
Publication#  21554 Rev: A
Amendment/0 Issue Date:  September 1997

 

CHAPTER 1

 

11

     
Chapter 1
Introduction
What is In-System Programming (ISP)?

Before In-System Programming (ISP) was developed, programming complex programmable logic 
devices (CPLDs) was a tedious process. After creating the JEDEC fuse map files with design 
automation software, designers or manufacturing engineers have to insert the CPLDs into 
programmers for programming. The parts are then inserted into system boards or testers for 
assembly or testing. If changes are made in the design, the devices have to be reprogrammed and 
put into the boards or testers again.

Using a simple cable connected to a PC, ISP allows CPLDs to be programmed while soldered onto 
a system board or while inserted in an automated tester. 

ISP yields numerous benefits at all stages of development: prototyping, manufacturing, and in the 
field. Since insertion into a programmer is not needed, multiple handling steps resulting in bent 
leads are eliminated. Designs can be modified in-system for design changes and debugging while 
prototyping, programming boards in production and performing field upgrades.

Benefits of ISP through JTAG

In-system programming using a standard boundary scan test interface is necessary for compatibility 
with advanced board testing techniques. The IEEE 1149.1 boundary scan test interface standard, 
sponsored by the Joint Test Action Group (JTAG), was developed to test printed circuit board 
connections. The standard is widely known as JTAG. The standard also allows JTAG-ISP CPLDs to 
be programmed through the interface. JTAG is a simple, serial interface. Programming multiple 
devices through a JTAG port can be accomplished with basic desktop tools. If a design incorporates 
JTAG, then no separate programming interface is needed. All JTAG-compatible or -compliant devices 
(CPLDs and others) can be used in the same JTAG chain.

JTAG-ISP makes designers’ jobs easier by simplifying device configuration. Designers have the 
option of soldering parts directly on the board and then programming them through the Test 
Access Port (TAP) pins. In the design phase, JTAG-ISP lets designers implement redesigns or 
upgrade CPLDs within a few seconds by making changes directly to devices on the board.  The 
bottom line is that designs get done faster and get to market sooner.

JTAG-ISP also offers benefits for manufacturing. Lower inventory cost is achieved because blank 
devices can be used for manufacturing and then programmed at test time. This eliminates the need 
to maintain a separate inventory part number for each programmed part.  Additionally, JTAG 
improves the manufacturing process by facilitating board connectivity testing. Once the design is 
finalized and the board assembled, manufacturing  engineers can use testers for both board 
connectivity testing and CPLD programming. As a result, JTAG-ISP eliminates the cost of separate 
programming stations, unnecessary manufacturing steps and excessive handling. This shortens 
production time, reduces scrap cost and increases reliability. 
1-1



  

V A N T I S

          
Who is Vantis?

Formed in March of 1996, Vantis is the programmable logic subsidiary of Advanced Micro Devices, 
Inc.  Vantis brings superior expertise to the industry from two decades of innovation and 
excellence as one of the largest suppliers of programmable logic devices.

Consistently setting industry standards for performance, reliability and ease of use has become a 
way of life at Vantis.  As the creator of the PAL® devices and the dominant supplier of simple 
programmable logic devices (SPLDs), today the company brings unmatched emphasis and depth 
to the industry as evidenced by the MACH families.

With headquarters in Sunnyvale, California, and sales offices in the United States, Europe, Japan 
and Asia, the company employs more than 300 people worldwide.  Armed with the world-class 
manufacturing might and global scope of its multi-billion dollar parent, Vantis is committed to be 
the world’s best programmable logic company.

Through AMD, Vantis has access to the world’s best process technologies recognized for consistent 
quality, reliability and delivery.  With commitment to the market, Vantis currently has the capacity 
and the technology to manufacture programmable logic devices on eight-inch wafers with 0.35-
micron line geometry. Current and future products from Vantis will be enabled by AMD’s 0.25-
micron process technology scheduled to come on-line in the near future. Test, assembly and finish 
operations are performed in Penang, Malaysia and Bangkok, Thailand.  The company has quality 
support organizations in Sunnyvale, California, and also in Frimley, England, which serves its 
European customers.

Vantis’ Products

Vantis’ MACH families offer a wide range of superior solutions for diverse applications in 
networking, telecommunications and computing.  The MACH architecture enhances system speed 
through its high-speed and predictable pin-to-pin timing, giving designers the security of knowing 
what the device speed will be prior to design completion.

Vantis offers four MACH families.  Each family addresses specific market needs and includes features 
such as guaranteed fixed timing (SpeedLocking™), Peripheral Component Interconnect (PCI) 
compliance, JTAG boundary scan testing, JTAG in-system programming (ISP), asynchronous logic 
handling, 100 percent pin-out retention, power management, low-power and 3.3-V VCC options.

Flagship products from Vantis’ MACH 1, MACH 2, MACH 4 and MACH 5 families have set new 
standards in the complex programmable logic device (CPLD) market.  The MACH 1 and 2 families 
offer high-performance CPLD solutions at low cost. With pin-to-pin delays as fast as 5.0 ns, the 
MACH 1 and 2 families provide users with logic densities ranging from 32 to 128 macrocells with 
32 to 64 I/Os in Thin Quad Flat Pack (TQFP), Plastic Quad Flat Pack (PQFP) and Plastic Leaded 
Chip Carrier (PLCC) packages from 44 to 100 pins. These two families also deliver guaranteed fixed 
timing of 5 to 15 ns through the SpeedLocking feature. The SP members of MACH 1 and 2 families 
offer the feature of JTAG-compatible in-system programming (ISP).

The MACH 4 family offers the highest performance CPLDs with maximum ease of use. All 
MACH 4 products deliver first-time fit and easy system integration with up to 100 percent 
utilization and 100 percent pin-out retention after any design change or refit. The MACH family 
is available in densities ranging from 32 to 256 macrocells in PLCC, PQFP and TQFP packages 
from 44 to 208 pins. For both 3.3-V and 5-V versions, the MACH 4 products can provide 
1-2



 

Chapter 1

 

V A N T I S

           
SpeedLocking tPD as fast as 7.5 ns or fCNT up to 133MHz when using up to 20 product terms 
per output. Other features include mixed-voltage I/O safety, JTAG-ISP, asynchronous clocking 
and programmable power-down modes.

The fifth-generation MACH 5 family presents the fastest, lowest power high-density CPLD family 
in the industry with the widest density-I/O combinations. The MACH 5 family is available in 
speeds as fast as 7.5 ns and densities ranging from 128 to 512 macrocells with 100 percent 
utilization. The MACH 5 devices offer both 3.3-V and 5-V options in TQFP, PQFP and Ball Grid 
Array (BGA) packages ranging from 100 to 352 pins. All 24 density-I/O combinations include 
features such as mixed-voltage design safety, programmable power-down modes, individual 
output slew rate control and bi-phase clocking. All MACH 5 family members deliver fast fit and 
easy system integration with excellent pin-out retention.

Vantis offers software design support for MACH families through its own development system and 
device fitters integrated into third-party CAE tools. Platform support extends across PCs, Sun and 
HP workstations under advanced operating systems such as Windows 3.1, Windows 95 and NT, 
SunOS, Solaris and HPUX.

MACHXL® software is a complete development system for the PC, supporting Vantis’ MACH 
families. It supports design entry with Boolean and behavioral syntax, state machine syntax and 
truth tables. Functional simulation and static timing analysis are also included in this easy-to-use 
system. This development system includes high-performance device fitters for all MACH devices.

Vantis’ own MACHPRO® software supports in-system programming through JTAG-compliant ports 
and an easy-to-use PC interface. Additionally, MACHPRO generated vectors work seamlessly with 
HP3070, GenRad and Teradyne testers to program MACH devices or test them for connectivity.

Vantis and JTAG-ISP

In 1994 the MACH445 device from Vantis was the first complex programmable logic device 
introduced into the marketplace that had both in-system programmability and a fully compliant 
implementation of the IEEE JTAG testability standard. Since then, a number of  MACH devices have 
been introduced which either have both JTAG testability and  in-system programmability or have 
only in-system programmability through a JTAG-compatible programming port. The MACH 4 and 
MACH 5 families have both JTAG testability and in-system programmability with 3.3-V or 5-V options. 
All MACH 1 and MACH 2 devices with “SP” in the part numbers are JTAG-compatible and have in-
system programmability at no extra cost. Today, Vantis offers the largest selection of JTAG-ISP devices 
in the industry. For the complete offering, please refer to the MACH JTAG-ISP Product Selection 
Guide (Figure 1-1) and the MACH JTAG-ISP Product Matrix (Table 1-1).

