
Agda Documentation
Release 2.5

Ulf Norell, Andreas Abel, Nils Anders Danielsson, Makoto Takeyama, Catarina Coquand, with contributions by Stevan Andjelkovic, Marcin Benke, Jean-Philippe Bernardy, James Chapman, Jesper Cockx, Dominique Devriese, Peter Divanski, Fredrik Nordvall Forsberg, Olle Fredriksson, Daniel Gustafsson, Philipp Hausmann, Patrik Jansson, Alan Jeffrey, Wolfram Kahl, Fredrik Lindblad, Francesco Mazzoli, Stefan Monnier, Darin Morrison, Guilhem Moulin, Nicolas Pouillard, Andrés Sicard-Ramírez, Andrea Vezzosi, Philipp Hausmann and many more.

December 16, 2015

Contents

1 Overview 1

2 Getting Started 3

3 Language Reference 5
3.1 Built-ins . 5
3.2 Coinduction . 12
3.3 Copatterns . 12
3.4 Core language . 12
3.5 Data Types . 12
3.6 Foreign Function Interface . 14
3.7 Function Definitions . 14
3.8 Function Types . 15
3.9 Implicit Arguments . 15
3.10 Instance Arguments . 15
3.11 Irrelevance . 20
3.12 Lambda Abstraction . 20
3.13 Let Expressions . 20
3.14 Lexical Structure . 20
3.15 Literal Overloading . 23
3.16 Mixfix Operators . 25
3.17 Module System . 25
3.18 Mutual Recursion . 25
3.19 Pattern Synonyms . 25
3.20 Postulates . 25
3.21 Pragmas . 25
3.22 Record Types . 26
3.23 Reflection . 26
3.24 Rewriting . 30
3.25 Safe Agda . 30
3.26 Sized Types . 30
3.27 Telescopes . 30
3.28 Termination Checking . 31
3.29 Universe Levels . 31
3.30 With-Abstraction . 31
3.31 Without K . 39

4 Tools 41

i

4.1 Automatic Proof Search (Auto) . 41
4.2 Command-line options . 41
4.3 Compilers . 41
4.4 Emacs Mode . 43
4.5 Generating HTML . 45
4.6 Generating LaTeX . 45
4.7 Library Management . 45

5 The Agda License 47

6 Indices and tables 49

Bibliography 51

ii

CHAPTER 1

Overview

Note: The Agda User Manual is a work-in-progress and is still incomplete. Contributions, additions and corrections
to the Agda manual are greatly appreciated. To do so, please open a pull request or issue on the Github Agda page.

This is the manual for the Agda programming language, its type checking, compilation and editing system and related
tools.

A description of the Agda language is given in chapter Language Reference. Guidance on how the Agda editing and
compilation system can be used can be found in chapter Tools.

1

https://www.github.com/agda/agda

Agda Documentation, Release 2.5

2 Chapter 1. Overview

CHAPTER 2

Getting Started

Note: This is a stub.

3

Agda Documentation, Release 2.5

4 Chapter 2. Getting Started

CHAPTER 3

Language Reference

3.1 Built-ins

• Natural numbers
• Integers
• Floats
• Booleans
• Lists
• Characters
• Strings
• Equality
• Universe levels
• Sized types
• Coinduction
• IO
• Reflection
• Rewriting
• Strictness

The Agda type checker knows about, and has special treatment for, a number of different concepts. The most prominent
is natural numbers, which has a special representation as Haskell integers and support for fast arithmetic. The surface
syntax of these concepts are not fixed, however, so in order to use the special treatment of natural numbers (say) you
define an appropriate data type and then bind that type to the natural number concept using a BUILTIN pragma.

Some built-in types support primitive functions that have no corresponding Agda definition. These functions are
declared using the primitive keyword by giving their type signature. The primitive functions associated with each
built-in type are given below.

3.1.1 Natural numbers

Built-in natural numbers are bound using the NATURAL built-in as follows:

data Nat : Set where
zero : Nat
suc : Nat → Nat

{-# BUILTIN NATURAL Nat #-}

The names of the data type and the constructors can be chosen freely, but the shape of the datatype needs to match the
one given above (modulo the order of the constructors). Note that the constructors need not be bound explicitly.

5

Agda Documentation, Release 2.5

Binding the built-in natural numbers as above has the following effects:

• The use of natural number literals is enabled. By default the type of a natural number literal will be Nat, but it
can be overloaded to include other types as well.

• Closed natural numbers are represented as Haskell integers at compile-time.

• The compiler backends compile natural numbers to the appropriate number type in the target language.

• Enabled binding the built-in natural number functions described below.

Functions on natural numbers

There are a number of built-in functions on natural numbers. These are special in that they have both an Agda definition
and a primitive implementation. The primitive implementation is used to evaluate applications to closed terms, and the
Agda definition is used otherwise. This lets you prove things about the functions while still enjoying good performance
of compile-time evaluation. The built-in functions are the following:

+ : Nat → Nat → Nat
zero + m = m
suc n + m = suc (n + m)
{-# BUILTIN NATPLUS _+_ #-}

- : Nat → Nat → Nat
n - zero = n
zero - suc m = zero
suc n - suc m = n - m
{-# BUILTIN NATMINUS _-_ #-}

* : Nat → Nat → Nat
zero * m = zero
suc n * m = n * m + m
{-# BUILTIN NATTIMES _*_ #-}

== : Nat → Nat → Bool
zero == zero = true
suc n == suc m = n == m
_ == _ = false
{-# BUILTIN NATEQUALS _==_ #-}

< : Nat → Nat → Bool
_ < zero = false
zero < suc _ = true
suc n < suc m = n < m
{-# BUILTIN NATLESS _<_ #-}

divAux : Nat → Nat → Nat → Nat → Nat
divAux k m zero j = k
divAux k m (suc n) zero = divAux (suc k) m n m
divAux k m (suc n) (suc j) = divAux k m n j
{-# BUILTIN NATDIVSUCAUX divAux #-}

modAux : Nat → Nat → Nat → Nat → Nat
modAux k m zero j = k
modAux k m (suc n) zero = modAux 0 m n m
modAux k m (suc n) (suc j) = modAux (suc k) m n j
{-# BUILTIN NATMODSUCAUX modAux #-}

6 Chapter 3. Language Reference

Agda Documentation, Release 2.5

The Agda definitions are checked to make sure that they really define the corresponding built-in function. The def-
initions are not required to be exactly those given above, for instance, addition and multiplication can be defined by
recursion on either argument, and you can swap the arguments to the addition in the recursive case of multiplication.

The NATDIVSUCAUX and NATMODSUCAUX are built-ins bind helper functions for defining natural number division
and modulo operations, and satisfy the properties

div n (suc m) divAux 0 m n m
mod n (suc m) modAux 0 m n m

3.1.2 Integers

Built-in integers are bound with the INTEGER built-in to a data type with two constructors: one for positive and one
for negative numbers. The built-ins for the constructors are INTEGERPOS and INTEGERNEGSUC.

data Int : Set where
pos : Nat → Int
negsuc : Nat → Int

{-# BUILTIN INTEGER Int #-}
{-# BUILTIN INTEGERPOS pos #-}
{-# BUILTIN INTEGERNEGSUC negsuc #-}

Here negsuc n represents the integer -n - 1. Unlike for natural numbers, there is no special representation of
integers at compile-time since the overhead of using the data type compared to Haskell integers is not that big.

Built-in integers support the following primitive operation (given a suitable binding for String):

primitive
primShowInteger : Int → String

3.1.3 Floats

Floating point numbers are bound with the FLOAT built-in:

postulate Float : Set
{-# BUILTIN FLOAT Float #-}

This lets you use floating point literals. Floats are represented by the type checker as Haskell Doubles. The following
primitive functions are available (with suitable bindings for Nat, Bool, String and Int):

primitive
primNatToFloat : Nat → Float
primFloatPlus : Float → Float → Float
primFloatMinus : Float → Float → Float
primFloatTimes : Float → Float → Float
primFloatDiv : Float → Float → Float
primFloatEquality : Float → Float → Bool
primFloatLess : Float → Float → Bool
primRound : Float → Int
primFloor : Float → Int
primCeiling : Float → Int
primExp : Float → Float
primLog : Float → Float
primSin : Float → Float
primShowFloat : Float → String

These are implemented by the corresponding Haskell functions with a few exceptions:

3.1. Built-ins 7

Agda Documentation, Release 2.5

• primFloatEquality NaN NaN returns true.

• primFloatLess sorts NaN below everything but negative infinity.

• primShowFloat returns "0.0" on negative zero.

This is to allow decidable equality and proof carrying comparisons on floating point numbers.

3.1.4 Booleans

Built-in booleans are bound using the BOOLEAN, TRUE and FALSE built-ins:

data Bool : Set where
false true : Bool

{-# BUILTIN BOOL Bool #-}
{-# BUILTIN TRUE true #-}
{-# BUILTIN FALSE false #-}

Note that unlike for natural numbers, you need to bind the constructors separately. The reason for this is that Agda
cannot tell which constructor should correspond to true and which to false, since you are free to name them whatever
you like.

The only effect of binding the boolean type is that you can then use primitive functions returning booleans, such as
built-in NATEQUALS.

3.1.5 Lists

Built-in lists are bound using the LIST, NIL and CONS built-ins:

data List {a} (A : Set a) : Set a where
[] : List A
__ : (x : A) (xs : List A) → List A

{-# BUILTIN LIST List #-}
{-# BUILTIN NIL [] #-}
{-# BUILTIN CONS __ #-}

Even though Agda could easily tell which constructor is NIL and which is CONS you still have to bind them separately.

As with booleans, the only effect of binding the LIST built-in is to let you use primitive functions working with lists,
such as primStringToList and primStringFromList.

3.1.6 Characters

The character type is bound with the CHARACTER built-in:

postulate Char : Set
{-# BUILTIN CHARACTER Char #-}

Binding the character type lets you use character literals. The following primitive functions are available on characters
(given suitable bindings for Bool, Nat and String):

primitive
primIsLower : Char → Bool
primIsDigit : Char → Bool
primIsAlpha : Char → Bool
primIsSpace : Char → Bool
primIsAscii : Char → Bool

8 Chapter 3. Language Reference

Agda Documentation, Release 2.5

primIsLatin1 : Char → Bool
primIsPrint : Char → Bool
primIsHexDigit : Char → Bool
primToUpper : Char → Char
primToLower : Char → Char
primCharToNat : Char → Nat
primNatToChar : Nat → Char
primShowChar : Char → String

These functions are implemented by the corresponding Haskell functions from Data.Char (ord and chr for
primCharToNat and primNatToChar). To make primNatToChar total chr is applied to the natural number
modulo 0x110000.

