints for displaying the location in the oJem@presentation and, in consequence,

preserve the context of the content.

49

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

In feature modeling the use of this technique @iagble when the representation is based
on graphs or trees. A feature model with a high bemof features needs to use some
mechanism for the modeler to focus on a subparthefrepresentation preserving the
general context of it.

3.4. Selected visualization techniques for feature mote

The difficulty when designing a visualization tor feature models is how to
achieve a good visualization where all the infoioratis showed in a coherent manner.
Features, feature dependencies, hierarchy andwtis are mainly too much information to
show in one representation. Although it is possiblshow all information at the same time,
sometimes the visualization will be useless duthéoinformation overload. For example,
visualizations where all the attributes are shoimikeld to their features (sddgure 12
become huge. Showing all information at the same is good for small models but don’t

scale for large ones.

Therefore, is not only important to show all thenpmnents, the visualization must also
allow a human being to build a correct mental marlehe model shown. Even when the

model is very large, the visualization must suptus.

One can say that the key to measuring the solvehggpod feature model visualization is
obtained by the impressions from a user when Ilgpkm the model. If the user can
recognize all the components of the model as veeilha global context (mainly understand
the hierarchy and distinguish it from feature dejmties), the representation can be

considered as suitable.

In the effort to find a single visualization thaeets all the characteristics discussed above,
we found that the best way to visualize all thetenhof a feature model was using the
graph view. However, the problem with this typevigualization is that it will not be easy

for the user to recognize the hierarchy of the rhfrden the graph.

50

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

The solution of this problem is to eliminate thenks that represent the feature
dependencies. Then the graph becomes a tree ahdethechy is easily recognized by the
user. However this introduces a new inconvenietioe:loss of visual information (the

dependencies are not visual anymore).

The natural way to visualize feature dependenaelsyi means of links from feature to
feature; any other way to represent this compomentld be unnatural. Representing a
dependency in or attached to only one of its featuwuld require an unnecessary decision
from the modeler to decide where to place it. Regméng the dependency inside both
features will introduce an unwanted redundancy.rdfoee, our solution was to provide

both types of representation in the tool: the graplv and the tree view.

The user has to be able to visualize the two tgbespresentations. This means that when
the user is interested in analyzing the hierarobglie can use the tree view. Otherwise,
from the graph model the user can visualize allpbssible information and interact with it.
The more different visualizations are provideddarertain feature model, the easier it will

be for the user to understand and manipulate thdemo

Following this theory, we also decided to add aaptiepresentation: the indented list. The
idea is to provide the graph view with a compleragntview and interaction mode
representing the hierarchy of the feature modethis way, the user can see the structure

of the hierarchy (using the indented list) whilevsrking with the graph model.

Thus, the final decision was the utilization ofafrtypes of visualizations for the feature
models: the graph model, the indented list andttbe view. The following subsections
show in detail the design of the different visuatians, and also how the user can interact
with each one. Having these three different vigagiions has added an additional
requirement to the tool:

8. The three visualizations need to be kept consistithteach other while the user is

manipulating one of them.

51

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

3.4.1. The graph model

A graph is a diagram that shows a set of relatipssioften functional, between a
group of points or numbers. Each of these pointsuonbers has coordinates determined by
their relationships. This diagram represents a aema#tical structure or a symbolic

representation of a network [42].

The graph representation of our tool is based as tfinition. This is the only
representation that tries to show almost all thetext of the model at once. The graph
representation will be given in the main windowtlod tool. From there, the user will work

most of the time when developing the feature model.

3.4.1.1. Graph-view design

To make the understanding of the graph-view desigsier,Figure 16 shows a
representation of graph-view model in our tool.sTimodel is the representation by our tool
of the model presented as an example irCthapter 2 Figure 1

At a first glance (se€&igure 16, the user can distinguish between boxes (nodebeof
graph) and edges (relationships) in the repregentdach box represents a feature where
its name is placed right in the middle. The usar differentiate between four types of
boxes; each represented by a different the bortkscfibed further on). In addition, two
buttons are situated on the bottom of the boxes;camtains the letter ‘A’ and the other

one the letter ‘L’, these buttons are discussezt lat

52

Vrije Feature Models Visualization Based on Ontology FEnaork

¥ ‘ Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis
: Help system
Context-sanzitive feip
Local Location —_— 3

Tapic structuring

Online
Language

English

Table of contents

Spanish Search

Figure 16. Example of graph model representation

Also there are two set of lines (relationshipskilng features in pairs: the black lines and
the colored lines. The black lines ends with a bieg annotation that depends on the type
of the destination feature (mandatory-optionaldteraative), while the colored lines

represents feature dependencies and is annotated wiark (ellipse situated on the central
point of the edge) that indicates the type of ddpeny. The next sections describe in

details the different graphic notations used.

3.4.1.1.1. Features and attributes inside graph view

As commented previously, the representation ofufest are based on boxes. The
different border of the boxes depends on the typgbefeature (seEigure 17. The reason
for this differentiation is to support different ygof creating feature models. For example,
if the modeler starts adding all the featureshatrhoment that he/she starts to create the
hierarchy, there is some visual aid to distingufsh different types of features. Otherwise
the user has to remember the types of all the featihhat were already created.
The two buttons situated at the bottom of the bayess to the user visual information
about dependencies and attributes related to terés. The ‘A’ button reports on the

existence of attributes while the ‘D’ button repooh the existence of feature dependencies.

53

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

The ‘A’ button is not enabled when the feature does

. 4

have attributes. The same happens for the ‘D’ bhuttc
ALTERNATIVE MANDATORY

when the feature is not linked with other featulss
means of feature dependencies; then the ‘D’ bugamot L
enabled. On the other hand, if the user clickshan‘A’
or ‘D’ buttons when they are enabled, the tool shav OPTIONAL OR
new window with the list of attributes or feature

dependencies respectively.

Figure 17. Different types of
)] . features
The attributes are not directly represented in rtialel

due to the problem of the possible large amourdaté
that should be showed. But from the representaifaime feature, the user can recognize

the existence of attributes

3.4.1.1.2. Feature dependencies

As in the case of the features, the modeler alsst rdistinguish between the
different types of dependencies in the model. Tée af colors is the first possibility to
provide the representation for this differentiatieach type of relation corresponds with a
different color (please refer to Color Encodinghi@ique,section 3.3.2.2 The problem of
this differentiation lies in the fact that the usereeds to know the association between
color and type of dependency. With the use of dffie colors the modeler can distinguish

different feature dependencies, but he may not kookgcall the meaning of the colors.
A color has not an implicit meaning to relation wthe descriptions of dependency types

(seeFigure 1). Because of that, the tool also provides icongach link that describes the

type of relation (se&able 5.

54

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

After some study on different possible icons, weidied to associate a character to each
kind of link. For example, because of the meanifighe dependencgame the most

obvious is to associate this type with the chardste

The representation of these icons is an ellipsedbitains the correspondent character. In

the representation, they are situated on the deyunat of the link.

Feature dependency name Symbol| Colof As a result, it may be easier for the

modeler to recognize in the visualization
Excludes ® [|

the type of each dependency by mean of
Extends @ i the icons. In addition, it is also easy to

distinguish between the different types
Includes @ B of the links by means of the colors.

Incompatible ®I [|

Requires [|
3.4.1.1.3. Composition hierarchy
Uses
Representing the composition

Same @ [| hierarchy of a feature model in the graph

view is more complicated than it looks.

Table5. Representation of dependencies . .
Some compositions originate from group

relations, such as alternative and or featureioglat As mentioned previously, the set of
black-fill links are the components responsible @isplaying the power structure. The
destination of each edge depicts the hierarchype tiseeFigure 18§. In the case of
optional and mandatory links, the representatiorsuthe Czarnecki-Eisenecker [11]
(ending with an empty-fill circle for optional liskand ending with a black-fill circle for

mandatory links).

