
MITATE : Mobile Internet
Testbed for Application Traffic

Experimentation

mitate@cs.montana.edu
http://mitate.cs.montana.edu

User Manual
v 1.0

1

http://www.google.com/url?q=http%3A%2F%2Fmitate.cs.montana.edu%2Fsample%2FMitate_Sample_Configuration_File_XML_Format.xsd&sa=D&sntz=1&usg=AFQjCNFzQjquL6CaqJRhm9Vk-EErPTPZjA

Content

1. MITATE Overview

2. Configuring MITATE Experiments

2.1 Traffic Definitions
2.2 Defining a Transfer
2.3 Defining an Explicit Content
2.4 Defining a Criteria

3. MITATE Command Line API

3.1 Help
3.2 Login and Logout
3.3 Download Script to Initialize Local MySQL Instance
3.4 Validate XML Configuration File
3.5 Get Experiment Cost
3.6 Check User’s Available Credits
3.7 Upload an Experiment as XML
3.8 Make Experiment Public
3.9 Get Experiment Status
3.10 Query Experiment Data
3.11 Delete an Uploaded Experiment

4. Appendix

4.1 Configuring a MITATE Experiment to Send an HTTP GET
 Packet on Port 80 of a Web Server

4.2 Configuring a MITATE Experiment to Perform DNS Lookup
and Get a Response Back

2

4.3 Configuring a MITATE Experiment to Send Packets of
Different Message Sizes

4.4 Configuring a MITATE Experiment to Send Packets with
Transmission Rates (Transmission Intervals)

4.5 Database Schema

3

1. MITATE Overview

The technical problem we address is a lack of a programmable testbed for mobile
application prototyping in production cellular networks. We have identified two
challenges to building such a testbed. First, the personal nature of mobile devices creates
user concerns over privacy, accountability for actions of foreign code being prototyped,
and abuse of limited data plan and battery resources. Striking a balance between a
flexible application prototyping environment and the safe execution of foreign code has
been a difficult problem even in the more permissive wired environment. Second,
because mobile battery and data plan resources are limited, testbed participants need
adequate incentives to share them. Difficulty in enlisting mobile users has limited
measurement studies to small samples, high cost of testbeds based on dedicated
hardware, and collection of only high level network performance metrics.

MITATE is a Mobile Internet Testbed for Application Traffic Experimentation made
possible by novel solutions to the problems of security and mobile resource sharing.
MITATE is unique in that it allows programmable application traffic experiments
between mobile hosts and backend server infrastructure. MITATE provides strong
client security by separating application code execution from traffic generation. MITATE
also provides incentives and protections for mobile resource sharing through tit-for-tat
mechanisms.

MITATE's specialized traffic experiments can help developers answer questions crucial
to mobile application design such as: What is the largest game state update message that
can be reliably delivered under 100 ms?," Does my application traffic need to contend
with traffic shaping mechanisms?," or Which CDN provides fastest downloads through a
particular mobile service provider's network peering points?"

4

2. Configuring MITATE Experiments

This section will elaborate the steps required in creating traffic definitions. These traffic
definitions will serve as an input to the MITATE system. In order to submit these
definitions to the MITATE backend servers and to start the experiments from your
mobile device, you will be required to form a well defined XML file.

This section contains explanations for defining an experiment which consists of
transaction, transfer, content and criteria definitions. Below are a few examples which
could help to get started immediately, if you are new to MITATE. These examples
contains traffic definitions for executing experiments such as sending a well formed
HTTP GET, DNS lookup request.

5

2.1 Traffic Definitions

<transaction count=“10”>

 <criteria>

 <criteriaid>criteria1</criteriaid>

 </criteria>

 <transfers>

 <transfer repeat="1" delay="10">

 <transferid>transfer1</transferid>

 </transfer>

 <transfer repeat="2" delay="20">

 <transferid>transfer2</transferid>

 </transfer>

 <transfer repeat="1" delay="10">

 <transferid>transfer1</transferid>

 </transfer>

 </transfers>

</transaction>

where:

transaction : To define a transaction within an experiment.
count* : Attribute of transaction, refers to number of different clients on

which this transaction is executed.
repeat : Attribute of transferid, refer to number of times transfer repeated.
delay* : Attribute of transferid, refers to delay after which this transfer is

executed.