3.1.7 Strings

The string type is bound with the STRING built-in:

postulate String : Set
{-# BUILTIN STRING String #-}

Binding the string type lets you use string literals. The following primitive functions are available on strings (given
suitable bindings for Bool, Char and List):

primStringToList : String → List Char
primStringFromList : List Char → String
primStringAppend : String → String → String
primStringEquality : String → String → Bool
primShowString : String → String

String literals can be overloaded.

3.1.8 Equality

The identity typed can be bound to the built-in EQUALITY as follows:

data __ {a} {A : Set a} (x : A) : A → Set a where
refl : x x

{-# BUILTIN EQUALITY __ #-}
{-# BUILTIN REFL refl #-}

This lets you use proofs of type lhs rhs in the rewrite construction.

primTrustMe

Binding the built-in equality type also enables the primTrustMe primitive:

primitive
primTrustMe : {a} {A : Set a} {x y : A} → x y

As can be seen from the type, primTrustMe must be used with the utmost care to avoid inconsistencies. What
makes it different from a postulate is that if x and y are actually definitionally equal, primTrustMe reduces to
refl. One use of primTrustMe is to lift the primitive boolean equality on built-in types like String to something
that returns a proof object:

3.1. Built-ins 9

https://hackage.haskell.org/package/base-4.8.1.0/docs/Data-Char.html

Agda Documentation, Release 2.5

eqString : (a b : String) → Maybe (a b)
eqString a b = if primStringEquality a b

then just primTrustMe
else nothing

With this definition eqString "foo" "foo" computes to just refl. Another use case is to erase computa-
tionally expensive equality proofs and replace them by primTrustMe:

eraseEquality : {a} {A : Set a} {x y : A} → x y → x y
eraseEquality _ = primTrustMe

3.1.9 Universe levels

Universe levels are also declared using BUILTIN pragmas. This is done in the auto-imported
Agda.Primitive module, however, so it need never be done by a library. For reference these are
the bindings:

postulate
Level : Set
lzero : Level
lsuc : Level → Level
__ : Level → Level → Level

{-# BUILTIN LEVEL Level #-}
{-# BUILTIN LEVELZERO lzero #-}
{-# BUILTIN LEVELSUC lsuc #-}
{-# BUILTIN LEVELMAX __ #-}

3.1.10 Sized types

The built-ins for sized types are different from other built-ins in that the names are defined by the BUILTIN pragma.
Hence, to bind the size primitives it is enough to write:

{-# BUILTIN SIZEUNIV SizeUniv #-} -- SizeUniv : SizeUniv
{-# BUILTIN SIZE Size #-} -- Size : SizeUniv
{-# BUILTIN SIZELT Size<_ #-} -- Size<_ : ..Size → SizeUniv
{-# BUILTIN SIZESUC ↑_ #-} -- ↑_ : Size → Size
{-# BUILTIN SIZEINF 𝜔 #-} -- 𝜔 : Size
{-# BUILTIN SIZEMAX __ #-} -- __ : Size → Size → Size

3.1.11 Coinduction

The following built-ins are used for coinductive definitions:

postulate
∞ : {a} (A : Set a) → Set a
_ : {a} {A : Set a} → A → ∞ A
: {a} {A : Set a} → ∞ A → A

{-# BUILTIN INFINITY ∞ #-}
{-# BUILTIN SHARP _ #-}
{-# BUILTIN FLAT #-}

See Coinduction for more information.

10 Chapter 3. Language Reference

Agda Documentation, Release 2.5

3.1.12 IO

The sole purpose of binding the built-in IO type is to let Agda check that the main function has the right type (see
Compilers).

postulate IO : Set → Set
{-# BUILTIN IO IO #-}

3.1.13 Reflection

The reflection machinery has built-in types for representing Agda programs. See Reflection for a detailed description.

3.1.14 Rewriting

The experimental and totally unsafe rewriting machinery (not to be confused with the rewrite construct) has a built-in
REWRITE for the rewriting relation:

postulate __ : {a} {A : Set a} → A → A → Set a
{-# BUILTIN REWRITE __ #-}

3.1.15 Strictness

There are two primitives for controlling evaluation order:

primitive
primForce : {a b} {A : Set a} {B : A → Set b} (x : A) → (x → B x) → B x
primForceLemma : {a b} {A : Set a} {B : A → Set b} (x : A) (f : x → B x) → primForce x f f x

where __ is the built-in equality. At compile-time primForce x f evaluates to f x when x is in weak head
normal form (whnf), i.e. one of the following:

• a constructor application

• a literal

• a lambda abstraction

• a type constructor application (data or record type)

• a function type

• a universe (Set _)

Similarly primForceLemma x f, which lets you reason about programs using primForce, evaluates to refl
when x is in whnf. At run-time, primForce e f is compiled (by the GHC and UHC backends) to let x = e
in seq x (f x).

For example, consider the following function:

-- pow n a = a 2
pow : Nat → Nat → Nat
pow zero a = a
pow (suc n) a = pow n (a + a)

At compile-time this will be exponential, due to call-by-name evaluation, and at run-time there is a space leak caused
by unevaluated a + a thunks. Both problems can be fixed with primForce:

3.1. Built-ins 11

Agda Documentation, Release 2.5

infixr 0 _$!_
$! : {a b} {A : Set a} {B : A → Set b} → (x → B x) → x → B x
f $! x = primForce x f

-- pow n a = a 2
pow : Nat → Nat → Nat
pow zero a = a
pow (suc n) a = pow n $! a + a

3.2 Coinduction

Note: This is a stub.

3.3 Copatterns

Note: This is a stub.

3.4 Core language

Note: This is a stub

data Term = Var Int Elims
| Def QName Elims -- ^ @f es@, possibly a delta/iota-redex
| Con ConHead Args -- ^ @c vs@
| Lam ArgInfo (Abs Term) -- ^ Terms are beta normal. Relevance is ignored
| Lit Literal
| Pi (Dom Type) (Abs Type) -- ^ dependent or non-dependent function space
| Sort Sort
| Level Level
| MetaV MetaId Elims
| DontCare Term

-- ^ Irrelevant stuff in relevant position, but created
-- in an irrelevant context.

3.5 Data Types

3.5.1 Example datatypes

In the introduction we already showed the definition of the data type of natural numbers (in unary notation):

data Nat : Set where
zero : Nat
suc : Nat → Nat

We give a few more examples. First the data type of truth values:

12 Chapter 3. Language Reference

Agda Documentation, Release 2.5

data Bool : Set where
true : Bool
false : Bool

Then the unit set:

data True : Set where
tt : True

The True set represents the trivially true proposition.:

data False : Set where

The False set has no constructor and hence no elements. It represent the trivially false proposition.

Another example is the data type of non-empty binary trees with natural numbers in the leaves:

data BinTree : Set where
leaf : Nat → BinTree
branch : BinTree → BinTree → BinTree

Finally, the data type of Brouwer ordinals:

data Ord : Set where
zeroOrd : Ord
sucOrd : Ord → Ord
limOrd : (Nat → Ord) → Ord

3.5.2 General form

The general form of the definition of a simple data type D is the following:

data D : Set where
c1 : A1
...
c : A

The name D of the data type and the names c1, ..., c of the constructors must be new wrt the current signature and
context.

Agda checks that A1, ..., A : Set wrt the current signature and context. Moreover, each A has the form:

(y1 : B1) → ... → (y : B) → D

where an argument types B of the constructors is either

• non-inductive (a side condition) and does not mention D at all,

• or inductive and has the form:

(z1 : C1) → ... → (z : C) → D

where D must not occur in any C.

3.5.3 Strict positivity

The condition that D must not occur in any C can be also phrased as D must only occur strictly positively in B.

Agda can check this positivity condition.

3.5. Data Types 13

Agda Documentation, Release 2.5

The strict positivity condition rules out declarations such as:

data Bad : Set where
bad : (Bad → Bad) → Bad

A B C
-- A is in a negative position, B and C are OK

since there is a negative occurrence of Bad in the type of the argument of the constructor. (Note that the corresponding
data type declaration of Bad is allowed in standard functional languages such as Haskell and ML.).

Non strictly-positive declarations are rejected because one can write a non-terminating function using them.

If the positivity check is disabled so that the above declaration of Bad is allowed, it is possible to construct a term of
the empty type.:

{-# OPTIONS --no-positivity-check #-}
data : Set where

data Bad : Set where
bad : (Bad → Bad) → Bad

incon :
incon = loop (bad (𝜆 b → b))

where
loop : (b : Bad) →
loop (bad f) = loop (f (bad f))

For more general information on termination see Termination Checking.

3.6 Foreign Function Interface

Note: This is a stub.

3.6.1 Haskell FFI

Note: This section currently only applies to the GHC backend.

The GHC backend compiles certain Agda built-ins to special Haskell types. The mapping between Agda built-in types
and Haskell types is as follows:

Agda Built-in Haskell Type
STRING Data.Text.Text
CHAR Char
INTEGER Integer
BOOL Boolean

3.7 Function Definitions

Note: This is a stub.

14 Chapter 3. Language Reference

Agda Documentation, Release 2.5

3.7.1 Pattern matching

Dot patterns

Absurd patterns

3.8 Function Types

Note: This is a stub.

3.9 Implicit Arguments

Note: This is a stub.

3.9.1 Metavariables

3.9.2 Unification

3.10 Instance Arguments

• Usage
– Defining type classes
– Declaring instances
– Examples

• Instance resolution

Instance arguments are the Agda equivalent of Haskell type class constraints and can be used for many of the same
purposes. In Agda terms, they are implicit arguments that get solved by a special instance resolution algorithm, rather
than by the unification algorithm used for normal implicit arguments. In principle, an instance argument is resolved,
if a unique instance of the required type can be built from declared instances and the current context.