55

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

OPTIONAL ‘ALTERNAT'VE | ‘ OR | iMANDATORY |

Figure 18. Representation of the hierarchy (nogiginoups)

¥

On the other hand, the Czarnecki-Eisenecker notgtld] is not a good solution to
represent the alternative and OR links in our c@kat is, if the representation would use
this notation the model would lose the graph stm&ctue to the grouping of the links in
the composition hierarchy. The solution of thiskpeon was solved by introducing a new
notation to represent groups of features. Eachpgh@as a name representing the name of
the feature or functionality provided by the grotipis name is used as an identifier to
distinguish different groups. The group name isuded with each link to one of the group

membersfFigure 19shows an example alternative group.

Feature1

Feature?

alternative

Feature3

alternative

—- Featured

Figure 19. Grouping representation

56

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

3.4.1.2. Graph-view interaction

One of the requirements when designing our tool Wwes possibility for the
modelers to create, manipulate and delete compsnehtthe model through the
visualization. In this section we present the dédfe user scenarios to interact with the

components placed in the graph-view.

For the ease of user interaction a toolbar thatatos all the possible modeling actions is
provided. In our case, we call this toolbar heawing Toolbar (seeFigure 20. It is
composed of ten buttons, and the function of eahis described in the next paragraphs
(starting from the button situated on the top eflar to the one situated on the bottom):

The first button gives the modeler the possibitityadd new features to
the graph-view. When clicking this button, the es@ntation of the new
feature appears as a red box situated at the gositithe cursor. The user
only has to drag this box to the position where fismture needs to be
situated in the visualization workspace (user waphice), and release the
mouse button. The last step is to complete thalddtaformation of the
new feature. This information contains: the featnoame which will be
placed in the middle of the representation, a latéfcription of the feature
(in case it is necessary for the modeler) and ype ©f it (alternative,
mandatory, optional and or-feature). In this cases obligated for the
modeler to provide the name and type of the feature

The decision to use the dragging in the creatiorieafures was taken
because of the easy way to position the new featuitee user work space.
Otherwise the user would have had to indicate therdinates when

Do INNNNEN=

adding a new feature. In addition, it is easiertf@ modeler to control the

F[i)?;;;nzé)' collisions between the new feature and the existings than doing this
Toolbar automatically.

57

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

The addition of feature dependencies is implemehyesheans of the second button. When
the user clicks on it, the cursor becomes a paidtthe tool changes the status of operation,
which in this case adds a blank feature link. Thie@,modeler has to select step by step the
two features in the representation that he wantmko(it an auxiliary line that goes from
the origin feature to the mouse release positioplased, only one feature selected). To
finish, the user has to select the type of featlapendency between the lists of possible

(seeTable 1) on a new window that emerges when the secordriess selected.

The third button is used to add an attribute toesain feature. As with the feature
dependency addition button, the cursor and theusstaf operation changes when this
button is clicked. The user only has to click oe tklated feature in the graph-view and

complete the information of the new attribute inaarxiliary window.

The following four buttons are used to develop tenposition hierarchy in the model.
Each button represents a feature relation typeséukently: optional, mandatory, or and
alternative). The way to add these components esstime as the addition of feature
dependencies, so the behavior of the user whem@a@dhierarchical link is the same than

when adding a feature dependency.

To finish, the last three buttons control the giagpn the composition hierarchy. The last
two are used to create and edit the definition gifcaup, while the antepenultimate button is
used to relate (a) feature(s) to a group. In thaecthe user only has to select the feature
(or list of features by pressing the keybo@tdl button), and then click thgroup button.
The last step is the selection of the group fromaariliary window. The user has the
option to select from already existing groups dedeo create a new group. If he selects to

create a new group the new group window is opened.

3.4.1.2.1. Editing and deleting concepts

Our tool also provides the possibility to modifygth the visual properties of the

components (position, size) and the actual condérihe model (features, feature types,

58

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

dependencies and attributes) of the componentdertsie graph-view. All these actions

take place in the workspace by means of easy dagl@p operations.

With regard to the global representation, the tomhtains a scroll panel to modify the
perspective of the visualizatio®AN). In addition, at the top of the window a slider i

located to increase or decrease the size of theahaed components when the modeler
changes its positiorzZOOM).

The existence of these functionalities in the iedtemendously important as it allows the
modeler to visualize the full model or a reduced ferspective of the model when the
representation is full of features and links. Fearaple, the user can zoom in on a node
when he wants to drag it more exactly in the vigadibn using the mouse.

On the other hand, one of the problems that artga the use of two types of links (feature
dependencies and composition hierarchy links) & dkierlapping of edges. From one
feature to one other feature a maximum of one tuhyalink and seven feature

dependencies can be added.

Feature1 o Feature?2

L2 (2)

Figure 21. Representation of a dependency

The use of curves to represent the links was dischrecause of the hard calculations for
positioning these curves. The solution presenteeRgure 21 is the possibility to modify
the relative position of the dependencies usinglianx points. The two squares on the link

can be clicked and dragged by the user changinghtage of link.

To finalize, the modeler is allowed to deleted comgnts of the representation via the
selection of them (for features clicking on the bt dependencies clicking on the line

segment representing the relation or on the madkfanhierarchical links clicking on the

59

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

edge). Once the selection is made, the deletidong simply by pressing thzeletebutton

on the keyboard. The user is first asked to confine delete operation and then after
confirmation, the model is modified with the rembweéthe selected items (which includes
also all the components connected or associatdditwit

3.4.2. Indented list

The indented list is the second type of visual@ain our tool. The reason for the
inclusion of this representation is due to theiclifty for the users to recognize the
composition hierarchy from the graph-view. So, thdented list can be considered a

visualization support for the graph-view.

A list is a series of objects organized in a lobmaler. In our case the objects are the
features of the model, and the organization iscttraposition hierarchy of this elements.
Sometimes a list representation is difficult todieaspecially when the organization of the

list elements is more than a simple successiomeicts.

The indented list is a solution to represent therdrchical organization of the feature
model as a serial. The structure is very similath® one used by Protégé (ssection
2.2.1.1), the child elements in the list are placed urteir parents and indented to the

right.

3.4.2.1. Interaction with the indented list

Like in Protégé, the nodes included in the listexpandable showing the rest of the
lower features under the hierarchy, or retracthideng it. The user only must click on the
arrow situated on the right of the parent featseeFigure 22. When a node is expanded,
this arrow changes shape and becomes a blacl&fibws of non-expanded nodes are

represented as an empty-fill arrow.

60

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis
4 Help system
—_— L i 4 Location

Local
Online
4 Language
English
Spanish
4 Topic struckturing
Table of contents
Index
Search

Context-sensitive help

Add | Delete

Name: Search.

Type: OR.

i Number of Links: 0.
Number of Attributes: 0

Figure 22. List-view representation

In the area below the list visualization, the useallowed to visualize the information
about links and attributes of a feature using thtoms situated at the left side (d&gure

22). As in the graph-view, disabled buttons meang thare are no attributes and/or
dependencies related to the feature selected. nfbenindow showed when the modeler

clicks on these buttons is the same than whenigtickhe correspondent buttons on the

graph-view.
In addition to this, the representation also
4 Help system 4 Help system
¢ foearen “ L“aﬁ“l” includes a text panel situated on the bottom
oca Loca
2aie Gpline that reports the essential information of the
4 |Language Context-sensitive help
Enciks 4 Topic structuring feature selected: its name, its type, the number
Spanish Table of contents
4 Topic structuring Index of feature dependencies linked to it and the
Table of contents English
Index Spanish number of attributes that it contains.
Search
Context-sensitive help
Another functionality of the list-view is the
possibility to add a new child feature to the

Figure 23. Deletion in indented list-view selected node. The user only has to click on
the button ‘Add’ in the representation and,

after it, introduce the information about the nesatfire. Also it is possible to delete the

61

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

selected node using the keyboard ‘Delete’ buttdre Thild features of the deleted node
and their sub-hierarchies become free root nodethep are moved to level 1 of the

component hierarchy in the list-view.

