
Antz User Manual

2011, November 5th

by: Shane Saxon

Draft

Table of Contents

Section 1 - Introduction
1.1 Quick Start
1.2 What is Antz?
1.3 Developer

Section 2 - Installation

2.1 MSW
2.1.1 Windows XP and 2003
2.1.2 Windows 7 (32 bit)
2.1.3 Windows 7 x64 (64 bit)
2.2 OSX
2.3 Linux

*Section 3 - Input & Output Overview

3.1 Keyboard & Mouse
3.2 Joystick & 3D Controllers
3.3 Command Line
3.4 File
3.5 *Database
3.6 *Live Channels
3.6.1 *TNG3B
3.6.2 *Audio
3.6.3 *Video
3.6.4 *Network
3.7 Displays
3.7.1 *3D Stereoscopic
3.7.2 *Cluster

Section 4 - Graphing Overview

4.1 Topology
4.1.1 Orbital Tree
4.1.2 *Fractal Tree
4.1.3 *Cubic Tree
4.1.4 *nD Tree
4.2 Geometry
4.2.1 Primitives
4.2.2 Color & Texture Maps
4.2.3 *Points & Lines
4.2.4 *Surface - FFT
4.2.5 *3D Model
4.3 Grids
4.4 Lighting
4.5 Cameras
4.6 Animation & Physics

*Section 5 - *HUD

5.1 *Compass & Axes
5.2 *Console
5.3 *Labels
5.4 *Legend

Section 6 - Commands

6.1 Mouse
6.1.1 Selection
6.1.2 Navigation
6.1.3 Object Manipulation

6.2 Keyboard
6.2.1 Fullscreen
6.2.2 Active Axes
6.2.3 Creating & Deleting Objects
6.2.4 Selection
6.2.5 Translation & Rotation
6.2.6 Scale
6.2.7 Animation
6.2.8 Object Geometry
6.2.9 Grid Segments
6.2.10 Color & Transparency
6.2.11 Texture Maps
6.2.12 Freeze & Hide
6.2.13 Set Points
6.2.14 Scene Presets
6.2.15 State File
6.2.16 Channels File
6.2.17 Channel Assignment
6.2.18 URL recordID Retrieval
6.3 Command Line

Section 7 - File Types

7.1 State - .CSV
7.2 Channels - .CSV
7.3 *Event Log - .CSV
7.4 Texture Map - .JPG, .TGA...
7.5 *3D Model - .3DS

*Section 8 - *DataBase

8.1 *MySQL Tables
8.2 *Storing Scene State
8.3 *Retrieving Scene State
8.4 *Labels and Conversion Factors
8.5 *External Files - Video, Audio, Channel Data

Appendix A - Command Cheat Sheet

A.1 Mouse
A.2 Keyboard

Appendix B - State File - .CSV

B.1 Overview
B.2 Camera Position
B.3 Node Fields
B.4 Key Tables
B.4.1 type (node type)
B.4.2 geometry
B.4.3 shader
B.4.4 indexColor

Appendix C - Channel File - .CSV

*Appendix D - Database Tables

Appendix E - Acknowledgements

*indicates not yet implemented, but planned for future version.

Section 1 Introduction

1.1 Quick Start

If you just want to get started, read the installation instructions in the
next section and then jump to Appendix A - 'Command Cheat Sheet'.

Use 'N' to create new objects and the mouse to move objects or navigate the
scene. Click-hold on the background with the Left, Right or BOTH buttons
for different navigation modes.

1.2 What is Antz?

Antz is a 3D data viewer that facilitates user interaction with complex
datasets through use of intuitive spatial cues. The purpose is to provide a
more efficient mechanism for identifying patterns and relationships in vast
quantities of information. It is an interactive multi-dimensional spatially
based environment, or rather a unique type of cyberspace aimed at data
visualization. Think of it as 'spreadsheet meets cyberspace.' Capable of
displaying any dataset and combining it with real-time real-world inputs so
that the user may control the virtual representation on the fly.
The ultimate goal of the application is to close the cognitive loop between
users and the powerful logic engines known as computers.

For example, you may take a table of data representing academic test scores
and display them as a series of tori that are distributed over a map. At
each location various rings would represent components of the students
demographics and various test types over a period of time. Parameters such as
shape, color, transparency, size and position provide for a rich set of
dimensional depth cues that can be mapped to the data. The visual
representation enables one to view an entire region at once and quickly
identify how specific factors effect performance.

In addition to static scenes, animated information aids in the pattern
recognition process. Movement can either be based on rotational velocities

(driven by physics) or externally defined time-based data channels such as
position of a moving object.

*Realtime IO channels can work with a host of sensors such as audio, video,
GPS or even EEG brainwaves. The system is well suited for real-time machine
control of robotic systems and scientific instruments where low-latency
physics based feedback algorithms are necessary to interact with the real
world.

Antz is an open-source project that is free to the world for any purpose,
free as in free. Source code and compiled apps are provided for all major
desktop platforms, including Linux, MSW and OSX.

1.3 Developer

Please see the 'Developer Guide' for information on the source code and
development installation instructions. If you would like to contribute or
have questions, feel free to get in touch via the contact page on the
website. The project is hosted at:

http://TemporalZone.com

Section 2 Installation

Application installation is specific for each operating system. In general,
no installer package is used, but rather just copy the application with sub-
directories and manually install any required system files as specified
below. Currently the MSW version is most up-to-date with the OSX and Linux
versions being updated later.

Optional sub-directories include sample CSV state files and texture maps.
maps/
*data/

2.1 MSW

The freeglut.dll and glut32.dll must be copied to the appropriate system
folder, (location depends on the specific flavor of MSW.) In addition,
Windows XP requires the 2008 version of the Visual C redistributable to be
installed, unless you have already done so, such as when you have already
installed VS2008. Windows 7 does not require this step.

Note that we have not tested the application under Vista nor versions older
then XP, however it may work.

2.1.1 Windows XP (32 Pro) and Windows 2003 (Enterprise R2 SP1)

freeglut.dll -> Windows\System32\
glut32.dll -> Windows\System32\

run vcredist_x86_2008.exe

run the app!

2.1.2 Windows 7 (32 bit)

freeglut.dll -> Windows\System32\
glut32.dll -> Windows\System32\

run the app!

2.1.3 Windows 7 x64 (64 bit)

freeglut.dll -> Windows\SysWOW64\
glut32.dll -> Windows\SysWOW64\

run the app!

2.2 OSX

Tested to work with 10.6 and 10.7
(likely works with 10.5 and possibly 10.4)

Uses the built in GLUT library by Apple, no installation required.

Simply download and run the application!

2.3 Linux

Tested to work with CentOS 5.5 (32-bit)

Note that there is a make file for compiling.

Prerequisites:

- Internet Connection

Step 1 (install freeglut libraries)

- open terminal
- sudo yum install freeglut-devel

Step 2

- Run Application

*Section 3 Input & Output Overview

*Significant updates are planned for handling multiple types of real-time IO.

3.1 Keyboard & Mouse

The primary method of input is the keyboard and mouse. Generally all
operations can be performed through use of the keyboard, where as the mouse
provides an easier method for selecting and moving objects. For more detail
see the 'Command' section of this document.

3.2 *Joystick & 3D Control Interfaces

*Secondary input devices such as Joysticks allow for more intuitive

navigation and object manipulation. 3D control interfaces of interest
include:

SpaceNavigator - www.3dconnexion.com
A 3D mouse that is a full 6-axes device that allows for simultaneous
translation and rotation input.

InfiniteZ - www.infinitez.com
An affordable desktop VR system that includes 3D stereoscopic glasses with
head tracking and a 3D stylus that can be used to manipulate objects.

3.3 Command Line

The command line will accept parameters upon launch, please see the 'Command'
section of this document for more detail.

3.4 File

The state of the entire scene can be saved and retrieved using the State File
in CSV format. In addition, a separate Channels File is used for time based
data that can be recorded and played back for animating objects. See the
'File' section of this document for more detail.

3.5 *Database

*DB support is currently underway to support MySQL and is designed to be
directly compatible with the application data files that store a the state
and time based channels data.