* refers to an optional field

6

2.2 Defining a Transfer

<transfer>

 <id>transfer1</id>

 <sourceip>client</sourceip>

 <destinationip>1.2.3.4</destinationip>

 <type>2</type>

 <portnumber>5060</portnumber>

 <response>0</response>

 <packetdelay>0</packetdelay>

 <bytes>

 <explicit>1</explicit>

 <contentid>content1</contentid>

 <noofbytes></noofbytes>

 </bytes>

 <noofpackets>1</noofpackets>

</transfer>

where:

id : Unique identifier for a transfer within an experiment.
sourceip : Source ip address of the flow. (If source is device then ‘client’ else

a server ip address like xxx.xxx.xxx.xxx)
destinationip : Destination ip address of the flow. (If destination is device then

‘client’ else a server ip address like xxx.xxx.xxx.xxx)
type : Type of transport protocol. (‘1’ for UDP or ‘2’ for TCP)
portnumber : Port number at source and destination.
response : Response if any expected from destination.

(0 - No Response, 1 - Response expected)
packetdelay : Expected delay in milliseconds between two successive packets.
bytes : Data that needs to be transferred as described in contentid or

noofbytes tag.
explicit : Content if explicitly defined or use default content.

7

(0 - Use default content, 1 - Use explicit content)
contentid : Id of the explicit content that needs to transferred.
noofbytes : Number of bytes of random content to be transferred.
noofpackets : Number of packets to be sent.

Note:
Size of a packet = noofbytes/noofpackets

8

2.3 Defining Explicit Content

<content>

 <contentid>content1</contentid>

 <protocol>Skype</protocol>

 <data>

 <![CDATA[0x0100be07de55...]]>

 </data>

 <contenttype>HEX</contenttype>

</content>

where:

content : To define an explicit content.
contentid : Unique identifier for the defined explicit content.
protocol : Name of the content, as a user label only
data : Actual content either in ASCII, HEX.
contenttype : Type of the content defined. (ASCII or HEX)

9

2.4 Defining a Criteria

<criteria>

 <id>criteria1</id>

 <latitude>45.66962856799364</latitude>

 <longitude>-111.06049848720431</longitude>

 <radius>5000</radius>

 <networktype>cellular</networktype>

 <starttime>143001</starttime>

 <endtime>205959</endtime>

 <deviceid>client</deviceid>

 <minimumbatterypower>0</minimumbatterypower>

 <minimumsignalstrength>-1000</minimumsignalstrength>

 <networkcarrier>Verizon Wireless</networkcarrier>

 <devicemodelname>Galaxy Nexus</devicemodelname>

</criteria>

where:

criteria : To define criteria when transaction need to be executed.
id : Unique id for the defined criteria within an experiment.
latitude : Latitude of the reference location.
longitude : Longitude of the reference location.
radius : Maximum distance (in Km) from the reference location.
networktype : Type of the network (Wi-Fi or Cellular).
starttime* : Time after which transfer can be started. (HH24MMSS)
endtime* : Time before which transfer can be started. (HH24MMSS)
deviceid* : Unique identifier of the device on which transaction is executed.

(client for any device matching criteria or a device id)
minimumbatterypower* : Minimum battery power required on the device.
minimumsignalstregnth* : Minimum signal strength required on the device.
networkcarrier* : Cellular Service Provider.
devicemodelname* : Device model name.

* refers to an optional field

10

3. MITATE Command Line API

This section will elaborate various functionalities of the command line API required to
interact with MITATE’s database servers. This API will help you uploading, deleting,
querying data for experiments from the database server. With respect to cellular and
Wi-Fi credit, this API will help you retrieve the cost of experiments, your available
credit.

An overview of the basic API functionality is as follows:

login Logs in the user
init Setup local MySQL instance
validate Validate configuration file
getExpCost Get experiment cost
checkAvailableCredits Check available credit
upload Uploads an XML file
makePublic Make the experiment public
getExpStatus Get current experiment status
query Retrieve data for an executed experiment
delete Deletes the experiment with specified ID
logout Logs out the user

11

3.1 Help

To see the list of supported options.