Figure 23 shows in detail an example of a deletion, accgrdm the model analyzed
throughout the document. The figure shows the spatthe list-view before and after
deleting the nodelsanguageandSearchin the model. In the case of thanguage-feature

deletion, all the nodes placed under Spénish- English are repositioned as free root

nodes at the end of the list.

In addition, the tool provides synchronization begw the graph-view and the list-view to
achieve better user interaction and facilitate rhodanipulation. So when the modeler
selects a node in the indented list, this featus® decomes selected in the graph
representation, and vice versa. The goal of thiscleypnization is to help the user

comprehending the model by easily switching frora eiew to the other.

3.4.3. Tree-view

The last type of visualization that our tool prasdis the tree-view. The design of
this representation tries to resemble as good asilge as the classic representations of
feature models [7]. This is a good option for useh® are used to work with this type of

representations and wish to view the model inway.

The features are represented as boxes in the mia@@eFigure 24, and the hierarchy
component is represented as a black-fill links ewmting the different nodes. The
Czarnecki-Eisenecker [11] is the notation chosendistinguish the different links

(mandatory, optional, or, alternative).

62

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

From theDrawing Toolbar the modeler is allowed to add new features. e gnore
possibilities for interaction, the user can alsd &shtures clicking the mouse’s right button

anywhere in the workspace. In this case, a dropadownu is showed with the options of

adding features or links, among
others. The links can also be added
from the Manipulation Bar the user

only has to click on the

correspondent button and select
initially the origin feature, and then

the destination feature.

As in the graph-view, the boxes

representing features contain more

_ _ information than only the name of
Figure 24. Tree-view example
the feature. It is indispensable for the
user to recognize if a feature contains attribiged dependencies in a brief and easy
manner. For this reason, the view uses the notdtagmed only on annotating the feature
components with letters (same case than graph-yeadled AD-notation. Thus, inside the
boxes representing features two buttons contaithiegapital letters (A and D) are placed.

The have the same meaning as in the graph-view:

When the A-button is enabled, it informs aboutekistence of attributes in this feature. As
in the graph-view, the tool opens a new window wtie information of the attributes
related with the feature, when the user clickstos letter. To increase the user interaction,
this window is a non modal window and stays opetil thre users closes it; in fact, if the
user clicks on another feature, the window willrbaded with the information about the
attributes of the newly selected feature. In additthe window is moveable on the main

layer, so it can be move when it obstructs in thestruction of the model.

When the D-button is enabled, it informs that fe&sture has dependencies. It is important

to show that there exists links in the model beedahsse are not placed in the model. In

63

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

this case, the function of this button is differén&n in the graph-view: when the user

clicks on it, the main window will be reloaded witie graph-view.

As commented previously, this notation is very im@nt because it permits the user to
distinguish the characteristics of each featurethe model. Furthermore, the feature
dependencies of the model are not placed as liskause this would result in the graph-
view. In conclusion, by providing the tree view w&ant to achieve a visualization of

feature models according to the classic representat feature models.

3.4.3.1. Editing of the components

The manipulation of the components in the tree-viewery similar to the graph-
view. This is quite important because we want tsuea the consistency in our tool with
respect to the user interaction. As an exampleusiae would make a double click in the
feature representation for editing its informatidogth in tree-view and graph-view).
Otherwise, the tool will become more complex arftiadilt to learn and use if the behavior
of it differs greatly with respect to the graph ahe tree visualization. The user would
need to adapt to the two modes of use each time waienging the type of visualization.

In this case, the modeler is only allowed to intenaith the features and the hierarchical
links (the only components represented in the modihe features can be selected,
dragged, deleted and modified like in the graphwwvi®n the other hand, the hierarchical
links can also be removed from the model; whenhhjgpens, the tree-view has to remove
all the components of the structure placed hiereatlly under the feature that was linked

from the deleted edge (included itself).

Therefore, the representation of the feature masledlways consistent. The user can

consider the tree-view as the correct visualizapiart of the feature model created.

64

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

3.5. Save and restore the feature models

With regard to the requirement number 4 (§epter 3.1, Initial requirements
analysig, in the design of the tool we also take into aetdhe possibility of saving and

restoring consistent feature models from files.

» = K B

Figure 25. Toolbar Save/restore model

Figure 25shows the toolbar used by the modelers to saverestdre the feature
model. The first button is the restore model buttdWhen the user clicks it a new file
selection window opens, when the user selectsepesentation model file that he wants
to load into the tool by clicking this button, thepresentations and content of the tool are
updated with the content of the selected filend anly if the file contains a consistent and

correct feature model representation.

Meantime in the case of saving the model (secotit)) the tool checks that there is only
one root node, incase this constraint is violateel application reports an inconsistent

feature model error to the user.
The third button is used to create a new modeltii@lcontent and the representations are

cleared). Finally, the fourth button displays im@w window the content of the current

model file, in case it will be saved in a file.

65

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

3.5.1. XML as the model file format

We use XML to save the contents of the visualizedi@hin a serializable manner.
This decision was taken because of the easy uade€iag for the users of this language

and its widespread usage by industry as exchamgefo

Figure 26presents the content of a feature model file basetthe model presented
as example in th€hapter 2 Figure 1(adding some dependencies and grouping of features,

for a better understanding). The file containsedtéht tags represented as follows:

» <lListFeatures>: List all the featurefeature tag) of the model. Each feature
contains its identification, its name, descriptids,type and its relative position in
the graph-view and in the tree-view.

» <ListHierarchies>: List all the hierarchical linKslierarchy tags) of the model.
Each hierarchy contains the identification, theetyand the destination feature and
the source feature of the relationship.

» <ListLinks>: List all the dependenciekiiik tags) of the model. Each link contains
the identification and the destination feature ahe source feature of the
relationship.

» <ListGroup>: List all the groupings related to atigive-or Group tag) in the
model. Each group contains the identification, nlaene, the type of the grouping,
the brief description and the list of featuresdtureGrouptag) related to the group.

» <ListAttribute>: List all the attributes related fimatures Attribute tag) in the model.
Each attribute contains the identification, the pamhme type, the comparator, the

result of the comparison and feature related tathréute.

66

= Vrije Feature Models Visualization Based on Ontology Fraork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis
<!I--

Created 11:07:57

-->
<Root numLink="22" humGroup="0" numFeature="17">

<ListFeatures>
<Feature Id="5" Name="Help system" Description="" Type="2" xPos="663" yPos="125"
XxTP0os="663" yTPos="125"/>
<Feature Id="6" Name="Location" Description="" Type="1" xPos="513" yPos="131"
L XxTPos="513" yTPos="131" />
<Feature Id="14" Name="Table of contents" Description="" Type="3" xPos="652"
yPos="352" xTPos="652" yTPos="352" />
<Feature Id="15" Name="Index" Description="" Type="3" xPos="760" yPos="354"
XxTPos="760" yTPos="354" />
<Feature Id="16" Name="Search" Description="" Type="3" xPos="885" yPos="351"
XTPos="885" yTPos="351"/>
</ListFeatures>

<ListHierarchies>
<Hierarchy Id="6" Type="1" fDestiny="Feature6" fOrigin="Feature5" />
[..]
<Hierarchy Id="21" Type="2" fDestiny="Feature9" fOrigin="Feature5" />
</ListHierarchies>

<ListLinks>
<Link Id="0" Type="1" fDestiny="Feature2" fOrigin="Featurel" xOrgPos="108"
yOrgPos="148" xDestPos="108" yDestPos="194" />
</ListLinks>

<ListGroups>
<Group Id="0" Name="Alternative Group" Type="0" Description="">
<Listlds>
<FeatureGroup Id="6" />
<FeatureGroup Id="16" />
</ListIds>
</Group>
</ListGroups>
<ListAttributes />

</Rnnt>

Figure 26. File content of a feature representation

67

Vrije Feature Models Visualization Based on Ontology FEnaork

¥ Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis
Chapter 4

Feature Modeling Visualization Tool Design

4.1. Interaction between views

The modeler’'s key guide to understanding the tedbirealize he is working with
three types of visualization. We support this ustdnding by making the design of the
interaction between the modeler and the three veswsimple as possible; this is indicated

in the following points:

» Understandinghe three visualizations means depicting the conaiiies between
the content of the three views. To achieve thatt tmol works with the
synchronization of the three views whenever a mcatibn in model fires (e.g.
when a representation of a feature is removeddrishview, also its representation
in the tree-view and graph-view has to be remové&dis gives consistency to the
software and helps the user understand what is emapyp by switching

simultaneously between three views.