The MACH 1 & 2 SP devices, MACH 4 and MACH 5 families support the JTAG standard, which 
means they can be included in any JTAG chain.  With these devices, designers can design test 
chains to work the way they want to, rather than having to conform to proprietary device 
requirements.  Non-JTAG CPLDs use proprietary programming techniques that require separate 
setup and load processes and a separate set of test pins at a test station.  With Vantis’ MACH 
devices, users will realize major savings in both development time and manufacturing costs while 
further increasing reliability.
1-3



  

V A N T I S

      
 

Table 1-1.  MACH JTAG ISP Product Matrix 

Device Package Macrocells I/Os tPD (ns)

MACH111SP 44PLCC/44TQFP 32 32 5/7.5/10/12/15

MACH131SP 100PQFP/100TQFP 64 64 5.5/7.5/10/12/15

MACH211SP 44PLCC/44TQFP 64 32 7.5/10/12/15

MACH221SP 100PQFP/100TQFP 96 48 7.5/10/12/15

MACH231SP 100PQFP/100TQFP 128 64 10/12/15

M4(LV)-32/32 44PLCC/44TQFP 32 32 7.5/10/12/15

M4(LV)-64/32 44PLCC/44TQFP 64 32 7.5/10/12/15

21554A-1

Figure 1-1.  MACH JTAG-ISP Product Selection Guide

M5(LV)-256

MACH 1 & 2 SP
MACH 4
MACH 5

Macrocells

I/Os

M5(LV)-512

M5(LV)-512

M5(LV)-512

M5(LV)-512

M5(LV)-512

M5(LV)-384

M5(LV)-384

M5(LV)-384

M5(LV)-384

M5(LV)-320

M5(LV)-320

M5(LV)-320

M4(LV)-256

M5(LV)-256

M5(LV)-256

M5(LV)-256

M5(LV)-192

M5(LV)-192

M5(LV)-192

M5(LV)-192

M4(LV)-192

M5(LV)-128

M5(LV)-128

M5(LV)-128

M4(LV)-128
MACH231SP

MACH131SP

M4(LV)-32
MACH111SP

0

64

128

192

256

64 128 192 256 320 384 512

M4-96

MACH221SP

32

96

32 96

M4(LV)-96

M5(LV)-320

M4(LV)-64
MACH211SP
1-4



 

Chapter 1

 

V A N T I S

     
M4(LV)-96/48 100TQFP 96 48 7.5/10/12/15

M4-96/96 144 PQFP 96 96 15

M4(LV)-128/64 100PQFP/100TQFP 128 64 7.5/10/12/15

M4(LV)-192/96 144TQFP 192 96 10/12/15

M4(LV)-256/128 208PQFP 256 128 10/12/15

M5(LV)-128/68 100PQFP/100TQFP 128 68 7.5/10/12/15

M5(LV)-128/104 144PQFP 128 104 7.5/10/12/15

M5(LV)-128/120 160PQFP 128 120 7.5/10/12/15

M5(LV)-192/68 100PQFP/100TQFP 192 68 7.5/10/12/15

M5(LV)-192/104 144PQFP 192 104 7.5/10/12/15

M5(LV)-192/120 160PQFP 192 120 7.5/10/12/15

M5(LV)-192/160 208PQFP 192 160 7.5/10/12/15

M5(LV)-256/68 100PQFP/100TQFP 256 68 7.5/10/12/15

M5(LV)-256/104 144PQFP 256 104 7.5/10/12/15

M5(LV)-256/120 160PQFP 256 120 7.5/10/12/15

M5(LV)-256/160 208PQFP 256 160 7.5/10/12/15

M5(LV)-320/120 160PQFP 320 120 7.5/10/12/15

M5(LV)-320/160 208PQFP 320 160 7.5/10/12/15

M5(LV)-320/184 240PQFP 320 184 7.5/10/12/15

M5(LV)-320/192 256BGA 320 192 7.5/10/12/15

M5(LV)-384/120 160PQFP 384 120 7.5/10/12/15

M5(LV)-384/160 208PQFP 384 160 7.5/10/12/15

M5(LV)-384/184 240PQFP 384 184 7.5/10/12/15

M5(LV)-384/192 256BGA 384 192 7.5/10/12/15

M5(LV)-512/120 160PQFP 512 120 7.5/10/12/15

M5(LV)-512/160 208PQFP 512 160 7.5/10/12/15

M5(LV)-512/184 240PQFP 512 184 7.5/10/12/15

M5(LV)-512/192 256BGA 512 192 7.5/10/12/15

M5(LV)-512/256 352BGA 512 256 7.5/10/12/15

Table 1-1  MACH JTAG ISP Product Matrix (Continued)

Device Package Macrocells I/Os tPD (ns)
1-5



Publication#  21569 Rev: A
Amendment/0 Issue Date:  September 1997

 

CHAPTER 2

 

2

     
Introduction to JTAG
Chapter 2
History of JTAG

For years many companies have used proprietary test methodologies implemented with boundary-
scan registers to reduce test complexity at the board and system level.  In 1985 several European 
companies formed a group with the purpose of standardizing a method for implementing and 
performing boundary-scan testability.  This group included representatives from board-test 
companies, system design companies and semiconductor manufacturers. A year after this group 
was formed, additional companies from both Asia and the United States joined it and continued 
work on a standard to be voted on by the IEEE. The group is called Joint Test Action Group (JTAG). 
In 1990 this standard was passed as standard IEEE 1149.1-1990, which is known as JTAG.  This 
standard included a definition for a Test Access Port (TAP), a group of both mandatory and 
optional test registers, a control mechanism and timing for both the registers and TAP, and a set of 
mandatory and optional test instructions.  In 1993 corrections and additions were made to the 
standard including a language that can be used to describe an implementation of JTAG in a given 
device. This language is called the Boundary Scan Definition Language (BSDL) and is a subset of 
VHDL (another IEEE standard).  The Joint Test Action Group still meets on a regular basis and is 
constantly working on improving the standard.

JTAG from the Top

In its simplest form, JTAG can be implemented using a four-pin, dedicated test access port, a 
synchronous state machine with 16 states, a group of data registers including a bypass register 
and boundary scan cells (used to control the inputs and outputs of the device being tested).  It 
also needs an instruction register and instruction register decoder which is used to control the 
data registers.  Figure 2-1 shows a top-level diagram of a basic implementation of the IEEE 1149.1 
standard. 

System and Device Logic

TDI
TCK

TMS TDO

Instruction Register

and


Instruction Register Decoder

Data Registers

and


Test Logic

TAP

Controller

21569A-1

Figure 2-1. JTAG Block Diagram
2-1



  

V A N T I S

     
There are four pins which make up the Test Access Port or TAP; TDI (Test Data Input), TMS (Test 
Mode Select), TCK (Test ClocK) and TDO (Test Data Output).  There is an additional pin defined 
by the standard, TRST*, which can be used to asynchronously reset both the TAP controller and 
the instruction register.  All registers along with the TAP controller are clocked using the TCK pin.  

JTAG TAP Controller

The TAP Controller is a synchronous, finite state machine that controls both the TAP and the 
various JTAG registers.  It controls whether a device is in reset mode, where the core logic has full 
control of the device, if it is receiving an instruction, receiving and/or transmitting data, or is in an 
idle state.  The state machine, as illustrated in Figure 2-2, is completely controlled by TMS and is 
clocked by TCK.  The value of TMS is located next to each transition in Figure 2-2.

JTAG Instructions

Where the TAP controller is the heart of any IEEE 1149.1 implementation, the instruction register and 
instruction register decoder can be thought of as the brains.  The instruction register stores information 
concerning what test register or test circuitry is active.  The construction of the instruction register is 
such that for any instruction code selected, there is an associated register and/or test circuit which is 
also selected.  This is one of the requirements stated in the IEEE 1149.1 standard.  Instructions can be 
shifted into the instruction register only when the TAP controller is in the SHIFT-IR state and will 
become active when the controller enters the UDPATE-IR state.

TEST-LOGIC

RESET

RUN TEST/IDLE SELECT-DR

CAPTURE-DR

SHIFT-DR

EXIT1-DR

PAUSE-DR

EXIT2-DR

UPDATE-DR

SELECT-IR

CAPTURE-IR

SHIFT-IR

EXIT1-IR

PAUSE-IR

EXIT2-IR

UPDATE-IR

1

0

0

1 11

0

1

0
0

1

1

0
0

1

0

1

1 0

0

1

0
0

1

1

0
0

1

0

1

1 0

21569A-2

Figure 2-2. TAP Controller
2-2



 

Chapter 2

 

V A N T I S

                             
The MACH JTAG-ISP devices contain three different types of instructions.  The first set of 
instructions is required by the IEEE 1149.1 standard.  The second set is optional instructions 
included in the IEEE 1149.1 standard while the third set consists of proprietary instructions for 
programming a device.  Table 2-1 gives a list of the instructions used by the different MACH device 
families.

