7 Linnaeus University

Sweden

Degree project

Emulator for complex sensor-
based IT system

/ '

e

Author: Ruslan Gederin and Vikto

,': NS Mazepa

O ;/\‘ SupervisorRudiger Lincke
R T External SupervisorPer-Olov
RS Thorén

Date: 2013-09-30

Course code5DVOOE, 30 credits
Level: Master

Department of Computer Science

Acknowledgments

First of all we want to express gratitude to oupeswisor, Dr. Ridiger Lincke for an
interesting master thesis topic and for great veerience with him and his company
Softwerk.

We would also like to thank to:

« Per-Olov Thorén and Ingela Stalberg for interestingetings and for the
opportunity to work on a real commercial project.

* Maksym Ponomarenko and Viktor Kostov for excellemhinagement of our
work at our remote period.

* Oryna Podoba and lllia Klimov for good collaboratsoduring development.

e Our families, relatives and friends for their sugpduring our studying in
Sweden.

Abstract

Developing and testing complex information techggl@lT) systems is a difficult task.
This is even more difficult if parts of the systemo, matter if hard- or software, are not
available when needed due to delays or other reasbime architecture and design
cannot be evaluated and existing parts cannotliadisetested. Thus the whole concept
of the system cannot be validated before all pesn place.

To solve this problem in an industrial project, whéhe development of the server-
side should be finished and tested (clear for prtoda) while the hardware sensors
where designed but not implemented, we develope@raulator (software) for the
hardware sensors meeting the exact specificatioveliss parts of the server solution.

This allowed proceeding with the server-side dgwalent, testing, and system
validation without the hardware sensors in placelowing the exact specification
should allow replacing the emulator with the reahsors without complications, once
they are available. In the end, being able to agwélard- and software in parallel the
project can be in production much earlier thangrenfng the development in sequence.

Disclaimer: this paper is written under a non-disclosure agesgnihis is why certain
details are omitted in the thesis, but availablgn&oproject partner.

Keywords. emulation, sensor-based IT system, data acquisifiersonal alert, Short
Message Service (SMS) gateway.

Contents

IR [11 0T ULt 1] o TP PPPOPPPPPP 1
1.1 Problem and MOtIVAtIONoooiiiiieeceee i enenneeeenees 1
1.2 Goals, Criteria and CONSIIAINS..........uurirreriiiiiiiiieeeee e rereeee e 1
L. OULIINE ettt e e e e e n e e e e e e e e e e e e e e eeeeaaree 2

2 Background KNOWIEAQEoovvieiiiiiiieeeeeeeeeettie s s s e e e e e e e e e e e e eeeeeeesessnennnneesesnnnns 3
2.1 Preliminary RESEAICN......ccoooi oot 3
222 4 g o T Tot= o)l =Tl] 0 To] (oo 1= 3

2.2.1 Main programming lanQUAagE.............cceeeeeeeerrrriiiiiiaaaaeeeeeeeeeeeeeeeeeeseeeees 3
2.2.2 Technology for building Web User Interface..........c.uvvvvceiiiiiiiiieeeeeeeeee, 4
2.2.3 RDBMS ... et aaeaaaeeaaaa 4
A N A oo Tor= i o] o IS Y= V=] 5
2.2.5 Tool for Automation BUildoi e 5
2.2.6 Framework for Work With SMS ..o 5..
2.2.7 High Level Design Pattern for the Web Apdima..............ovvviiiiiiiinnnnnnnnn. 5
2.2.8 Development MethodolOgyeiicccccreeeeeiiiere e eeeeeaeeees 6
2.3 SYStemM TerMINOIOQY ...cceveuuuuuuiiiiiaiiaa e e e e e e e e e ettt e e e e e e e e e eeeeeeeaaeeees 6
G T N T 1 o TP 6
JRC T - f 01T 6
2.3.3 Responsible Persons and MEeSSAQgES.....ccuuuuuiiiieieieeeeeeeieeeeeeeieiiinns 7.
2.3.4 SMS Gateway and 3G/GSM MOUEMcummmmmeaeeeeeaeeenieeeeeeeireiinnnnnn 7

3 Features and ReQUIFEMENTS.cccciiiiceeeeeeeee e eere e e e e e e e e e e 8
B L TYPES OF USEIS ..ttt emmmmm ettt e e e e e e e e e 8
B P |V (TS T= o [S PP 9

3.2.1 SYSIEM MESSAGES e ciiiitiii e it aeeaeeema e e e e e eetia e e e e eeeta e e e e aeeranaaaeaaeaaeees 9
3.2.2 NOtIfication MESSAQEScevvvvveivriimmmmmmeeeeeeeeeeeeratr s s s e e e e e e e e aeeeeaeeeeeeaees 9
BB USE CaASS . ettt e e e ettt e et e e e et e e e e e ann e e e e ernaanas 10
3.3.1 Data ACUISITIONuvveeiiiiei e e e e e e e ettt s s e e e e e e e e e e e e e eeeeeeessennnneesene 10
3.3.2 Emergency Situation Detected by SENSOr..ccccaeeiiiieiiiiiiiiiiiiiin 11
3.3.3 Emergency Situation Detected by Server..........ccccovvvvivevviiiiicciieee e 11
3.3.4 Hardware Problems ...t 12
3.4 Requirements for EMUIALOToommmmreeeevennniniiiensaeeeeeeeeeeseeeeeesssennenees 13

v N (ol a1 (=Tox (1 | = TSP 14
4.1 System Architecture and BENAVIOrccuueriiiiiiiiiiiiiiee e 14
4.2 EMUIALOT ...ttt et e s ettt et e e e e e e e e e e e e e e s s ettt beeeeee e e e e e e e e nannns 17

4.2.1 MVP AICNITECIUIcooiiiiiiiieieii e 17
4.2.2 Emulator BENAVIOr.........oooiiiiiieeeeee e 19
4.3 SMS GAEWAYoeeiiiieeeeieiiie et emmmmmme e ettt e e e et et e e e e et eaa e e e e eeennmrsaa e e e 21

I 0] o1 (=T 1T 01 =T o 24
5.1 Converting Of VAIUES.........coooiiiiiiiiceecee e 24
5.2 E-Mail SENAINGcooeiiiiiiiiieee i eeeeee e e ——————————— 24
5.3 Enumeration of Sensor CoOmMmMAaNdSccoeeiiiiiiiiimiiiinieee e eeeeeeeeeieneees 25
5.4 Handling Client Request t0 the SErVer ..., 26
5.5 CUSTOM WIAGELS .o eeeeeee e e e e e 27
5.6 UIBINAEN ...ttt e e e e e e aee e 28
5.7 SMS SENAING c.cceiiiiiiiiiiiiiee e e e e e e e e e e e e e eeeeaeb s anannssnnnnn s 28

I 1= 1 T 30
6.1 TeStiNG APPIOACKccoiiiiiieeei e n e e 30
6.2 Testing of Data ACQUISITION.............vucemmmieesieeeeeeeeeeeeeeeeeeevrr e eeeee e e 30
6.3 Testing of Emergency Situation Detected by 8eNS.............ccoevvviiieeveieiinnnnnn. 30

6.4 Testing of Emergency Situation Detected by &rv.........cooovvviiiiiiiiiiiiiieeeeeen, 31

6.5 Testing of Hardware Problems...........ocoeeeeeiiiiiiiiiii e 32
T SUMIMAEIZE .ttt e e ettt e ettt ettt b e e et e e e e e e e e aeeeeeeeanaeeeeeeeeennnsnnnnns 34
7.1 CONCIUSIONS ...ccoviiiiiieieeeee et r e e e e e 34
7.2 FULUIE WOTKS .ttt ettt e e e e e e e e na e e e e e e e e e aaeeees 35
RETEIEINCES ...t ettt e e e e e e bbb bbb e 36
Appendix A. User Manual for Sensor Emulatorccccceeiiiiiiienneeeeeneeeeeen 2JA
Appendix B. Administrator Manual for Sensor EmufatQ..............cccooevvvvvvveviiinnnnnns B-1

List of Figures

4.1: General system arChiteCtUIeuceeemmmreeeii i e e 14
4.2: More detailed system arChiteCture.........ccvoveeeiiiiiiiiiii e 15
4.3: ClASSIC MVP ...ttt e e e e e 18
4.4: Simplified emulator client side architecture...............ooovvviiiiciiii e, 19
4.5: Sending Regular messages from e€mMUIAtOr ceeemmeee o eeeeeeeeiiieieeieeiieee e 19
4.6: Self-detected emergency situation emulation..............cooeviviiiiiiiiinnneeeeeeeeenn, 20
4.7: Server-detected emergency situation emulation................cccceeevevvivveeiiiiinnees 20
4.8: Hardware problem emulation e oeeeeeeeeeeeeeeeeiiii e 21
4.9: Emulation of mobile network problems......cccc.oovviiiciiiees 21
4.10: SMS Gateway arChitECIUIEuuueuieeeee et e e 22
4.11: Receiving INCOMING SMS MESSAQES......cceeeeeerrrririiiiiiieaaeeeeeeeeerereeeennsnnnnnns 22
4.12: SeNdING SMS MESSAGE .. .ceeeeeeeeeieiiieeeeeeeiitt s a e e e e e e e e e e eeeeeeeesbbnnnnnseeneees 23
5.1: TIMerBUuttoN WIAQETcccoe e e e e e e e e e e e e eeeeeeeeeeeeenees 28
5.2: Output emulation console built using UIBINder..............ouviiiiiiiiniinieeeeeeeeenn, 28
6.1: Emulation of data aCqUISItION...........ceeeeeriiuiiiiiiiiiis e 30
6.2: Start emulation of emergency situation detebyesensorcccceeeeeiiieeeeeennn. 30
6.3: End emulation of emergency situation detebiedensorccccceevvvviviiiiinnns 31
6.4: Start emulation of emergency situation detkbieserver...........ccccceeeeeiiinieeeeeennnn. 31
6.5: Sensor sends value which is lower/higher ttmaresponding threshold................ 31
6.6: Server sends message for turning on functi@iaam....................ccceeeiiiiiiiinnnnns 13
6.7: Sensor turns on functional alarm ... 32
6.8: Server sends message for turning off functial@mcccnn. 23
6.9: Sensor turns off functional alarm ... 32
6.10: Emulation of hardware problem.........o e, 32
6.11: Sensor sends message about hardware prablem.................ccccoeiiiiinininnnns 33
NN o T 1] 1 o = Vo [P UUPPPPRPT A-1

y Nz = o (U] = (o] 1 = U = A-1
A.3: EMUIALION PrOCESS ..ottt e e e e e e e e ae e e e eeees A-2
NS @ 111 01U | o] £] = A-2