» Workingwith three different views supposes easier featuvdeling. Thus, the tool
has to be designed to facilitate the modeling ge@nd not complicate more the
modeler’s job. The introduction of three views @ the introduction of an obstacle

to the modeler; rather it introduces more possiegdifor the user to understand the

68

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

model. Complex application design sometimes img@idard effort from the user to

know how to use the tool.

To facilitate the understanding and the working s the modelers when using our tool,
we decided to maintain the list-view as a statid p&the application. Then the desktop
application design of our tool is divided in tworisa(seeFigure 27. In the first part (left
side), is placed th®rawing Toolbarfor manipulating two possible views: the graph and
the tree. The user can decide which of them hesuantisualize. Therefore, the right side

of the tool represents the list-view.

@O NN =NO

Figure 27. Screenshot of the application

The decision to show the list-view as a static pathe application was taken because the
list is the best representation to work as a comeld to the other two views. Firstly, the
list-view occupies a small space in the desktogdiegmon. And secondly, and the more
important, from this small space the user is alldwedistinguish the hierarchy component
of the model (important when modeling with the dragew, where it is hard to understand

the hierarchy).

69

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

4.2. UML Model for the feature modeling visualization tool

In order to explain the design of the tool, thisagter provides the basic UML
component diagram. The specification of the appboais divided in three artifacts
responsible for the visualization: the graph-viemifact, list-view artifact and tree-view

artifact.

This division is done to provide the design indejmite between the main artifacts which
form together the global specification. Althougledk three share some components (the
kernel of the application), the differences betwdleam are significant because of the
different representation of the content.

Thus, from the designer point of view, the applmatis based in a common part that

contains consistently and maintained all the reievaformation, in addition of three
different parts which make use of the informationtained in this common part.

4.2.1. Graph-view artifact

Figure 29presents the UML of the graph-view artifact. Ttanse the design varies
dramatically compared to the list-view artifact.r Fexample, the feature representation
(idem name for the class) is composed by a satwfdlasses instead of only one element
in the list-view artifact Rectangleepresenting the boXextBlockrepresenting the name of

the featureButton AttributeandButton Dependencigs

70

Feature Models Visualization Based on Ontology FEnaork

Vrije
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

FeatureView
id
fontSize
¥0Graph 1
yQGraph
height Dependency Repre sentation
width 1 - A ST S ———" 0 -0 1 |
name2
- 1 1
x0Tree 1
¥OTree
L 1 4
..l\mibule 1 GUILine | |GUlmage| | GUIElipse
id name name name
rames Dependency url
condition i
type type
0.* ;
1 1| g, I8 constraint
Feature .
id
name 0. + [Feature Representation
description
tipe 1 |4 ;
level 0.1 <Canvas= Graph Model 1
0.1
s father ..
______________________________ 1 1
1 1
1 GUI Button Attibute | | GUI TextBlock | |GUIReda. GUI Button Dependencies
: * name name name name
Hierarchy] Text Text Text Text
id Hierarchy Representation 1
type i p———i
ConfigurationTool 1
0* actualState 1
‘ colorDependencies(
|Manmt0ry‘ ‘Optional‘ |Altemative‘ ‘ Or ‘
1 i L] \
1 ik 1 1] 1
1 | GUIPalygon
1 1 name
GUIEllipse
name
1 2 1
GUI Line
name iy
L GLI TexBlock
________________________ name
A By e Text
Group
id
type
name
description

Figure 28. UML Diagram graph-view artifact

In addition, each dependency, hierarchy and relgredip has a representation in the
Canvas Graph Model The TextBlock class is responsible for relating groups with
hierarchies’ portrayal, while a set of componemtsage Line and twoEllipse9 provides

the tree-view the dependency representation.

71

] Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

On the other hand, the classierarchy Representatiothas to be classified in four
subclasses, depending on the type, and based différent link representations according
to Figure 18(seeChapter 3. The following table shows the composition of le&gpe of
hierarchy link, in the design, and how it relat@stte GUI shape classes.

Hierarchy type GUI Ellipse GUI Line GUI Polygon
Alternative 0 2 0
Mandatory 1 1 0

Optional 1 1 0
OR 0 1 1

Table 6. Relation between classes and hierarchies

4.2.2. List-view artifact

Figure 28presents the UML of the list-view artifact. Thent&in of the model is
represented by the classa#iribute DependencyFeature FeatureView Hierarchy and

Group Attribute
e id id
= type name
name candition
descai ption pe
L
Lr
Hierarchy < iz father of 0.1
id b, i FeatureView
type Feature id
id fontSize
gy e *0Graph GUI TreeViewltem
:I.Escnptmn yD.Ersph 1 1 Header
type q q| height iy o
level width
Dependency o.* name2
d TR x0Tree o=
e v & yOTree
< iz conair... [
ConfigurationTool 1 =
S <Canvas> Indented List
actua ate
colorDependendi...| 1|——1—|
i
GUI TreeView
1

Figure 29. UML Diagram list-view artifact

72

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

These classes are common for all three artifacid,cantain all the relevant information
about the state of the feature model (we can cenglie group of these as an internal
representation of the model). In addition, the k&iton ConfigurationToolhandles the
configuration and state of the tool during its rungnprocess.

The Canvasclassindented Lisis the representation of the list-view in the tdbkontains

a TreeView(the indented list representation) which, at theea time, contains a group of
TreeViewltemgthe nodes of the indented list). Each of thenelisted to itd~eatureView

4.2.3. Tree-view artifact

Figure 30presents the UML of the tree-view artifact. Thesidin is quite similar to
the graph-view, but with the difference that instisase the dependency representation is
not included in the UML.

In addition, the representation of the hierarchilmaks varies in the design; while the
mandatoryand optional maintain their status, th&r andalternativehierarchies become a
part of aGroup Representationlass. From the point of view of the tree représison,
each group of hierarchical links represents onlg @ement because of the arc that

encompasses all the edges.
Thus, the definition of four types of hierarchidadks does not work in the tree-view

artifact. In this case the design shows two typekierarchical relationship to a feature

(optional - mandatory), and two type of hierarchgr@uping (or - alternative).

73

Feature Models Visualization Based on Ontology FEnaork

B Vrije
¥ Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis
Fezungiew
i
wrRsize
HOErEn
YOG
Afringe nelght
i 1 | wian
name Depackeey FEme?
condikn 5 W |1
] 12 #OTres
[y T
f
L
1 1| 0
- < I5 consirdint
Fegiare
id ‘
Eme o l=Emdl'e Renreseniztion
gescripfion
e o
2l &
1
0.1
Ix fathar =l Tres Mode 1
rd . e,
, LN Bulion Aot LA Buson Dependencles
.
B '|a'11e e
Teut Tert Ted
1
1
1
1
GUI TedBlodk
ConfigurationTool 1 rame
BCtEEEE Teut
colrDependencies]
LA Elligse 1
FE GUILne
I reme
LA Palygon
i 1| rame q 1
1
0.1 ARemaie Fﬂr,a-’" -
e Y
5] é;
e Group Representation
rame
deseription I
1

Figure 30. UML Diagram tree-view artifact

4.3. Use Cases

The Use Cases describe what the system has tomalie point of view of the user.