3.10.1 Usage

Instance arguments are enclosed in double curly braces {{ }}, or their unicode equivalent (U+2983 and U+2984,
which can be typed as \{{ and \}} in the Emacs mode). For instance, given a function _==_

== : {A : Set} {{eqA : Eq A}} → A → A → Bool

for some suitable type Eq, you might define

elem : {A : Set} {{eqA : Eq A}} → A → List A → Bool
elem x (y xs) = x == y || elem x xs
elem x [] = false

Here the instance argument to _==_ is solved by the corresponding argument to elem. Just like ordinary implicit
arguments, instance arguments can be given explicitly. The above definition is equivalent to

3.8. Function Types 15

Agda Documentation, Release 2.5

elem : {A : Set} {{eqA : Eq A}} → A → List A → Bool
elem {{eqA}} x (y xs) = _==_ {{eqA}} x y || elem {{eqA}} x xs
elem x [] = false

A very useful function that exploits this is the function itwhich lets you apply instance resolution to solve an arbitrary
goal:

it : {a} {A : Set a} {{_ : A}} → A
it {{x}} = x

Note that instance arguments in types are always named, but the name can be _:

== : {A : Set} → {{Eq A}} → A → A → Bool -- INVALID
== : {A : Set} {{_ : Eq A}} → A → A → Bool -- VALID

Defining type classes

The type of an instance argument must have the form {Γ} → C vs, where C is a bound variable or the name of a
data or record type, and {Γ} denotes an arbitrary number of (ordinary) implicit arguments (see dependent instances
below for an example where Γ is non-empty). Other than that there are no requirements on the type of an instance
argument. In particular, there is no special declaration to say that a type is a “type class”. Instead, Haskell-style type
classes are usually defined as record types. For instance,

record Monoid {a} (A : Set a) : Set a where
field
mempty : A
<> : A → A → A

In order to make the fields of the record available as functions taking instance arguments you can use the special
module application

open Monoid {{...}} public

This will bring into scope

mempty : {a} {A : Set a} {{_ : Monoid A}} → A
<> : {a} {A : Set a} {{_ : Monoid A}} → A → A → A

See Module application and Record modules for details about how the module application is desugared. If defined by
hand, mempty would be

mempty : {a} {A : Set a} {{_ : Monoid A}} → A
mempty {{mon}} = Monoid.mempty mon

Although record types are a natural fit for Haskell-style type classes, you can use instance arguments with data types
to good effect. See the examples below.

Declaring instances

A seen above, instance arguments in the context are available when solving instance arguments1, but you also need
to be able to define top-level instances for concrete types. This is done using the instance keyword, which starts
a block in which each definition is marked as an instance available for instance resolution. For example, an instance
Monoid (List A) can be defined as

1 At the moment any variable in the context is considered for instance resolution, but this may change in the future. See issue #1716 for some
discussion.

16 Chapter 3. Language Reference

https://github.com/agda/agda/issues/1716

Agda Documentation, Release 2.5

instance
ListMonoid : {a} {A : Set a} → Monoid (List A)
ListMonoid = record { mempty = []; _<>_ = _++_ }

Or equivalently, using copatterns:

instance
ListMonoid : {a} {A : Set a} → Monoid (List A)
mempty {{ListMonoid}} = []
<> {{ListMonoid}} xs ys = xs ++ ys

Top-level instances must target a named type (Monoid in this case), and cannot be declared for types in the context.

Instances can have instance arguments themselves, which will be filled in recursively during instance resolution. For
instance,

record Eq {a} (A : Set a) : Set a where
field
== : A → A → Bool

open Eq {{...}} public

instance
eqList : {a} {A : Set a} {{_ : Eq A}} → Eq (List A)
== {{eqList}} [] [] = true
== {{eqList}} (x xs) (y ys) = x == y && xs == ys
== {{eqList}} _ _ = false

eqNat : Eq Nat
== {{eqNat}} = natEquals

ex : Bool
ex = (1 2 3 []) == (1 2 []) -- false

Note the two calls to _==_ in the right-hand side of the second clause. The first uses the Eq A instance and the second
uses a recursive call to eqList. In the example ex, instance resolution, needing a value of type Eq (List Nat),
will try to use the eqList instance and find that it needs an instance argument of type Eq Nat, it will then solve
that with eqNat and return the solution eqList {{eqNat}}.

Warning: At the moment there is no termination check on instances, so it is possible to make instance reso-
lution loop by defining non-sensical instances like loop : {a} {A : Set a} {{_ : Eq A}} →
Eq A.

Constructor instances

Although instance arguments are most commonly used for record types, mimicking Haskell-style type classes, they
can also be used with data types. In this case you often want the constructors to be instances, which is achieved by
declaring them inside an instance block. Typically arguments to constructors are not instance arguments, so during
instance resolution explicit arguments are treated as instance arguments. See instance resolution below for the details.

A simple example of a constructor that can be made an instance is the reflexivity constructor of the equality type:

data __ {a} {A : Set a} (x : A) : A → Set a where
instance refl : x x

This allows trivial equality proofs to be inferred by instance resolution, which can make working with functions that
have preconditions less of a burden. As an example, here is how one could use this to define a function that takes a

3.10. Instance Arguments 17

Agda Documentation, Release 2.5

natural number and gives back a Fin n (the type of naturals smaller than n):

data Fin : Nat → Set where
zero : {n} → Fin (suc n)
suc : {n} → Fin n → Fin (suc n)

mkFin : {n} (m : Nat) {{_ : suc m - n 0}} → Fin n
mkFin {zero} m {{}}
mkFin {suc n} zero = zero
mkFin {suc n} (suc m) = suc (mkFin m)

five : Fin 6
five = mkFin 5 -- OK

badfive : Fin 5
badfive = mkFin 5 -- Error: No instance of type 1 0 was found in scope.

In the first clause of mkFin we use an absurd pattern to discharge the impossible assumption suc m 0. See the
next section for another example of constructor instances.

Currently you cannot declare record fields to be instances, but this will likely be possible in the future. See issue
#1273.

Examples

Proof search

Instance arguments are useful not only for Haskell-style type classes, but they can also be used to get some limited
form of proof search (which, to be fair, is also true for Haskell type classes). Consider the following type, which
models a proof that a particular element is present in a list as the index at which the element appears:

infix 4 __
data __ {A : Set} (x : A) : List A → Set where

instance
zero : {xs} → x x xs
suc : {y xs} → x xs → x y xs

Here we have declared the constructors of __ to be instances, which allows instance resolution to find proofs for
concrete cases. For example,

ex1 : 1 + 2 1 2 3 4 []
ex1 = it -- computes to suc (suc zero)

ex2 : {A : Set} (x y : A) (xs : List A) → x y y x xs
ex2 x y xs = it -- suc (suc zero)

ex : {A : Set} (x y : A) (xs : List A) {{i : x xs}} → x y y xs
ex x y xs = it -- suc (suc i)

It will fail, however, if there are more than one solution, since instance arguments must be unique. For example,

fail1 : 1 1 2 1 []
fail1 = it -- ambiguous: zero or suc (suc zero)

fail2 : {A : Set} (x y : A) (xs : List A) {{i : x xs}} → x y x xs
fail2 x y xs = it -- suc zero or suc (suc i)

18 Chapter 3. Language Reference

https://github.com/agda/agda/issues/1273
https://github.com/agda/agda/issues/1273

Agda Documentation, Release 2.5

Dependent instances

Consider a variant on the Eq class where the equality function produces a proof in the case the arguments are equal:

record Eq {a} (A : Set a) : Set a where
field
== : (x y : A) → Maybe (x y)

open Eq {{...}} public

A simple boolean-valued equality function is problematic for types with dependencies, like the Σ-type

data Σ {a b} (A : Set a) (B : A → Set b) : Set (a b) where
, : (x : A) → B x → Σ A B

since given two pairs x , y and x1 , y1, the types of the second components y and y1 can be completely different
and not admit an equality test. Only when x and x1 are really equal can we hope to compare y and y1. Having the
equality function return a proof means that we are guaranteed that when x and x1 compare equal, they really are
equal, and comparing y and y1 makes sense.

An Eq instance for Σ can be defined as follows:

instance
eqΣ : {a b} {A : Set a} {B : A → Set b} {{_ : Eq A}} {{_ : {x} → Eq (B x)}} → Eq (Σ A B)
== {{eqΣ}} (x , y) (x1 , y1) with x == x1
== {{eqΣ}} (x , y) (x1 , y1) | nothing = nothing
== {{eqΣ}} (x , y) (.x , y1) | just refl with y == y1
== {{eqΣ}} (x , y) (.x , y1) | just refl | nothing = nothing
== {{eqΣ}} (x , y) (.x , .y) | just refl | just refl = just refl

Note that the instance argument for B states that there should be an Eq instance for B x, for any x : A. The
argument x must be implicit, indicating that it needs to be inferred by unification whenever the B instance is used. See
instance resolution below for more details.

3.10.2 Instance resolution

Given a goal that should be solved using instance resolution we proceed in the following four stages:

Verify the goal First we check that the goal is not already solved. This can happen if there are unification constraints
determining the value, or if it is of singleton record type and thus solved by eta-expansion.

Next we check that the goal type has the right shape to be solved by instance resolution. It should be of the
form {Γ} → C vs, where the target type C is a variable from the context or the name of a data or record type,
and {Γ} denotes a telescope of implicit arguments. If this is not the case instance resolution fails with an error
message2.

Finally we have to check that there are no unconstrained metavariables in vs. A metavariable 𝛼 is considered
constrained if it appears in an argument that is determined by the type of some later argument, or if there is an
existing constraint of the form 𝛼 us = C vs, where C inert (i.e. a data or type constructor). For example, 𝛼 is
constrained in T 𝛼 xs if T : (n : Nat) → Vec A n → Set, since the type of the second argument
of T determines the value of the first argument. The reason for this restriction is that instance resolution risks
looping in the presence of unconstrained metavariables. For example, suppose the goal is Eq 𝛼 for some
metavariable 𝛼. Instance resolution would decide that the eqList instance was applicable if setting 𝛼 :=
List 𝛽 for a fresh metavariable 𝛽, and then proceed to search for an instance of Eq 𝛽.

2 Instance goal verification is buggy at the moment. See issue #1322.

3.10. Instance Arguments 19

https://github.com/agda/agda/issues/1716

Agda Documentation, Release 2.5

Find candidates In the second stage we compute a set of candidates. These are the variables in the context (both
lambda-bound and let-bound)1 and the names of top-level instances that compute something of type C us,
where C is the target type computed in the previous stage. If C is a variable from the context there will be no
top-level instances.