Vi

List of Tables

2.1:
2.2:
2.3:
3.1:
3.2:
3.3:
3.4:
3.5:
3.6:
3.7:
B.1:

Comparison of programming lanQUAQJES ... ceeeeeeeevvrrrrnniiiiieeeeeeeeeeeeeeeeeeeessinnnes 3
Comparison of Web user interface frameworkS.........ccoooevviiiiiiiiiiiiiiiiiiiiiies 4
Comparison of RDBMSoooiiiiiieicemmmm e 4
System e-Mail MESSAGEScoiiiiiiiiiiieiir et 9
SYSIEM SIMS MESSAGES ...evuniieiiiiieimmeeeme et e et e e e e e e e e e e eena s 9
NOLITICAION MESSAGES....uuuuuuiie e e e et e ettt e e e e e e e e e aaaaeaaaeaeaaes 10
Data aCqUISItION SCENAIIO.............. e s e e e e e eeeeaeeeeeeeeeaaeaaaaa e e e e e eeeaaesaaaaaaaaees 10
Emergency situation detected by sensor s@@nari..............cccccvveiiiiiiiiiiinne, 11
Emergency situation detected by server SOBNALL............cevvvvvvvviiiiiiiieeeeeeennn. 11
Hardware problems SCENANOu ittt e e eeenneeeeees 12
File mail.emulation.Cfg.properties ... ooeeeeeieiiieeeeiiceiee e eeeeeee e B-2

vii

Abbreviations

3G — Third Generation of Mobile Telecommunicatideshnology
API — Application Programming Interface

GPL — General Public License

GSM - Global System for Mobile Communications
GUI — Graphic User Interface

GWT — Google Web Toolkit

HTTP — Hyper Text Transfer Protocol

IDE - Integrated Development Environment

IT - Information Technology

JSF — Java Server Faces

JSON - JavaScript Object Notation

JSP — Java Server Pages

MVA — Model View Adapter

MVC — Model View Controller

MVP — Model View Presenter

ORM - Object-Relational Mapping

RDBMS - Relational Database Management System
RPC — Remote Procedure Call

SIM — Subscriber Identification Module

SMS — Short Message Service

TCP — Transmission Control Protocol

URL — Uniform Resource Locator

USB — Universal Serial Bus

viii

1 Introduction

A company in south Sweden, which does not wantetanientioned at the time of the
thesis publication, wants to propose new solutionthe sensor-based IT systems for
data acquisition and monitoring.

Our work is performed in close collaboration wittetcustomer, a second group of
students focusing on a different topic, as well the experienced developers of
Softwerk, a consulting company managing our work.

Works on the project are distributed between sttgdas following:

1. Ruslan Gederin and Viktor Mazepa — e-mail/SMS comigation between
sensors and server, SMS gatewamulator of sensors.

2. Oryna Podoba and lllia Klimov — Transmission CohtRrotocol (TCP)
communication between sensors and server, persestiEyer and Android
applications.

All work was divided into three periods:

1. Requirements definition — meetings with the custgmse-case formulation and
conversations with the customer. This part of whmiecess we performed in
close collaboration with the second group.

2. Prototype development — the development of promtjgr server-side and
emulator. This part was done separately. We werasked on the e-mail/SMS
architecture and communication.

3. Remote period — the development of web applicatiott Android applications
for the system. We were focused on the emulatdr par

In this thesis paper described research awmdl@@nent process for our part of this
system.

1.1 Problem and Motivation

The development of a complex sensor-based IT sydtwmdata acquisition and
monitoring is a complex task. This is even morddift since parts of the system, the
sensors, are not available since they are developedrallel to reduce time to market.
The architecture and design cannot be evaluatederisting parts cannot be reliably
tested. Thus the whole concept of the system cdmnetlidated before all parts are in
place.

Therefore the problem to be solved by this thesi® permit the development and
validation of the server-side system without thiei@csensors being in place to reduce
time to market and increase reliability of the puotion system in an early stage.

This is a challenging problem to solve, since theetbpment of a complex sensor-
based IT system for data acquisition and monitoiigign it self a challenge, in
particular since parts of the requirements for fyistem are not fully known, there are
complex protocols and dependencies, and it cane@uaranteed that the sensors are
actually implemented according specification.

1.2 Goals, Criteriaand Constrains
Reaching the following goals can solve the desdrim@blem:

1. The main goal is to develop a software emulatoictviemulates the real sensors
behavior. This goal is reached if the emulatoryfuthplements the specification

of the hardware sensor. For the IT system contigolland monitoring the
sensors, there should be no difference.

2. The secondary goal is to develop parts of the seside system to facilitate
testing of the emulator and the IT system. Thisl geaeached if the whole
system (server-side components and emulated s¢mserkinctional and can be
used for testing.

3. The final goal is to test the whole system impletagon using the emulator.
This goal is reached if the implementation can uiexassfully validated against
the main use-cases with the help of the emulatis $hould lead to minimal
integration problems when substituting the emulaestsors with real sensors.

Developing of system has several importamristrains We should use open-source
technology, because using commercial technologgpfpetary software) is expensive
for our customer’s company. That is why we usedukias server operation system,
Java as main programming language, Google Web Td@VT) as technology for
Web-based graphic user interface (GUI), MySQL datimmal database management
system (RDBMS) and Hibernate as object-relationappmg (ORM) library for work
with database, Apache Tomcat as web server anteseontainer, Apache Maven as
tool for automation build for Java projects.

1.3 Outline

The remainder of the thesis is structured as fallgnChapter 2provides a description
of all relevant background knowledge which is neefie a clear understanding of the
thesis. Chapter 3defines all use-cases and requirements for theysiem and the
sensorsChapter 4includes description of general system architec{with different
level of abstraction) and in particular the arcttiee of the emulatorChapter 5
describes implementation of important and trickytpaf the system and emulator.
Chapter 6defines process of system testingpa@ter 7summarizes our work, presents
conclusions and discusses future work.

2 Background Knowledge
This chapter describes basic knowledge (our prehnyi research) and terminology
which are crucial important for clear understanddhghis thesis work.

2.1 Preliminary Resear ch

Before starting the development we investigatedessimilar systems. We considered a
set of sensor-based IT system for data acquisamh monitoring: Siemens fire alarm

system [1], Notifier [2], Zeta fire alarm systen].[3They are all commercial and that is
why no documentation, source code, etc. is avalakll systems used different sensors
for data acquisition, control panels and commuivcathannels.

Also developed systems are hardware specific ghéhey depend on sensors and
their possibilities, that is why we could not takesting solutions.

As a part of research activities we tested behawibrreal sensors. Sensor’s
manufacturer provides poor documentation for seémgolatform. So for successful
system developing it was very important to undeidtand formalize all sensor actions
and its behavior. As result of our research we inbth some errors and defects of
sensor’s platform which were documented and setfteananufacturer. At the current
moment manufacturer took into account all our comimend improved his sensor
platform.

Also we considered several fundamental books [4rs] papers [6] in the area of
sensor-based systems. Thus, on the several firstinge with customer (and during
development process) we came up with our ideas mog@ositions about system
architecture, communication channels, diat,we were strongly restricted with existing
hardware (sensors and control devices) and customer’s remeints.That is why the
most important part of our research work was detdidato investigation and testing
behavior of existing sensorsAnyway we also made research in the existing
technologies (programming languages, libraries,) dmr choosing the set of
technologies for the system implementation (se¢i@e2.2).

2.2 Choice of Technologies
This subsection describes our research in therdiffetechnologies which can be used
for system implementation. We used the next apbré@ccomparison of technologies:

1. Define the most important criteria for assessment.
2. Choose the set of technologies for comparison.
3. Assess each technology and choice the best one.

For the most important technologies such as maiogramming language,
framework for building Web interface and RDMS wesci#bed our review below. For
other technologies we just show some key infornmatio

2.2.1 Main programming language
We considered the next set of programming langualges, C#, PHP. We selected the
most important features (for our project) and coragdhese languages (see Table 2.1)

Table 2.1: Comparison of programming languages

Programming | Open source Fulfill all requirements Cross Free

language (free) for thisproject platform IDE
Java Yes Yes Yes Yes

C# No Yes No No
PHP Yes No Yes Yes

We compared these three languages and chose Javaraprogramming language
for our project. Paragraph below shows some keyrimétion about Java.

Java is a general-purpose, concurrent, class-badgedct-oriented programming
language that is specifically designed to haveeas implementation dependencies as
possible. It is intended to let application develsp "write once, run anywhere",
meaning that code that runs on one platform doéseed to be recompiled to run on
another [7].

2.2.2 Technology for building Web User Interface
Because we chose Java as main programming languagegviewed only the Java-
based frameworks for building Web user interfaee (fable 2.2).

Table 2.2: Comparison of Web user interface frameworks

Technology Open source | Fulfill all requirements Full support in
(free) for this project IDE
GWT Yes Yes Yes
JSF Yes Yes Yes
JSP/Servlets Yes Yes Yes

We obtained the same results for each technology.cthbse GWT because our
consulting company (Softwerk) is specialized in eleping GWT applications.
Paragraph below shows some key information abouT GW

GWT is a development toolkit for building and opizmg complex browser-based
applications. GWT is used by many products at Gaogicluding Google AdWords
and Google Wallet. It is open source, completeBefrand used by thousands of
developers around the world [8]. GWT allows web alegers to create and maintain
complex JavaScript front-end applications in J&A/T emphasizes reusable, efficient
approaches to common web development tasks, namghchronous remote procedure
calls, history management, bookmarking, GUI absiyac internationalization, and
cross-browser portability [9].