./mitate.sh help

Lists the set of supported options, each option is detailed in sections 3.2 to 3.10.

12

3.2 Login and Logout to the API

If you are a first time user, please create your login credentials at
http://mitate.cs.montana.edu/mitate_signup.php. You will be asked for these
credentials when interacting with MITATE’s command line API (mitate.sh).

To login into MITATE use the following command:

./mitate.sh login

Following a successful login, mitate.shwill save an authentication key for subsequent
commands until you log out. You can remove that key by calling

./mitate.sh logout

A failed login will generate an error message.

13

http://www.google.com/url?q=http%3A%2F%2Fmitate.cs.montana.edu%2Fmitate_signup.php&sa=D&sntz=1&usg=AFQjCNHIS3kUX2ppvDHCWIVV2erkcqvKfg

3.3 Download Script to Initialize Local MySQL Instance

Since the output of any experiment is returned to the user in form of SQL Insert
Statements, this initialization command is required to set up all the tables in the user’s
local MySQL instance for MITATE data. The following command will generate script
required to setup the local database:

./mitate.sh init <output_file>

This command requires two command line parameters: initialization operation and
output filename. After the above command is issued, the scripts required to set up a local
MySQL instance with MITATE data will be stored in output_file. The SQL
commands saved in output_filecan then executed using MySQL Query Engine, or
any other SQL-compatible database front end. For example, for a database schema
m_schemaand user m_user, and output file of the init command localdb.sql, a user
can create a local instance of MITATE database using:

mysql -u m_user -p m_schema < localdb.sql

14

3.4 Validate XML Configuration File

This command allows users to compare their Configuration file in the form of XML
against the MITATE XML Schema Definition file as required before uploading
experiments. Although the uploadcommand will validate the input XML file before
uploading the experiment, thevalidatecommand will help users to validate their XML
file without actually issuing an upload experiment request. The following is the syntax to
validate an XML file:

./mitate.sh validate <XML_Filename>

The return of the command is either a confirmation of the experiment being validated, or
an error describing how the experiment XML does not comply with the MITATE
experiment definition schema.

15

3.5 Get Experiment Cost

This command allows users to check the total amount of Cellular data credit and Wi-Fi
data credit required by an experiment.

./mitate.sh getExpCost <XML_Filename>

The result of this command will be the total cellular and Wi-Fi data credits that the given
XML file will require the user to have available in his account if this experiment were to
be executed.

16

3.6 Check User’s Available Credits

This command allows users to check their available cellular and Wi-Fi data credit. The
following command is required to be executed to check the available credits:

./mitate.sh checkAvailableCredits

The command will return the available cellular and WiFi data credit as well as the
amount of credit earned.

17

3.7 Upload an Experiment as XML

To upload an experiment users need to execute the upload command.

./mitate.sh upload <XML_Filename>

This command requires a valid XML experiment configuration file. There can be three
outcomes of this query which are as follows:

1. XML Validation Error - Before uploading any experiment, the API first validates the
input XML file against MITATE’s XML Schema Definition File which can be found at
http://mitate.cs.montana.edu/sample/Mitate_Sample_Configuration_File_XML_Form
at.xsd.

2. Insufficient Available Measurement Credit - If the total volume of data in an
experiment, that needs to be exchanged between mobile devices and MITATE backend
servers, exceed the available credit balance of the user, the API will generate an error
message asking the user to either reduce the number of transfers from the XML file or
increase the mobile and Wi-Fi credit for his account.

3. Experiment Uploaded Successfully - If none of the above three cases are true, the
API will process and upload the XML file and finally output the success message with a
unique experiment ID .