Check the candidates We attempt to use each candidate in turn to build an instance of the goal type {Γ} → C vs.
First we extend the current context by Γ. Then, given a candidate c : ∆ → A we generate fresh metavari-
ables 𝛼s : ∆ for the arguments of c, with ordinary metavariables for implicit arguments, and instance
metavariables, solved by a recursive call to instance resolution, for explicit arguments and instance arguments.

Next we unify A[∆ := 𝛼s] with C vs and apply instance resolution to the instance metavariables in 𝛼s.
Both unification and instance resolution have three possible outcomes: yes, no, or maybe. In case we get a no
answer from any of them, the current candidate is discarded, otherwise we return the potential solution 𝜆 {Γ}
→ c 𝛼s.

Compute the result From the previous stage we get a list of potential solutions. If the list is empty we fail with an
error saying that no instance for C vs could be found (no). If there is a single solution we use it to solve the
goal (yes), and if there are multiple solutions we check if they are all equal. If they are, we solve the goal with
one of them (yes), but if they are not, we postpone instance resolution (maybe), hoping that some of the maybes
will turn into nos once we know more about the involved metavariables.

If there are left-over instance problems at the end of type checking, the corresponding metavariables are printed
in the Emacs status buffer together with their types and source location. The candidates that gave rise to potential
solutions can be printed with the show constraints command (C-c C-=).

3.11 Irrelevance

Note: This is a stub.

3.12 Lambda Abstraction

Note: This is a stub.

3.12.1 Pattern matching lambda

3.13 Let Expressions

Note: This is a stub.

3.14 Lexical Structure

Agda code is written in UTF-8 encoded plain text files with the extension .agda. Most unicode characters can be
used in identifiers and whitespace is important, see Names and Layout below.

20 Chapter 3. Language Reference

Agda Documentation, Release 2.5

3.14.1 Tokens

Keywords and special symbols

Most non-whitespace unicode can be used as part of an Agda name, but there are two kinds of exceptions:

special symbols Characters with special meaning that cannot appear at all in a name. These are .;{}()@".

keywords Reserved words that cannot appear as a name part, but can appear in a name together with other characters.

= | -> → : ? \ 𝜆
abstract codata coinductive constructor data eta-equality field forall hiding
import in inductive infix infixl infixr instance let macro module mutual
no-eta-equality open pattern postulate primitive private public quote
quoteContext quoteGoal quoteTerm record renaming rewrite Set syntax tactic
unquote unquoteDecl unquoteDef using where with

The Set keyword can appear with a number suffix, optionally subscripted (see Universe Levels). For instance
Set42 and Set2 are both keywords.

Names

A qualified name is a non-empty sequence of names separated by dots (.). A name is an alternating sequence of
name parts and underscores (_), containing at least one name part. A name part is a non-empty sequence of unicode
characters, excluding whitespace, _, and special symbols. A name part cannot be one of the keywords above, and
cannot start with a single quote, ’ (which are used for character literals, see Literals below).

Examples

• Valid: data?, ::, if_then_else_, 0b, ___, x=y

• Invalid: data_?, foo__bar, _, a;b, [_.._]

The underscores in a name indicate where the arguments go when the name is used as an operator. For instance, the
application _+_ 1 2 can be written as 1 + 2. See Mixfix Operators for more information. Since most sequences of
characters are valid names, whitespace is more important than in other languages. In the example above the whitespace
around + is required, since 1+2 is a valid name.

Qualified names are used to refer to entities defined in other modules. For instance Prelude.Bool.true refers to
the name true defined in the module Prelude.Bool. See Module System for more information.

Literals

There are four types of literal values: integers, floats, characters, and strings. See Built-ins for the corresponding types,
and Literal Overloading for how to support literals for user-defined types.

Integers Integer values in decimal or hexadecimal (prefixed by 0x) notation. Non-negative numbers map by default
to built-in natural numbers, but can be overloaded. Negative numbers have no default interpretation and can
only be used through overloading.

Examples: 123, 0xF0F080, -42, -0xF

Floats Floating point numbers in the standard notation (with square brackets denoting optional parts):

float ::= [-] decimal . decimal [exponent]
| [-] decimal exponent

exponent ::= (e | E) [+ | -] decimal

3.14. Lexical Structure 21

Agda Documentation, Release 2.5

These map to built-in floats and cannot be overloaded.

Examples: 1.0, -5.0e+12, 1.01e-16, 4.2E9, 50e3.

Characters Character literals are enclosed in single quotes (’). They can be a single (unicode) character, other than ’
or \, or an escaped character. Escaped characters starts with a backslash \ followed by an escape code. Escape
codes are natural numbers in decimal or hexadecimal (prefixed by x) between 0 and 0x10ffff (1114111),
or one of the following special escape codes:

Code ASCII Code ASCII Code ASCII Code ASCII
a 7 b 8 t 9 n 10
v 11 f 12 \ \ ’ ’
" " NUL 0 SOH 1 STX 2
ETX 3 EOT 4 ENQ 5 ACK 6
BEL 7 BS 8 HT 9 LF 10
VT 11 FF 12 CR 13 SO 14
SI 15 DLE 16 DC1 17 DC2 18
DC3 19 DC4 20 NAK 21 SYN 22
ETB 23 CAN 24 EM 25 SUB 26
ESC 27 FS 28 GS 29 RS 30
US 31 SP 32 DEL 127

Character literals map to the built-in character type and cannot be overloaded.

Examples: ’A’, ’’, ’\x2200’, ’\ESC’, ’\32’, ’\n’, ’\’’, ’"’.

Strings String literals are sequences of, possibly escaped, characters enclosed in double quotes ". They follow the
same rules as character literals except that double quotes " need to be escaped rather than single quotes ’.
String literals map to the built-in string type by default, but can be overloaded.

Example: " \"\"\n".

Holes

Holes are an integral part of the interactive development supported by the Emacs mode. Any text enclosed in {! and
!} is a hole and may contain nested holes. A hole with no contents can be written ?. There are a number of Emacs
commands that operate on the contents of a hole. The type checker ignores the contents of a hole and treats it as an
unknown (see Implicit Arguments).

Example: {! f {!x!} 5 !}

Comments

Single-line comments are written with a double dash -- followed by arbitrary text. Multi-line comments are enclosed
in {- and -} and can be nested. Comments cannot appear in string literals.

Example:

{- Here is a {- nested -}
comment -}

s : String --line comment {-
s = "{- not a comment -}"

Pragmas

Pragmas are special comments enclosed in {-# and #-} that have special meaning to the system. See Pragmas for a
full list of pragmas.

22 Chapter 3. Language Reference

Agda Documentation, Release 2.5

3.14.2 Layout

Agda is layout sensitive using similar rules as Haskell, with the exception that layout is mandatory: you cannot use
explicit {, } and ; to avoid it.

A layout block contains a sequence of statements and is started by one of the layout keywords:

abstract field instance let macro mutual postulate primitive private where

The first token after the layout keyword decides the indentation of the block. Any token indented more than this is
part of the previous statement, a token at the same level starts a new statement, and a token indented less lies outside
the block.

data Nat : Set where -- starts a layout block
-- comments are not tokens

zero : Nat -- statement 1
suc : Nat → -- statement 2

Nat -- also statement 2

one : Nat -- outside the layout block
one = suc zero

Note that the indentation of the layout keyword does not matter.

An Agda file contains one top-level layout block, with the special rule that the contents of the top-level module need
not be indented.

module Example where
NotIndented : Set1
NotIndented = Set

3.14.3 Literate Agda

Agda supports literate programming where everything in a file is a comment unless enclosed in \begin{code},
\end{code}. Literate Agda files have the extension .lagda instead of .agda. The main use case for literate
Agda is to generate LaTeX documents from Agda code. See Generating LaTeX for more information.

\documentclass{article}
% some preable stuff
\begin{document}
Introduction usually goes here
\begin{code}
module MyPaper where
open import Prelude
five : Nat
five = 2 + 3

\end{code}
Now, conclusions!
\end{document}

3.15 Literal Overloading

3.15.1 Natural numbers

By default natural number literals are mapped to the built-in natural number type. This can be changed with the
FROMNAT built-in, which binds to a function accepting a natural number:

3.15. Literal Overloading 23

https://en.wikipedia.org/wiki/Literate_programming

Agda Documentation, Release 2.5

{-# BUILTIN FROMNAT fromNat #-}

This causes natural number literals n to be desugared to fromNat n. Note that the desugaring happens before
implicit argument are inserted so fromNat can have any number of implicit or instance arguments. This can be
exploited to support overloaded literals by defining a type class containing fromNat:

record Number {a} (A : Set a) : Set a where
field fromNat : Nat → A

open Number {{...}} public

{-# BUILTIN FROMNAT fromNat #-}

This definition requires that any natural number can be mapped into the given type, so it won’t work for types like
Fin n. This can be solved by refining the Number class with an additional constraint:

record Number {a} (A : Set a) : Set (lsuc a) where
field
Constraint : Nat → Set a
fromNat : (n : Nat) {{_ : Constraint n}} → A

open Number {{...}} public using (fromNat)

{-# BUILTIN FROMNAT fromNat #-}

This is the definition used in the agda-prelude library. A Number instance for Fin n can then be defined as follows:

natToFin : {n} (m : Nat) {{_ : IsTrue (m <? n)}} → Fin n

instance
NumFin : {n} → Number (Fin n)
Number.Constraint (NumFin {n}) k = IsTrue (k <? n)
Number.fromNat NumFin k = natToFin k

3.15.2 Negative numbers

Negative integer literals have no default mapping and can only be used through the FROMNEG built-in. Binding this to
a function fromNeg causes negative integer literals -n to be desugared to fromNeg n, where n is a built-in natural
number. From the agda-prelude:

record Negative {a} (A : Set a) : Set (lsuc a) where
field
Constraint : Nat → Set a
fromNeg : (n : Nat) {{_ : Constraint n}} → A

open Negative {{...}} public using (fromNeg)
{-# BUILTIN FROMNEG fromNeg #-}

3.15.3 Strings

String literals are overloaded with the FROMSTRING built-in, which works just like FROMNAT. If it is not bound
string literals map to built-in strings. From the agda-prelude:

record IsString {a} (A : Set a) : Set (lsuc a) where
field
Constraint : String → Set a

24 Chapter 3. Language Reference

https://github.com/UlfNorell/agda-prelude
https://github.com/UlfNorell/agda-prelude
https://github.com/UlfNorell/agda-prelude

Agda Documentation, Release 2.5

fromString : (s : String) {{_ : Constraint s}} → A

open IsString {{...}} public using (fromString)
{-# BUILTIN FROMSTRING fromString #-}

3.15.4 Other types

Currently only integer and string literals can be overloaded.