Table 2-1.

Each of the above instructions has a unique, 6-bit code which is shifted into the instruction register.  
The exception to this is the BYPASS instruction which will turn on whenever its own code is 
selected or when an invalid code is selected.  

The three required instructions have strict requirements as to how they are expected to operate, 
defined in the IEEE 1149.1 standard.  The BYPASS instruction enables a single bit register, the 
BYPASS register, to shift data from TDI to TDO and leaves the part functioning in a normal mode.  
The SAMPLE instruction is used either to take a snapshot of what is happening at the I/Os by 
capturing pin data into the boundary scan register, or to load data into the boundary-scan register 
in preparation for an EXTEST.  It does this without affecting the functioning of the part.  The third 
instruction, EXTEST, is used to perform connectivity tests by controlling the inputs and I/Os of a 
part with the boundary scan register.

The three optional instructions provided in the MACH devices are defined in the IEEE 1149.1 standard, 
also.  The first of these instructions, HIGHZ, is used to tri-state all I/Os while shifting data from TDI to 
TDO through the BYPASS register.  This instruction is included so that during programming, the I/Os 
of devices not currently being programmed could be set into a “safe” state.  The second instruction, 
IDCODE, is used to shift out a 32-bit factory signature for a device.  This signature is used by both test 
equipment and programming equipment to verify a device they are testing or programming is the 
correct device type.  The third optional instruction, USERCODE, is unique to devices which have some 
form of non-volatile memory on them.  It is used to read out a 32-bit device signature which is 
programmable by the user.  The programming information for this field is included in the JEDEC file 
and is programmed at the same time the rest of the device gets programmed.

Required Optional Proprietary MACH 1 & 2 SP MACH 4 MACH 5

BYPASS X X X X

EXTEST X X X

SAMPLE X X X

HIGHZ X X X X

IDCODE X X X X

USERCODE X X

PGMMODE X X X X

ROW X X X X

COLUMN X X X X

PROGRAM X X X X

ERASE X X X X

VERIFY X X X X

SECURITY X X X X
2-3



  

V A N T I S

   
The final set of instructions is proprietary to Vantis and is used in the programming of a device.  
Each of these instructions is explained briefly below.

PGMMODE - Used to turn on the programming mode by shifting a 5-bit password into the 
device.

ROW - Used to select a row to be programmed or verified.

COLUMN - Used to shift in column data for the row to be programmed or verified.

PROGRAM - Used to program a device.  To do this, a row must first be selected, and column 
data must be loaded into the column register.

ERASE -  Used to completely erase a device.

VERIFY - Used to verify that the correct data has been programmed into a device.  To do this 
a row and column must be selected.

SECURITY - Used to program the security bit which protects the device configuration data by 
preventing read back.  Only after an “ERASE” instruction has been done, can the device be 
reprogrammed and verified.

JTAG Data Registers

There are two mandatory data registers defined by the IEEE 1149.1 standard. These are the BYPASS 
register and the boundary-scan registers (BSR).  The BYPASS register is a single-bit register which 
is used to shift data from TDI to TDO without affecting any other circuitry.  Figure 2-3 illustrates 
the BYPASS register.

A boundary-scan register (BSR) is used to capture or send data from the I/O or input pins.  Each 
boundary-scan cell for an input pin is composed of two registers.  The first register is used to either 
capture data from the pin or have data shifted into and out of it from the TAP.  The second register 
is used to drive data from the first register onto an input or I/O pin.  Figure 2-4 shows the structure 
of a typical boundary-scan cell (BSC).

TDI TDO

BYPASS

21569A-3

Figure 2-3. BYPASS Register
2-4



 

Chapter 2

 

V A N T I S

 

Every I/O cell has three boundary-scan registers attached to it.  The first is for the input, the second 
is for the output and the third is for the output enable.  By looking at all three registers, test 
software can tell exactly what is happening at that I/O pin.  If the output enable is a “1”, then the 
I/O pin will be whatever the value of the output cell is.  If the output enable is a “0”, the I/O pin 
is configured as an input with the value of the data in the input BSC.  An input or clock pin would 
have only a single BSC and would not have the output tied to anything as it is used for observation 
only.  Figure 2-5 shows the BSC configurations for both the input pin and the I/O pin.

For a device to be considered IEEE 1149.1 compliant, it must have the TAP, TAP controller, BYPASS, 
SAMPLE and EXTEST instructions and a boundary-register.  A device which has only the TAP and TAP 
controller may be compatible with the IEEE 1149.1 standard and may work in a scan chain, but it will 
not be considered compliant.  Any device which does not have a boundary-scan cell cannot be tested 
using the TAP because there is no means of controlling and accessing the I/O and input pins other than 
a direct connection.  All of the MACH 4 and MACH 5 devices are compliant with the IEEE 1149.1 
standard while the MACH 1 & 2 SP devices are considered compatible.

0

1
D Q D Q

0

1

Input

From Previous BSC

TCK

UPDATE-DR

Output

BSC

To Next BSC

21569A-4

Figure 2-4. Boundary-Scan Cell

BSC for Inputs BSC for I/Os

BSC

BSC

BSC

BSC

System


Logic

To Next


Cell

From Last Cell

TO NEXT


CELL

Macrocell

21569A-5

Figure 2-5. BSC Configurations
2-5



Publication#  21568 Rev: A
Amendment/0 Issue Date:  September 1997

 

CHAPTER 3

 

3

       
Introduction to In-System Programming (ISP)
Chapter 3
Introduction

In-system programming (ISP) was developed to make it easier to use programmable logic devices 
packaged in fine pitch packaging, such as the Plastic Quad Flat Pack (PQFP) or Thin Quad Flat 
Pack (TQFP) packages.  A typical manufacturing flow that does not use ISP requires additional 
handling steps which increases the probability of damaging delicate leads and decreases the 
manufacturing yield.  Over the past several years, the use of ISP has increased greatly as has the 
number of devices that offer the ability to be programmed in-system.  In fact, ISP is quickly 
becoming a requirement for any new devices introduced.  

There are very few limitations placed on what kind of system can be used to execute an ISP algorithm.  
Today, most programmable logic companies offer programming solutions which range from 
programming a single device through a simple cable, attached to a computer, to programming several 
devices as part of a board test program.  Also offered is the ability to program devices using a 
microprocessor on the same board as the devices being programmed.  This is referred to as embedded 
programming and can give users the ability to update the programming in a device in the field.

Basics of Programming

To successfully program, in-system, there are a few simple requirements which must first be met.  
The first of these requirements is that the devices on the board need to be correctly connected 
into a JTAG scan chain.  This scan chain can be used for either programming or testing the board.  
To program using the Vantis MACHPRO software, a description of the JTAG scan chain needs to 
be developed.  This description is called a chain file which contains information about all of the 
devices in the chain including device type, instruction register length (six bits for all MACH 
JTAG-ISP devices), the JEDEC file being programmed into the device with associated output file, 
and any optional features needed during programming such as tri-stating the I/Os, programming 
the security bits, etc.  Additional information about the chain file and its construction is given in 
the MACHPRO User Manual in the Appendix B of this manual.

Another requirement for successful programming is thoughtful board design.  The signals used in a 
JTAG scan chain (TCK, TMS, TDI and TDO) will rarely run as fast as the remainder of the signals on 
the board but still require correct board layout methodologies such as buffering for large chains, 
termination resistors, etc.  These board layout methodologies are described in Chapter 4 of this manual.

After all of these requirements have been met, it should be relatively straightforward to program 
any number of devices on a board.  This programming can be done using a PC with a cable 
attached to the board or a board test system.   MACHPRO can easily be used to program in any of 
these environments. 

JTAG Scan Chains

A JTAG scan chain can contain one or more IEEE 1149.1 compliant, programmable and 
non-programmable devices.  It can also include any programmable devices that are 
3-1



  

V A N T I S

  
compatible with the IEEE 1149.1 standard but do not have a boundary-scan register.  This 
is a decision that should be made based on the test methodology being employed for the 
board.  If the test methodology employed is a traditional bed-of-nails approach used on 
board test systems, all of the devices can be included in the same chain.

All JTAG scan chains use the simple four-wire interface described in Chapter 2 as the Test Access 
Port or TAP.  The TCK and TMS pins are common to all devices included in the chain.  The TDI 
and TDO pins are daisy-chained from one device to the next.  The input to the chain is TDI and 
the output from the chain is TDO.  A diagram demonstrating a simple JTAG scan chain is shown 
below in Figure 3-1.

The JTAG scan chain shown above has eight devices, seven of which are MACH programmable devices.  
To program these devices using MACHPRO, a chain file needs to be written which fully describes the 
chain.  A sample chain file for the DOS version of MACHPRO is shown below in Figure 3-2.