That is, the description of the tool's behaviorarling the use of it and its interaction with

the user.

74

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

The Use Cases are divided in four groups depenatinthe origin of the actions and the
users preferred visualization view. For examplés itot the same to add a feature from the
graph-view than from the indented list-view. Instlsiase, the division is as follows: graph-

view, tree-view, list-view and common Use Cases.

4.3.1. Graph-view relevant Use Cases

The set of next Use Cases are related to the rgleaions that the modeler is
allowed to realize interacting with the graph-viéMae list of these actions arkdd feature,
Add a hierarchical relation, Add attribute, Add @ature dependency, Delete component,
Delete attribute, Delete hierarchical gro@mdGrouping hierarchical group with feature/s
In addition, each description of Use Case contaiasreenshot as auxiliary information for

the understanding of the flow.

> &2

Add a hierarchical relation Add attribute

: Delete component
Add feature /!i
Modeler
Delete attribute
Add a feature dependency :

Delete hierarchical group

Grouping hierarchical group with
feature/s

Figure 31. Relevant Use Cases Graph-view

Name: Add feature
Description: Add a new representation of a feature in the grapi.

75

Vrije

¥

Feature Models Visualization Based on Ontology FEnaork

Universiteit Jose Evelio Martinez Saiz
Brussel

Erasmus Single Honours Master Thesis

Actors: Modeler

Preconditions: -

Flow:

1. Modeler clicks on the button ‘Add feature’
2. The system shows a representation of the neturée@entered in the
position of the cursor.
3. The modeler drags the feature representatiaineaposition where he
wants to place the final representation, and releise mouse.
3.1. If the new feature is situated on anotheruieatthe system
recovers the normal state.
3.2. If the new feature is not situated in the &lmed model
workspace (cursor outside the representation) syfséem recovers
the normal state.
3.3. If the new feature is situated in a free spacthe visualized
model workspace, a new window will appear to insegt properties
of the new feature.

Post conditions: The feature is inserted in the model on the saosiipn of the

new feature.

Name: Add a feature dependency

Description: Add a new representation of dependency betweerfdaatares in the

model

Actors: Modeler

Preconditions: As a minimum, the model has to contain two features

Flow:

1. User clicks on the button of adding a new depany.

2. The system changes the cursor that becomesdincemrow to a point.

3. The user selects the feature origin of the iim#he representation.

4. The tool shows an auxiliary line with its souesethe feature clicked and
the destination the position of the cursor.

5. The user selects the destination feature imibeel.

76

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

5.1. If the destination feature is the same assthece feature, the

system recovers the normal state and a new erratomi will appear

to inform the user about this situation.

5.2. If the destination feature is different frohetsource feature, a

new window will appear to select the type of featdependency.
Post conditions:A new representation of dependency linking théuieaorigin and

the feature destiny is placed on the representation

Name: Add attribute

Description: Add a new feature attribute.

Actors: Modeler.

Preconditions: The model has to contain as a minimum one feature.

Flow:
1. User clicks on the button of adding a new aiteb
2. The system changes the cursor that becomesdincanrow to a point.
3. The user clicks on the feature that he wanéltbthe attribute to.
4. A new window will appear for completing the atitgh of the attribute.
5. The user completes the information in the windowfilling the name of

the attribute, the type, a comparator, and thdtresthe comparison.

5.1. If exists another attribute related with thene name, the system
recovers the normal state and a new error windaWwaywpear to
inform the user about this situation.

5.2. If the feature has got no attributes relatbd, system recovers
the normal state, the attribute is related to #sure and thé-
button placed in the box representation of the featureoines
enabled.

Post conditions: The attribute is added in the model related wite Helected

feature.
Name: Add a hierarchical relation

Description: Add a representation of a hierarchical relatiotefaktive, mandatory,

or, optional) in the model.

77

Vrije

¥

Universiteit
Brussel

Feature Models Visualization Based on Ontology FEnaork
Jose Evelio Martinez Saiz
Erasmus Single Honours Master Thesis

Actors: Modeler

Preconditions: The model contains features not related in theahtly component.

Flow:

1. User clicks on one of the buttons of hierardhydanking two features.

2. The system changes the cursor that becomesdincemrow to a point.

3. The user selects the feature origin of the link.

4. The features from the type related to the limke¢native, mandatory, or,
optional) change the fill color. Also the tool shean auxiliary line which
origin is the feature clicked and the destinatiom position of the cursor.

5. The user clicks on the destination featurethefhierarchical link.

5.1. If the destination feature is already linke§g knother
hierarchical component, the system recovers thenalostate and a
new error window will appear to inform about thigiation.

5.2. If the linking generates a graph represeniatistead of a tree,
the system recovers the normal state and a new winolow will
appear to inform about this situation.

5.3. If the destination feature belongs to a défertype of hierarchy,
the system recovers the normal state and a new wimalow will
appear to inform about this situation.

5.4. If the linking and the feature does not mietrequirements set
out in points 5.1, 5.2, 5.3; the system recoveesribrmal state and

the link is added in the graph-view.

Post conditions:The link representation is added in the model.

Name: Delete hierarchical group

Description: Remove a group related to a hierarchical link ftbe model and thus

the visualization.

Actors: Modeler.

Preconditions: The model has to contain as a minimum one grougte@lto a

hierarchical link.

Flow:

1. The user clicks on the name of the group platede representation.

78

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

2. A new tooltip will appear with the informatiori the group selected.

3. The user presses tbeletebutton from the new window.

4. A new window will appear for the confirmation thie deletion made by
the user.

Post conditions:The group is deleted.

Name: Delete component
Description: Remove the representation of a feature constrairg bierarchical
link or a feature in the model.
Actors: Modeler.
Preconditions: The model has to contain as a minimum one linkesgmtation or
one feature.
Flow:
1. The user clicks on the link/feature represeoiati
2. The fill color of the link representation becameed or the feature is
selected by the use of four small white-fill auxiyy boxes (as a
representation of the selection, placed on the bogtom, right-side and
left-side of the feature representation).
3. The user presses the Delete key from the keglboar
4. A new window will appear for the confirmation thfe deletion made by
the user.
Post conditions: The representation of the link or the feature itetée in the

model.

Name: Delete attribute
Description: Remove an attribute related to a feature.
Actors: Modeler
Preconditions: The model has to contain as a minimum one attribeisged to a
feature.
Flow:
1. The user clicks on the A-button enabled froraaire.
2. A new window will appear with the list of attutes related to the feature.

79

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

3. The user selects one attribute from the listcioits on the button delete.
4. A new window will appear for the confirmation tife deletion by the
user.

4.1. If the user confirm the deletion and the featnly contains this
attribute related, the system recovers the norntales the
attribute is deleted from the list of attribute;ndahe A-button
placed on the box becomes disabled.

4.2. If the user confirms the deletion and theusatontains more
than one attribute related, the system recoversxthmal state
and the attribute is deleted from the list of htites.

Post conditions: The attribute related to the feature selected istel@ from the
model.

Name: Grouping hierarchical group with features
Description: Addition of a group relation in a list of features.
Actors: Modeler.
Preconditions: The model has to contain as a minimum one featutle ‘o’ or
‘alternative’ as a type and a group created ottireespondent type.
Flow:
1. User selects a feature or a list of featuressgng the Ctrl key).
2. User clicks on the button ‘Grouping’ from thE&nipulation Bar

2.1. If the features selected are from differemge; a new alert
window will appear to inform about this situation.

2.2. If there are selected other components thathat features, a
new alert window will appear to inform about thigiation.

2.3.1. If the features selected do not meet theiregpents set out in
points2.1 and2.2, a new window will appear for selecting the
group to relate these features to.

2.3.2. The user selects a group from the window diwit on the

‘Accept’ button.

80

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

2.3.2.1. If the type of the group is not the samé¢ha type of the
feature/s selected, a new alert window will apptar
inform the user about this situation.