2.2.3RDBMS

We considered the next set of RDBMS — MySQL, PeS@L, Oracle (see Table 2.3).
Criteria for complexity are subjective. In theseses we assessed our knowledge and
experience for each database.

Table 2.3: Comparison of RDBMS

RDBM S Open source (free) Complexity of Complexity of
configuring usage
MySQL Yes Simple Simple
PostgreSQL Yes Middle Middle
Oracle No High High

We chose MySQL as RDBMS for our project. Paragrbplow shows some key
information about MySQL.

MySQL the world's second most widely used opena®urelational database
management system. The SQL phrase stands for @®ddQuery Language. MySQL is
a popular choice of database for use in web apmit® Applications which use
MySQL databases include: TYPO3, MODx, Joomla, WoedB, phpBB, MyBB,
Drupal and other software. MySQL is also used imnyn&igh-profile, large-scale

websites, including Wikipedia, Google (though not earches), Facebook, Twitter,
Flickr and YouTube [10].

2.2.4 Application Server
We used Apache Tomcat 7.0.33 as application sdoreour web-based part of the
system.

Also we reviewed similar applications servers sash Jetty, Glassfish, JBoss. We
chose Apache Tomcat because:

* Itis open-source.
» It supports all needful functionality.
* Itis easyin setup and in local use.

Tomcat is an application server from the Apacheavanke Foundation that executes
Java servlets and renders Web pages that inclvaeSkver Page coding. Described as
a "reference implementation” of the Java Servletl ghe Java Server Page
specifications, Tomcat is the result of an openaboration of developers and is
available from the Apache Web site in both binargt aource versions [11].

2.2.5Tool for Automation Build
We used Apache Maven 3.0.5 for automation buildligbarts of our system.
Also we reviewed similar tool called Apache Ant. \W&e Apache Maven because:

* |t open source.

* Maven is easier than other tools.

* It supports declarative build of the project.

e It could dynamically download needful Java librarfeom repositories.

Apache Maven is a software project management angbizhension tool. Based on
the concept of a project object model (POM), Mawam manage a project's build,
reporting and documentation from a central piec@fofmation [12].

2.2.6 Framework for Work With SMS
We used SMSLib 3.5.2 for work with 3G/GSM modem.

Also we reviewed similar library called SMS librafgr the Java platform. We use
SMSLib because:

* |t open source.
e It has complete and clear documentation.
e All works with a 3G/GSM model are rather simple amiitive.

SMSLib is an SMS messaging library. It providesraversal texting application
programming interface (API), which can be useddending and receiving messages
via GSM modems and/or bulk SMS operators. Thisalyprs available for Java and
Microsoft .NET Framework environments [13].

2.2.7 High Level Design Pattern for the Web Application
We used MVP as a main pattern for web-based apiplica

Also we reviewed another similar pattern such asléwiew-controller (MVC) and
Model-view-adaptor (MVA). We chose MVP because:

« GWT supports well defined implementation for thiattprn — GWT MVP
Framework.

* MVP much like other design patterns decouples agveént in a way that
allows multiple developers to work simultaneously.

Model-view-presenter (MVP) is a software patteradifor building user interfaces.
In MVP, all presentation logic is pushed to the sprger. Eventually, the model
becomes strictly a domain model.

2.2.8 Development M ethodology
For our project we used Scrum as the developmetitadelogy.

Scrum is an iterative and incremental agile sofevdevelopment framework for
managing software projects and product or appboatievelopment. Its focus is on "a
flexible, holistic product development strategy weha development team works as a
unit to reach a common goal" as opposed to a tioadil, sequential approach”. Scrum
enables the creation of self-organizing teams bgoeraging co-location of all team
members, and verbal communication between all teeembers and disciplines in the
project [14].

In our project we used all main activities from t8erum methodology. Such as:
sprints, daily scrum, sprint planning meetings, irdpreview meetings, etc. All
development process was divided into two week spriin the beginning of each sprint
we had sprint planning meeting. On this meeting se¢ected what work is to be done,
prepared the sprint backlog, measured time for ealded feature. In the end of the
each sprint we had sprint review meeting with thestamer. This meetings is
summarized our work during the sprint. Also we likdly scrum meetings with the
other developers. Some times these meetings wgamiaed remotely.

2.3 System Terminology
To the system terminology belongs: sensor, alarxisieg in the system, responsible
persons, notification and system messages and Sié%/ay.

2.3.1 Sensor
Sensor is a physical device which performed dagaiaition in some area, sends data to
the server and has equipment for personal alenls@eommunicates with server via e-
mail and SMS messages.

Sensor has set of attributes:

e Two subscriber identification module (SIM) numbdms sending/receiving
SMS messages.

* E-mail address for sending e-mail messages anetdelaformation.

» Threshold — highest level of value above whichralahould turn on.

* Regular message period — period for sending regdéda about collected
information and self sensor’s state.

2.3.2 Alarms
There are two types of alarm existing in the systemergency alarm and functional
alarm.

Emergency alarnoccurs when the sensor detects value which aretliigwer then
corresponding threshold.

Functional alarmoccurs when sensor platform detects some techpichlem with
sensor’s equipment.

2.3.3 Responsible Persons and M essages
Each monitored area where sensors are installedrdsgsonsible personswWhen
something happens in monitored area — responsiblsops receive notification
message about occurred situation.

Notification messageontains short text which clearly describes whapgens in
monitored area. Notification message sends viaieand SMS protocol.

Server and sensors communicates via e-mail and ®EkKsages. Sensors send his
state to the server via messages. Server managessevork via messages. In terms of
thesis work these messages cafigsktem messages

2.3.4 SM S Gateway and 3G/GSM Modem
For sending/receiving SMS messages server usesgaké@ay. It is organized on third
generation of mobile telecommunications technolgigyal system for mobile
communications (3G/GSM) modem (with SIM card) anthvopen source library for
work with such modems.

Another way to construct SMS gateway — using existSMS services which
provide web-services for sending/receiving SMS.sThariant of SMS gateway is
simpler but more expensive than building SMS gajesraown 3G/GSM modem.

3 Features and Requirements
During our development process we continuously camoated with the customers.
This allowed us to define complete requirementstiersystem and the emulator, such
as: types of users, type of messages, use-cagqaggeraents for emulator, etc.

We used Scrum methodology and that is why frequkanges in requirements did
not have negative influence on our developing Bsce

In this chapter we describe only use cases andrezgents which are refer to our
part of thesis work.

3.1 Typesof Users
All users in the system divided into three typedmanistrator, manager of a company
and technician.

Administratoris a user with highest possibilities into all gyst This type of users
can: add/remove sensors to/from the system, addiemew company to/from the
system, add/remove users to/from the system, aétleteith sensors to/from a manager
of a company/technician, see all information in #ystem (messages, sensors, user,
etc), change privileges for another types of users.

Manager of a companig a user with highest possibilities into singtenpany. This
type of users can: add/remove technician to/froensystem, attach/detach technicians
to/from his company’s sensors, see all informatiated to own company (messages,
alarms, sensors, etc). Also manager of a compauold dme a responsible person for
each sensor in own company. This means that thles wal receive all notification
messages (via e-mail and SMS) related to his sgffison the system.

Technicianis a user which work with sensors (manager of apam define these
sensors). Technician is responsible for sensolicgeand support. Technician receives
all notification messages related to his sensor fihe system.

All information types of users summarized on Fig8re.

&«

Technician

Manager of a
company

Administrator

Add/remove sensors
Add/remove company
Add/remove users
Attach/detach sensors to/from
manager/technician/company
See all information in the
system

Change privilege for another
types of users

Add/remove technician
Attach/detach technicians

See all information related to
own company

Could be a responsible person
for each sensors in company

Figure 3.1: Types of users

Responsible for sensor service
and support

See all information related to
sensors which is attach to him
Receives all notification
messages related to his sensors

3.2 Messages

All messages in the system divided into two grolgysiem messages and notification
messages. The differences between the groups sealsl in Section 2.2.

3.2.1 System Messages

As described in Section 2.2, sensors and servemcomncate via e-mail and SMS
messages, and these messages called system.

Table 3.1 shows some e-mail system messages. 3abkhows some SMS system
messages. Using SMS system messages server cagarsamsors work. SMS system
message contains sensors command.

These tables contain only messages descriptiomiteam of sending this messages
describes in the use cases (see Section 3.3).

Table 3.1: System e-mail messages

detected message

Name Sender Recipient Content
Regular message Sensof Server Measured values
Hardware fail Sensor Server Description of the problem
message
Emergency situation Sensor Server Description of the emergency

situation

Table 3.2: System SMS messages

message

Name Sender Recipient Content
Emergency situation Sensor Server Description of the emergency
detected message situation
Hardware fail Sensor Server Description of the problem
message
Confirmation Sensor Server Description of the confirmation
message
Turn on emergency| Server Sensor Command for turning on
alarm message emergency alarm
Turn off emergency| Server Sensor | Command for turning off
alarm emergency alarm
message
Turn on functional Server Sensor | Command for turning on
alarm message functional alarm
Turn off functional Server Sensor | Command for turning off
alarm message functional alarm
Set threshold Server Sensor | Command for set threshold. W
message threshold value.
Set regular period Server Sensor | Command for set period for
message regular message. With period
value.
Regular request Server Sensor | Request for sending regular

message

3.2.2 Notification M essages

As described in Section 2.2, notification messagesat from the server to the

responsible persons when something happens in onediarea.
Table 3.3 shows some of notification messages SMS.

Table 3.3: Notification messages

Name Protocol Content
Emergency situation SMS Description of the emergency
detected notification situation

message
Hardware fail SMS Description of the hardware fail
notification message

3.3 Use Cases
Functional requirements to the system are formdlateset of use cases. Each use case
has actors, precondition, postcondition and sufdessenario. Also each use case
could have numbers of alternative scenarios.

In this section shows use cases which are relatedrt field of work on this system.
It means that here we describes only featuresetmatiator of sensors should support.
These use cases defines with high level of abgiragonly important steps without
detail). Also these use cases will be used asctesds for testing emulator and system
works.