Figure 3-2. Sample Chain File

21568A-1

Figure 3-1. Example JTAG Scan Chain

TDI M4-64/32 MACH211SP MACH131SP M5-512/160

M4-64/32 AMD-K6 M4-128/64 M4-256/128

TCK

TMS

TDO

;*******************************************************

;Sample Chain File for Figure 3-1

;*******************************************************

‘U1’ M4_64_32 p 6 design1.jed /-o Z -f design1.out;

‘U2’ MACH211SP v 6 design2.jed /-o Z -f design2.out;

‘U3’ MACH131SP n 6 design3.jed /-o Z -f design3.out;

‘U4’ M5_512C7 p 6 design4.jed /-o Z -f design4.out;

‘U5’ M4_256 p 6 design5.jed /-o Z -f design4.out;

‘U6’ M4_128 m 6 design6.jed /-o Z -f design5.out;

‘U7’ AMD_K6 n 5;

‘U8’ M4_64_32 n 6 design7.jed /-o Z -f design7.out;
3-2



 

Chapter 3

 

V A N T I S

   
Additional detailed information on how to generate a chain file for both the Windows and DOS 
versions of MACHPRO is presented in the MACHPRO User Manual.

Programming Algorithm Basics

Programming a CPLD is similar to programming any piece of memory such as an EPROM or FLASH 
memory.  The device can be thought of as an array that is programmed one row at a time.  The 
programming information is provided to the software in the form of a standard JEDEC file that is 
then converted into the row and column data.  Before an EEPROM device can be programmed, it 
first has to be erased.  After the device has been erased, the programming data can be loaded and 
the device programmed.  After the device has been programmed, it will be verified by reading out 
the data in the device and comparing it against the original.  Figure 3-3 below shows the basic 
programming flow for the device.  It does not include JEDEC file data conversion as it assumes 
that has already been done.

START

Preload or Save


I/O states?

Enter Programming Mode

Erase Device

Program Device

Verify Device

Secure Device?

Reset Device

END

Preload/Save I/O using


SAMPLE/PRELOAD

Program Security


Fuses
Yes

No

Yes

No

Notes:

Although it is not necessary, a

reset should always be performed

before and after programming a

device

2. If the device will not be programmed

in-circuit (i.e. via a cable or using an

embedded processor) then it is not

necessary to Preload or Save the

I/O states

1.




21568A-2

Figure 3-3. Programming Routine Flow
3-3



  

V A N T I S

       
This programming flow will be the same regardless of the programming hardware used.  The 
primary difference between programming on different hardware platforms is the type of data 
format used.  

Programming Time

The time it takes to program a device can often be a determining factor of where in the 
manufacturing process a device, or a group of devices, is programmed.  A board test system costing 
hundreds of thousands of dollars to purchase and costing as much as one dollar per minute to run 
can be an expensive alternative for programming if programming times are too long.  In many 
instances it will be more cost effective to have a couple of PCs and program the devices using 
these less expensive systems.

The time it takes to completely program a device is based on the time it takes to first erase the 
device, then program each row in the device, and then finally to verify the device.  The erase time 
for all MACH devices is the same and is specified at 100 milliseconds. In any given MACH device, 
there are between 76 and 82 rows of data to be programmed.  A single row is programmed in 50 
milliseconds.  The verify process is the quickest of the required steps in the programming sequence 
and should take no more than 0.3 seconds to shift the verify data out on any given device.  All 
totaled, the theoretical minimum time needed to program a single device on a board is on the order 
of 4.5 seconds.

One of the options offered by MACHPRO is the ability to do parallel programming.  This type of 
programming allows multiple devices to be programmed at the same time, thereby reducing the 
overall number of programming wait states required.  As a result, the additional time needed to 
program additional devices is only that time needed to shift in the additional programming data 
and to verify the additional devices.  The time required to program a single M4-128/64 device is 
about 4.5 seconds.  On a board test system, where devices can be programmed in almost the 
minimum time, it takes only 9 seconds to program ten M4-128/64 devices on the same board.  

The minimal programming times will only be seen on board test systems because they are included 
as a part of the test program and are running at the fastest speed possible.  Additionally, there is 
no translation needed to or from JEDEC formatted data as this has already been done by the 
MACHPRO software.

Programming on a PC

Programming on a PC is done through a simple cable attached to the parallel port.  The design for 
this cable is shown in the Appendix.  Additional information concerning programming on a PC 
through MACHPRO is shown in the MACHPRO User Manual.

Programming on a Board Test System

Programming on a board test system is made possible by using MACHPRO to generate the 
necessary programming files needed for the different platforms.  The platforms supported by 
MACHPRO include Teradyne, GenRad and Hewlett Packard board test systems.  Additional 
information on programming on any of these systems is shown in Chapter 5 of this manual.
3-4



 

Chapter 3

 

V A N T I S

  
Programming on JTAG Test Systems

JTAG test systems differ from traditional board test systems in their basic test methodology.  These 
systems use only the four wire JTAG TAP to perform any interconnect and functional tests.  A simple 
language has been developed to interface with the TAP and is used by most major JTAG test system 
vendors.  This language is known as the Serial Vector Format and is supported by MACHPRO.  
Information on generating an SVF programming file is given in the MACHPRO User Manual.
3-5



Publication#  21570 Rev: A
Amendment/0 Issue Date:  September 1997

 

CHAPTER 4

 

4

           
MACH In-System Programming–
Design & Usage Guidelines
Chapter 4
Introduction

In-system programming has often been billed as a direct replacement for configuring a device 
through a programmer.  The thought that devices can just be placed on a board, hooked up to a 
PC through a cable and programmed is an attractive alternative for many of today’s package 
options such as the Thin Quad Flat Pack (TQFP) or the Ball Grid Array (BGA). Whenever  devices 
are put on a board, care must be taken in the design of that board in terms of loading of the clock 
lines, buffering, and termination of signals.  This is just as true for the ISP signals as it is for the 
data-path or control signals generated or used by a device.  For this reason, it is necessary to follow 
some guidelines when designing in-system programmability into a board.

An ideal setup for ISP would include buffers at both the parallel port connection of a short cable 
and on the board to be configured, termination of all lines which are run in parallel such as TMS 
and TCK, and Schmitt trigger inputs on all devices which are a part of the programming chain.  
This is not always practical or feasible, however, because there may be only a few devices in the 
chain, a cable with buffers might not be available, or non-MACH devices in the chain which may 
not use Schmitt trigger inputs.  Because of such limitations, the following recommendations are 
made as guidelines which should make for a smoother ISP experience.

Connections

The MACH devices typically come in two ISP configurations.  The first configuration has the four standard 
JTAG pins, TCK, TMS, TDI and TDO, plus an asynchronous reset pin, TRST* and a program enable pin, 
ENABLE*.  This configuration is found on the M4-128/64 and M4-256/128 devices. The second 
configuration uses only the four standard JTAG pins and is found on all other MACH JTAG-ISP devices.

In a programming environment, it is necessary only to connect the four standard JTAG pins 
regardless of the configuration.  With the six-pin configuration, while MACHPRO supports the use 
of the TRST* pin and ENABLE* pin, it is not a requirement.

◆ For new designs, the TRST* pin should be permanently tied to VCC  and the ENABLE* pin should 
be tied to GND.

Making the connections recommended above will simplify the layout of a board and will eliminate 
the need for additional buffers for those signals.

After programming and testing have been completed, the question often arises, “what should be 
done with the ISP port signals?”  One of the requirements in the IEEE1149.1 standard for the JTAG 
port is that both the TMS pin and the TDI pin have internal pull-up resistors.  By ensuring that 
there is a “1” on the TMS pin, inadvertent clocking of TCK will not cause the JTAG state machine 
to leave its reset state. The MACH devices also have a pull-up resistor on the TCK pin. 

◆ After programming, while it is not required, a 4.7K pull-up resistor can be used on the TCK and TMS 
signals on a board.  As the number of devices connected to the TCK/TMS signals increases, the need 
for pull-up resistors decreases as more internal pull-up resistors are affecting those signals.
4-1



  

V A N T I S

            
Buffering

As stated earlier, the ideal scheme for buffering includes buffers at both ends of the cable, and 
buffers for each group of four or five devices in the programming chain.  This case does not cover 
all situations, however.  There could be a design with only two devices in the chain; in that case, 
the question “is a buffer needed?” arises. The recommendation for buffering is as follows:

◆ Buffering is needed for the TCK, TMS, and TRST* lines.  It should also be used for the TDI signal 
into the board and the TDO signal out of the board.