3.6 *Live Channels

*Currently no live channels are supported, only file based channel data.
Future support for a variety of live input and output devices will add
significant capability to combine real-time real-world data with static file
based data. Also will allow for combining and analyzing multiple channel
types and sources in a unified environment. Applications include realtime
EEG, machine control and operation of scientific instruments.

3.6.1 *TNG3B

A simple RS232 based input device that provides 8 analog channels and 8
digital switches to be monitored in real-time. A myriad of inexpensive
sensors can be used to capture everything from EEG signals to temperature and
position, just to name a few....

3.6.2 *Audio

*In addition to the built-in audio capability of nearly all computers a large
variety of affordable audio IO solutions exist that offer both in and out
connections at up to 192kHz 24bit with lots of channels (16+). Audio can be
recorded and analyzed in real-time while comparing to other data sources.
Also, it is relatively easy using various simple circuits to connect all
sorts of other sensors up to an audio input and actuators to an output.

3.6.3 *Video

*Video support will include multiple channels of real-time un-compressed HD
video for use in everything from machine control to complex analysis through
various CPU and GPU based algorithms.

3.6.4 *Network

*Network support will allow retrieving real-time data from remote sources and
support for clustering of the application across multiple systems to enable
multi-user environments.

3.7 Displays

Currently only one graphing window is supported and a console window that
outputs information for debugging. The graphing window can be stretched
across multiple displays. In Fullscreen mode only the primary display is
used.

**image of graphing and console windows.

*Planned support for multiple windows and multiple displays in Fullscreen
mode will allow for both a single camera view and multiple camera views of
the scene.

3.7.1 *3D Stereoscopic

*The entire scene is in 3D which allows for integration of stereoscopic
displays. Potentially a large variety of display types may be supported from
consumer laptops and TVs to more custom solutions such as the InfiniteZ or
even a full cave environment.

3.7.2 *Cluster

*Currently the application is based on GLUT using OpenGL and includes a Linux
version tested on CentOS. This means that in theory it should be relatively
easy to create a version for the Star Cave at calit2 using CGLX. We also

plan to make a version that utilizes the equalizer library that will work for
a variety of cluster based cave environments.

Section 4: Graphing Overview

The scene is comprised of 3D objects that represent data based on spatial
parameters such as position, color, size and geometry type. The objects can
be positioned anywhere in the scene and be represented by a single primitive
or a collection of different objects in a tree topology. In addition to
objects, the scene is made up of multiple cameras, grids, lights and the HUD.

The primitives and grid can be set to a specific color as well as texture
mapped with any image such as a map or abstract pattern for additional
dimensional data cues. The object properties can be animated or changed with
time based on velocity rates (physics) and channel assignments. Channels may
either be streamed from file or other IO devices. All of the parameters
serve as spatial cues. So green may represent good, while red is bad. A
large object might indicate a particular property, such as a high flow rate
of a water source or lots of money in a fund, while a particular geometry
type may be used to represent an ethnic group, age bracket or whatever the
user defines.

*HUD is under development. The HUD is the 2D overlay on top of the 3D scene
used to display text and indicators that display the object labels, compass
and legend. Some HUD objects (such as labels) track the position of 3D
objects.

*Currently channels can only be streamed from file, future support for audio,
video and other IO devices (EEG) will allow for combining real-time real-
world data with that of files.

4.1 Topology

**image of varying topology, geometry, texture, color and transparency.

The scene is composed of a collection of root pins which may have any number

of child nodes attached as sub-objects in a tree topology. Root pins are
independent of each other and can be placed anywhere in the scene. The child
nodes are attached to their parent branch in the tree at a radius that is
relative to parents scale. The color, scale, geometry type and position
around the parent represent different parameters of the data set being
visualized.

4.1.1 Orbital Tree

The topology is similar to the way planets and moons orbit in our solar
system. The root pin is akin to the Sun and first order child nodes are like
planets. Multiple children at the same level typically occupy the same orbit
at different positions around their parent. The positions can be modified
and set to either stationary or moving. A second order child node orbits its
parent in an orthogonal orbit. Similar to the moon around Earth, except that
it would be orbiting around the poles instead of the equator. Third order
child nodes are similar to satellites around the Moon, but once again in an
orthogonal orbit to that of parent. The depth of the tree is unlimited,
however computer resources do impose a practical limit.

*Future feature - additional topologies to include Fractal Tree, Cubic Tree
and nD Tree. The cubic tree has a fixed maximum number of 5 branches (+1
branch for the connection to the parent node,) at each level where as an nD
Tree has an arbitrary number of branches.

4.2 Geometry

*A variety of geometric types are supported. These range from basic
primitives and line graphs to complex fractal geometries, FFTs and custom 3D
models. The line graphs can serve as a traditional plot or operate in a
realtime oscilloscope fashion.

**image of primitives with texture maps using different colors.

4.2.1 Primitives

The default root pin type looks like an ice-cream cone and typically has at
least one torus (ring shape) around it. The default child geometry is a
torus. However, both the root-pin and its children can be represented by any
number of geometric primitives such as a cone, cube, tetrahedron, sphere,
etc... Primitives can be solid or wireframe. For a complete list of
primitives please see the 'Geometry Table' in the appendix.

4.2.2 Color & Texture Maps

Optionally, a texture map image can be applied which is effected by the color
assigned (including transparency.) For a complete list of geometric
primitives see the appendix.

4.2.3 *Points & Lines

*Traditional looking graphs can be generated using Channels to plot lines
and/or a series of points. However, these graphs are in 3D, though you can
ignore the Z channel to make a 2D plot. Points and Lines graphs are capable
of changing with time to create an oscilloscope type graph.

4.2.4 *Surface, FFT

*The surface object is similar to a Points & Lines graph in that it uses
channels to map onto the surface of an object. A common example is an FFT
surface. Other surface types include a sphere, torus and cylinder. These
graphs are generally designed to be updated with time.

4.2.5 *Custom 3D Model

*Support for 3DS models will be added to allow for any type of geometry to be
loaded to be used to represent a root pin or child node.

4.3 Grid

There are two types of grids the primary grid and *secondary grids. In
addition to the grid lines, a texture map may be applied to the grid.

The primary grid is locked to the origin and cannot be translated or rotated.
This provides a fixed global reference point. The primary grid has a default
texture map file loaded at application startup, "maps/map00001.jpg" which can
be re-assigned at run-time in the same manner as other objects, (see
'Commands – Texture Maps' section.)

The grid parameters are modified in a similar manner as other objects and
respond to changes in color, hide, scale and texture map assignment. There
are some difference in behavior from other objects. Only the grid lines are
effected by color and lighting, the texture map is always drawn in full
white. Hide will turn off the grid lines, but not the texture map. To hide
the texture you must assign it to texture zero which prevents any texture
from being drawn. The scale and grid segment commands are specific to the
active axes. Vertical stacks are added and subtracted with the grid segment
command when the z axis is active, (see 'Command – Active Axes' section.)

*Currently there is only the primary grid.

**image of primary grid with a couple of stacks and background texture.

4.4 Lighting

The scene has a pair of white lights designed to provide good front and back
shading of objects. They are located in world coordinates at x: -1500, y:
1500, z: -1500 and x: 1500, y: -1500, z: 1500. Standing at the world origin,
(center of the grid,) one light is over you right shoulder behind and the
other is in front of you down to the left. Generally this will light most
objects fairly well, though note that objects moved far from the origin may
appear to have different shading.

*Planned update to allow user to specify the number of lights, position and
color.

4.5 Cameras

The camera can be flown over the scene using either the keyboard or the
mouse. The mouse has several distinct camera translation modes and the
keyboard works in a standard flight mode. Also, the camera will auto-center
actively chosen objects. There are 4 cameras in the scene which may be
selected from and the positions of which are stored in the S.

Clipping planes are required by OpenGL for efficient 3D rendering. They
define the volume in which objects are rendered, any objects outside this
volume are clipped and therefore not drawn. You commonly observe this in 3D
video games as the point at which distance objects disappear. The default
near clipping plane has been set to 1 and far is set to a 1000. So objects
more then a 1000 units from the camera (in world coordinates) are clipped,
similar for anything closer then 1 unit from the camera.