3.16 Mixfix Operators

Note: This is a stub.

3.17 Module System

Note: This is a stub.

3.17.1 Module application

3.17.2 Anonymous modules

3.18 Mutual Recursion

Note: This is a stub.

3.19 Pattern Synonyms

Note: This is a stub.

3.20 Postulates

Note: This is a stub.

3.21 Pragmas

Note: This is a stub.

3.16. Mixfix Operators 25

Agda Documentation, Release 2.5

3.22 Record Types

Note: This is a stub.

3.22.1 Record modules

3.22.2 Eta-expansion

3.23 Reflection

Note: This section is incomplete.

3.23.1 Builtin types

Literals

Literals are mapped to the builtin AGDALITERAL datatype. Given the appropriate builtin binding for the types Nat,
Float, etc, the AGDALITERAL datatype has the following shape:

data Literal : Set where
nat : Nat → Literal
float : Float → Literal
char : Char → Literal
string : String → Literal
qname : QName → Literal

{-# BUILTIN AGDALITERAL Literal #-}
{-# BUILTIN AGDALITNAT nat #-}
{-# BUILTIN AGDALITFLOAT float #-}
{-# BUILTIN AGDALITCHAR char #-}
{-# BUILTIN AGDALITSTRING string #-}
{-# BUILTIN AGDALITQNAME qname #-}

Terms

Terms, types and sorts are mapped to the AGDATERM, AGDATYPE and AGDASORT respectively. Terms use a locally-
nameless representation using de Bruijn indices.

mutual
data Term : Set where
-- Variable applied to arguments.
var : (x :) (args : List (Arg Term)) → Term
-- Constructor applied to arguments.
con : (c : Name) (args : List (Arg Term)) → Term
-- Identifier applied to arguments.
def : (f : Name) (args : List (Arg Term)) → Term
-- Different kinds of 𝜆-abstraction.
lam : (v : Visibility) (t : Abs Term) → Term
-- Pattern matching 𝜆-abstraction.
pat-lam : (cs : List Clause) (args : List (Arg Term)) → Term

26 Chapter 3. Language Reference

Agda Documentation, Release 2.5

-- Pi-type.
pi : (t1 : Arg Type) (t2 : Abs Type) → Term
-- A sort.
sort : (s : Sort) → Term
-- A literal.
lit : (l : Literal) → Term
-- Reflection constructions.
quote-goal : (t : Abs Term) → Term
quote-term : (t : Term) → Term
quote-context : Term
unquote-term : (t : Term) (args : List (Arg Term)) → Term
-- Anything else.
unknown : Term

data Type : Set where
el : (s : Sort) (t : Term) → Type

data Sort : Set where
-- A Set of a given (possibly neutral) level.
set : (t : Term) → Sort
-- A Set of a given concrete level.
lit : (n :) → Sort
-- Anything else.
unknown : Sort

data Clause : Set where
clause : (pats : List (Arg Pattern))(body : Term) → Clause
absurd-clause : (pats : List (Arg Pattern)) → Clause

{-# BUILTIN AGDASORT Sort #-}
{-# BUILTIN AGDATYPE Type #-}
{-# BUILTIN AGDATERM Term #-}

{-# BUILTIN AGDATERMVAR var #-}
{-# BUILTIN AGDATERMCON con #-}
{-# BUILTIN AGDATERMDEF def #-}
{-# BUILTIN AGDATERMLAM lam #-}
{-# BUILTIN AGDATERMEXTLAM pat-lam #-}
{-# BUILTIN AGDATERMPI pi #-}
{-# BUILTIN AGDATERMSORT sort #-}
{-# BUILTIN AGDATERMLIT lit #-}
{-# BUILTIN AGDATERMQUOTETERM quote-term #-}
{-# BUILTIN AGDATERMQUOTEGOAL quote-goal #-}
{-# BUILTIN AGDATERMQUOTECONTEXT quote-context #-}
{-# BUILTIN AGDATERMUNQUOTE unquote-term #-}
{-# BUILTIN AGDATERMUNSUPPORTED unknown #-}
{-# BUILTIN AGDATYPEEL el #-}
{-# BUILTIN AGDASORTSET set #-}
{-# BUILTIN AGDASORTLIT lit #-}
{-# BUILTIN AGDASORTUNSUPPORTED unknown #-}

Absurd lambdas (𝜆 ()) are quoted to extended lambdas with an absurd clause.

The builtin constructors AGDATERMUNSUPPORTED and AGDASORTUNSUPPORTED are translated to meta
variables when unquoting. The sort Set𝜔 is translated to AGDASORTUNSUPPORTED.

3.23. Reflection 27

Agda Documentation, Release 2.5

Function Definitions

Functions definitions are mapped to the AGDAFUNDEF builtin:

-- Function definition.
data FunctionDef : Set where

fun-def : Type → Clauses → FunctionDef

{-# BUILTIN AGDAFUNDEF FunctionDef #-}
{-# BUILTIN AGDAFUNDEFCON fun-def #-}

3.23.2 Quoting and Unquoting

Unquoting Terms

The construction “unquote t” converts a representation of an Agda term to actual Agda code in the following way:

1. The argument t must have type Term (see the reflection API above).

2. The argument is normalised.

3. The entire construction is replaced by the normal form, which is treated as syntax written by the user and
type-checked in the usual way.

Examples:

test : unquote (def (quote) [])
test = refl

id : (A : Set) → A → A
id = unquote (lam visible (lam visible (var 0 [])))

id-ok : id (𝜆 A (x : A) → x)
id-ok = refl

Unquoting Declarations

You can define (recursive) functions by reflection using the new unquoteDecl declaration:

unquoteDecl x = e

Here e should have type AGDAFUNDEF and evaluate to a closed value. This value is then spliced in as the definition
of x. In the body e, x has type QNAME which lets you splice in recursive definitions.

Standard modifiers, such as fixity declarations, can be applied to x as expected.

Quoting Terms

The construction “quoteTerm t” evaluates to the AGDATERM representation of the term t. This is done in the following
way:

1. The type of t is inferred. The term t must be type-correct.

2. The term t is normalised.

3. The construction is replaced by the Term representation (see the reflection API above) of the normal form. Any
unsolved metavariables in the term are represented by the “unknown” term constructor.

28 Chapter 3. Language Reference

Agda Documentation, Release 2.5

Examples:

test1 : quoteTerm (𝜆 {A : Set} (x : A) → x)
lam hidden (lam visible (var 0 []))

test1 = refl

-- Local variables are represented as de Bruijn indices.
test2 : (𝜆 {A : Set} (x : A) → quoteTerm x) (𝜆 x → var 0 [])
test2 = refl

-- Terms are normalised before being quoted.
test : quoteTerm (0 + 0) con (quote zero) []

Quoting Names

The “quote x” expression returns the builtin QNAME representation of the given name.

test : Name
test = quote

Quoting Goals

The “quoteGoal x in e” construct allows inspecting the current goal type (the type expected of the whole expression):

example :
example = quoteGoal x in {! at this point x = def (quote) [] !}

Quote Patterns

Quote patterns allow pattern matching on quoted names. For instance, here is a function that unquotes a (closed)
natural number term:

unquoteNat : Term → Maybe Nat
unquoteNat (con (quote Nat.zero) []) = just zero
unquoteNat (con (quote Nat.suc) (arg _ n [])) = fmap suc (unquoteNat n)
unquoteNat _ = nothing

3.23.3 Tactics

Tactis are syntactic sugar which allow using reflection in a syntactically lightweigt manner. It desugars as follows:

tactic e --> quoteGoal g in unquote (e g)
tactic e | e1 | .. | en --> quoteGoal g in unquote (e g) e1 .. en

Note that in the second form the tactic function should generate a function from a number of new subgoals to the
original goal. The type of e should be Term -> Term in both cases.

3.23.4 Macros

Macros are functions of type t1 → t2 → .. → Term that are defined in a ‘macro’ block. Macro application is guided
by the type of the macro, where Term arguments desugar into the ‘quoteTerm’ syntax and Name arguments into the
‘quote’ syntax. Arguments of any other type are preserved as-is.

3.23. Reflection 29

Agda Documentation, Release 2.5

For example, the macro application ‘f u v w’ where the macro f has the type ‘Term → Name → Bool → Term’
desugars into ‘unquote (f (quoteTerm u) (quote v) w)’

Limitations:

• Macros cannot be recursive. This can be worked around by defining the recursive function outside the macro
block and have the macro call the recursive function.

Silly example:

macro
plus-to-times : Term -> Term
plus-to-times (def (quote _+_) (a b [])) = def (quote _*_) (a b [])
plus-to-times v = v

thm : (a b : Nat) → plus-to-times (a + b) a * b
thm a b = refl

Macros are most useful when writing tactics, since they let you hide the reflection machinery. For instance, suppose
you have a solver

magic : Term → Term

that takes a reflected goal and outputs a proof (when successful). You can then use the tactic function from above to
define

macro
by-magic : Term
by-magic = `tactic (quote magic)

This lets you apply the magic tactic without any syntactic noise at all:

thm : ¬ P NP
thm = by-magic

3.24 Rewriting

Note: This is a stub.

3.25 Safe Agda

Note: This is a stub.

3.26 Sized Types

Note: This is a stub.

3.27 Telescopes

30 Chapter 3. Language Reference

Agda Documentation, Release 2.5

Note: This is a stub.

3.28 Termination Checking

Note: This is a stub.

3.28.1 With-functions

3.29 Universe Levels

Note: This is a stub.

3.30 With-Abstraction

• Usage
– Generalisation
– Nested with-abstractions
– Simultaneous abstraction
– Rewrite
– The inspect idiom
– Alternatives to with-abstraction
– Performance considerations

• Technical details
– Examples
– Ill-typed with-abstractions

With abstraction was first introduced by Conor McBride [McBride2004] and lets you pattern match on the result of
an intermediate computation by effectively adding an extra argument to the left-hand side of your function.