The TCK, TMS, TRST* and ENABLE* signals (TRST* and ENABLE* are only on M4-128/64 and 
M4-256/128 devices) are run in parallel to all JTAG and JTAG-ISP devices on a board.  Because 
of this, these signals will tend to present a larger load to the source driving them.  In many 
cases, this is the parallel port of a PC which may or may not have a strong drive capability, 
based on the manufacturer of the computer.  For this reason, we recommend using a buffered 
cable which is no longer than six feet, shorter if the programming setup allows for it.  The 
transmission line effects of both the cable and the traces on the board are the cause for the 
recommendation of additional buffering on the board itself.  The TDI and TDO signals of each 
device are daisy-chained where the TDO of one device will feed the TDI of the next.   

◆ If there are fewer than five devices in a programming chain, buffers are not required, but are 
recommended.  If there are five or more devices, buffering is recommended, as well as a 
separate buffer for each group of five to eight devices.

◆ When using a buffer, trace lengths should be balanced to minimize signal skew.

The more devices connected to a given signal, the greater the loading on that signal.  For that 
reason, it is necessary to buffer heavily loaded signals and to split the loading of a given signal so 
that there is a smaller load.  This load should also be balanced, both in terms of the number of 
devices driven by that signal, and the lengths of the traces to each device, so that signal skew does 
not become an issue.

◆ If non-MACH devices are included in the chain which do not use Schmitt trigger inputs, it is 
recommended that Schmitt trigger buffers be used and that the buffer be placed closest to the 
devices which require those inputs.

All MACH JTAG-ISP devices have Schmitt trigger inputs for pins in their programming port.  This 
is done because the signals coming from the parallel port of a computer 6 feet away are often very 
noisy and the Schmitt triggers tend to make the device more noise-immune.  Many devices which 
incorporate a JTAG interface and which may be placed into the programming chain will not have 
Schmitt trigger inputs and, as a result, will be more susceptible to noise problems.  In general, 
these devices are designed for use in either a board test environment or other environment which 
can be significantly cleaner than being driven by the parallel port of a computer. 

◆ A buffered cable should be used when available. The length of this cable should be no more 
than 6  feet and should be minimized. 

Vantis recommends a design for a buffered cable shown in Appendix A.  This design will work for 
most situations. The cable should be made as short as possible to reduce transmission line effects 
and should be no longer than 6 feet in length.  There are several buffers which are suitable for use 
in the programming chain.  These include 74LS244, 74LS367 and 74HC244.  When selecting a buffer, 
one parameter to watch for is the output edge rates.  If they are too fast, reflections can become a 
4-2



 

Chapter 4

 

V A N T I S

                       
real concern.  Additionally, all MACH devices have inputs which are 5-V compatible, so on a board 
which uses only a 5-V supply or on a board with mixed 3.3-V and 5-V supplies, a 5-V buffer can be 
used.  On a board which uses only a 3.3-V supply, a 3.3-V buffer can be used.

The correct use of buffers, both in the cable and on the board, can go a long way in either solving 
existing programming problems or preventing them.  It is not the only consideration, however. 

Termination of Signals

In any high speed board or system design, termination of signals is often required to ensure 
reliable operation.  The same is true in an ISP environment.  Termination and correct board layout 
techniques can go a long way to developing a reliable programming setup.  Some of the effects 
of not terminating a signal can be negative overshooting, where a signal will glitch to a negative 
voltage for a very short period of time (< 2 ns), or double clocking, where a clock signal may have 
a negative glitch on its rising edge.  Both situations can be devastating in an ISP environment.  To 
prevent such possibilities, the following steps should be taken.

◆ Avoid using buffers with extremely fast edge rates such as the 74F244.

◆ Terminate the TCK signal either using a balanced termination network on the main trunk of the 
signal or by using 68 ohm resistors in series with each pin the TCK signal is connected to.

Decoupling Capacitors

Decoupling capacitors are a must for any board using high pin count devices. When they are not 
used, there can be problems caused by the large current usage required when I/Os are changing 
states.  The usual recommendation for decoupling capacitors is a 0.01 or 0.1 µF ceramic capacitor 
on each side of a device along with a single 10 µF tantalum capacitor for the entire device.  For 
many of the lower pin count devices, this may be overkill and the number of capacitors can 
probably be reduced to two 0.01 µF ceramics along with the single 10 µF tantalum.

When Buffers Are Not Used

While buffers are recommended for all designs, they may not always be practical in a smaller 
design where there are only one or two devices in the programming chain.  In this situation, there 
are still precautions which can be taken to minimize problems.

If there are noise problems, they can often be cleaned up using a simple RC filter on both the TCK 
and TMS signals and on the TDI signal into the first device.  Additionally, the ISP devices may not 
always have enough drive capability on their TDO pins to either pull-up or pull-down a signal, six 
feet away, at the parallel port.  In this situation the following measure can be taken.

◆ A 4.7K pull-up or pull-down resistor may be necessary on the TDO signal of the last device in 
the programming chain to reliably switch the signal into the parallel port.  This should only be 
necessary if buffers are not being included as a part of the board design.

Debugging in the ISP Environment

If all of the above guidelines are followed concerning board layout and design, the programming 
should go smoothly and reliably.  There may, however, be other problems which could be the 
result of improper settings in the MACHPRO software, a computer which is too fast for the 
programming chain, etc.  
4-3



  

V A N T I S

           
There are two situations where problems can occur.  The first is when MACHPRO is checking the 
structure of the programming chain by reading the device factory signature of all MACH JTAG-ISP 
devices in the chain and checking for a single bit from all other devices.  If an error occurs at this 
time, it will most often read “ID does not match part ID.”  If this happens, do the following:

◆ If the errors returned are either all “1” or all “0”,  the following could be wrong:

— The programming/JTAG connections are incorrect and should be checked.

— If the 6-pin configuration with the TRST* pin is used and connected, the strobing done by the
parallel port needs to be turned off.  This can be done in the Windows version of MACHPRO
by deselecting the “Any key attached to parallel port” option under the Project|Options menu.
Any software keys connected to the parallel port must then be removed.  In the DOS version
of MACHPRO, the -j 0 option must be used.  

— The programming chain has been incorrectly specified.  Check both the order of the devices
in the chain and the number of instruction register bits in each of the non-MACH devices.

◆ If the errors returned are a combination of “1” and “0” and they vary, the TCK and TMS lines 
may not be either sufficiently terminated or buffered.  Please refer to the guidelines above.

The other time an error could appear is during the bit verify stage of the programming cycle.  If 
this happens, and the IDCODE correctly reads out, the problem is most likely that the computer 
system being used is too fast and data on TDO of the device being verified did not have enough 
time to settle before being shifted through the rest of the programming chain.  This can sometimes 
be seen on Pentium systems running at 133MHz or faster.  If this happens, the following remedy 
can be used.

◆ MACHPRO can specify a longer settling time in both the DOS and Windows versions of the 
software.  In the Windows version this is done by deselecting the “Any key attached to parallel 
port” option under the Project|Options menu and by specifying a new delay value in the 
Project|Advanced Options window. The default value is 50 and should be incremented by 50 
or 100 until the system works.  If errors continue with a delay of 1000 or more, please check 
the connections and make sure the design guidelines above have been followed.  In the DOS 
version of MACHPRO, the delay is set using the -j X -w options where X is the value for the 
delay.

I/O States During Programming

During a programming cycle, all MACH JTAG-ISP devices default to having their I/Os tri-stated.  In 
most situations, this probably will be acceptable and will not cause any problems.  There are 
situations which arise where it may cause some contention.  Through the boundary scan cells of 
the MACH 4 and MACH 5 devices, MACHPRO offers the ability to set all I/O pins to a state of “1”, 
“0”, HIGHZ or don’t care, and to set the state of each I/O pin individually. Refer to the MACHPRO 
User Manual for instructions on how to use this feature.

Conclusion

The design guidelines and debug techniques presented here should lead to a reliable JTAG-ISP 
design and programming flow. JTAG-ISP offers many advantages over traditional programming 
techniques, but additional considerations must be taken into account when implementing it, such 
as proper buffering and termination. This will ensure an effective and productive ISP experience. 
4-4



Publication#  21146 Rev: B
Amendment/0 Issue Date:  September 1997

 

CHAPTER 5

 

5

     
Programming MACH JTAG-ISP Devices on 
Automated Test Equipment
Chapter 5
Introduction

The MACH JTAG-ISP devices are in-system programmable through the test access port pins by a PC 
or Automated Test Equipment (ATE). This offers advantages in the design, manufacturing and 
maintenance phases of a product’s life cycle. Designers can develop systems with reconfigurable 
MACH JTAG-ISP devices connected in series in a boundary scan chain with other JTAG-compliant 
devices for testability (Figure 5-1).