*Planned update will allow the near and far clip parameters to be set by thes
user. Also the ability to add additional cameras.

4.6 Animation

Objects have velocity rates associated with them. This can be used to make
objects rotate or orbit around their parent, or simply move across the
screen. The other method for animation is using Channels that are keyed on a
frame by frame basis. The Channels may be assigned to parameters such as
position, rotation, scale and color offset, (see 'Commands – Channel
Assignment' section.)

*Physics is currently limited to basic velocity rates, including rotation...
significant enhancements are planned.... ranging from Newtonian mechanics to
relativistic flight sim, QED and nD user defined basis.

**image representing torus rotating around parent based on velocity.

Section 5: *HUD

The Heads Up Display (HUD) provides feedback of the current state of the
scene and command status. In general, it is a 2D overlay on top of the 3D
scene which contains indicators such as text labels, compass and console
output.

*The HUD console will implement a LISP interpreter or equivalent.

5.1 *Compass & Axes

The compass displays the position and orientation of the currently active
object. If the camera is selected, it will display the altitude and
coordinates of the camera, along with the direction (bearing) it is facing
and vertical angle. Units are typically in degrees and global units, however
it is possible to switch the units to custom types with offsets. If a pin is
selected the coordinates of the pin will be displayed with the altitude and
orientation. Indicators will include the active axes state.

5.2 *Console

The console serves as the primary message output for the user. Most commands
return a result that is sent to the console to give the user feedback on the
action taken and the resulting change of state.

5.3 *Labels

Pins can have a label with up to 3 lines associated with them. For example a
name with latitude and longitude could be displayed. The 3 line label can
display specific units and properties defined by the table of conversion
factors. Please see the File Section of this document for information on how
to setup unit conversion factors.

5.4 *Legend

A variety of icons are provided to aid in creating the legend. Icons are
designed to refer to parameters such as scale, color range, geometry type,
texture and orientation. The legend parameters are part of the conversion
table (see the File Section of this document for additional info.)

Section 6: Commands

The primary method for control is through the keyboard and mouse.
Additionally, parameters may be passed in from the command line upon
application launch.

This section covers each command in detail, for a simple cheat sheet please
see the appendix.

The mouse allows for navigating the scene, selecting items, moving objects
and scaling child-nodes. The keyboard can do all the functions the mouse is
capable of plus additional commands that change both object parameters and
global settings. The keyboard responds to multiple simultaneous key presses
and may be used simultaneously with the mouse. So you can do a rotation,
scale and change color all at the same time while using the mouse to position
the selected objects. The mouse can be a lot easier for navigating, selecting
and positioning objects.

The typical limit for the maximum simultaneous key presses is usually 2-5
standard keys, plus the modifiers (SHIFT, CTRL, ALT, COMMAND.) The number of
simultaneous keys supported depends on which specific keys are being pressed
and the keyboard model, (some high-end keyboards feature N-key rollover
(NKRO) which do not have this limitation.)

Objects in a selection set appear with a yellow wireframe around them. Note
that in addition to selected objects, there is also the active object, which
has a red wireframe around it. Most commands will operate on all the
selected nodes at once when one of the selected items is also the active
node. If the active node is not part of the selection set then only the
active node will be effected.

Some commands ignore the selection set and only act on the active object
regardless of selection states. Such commands include creating new pins and
deleting them.

Some commands are axis specific and depend on the currently active axes ('X'
key changes the active axes.) This allows for operations such as non-uniform
scaling, setting individual limits and channel assignments.

The 'SHIFT' key reverses the action of several commands like scaling ('Z'
key) and changes the speed of translation and rotation when using the

keyboard.

A useful animation 'bug' is to change the selection to another object while
performing a rotation, the original object will continue to rotate after you
release the rotation key (arrows). To do this, while rotating, click with the
mouse on another object, or any selection command that changes the active
node; press TAB, Select Grid, Select Camera, etc... to initiate the animation
state. Also applies to zoom and translate, though an object that is
continuously scaling or translating will typically become unwieldily.

*Feature update for the animation 'bug' will provide a method for setting the
motion without the need to select a different object.

Note that the 'number keys' apply to the number row across the top of the
keyboard and NOT the number-pad.

6.1 Mouse

Left-Click
Depends on whether the node being picked is already selected. Selects a
single node when clicking on a node that is NOT already selected. If the
node IS already selected then will allow dragging all selected nodes. All
other nodes are un-selected. Clicking on the background unselects all.

Right-Click
Toggles the selection status of the node picked, picking an already selected
node will un-select it. You can select multiple objects by clicking on them.

The mouse behaves differently depending on whether an object is clicked or
the background is clicked. Also the combination of Left and Right buttons
being pressed determines the mode.

Navigation is performed by clicking on the scene background, (the grid and
its texture map are considered part of the background.)

6.1.1 Selection - Mouse

L - Click on an object NOT selected will select it and unselect all others.
L - Click on an object that IS selected will result in no change.
R - Click on object toggles its selection state on/off.

Clicking on an object effects its selection state. The currently active
object is drawn with a red wireframe around it. If it is part of the
selection set then a yellow wireframe is drawn.

Left clicking on an object that is NOT selected will result in all objects
being un-selected and only the picked object becoming selected. If the
object is already selected then the selection set will remain the same. The
keyboard may also be used to change the state of the active object.

6.1.2 Navigation - Mouse

R - Hold on background FLY's camera.
L - Hold on background orbits object in both axes of EXAMINER mode XY
L+R - Hold on background orbits and ZOOMS in and out Examiner mode XZ

Note that it is possible to switch directly between Examiner mode XZ and XY
by releasing or pressing the right button while continuing to hold the left
button.

6.1.3 Object Manipulation - Mouse

L - Hold on an object NOT selected will drag only the object, DRAGS in XY.
L - Hold on an object CURRENTLY selected will drag all, DRAGS in XY.
R - Hold on an object DRAGS all selected objects in XZ plane (L-R & Up-Down).

Objects can be moved (translated), rotated and scaled using the mouse. Child
nodes behave differently from root pins since they are fixed to there parent.
The child can be rotated around it's parent and scaled. Scaling is subject
to the active axes ('X' key).

The mouse will effect the entire selection set simultaneously, this allows
you move groups of objects.

Object manipulation occurs when then the mouse button is held while dragging.

6.2 Keyboard

The following list of keyboard commands gives the name of the function
followed by a dash '-' then the default key(s) that are assigned to the
function. For example: 'New Node – N' means pressing the 'N' key will create
a new node.

6.2.1 Exit Fullscreen - 'ESC'

The application starts up in Fullscreen mode. This function allows Displays
the scene in a window, there is also a system console window that becomes
visible.

6.2.2 Active Axes - 'X'

The active axes determines which axes commands will be applied to. The
active axes can either be a single axis or a combination, the default is all
three (XYZ). Each press iterates through XY, X, Y, Z and then back to XYZ.
SHIFT-X will iterate in the reverse direction.

The only commands that currently use the Active Axes are scaling, limits and
channel assignments.

*There will likely be new commands added in the future that will be axes
specific.

6.2.3 Creating & Deleting Objects - 'N' 'DEL'

Objects can be individually added or deleted from the scene using keyboard
commands. (There are also presets that load sets of objects, see the 'Scene
Presets' section.)

New Node - 'N'
'N' key creates a new object, if a root-pin is currently selected it will
create another root-pin, the newly created root-pin will be made active. If a
child-node is currently selected it will create another child-node attached
to the active parent-node. The original child-node will remain selected for
easy creation of additional children at the same branch level.

The default geometry for a root-pin is an ice-cream cone looking shape with a
single torus around it. The default for child-nodes is a torus. In order to
create a child-node you must select the parent (torus) you want it attached
to. Additional child-nodes are created at the same level spaced around the
parent.

**left image is of root-node creation and right is child-node creation.

Delete Node - 'DEL'
'DEL' key deletes the active node and all children attached to it. Press and
hold to delete multiple objects. Applies only to the active node and not the
entire selection set.