3.30.1 Usage

In the simplest case the with construct can be used just to discriminate on the result of an intermediate computation.
For instance

filter : {A : Set} → (A → Bool) → List A → List A
filter p [] = []
filter p (x xs) with p x
filter p (x xs) | true = x filter p xs
filter p (x xs) | false = filter p xs

The clause containing the with-abstraction has no right-hand side. Instead it is followed by a number of clauses with
an extra argument on the left, separated from the original arguments by a vertical bar (|).

When the original arguments are the same in the new clauses you can use the ... syntax:

3.28. Termination Checking 31

Agda Documentation, Release 2.5

filter : {A : Set} → (A → Bool) → List A → List A
filter p [] = []
filter p (x xs) with p x
... | true = x filter p xs
... | false = filter p xs

In this case ... expands to filter p (x xs). There are three cases where you have to spell out the left-hand
side:

• If you want to do further pattern matching on the original arguments.

• When the pattern matching on the intermediate result refines some of the other arguments (see Dot patterns).

• To disambiguate the clauses of nested with abstractions (see Nested with-abstractions below).

Generalisation

The power of with-abstraction comes from the fact that the goal type and the type of the original arguments are
generalised over the value of the scrutinee. See Technical details below for the details. This generalisation is important
when you have to prove properties about functions defined using with. For instance, suppose we want to prove that
the filter function above satisfies some property P. Starting out by pattern matching of the list we get the following
(with the goal types shown in the holes)

proof : {A : Set} (p : A → Bool) (xs : List A) → P (filter p xs)
proof p [] = {! P [] !}
proof p (x xs) = {! P (filter p xs | p x) !}

In the cons case we have to prove that P holds for filter p xs | p x. This is the syntax for a stuck with-
abstraction–filter cannot reduce since we don’t know the value of p x. This syntax is used for printing, but is not
accepted as valid Agda code. Now if we with-abstract over p x, but don’t pattern match on the result we get

proof : {A : Set} (p : A → Bool) (xs : List A) → P (filter p xs)
proof p [] = p-nil
proof p (x xs) with p x
... | r = {! P (filter p xs | r) !}

Here the p x in the goal type has been replaced by the variable r introduced for the result of p x. If we pattern match
on r the with-clauses can reduce, giving us

proof : {A : Set} (p : A → Bool) (xs : List A) → P (filter p xs)
proof p [] = p-nil
proof p (x xs) with p x
... | true = {! P (x filter p xs) !}
... | false = {! P (filter p xs) !}

Both the goal type and the types of the other arguments are generalised, so it works just as well if we have an argument
whose type contains filter p xs.

proof2 : {A : Set} (p : A → Bool) (xs : List A) → P (filter p xs) → Q
proof2 p [] _ = q-nil
proof2 p (x xs) H with p x
... | true = {! H : P (filter p xs) !}
... | false = {! H : P (x filter p xs) !}

The generalisation is not limited to scrutinees in other with-abstractions. All occurrences of the term in the goal type
and argument types will be generalised.

Note that this generalisation is not always type correct and may result in a (sometimes cryptic) type error. See Ill-typed
with-abstractions below for more details.

32 Chapter 3. Language Reference

Agda Documentation, Release 2.5

Nested with-abstractions

With-abstractions can be nested arbitrarily. The only thing to keep in mind in this case is that the ... syntax applies
to the closest with-abstraction. For example, suppose you want to use ... in the definition below.

compare : Nat → Nat → Comparison
compare x y with x < y
compare x y | false with y < x
compare x y | false | false = equal
compare x y | false | true = greater
compare x y | true = less

You might be tempted to replace compare x y with ... in all the with-clauses as follows.

compare : Nat → Nat → Comparison
compare x y with x < y
... | false with y < x
... | false = equal
... | true = greater
... | true = less -- WRONG

This, however, would be wrong. In the last clause the ... is interpreted as belonging to the inner with-abstraction
(the whitespace is not taken into account) and thus expands to compare x y | false | true. In this case you
have to spell out the left-hand side and write

compare : Nat → Nat → Comparison
compare x y with x < y
... | false with y < x
... | false = equal
... | true = greater
compare x y | true = less

Simultaneous abstraction

You can abstract over multiple terms in a single with abstraction. To do this you separate the terms with vertical bars
(|).

compare : Nat → Nat → Comparison
compare x y with x < y | y < x
... | true | _ = less
... | _ | true = greater
... | false | false = equal

In this example the order of abstracted terms does not matter, but in general it does. Specifically, the types of later
terms are generalised over the values of earlier terms. For instance

plus-commute : (a b : Nat) → a + b b + a

thm : (a b : Nat) → P (a + b) → P (b + a)
thm a b t with a + b | plus-commute a b
thm a b t | ab | eq = {! t : P ab, eq : ab b + a !}

Note that both the type of t and the type of the result eq of plus-commute a b have been generalised over a +
b. If the terms in the with-abstraction were flipped around, this would not be the case. If we now pattern match on eq
we get

3.30. With-Abstraction 33

Agda Documentation, Release 2.5

thm : (a b : Nat) → P (a + b) → P (b + a)
thm a b t with a + b | plus-commute a b
thm a b t | .(b + a) | refl = {! t : P (b + a) !}

and can thus fill the hole with t. In effect we used the commutativity proof to rewrite a + b to b + a in the
type of t. This is such a useful thing to do that there is special syntax for it. See Rewrite below. A limitation of
generalisation is that only occurrences of the term that are visible at the time of the abstraction are generalised over,
but more instances of the term may appear once you start filling in the right-hand side or do further matching on the
left. For instance, consider the following contrived example where we need to match on the value of f n for the type
of q to reduce, but we then want to apply q to a lemma that talks about f n:

R : Set
P : Nat → Set
f : Nat → Nat
lemma : n → P (f n) → R

Q : Nat → Set
Q zero =
Q (suc n) = P (suc n)

proof : (n : Nat) → Q (f n) → R
proof n q with f n
proof n () | zero
proof n q | suc fn = {! q : P (suc fn) !}

Once we have generalised over f n we can no longer apply the lemma, which needs an argument of type P (f n).
To solve this problem we can add the lemma to the with-abstraction:

proof : (n : Nat) → Q (f n) → R
proof n q with f n | lemma n
proof n () | zero | _
proof n q | suc fn | lem = lem q

In this case the type of lemma n (P (f n) → R) is generalised over f n so in the right hand side of the last
clause we have q : P (suc fn) and lem : P (suc fn) → R.

See The Inspect idiom below for an alternative approach.

Rewrite

Remember example of simultaneous abstraction from above.

plus-commute : (a b : Nat) → a + b b + a

thm : (a b : Nat) → P (a + b) → P (b + a)
thm a b t with a + b | plus-commute a b
thm a b t | .(b + a) | refl = t

This pattern of rewriting by an equation by with-abstracting over it and its left-hand side is common enough that there
is special syntax for it:

thm : (a b : Nat) → P (a + b) → P (b + a)
thm a b t rewrite plus-commute a b = t

The rewrite construction takes a term eq of type lhs rhs, where __ is the built-in equality type, and expands
to a with-abstraction of lhs and eq followed by a match of the result of eq against refl:

34 Chapter 3. Language Reference

Agda Documentation, Release 2.5

f ps rewrite eq = v

-->

f ps with lhs | eq
... | .rhs | refl = v

One limitation of the rewrite construction is that you cannot do further pattern matching on the arguments after
the rewrite, since everything happens in a single clause. You can however do with-abstractions after the rewrite. For
instance,

thm1 : (a b : Nat) → T (a + b) → T (b + a)
thm1 a b t rewrite plus-commute a b with isEven a
thm1 a b t | true = t
thm1 a b t | false = t

Note that the with-abstracted arguments introduced by the rewrite (lhs and eq) are not visible in the code.

The inspect idiom

When you with-abstract a term t you lose the connection between t and the new argument representing its value.
That’s fine as long as all instances of t that you care about get generalised by the abstraction, but as we saw above
this is not always the case. In that example we used simultaneous abstraction to make sure that we did capture all the
instances we needed. An alternative to that is to use the inspect idiom, which retains a proof that the original term is
equal to its abstraction.

In the simplest form, the inspect idiom uses a singleton type:

data Singleton {a} {A : Set a} (x : A) : Set a where
with : (y : A) → x y → Singleton x

inspect : {a} {A : Set a} (x : A) → Singleton x
inspect x = x with refl

Now instead of with-abstracting t, you can abstract over inspect t. For instance,

filter : {A : Set} → (A → Bool) → List A → List A
filter p [] = []
filter p (x xs) with inspect (p x)
... | true with eq = {! eq : p x true !}
... | false with eq = {! eq : p x false !}

Here we get proofs that p x true and p x false in the respective branches that we can on use the right.
Note that since the with-abstraction is over inspect (p x) rather than p x, the goal and argument types are no
longer generalised over p x. To fix that we can replace the singleton type by a function graph type as follows (see
Anonymous modules to learn about the use of a module to bind the type arguments to Graph and inspect):

module _ {a b} {A : Set a} {B : A → Set b} where

data Graph (f : x → B x) (x : A) (y : B x) : Set b where
ingraph : f x y → Graph f x y

inspect : (f : x → B x) (x : A) → Graph f x (f x)
inspect = ingraph refl

To use this on a term g v you with-abstract over both g v and inspect g v. For instance, applying this to the
example from above we get

3.30. With-Abstraction 35

Agda Documentation, Release 2.5

R : Set
P : Nat → Set
f : Nat → Nat
lemma : n → P (f n) → R

Q : Nat → Set
Q zero =
Q (suc n) = P (suc n)

proof : (n : Nat) → Q (f n) → R
proof n q with f n | inspect f n
proof n () | zero | _
proof n q | suc fn | ingraph eq = {! q : P (suc fn), eq : f n suc fn !}

We could then use the proof that f n suc fn to apply lemma to q.

This version of the inspect idiom is defined (using slightly different names) in the standard li-
brary in the module Relation.Binary.PropositionalEquality and in the agda-prelude in
Prelude.Equality.Inspect (reexported by Prelude).

Alternatives to with-abstraction

Although with-abstraction is very powerful there are cases where you cannot or don’t want to use it. For instance,
you cannot use with-abstraction if you are inside an expression in a right-hand side. In that case there are a couple of
alternatives.