JTAG-ISP: A Long-Term, Cost-Effective Solution

MACHPRO, the Vantis-developed PC-based software tool, is ideal for configuring the MACH devices 
on the board through the same IEEE 1149.1 test interface used for board testing via a PC parallel port 
programming cable. Any subsequent logic changes in the MACH devices can be performed quickly 
on the board connecting to a PC development station without having to remove or reinsert the parts. 
Designers can therefore attempt more design iterations to debug and improve product performance.

TDI TDO

TMS

TCK

M5-512

TDI TDO

TMS

TCK

M4-256

TDITDO

TMS

TCK

AMD K6

TDITDO

TMS

TCK

M4-128

TDITDO

TMS

TCK

74ABT502

TDO

TCK

TMS

TDI

JTAG
Interface

Connector

Connect to PC
parallel port or

board tester test
pins

21146B-1

Figure 5-1. Board with 5 JTAG devices connected in a serial JTAG chain.
TDI and TDO are connected in series while TMS and TCK are in parallel
5-1



  

V A N T I S

           
Once the design has been finalized and is ready for manufacturing, MACHPRO can generate an 
output file for the target ATE or board tester. Now, manufacturing engineers can incorporate the 
programming of the MACH devices into the board manufacturing flow. Programming MACH 
devices on the tester during manufacturing offers many advantages:

◆ Programming and pattern verification is fast and is determined by the tester clock rate and the 
programming time requirements of the devices

◆ Programming on the ATE removes the cost of maintaining and upgrading a separate 
programming station

◆ Component damage is minimized by reducing handling of the devices with fine-pitch leads

The MACH JTAG-ISP devices can be treated as generic devices that can be loaded directly onto a 
printed-circuit board and configured with the required patterns during the manufacturing and test 
flow. Programming on the tester eliminates the possibility of a device with the wrong pattern being 
placed on the board. Since MACH devices have fast programming times, combining programming 
and board test on the same ATE station will have minimal impact on the manufacturing beat rate.

Once the product has been released to the end-user, logic updates can be performed easily in the 
field by a technical support person with the new programming patterns, a notebook PC and a 
programming cable. Designers can also design the board such that MACH devices in the JTAG 
chain can be configurable through a microcontroller. Updated software and new programming 
patterns can be delivered via disk or modem to customers with these microcontroller- or 
microprocessor-based systems, and they can perform the updates themselves.

Programming on Board Testers

MACHPRO has options for generating vector files for programming MACH devices on board testers 
from the major ATE vendors: GenRad, HP and Teradyne. Since the MACH 4 and MACH 5 devices 
are IEEE 1149.1-compliant, MACHPRO can generate programming and pattern verification vectors 
for these devices that are in a serial chain with other non-MACH JTAG-compliant devices. The 
position of the MACH devices in the serial chain and the operations to be performed on them are 
described in an ASCII file called a JTAG chain description file. (Refer to the MACHPRO User Guide 
for information on creating and processing a JTAG chain description file.) Any MACH parts that do 
not need to be reconfigured and all non-MACH devices are put into bypass mode by MACHPRO. 

By using the JTAG interface for MACH device programming, manufacturing engineers do not need 
any special programming software because the programming vector files can be treated as regular 
test programs. Manufacturing engineers can therefore process the MACHPRO-generated files with 
existing JTAG or boundary scan test software supplied by the ATE vendor and convert it to the 
native tester language format before downloading it to the tester.

Printed Circuit Board Layout Considerations for Boundary Scan Chains 

Ground access points (vias, component leads etc.) should be numerous and distributed evenly 
across the entire PCB. The even distribution of ground access points across the surface of the PCB 
helps to reduce the wire length on the ground probes and reduces the effects of ground bounce. 
Large boundary scan chains must have a substantial number of ground access points distributed 
across the PCB. This will enable the fixture design software to generate short ground wires 
throughout the fixture. The number and distribution of ground access points will be the single 
most important factor in determining the signal integrity of the in-circuit test fixture. Poor and 
5-2



 

Chapter 5

 

V A N T I S

     
limited distribution of ground access points will prevent reliable and repeatable in-system 
programming and boundary scan testing.

The following examples show the 6-pin JTAG configurations for M4-128/64 and M4-256/128 
devices. For other MACH devices with the standard 4-pin (TCK, TMS, TDI and TDO) JTAG 
configurations, the connections for TRST* and ENABLE* should be ignored.

Disabling Upstream Devices

All devices that can drive the nodes TCK, TMS, TDI, TDO, ENABLE* and TRST* must be disabled 
during in-system programming. In addition, the methods used to disable these devices must not 
back drive the outputs of any another components. The disable methods used should also persist 
during periods where the tester drivers are inactive between tests.

Under most circumstances, the IEEE 1149.1 bus signals TCK, TMS, TDI, TDO and TRST* are not 
normally driven by other components or bused with other devices. However, in some designs, 
components do take control and drive the test bus. These devices could be buffers, scan controllers 
and ASICs used for embedded diagnostics or for dynamic self-configuration. Special consideration 
must be given to these unique topologies when attempting to implement JTAG-ISP using an in-
circuit tester.

An example of a device that shares the test bus is shown in Figure 5-2. This device should be 
disabled from the bus at all times during JTAG-ISP. This is a simplistic example and other more 
complex configurations could exist, but they must be designed in the same way to insure persistent 
and non-backdriving disables. Figure 5-2 is a good example of a design that allows an upstream 
device to be persistently disabled without backdriving. This component can be disabled 
persistently by connecting the Output Enable pin to VCC using a tester GP relay (see Figure 5-3).

IEEE-1149.1

MACH74HC244


TRST*



TDI





TMS

TCK

ENABLE*




TDO



OE

IEEE-1149.1

MACH


TRST*



TDI





TMS

TCK

ENABLE*




TDO

21146B-2

Figure 5-2. Device Sharing Test Bus
5-3



  

V A N T I S

  
Persistence of Critical Signals & Disabling During Programming

File sizes and vector counts for programming MACH devices are quite large when compared to 
regular in-circuit tests. Programming files for multiple devices are far too large for most testers to 
compile and apply in one single pass. If a programming file is too large to be compiled on its own 
then it must be partitioned (broken up) into a number of smaller tests that are applied sequentially. 
The key to successful partitioning is the ability to continuously hold critical signals in known states 
during transitions between tests. 

This can be achieved using a combination of pull up resistors and connecting signals directly to 
power or ground using General Purpose Relays (GP Relays). All TRST* pins on every boundary 
scan device in the chain must be fully controlled along with all program pins on the MACH devices. 
TRST* must remain high throughout the entire duration of JTAG-ISP. We recommend that all 
ENABLE* pins are fixed low throughout the duration of JTAG-ISP also. The programming vectors 
pulse the ENABLE* pin low when programming data has been loaded. However, holding the 
ENABLE* pin low for the entire duration of JTAG-ISP is acceptable and is recommended.

An example of how to achieve persistent signals and disables is shown in Figure 5-3. The test is 
strategically partitioned at a point where TCK and TMS are being driven high. At the end of the 
first test the drivers are turned off and TCK and TMS remain high due to the pull up resistors. TRST* 
and ENABLE* are continually held high and low, respectively, by the use of GP relays connecting 
them to the power and ground nodes. The next test in the sequence always starts out driving the 
last vector of the previous test. In this case, TCK and TMS will be driven high and the tester will 
again take control of the device.

Figure 5-3 shows a GP relay being used to disable a bused device during programming. This is an 
ideal disabling situation for a device that shares the test bus. Figure 5-3 also shows the use of GP 
relays to hold the TRST* and ENABLE* persistently during ISP.

IEEE-1149.1

MACH


TRST*



TDI





TMS

TCK

ENABLE*




TDO



OE

IEEE-1149.1

MACH


TRST*



TDI





TMS

TCK

ENABLE*




TDO

VCC

VCC

GP Relays

Pull Up

Resistors

on TCK

and TMS

GP

Relay

74HC244

21146B-3

Figure 5-3. Persistence of Critical Signals and Disabling During Programming
5-4



 

Chapter 5

 

V A N T I S

   
Figure 5-4 shows an optimum scan chain design for JTAG-ISP. No other devices can drive the test 
bus except the tester. Pull up and pull down loads are designed onto the PCB (not wired into the 
fixture which adds additional wires on critical nodes). Only two devices are shown in Figure 5-4. 
However, any number of IEEE-1149.1 devices could be bused together, occupying any position in 
the scan chain. If other devices in the chain have a TRST* pin or “Compliance” pins (pins that must 
be asserted to place them into boundary scan mode) then these signals must be controlled 
persistently using GP relays or pull up/down resistors.

Test Fixture Design Considerations For Boundary Scan Chains

Once the PCB has been designed and routed optimally for signal integrity, good ground access 
and distribution in the test fixture design must be considered.  There are a number of things a test 
developer can do to reduce noise and increase signal integrity in the test fixture. The most 
important factor will be wire lengths. Long wires introduce noise and reduce signal quality. Nodes 
such as TCK and TMS must be marked “CRITICAL” in the HP3070 board test files so that during 
fixture design the shortest possible wires are assigned. For other ATE equipment, similar 
instructions or precautions must be followed to insure that TCK and TMS nodes have short wires.