*May update delete to effect entire selection set.

6.2.4 Selection - Keyboard

If the active node is NOT part of the selection set (red wireframe) then the
command will apply only to the active node. If the node is part of the
selection set (yellow wireframe) then the command will apply to all of the
selection set.

**Left image is an active object (yellow) that IS part of the selection set.
Right image is an active pin (red) that is NOT part of the selection set.

6.2.4.a Object Selection - Keyboard

Essentially there are two types of selection, the active node (drawn with a
red wireframe around it) and items that are part of the selections set (drawn
with yellow wireframes.) The purpose of the active selection is to allow
keyboard traversal of the objects without effecting the selection set. This
is needed to add or subtract items from the selection set.

If the item is active but not part of the selection set it will have a red
wireframe around it and any commands will only apply to the active object.
However if the active object is part of the selection set it will have both
the red and yellow wireframe drawn, in which case all items in the set will
be effected at once.

The keyboard can be used to change the actively selected node by traversing
through the objects. In addition the camera and grid can be selected. Each
root-pin is at the same level and are considered siblings.... A pin's tree
can be traversed by selecting the child, parent or sibling of the current
node.

6.2.4.b Select All - Keyboard - '4'
Selects all nodes. A yellow wireframe will appear around the objects. If
all nodes are already selected, then it will deselect all nodes.

6.2.4.c Choose Sibling - Keyboard - 'Tab'

If the grid or camera is currently selected then the previous node will be
re-selected. If a node is already selected then the next sibling will be
selected, (if it exists.) If a root-pin is currently selected then the next
root-pin will be made active, (displayed with a wireframe above and around
it.) If a child node is selected then the child's sibling will be selected,
(if it exists.) If no siblings then nothing will happen. Pressing SHIFT at
the same time will iterate through siblings in the reverse order.

Note that if you are unable to choose a sibling root-pin it is likely because
the currently active object is a child and not the root-pin. Pressing SHIFT-
Enter multiple times will eventually select the root-node of the pin, then
you can change to other pins.

**insert image of 3 selected pins, with a root-pin active (red).

6.2.4.d Choose Child or Parent Node - Keyboard - 'Enter'

Selects the child node if it exists, otherwise nothing will happen. Pressing
SHIFT at the same time will select the parent node, if the root-pin is
currently selected then selecting the parent will do nothing. If the camera
or grid is selected then nothing will happen.

6.2.4.e Select/Deselect - Keyboard - 'Spacebar'

Toggles the active node selection set status. If the node is not part of the
selection set it will be added and a yellow wireframe drawn around the node.
If already part of the selection set then it will be removed from the set and
the yellow wireframe will be replaced with a red one to indicate the node is
the active object but not part of the selection set.

6.2.4.f Camera Selection - Keyboard - 'C'

If the camera is not currently selected it will select the previously active
camera. If the camera is already selected it will select the next camera.
The default scene is created with 4 cameras to choose from. Each camera can
be positioned separately and the position is stored in the State File.

SHIFT-C will reset the camera position to its default. Each camera has it's
own default position.

6.2.4.g Grid Selection - Keyboard - 'G'

If the grid is not currently selected it will select the previously active
grid. If the grid is already selected it will select the next grid. The
default scene is created with a single default grid with its center on the
global origin of 0,0,0. Pressing 'Y' or 'SHIFT-Y' will change the total
number of X, Y and Z segments that can be added or subtracted. Note that the
primary grid can be scaled but is not allowed to rotate or translate. This
restriction is to maintain a defined global coordinate origin. The secondary
grids can be scaled, translated and rotated. Secondary grids can be created
by selecting the primary grid and pressing 'N' for new. Scaling and changing
the grid segment count is specific to the active axes. With the Z axes
active changing the segment count will add stack layers in 3D. The primary
grid has the default textureID = 1 assigned which corresponds with
'map00001.jpg', this can be changed by pressing 'T'. Note that pressing
'SHIFT-T' will set the textureID = 0 resulting in no texture, the grid lines
will remain. If a texture is desired without grid lines, then press 'H' to
hide the grid lines, the texture will remain visible. Grid lines also
respond to changes in color and transparency, the grid texture will not be
effected by changes in color or transparency.

*Secondary grids not yet supported.

6.2.5 Translation and Rotation - (see below)

Translate:

W Forward
S Back
A Left
D Right
E Up
Q Down

Rotate with ARROW keys:

Left rotate left
Right rotate right
Up rotate up (effects rotation of child nodes only)
Down rotate down (effects rotation of child nodes only)

In addition to the mouse, objects and cameras can be positioned and rotated
using the keyboard. You first must select the item(s) you wish to manipulate
then you can use the keys to translate (WASD gaming standard) and rotate with
the arrow keys.

Will apply to all selected objects at once. Press 'C' to select camera or
TAB to select pins, also can use the mouse for selecting objects, (for more
information see the 'Selection' section of this guide.)

The pins will move in world coordinates, where as the camera moves relative
to the direction it is facing.

Child node radius can be offset using 'A' & 'D' keys and rotated with arrow

keys.

Using the SHIFT key at the same time will increase the speed of an operation.

6.2.6 Scale - 'Z'

Z Scale objects up (SHIFT+Z to scale down)
Mouse Scales child nodes only (mouse vertical axis)

Objects can be scaled up or down using the 'Z' key or the mouse. The mouse
will scale a child object but not the root pin, (for more detail see the
'Mouse' section of this document.) Scaling effects the active axes only ('X'
key), this allows for both uniform and non-uniform scaling. So if XYZ axes
is active then scaling will be uniform or symmetric in all directions. If
you scale a pin with only the XY axes active then the pin will get wide or
narrow (SHIFT-Z) but stay the same height. If the only Z axis is active then
the pin would become taller or shorter (SHIFT+Z) while staying the same
width. The active axes effects the uniform or non-uniform scaling of both
the root pin and child nodes.

*6.2.6.a inner & outer radius
**images showing 3 pins with non-uniform scaling

6.2.7 Animation

A useful 'bug' is to change selection to another object (TAB, New, etc..)
while performing a rotation, the object will continue to rotate indefinitely.
The same methods also apply to zoom and translate. This is due to the fact
that rotations, translations and scale commands set a rate that updates the
parameter each cycle. Normally releasing the key sets the rate back to zero.
However, if a different object is selected while the key is still down, then
the previously selected objects never receives the key-up command. This
results in the rate being kept indefinitely.

For example, press '4' to select all, then press the up or left arrow to
start rotating, then while holding the arrow key press 'G' to select the
grid... now all the objects will continue to rotate, even after releasing the
arrow key. To stop an object from rotating, re-select it and press the same
key and release.

*The 'bug' that results in animation will be made into a feature providing a
specific method to animate without changing selections.

6.2.8 Object Geometry - 'O' (alpha)

Iterates through the list of geometric primitives. The default pin is
typically an ice cream cone and the default child nodes a torus. Primitives
include both solid and wireframe objects. Standard objects include a cube,
sphere, tetrahedron, torus, and several others, (see the appendix for a
complete list.) Pressing SHIFT will iterate in the reverse order.

*Planned support for adding geometric primitives that include FFT surfaces
and external 3D models.

**image with variety of primitives

6.2.9 Grid Segments - 'Y'

Changes the number of grid segments, both 2D and 3D stacks (layers) are
effected by the active axes. If all three axes (XYZ) are active then will

add grid segments in both directions on XY plane and add stacks in the Z
direction. If you wish to add segments without effecting the number of stacks
set the Active Axes to XY. If you want to add just stacks, set the Active
Axes to Z. Similar for changing the individual segment count for X and Y
directions independently. Using SHIFT will subtract segments.

**images showing different amounts of grid segments

6.2.10 Color & Transparency

- (minus) previous color
+ (plus) next color

9 more translucent (less opaque)
0 (zero) less translucent (more opaque)

Global Settings:

8 Transparency mode (3 alpha modes + none)
B Background between black and white
R Rescale normals toggle

6.2.10.a Index Color - '-' '+'

Object color can be selected by index from a palette of 20 preset colors by
pressing the next or previous keys.