3.3.1 Data Acquisition

This use case (see Table 3.4) describes requirsrteetiie data acquisition and transfer
feature. This is the base use case in the systedestribes rules and scenarios for
periodical sending Regular messages from the sevidobmeasured values.

Table 3.4: Data acquisitiorscenario

Use case name Data acquisition.

Actors Sensor, server, responsible persons.
Precondition Server is running. The sensor is configured, ogerabd turned
on; all information about it is stored in the das®. The
communication flow between server, sensor and datatvorks.

Postcondition Obtained measured values are saved into the databas
Successful 1. Periodically sensor send®egular messagwith measured
scenario values.

2. Server receives new incoming message and recogihias
Regular message

3. Server parsefRegular messageontent and saves values
from message into the database.

Uy

Alternative 1.1.Server does not receiveRegular messagen time (in
scenario #1 specified period).

(First regular | 1.2.Regular messag#oes not received after one minute.
message delay) 1.3.Server sendRegular request messagethe sensor.

1.4.Regular messageceived.
1.5.Go to the item 3 in successful scenario.

Alternative 1.1 Server does not receiveRegular messagen time (in
scenario #2 specified period).

(Second regular | 1.2 Regular messag#oes not received after one minute.
message delay) 1.3 Server sendRegular request messagethe sensor.

1.4 Regular messagdoes not received after two minutes.

1.5 Server send$urn on functional alarnto this sensor.

1.6 Server senddHardware fail notification messagé the
responsible persons.

1.7 Server saves information about alarm in the databas

10

3.3.2 Emergency Situation Detected by Sensor

This use case (see Table 3.5) specifies requiramimt system work in case of
emergency situation in monitored area which wasdaletl by sensor. Server provides
reaction on this situation.

Table 3.5: Emergency situation detected by sensor scenario

Use case name Emergency situation detected by sensor.
Actors Sensor, server, responsible person.
Precondition Server is running. Sensor is configured, operabtetarned

on; all information about it is stored in the datsé. The

communication flow between server, sensor and dagb

works.

Postcondition Emergency situation is finished. All information caib

emergency situation stored into the database. Regge

persons are notified.

Successful scenario 1. Sensor detects emergency situation in monitoreal are

2. Sensor turns on emergency alarm.

3. Sensor sendEmergency situation detected messeige
e-mail.

4. Sensor sendEmergency situation detected messeige
SMS.

5. Server receives new incoming e-mail message |and
recognizes it aEmergency situation detected message

6. Server send&mergency situation detected notification
messagé¢o all responsible persons.

7. Server receives new incoming SMS message |and
recognizes it aEmergency situation detected message

8. Server saves information aboemergency alarminto
the database.

9. Emergency situation is finished, all needful actiare
performed.

10.Server send3urn off emergency alarm messagethe
sensor.

11.Sensor receives this messaged turn off emergenc
alarm.

12. Sensor sendSonfirmation message the server.

<

3.3.3 Emergency Situation Detected by Server
This use case (see Table 3.6) specifies requiramiemt system work in case of
emergency situation in monitored which was detebtederver.

In this kind of emergency situation main role bgsnto the server (unlike in
previous use case). Sensor does not detect thdsdkiemergency situation — it is only
sends measured values to the server. And servekglilethis value higher or lower
than corresponding threshold.

Table 3.6: Emergency situation detected by server scenario

Use case name Emergency situation detected by server.
Actors Sensor, server, responsible person.
Precondition Server is running. Sensor is configured, operabtetarned

11

on; all information about it is stored in the datad. The

communication flow between server, sensor and datl

works. This sensor attached to the responsiblepers

Postcondition

Emergency situation is finished. All information caib
emergency situation stored into the database. Regge
persons are notified.

Successful scenario

1. Server receives new incoming message and recog
it asRegular message

2. Server parse Regular message and obtain mea
values.

3. Server compares obtained values with the correspgr

thresholds (both min and max value).

One or several values are out of limits.

Server saves information aboemergency alarmnto

the database.

ok

b

nized

sured

nd

6. Server send&mergency situation detected notification

messag¢o all responsible persons.

7. Server sendJurn on functional alarm message the
sensor which serRRegular messageith value which ig
out of limits.

8. Sensor turns on functional alarm.

9. The sensor sendonfirmation messag® the server.

10. Server receives new incoming message and recoghi
asConfirmation message

11.Emergency situation is finished, all needful acteme
performed.

12.Server send3urn off functional alarm messade the
sensor.

13.Sensor receives this message and turn off fundti
alarm.

ZeS

ona

14.Sensor sendSonfirmation messag® the server.

3.3.4 Hardware Problems
This use case (see Table 3.7) describes requirenfentsystem work in case of
detection any hardware problems.

In this use case server receives message abouwtdrargroblems, stores information
into the database and notifies responsible persbost them.

Table 3.7: Hardware problems scenario

Use case name Hardware problems.
Actors Sensor, server, responsible person.
Precondition Server is running. Sensor is configured, operabtetarned

on; all information about it is stored in the datab. The

communication flow between server, sensor and dat

works. This sensor attached to the responsibleopers

b

Postcondition

Functional alarm is finished. All information abatitstored
into the database. Responsible persons are notified

Successful scenario

1. Sensor detects some hardware problem.

2. Sensor turns on functional alarm.

3. Sensor senddardware fail messageo the server.

4. Server receives new incoming message and recog

nized

12

8.

it asHardware fail message

Server saves information about functional alarro thie
database.

Server sendslardware fail notification messag®e the
responsible persons.

Hardware problem is solved, all needful actions
performed.

Sensor turns off functional alarm.

3.4 Requirementsfor Emulator
Besides the above scenarios the following requirdsnare defined:
e The emulator should
0 be a part of main web application (as a tab).
o provide possibility to chose sensors for emulation.
0 provide possibility to input monitoring mail box.
0 visualize each sensor.

« Each sensor should

are

0 visualize as separate box and should include alipegents as real

Sensor.

o emulate all behavior of real sensor.

0 update his own state every 3 seconds.

0 visualize measured values in readable form.
* The emulator should have output console for shovahgnformation about

emulator work.

« The output console should have check box for filgRegular messages.
« The output console should have buttons for managgngjls and clear console.

Main requirement for emulator — it should fully golpehavior of the real devices

13

4 Architecture
This chapter describes the architecture of the ahsgistem, including emulator and
SMS gateway.

4.1 System Ar chitecture and Behavior
Figure 4.1 shows the system architecture on thiegsigevel of abstraction

[Emulator of sensors (2}

|E~\|

Sensor (]

- . p e\«‘\\ «g,&
SMS gateway (3] @

E-mail message (4;

Control server (5
Database (6]

Sensor (]

\«\\‘\ ip‘,’\/

Sensor ()

& [

GWT dlient (7 Android tablet (8] Notification app (9,
& & &
52) e) (&

& & &

Figure4.1: General system architecture

Sensor (1yvas described in Section 2.2.

Emulator of sensors (2) software abstraction which copies the behavioreail
sensors. More detailed structure and behavior afl&or will be describes in Section
4.2.

For sending/receiving SMS messages USBES gateway (3)It is organized on
3G/GSM modem (with SIM card) and with open sourbeaty for work with modems.
More detailed structure and behavior of SMS gatewilybe describes in Section 4.3.

Control server (5} it is a set of Maven projects which are respaedor server part
of the system.

Database (6)s used for storing all information in the system.

GWT client (7)provides all needful mechanisms for different ngang of the
system, visualization all information stored in tik&abase, and provide user interface
for emulator.

Android tablet (8)- it is an Android application developed for manggsensors.
Main functions are: start/stop sensors, writingorépbout emergency situation, etc.

Notification application(9) — it is an Android application developed for shiogi
current information about monitored area on mobédeices.

14

In developing process we were fully responsible éonulator of sensors, SMS
gateway and also were partially involved in Consetver, GWT server-side (emulator
logic). All Android and GWT client (except GUI f@mulator) developing was not our
responsibility. So we do not describe this pathis thesis paper.

The general architecture of the developed systeshasvn in Figure 4.1. This figure
does not describe communication protocols, detailacture of each architecture node.
That is why on the Figure 4.2 shows more detailezhitecture. On this level of
abstraction includes structure of the Control seavel ways for communication with it.
Emulator of sensors and SMS gateway will be shawthe next sections.

9

Responsible

persons
Emulator of sensors %]
& SMS gateway

—sme Mobile SME—
‘ provider
3G/GSM
\S"/ha,-/ modem

Control server

i

SMS receiver ‘

SMS sender ‘

Sensor

\
< e—“‘a (l E-mail gateway i
Pasn® 3
[ema ﬁJ E-mail receiver ‘ N
y =
SMS vi | mai . O N
9 mal 1 E-mail sender ‘ 2,
Sensor < N’
p—
Control layer Database
< Responsible 8
TR persons ’ Parser ‘ < =
sus vie | Emulator mail ’ Control layer logic ‘ 8
e-mai box . Z)
&
Sensor [Main web application [9)
Web Ul ‘ A~
Web UI logic Emulator logic ‘ <
‘8{8 ’ REST Web service ‘

GWT client Notification app

Android tablet

Figure4.2: More detailed system architecture

In the system exist five different communicatiorotpcols — JavaScript Object
Notation (JSON), Hyper text transfer protocol (H);TBMS, e-mail, SMS via e-mail.

JSON s used for interaction between Android applicasicand Control server.
Interaction means that Android applications sen@NSequests; REST Web service
(on the Control server) is processes their requestsread/write needful information
from/to the database) and sends JSON responsedatith

HTTP protocol is uses for accessing to the Web Ul whglimplementing using
GWT from the Web browser.

SMSprotocol is uses for interaction between real genand SMS gateway which is
node of Control server. Sensors use this protoool sending information about
emergency situation in monitored area, hardwar®lpnes with sensor’s platform and
for confirmation of commands execution. Controlveeruses this protocol for sending

15

manage commands to sensors. Each message serf@SMianobile provider (in the
figure above it call$viobile provide)j and they cost money. This provider depends on
SIM cards plug-ins into the sensors platform andG&M modem on the SMS
gateway.