Twisted pair wiring can also be specified for critical nodes. Twisted pair wiring can be selected for 
these nodes using the HP3070 board consultant program. Twisted pair wiring in combination with 
a ground plane is strongly recommended for very large boundary scan chains and multiple part 
programming. All of the tester grounds should be wired to the plane with short low impedance 
wires or ground rakes. There must be an adequate number of ground resources assigned in the 
fixture. To increase the number of grounds specify a higher power supply current than required 
to power the board. This will force the fixture design software to assign more ground resources. 
If good PCB design practices are followed and ground access points on the board are numerous 
and distributed adequately across the board then optimal short wire ground interfaces will exist. 

Board placement can have an effect on signal integrity. When designing the fixture carefully place 
the board over the tester resources, paying close attention to the points where TCK, and TMS nets 

IEEE-1149.1

MACH


TRST*



TDI





TMS

TCK

ENABLE*




TDO




IEEE-1149.1

MACH


TRST*



TDI





TMS

TCK

ENABLE*




TDO

VCC
GP Relay

VCC

GP Relay

21146B-4

Figure 5-4. Optimum Scan Chain Design for JTAG-ISP
5-5



  

V A N T I S

        
will be probed. Place the board so they are very near digital resources if possible. Also place the 
board so that only a minimum amount of ground resources are blocked by probes. In particular, 
pay close attention to the ground resources on the cards that drive the TCK, TMS and TDI nodes. 
Try not to block any ground resources on these cards.

Obtaining a reliable and solid probe contact with TCK, TMS and TDI nodes is also crucial for 
reducing noise and maintaining signal quality. Try to design the PCB with pad sizes greater than 
35 mil at least for TCK, TMS, TDI, TDO, TRST* and ENABLE* access points. Space the points at 
least 100 mil to 75 mil from other points so that 100 mil or 75 mil probes can be used. High force 
(10 OZ.) and steel-tipped probes will help to obtain solid reliable probe contact.

Generating Vector Files

There are Windows 3.1, Windows 95, Windows NT and DOS versions of MACHPRO. To generate 
the vector files in the Windows versions, click on the desired output format options (Figure 5-5). 
There are equivalent command line options for generating ATE vector files in the DOS version of 
MACHPRO.

Generating a GenRad Vector File

To generate a vector file for a GenRad tester, use the “-4 filename” option.

Ex:  C:\MPRO_DSG> machpro -I project -4 board1.vct

MACHPRO will generate a vector file called BOARD1.VCT with vectors in the following format:

! File [board1.vct] created Wed May 22 18:09:29 1996
! for GenRad preprocessor generated by
! MACHPRO(tm)
! Version 1.40h (c) 1994-1996 Advanced Micro Devices, Inc.
! Pin order: TCK,TMS,TDI,TRST,ENABLE,TDO
+unit Program_AMD_MACHS

Process all parts even if errors occur

MACHPRO Processing Options

Reinitialize part on error

Compress JEDEC files

Use compressed file format

No prompt before overwriting result files

Use parallel programming mode

GenRad vector format

HP PCF format

Teradyne vector format

ATE output formats
Max Number of Vectors per File (Teradyne only)

200000

Get Filename

Parallel Port (Hardware) keys

Any key attached to parallel port

Prompt for correct programming cable
if any key is 

OK Cancel

Serial vector format

ATE Vector Output Filename

SVF Vectors for Programming and Pattern Verification

SVF Vectors for Programming Only

21146B-5

Figure 5-5. MACHPRO for Windows output option menu for specifying ATE vector formats
5-6



 

Chapter 5

 

V A N T I S

            
00011X
00011X
C1011X
C1011X
+begin id 1 register
C1011H
C1011L
+end id 1
C1011X
+wait 50m
C1111X
C0111X
+verify begin id 1
C1011X
C0011X
...
C1111H
+end verify id 1
   ...
C0011X
00011X
+end unit

Comments are preceded by a ‘!’ and continue to the end of the line. Lines which require special 
processing are marked by a ‘+’. For example: The lines “+begin id 1 register” and “end id 1” are 
used to bracket vectors for testing the device ID code for the first JTAG device in the chain. If you 
have more than one MACH JTAG-ISP device being programmed in the chain, then you will have 
similar sets of vector statements for each device with the number being the position of the device 
in the chain.

Similarly, the statements “+verify begin id 1” and “+end verify id 1” are used to verify if JTAG 
device number 1 was configured correctly. There are no special statements to mark which parts 
are being programmed, but programming is performed by shifting in data and then waiting for a 
predetermined amount of time. This is accomplished for the MACH devices by the line “+wait 
50m” which means wait in this state for 50 ms.

Each line of the form XXXXXX (e.g., 00011H) specifies the state of each JTAG pin listed in the "Pin 
order" statement. In the preceding example, 00011X means drive TCK, TMS, and TDI low, drive 
TRST and ENABLE high, and test if the TDO pin is high. The tester drives the pins low or high if 
0 or 1, respectively, is specified, and compares the state of the TDO pin at this time against H or 
L as indicated. If it is X, then the tester does not need to test the TDO pin. A C will be compiled 
into a clock pulse. The clock pulse will be issued only after the other inputs (i.e. TMS, TDI, TRST, 
and ENABLE) have been set up.

This vector file is processed by a GenRad-supplied program called AMD2GR.PRL to produce a 
“.DTS” file which is a GenRad intermediate file format. The .DTS file is a test program written as 
a model that can be stored in a library on the GenRad test system.

GenRad’s test generator program is then run on the .DTS file to convert the model into a “.TPG” (test 
program) compatible format. The .TPG file is then processed further and converted into a binary file 
with the “.OBC” file extension. The .OBC file can now be downloaded and run on the tester.
5-7



  

V A N T I S

                     
GenRad offers a hardware option for their testers called Deep Serial Memory which eliminates the 
overhead in loading test vectors. This reduces total programming and pattern verification time and 
results in better tester throughput. Contact your local GenRad Applications Engineer for more details.

Programming on Teradyne Testers

There are two ways to program the MACH devices on the Z18XX series testers: through the Vector 
Processor (VP) or the Digital Function Processor (DFP). The VP takes MACHPRO-generated 
programming vectors and applies them to the JTAG interface while the DFP programs a MACH 
device by processing the programming information specified in a JEDEC map.

The Teradyne Vector Processor

Use the MACHPRO command line with the “-3 filename maxvect” option to generate the vectors 
for the VP:

Ex: C:\> machpro -I design3.chn -z 3 -3 teradyne.vct 150000

The maxvect option is used to specify the maximum number of vectors in a vector file. If this 
number is exceeded, then MACHPRO automatically creates a new file or files to handle the 
overflow. The files will have the names 0 0 0 0 0 0 0n.AMD where n ranges from 1 to the 
maximum number of files required.

Upon completion of vector generation, MACHPRO will display a message indicating the total 
number of vectors generated and the number of new files created:

C:\JTAG> machpro -i design3.chn -z 3 -3 teradyne.vct 150000
MACHPRO(tm)  Version 1.40h (c) 1994-1997 Advanced Micro Devices, Inc.
[Start: Fri Jun 21 17:42:31 1997]
============================================================
[        board_00 (  mach445)]: Program, plus pattern verification only
Reading JEDEC map [blink.jed]
Reading row     [       0]
==> Teradyne vectors written to file [teradyne.vct]
==> No errors
============================================================
[End  : Fri Jun 21 17:46:49 1997]
 Elapsed time     (00:04:18)
Number of vectors generated in all files [399959]
Number of additional tester files created [2]
C:\JTAG>

The vector files have to be partitioned to prevent overflowing the VP memory. A local library is 
created in the VP system and the vectors are loaded into this library.

For example: If maxvect is specified as 150000 and the total number of vectors to perform 
the programming operation is 400K, then MACHPRO will create 2 additional files with the 
names 0 0 0 0 0 0 0 1.AMD and 0 0 0 0 0 0 0 2.AMD. The vectors will be partitioned at the 
point where TCK is high. This last vector will be the first vector in the new vector file.