**image with different colors

6.2.10.b Color Offset

The color offset shifts the hue by up to one component. The internal values
range from 0.0f to 1.0f where a value of 0 is the primary color and 1 would
be a full shift by one RGB component. For example a value of 1.0 will result
in red becoming green, or green becoming blue, or blue becoming red. This
value can be modulated using the Channels CSV file by assigning the Z channel
of the object, (see 'Channel Assignment' section for detail.)

*Currently the Color Offset is accessible only with data loaded in from a CSV
file. The State File retains the current color offset as well as the channel
assignment which can be modulated from the Channels data.

6.2.10.c Transparency - '9' '0'

By default objects are 100% opaque. To make the selected objects transparent
press '9' to decrease opacity. Pressing '0' (zero) will increase opacity
(less translucent.) Note that there is also a global alpha mode for the
entire scene that effects how transparency is calculated.

6.2.10.d Alpha Mode - '8'

Changes the transparency (alpha) mode of the entire scene. The default is a
rather standard subtractive transparency. The other modes include a 'Dark',
'Additive' and 'None'. 'Dark' results in an overall darker looking scene
that appears highly saturated. 'Additive' is akin to a flame or light beam
where each transparent object adds color to whatever is behind it, when
several objects stack up they appear brighter. This can be quite useful for

data-sets where multiple data-points pile up. Instead of the objects being
obscured they will appear to be a bright spot where the data-points/objects
overlap. You can also select 'None' to turn transparency off.

Note that in 'Standard' transparency mode objects may range from completely
transparent to fully opaque. However, in other modes such as 'Additive' and
'Dark' the objects may not be able to be either fully opaque or fully
transparent. This is fundamental to the OpenGL methods used to calculate the
various transparency modes.

**images showing the different alpha modes, 3 or 4 with none

6.2.10.e Rescale Normals - 'R'

By default normals are always rescaled, this results in uniform shading of
objects regardless of the scaled size. Scaled objects must have their normals
(lighting vector for polygons) rescaled in order to have 'proper' lighting.
However, not rescaling the normals has the interesting effect of making small
objects appear brighter and large ones darker. This may be a desired 'look'
since it has the benefit of making it easier to spot small nested groups.
This is particularly true when using additive transparency. So with normal
rescaling ON everything appears as you would expect it to. With rescaling OFF
small objects appear brighter and large ones darker.

Note that re-scaling normals does cause a minor performance loss, so turning
it OFF may speed things up a little in situations where the GPU is not very
fast.

**image of Rescale Normals ON & OFF

6.2.10.f Background Color - 'B'

Toggle the background color between black and white. Useful for saving ink
when printing.

*mouse-background camera selection only works with a black background.

6.2.11 Texture Maps - 'T'

Iterates through the list of textures for the currently active objects,
(SHIFT-T for reverse order.) The default for an object is no texture
assigned, except for the grid which defaults to textureID = 1,
(map00001.jpg). If you do not want a texture on the grid, then select the
grid ('G') and press SHIFT-T once to decrement to textureID = 0. This will
result in only the grid lines being drawn.

Object textures are also effected by color and lighting parameters, the
exception is the grid texture which is always lit 100% white. Textures are
loaded at application launch (see 'File Types – Texture Map' section for more
detail.) SHIFT reverses the iteration order.

*Planned future support for choosing a texture during runtime.

**image of texture maps on grid and objects

6.2.12.a Freeze - 'F'

Toggles freeze state. By default all nodes are not frozen and they can be
positioned, scaled and rotated. If frozen then they will stop being updated

and not be modifiable. Includes keyboard and mouse controls for position,
scale, and rotation. Also stops animation (physics) and live channel data.

6.2.12.a Hide - 'H'

If hidden, the object will no longer be drawn. However if it is the active
object or part of a selection set then the red or yellow wireframe will be
drawn around the invisible object. To unhide you can use the keyboard
selection methods to navigate to the hidden object and then press the hide
key again. Note that hidden objects are not frozen, so animation and live
channel data will continue to be updated. If you wish you can freeze and then
hide to prevent updates.

*add feature to unhide all by selecting all and then pressing hide.

**images of hidden object with wireframe around it, plus un-hidden image

6.2.13 Set Points - '[' ']'

The set point is typically used to restrict an objects movement. Root pins
have a default low set point of Z = 0.0 which prevents them from being moved
below the surface of the primary grid. This restriction can be turned off by
selecting the Z axes (using the 'X' key) and then pressing '[' key (left
bracket) will turn off the Z axis low set-point for the current selection.
The set point is applied to all currently active axes. For example, setting
an objects low set point with Z axis active will prevent the object from
being moved lower then its current position. Similar for the high set point,
as a ceiling. Set points for root pins apply to global coordinates. Set
points for child nodes are relative to the child coordinate system.

*Currently the set-points are toggled (using the left and right brackets,)
this will be updated so that simultaneously pressing SHIFT will clear the set
point. The toggle can be confusing, for example if you press the key while
XYZ axes are all active, whichever axes has a set point currently ON will be
turned OFF, while those with no set point will be turned ON (set.)

*Update set-point for children to restrict rotation around the parent.

6.2.14 Scene Presets - '5' '6' '7'

Loads a preset scene. There are 3 hard-coded preset scenes that can be loaded
by pressing the corresponding number keys 5, 6, and 7. Note that you can load
the presets repeatedly and the additional set of objects will be positioned
relative to the currently active node.

6.2.15 State File - Load & Save

L Load ANTZ0001.CSV (Open)
K Keep ANTZ0001.CSV (Save)

1 Load ANTZ0001.CSV (SHIFT+1 to Save)
2 Load ANTZ0002.CSV (SHIFT+2 to Save)
3 Load ANTZ0003.CSV (SHIFT+3 to Save)

The State File contains the entire scene, including all object parameters and
camera locations. Some global parameters are not stored such as Alpha Mode,
Grid Segments, Background Color....

It is possible to merge scenes by loading multiple files into the same scene.

Camera and grid parameters will be what the last file loaded sets them to.

*future support for storing global parameters.

6.2.15.a Keep State – 'K'

Saves the scene to the CSV file 'ANTZ0001.CSV', more detail is provided in
the 'File' section of this document.

6.2.15.b Load State – 'L'

Loads the scene from the CSV file 'ANTZ0001.CSV'

*Keep and Load will be updated to allow choosing a file using the standard OS
file dialog box.

6.2.15.c Quick State - '1' '2' '3'

Loads or Saves the State File to a preset filename. Pressing either 1, 2 or 3
will Load the corresponding state file 'ANTZ0001.CSV', 'ANTZ0002.CSV' or
'ANTZ0003.CSV'. To Save the state file press SHIFT-1, SHIFT-2, or SHIFT-3.

6.2.16 Load Channel File - 'P'

Loads the Channel File into memory and starts playing the file. The default
name is "TNG00001.CSV", see the 'File - Channels' section and appendix for
more info.

*Will add a file dialog box for the user to select a specific file.

6.2.17 Channel Assignment - '<' '>'

The Channel Assignments allow for objects to be animated based on the data
contained in the Channels File. Channels may be mapped to position, scale and
color offset, depending on the object type. This allows for time based data
to move a pin along a path or a child node to change position and scale.
There is also a Color Offset channel ('Z') that allows for a hue shift that
can be animated with time.

Normally all objects have their XYZ channels set to zero which is equivalent
to no channel assigned. If you want to animate the Color Offset then first
select the object(s) then make 'Z' the Active Axes. Now press either '<' or
'>' keys to change the channel assigned. This may be done either before or
after loading the Channels File, though nothing will change until the file is
loaded. The Color Offset shifts the hue of the current color so that red
becomes green, green becomes blue, and blue becomes red.

To animate position of a selected root pin set the Active Axes to XY and then
change the channel. Child nodes are different in that the X axis is mapped
to the position around the parent and the Y is scale, Z remains Color Offset.

See the 'File Types – Channels' section for additional info.

*Future support will include live IO channels such as audio, EEG, light,
temperature and video.