2.3.2.2. Otherwise, the system adds on the endofgshe
hierarchical links of the feature/s selected.

Post conditions:The representation of the group is added in theetod

4.3.2. List-view relevant Use Cases

The set of next Use Cases are related to the rdlecions that the modeler is
allowed to realize interacting with the list-vieWwhe list of these actions i&dd feature,

Delete feature, Delete attribute

2

Add feature

Modeler

Delete attribute
Delete feature

Figure 32. Relevant Use Cases List-view

Name: Add feature
Description: Add a new representation of a feature in the listw

Actors: Modeler.

81

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

Preconditions: None
Flow:
1. User clicks on one node in the indented list tepresents a feature.
2. The background of the node changes its color.
3. The user clicks on thiedd Featurebutton in the list representation.
4. A new window will appear to insert the propestad the new feature.
5. The user completes the properties of the featm& confirms the
information.
Post conditions: The feature is inserted in the model, and theesstation of it is
added in the list as a new node placed under the selected previously, indented

to the right and containing the name indicatecdhengroperties.

Name: Delete feature
Description: Delete the representation of a feature in theviisty.
Actors: Modeler.
Preconditions: The list has to contain as a minimum one node.
Flow:
1. User clicks on one node in the indented list thpresents a feature.
2. The background of the node changes the color.
3. The user presses tBeletebutton from the new window.
4. A new alert window will appear to confirm theeteon.
5. The user accepts this confirmation.
Post conditions: The feature is deleted in the model, and the m®demoved from
the list where its child nodes and their sub-hehes become free root nodes

moved to level 1 of the component hierarchy inlisteview.

Name: Delete attribute

Description: Delete an attribute related to a feature in theviesw.

Actors: Modeler.

Preconditions: The model has to contain as a minimum one attribeisged to a
feature.

Flow:

82

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

1. User clicks on one node in the indented list thpresents a feature.
2. The background of the node changes the color.
3. The user clicks on the A-button in the list esgEmtation.
4. A new window will appear with the list of attutes related to the feature.
5. The user selects one attribute from the list eicks on the keyboards
delete button.
6. A new window will appear for the confirmation tife deletion by the
user.
6.1. If the user confirms the deletion and the deatonly contains
this attribute, the attribute is deleted from tist Bnd the A-
button of the list-view representation becomeslidesh
6.2. If the user confirms the deletion and the eattontains more
than one attribute related, the attribute is delé&tem the list.
Post conditions: The attribute related to the feature selectedeistdd from the

visualization and the model.

4.3.3. Tree-view relevant Use Cases

The set of next Use Cases are related to the rdlecions that the modeler is
allowed to realize interacting with the tree-vieWhese actions aréddd feature, Delete

components, Edit featusndVisualize feature dependencies

© Edit feature
Audd feature\ /
Mndele\

Wisualize feature dependencies

Delete components

Figure 33. Relevant Use Cases Tree-view

83

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

Name: Add feature

Description: Add a new representation of a feature in the wieex

Actors: Modeler

Preconditions: -

Flow:
1. Modeler clicks on the button ‘Add feature’
2. The system shows a representation of the neturée@entered in the
position of the cursor.
3. The modeler drags the feature representatidheaposition where he
wants to place the final representation, and reke#tse mouse.

3.1. If the new feature is situated on anotherufeatthe system
recovers the normal state.

3.2. If the new feature is not situated in the almed model
workspace (cursor outside the representation), slgstem
recovers the normal state.

3.3. If the new feature is situated in a free spacthe visualized
model workspace, the user completes the propesfidise new
feature (name, description, type and father featircen a new
window will appear.

3.3.1. If the tree representation has more thanrooenode or
some features are not connected or dead featursisiex
the model, a new error window will appear to infotine
user about this situation.

3.3.2. If the addition of the feature does not niketrequirement
set out in point 3.3.1, the system recovers thenabstate
and the feature is added in the model.

Post conditions: The feature is inserted in the model on the saosiipn of the
new feature and linked hierarchically as a childtleé parent indicated in the
description.

Name: Delete component

84

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

Description: Remove the representation of a hierarchical linkadeature in the
model.
Actors: Modeler.
Preconditions: The model has to contain as a minimum one hiereatHink
representation or one feature.
Flow:
1. The user clicks on the link/feature represeoiati
2. The fill color of the link representation becameed or the feature is
selected by the use of four auxiliary boxes (plaoedthe top, bottom,
right-side and left-side of the feature represanat
3. The user presses the Delete key from the keglboar
4. A new window will appear for the confirmation tife deletion by the
user.
Post conditions: The representation of the link or the feature itetéel in the
model, and all the components related to theseeseptation. In the case the
deletion of a hierarchical link creates two difiereand isolated trees, all the
components from the tree that no contains the nade remove from the

representation.

Name: Edit feature
Description: Change the properties of a feature in the model.
Actors: Modeler.
Preconditions: The model has to contain as a minimum one feagpeesentation.
Flow:
1. The user makes double click on the feature semtation.
2. A new window will appear with the properties thie feature (name,
description and type).
3. The user modifies the properties and saves tfication.
Post conditions: The properties of the feature are modified in thedeh. In case
the type of the feature changes, the hierarchigdt Is reloaded with the

representation of the new type of relation.

85

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

Name: Visualize feature dependencies
Description: Navigates to the graph-view to visualize the depenois of a feature.
Actors: Modeler.
Preconditions: The model has to contain as a minimum two features.
Flow:
1. The user clicks on the D-button of a feature.
2. The tree-view is replaced by the graph-view.
Post conditions: The tree-view window is reloaded by the graph-vipasitioned
the center of the screen on the position of théufeahat the user clicked the D-

button.

86

Vrije Feature Models Visualization Based on Ontology FEnaork

¥ Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis
Chapter 5

Implementation

5.1. RIA as the environment of the tool

With regard to the requirement number 7 (§#epter 3.1, Initial requirements
analysig to avoid that users need to installing softwaie, tool should preferably operate
in a browser. Due to the fact that our tool is tddaas a desktop application, the type of

environment used for its implementation was easilysen to be RIA

There are many advantages in the use of RIA thataml requires for implementing its
functionality. A RIA provides a very viable techogly, capable of addressing the problems
that we have to deal with [43]. For example, thesmmportant advantage is the existence

of a wide range of useful interfaces in the fieldiisualization.

This is a basic functionality that our tool reqgsireRIA technologies generally allow
constructing graphics on the fly, and some of theam even provide full-motion

animations in response to data changes [44].

Although the existence of a large number of tecbgiels for rich internet applications, the

final choose for implementing the tool was betwe@xobe Flex [45] and Microsoft

* Rich Internet applications (RIA) are web applioat used for implementing desktop applications inmn
in browsers.

87

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

Silverlight [46]. After experimenting and testingmse tools from the two environments
(basically to check the graphic power), the devalept environment and language chosen
for the development of the tool was Microsoft Silight, because of the rich set of
graphical functionalities and the big extensionaafls that is currently using Silverlight as

an environment.

5.1.1. Silverlight

Microsoft Silverlight is a programmable web applica plug-in that enables
functionalities such as animations, graphics andicavideo, among others [47]. The
support of .NET languages provides the programimepbssibility to work with different
program languages (e.g. Visual Basic, C#, JavaSénrgqmPython, IronRuby, etc).

Silverlight applications are delivered to a browsen text-based markup language called
XAML, the Extensible Application Markup Languagehih offers markup capabilities
that target user interface creation and programenalbject creation. The XAML contains a
Canvas, an object type that represents the preésemtayer (i.e. the visual information that
the application will show).

The user calls the functions from the kernel alyeiatblemented by the .NET languages,
which modifies the properties of the XAML and trentent of the Canvas. In addition, and
as a good property, the Canvas provides the demedopith a number of rich graphics

effects like rotate, scale, skew, translate andir@ansforms.