E-mail protocol is uses by sensors for sending currefornmation about state of
monitored area (Regular messages). System has emeeved e-mail box for this
interaction (on the figure above it calM&ain mail boy. Sensors send e-mail messages
on this mail box and server continuously checks tmail box and receives new
Incoming messages.

SMS via e-maibrotocol is uses for interaction between emulatosensors and
Control server. In this protocol information whigdends/receives via SMS by real
sensors is sends/receives via e-mail with the Bpeuwiarkers in subject of the mail.
Emulator of sensors sends messages via this ptodbocthe Main mail box(due to
special markers in the mail subject, Control sedistinguishes messages received via
e-mail or SMS via emall For receiving messages which was sent via thasopol
emulator of sensors uses special mail box (onithed above it callEmulator mail
box). This protocol was developed for cost saving. &8se usingSMS protocol for
system testing is very expensive (especially fiaasst testing).

Control server consists of several nodes:

1. SMS gateway:

a. SMS receiver.

b. SMS sender.

c. 3G/GSM modem.
2. E-mail gateway:

a. E-mail sender.

b. E-mail receiver.
3. Control layer:

a. Parser.

b. Control layer logic.
Persistence layer.
Database.

Main Web application:

a. Web Ul.

b. Web Ul logic.

c. Emulator logic.

d. REST Web service.

o0 h

SMS gateways uses for sending/receiving messages via SM&qob This node
works with connecte8G/GSM modenEach sensor has property caliedeiver phone
numberwhich contains number of SIM card BG/GSM modenand they send SMS
messages to this number. Control layer continuocallfs SMS receivervhich checks
modem for new incoming messages. If new messagdouad, SMS receivereturns it
to Control layer and then it parses in Parser. W@entrol layer need to sends SMS
message it callSMS sendeand then SMS sender constructs and sends message v
3G/GSM modem.

E-mail gatewayis uses for sending/receiving messages via e-pratibcol. Each
sensor has property calledmail recipientwhich contains e-mail address of Main mail
box and they send e-mail message on this mail @ortrol layer continuously calls-
mail receiverwhich checks Main mail box for new incoming messadienew message
was foundE-mail receiverreturns it to Control layer and then it parseBanser. When

16

control layer need to sends e-mail message (natiidic messages or SMS via e-mail) it
callsE-mail sendemwhich constructs and sends message via e-madqobt

Control layeris a daemon process which running on the serveresumbnsible for
sensor management, parsing of incoming messagesngstinformation from the
sensors into the database and responsible perstifisation. Parser node performs
parsing of incoming messages (both SMS and e-n#dilpther functions implements
by Control layer logicnode.

Persistence layeprovides simple and useful mechanisms for thebda access.
All interaction between the database and other iIGbserver nodes (storing/retrieving
information into/from database, etc) performedR@sistence layer

Databasds uses for storing all system information.

Main web applicationt is web-based part of the Control server. It unids:

1. Web Ulwhich is implemented with GWT technology. It prdes useful, simple
in use and user-friendly GUI for managing systensualizing all system
information, etc. Also it provides GUI for emulatdoNeb Ul accessible via
HTTP protocol (by link).

2. Web Ul logicperforms all backend operations for processingests from Web
Ul (i.e. obtain all messages from the database).

3. Emulator logic performs all backend operatiof@r emulator of sensors (i.e.
sending/receiving messages, switching on/off alagtty.

4. REST Web Servige uses for processing requests from the Andropdiegtions
(i.e. obtain all sensors in specify kit from theéatmse).

4.2 Emulator

Main goal of our thesis was design and implememtagmulator of sensors. This
emulator needed because using real sensors forgeststem is very expensive. Each
sensors costs rather big money, and now custornernigany does not have a lot of
sensors for developing and testing system.

As input knowledge for emulator behavior we haduwtoentation from the sensors
manufacturer, and we made a lot of tests with aléel sensors (for clear understanding
of sensor behavior). Main requirement to the whereulator is copying real sensors
behavior.

Important requirement for emulator architecturet must have web user interface
and must be a part of main web application (Weladl Emulator logic on Figure 4.2).

4.2.1 MVP Architecture

Main web application developed using GWT technoldggin challenge with we faced
was simultaneously developing this part of systehared between different group of
developers.

As usual GWT project, Main web application sepatateo three parts — client side,
server side and shared code (which could be usdchent and server side). For client
side architecture used GWT MVP framework, whichegiwell defined GWT based
implementation of MVP pattern (all benefits ofstdescribed in Section 2.3).

In classic MVP pattern there are 4 main parts — &llodiew, Presenter (see Figure
4.3), and AppController which is wiring up all cooments together.

17

Presenter

Figure 4.3: Classic MVP

Model is responsible for holding raw datdiew is responsible for displaying data.
None of these parts include any business Idgsiesenteris responsible for getting the

data,

driving the view, listening for GUI eventsnplements business logic.

AppControlleris wiring up all components together.
Anyway for Main web application used GWT MVP Franwelv which is extends
classic MVP pattern for GWT needs. Main componangs

1.
2.

5.
6. ClientFactoyis holds on to instances of views and other rdesalgstem

7.

Model- the same as in classic MVP (holding row datarembusiness logic).
View— the same as in classic MVP, but it is structli@vs to use UiBinder for
building user interface in XML-based format sepalsat(this is important for
simultaneous developing).

Activity is a more advanced Presenter; it has lifecyclenoust, responses to
events on the view, server calls, etc. All busileg& goes here.

Placeis responsible for navigation between differemesns (tabs, menu items,
pages).

PlaceHistoryMappers responsible for history handling mechanism.

resources.
ActivityMapper— maps each Place to some Activity.

Main benefit of GWT MVP Framework is possibilityrfparallel work on different
parts of application.

Because emulator is a part of Main web applicattoalso built on GWT MVP
Framework. On Figure 4.4 shows simplified architeetfor client side of emulator. It
consists of:

1.

EmulationViewis the interface which has nested interface caflessenter and
all needful mechanism for receiving user interfat@ments. This is a part of
View.

Presenteris the interface which contains signature of akkdful business logic
methods. This is a part if Activity.

EmulationViewimpl and SensorEmulatorBox — are user interfaces
implementation. They are use UiBinder for layoungtoucting. This is a part of
View.

EmulationActivityimplements Presenter interface and perform aliness logic
and update view. This is a part of Activity.

SensorDtois the data transfer object that is represent Seastty in the
database. EmulationActivity receives this objeotrfrthe server side via remote
procedure call (RPC) requests/response. This @étaopModel.

EmulationPlace is associated with EmulationActivity and used by
AppPlaceHistoryMapper for handling navigation higto

AppActivityMappers maps EmulationPlace to EmulationActivity.

18

z=Java Clags>> ==lava Class=>

EmulationPlace ? Em“fﬂﬁOHACtiVit?_ I S interface»>
AW -"1‘ EmulationView |—)
: ~ i g) =zlava Clazs==
1_‘\ EmulationViewlmp!
==lava Interfaces== é/’/
Presenter
z=java Interface=> <<Java Class=> <<.Jﬂ'-ﬁ.lnterfa|:e>.> .
AppPlaceHistoryMapper AppActivityMapper \ EmulationViewimpiUiBinder

=<lava Class»>
SensorEmulationBox

=<lava Interface==
SensoreEmulationBoxUiBinder

==lava Class»»

SensorDito
> Association ~— -ereoosseeeesesssees P> Implementation
"""""""""""" > Relationship P Nested relationshis

Figure 4.4: Simplified emulator client side architecture

The same structure used in other part of Main weii@ation. Control classes (i.e.
AppActivityMapper) are general and they work with Activities and Places (which
are developed by different groups of students).

4.2.2 Emulator Behavior
For defining behavior of emulator and communicatath server we used the set of
sequence diagrams. We shows sequence diagrambefandst important use cases.
Rest use cases have very similar behavior.

On the Figure 4.5 shows process of sending Requdasages with values which are
measured by sensor.

Sensor Server

Every regular penod)

|

}

| 1) Get own state info I

I

I

| | 2: Regular message [

s

Figure4.5: Sending Regular messages from emulator

On the Figure 4.6 shows behavior of emulator inecaé emergency situation
detected by sensor.

19

Sensor #1 Server

[:E‘ 1: Emulate emergency situation

I
|
|
|
2: Turn on emergency alarms I
|
|
|
1

3: Emergency situation detected message via e-mail

4: Emergency situation detected message via SMS

t:m 5: Emergency situation is finished

|
7: Turn off emergency alarms I
|

gn

6 Turn off emergency alarm message

B: Confirmation message

"":"ﬁ‘:i‘""{ "_E'*ﬂ

Figure 4.6: Self-detected emergency situation emulation

On the Figure 4.7 shows behavior of emulator inecaé emergency situation
detected by server.

1: Emergency situation emulation

2: Regular message

3: Turn an functional alarm message

4: Turn on functional alarm

5: Confirmation message

e SR M SN——

F 6. Emergency situation is finished

7: Turn off functional alarm message

8 Turn off functional alarm

9 Confirmation

B B e S B b S i S ‘

fu
.

Figure 4.7: Server-detected emergency situation emulation
On the Figure 4.8 shows behavior of emulator ineca$ hardware problem

emulation. Note that we showed only general desoripf behavior — there is a lot of
different hardware problems which could be emulate.

20

Sensor Server

.‘_

I
I
1 Hardware problems emulation I
|
|

T

™ 2: Hardware fail message

3: Turn on functional alarms

4: Stop hardware problems emulation

+

5 Turn off functional alarm

———-

Figure 4.8: Hardware problem emulation

On the Figure 4.9 shows behavior of emulator inecat problem with mobile
network. In this case, if mobile network is turn&ffl— sensor cannot send/receive any
messages.

Sensor

1: Emulate mobile network problem

.‘_

| 2 Turn on functional alarm

Figure 4.9: Emulation of mobile network problems

On the previous diagrams were show only emulattiorss. Behavior of server
which is not related to the sensor behavior — d@¢show on the diagrams.