6.2.18 URL recordID retrieval - 'U'

Opens the default system browser with the currently active objects recordID
appended to the specified URL. This can be used to retrieve and display
additional information about a particular object using a standard browser.

The default URL is hard-coded and appears as:

'http://temporalzone.com/id.html?id=0'

To set the URL you may pass it in as a command line parameter, see the
'Command Line' section for more info.

6.3 Command Line

The application excepts 2 types of command line parameters, files to load at
startup and the URL used for recordID retrieval through the system browser.

You may pass multiple files:

C:\apps>antz.exe antz0001.CSV antz0002.CSV

This can also be combined with the URL, which must start with 'http'.

C:\apps>antz.exe antz0001.CSV antz0002.CSV http://myDomain.com/recordID.html

This will open both CSV files and set the recordID URL.

Section 7: File Types

This section is designed to be an overview of the file types supported by the
application. Please see the appendix on information on how CSV files are
formatted. The 'Commands' section explains how to Load and Save the CSV
files. Texture Maps are loaded at application launch.

The primary file type is the State File, it is used to store and retrieve the
entire state of the current scene.

The secondary data file type is the Channels file which allows for data that
changes over time, such as audio, EEG, position, etc.... It is used to
animate object parameters.

Additionally, various image formats are supported for texture mapping.

File Name Conventions:

State antz000x.CSV
Channels TNG00001.CSV
*Event Log log0000x.CSV
Texture Maps map0000x.JPG
*3DS geo0000x.3DS

*An Event Log file is planned.

*Support for 3DS files to load custom 3D models is planned.

7.1 State - .CSV

**image of dataset loaded in from a CSV file.
The antz000x.CSV is a snapshot of the entire scene. It contains all
information needed to represent the spatial characteristics of the scene at

the specific moment the file is generated. However, some global parameters
are not stored in the file, such as window position, Alpha Mode (transparency
type), and grid segment count....

The State File will store velocity rates that result in rotational animation.
However, the data that changes over time (per cycle) is stored in the
Channels file.

It is possible to merge scenes from multiple files. This can be done by the
user at runtime or at launch by passing in multiple file names.

See the 'Commands – State File' section on how to Load and Save files or the
appendix on how the files are formatted. Also 'Commands – Command Line' on
how to load files upon application launch.

7.2 Channels - .CSV

The 'antzch000x.CSV' contains time based channel information. The channels
can be used to modulate (animate) objects position, scale and color. Each
object has up to 3 channels assigned to it. To change the assigned channel
use the '<' and '>' keys, applies the currently active axes, ('X' key.)

Channels effect different parameters based on the object type. For root pins
the X and Y channels effect the X and Y position and Z effects the color.
For children, X is rotation around the parent, Y is scale, and Z is color.

See the 'Command' section on how to Load the Channels file or the appendix on
how to format the file.

*Future support to include mapping channels to more parameters.

7.3 *Event Log

*Event log records all user commands and other specified triggers.

7.4 Texture Map - .JPG, .TGA...

Up to 256 textures can be loaded for use in the scene. The textures are
located in a sub-folder of the main application named "maps\". The texture
maps need to be sequentially numbered to be properly organized, starting with
'map00001.jpg' on up to 'map00256.jpg'.

By default the grid uses 'map00001.jpg', this can be changed. See the
'Commands - Keyboard - Texture Maps' section for information on how to assign
the textures to objects.

Be aware that non-sequential texture names can be used, but there numbers
will not correspond to the textureID stored in the CSV State file. (Also
they must be named with the ".JPG" extension, but do NOT need to be a JPEG
format... A variety of image types can be read in, but they must have the
names specified. Yes it's strange to rename a PNG image to 'map00008.jpg',
but it will work.)

The textures are automatically loaded at launch and may cause a significant
delay if they are numerous and large. Note that the application will appear
to not be responding until all textures are loaded (can be minutes.)

The GPU memory determines the total size of the textures loaded. Maximum
texture size depends on GPU hardware, however the user does not need to be
concerned as the loading routine will down-convert large textures (if
required by the hardware.) A typical GPU today will support maximum size of

either 1024x1024 or 2048x2048, some support 4096x4096. Power of 2 sizes are
also no longer required in most hardware, the texture loader will handle any
necessary scaling.

All textures are converted to 8-bits per channel. Both RGB and RGBA with
alpha channel is supported.

Readable Image Formats:

BMP - non-1bpp, non-RLE (from stb_image documentation)
PNG - non-interlaced (from stb_image documentation)
JPG - JPEG baseline (from stb_image documentation)
TGA - greyscale or RGB or RGBA or indexed, uncompressed or RLE
DDS - DXT1/2/3/4/5, uncompressed, cubemaps (can't read 3D DDS)
PSD - (from stb_image documentation)
HDR - converted to LDR, unless loaded with *HDR* functions (RGBE or

RGBdivA or RGBdivA2)

*Future Feature - Allow for selecting a specific texture map with any name
and file path. The path will be stored in the CSV file and/or DB.

*Future Feature – Use an image sequence for video playback.

7.5 *3DS Models

*Future support for 3DS models will allow for adding custom geometry to the
scene for use as root pin, child node objects, or grid geometry.

Section 8: *DataBase (MySQL)

*DB support is currently in development. The DB structure mimics that of the
CSV state and channels files. It is possible to import and export between the
DB and the CSV files. Certain data such as textures maps and 3DS models are
referenced using file paths in the DB, but the data itself is stored
externally.

Appendix A Command Cheat Sheet

A.1 Mouse

R - Click on object toggles its selection on/off
R - Hold on object DRAGS selected objects in XZ plane (L-R & Up-Down)
R - Hold on background FLY's camera

L - Click on an object NOT selected will select it and unselect all others
L - Hold on an object NOT selected will drag only the object, DRAGS in XY
L - Hold on an object CURRENTLY selected will drag all, DRAGS in XY
L - Hold on background orbits object in both axes of EXAMINER mode XY

L+R - Hold on background orbits and ZOOMS in and out Examiner mode XZ

Note that it is possible to switch directly between Examiner mode XZ and XY
by releasing the right button and continuing to hold the left button.

A.2 Keyboard

Numbers, -, =, etc apply to the main keyboard, not the numberpad

A useful 'bug' is to change selection to another object (TAB, New, etc..)
and do this while performing a rotation, it will continue to rotate, also
applies to zoom and translate…

It is possible to press multiple keys at once (3-5 typical depending on the
keyboard and key combo…) So for example, you can do a rotation and zoom
while simultaneously changing the color.

SHIFT Reverses some functions, speeds up rotation and translation

ESC Fullscreen Exit
X change active aXes (used by Z, Y, <, >, etc..)

--- Object Creation ---
N New object, root-pin or child node
Del Delete object, root-pin or child node

--- Selection ---
Tab select sibling node, (SHIFT+Tab for previous)
Enter select child node (SHIFT+Enter for parent)

4 select All Pins toggle
spacebar select or unselect current object

C select Camera (if selected, selects next camera, 4 total)
G select Grid

--- Translate Camera or Objects ---

A X decrease
D X increase;

W Y increase;
S Y decrease;

E Z increase;
Q Z decrease;

--- Rotate Arrows ---
Left rotate left
Right rotate right
Up rotate up (effects position of child nodes)
Down rotate down

--- Scale & Geometry ---
Z Scale objects up (SHIFT+Z for down) based on active aXes 'X'

O (alpha) change object geometry type

--- Color & Transparency ---

+ (plus) next color
- (minus) previous color

9 less opaque (more translucent)
0 (zero) more opaque (less translucent)

B toggle Background between white and black
R Rescale normals toggle -
8 change transparency mode (3 alpha modes + none)

T Texture Map selection (SHIFT-T for previous map)

F Freeze;
H Hide;

[Low set point (effected by active aXes)
] High set point

Y Grid Segments, adds (or SHIFT-Y to subtract) 2D and 3D layers
effected by the active aXes (Z axis creates 3D grid layers)

--- Scene Presets ---

5 Preset 1
6 Preset 2
7 Preset 3

--- State Files ---

K Keep ANTZ0001.CSV (SAVE)
L Load ANTZ0001.CSV

1 Load ANTZ0001.CSV (SHIFT + 1 to save)
2 Load ANTZ0002.CSV (SHIFT + 2 to save)
3 Load ANTZ0003.CSV (SHIFT + 3 to save)

--- Channels File and Assignment ---

P Load channels file (TNG00001.CSV) for animation

. (>) Channel Up (applies to currently Active aXes)
, (<) Channel Down

--- URL recordID Retrieval ---
U open URL with recordID in a browser

Appendix B State File - .CSV

B.1 State File Overview

The file is in CSV format (Comma Separated Values). The first line is blank,
the 2nd line contains the field names for the columns. Individual nodes start
with the 3rd line and continue to the last node. parameters are either 32bit
integers or 32bit signed floats.