5.2. Implementation Environment

Our feature modeling tool is defined as a web baggulication.Figure 34 shows the

architecture, whicleonsists of these elements:

88

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

%

> A web server where the files are hosted. It incudee scripting engine that
processes these files seriptsand carries out the specific action that they iat#ic
This server will receive the HTTP requests from thients and will send by the

TCP/IP protocol, and in this order, the following H° content to their browsers:

o HTML + JavaScript: The HTML contains the definitiaf the Silverlight
application, and the JavaScript functions (e.g.cfiom to check if the
navigator of the browser has installed Silverlightg-in, functions to begin
and control the installation of Silverlight, cree@f object/events ...).

o XAML + .NET Assembly: XAML represents the startimpntent of the
application (the fist image that the applicatiorll whow in the browser);
this content will be modified according to the an8 that the user will take
during the live of the application. These actiong dired from the
interaction between the elements in the scene lamdiser. The Assembly
provides the user with the definition and implenagioh of all the actions

that the user is allowed to call from the tool.

> Different computer terminals used by Internet Usbeg will send HTTP requests
to the web server by typing our URL in the browsene of these users will be the
administrator that will be able to manage the infation of the application with a

password.

[y ———— s

[g
L
o ¥ b e D

@ HTML + JavaScript
)
% XAML /

NET —&
Assambly Events

DOM AP calls

— B bt ot e 3 T | ‘

Administrator

Browser

Figure 34. Silverlight Architecture Model

89

= Vrije Feature Models Visualization Based on Ontology Fraork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

5.3. Software architecture

Figure 35presents the software architecture of our toolaksady explained, the
application is developed as a Silverlight applimatwhich runs in a browser or in a virtual
machine. The kernel of the application containstla relevant information that the tool
needs for the development or construction of theetldifferent types of views (list-view,

graph-view and tree-view).

silverlizsht applicaticon

attributes Ffeatimare=

feature dependencies

hierarchy component

Figure 35. Software Architecture Model

The kernel (domain layer) contains information abthe features, its dependencies, its
attributes and its hierarchy component; all thfsrimation organized and serialized by the
use of different data types. From here, each vigifaet gets this information for its own

convenience, and models this information to cré@edesired environment displaying.
The modifications of the user are transferred diygocom the different views to the kernel,

which in turn modifies its content and triggers gwents to reload the content of the three
artifacts.

90

Vrije Feature Models Visualization Based on Ontology FEnaork

¥ Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis
Chapter 6
Conclusions
6.1. Summery

The main objective of this thesis was to desigrserdfriendly application visual

interactive application for feature modelling.

Current feature models do not scale very well @ redustrial cases were the number of
features becomes very large. As the number of festgrows, along with the increasing
number of relations between features, the need tsdave good visualization tools that
allow modelers to quickly and efficiently creataksdle feature models that clearly show

features and their relations.

The main challenge in this project was to idenfifgm an HCI perspective the best
method(s) to visualize feature models such thatonbt inspect and understand the model
but also efficiently create and interact with thedal. In addition, the existence of feature
modeling tools is not very large and the majorityhese tools are designed with regard to
support the configure product lines from the featarodels. Therefore, the design was

more difficult because of the lack of informatiomdaexamples.
This thesis tried to provide the state of the emthplemented with some own reflections,

about the visualization and interaction of featom@dels. From this research and the design

of the tool, we can now answer the following questt

91

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

» Why feature model visualization?

» What are the different possible presentations atiui®@ models?

» How can we benefit from the different type of redas available in the feature
model to have multi types of representation?

> Is it possible to have more than one presentati@anfeature model available at the
same time in a tool and being efficient for featomedeling?

» Applying an HCI perspective in visualizing featur®dels, how can we make the

user experience better?

6.2. Lessons learnt

The design and development of our feature modétingand the research done for
this has resulted in the following lessons leaarh@ng others) in the field of feature

modeling visualization:

» The design of a feature modeling tool requires @ ddffort in the study of the
requirements and the desires of the stakeholdersmaAll modification in the
requirements represents a variation in the waysioalize the model.

» There exist many techniques adaptable to reprdeatire models, the common
ones are the indented list, the tree and the gamphare the more appropriate for
this situation.

» The representation of a feature model needs tottekeise of HCI techniques for
large big representations into consideration. Zamah pan are basic techniques that
the tool has to provide.

> Diverse types of information require adding to tBpresentation some encoding to
distinguish between the different types of inforimat Some components of a
feature models (e.g. dependencies, hierarchides lifeatures) need the use of such

an encoding.

92

¥

6.3.

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

The inclusion of different visualizations is goaar the modeler. From only one
view, it is quite difficult to represent all theroponents of a feature model.
Different visualizations require synchronizatiortveeen all of them in the actions
taken during the modeling (modification, deletiagdition, selection ...etc of
components).

The more interaction between the visualization #red modeler is supported, the
easier the modeling will be.

Rich Internet Applications technology is a good ickoto develop a feature
modeling tool that should run in a browser, alse ¢ the rich set of graphical

functionalities that are already available.

Future work

Actually the tool is still in the implementationqmess. At this point, the graph view

and the list view are implemented and they opesgtechronously. The next step is the

implementation of the tree view. Further testingl @application of the use tool to a test

case is required..

The future work with respect to our feature modglitool, after finishing the

implementation, is the enhancing of the prototypa vtesting the tool by a set of

stakeholders and modelers. From there, we alsogeillmore ideas from the real user

experience to enhance the tool and, thus, morelugions and relevant information that

can be taken into account in the field of featuoaleling visualization.

In addition, two possible functionalities that @aool could adapt are:

» In the case of saving the model the tool, trigherdhecking the consistency of the

model (e.g. all features are connected, no deawiré=saexist in the model, the
graph model is connected without cycles ...).

93

Feature Models Visualization Based on Ontology FEnaork
Jose Evelio Martinez Saiz
Erasmus Single Honours Master Thesis

Vrije
Universiteit
Brussel

¥

» Provide a search mechanism by the use of complexiegu Sometimes it is
difficult for the modeler to find visually a compemt in the representation, so it is
a good idea to provide our tool with this possiili

» Study the possibility to add a mechanism for megglifferent feature models.

94

Vrije Feature Models Visualization Based on Ontology FEnaork

¥ Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis
References

[1] Kwanwoo Lee, K. C. Kang, and Jaejoon Lee (20@)ncepts and Guidelines of
Feature Modeling for Product Line Software Enginegr(pp 790-784). Korea.
Department of Computer Science and EngineeringhaRg University of Science and
Technology.

[2] P. Clements, L. Northrop, and L. M. NorthropO(®). Software Product Lines:
Practices and Patterng\ddison-Wesley Professional.

[3] H. Gomaa (2004).Designing Software Product Lines with UML: From USases to
Pattern-Based Software Architecturedddison-Wesley Professional. Part of the
Addison-Wesley Object Technology Series.

[4] M. Sipka. Exploring the Commonality in Feature Modeling Naias Bratislava.
Slovak University of Technology - Faculty of Infoatics and Information
Technologies.

[5] D. S. Batory (2005)Feature Models, Grammars, and Propositional Fornsuksustin:
University of Texas at Austin.

[6] J. Santos (20065 oftware and Factories, and making sense of iyéor. FAQ - What is
it, and when to use ithttp://blogs.msdn.com/jezzsa/default.aspx.

[7] M. Riebisch, J. O. Coplien, D. Streitferdt (Z)0Modelling Variability for Object-
Oriented Product LineBookOnDemand Publ. Co., Norderstedt.

[8] IEEE Standard for Software Test Documentati&fE Std 829-1998

[9] D. S. Batory (2008)Using modern mathematics as an FOSD modeling laggua
Nashville. Generative Programming and Componentrieeging.

[10] L. Etxeberria, G. S. Mendieta, L. Belategi @Z0. Modelling Variation in Quality
Attributes VaMoS 2007:51-59.