Pattern lambdas

Agda does not have a primitive case construct, but one can be emulated using pattern matching lambdas. First you
define a function case_of_ as follows:

case_of_ : {a b} {A : Set a} {B : Set b} → A → (A → B) → B
case x of f = f x

You can then use this function with a pattern matching lambda as the second argument to get a Haskell-style case
expression:

filter : {A : Set} → (A → Bool) → List A → List A
filter p [] = []
filter p (x xs) =
case p x of
𝜆 { true → x filter p xs
; false → filter p xs
}

This version of case_of_ only works for non-dependent functions. For dependent functions the target type will in
most cases not be inferrable, but you can use a variant with an explicit B for this case:

case_return_of_ : {a b} {A : Set a} (x : A) (B : A → Set b) → (x → B x) → B x
case x return B of f = f x

The dependent version will let you generalise over the scrutinee, just like a with-abstraction, but you have to do it
manually. Two things that it will not let you do is

• further pattern matching on arguments on the left-hand side, and

• refine arguments on the left by the patterns in the case expression. For instance if you matched on a Vec A n
the n would be refined by the nil and cons patterns.

36 Chapter 3. Language Reference

https://github.com/agda/agda-stdlib
https://github.com/agda/agda-stdlib
https://github.com/UlfNorell/agda-prelude

Agda Documentation, Release 2.5

Helper functions

Internally with-abstractions are translated to auxiliary functions (see Technical details below) and you can always3

write these functions manually. The downside is that the type signature for the helper function needs to be written out
explicitly, but fortunately the Emacs Mode has a command (C-c C-h) to generate it using the same algorithm that
generates the type of a with-function.

Performance considerations

The generalisation step of a with-abstraction needs to normalise the scrutinee and the goal and argument types to make
sure that all instances of the scrutinee are generalised. The generalisation also needs to be type checked to make sure
that it’s not ill-typed. This makes it expensive to type check a with-abstraction if

• the normalisation is expensive,

• the normalised form of the goal and argument types are big, making finding the instances of the scrutinee
expensive,

• type checking the generalisation is expensive, because the types are big, or because checking them involves
heavy computation.

In these cases it is worth looking at the alternatives to with-abstraction from above.

3.30.2 Technical details

Internally with-abstractions are translated to auxiliary functions–there are no with-abstractions in the Core language.
This translation proceeds as follows. Given a with-abstraction

𝑓 : Γ → 𝐵
𝑓 𝑝𝑠 with 𝑡1 | . . . | 𝑡𝑚
𝑓 𝑝𝑠1 | 𝑞11 | . . . | 𝑞1𝑚 = 𝑣1
...
𝑓 𝑝𝑠𝑛 | 𝑞𝑛1 | . . . | 𝑞𝑛𝑚 = 𝑣𝑛

where ∆ ⊢ 𝑝𝑠 : Γ (i.e. ∆ types the variables bound in 𝑝𝑠), we

• Infer the types of the scrutinees 𝑡1 : 𝐴1, . . . , 𝑡𝑚 : 𝐴𝑚.

• Partition the context ∆ into ∆1 and ∆2 such that ∆1 is the smallest context where ∆1 ⊢ 𝐴𝑖 for all 𝑖, i.e., where
the types of the scrutinees are well-formed. Note that the partitioning is not required to be a split, ∆1∆2 can be
a (well-formed) reordering of ∆.

• Generalise over the 𝑡𝑖 s, by computing

𝐶 = (𝑤1 : 𝐴1)(𝑤1 : 𝐴′
2) . . . (𝑤𝑚 : 𝐴′

𝑚) → ∆′
2 → 𝐵′

such that the normal form of 𝐶 does not contain any 𝑡𝑖 and

𝐴′
𝑖[𝑤1 := 𝑡1 . . . 𝑤𝑖−1 := 𝑡𝑖−1] ≃ 𝐴𝑖

(∆′
2 → 𝐵′)[𝑤1 := 𝑡1 . . . 𝑤𝑚 := 𝑡𝑚] ≃ ∆2 → 𝐵

where 𝑋 ≃ 𝑌 is equality of the normal forms of 𝑋 and 𝑌 . The type of the auxiliary function is then ∆1 → 𝐶.

• Check that ∆1 → 𝐶 is type correct, which is not guaranteed (see below).

3 The termination checker has special treatment for with-functions, so replacing a with by the equivalent helper function might fail termination.

3.30. With-Abstraction 37

Agda Documentation, Release 2.5

• Add a function 𝑓𝑎𝑢𝑥, mutually recursive with 𝑓 , with the definition

𝑓𝑎𝑢𝑥 : ∆1 → 𝐶
𝑓𝑎𝑢𝑥 𝑝𝑠11 qs1 𝑝𝑠21 = 𝑣1
...
𝑓𝑎𝑢𝑥 𝑝𝑠1𝑛 qs𝑛 𝑝𝑠2𝑛 = 𝑣𝑛

where qs𝑖 = 𝑞𝑖1 . . . 𝑞𝑖𝑚, and 𝑝𝑠1𝑖 : ∆1 and 𝑝𝑠2𝑖 : ∆2 are the patterns from 𝑝𝑠𝑖 corresponding to the variables of
𝑝𝑠. Note that due to the possible reordering of the partitioning of ∆ into ∆1 and ∆2, the patterns 𝑝𝑠1𝑖 and 𝑝𝑠2𝑖
can be in a different order from how they appear 𝑝𝑠𝑖.

• Replace the with-abstraction by a call to 𝑓𝑎𝑢𝑥 resulting in the final definition

𝑓 : Γ → 𝐵
𝑓 𝑝𝑠 = 𝑓𝑎𝑢𝑥 xs1 𝑡𝑠 xs2

where 𝑡𝑠 = 𝑡1 . . . 𝑡𝑚 and xs1 and xs2 are the variables from ∆ corresponding to ∆1 and ∆2 respectively.

Examples

Below are some examples of with-abstractions and their translations.

postulate
A : Set
+ : A → A → A
T : A → Set
mkT : x → T x
P : x → T x → Set

-- the type A of the with argument has no free variables, so the with
-- argument will come first
f1 : (x y : A) (t : T (x + y)) → T (x + y)
f1 x y t with x + y
f1 x y t | w = {!!}

-- Generated with function
f-aux1 : (w : A) (x y : A) (t : T w) → T w
f-aux1 w x y t = {!!}

-- x and p are not needed to type the with argument, so the context
-- is reordered with only y before the with argument
f2 : (x y : A) (p : P y (mkT y)) → P y (mkT y)
f2 x y p with mkT y
f2 x y p | w = {!!}

f-aux2 : (y : A) (w : T y) (x : A) (p : P y w) → P y w
f-aux2 y w x p = {!!}

postulate
H : x y → T (x + y) → Set

-- Multiple with arguments are always inserted together, so in this case
-- t ends up on the left since it’s needed to type h and thus x + y isn’t
-- abstracted from the type of t
f : (x y : A) (t : T (x + y)) (h : H x y t) → T (x + y)
f x y t h with x + y | h
f x y t h | w1 | w2 = {! t : T (x + y), goal : T w1 !}

38 Chapter 3. Language Reference

Agda Documentation, Release 2.5

f-aux : (x y : A) (t : T (x + y)) (h : H x y t) (w1 : A) (w2 : H x y t) → T w1
f-aux x y t h w1 w2 = {!!}

-- But earlier with arguments are abstracted from the types of later ones
f : (x y : A) (t : T (x + y)) → T (x + y)
f x y t with x + y | t
f x y t | w1 | w2 = {! t : T (x + y), w2 : T w1, goal : T w1 !}

f-aux : (x y : A) (t : T (x + y)) (w1 : A) (w2 : T w1) → T w1
f-aux x y t w1 w2 = {!!}

Ill-typed with-abstractions

As mentioned above, generalisation does not always produce well-typed results. This happens when you abstract over
a term that appears in the type of a subterm of the goal or argument types. The simplest example is abstracting over
the first component of a dependent pair. For instance,

A : Set
B : A → Set
H : (x : A) → B x → Set

bad-with : (p : Σ A B) → H (fst p) (snd p)
bad-with p with fst p
... | _ = {!!}

Here, generalising over fst p results in an ill-typed application H w (snd p) and you get the following type
error:

fst p != w of type A
when checking that the type (p : Σ A B) (w : A) → H w (snd p) of
the generated with function is well-formed

This message can be a little difficult to interpret since it only prints the immediate problem (fst p != w) and the
full type of the with-function. To get a more informative error, pointing to the location in the type where the error is,
you can copy and paste the with-function type from the error message and try to type check it separately.

3.31 Without K

Note: This is a stub.

3.31. Without K 39

Agda Documentation, Release 2.5

40 Chapter 3. Language Reference

CHAPTER 4

Tools

4.1 Automatic Proof Search (Auto)

Note: This is a stub.

4.2 Command-line options

Note: This is a stub.

4.3 Compilers

4.3.1 Backends

GHC Backend

Note: This is a stub.

The Agda GHC compiler can be invoked from the command line using the flag --compile:

agda --compile [--compile-dir=<DIR>]
[--ghc-flag=<FLAG>] <FILE>.agda

UHC Backend

Note: This backend is available from Agda 2.5.1 on. The Agda Standard Library has been updated to support this
new backend. This backend is currently experimental.

The Agda UHC backend targets the Core language of the Utrecht Haskell Compiler (UHC). This backend works on
the Mac and Linux platforms and requires GHC 7.10.

The backend is disabled by default, as it will pull in some large dependencies. To enable the backend, use the “uhc”
cabal flag when installing Agda:

41

Agda Documentation, Release 2.5

cabal install Agda -fuhc

The backend also requires UHC to be installed. UHC is not available on Hackage and needs to be installed manually.
This version of Agda has been tested with UHC 1.1.9.2, using other UHC versions may cause problems. To install
UHC, the following commands can be used:

cabal install uhc-util-0.1.6.3 uulib-0.9.21
wget https://github.com/UU-ComputerScience/uhc/archive/v1.1.9.2.tar.gz
tar -xf v1.1.9.2.tar.gz
cd uhc-1.1.9.2/EHC
./configure
make
make install

The Agda UHC compiler can be invoked from the command line using the flag --uhc:

agda --uhc [--compile-dir=<DIR>]
[--uhc-bin=<UHC>] [--uhc-dont-call-uhc] <FILE>.agda

JavaScript Backend

Note: This is a stub.

4.3.2 Optimizations

Builtin natural numbers

Note: GHC/UHC backend only.