The current software version writes out 3 tables into a single file. (*This
may change in the future such that only 1 table per file exists....) At this
time you may ignore all but the first table, as the software only reads in
the first table. (If your curious, the 2nd table is for auxiliary data
specific to the node type, and the 3rd table is a list of child nodes
attached to each node referenced by its nodeID.)

Tree Topology

Perhaps the most difficult aspect of formating the file is properly defining
the hierarchy of nodes in the tree topology. The file is sequentially
processed such that the order of the nodes in the file coupled with the
branchLevel determines the hierarchy. At this time, the order is defined by a
recursive algorithm that traverses the tree. Starts with the root pin then
adds the first branch (the primary toroid.) The first child node of the
primary toroid is next, followed by its first child and so on until it
reaches the end of the branch (leaf.) It then goes backs up as many levels
required to find a sibling and then down the sibling branch following its
child nodes to the leaf. This pattern repeats until all nodes in the tree are
created.

*An update is planned (very soon!) to make the file read function agnostic to
the ordering of nodes in the file, so that one must only properly define the
'parent' node ID and the software will re-order as necessary.

Currently a root-pin, (branchLevel = 0) automatically creates a first level
child torus, regardless if it is in the file.

*Planned future support for pin's with no primary toroid.

node ID
The 'id' field is used to build the pin tree hierarchy and link to additional
node type specific data. The node ID is only unique within the file. When a
file is read in a new set of IDs are assigned. This allows for merging
multiple files with overlapping IDs without any contention. Note that if you
save out a file, read it in, delete and/or add some nodes, then save, you
will get a different set of IDs.

*currently the nodeID is ignored and the order of nodes in the file coupled
with the branchLevel determine the tree hierarchy of a pin.

'parent' - The 'id' of the parent, except root-pins which are set to zero.

'branchLevel' starts at zero for the root-pin, 1 for the primary toroid, 2
for its child nodes, and so on....

recordID

Because the node 'id' is subject to change, the 'recordID' is provided for
your use. It is retained by the node and is not modified by the application.
This can be used to reference the original DB record that the node
represents.

'childCount' - the number of child nodes attached to the node at the current
level. Does not include sub-children of the attached child nodes.

childIndex - Specifies which child node is actively selected, used mostly for
keyboard navigation of the tree topology.

B.2.2 Position

Translation is determined relative to the global origin for root-pins and
relative to the parent node for all child nodes.

The child node radial offset from it's parent node is set by 'translate x'.

Typically you only set velocity rates for rotation as an object with a
translational rate will continue to move until it disappears by leaving the
scene boundaries/clipping-plane.

Root-pin global position is determined by 'translate x/y/z' and
'rotate_x/y/z'. The translational velocity is set by 'translateRate x/y/z'
and is the delta distance applied per cycle (typically runs at 60 cycles per
second.)

Rotation

The 'rotate x/y/z' sets the rotational position of the node in degrees (other
then the camera.) 'x' axis of a child node can be used to set the spacing of
toroids around there parent. 'y' axis will spin the torus, not very
noticeable unless it has a texture map or is assigned a different primitive.

Rotational velocity is set by 'rotateRate x/y/z', but at this time root-pins
only rotate using the 'x' axis. Child nodes rotate about the 'x' and 'y'
axis. Note that the rate is applied per cycle (60Hz) and is in radians, so a
value of 0.01 is equivalent to about 6 rpm.

Scaling

The size of an object set by its 'scale x/y/z'. A scale value of 1.0 is
equivalent to 100% and results in no change in size. Valid scale values can
be negative or positive, negative values result in an inversion of the
geometry, including all child nodes of the current node. For uniform scaling
the x, y and z values must be identical. Individual axes can have different
scale values which result in a non-uniform scaling, or a stretched looking
object.

Ratio (inner radius of a torus)

*The 'ratio' sets the inner radius of the torus as a factor of its size.
Generally between 0.01 and 1.0, where 1.0 is a donut with no hole and 0.01 is
a very thin donut... will be implemented shortly. Currently the default ratio
is 0.1 equivalent to 10% of the outer radius.

Texture Maps

The 'textureID' specifies the texture map of an object. A textureID = 0
results in no texture map, and is the default for most objects. The primary
grid has a default textureID = 1 which corresponds to the file
'map00001.jpg'. For more detail see the 'File - Texture Maps' section.

Color

The 'color r/g/b' is set by the colorIndex from a palette of 20 colors.
Additionally the alpha transparency is set by 'color a'. Note that you may
set the color to any custom RGB and alpha you choose, but if the user changes
the color, the custom color will be lost. In general, match the RGB values to
the colorIndex using the key table (at the end of this appendix section.)

B.2.2 Camera Position

There are four cameras available to the user, nodes 3, 4, 5 & 6. They are all
attached as child nodes to a root-camera which is node 2. Effectively all the
root camera does is determine which of the child node cameras is currently
active using it childIndex.

You can set a cameras position in world coordinates using the 'translate x/y/
z' and point them using 'rotateRad x/y/z'. The 'rotate x/y/z/s' vector can
be ignored since it is calculated from 'rotateRad' and is automatically
updated.

'rotateRad' is in polar coordinates using radians. The 'x' axis will tilt
the camera up and down, the 'z' axis will rotate right and left. The 'y'
axis is unused at this time.

The vertical tilt 'rotateRad x' is restricted from -1.57 (-pi/2 is straight
up) to 1.57 (pi/2 straight down,) x = 0.0 is level.

Horizontal, left right rotation 'rotateRad z' is restricted from 0.0 to 6.28
(2pi). Looking straight down rotation is clockwise.

B.3 State File - Field Descriptions

Field name type description
id int nodeID used for pin tree relationship graph
type int node type - camera, grid, pin, etc... (see key table)
data int additional node specific data, defined by the node type
selected int Selection Set status, 1 if part of set, 0 if not
parent int ID of parent node
branchLevel int root node is 0, each sub-level is 1, 2, 3, 4...n
childArray int same as nodeID
childIndex int index of the currently selected child node
childCount int number of child nodes attached (max of 16)
channel x int channel number
channel y int channel number
channel z int channel number
channelIndex x int the cycle update index (current time-stamp)
channelIndex y int the cycle update index (current time-stamp)
channelIndex z int the cycle update index (current time-stamp)
averageType x int *type of averaging used for channel data
averageType y int *type of averaging used for channel data
averageType z int *type of averaging used for channel data
sampleInterval x int *number of samples per average
sampleInterval y int *number of samples per average
sampleInterval z int *number of samples per average
rotate x float rotation vector
rotate y float rotation vector
rotate z float rotation vector
rotate s float rotation vector
scale x float 1.0 for no scaling, negative value inverts geometry
scale y float 1.0 for no scaling, negative value inverts geometry
scale z float 1.0 for no scaling, negative value inverts geometry
translate x float position, root pin world coordinates, child node offset
translate y float position, root pin world coordinates
translate z float position, root pin world coordinates
origin x float reserved
origin y float reserved
origin z float reserved
rotateRate x float rotational velocity rate
rotateRate y float rotational velocity rate
rotateRate z float rotational velocity rate
rotateRad x float polar coordinates used to calculate the rotate vector
rotateRad y float polar coordinates used to calculate the rotate vector
rotateRad z float polar coordinates used to calculate the rotate vector
scaleRate x float rate of scaling applied per cycle
scaleRate y float rate of scaling applied per cycle
scaleRate z float rate of scaling applied per cycle
translateRate x float translational velocity rate applied per cycle
translateRate y float translational velocity rate applied per cycle
translateRate z float translational velocity rate applied per cycle
translateVect x float reserved
translateVect y float reserved
translateVect z float reserved