4.3 SM S Gateway

SMS gateway is a part of Control server. It implatsdike separate Maven-library and
includes in the assembly of Control server. Thisaiy contains all necessary methods

21

for works with connected 3G/GSM modem (setup cotioec with modem,
send/receive SMS).
On the Figure 4.10 shows architecture of SMS gatdibeary.

sws .
Receiver \ 5 8 ﬂ
€ =
(0] - » e} -~
B o
SMSE © £ Connectec -
5 s 2G/GSM
Sender @ S USE G/GSM modem
@ port

Figure 4.10: SMS Gateway architecture

SMS Gateway consists of: 3G/GSM modem connecteithe¢ouniversal serial bus
(USB) port, virtual COM port, Serial Modem DriveméSMS Receiver/Sender.

3G/GSM modenmwas described above in previous sections. Fordimgil SMS
gateway we used Option modem with Comviq SIM card.

Operating System represents 3G/GSM modem as aedewitnected to theirtual
COM port So physically 3G/GSM modem connected to the USHBL, pbut it
communicates with program part of SMS gateway vréudl COM port.

Serial Modem Driver, SMS Receiver and SMS Sendés & program part of the
SMS gateway which is implement use SMSLib library.

Serial Modem Drivelis responsible for setup connection and communicatith
modem. SMS Receiver and Sender are responsiblerdioeiving/sending SMS
messages.

Control layer node calls SMS receiver and sende¢hoas when it needs to obtain or
send SMS messages.

On the Figure 4.11 shows process of receiving inegn$MS messages form the
modem.

Control layer SMS Receiver SerialMedemDriver Modem

| 1: Get new messages request

|
|
Py
J ']Tl 2: Check modem

] gl
1 3: Get new incoming messages from the SIM card .

if new messages were founded | { ‘ 4 New messages {
5: List of InboundMessage J

L’I‘ ‘J

6: List of InboundMessage |
if new messages were not founded _J P 7. No new message
B NULL i J
&
9: NULL [~ J

Figure4.11: Receiving incoming SMS messages

On the Figure 4.12 shows process of sending SMSagedorm the modem.

22

||||||||| e O e R e
A
= E
o _ ®
2 H 8
= £ £
= o @
] g 7
|3 8
2 2 2
A A
||||||) B e e
&
g y %
= =)
3 E z
.m I &
8
&
v v
N e e e H————
b
]
7
&
a w &
: = 3
m (=] (=]
=
b
A & A d
_—t - - Hot————— O
Q
a
2
o
i
£

23

Figure4.12: Sending SMS message

5 Implementation

This chapter shows implementations of important taicly parts of emulator and SMS
gateway. As described above we used next techmslogava, GWT, SMSLib, Java
Mail API. We show only part of our source code with “whole picture”, because we
did our Master Thesis under non-disclosure agreemen

5.1 Converting of Values
Sensor measures different parameters of monitaesl ia platform-dependent values.
These values do not meaningful for humans. Oneaidirements for emulator consists
of showing current values in readable form. Thatvig/ we implemented method for
converting of platform-dependent values to tradiicsensing system.

This implementation shows below.

Method for converting platform-depended value inéalitional sensing system

private static final Integer R_© = 10000;
private static final Integer V_IN = 3;
private static final Double T_© = 298.15;
private static final Integer B = 4000;
private static final double V_REF = 2.56d;

public static Float translateValue(Integer adc) {
if (adc !'= null) {
float value;
double vOut
double rntc =
double 1n = ©;
try {
vOut = adc * V_REF / 1024;
rntc = (vOut * 10000) / (V_IN - vOut);
1n = Math.log((rntc / R 09));
value = (float) ((2 / (In/ B+ 1/ T_0)) - 273.15);
value = new BigDecimal(value)
.setScale(2, RoundingMode.UP)
.floatValue();
return (Float) value;
} catch (Exception e) {
e.printStackTrace();

0;
0;

}
}

return null;

5.2 E-mail Sending
As was described in previous chapters emulatoen$ars should send e-mail messages
to the server. We used Java Mail API for sendirngitreng e-mail messages.

Method for sending email message

public boolean sendEmail(String smtp, int port, String to,
String from, String password, String subject, String body) {

String type = "text/plain”;
Properties props = System.getProperties();
props.put("mail.smtp.host", smtp);

24

props.put("mail.smtp.port", port);
props.put("mail.smtp.auth", "true");
Session session = Session.getDefaultInstance(props, null);
MimeMessage mimeMessage = new MimeMessage(session);
Multipart multiPart = new MimeMultipart();
try {
mimeMessage.setSubject(subject);
mimeMessage.addRecipient(RecipientType.TO,
new InternetAddress(to));
MimeBodyPart textBodyPart = new MimeBodyPart();
textBodyPart.setContent(body, type);
multiPart.addBodyPart(textBodyPart);
mimeMessage.setContent(multiPart);
mimeMessage.setFrom(new InternetAddress(from));
} catch (MessagingException e) {
return false;
}
Transport transport = null;
boolean sent = false;
try {
transport = session.getTransport("smtps");
transport.connect(smtp, from, password);
transport.sendMessage(mimeMessage,
mimeMessage.getAllRecipients());
sent = true;
} catch (Exception e) {
sent = false;
} finally {
try {
transport.close();
} catch (MessagingException e) {
sent = false;

}
}

return sent;

5.3 Enumeration of Sensor Commands

Emulator of sensors provides support of the seteoisor commands. When emulator
receives message with command it should identify tommand. For this we used
enumeration which keeps all kind of commands anglements method for their
identifying. An enumeration type is a special dgse that enables for a variable to be a
set of predefined constants. The variable mustgoaleto one of the values that have
been predefined for it [15].

Enumeration of sensor commands

public enum SensorInstructionType {
UNKNOWN_INSTRUCTION ("unknown"),
ATEST_INSTRUCTION ("ATEST"),
YELLOWON_INSTRUCTION ("YELLOWON"),
YELLOWOFF_INSTRUCTION ("YELLOWOFF"),
ATIME INSTRUCTION ("ATIME"),
SENDA_INSTRUCTION ("SENDA"),
ACK_INSTRUCTION ("ACK"),
ACKAA_INSTRUCTION ("ACKAA"),
SEND _INSTRUCTION ("SEND"),

25

THRS_INSTRUCTION ("THRS");
private String token;

private SensorInstructionType(String token) {
this.token = token;

}

public String getToken() {
return token;
}
public static SensorInstructionType identify(String content) {
if(content != null) {
content = content.trim();
for(SensorInstructionType type :
SensorInstructionType.values()) {
if(type.getToken() == null ||
type.getToken().trim().length() == @) {
continue;
}
if (type == ATIME _INSTRUCTION ||
type == THRS_INSTRUCTION){
if(content.contains(type.getToken())) {
return type;

}

}
if(content.equals(type.getToken())) {

return type;

}
}
}
return SensorInstructionType.UNKNOWN_INSTRUCTION;

}

5.4 Handling Client Request to the Server

As described above in previous chapters GWT apphicadivides into three layers —

client, server, shared. Client layer communicategh wserver layer via RPC

requests/responses. For handling and processingseqfrom the client we defined

special classes like “xxxxRequestHandler” in whierforming all necessary actions.
Below shows implementation for handling start/stopulation request.

Handling client request to the server

public class EmulationLifeCycleRequestHandler extends

RequestHandler<EmulationLifeCycleRequest,
EmulationLifeCycleResponse> {

private EmulationLifeCycleRequestType requestType;

@Override

public EmulationLifeCycleResponse handle(HttpServletRequest
httprequest, EmulationLifeCycleRequest request)

throws XXXXException {

requestType = request.getRequestType();

switch (requestType) {

case START_EMULATION_REQUEST:
StateController.startAliveSending(request.getKitId());
break;

case STOP_EMULATION_REQUEST:

26

}

StateController.stopEmulation(request.getKitId());
break;

default:
break;

}

return new EmulationLifeCycleResponse();

5.5 Custom Widgets

GWT allows creating custom widgets by extendingsémxg one and adding additional
functionality. Once widget creates it could be eeirsall part of the system. One of the
requirements to emulator was provide possibilitsmanual update sensors state and
automatic update every 3 seconds. Also similar tfanality was required in another
part of application. That is why custom widget whis extends Button widget was
created. This new widget provides opportunity foind any specified operation by
click and every N seconds (where N — specifiecburse code).

Below shows source code of this widget and on Eigut shows his view.

TimerButton widget

public class TimerButton extends Button {
private static final int REPEAT_TIME_MS = 1 * 1000;
private static final int RESET_SECONDS DEFAULT = 5;
private int currentRestSeconds = RESET_SECONDS DEFAULT;
private int secondsRemaining = currentRestSeconds;
private Timer updateKitStatusTimer = new Timer() {

public TimerButton() {

public TimerButton(int resetTime) {

public void setResetTime(int seconds){

public void startTimer() {

public void stopTimer() {

public void resetTimer() {

@Override
public void run() {
if (secondsRemaining == -1) {
secondsRemaining = currentRestSeconds;
click();
}

setText("Update (" + secondsRemaining + ")");
secondsRemaining--;

}

this(RESET_SECONDS_DEFAULT);

setResetTime(resetTime);

currentRestSeconds = seconds;

this.updateKitStatusTimer.scheduleRepeating(REPEAT_TIME_MS);

this.updateKitStatusTimer.cancel();
secondsRemaining = currentRestSeconds;
setText("Update (" + secondsRemaining + ")");

secondsRemaining = currentRestSeconds; }

27

Update (3) Update (2) Update (1) Update (0)

Figure5.1: TimerButton widget

5.6 UIBinder
For building user interface we used UlBinder whislprovides opportunities to build
user interface in separate XML-document which isnexted to the Java code. A use of
UlBinder is a best practice for building View paftGWT MVP Framework.

Below shows part of UIBinder XML document whichdescribes output console of
emulation view and on Figure 5.2 shows result.