95

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

[11] K. Czarnecki and U. Eisenecker (200®enerative Programming Methods, Tools,
and ApplicationsBoston: Addison-Wesley.

[12] D. Benavides, P. Trinidad, and A. R. Cortéstomated Reasoning on Feature Models
University of Seville - Seville 2005.

[13] L. Etxeberria, G. Sagardui and L. Belategi Q2P Modelling variation in quality
attributes Faculty of Engineering — University of Mondragon.

[14] Lamia Abo Zaid, Geert-Jan Houben, Olga De ®&roand Frederic Kleinermann
(2008),An OWL- Based Approach for Integration in Collabora Feature Modelling
4th Workshop on Semantic Web Enabled Software Esging - SWESE2008.

[15] Grupo de Investigacion en Reutilizacion y @tacion a Objeto (GIRO) Feature
Modeling Tool Avalaible from: http://www.giro.infor.uva.es/FeaeTool.html

[16] Rubén Fernandez, Miguel A. Laguna, Jesus HegquiMuria Serrano (2009).
Development of a Feature Modeling Tool using Miofo®SL Tools Department of
Computer Science, University of Valladolid.

[17] M. Antkiewicz, K. Czarnecki (2004f-eaturePlug-in: Feature Modeling Plug-in for
Eclipse In Eclipse ‘04: Proceedings of the 2004 OOPSLArk8bhop on Eclipse
Technology eXchange, OOPSLA, Vancouver, BritishuGidbia, Canada.

[18] Feature Modeling Plug-in. Generative Softw&revelopment Lab — University of
Waterloo: http://gsd.uwaterloo.ca/projects/fmp-ping

[19] Pure-systems GmbH (2008)yure::variants User's Guide: Version 3.0 for
pure::variants 3.0 Available from: http://www.pure-
systems.com/fileadmin/downloads/pure-variants/deciger-manual.pdf.

[20] Pure-systems GmbH: http://www.pure-systems/com

[21] XFeature (P&P Software): http://www.pnp-soft@aom/XFeature/Home.html.

[22] Eclipse: http://www.eclipse.org/.

[23] Fama Tool Suite (FaMaTS): http://www.isa.ufasa/.

[24] David Benavides, Sergio Segura, Pablo Trinidad Antonio Ruiz-Cortes=AMA:
Tooling a Framework for the Automated Analysis eafdre ModelsDepartment of

Computer Languages and Systems University of Sedlkville, Spain

[25] Krzysztof Czarnecki, Chang Hwan Peter KiReature Models are Views on
Ontologies Canada: University of Waterloo, Generative SofeMaevelopment Group

[26] T. R. Gruber (1993)Towards principles for the design of ontologies duder
knowledge sharingStanford University.

96

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

[27] Protégeé: http://protege.stanford.edul/.

[28] GoSurfer: http://bioinformatics.bioen.uiuc.égosurfer/.
[29] IsaViz: http://lwww.w3.0rg/2001/11/IsaViz/.

[30] OntoViz: http://protegewiki.stanford.edu/indpkp/OntoViz.
[31] GraphViz: http://www.graphviz.org/.

[32] Gene Ontology Consortium: http://www.geneoatpl.org/.

[33] GandrKB - A knowledgebase for integrative miittpand access to Microarray
annotation data: www.bioinf.mdc-berlin.de/~schoGaridrintro/.

[34] Joris Klerkx, Erik Duval and Michael MeirdJsing Information Visualization for
Accessing Learning Object Repositori@€@mputer Science Department, K.U.Leuven.
Leuven, Belgium.

[35] World Wide Web Consortium (W3C): http://www.vaBg/.

[36] Ketan BabariaUsing Treemaps to Visualize Gene Ontologiigman Computer
Interaction Lab and Institute for Systems Reseddctiversity of Maryland, 2001.

[37] Jason L. Baumgartner, Timothy A. Waugh. Ro@é® A 2D Hyperbolic Tree
Visualization of Roget’s Thesauru&chool of Library and Information Science, Indian
University, Bloomington, IN 47405.

[38] Robert Spencenformation Visualization. Design for Interactiofearson Prentice
Hall, Edinburgh, 2007.

[38] Stone, R. B. & Chakrabarti, A. (2005pecial Issues: Engineering applications of
representations of functiol EDAM, 19.

[39] Daren Nestor, Steffen Thiel, Goetz Botterwe€kar'an Cawley, Patrick Healy.
Applying Visualisation Techniques in Software Product Lire=go, the Irish Software
Engineering Research Centre - University of Limerlceland.

[40] Méaria Bielikova and Michal Jemaladaptive Incremental Browsing of Ontology
Structure Institute of Informatics and Software Engineeringaculty of Informatics
and Information Technologies, Slovak Universitylechnology. Bratislava, Slovakia

[41] Juan C. Ddarsteler (2002, Retrieved at 2004#Focus+Context, Inf@Vis!
http://www.infovis.net/E-zine/2002/num_85.htm

[42] Thesaurus dictionary: http://www.thefreedicizmy.com!/.

97

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

[43] Joshua Duhl (2003WHITE PAPER. Rich Internet Applicatio@$obal Headquarters.
Speen Street Framingham, MA 01701 USA. Sponsoretbgromedia and Intel.

[44] Cameron O'Rourke (2004A. Look at Rich Internet Application®racle Technology
Network. http://www.oracle.com/technology/oramagtde/04-jul/o44dev_trends.html

[45] Adobe Flex: www.adobe.com/es/products/flex/
[46] Microsoft Silverlight: silverlight.net/

[47] Wikipedia: http://en.wikipedia.org/wiki/Micrast_Silverlight

98

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

¥

Appendix: Tool Screenshots

Add | Delete

Screenshot 1. Addition of a feature

e

Feature1

®EO \NNAAN >N O

Screenshot 2. Addition of feature information

99

o Vrije Feature Models Visualization Based on Ontology Faork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

N

Feature2

L EEEEE

Screenshot 4. Zooming out

bs

Featurel
4 Feature3

Features

Feature4 o X
Feature5
O e
Featured
teafur&i’.
Feature1 v,

. Asso! Group.

a
e
A
e
«
:
.
-

o Feature2

o

Screenshot 5. Associate list of features with a gup

100

Vrije Feature Models Visualization Based on Ontology FEnaork
Universiteit Jose Evelio Martinez Saiz
Brussel Erasmus Single Honours Master Thesis

— A >
— L 4 Featurel 7]
/ Feature6 4 Feature3
Feature6
A Lo FeatureS
1 = e Feature2
" Featured
- Feature3
"/ Feature2
&) n
Feature1 T
.‘ am]

Screenshot 6. Addition of a feature dependency

ERROR WINDOW

No compatible the feature to add the
hierarchy. This featurs is already linked.

Screenshot 7. Error window example

XML CONTENT

<l--Created B:55:12-->
<Root numLink="6" numGroup="1" numFeature="6">
<ListFeatures>
7 "74" yPos="285" />
) 41" />
<Feature Id=
<Feature Id

=/ListFeatures>

<ListHierarchies=
<Hierarchy Id="0" Type="0" fDestiny="Feature5" fOrig
<Hierarchy Id="1" Type="0" fDestiny="Feature4" fOrigin
<Hierarchy Id="2" Type="0" fDestiny="Featurel" fOrig
<Hierarchy Id="4" Type="1" fDestiny="Feature3" fOrig
<Hierarchy Id="5" Type="3" fDestiny="Feature2" fOrig

</ListHierarchies>

<ListLinks>
<Link Id="3" Type="7" fDestiny="Features" fOrigin="Feature3" xOrgPos="261" yOrgPos="29" xDestPos="370" yDestPos="9" />

</ListLinks>

<ListGroups=

<Group Id="0" Name="G1" Type="0" Description="">

<Listlds>
<FeatureGroup Id="4" />
<FeatureGroup 1d="5" />
<FeatureGroup Id="1" />

Screenshot 8. XML representation of the visually erated feature model

101