18

http://www.google.com/url?q=http%3A%2F%2Fmitate.cs.montana.edu%2Fsample%2FMitate_Sample_Configuration_File_XML_Format.xsd&sa=D&sntz=1&usg=AFQjCNFzQjquL6CaqJRhm9Vk-EErPTPZjA
http://www.google.com/url?q=http%3A%2F%2Fmitate.cs.montana.edu%2Fsample%2FMitate_Sample_Configuration_File_XML_Format.xsd&sa=D&sntz=1&usg=AFQjCNFzQjquL6CaqJRhm9Vk-EErPTPZjA

3.8 Make Experiment Public

Since by default, all the experiments can be accessed by the user who uploaded them,
this command will enable the owner of the experiment to set its permissions as public
(with a confirmation) in which case its execution as well as the data associated with it can
then be accessed by anyone. In general, an experiment whose permissions are set as
“private” would allow the owner of the experiment to execute, delete and fetch any data
associated with it. An experiment whose permissions are set as “public” would allow all
the users to execute and fetch the data associated with it. To delete a public experiment,
the user who uploaded the experiment needs to issue a delete experiment request as
described above and cannot be deleted by any other user. The following command needs
to be executed to update the permissions of an experiment:

./mitate.sh makePublic <experiment_ID>

This command requires two command line parameters, an update operation and
experiment ID. After this command is issued, the API will check if the user is the owner
of the experiment and will ask for a final confirmation to set the experiment as public.
Once the experiment is set public, it can be made private.

19

3.9 Get Experiment Status

To get the current status of an uploaded experiment, consisting of the total transfers in
the XML configuration file, the user is required to run the following command:

 ./mitate.sh getExpStatus <experiment_ID>

There are two possible outcomes of executing this command:

1) Success: In this case, the command will return the total number of transfer in the
experiment and the total number of transfers that have been executed.

2) Permission denied: If in case user queries the current status for an experiment that is
either not uploaded by the user or does not exist, the user will get a permission denied
error.

20

3.10 Query Experiment Data

In order to retrieve all the data associated with a completed experiment, the user is
required to issue the following command:

./mitate.sh query user_experiment_list.txt <output_filename>

This command requires two command line parameters an input file containing list of
experiment IDs and an output file for SQL statements that contain experiment data.
The experiment IDs of all experiments that were uploaded successfully are stored in
“user_experiment_list.txt” file where each experiment ID is stored in one separate line.
To query for data for a particular experiment only, a user can pass in a file that contains
only one experiment ID.

When a user issues a request to query data associated with all the experiments in the
“user_experiment_list.txt”, the API can generate two following outcomes:

1. Error in Retrieving Data - The API throws an error if it finds an experiment ID, in the
user_exeriment_list.txt file, that is not owned by the user requesting its data or the user
does not have permissions to access its data or the experiment no longer exists in the
database.

2. Data Retrieved Successfully - For all those experiments for which there were no
errors, the data is appended in the output file in form of SQL Insert Statements that can
be used to insert data into user’s local MySQL instance.

21

3.11 Delete an Uploaded Experiment

To delete an uploaded experiment you will need to execute the following command from
your terminal.

./mitate.sh delete <experiment_ID>

This command requires two command line parameters, delete operation and experiment
ID. Once the above command is executed, the user will asked to give a confirmation to
issue a delete experiment request. If the user responded with “y” (as in yes), there can
be two outcomes of issuing the command which are as follows:

1. Invalid Experiment ID - The API will throw an invalid experiment ID error if either
the experiment ID does not belong to the user requesting its deletion or has already
been deleted before by the user who uploaded that experiment.

2. Experiment Deleted Successfully - If the user requesting the deletion of an
experiment ID is the owner of that experiment and the experiment still exists, the API
will delete the experiment and all the data collected associated with that experiment.

22

4. Appendix

4.1 Configuring a MITATE Experiment to Send an HTTP GET Packet on
Port 80 of a Web Server

<?xml version="1.0" encoding="ISO-8859-1"?>

<entry>

 <defines>

 <transferdefine>

 <transfers>

 <transfer>

 <id>transfer1</id>

 <sourceip>client</sourceip>

 <destinationip>mitate.cs.montana.edu</destinationip>

 <packetdelay>0</packetdelay>

 <type>TCP</type>

 <portnumber>80</portnumber>

 <response>0</response>

<bytes>

 <explicit>1</explicit>

 <contentid>content1</contentid>

</bytes>

<noofpackets>1</noofpackets>

 </transfer>

 </transfers>

 </transferdefine>

 <contentdefine>

 <content>

 <contentid>content1</contentid>

23

 <protocol>HTTP</protocol>

 <data>

 <![CDATA[GET /images/cdn.jpg HTTP/1.1\r\nHost:

mitate.cs.montana.edu\r\nUser-Agent: Mozilla/5.0 (Windows NT

6.1; WOW64; rv:20.0) Gecko/20100101 Firefox/20.0\r\nAccept:

text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\

r\nAccept-Language: en-us,en;q=0.5\r\nAccept-Encoding:

gzip,deflate\r\nConnection: keep-alive\r\n]]>

 </data>

 <contenttype>ASCII</contenttype>

 </content>

 </contentdefine>

 <criteriadefine>

 <criteria>

 <id>criteria1</id>

 <latitude>45.66962856799364</latitude>

 <longitude>-111.06049848720431</longitude>

 <radius>50000</radius>

 <networktype>cellular</networktype>

 </criteria>

 </criteriadefine>

 </defines>

 <transactions>

 <transaction count="1">

 <transfers>

 <transfer repeat="1" delay="0">

 <transferid>transfer1</transferid>

 </transfer>

 </transfers>

24

<criteria>

 <criteriaid>criteria1</criteriaid>

</criteria>

 </transaction>

 </transactions>

</entry>

25

4.2 Configuring a MITATE Experiment to Perform DNS Lookup and get a
Response Back

For configuring a MITATE experiment as a DNS lookup, the XML file containing traffic
definitions should look similar to

<?xml version="1.0" encoding="ISO-8859-1"?>

<entry>

 <defines>

 <transferdefine>

 <transfers>

 <transfer>

 <id>transfer1</id>

 <sourceip>client</sourceip>

 <destinationip>8.8.8.8</destinationip>

 <packetdelay>0</packetdelay>

 <type>UDP</type>

 <portnumber>53</portnumber>

 <response>1</response>

<bytes>

 <explicit>1</explicit>

 <contentid>content1</contentid>

</bytes>

<noofpackets>1</noofpackets>

 </transfer>

 </transfers>

 </transferdefine>

 <contentdefine>

 <content>

 <contentid>content1</contentid>

 <protocol>DNSLookup</protocol>

26

 <data>

<![CDATA[1b3f0100000100000000000006736561726368096a6170616

e706f7374026a700000010001]]>

 </data>

 <contenttype>HEX</contenttype>

 </content>

 </contentdefine>

 <criteriadefine>

 <criteria>

 <id>criteria1</id>

 <latitude>45.66962856799364</latitude>

 <longitude>-111.06049848720431</longitude>

 <radius>50000</radius>

 <networktype>cellular</networktype>

 </criteria>

 </criteriadefine>

 </defines>

 <transactions>

 <transaction count="1">

 <transfers>

 <transfer repeat="1" delay="0">

 <transferid>transfer1</transferid>

 </transfer>

 </transfers>

<criteria>

 <criteriaid>criteria1</criteriaid>

</criteria>

 </transaction>

 </transactions>

27

</entry>

28

4.3 Configuring a MITATE Experiment to Send Packets of Different Message
Size

<?xml version="1.0" encoding="ISO-8859-1"?>

<entry>

 <defines>

 <transferdefine>

 <transfers>

 <transfer>

 <id>transfer1</id>

 <sourceip>client</sourceip>

 <destinationip>1.2.3.4</destinationip>

 <packetdelay>0</packetdelay>

 <type>UDP</type>

 <portnumber>1234</portnumber>

 <response>0</response>

<bytes>

 <explicit>0</explicit>

 <noofbytes>256</noofbytes>

</bytes>

<noofpackets>1</noofpackets>

 </transfer>

 <transfer>

 <id>transfer2</id>

 <sourceip>client</sourceip>

 <destinationip>1.2.3.4</destinationip>

 <packetdelay>0</packetdelay>

 <type>UDP</type>

 <portnumber>1234</portnumber>

 <response>0</response>

29

<bytes>

 <explicit>0</explicit>

 <noofbytes>512</noofbytes>

</bytes>

<noofpackets>1</noofpackets>

 </transfer>

 </transfers>

 </transferdefine>

 <criteriadefine>

 <criteria>

 <id>criteria1</id>

 <latitude>45.66962856799364</latitude>

 <longitude>-111.06049848720431</longitude>

 <radius>50000</radius>

 <networktype>cellular</networktype>

 </criteria>

 </criteriadefine>

 </defines>

 <transactions>

 <transaction count="1">

 <transfers>

 <transfer repeat="1" delay="0">

 <transferid>transfer1</transferid>

 </transfer>

 <transfer repeat="1" delay="0">

 <transferid>transfer2</transferid>

 </transfer>