Part of UIBinder file

<g:CaptionPanel captionText="Output">
<g:VerticalPanel width="100%">
<g:HorizontalPanel styleName="btn-panel">
<g:HorizontalPanel styleName="{style.alive-panel}">
<g:CheckBox ui:field="alivePrintCheckBox"

styleName="{style.alive-check}"></g:CheckBox>

<g:Label styleName="alive-label ">Regular</g:Label>
</g:HorizontalPanel>

<g:Button text="Clear console" styleName="btn btn-add console-btn"
ui:field="clearConsole"></g:Button>

<g:Button text="Scroll Lock: No" styleName="btn btn-add console-btn"
ui:field="scrollLock"></g:Button>

</g:HorizontalPanel>

<cw:EmulationTextArea styleName="emulation-action"”
height="200px" readOnly="true" ui:field="emulationAction"” />

</g:VerticalPanel>

</g:CaptionPanel>

Output

[[] Regular Clear console Scroll Lock: No

Figure 5.2: Output emulation console built using UIBinder

5.7 SM S Sending
As described in SMS gateway architecture it is seBMS messages via 3G/GSM
modem and for work with modem used SMSLib library.

Below shows implementation of sending SMS messagehod.

SMS sending

public boolean sendSms(String recepient, String content) throws Exception {
SerialModemGateway gateway = null;
try {
gateway = new SerialModemGateway(Configuration.DEVICE_ID,
Configuration.COM_PORT, Configuration.BOUND_RATE,
Configuration.MANUFACTURER, "");

28

gateway.setInbound(true);
gateway.setOutbound(true);
gateway.setSmscNumber (Configuration.SMS_CENTER);
while
(!'Service.getInstance().getServiceStatus().toString()
.equals("STOPPED")) {
Thread.sleep(3 * 1000);
}
Service.getInstance().addGateway(gateway);
Service.getInstance().startService();
OutboundMessage msg = new OutboundMessage(recepient,
content);
Service.getInstance().sendMessage(msg);
Service.getInstance().removeMessage(msg);
return true;
} catch (Exception ex) {
ex.printStackTrace();
return false;
} finally {
Service.getInstance().stopService();
Service.getInstance().removeGateway(gateway);

29

6 Testing

This chapter describes testing of whole systememphtation using the emulator (our
final goal, which is described in Section 1.2)initludes functional testing [16] based
on the use cases defined in Section 3.3. As atresulork shows screenshots of
emulating sensor.

6.1 Testing Approach
Test data was created manually. We copied pantsabdfinformation from sensors and
changed others part. For each emulated sensor epanad e-mail box, SIM number,
serial number, etc. All these settings were saweithe database. This information was
discussed and agreed with the group of experiedeedlopers and the customer.

We checked server behavior using real sensors muothtor of real sensors. We did
next actions for check the server (with emulator):

1. Emulate repeating process of sending regular mesdagm many sensors with
information about monitored area (Section 6.2).

2. Emulate different types of emergency situationsciwhare detected by sensor
(Section 6.3).

3. Emulate different types of emergency situationsciwhare detected by server
(Section 6.4).

4. Emulate different types of hardware problems ($ec8.5).

Also we did the same things with using real senséfe compared the results for
both variants. Test was passed if the resultsiaréas.

6.2 Testing of Data Acquisition
For testing emulation of data acquisition couldubed output console of emulator. This
console shows each message which is emulator sexdd®ceives (Figure 6.1).

[2013-08-23. 12:56:41] Start emulation!

] EMAIL: REGULAR pes@amail. com > Alivel(#1) 610 849 1 2348
6.46] EMAIL. REGULAR @gmail.com -> Alivel(#1) 639 1024 18.53
6:48] EMAIL: REGULAR @gmail.com - Alivel(#1) 600 975 1 2257

-08-23
[2013-08-23

Figure 6.1: Emulation of data acquisition

As shows in output console each emulated sensdsserasured values in Regular
message to the server via e-mail.

6.3 Testing of Emergency Situation Detected by Sensor

For emulation of emergency situation detected msseneed to check corresponding
checkbox. When it checked (see Figure 6.2) — setlusos on emergency alarm and
sends corresponding message to the server.

sin: - - .)|
Email: @gmail.com '
SIM 1-+467 SIM 2:+467
Regular period: 60 thrs: 120

[¥] Mobile network [¥] madule Ok
[[¥] Turned on ¥ module Ok
[@ module Ok

Figure 6.2: Start emulation of emergency situation detecteddmsor

30

When emergency situation is finished — server sead$e sensor corresponding
message and sensor turns of emergency alarm @ee [6.3).

sin: - - . - .

Ermail: @gmail.com

SIM 12 +467 Sl 2: +4867

Regular period: 60 thrs: 120

2 [¥] Mobile netwaork [madule Ok
J [#] Turned en] module Ok

@l [l [module Ok

Figure 6.3: End emulation of emergency situation detecteddmgasr
As showed on the pictures this use case workinggctly.

6.4 Testing of Emergency Situation Detected by Server

For emulation of emergency situation detected lryyeseneed to check corresponding
checkbox (see Figure 6.4). When it checked — stamislation of measuring high value
for checked parameter. And in next Regular mes#ageparameter sends as usual to
the server (see Figure 6.5). Server parses thisagescompares values with thresholds
and detects emergency situation if some paramisterg of bounds.

sin: - - — .
Email: @gmail.com

SIM 1:+467 SIM 2: +467

Regular period: 60 thrs: 120

[¥] Mobile network [V medule Ok
[¥] Turned on] module Ok
] [l ¥ module Ok

Figure 6.4: Start emulation of emergency situation detecteddvyer

[] Regular Clear console Scroll Lock: No
[2013-08-23, 13:15:02] EMAIL: REGULAR @gmail.com > Alivel(#2) 928 - 1 196
[2013-08-23, 1315:03] EMAIL: REGULAR s @gmail com - 3. .2 Alivel(#2) 610 M 840 M- 1 23,06
[2013-08-23, 13:15:06] EMAIL: REGULAR @gmail.com -> Alive!(#2) 655 M 033 - 1 24.16

Figure 6.5: Sensor sends value which is lower/higher tharesponding threshold

After this, server sends message for turning oetfanal alarm on the sensor, which
sent incorrect value (see Figures 6.6, 6.7).

Regular Clear console Scroll Lock: Mo

|[2013-DS-23 13:24:40] SMS: FUNCTIONAL ALARM: +470000000 -> +46703784301 CONTENT: YELLOWON |

Figure 6.6: Server sends message for turning on functionatala

31

SN e—— - —

Email: @gmail.com

SIM 1: +467 SIM 2: +467

Regular period: 60 thrs: 120

7] V] Maobile network (V) module Ok
[¥] Turned on [¥] module Ok

[]] madule Ok

Figure6.7: Sensor turns on functional alarm

When emergency situation is finished — server sead$e sensor corresponding
message and sensor turns of functional alarm (geeds 6.8, 6.9).

[Regular Clear console Scroll Lock: No

|[2013-08-23 13:51:35] SMS: NORMAL MODE: +470000000 -> +46703784301: CONTENT YELLOWOFF|

Figure 6.8: Server sends message for turning off functioreinal

sin: - S .

Email: {@gmail.com

SIM 1: +467 SiM 2: +467

Regular period: 60 thrs:! 120

[l [¥] Mobile network [¥] module Ok
[[¥] Turned on ¥l module Ok
[l [a] I module Ok

Figure 6.9: Sensor turns off functional alarm

6.5 Testing of Hardware Problems
For emulation of hardware problems need to cheekhatk one of the corresponding

check-boxes. Different check-boxes are respon$ibldifferent hardware problems.

SN e—— -
Email: @gmail.com

SiM A1:+467 SIM 2: +467

Reqular pericd: &0 thrs:: 120

[[¥] Mobile network [¥] module Ok
[[¥] Turned on ¥] module Ok

O [module Ok

Figure 6.10: Emulation of hardware problem

32

[F] Regular Clear console Scroll Lock: No

[2013-08-23. 14:08:00] EMAIL FAIL @gmail.com -> Taill did not respond

Figure6.11: Sensor sends message about hardware problem

33

7 Summarize

In this

chapter we show conclusions of our work asitlexplain possible future works

on this topic.

7.1 Conclusions
The problem addressed by this thesis ipdomit the development and validation of the
server-side system without the actual sensors bieimgace to reduce time to market
and increase reliability of the production systeman early stage.

In order to solve this problem, we stated the feitg goals:

1.

The main goal is to develop a software emulatoicviemulates the real sensors
behavior. This goal is reached if the emulatoryfuthplements the specification
of the hardware sensor. For the IT system contigplland monitoring the
sensors, there should be no difference.

The secondary goal is to develop parts of the sexide system to facilitate
testing of the emulator and the IT system. Thisl geaeached if the whole
system (server-side components and emulated sgmaseriinctional and can be
used for testing.

The final goal is to test the whole system impletagon using the emulator.
This goal is reached if the implementation can uieassfully validated against
the main use-cases with the help of the emulatbis $hould lead to minimal
integration problems when substituting the emulatstsors with real sensors.

reached the main goal by:

Analyzing the design and behavior of the real se(Section 2.1).

Investigating and choosing most suitable technoldgy implementation
(Section 2.3).

Defining all incoming and outgoing messages, he. tommunication protocol
(Section 3.2).

Eliciting and documenting the requirements for #raulator with customers
(Section 3.4).

Developing an architecture and sequence of actionshe emulator (Section
4.2).

Implementing the emulator as a part of a web apptio (Sections 5.1, 5.2, 5.3,
5.4,5.5, 5.6).

Testing the implemented emulator and validatiomsé-cases (Section 6.1, 6.2,
6.3, 6.4).

As a result we obtained the emulator which is fuliyplements the specification of
the hardware sensor. For the IT system controling monitoring the sensors, there is
no difference between real and emulated sensoubeca

1.

2.

abkow

The emulator sends and receives all messages \ahactiefined in the sensor’s
documentation.

The emulator uses the same protocols for sendoejlieg message as a real
sensor.

The emulator performs all needful reaction for eggle of incoming message.
The emulator has the same properties for each isaasoreal sensor.

The emulator could be replaced with the real senadathout any problems on
the server-side of the system.

34

We reached the secondary goal by:

1.

2.

w

©O~NO®OA

Investigating and choosing most suitable technoldgy implementation
(Section 2.3).