Builtin natural numbers are now properly represented as Haskell Integers, and the builtin functions on natural numbers
are compiled to their corresponding Haskell functions.

Note that pattern matching on an Integer is slower than on an unary natural number. Code that does a lot of unary
manipulations and doesn’t use builtin arithmetic likely becomes slower due to this optimization. If you find that this
is the case, it is recommended to use a different, but isomorphic type to the builtin natural numbers.

Erasable types

A data type is considered erasable if it has a single constructor whose arguments are all erasable types, or functions
into erasable types. The compilers will erase

• calls to functions into erasable types

• pattern matches on values of erasable type

At the moment the compilers only have enough type information to erase calls of top-level functions that can be seen
to return a value of erasable type without looking at the arguments of the call. In other words, a function call will not
be erased if it calls a lambda bound variable, or the result is erasable for the given arguments, but not for others.

Typical examples of erasable types are the equality type and the accessibility predicate used for well-founded recur-
sion:

42 Chapter 4. Tools

Agda Documentation, Release 2.5

data __ {a} {A : Set a} (x : A) : A → Set a where
refl : x x

data Acc {a} {A : Set a} (_<_ : A → A → Set a) (x : A) : Set a where
acc : (y → y < x → Acc _<_ y) → Acc _<_ x

The erasure means that equality proofs will (mostly) be erased, and never looked at, and functions defined by well-
founded recursion will ignore the accessibility proof.

4.4 Emacs Mode

Note: This is a stub.

4.4.1 Keybindings

Commands working with types can be prefixed with C-u to compute type without further normalisation and with C-u
C-u to compute normalised types.

Global commands

C-c C-l Load file
C-c C-x C-c Compile file
C-c C-x C-q Quit, kill the Agda process
C-c C-x C-r Kill and restart the Agda process
C-c C-x C-d Remove goals and highlighting (deactivate)
C-c C-x C-h Toggle display of hidden arguments
C-c C-= Show constraints
C-c C-s Solve constraints
C-c C-? Show all goals
C-c C-f Move to next goal (forward)
C-c C-b Move to previous goal (backwards)
C-c C-d Infer (deduce) type
C-c C-o Module contents
C-c C-n Compute normal form
C-u C-c C-n Compute normal form, ignoring abstract
C-c C-x M-; Comment/uncomment rest of buffer

Commands in context of a goal

Commands expecting input (for example which variable to case split) will either use the text inside the goal or ask the
user for input.

4.4. Emacs Mode 43

Agda Documentation, Release 2.5

C-c C-SPC Give (fill goal)
C-c C-r Refine. Partial give: makes new holes for missing arguments
C-c C-a Automatic Proof Search (Auto)
C-c C-c Case split
C-c C-h Compute type of helper function and add type signature to kill ring (clipboard)
C-c C-t Goal type
C-c C-e Context (environment)
C-c C-d Infer (deduce) type
C-c C-, Goal type and context
C-c C-. Goal type, context and inferred type
C-c C-o Module contents
C-c C-n Compute normal form
C-u C-c C-n Compute normal form, ignoring abstract

Other commands

TAB Indent current line, cycles between points
S-TAB Indent current line, cycles in opposite direction
M-. Go to definition of identifier under point
Middle mouse button Go to definition of identifier clicked on
M-* Go back

4.4.2 Unicode input

The Agda emacs mode comes with an input method for for easily writing Unicode characters. Most Unicode character
can be input by typing their corresponding TeX or LaTeX commands, eg. typing \lambda will input 𝜆. To see all
characters you can input using the Agda input method see M-x describe-input-method Agda.

If you know the Unicode name of a character you can input it using M-x ucs-insert or C-x 8 RET. Example:
C-x 8 RET not SPACE a SPACE sub TAB RET to insert “NOT A SUBSET OF” .

To find out how to input a specific character, eg from the standard library, position the cursor over the character and
use M-x describe-char or C-u C-x =.

The Agda input method can be customised via M-x customize-group agda-input.

Common characters

Many common characters have a shorter input sequence than the corresponding TeX command:

• Arrows: \r- for →. You can replace r with another direction: u, d, l. Eg. \d- for ↓. Replace - with = or ==
to get a double and triple arrows.

• Greek letters can be input by \G followed by the first character of the letters Latin name. Eg. \Gl will input 𝜆
while \GL will input Λ.

• Negation: you can get the negated form of many characters by appending n to the name. Eg. while \ni inputs
, \nin will input .

• Subscript and superscript: you can input subscript or superscript forms by prepending the character with
_ (subscript) or \^ (superscript). Note that not all characters have a subscript or superscript counterpart in
Unicode.

Some characters which are commonly used in the standard library:

44 Chapter 4. Tools

Agda Documentation, Release 2.5

Character Short key-binding TeX command
→ \r- \to
1 _1
2 _2

\~~ \approx
\all \forall
\<
\>

\ell
\== \equiv
\~ \sim
\<= \le
\’1 \prime
\::

𝜆 \Gl \lambda
¬ \neg

\o \circ
\bn \Bbb{N}

× \x \times

4.5 Generating HTML

Note: This is a stub.

4.6 Generating LaTeX

Note: This is a stub.

4.7 Library Management

Agda has a simple package management system to support working with multiple libraries in different locations. The
central concept is that of a library.

4.7.1 Library files

A library consists of

• a name

• a set of dependencies

• a set of include paths

Libraries are defined in .agda-lib files with the following syntax:

name: LIBRARY-NAME -- Comment
depend: LIB1 LIB2

LIB3

4.5. Generating HTML 45

Agda Documentation, Release 2.5

LIB4
include: PATH1

PATH2
PATH3

Dependencies are library names, not paths to .agda-lib files, and include paths are relative to the location of the
library-file.

4.7.2 Installing libraries

To be found by Agda a library file has to be listed (with its full path) in the file AGDA_DIR/libraries (where
AGDA_DIR defaults to ~/.agda on unix-like systems and C:\Users\USERNAME\AppData\Roaming\agda
or similar on Windows, and can be overridden by setting the AGDA_DIR environment variable). Environment variables
in the paths (of the form $VAR or ${VAR}) are expanded. The location of the libraries file used can be overridden
using the --library-file=FILE command line option, although this is not expected to be very useful.

You can find out the precise location of the libraries file by calling agda -l fjdsk Dummy.agda at the
command line and looking at the error message (assuming you don’t have a library called fjdsk installed).

4.7.3 Using a library

There are three ways a library gets used:

• You supply the --library=LIB (or -l LIB) option to Agda. This is equivalent to adding a -iPATH for
each of the include paths of LIB and its (transitive) dependencies.

• No explicit --library flag is given, and the current project root (of the Agda file that is being loaded) or
one of its parent directories contains an .agda-lib file defining a library LIB. This library is used as if a
--librarary=LIB option had been given, except that it is not necessary for the library to be listed in the
AGDA_DIR/libraries file.

• No explicit --library flag, and no .agda-lib file in the project root. In this case the file
AGDA_DIR/defaults is read and all libraries listed are added to the path. The defaults file should
contain a list of library names, each on a separate line. In this case the current directory is also added to the path.

To disable default libraries, you can give the flag --no-default-libraries.

4.7.4 Version numbers

Library names can end with a version number (for instance, mylib-1.2.3). When resolving a library name (given
in a --library flag, or listed as a default library or library dependency) the following rules are followed:

• If you don’t give a version number, any version will do.

• If you give a version number an exact match is required.

• When there are multiple matches an exact match is preferred, and otherwise the latest matching version is
chosen.

For example, suppose you have the following libraries installed: mylib, mylib-1.0, otherlib-2.1, and
otherlib-2.3. In this case, aside from the exact matches you can also say --library=otherlib to get
otherlib-2.3.

46 Chapter 4. Tools

CHAPTER 5

The Agda License

Copyright (c) 2005-2015 Ulf Norell, Andreas Abel, Nils Anders Danielsson, Andrés Sicard-Ramírez, Dominique De-
vriese, Péter Divianszki, Francesco Mazzoli, Stevan Andjelkovic, Daniel Gustafsson, Alan Jeffrey, Makoto Takeyama,
Andrea Vezzosi, Nicolas Pouillard, James Chapman, Jean-Philippe Bernardy, Fredrik Lindblad, Nobuo Yamashita,
Fredrik Nordvall Forsberg, Patrik Jansson, Guilhem Moulin, Stefan Monnier, Marcin Benke, Olle Fredriksson, Darin
Morrison, Jesper Cockx, Wolfram Kahl, Catarina Coquand

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

The file src/full/Agda/Utils/Parser/ReadP.hs is Copyright (c) The University of Glasgow 2002 and is licensed under a
BSD-like license as follows:

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither name of the University nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY COURT OF THE UNIVERSITY OF GLASGOW AND
THE CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY COURT OF THE UNIVERSITY OF
GLASGOW OR THE CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT

47

Agda Documentation, Release 2.5

OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUP-
TION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The file src/full/Agda/Utils/Maybe/Strict.hs (and the following license text?) uses the following license:

Copyright (c) Roman Leshchinskiy 2006-2007

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the author nor the names of his contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

48 Chapter 5. The Agda License

CHAPTER 6

Indices and tables

• genindex

• search

49

Agda Documentation, Release 2.5

50 Chapter 6. Indices and tables

Bibliography

[McBride2004] C. McBride and J. McKinna. The view from the left. Journal of Functional Programming, 2004.
http://strictlypositive.org/vfl.pdf.

51

http://strictlypositive.org/vfl.pdf

	Overview
	Getting Started
	Language Reference
	Built-ins
	Coinduction
	Copatterns
	Core language
	Data Types
	Foreign Function Interface
	Function Definitions
	Function Types
	Implicit Arguments
	Instance Arguments
	Irrelevance
	Lambda Abstraction
	Let Expressions
	Lexical Structure
	Literal Overloading
	Mixfix Operators
	Module System
	Mutual Recursion
	Pattern Synonyms
	Postulates
	Pragmas
	Record Types
	Reflection
	Rewriting
	Safe Agda
	Sized Types
	Telescopes
	Termination Checking
	Universe Levels
	With-Abstraction
	Without K

	Tools
	Automatic Proof Search (Auto)
	Command-line options
	Compilers
	Emacs Mode
	Generating HTML
	Generating LaTeX
	Library Management

	The Agda License
	Indices and tables
	Bibliography