 </transfers>

<criteria>

30

 <criteriaid>criteria1</criteriaid>

</criteria>

 </transaction>

 </transactions>

</entry>

31

4.4 Configuring a MITATE Experiment to Send Packets with Transmission
Rates (Transmission Intervals)

<?xml version="1.0" encoding="ISO-8859-1"?>

<entry>

 <defines>

 <transferdefine>

 <transfers>

 <transfer>

 <id>transfer1</id>

 <sourceip>client</sourceip>

 <destinationip>1.2.3.4</destinationip>

 <packetdelay>100</packetdelay>

 <type>UDP</type>

 <portnumber>1234</portnumber>

 <response>0</response>

<bytes>

 <explicit>0</explicit>

 <noofbytes>256</noofbytes>

</bytes>

<noofpackets>1</noofpackets>

 </transfer>

 <transfer>

 <id>transfer2</id>

 <sourceip>client</sourceip>

 <destinationip>1.2.3.4</destinationip>

 <packetdelay>200</packetdelay>

 <type>UDP</type>

 <portnumber>1234</portnumber>

 <response>0</response>

32

<bytes>

 <explicit>0</explicit>

 <noofbytes>512</noofbytes>

</bytes>

<noofpackets>1</noofpackets>

 </transfer>

 </transfers>

 </transferdefine>

 <criteriadefine>

 <criteria>

 <id>criteria1</id>

 <latitude>45.66962856799364</latitude>

 <longitude>-111.06049848720431</longitude>

 <radius>50000</radius>

 <networktype>cellular</networktype>

 </criteria>

 </criteriadefine>

 </defines>

 <transactions>

 <transaction count="1">

 <transfers>

 <transfer repeat="1" delay="0">

 <transferid>transfer1</transferid>

 </transfer>

 <transfer repeat="1" delay="0">

 <transferid>transfer2</transferid>

 </transfer>

 </transfers>

<criteria>

33

 <criteriaid>criteria1</criteriaid>

</criteria>

 </transaction>

 </transactions>

</entry>

34

4.5 Database Schema

This section describes the MITATE database schema that is provided to users to query

and analyse the data stored in their local MySQL instance.

Figure 1. MITATE Database ER Diagram

35

Experiment tables

experiment
contains experiment related information like id, user who uploaded
the experiment, permissions on the experiment which is either
public or private and cellular data / wifi data used by the
experiment.

transactions
contains transactions related information like transactionid, user
who uploaded the transaction and the number of times transaction
to be executed and is actually executed.

 transfer

contains transfer related information like transferid, transfer
specifications like sourceip/destinationip, portnumber, number of
bytes of data to be transferred, packetdelay between successive
packets, content if explicit content to be sent and the number of
packets.

criteria
contains criteria related information like criteriaid, specification of
criteria containing the start time, endtime, network type, battery
power, signal strength and the device that can execute the transfer.

Link tables (Miscellaneous)

trans_criteria_
link

links the transactions and criteria tables.

trans_transfer
_link

links the transactions and transfer table and also it depicts the order
in which transfers are executed in a particular transaction.

Metric tables

metric contains all the metric names, there are currently 23 different
metrics collected.

metricdata contains the values corresponding to each metric for a particular
transfer executed by a device.

transfermetrics contains the latencies and throughput's per packet as base64
encoded string for udp and tcp.

packetmetrics contains the latencies and throughputs calculated for each packet in
a particulaar transfer.

36

Device tables

 userdevice contains the device related information like device model name and
the network carrier used by the device.

Log tables

 logs contains the errors that are generated while executing transfers on a
particular device.

37