Identifying and defining user types in collaboratwith the customers (Section
3.1).

Eliciting and documenting requirements for wholstsyn and specifying them
as use cases (Section 3.3).

Developing the system and server architecture i&@edtl).

Developing the architecture of the SMS gateway tjSeel.3).

Implementing parts of server-side logic (Sectiah) 5.

Implementing SMS gateway (Section 5.7).

Testing implemented system with sensor emulatart{@e6.1, 6.2, 6.3, 6.4).

As a result we obtained whole system (server-sidmponents and emulated
sensors) which are functional and can be usea#ing.

We achieved the final goal by testing the wholdeysusing the emulator instead of
the real sensors (Section 6.1, 6.2, 6.3, 6.4). Tdoal is reached because the
implementation can be successfully validated agdires main use-cases with the help
of the emulator.

7.2 Futureworks
Despite our efforts, we recommend the following royements as future work:

1.

Stress testing of the system. All testing aimed catpliance with the
requirements from a functional perspective. Sttessng is important to assure
a stable system behavior in production settings.

Using well-defined and secure SMS gateway instdagkisting one. Currently
we implemented our own SMS gateway using a USB mode a local server.
This should be replaced by 4 3arty SMS gateway to assure stability,
performance, security and availability of the seevi

Improve sensor platform to more modern communicapootocols (i.e. use
TCP protocol instead of e-mail/SMS). Currently ttenmunication protocol is
implemented using SMS and e-mail which brings aiSant overhead, and
slow response time. This should be improved witlotla@r, more suitable
communication protocol.

35

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Siemens, official site (2013, September). Fireralaystems [online]. Available:
http://w3.usa.siemens.com/buildingtechnologieshifife-products-and-
systems/fire-alarm-systems/pages/fire-alarm-syst#spx

Notifier, official site (2013, September). Soluton[online]. Available:
http://www.notifier.com/Pages/default.aspx

Zeta, official site (2013, September). Fire alarystems [online]. Available:
http://www.zetaalarmsystems.com/fire-alarm-systaing.

Handbook of Sensor Networks: Algorithms and Arattitees, |. Stojmenovic,
John Wiley & Sons, September 2005.

Ad Hoc & Sensor Networks: Theory and Appgicas, C. De Morais
Condeiro and D. Agrawal, World Scientific Pub,rAR006.

A Remote Home Security System Based on Wirelessdddvetwork and GSM
Technology, Huiping Huang, Shide Xiao, Xiangyin MerYing Xiong, China,
2010 [online].

Wikipedia, the free encyclopedia (2013, Augustyalgprogramming language)
[online]. Available:http://en.wikipedia.org/wiki/Java_(programming_laage)

GWT official community (2013, August). Introductido the GWT technology
[online]. Available:http://www.gwtproject.org/

Wikipedia, the free encyclopedia (2013, August)oe Web Toolkit [online].
Available: http://en.wikipedia.org/wiki/Google_Web_Toolkit

MySQL, Seyed M.M. Tahaghoghi, Hugh E. Williams, O'Reillytia, 2010

SeacrhSOA (2013, September). Tomcat [online]. A
http://searchsoa.techtarget.com/definition/Tomcat

Apache Maven Project (2013, September). Introdacfonline]. Available:
http://maven.apache.org/

SMSLib (2013, September). Welcome to SMSLib [ortinévailable:
http://smslib.org/

Wikipedia, the free encyclopedia (2013, Augustyust(software development)
[online]. Available:http://en.wikipedia.org/wiki/Scrum(software devehognt)

The Java Tutorials (2013, September). Enum Typeading]. Available:
http://docs.oracle.com/javase/tutorial/java/java@tn.html

Cem Kaner, Jack Falk, Hung Quoc Nguen. Testing coempsoftware. An
international Thomson publishing company. 2001.

36

Appendix A. User Manual for Sensor Emulator
Sensor emulator is a part of web application, $® dvailable by link. Also, user should
be registered in the system and should have logipassword.

For emulation real sensors is necessary to follgwiext steps:

1. Open browser (i.e. Chrome, Opera, etc).
2. Go by link: http://xxxx.softwerk.se:8080/xxxx-web-clier{ffigure A.1).

D o= | @B softwerk.se:8080/ o -web-client *| B~

Welcome to _
Login

Name

About

Password

Sign in

Figure A.1l: Login page

3. Put name and password which are registered inytera to the corresponding
text boxes and press Sign in button.
4. Chose Emulation tab (Figure A.2).

Logged in as maksym_ponomarenko@softwerk_se (Maksym Ponomarenko). Log ouf

Users. Companies Messages My Settings Emulation

Configuration

1821 :_J Monitoring mailbox @softwerk se Start

Emulation

Output

[Alive messages Clear console Scroll Lock: No

Copyright © 2008-2013, Softwerk AB Phone: +46-(0)470 70 8495 Email: info@softwerk se

Figure A.2: Emulation page

5. Set all needful configuration properties which aeguired for emulation in

corresponding fields.
6. Press Start Button. Emulation will start (Figuré8A.Each sensor represents as

separate box with sections (they are marked witleréint colors on the figure).

A-1

Top section (marked with green) shows informatibawa sensor (serial number,
e-mail address, etc) and it has two boxes for $prgi sensor properties.
Middle section (marked with red) contains inforroatiabout measured values.
These values automatically updates every 3 secondsy pressed Update
button. Bottom section (marked blue) contains chécdxes for managing

sensor's work. By checking or un-checking theseclclexes different

situations could be emulated. All actions (outgdmgpming messages,
information about emulated situation, etc) primsoioutput console (Figure

Users Companies Messages My Settings Emulation
Configuration
2531 J Monitoring mailbox: viktor mazepa@gmail com Stop
Emulation
SIN: c— - . SN — . Update (1)
Email: @gmail.com Email: @gmail.com
SIM 1: +467. SIM 2: +467: SIM 1: +467. SIM 2: +467
period: 120 period:| 30 thrs: 60
[#] mabile network - [#] module Ok &} [#] mobile network [module Ok
ACK [Turned on] ¥ Tumed on el module Ok
lal} L]]} ¢} module Ok

Qutput
[7] Alive messages Clear console Seroll Lock: No

[2013-08-27, 13:33:17] Start emulation!

Copyright ® 20 erk AB. 2: +46-(0)470 70 8495 Email info@softwerk se

0 & a - —

Figure A.3: Emulation process

Output

[T] Ative messages Clear console Scroll Lock: No
[2013-08-23, 12:56:41] Start emulation!
[2013-08-23, 12:56:46] EMAIL: REGULAR: pes@gmail.com ->» Alivel(#1) 610 649 1 23,48
[2013-08-23, 12:56:46] EMAIL: REGULAR: @gmail.com -= Alivel(#1} 639 1024 1 18.53
[2013-08-23. 12:56:48] EMAIL: REGULAR: @gmail.com -» Alivel(#1) 600 975 1 2257

Figure A.4: Output console

7. For different situations used special check-boxa&s described above). For
emulation of sensor’s turned off check-box call@dirhed on” should be un-
checked. The same procedure allows emulating anogiteation (both
emergency and hardware problem).

8. For stopping emulation press Stop button.

Appendix B. Administrator Manual for Sensor Emulator
This manual describes how to install distributifeMeb application (which is contains
sensor emulator) on the server. First of all, sesheuld have: Linux/Windows/Mac OS
as operation system, Java (JRE), Apache TomcaMgs@L. Also server should have
connection to the internet.

To install Java need:

1. Go to the Oracle web-site, chose JRE version, clopsgation system and
download will start.

2. Run downloaded file and follow to the instructions.

3. After successful installation of JRE it exists older in C:\ProgramFiles\Java
(in Windows).

To install Apache Tomcat need:
1. Go to the link:http://tomcat.apache.org/download-70.cqgi

2. Choose operational system and save archive onB@ur
3. Unzip content of downloaded archive to the C:\PaagFiles (in Windows).

To install MySQL need:

Go to the link: http://www.mysqgl.com/downloads/ialé¢r/ and press Download.
Run downloaded file and choose Install MySQL Prdsluc

Follow to the installation instructions.

Do not forget input password for the root userhaef MySQL.

PwonNpE

When all necessary environment was installed adtnator should perform next
actions:

1. Import database dump into MySQL.

2. Upload distributive of web application on the Apacfomcat.
3. Configure emulator using configuration files.

4. Stat Apache Tomcat.

Importing database dump procedure:

1. Open MySql WorkBench and choose Manage Import/Bxpor

2. Input your password.

3. Open Data import/restore, chose Import from Selftamed file, select path to
the dump file and press Start Import button.

For Uploading distributive of web application oretApache Tomcat needs to put
distributive of web application into tiveebappfolder in Apache Tomcat.

Emulator has several configuration files which aesponse for set-upping mail
boxes and database connection properties. aad.emulation.cfg.propertiegTable
A.1) contains properties for e-mail box which igddor receiving incoming messages
from the control server. Fileail.monitoring.cfg.propertiegontains properties for e-
mail box which is used by emulator for sending magses to the control server. All
configuration files for mail boxes have identicalsture.

For setting-up connection with database used fiieernate.cfg.xmlwhich is
available inxxxx-server-dbmaven project (in packaggc/main/resources In this file

administrator could specify uniform resource locqtdRL), user name and password
for connection with database. They are specifyinthe next part of this file:

Fragment of hibernate.cfg.xml

<property name="connection.url">jdbc:mysql://localhost/xxxx_db_v2</property>
<property name="connection.username">xxxx_db</property>
<property name="connection.password">xxx_db</property>

Table B.1: File mail.emulation.cfg.properties

Property name Description
LOGIN E-mail address.
USER_NAME User name of the mail box.
PASSWORD Password for the mail box.
HOST Host which is used.

PORT Port which is used.

After that administrator should run Apache Tomcatdouble click onstartup.bat
file in bin directory of the Apache Tomcat.

Lhu.se

Linnasus University

Sweden

Faculty of Technology

SE-391 82 Kalmar | SE-351 95 Vaxjo
Phone +46 (0)772-28 80 00
teknik@Inu.se
Lnu.se/faculty-of-technology?l=en