State File - Field Descriptions... continued

shader int *shader type, flat, phong... (see key table)
geometry int primitive type used (see key table)
lineWidth float line width used for wireframes and line plots
pointSize float point size used for point plots
ratio float geometry ratio, such as innerRadius of a torus
colorIndex int color index from color palette (see key table)
color r int 8bit RGB color value (typically set by the index color)
color g int 8bit RGB color value (typically set by the index color)
color b int 8bit RGB color value (typically set by the index color)
color a int 8bit alpha transparency of node
colorFade int *fades older data points over time
textureID int texture map ID, none = 0, starts at 1, 2, 3...
hide int hides the plot if set to 1
freeze int freezes the plot if set to 1
center int *centers plot on the current data point
autoZoom x int *auto-zooms plots to keep in bounds of the screen
autoZoom y int *auto-zooms plots to keep in bounds of the screen
autoZoom z int *auto-zooms plots to keep in bounds of the screen
scroll int *scrolls plots in an oscilloscope fashion
triggerOnHi x int if 1 then use the triggerLevel, typically for limits
triggerOnHi y int if 1 then use the triggerLevel, typically for limits
triggerOnHi z int if 1 then use the triggerLevel, typically for limits
triggerOnLow x int if 1 then use the triggerLevel, typically for limits
triggerOnLow y int if 1 then use the triggerLevel, typically for limits
triggerOnLow z int if 1 then use the triggerLevel, typically for limits
triggerLevelHi x float typically the upper limit
triggerLevelHi y float typically the upper limit
triggerLevelHi z float typically the upper limit
triggerLevelLow x float typically the lower limit
triggerLevelLow y float typically the lower limit
triggerLevelLow z float typically the lower limit
recordID int recordID of the external source DB record
proximity x float *reserved for future proximity and collision detection
proximity y float *reserved for future proximity and collision detection
proximity z float *reserved for future proximity and collision detection
proximity radius x float *reserved for future proximity and collision detection
proximity radius y float *reserved for future proximity and collision detection
proximity radius z float *reserved for future proximity and collision detection
draw value x int *draw the label
draw value y int *draw the label
draw value z int *draw the label
selection set x int *reserved for future support of multiple selection sets
selection set y int *reserved for future support of multiple selection sets
selection set z int *reserved for future support of multiple selection sets
size int size in bytes of memory used per node

B.4 Key Tables

B.4.1 type (node type)

B.4.2 geometry

B.4.3 shader

type - key table
value desc
1 kNodeCamera
2 kNodeVideo
3 kNodeSurface
4 kNodePoints
5 kNodePin
6 kNodeGrid

geometry - key table
value desc
0 kNPglutWireCube
1 kNPglutSolidCube
2 kNPglutWireSphere
3 kNPglutSolidSphere
4 kNPglutWireCone
5 kNPglutSolidCone
6 kNPglutWireTorus
7 kNPglutSolidTorus
8 kNPglutWireDodecahedron
9 kNPglutSolidDodecahedron
10 kNPglutWireOctahedron
11 kNPglutSolidOctahedron
12 kNPglutWireTetrahedron
13 kNPglutSolidTetrahedron
14 kNPglutWireIcosahedron
15 kNPglutSolidIcosahedron
16 kNPprimitivePin
17 kNPprimitiveWirePin
18 kNPglutWireTeapot
19 kNPglutSolidTeapot

shader - key table
value desc
1 kShadingWire
2 kShadingFlat
3 kShadingGouraud
4 kShadingPhong
5 kShadingReflection
6 kShadingRaytrace

B.4.3 indexColor

Appendix C Channels File - .CSV

The channels file allows for animating the position, scale (of child-nodes)
and color offset of pins. It is formatted as a single table with the field
names at the top. Currently the file must be a total of 30 columns.

It increments one row each program cycle (once per video frame, typical rate
is 60Hz) and when it reaches the end it loops back to the start.

The first column is the cycle count, followed by the channels columns, (29 of
them.) Upon loading, the entire file is read into a buffer and begins to play
(incrementing the current row.)

Each node has 3 parameters that can be mapped to any of the 30 channels.

For root-pins:

'channel x' = 'translate x'
'channel y' = 'translate y'
'channel z' = Color Offset

For child-nodes:

'channel x' = 'rotate x'
'channel y' = 'scale x/y/z'
'channel z' = Color Offset

indexColor - key table
value RGB value color desc
0 255, 255, 255 white
1 0, 255, 0 green
2 255, 0, 0 red
3 0, 0, 255 blue
4 255, 255, 0 yellow
5 152, 0, 255 purple
6 255, 168, 0 gold
7 0, 255, 255 cyan
8 255, 0, 255 magenta
9 0, 153, 0 dark green
10 173, 255, 202 light aqua
11 255, 180, 255 pink
12 0, 152, 255 sky blue
13 185, 255, 0 light green
14 152, 0, 0 dark red
15 50, 101, 101 dark grey
16 127, 127, 255 light purple
17 185, 153, 102 tan
18 197, 82, 0 rust
19 127, 127, 127 grey

You can animate the XY position of a root-pin and its color offset. Child-
nodes allow you to rotate around the parent torus, scale (size) and shift the
hue with the color offset.

The color offset has a value range of 0 to 255. Zero does nothing, while 255
shifts the hue by one full color component, that is red becomes green.

'P' key will load the file TNG00001.CSV

'<' and '>' keys will change the channels assigned to the currently
active/selected objects based on the current Active Axes.

The console will display the assigned channels.

See the 'Command - Channels' and 'File - Channels' section for more info.

The Channels File is hard-coded to be 'TNG00001.CSV' and is located at the
same level as the application.

A crude demo, but works....

To test the sample file follow these steps:

Launch the application.

Rotate the camera so that it is pointing to the grid corner to the right.

press - 'P' - (loads the time based channel CSV file).
press - 'N' - to create a pin.
press - '+' - to change color to green.
press - '<' - this will assign the channels to the object.

The PIN will zoom-in from the distance and change color from red to green.

Channels are set (using < or >) based on the active axes XYZ / XY / Z
X & Y set the position
Z is color shift
color channel should be between 0-255
color shift works with most of the pallete but not all
green -> red (other colors to different colors...)
certain colors (like grey) do not have a noticeable shift
akin to changing the HUE in photoshop (or an old TV)
channels are in CSV columns 0-29
you can assign any channel to a particular axes of any object
ch0 is typically reserved for a cycle count

*Future updates to the Channels will allow for a variety of sample rates and
depths, varying from 8bit low-sample rate single channels to high frequency
audio, or even HD video.

*Appendix D Database Tables

Glossary

Node - A single object in the scene. Can be a root-node or child-node. A
child is considered a different node then its parent object. The pins, grids,
lights, and cameras are different types of nodes.

Root-Node - The base of a tree (graph) of objects.

Pin - The entire tree structure that represents a root-pin and all its child-
nodes.

Root-Pin - The base object of a pin, by default looks like an ice-cream cone,
but can be changed to other geometries. Is a specific type of root-node.

Child-Node - If attached to a pin then the default geometry is a torus, this
can be changed to other geometry types.

Channels - Represent data that changes over a period of time, typically
changes every cycle. Though some channel types like sound may have multiple
samples per cycle. Each sample can be a single numeric value (like pressure)
or have multiple values per sample, such as the X/Y/Z position of an object,
multiple audio channels, or image raster composed of millions of pixels.

Torus - A geometric object in the shape of a donut or ring.

Toroid - Same as torus.

Tori - Multiple toroids.

*additional terms will be added.

Acknowledgements

Synergist:
Dave Warner

Demo Applications:
Allan B Scrivner
Jeff Sale

Coders:
Shane Saxon
Lucas Erickson
Mark Buchanan