The Teradyne file format for the VP contains pin order declarations, tester clock frequency, and 
vectors (Figure 5-6). Inputs in the vector are represented by H (High/1) and L (Low/0) while 
outputs are represented by U (Up/HIGH/1), D (Down/LOW/0), or X (Don’t care).
5-8



 

Chapter 5

 

V A N T I S

   
' File [teradyne.vct] created Fri Jun 21 16:58:29 1997
' Teradyne Z18xx vector file for Vector Processor (VP)
' generated by MACHPRO(tm)
' Version 1.40h (c) 1994-1997 Advanced Micro Devices, Inc.
' Pin declaration section
NPINS = 8;
8,Delay_10Ms,I;
7,Delay_01Ms,I;
6,ENABLE    ,I;
5,TRST      ,I;
4,TCK       ,I;
3,TMS       ,I;
2,TDI       ,I;
1,TDO       ,O;
Maxrate  1 MHZ
Mdelay   1000 NS
Thresh   LO 1.6 HI 1.6
Term     NONE
'========== Begin Vector Section ==========
Vector;
Begin Set;
HHHHLLLX;
HHHHLLLX;       ' Logic Rst
HHHHLHLX;
HHHHHHLX;       ' Logic Rst
HHHHLHLX;
HHHHHHLX;       ' Logic Rst
...
HHLHLLLX;
HHLHHLLU;       ' Shift DR      'Vector     150000
HHLHLLLX;
HHLHHLLU;       ' Shift DR
End set;
End Vector;

Figure 5-6. Sample Teradyne vector file for the Vector Processor

Programming MACH devices requires delays to be inserted at certain points in the vector set. The 
VP does not have the ability to create these delays so a hardware module has to be added to the 
test fixture to insert wait states. This module is called the Dual Precise Timer board (Teradyne part 
number 051-038-00). The DPT drives the VPHOLD line of the VP for either 1 or 10 milliseconds 
whenever a high to low transition occurs on its A or B input respectively. The MACHPRO-
generated vectors contain entries called DELAY_10MS and DELAY_01MS to control the A and B 
inputs on the DPT.

To program on the Teradyne Z18xx tester, the DPT is wired into the fixture, the vectors added to 
the local VP library, and digital test steps added to the In-Circuit program. The number of digital 
test steps is determined by the number of files generated by MACHPRO. An incremental generate 
operation is performed, and then the digital test steps that program the MACH devices must be 
run in order. 
5-9



  

V A N T I S

     
Using the Digital Function Processor

Setting up the DFP to program a MACH is similar to having the DFP program a flash memory. A 
subdirectory of the board directory is created containing the PT2.INI, PTPROG.EXE and the JEDEC 
file containing the MACH fuse data. The PT2.INI is edited so it contains the correct device ID, 
device type, JEDEC filename, translation code, fill data, and chain position. A sample PT2.INI file 
to program one M4-128 is shown in Figure 5-7.

L,IC1,M4_128,test.jed,91,54096,0,1
R,format 91 = Jedec fuse file
M,0001,07568
R,AMD mfg code=0001(Hex), device code=07568(Hex)

Figure 5-7. Sample PT2.INI file for PTPROG.EXE program in DFP

The fields in the PT2.INI file are:

L = local device tag
IC1 = board identifier
M4_128 = device type
test.jed = data source file
91 = format of data source file (91 = Jedec fuse File)
54096 = Number of fuses
0 = chain position
1 = fill character

M = manufacturer tag
0001 = AMD manufacturer code (Hex)
07568 = AMD device code (Hex)

R = remarks/comments

As long as the fixture is wired according to the comments in the PTPROG.EXE source file no 
additional modifications are necessary. ProgramVARs (program variables) are modified to enable 
the DFP and specify the AUX port and source directory. A DFP worksheet is added and the 
programming routine is called.

Any time a new JEDEC file is written over the old one, the new JEDEC file will be copied down 
to the DFP and translated into an image file. This image file will be used by PTPROG.EXE when 
programming the MACH. Maintaining the test program is easier with a DFP because each time the 
fuse data/JEDEC file changes, the updates can be automated. If you are using the VP, you can 
develop a script to call MACHPRO to generate a new set of VP vector files from the new JEDEC 
file, and then edit the In-Circuit program to add the test steps determined by the number of test 
vector files created. Check with your local Teradyne Applications Engineer for additional 
information on using the VP and DFP for programming any new MACH devices.
5-10



 

Chapter 5

 

V A N T I S

             
Generating an HP3070 Pattern Capture Format (PCF) File

PCF is the native tester language of the HP3070 series of testers. To generate a PCF file, use the “-
2 PCF_file” command option in MACHPRO:

Ex:   C:\> machpro -i project.chn -z 3 -1 -2 projname.pcf

where:

-i PROJECT.CHN is the option to specify the input/chain file
-z 3 instructs MACHPRO to display status messages while processing the input file
-1 turns on parallel programming mode
-2 PROJNAME.PCF turns on PCFfile generation and specifies the filename to write to

MACHPRO will generate a PCF file called DESIGN1.PCF. The file format is very similar to the 
GenRad format:

! Thu Jun 20 15:06:25 1997
! HP PCF File [pp] generated by MACHPRO(tm)
! Version 1.40h (c) 1994-1997 Advanced Micro Devices, Inc.
! PCF header by APG Test Consultants
! Pattern Capture Format    subset of VCL
! Vector Control Language   digital test language

!generate static test

vector cycle 500n
receive delay 400n

family TTL

assign TCK      to nodes "TCK_Node"     ! Enter nodes
assign TMS      to nodes "TMS_Node"
assign TDI      to nodes "TDI_Node"
assign TDO      to nodes "TDO_Node"
assign TRST     to nodes "TRST_Node"
assign ENABLE   to nodes "ENABLE_PIN_NODE"

inputs  TCK,TMS,TDI,TRST,ENABLE
outputs TDO

!dynamic TCK,TMS,TDI,TDO

pcf order is TCK,TMS,TDI,TRST,ENABLE,TDO

unit "Program_AMD_MACHS"

pcf
   !                    !Start of vectors
   "00011X"
   "00011X"     ! Logic Rst
   "01011X"
   "11011X"     ! Logic Rst
   "01011X"
   "11011X"     ! Logic Rst
   "11011X"     ! Update IR
   "00011X"
      ...
   "10011X"     ! Test Idle
   "00010X"     ! Test Idle
5-11



  

V A N T I S

           
end pcf
wait 100m
pcf
   "00011X"     ! Test Idle
!== Prog Init/shift row all 0s
!== Shift in instruction  3
   "01011X"
   "11011X"     ! Select DR
   "01011X"
   "11011X"     ! Select IR
end pcf
end unit

A comment is preceded by the exclamation point “!” and continues to the end of the line. The 
generate static test and dynamic statements are valid HP3070 syntax but are commented out 
in the MACHPRO-generated programming files. These features are not being used at this time.

The vector cycle and receive delay times indicate the application rate of the vectors and when the 
receive strobe is activated.

vector cycle 500n
receive delay 400n

In the preceding example an individual PCF vector is applied every 500 nanoseconds. The vector 
is driven by the tester for 500 nanoseconds. If any responses are to be measured (out of TDO) by 
the tester it will be measured 400 nanoseconds after driving the inputs. The programming vectors 
produced by MACHPRO use a 50% duty cycle on TCK. Therefore, one cycle of TCK high (1) and 
low (0) will be represented by two PCF vectors lasting 500 nanoseconds each, translating into a 
TCK rate of 1 MHz.

The assignment statements map the test pin variable names (TCK, TMS, TDO, etc.) to the signal 
names in the board and fixture file. The input and output sections are used to assign test pins to 
a pin driver or receiver on the tester. The order of signals in a vector is determined by the PCF 
order statement and is similar to the GenRad format. There are comments included to the right of 
some vectors to indicate the state of the JTAG state machine when the vector is executed. PCF also 
has a wait statement to hold the tester drive pins in the current vector state for the specified amount 
of time.

The PCF file must be compiled first before downloading it to a tester. Transfer the PCF file from 
the PC to the HP3070 and then do the following:

1. Change the file type from a text file to a digital file by loading the PCF file in an HP BASIC
window, running the command load digital “design1.pcf”, and then re-saving it.

2. Assign node names to the PCF file.

Each programming file generated by MACHPRO contains dummy node names (place holders) 
called TCK_NODE, TMS_NODE, TDI_NODE, TDO_NODE, TRST_NODE and ENABLE_NODE. 
After loading the programming file, edit the node names in the assign statements to match those 
found in the board file. The following shows an example of a PCF programming file where the 
actual node names on the board are: TCK, TMS, TDI, TDO_TDI_2, N_BSCAN_RST and N$3865.

assign TCK      to nodes "TCK"     ! Enter nodes
assign TMS      to nodes "TMS"
5-12



 

Chapter 5

 

V A N T I S

          
assign TDI      to nodes "TDI"
assign TDO      to nodes "TDO_TDI_2"
assign TRST     to nodes “N_BSCAN_RST”
assign ENABLE   to nodes “N$3865”

If the ENABLE node or the TRST node are going to be controlled by general purpose (GP) relays 
or by other persistent methods (ie., pull-ups or pull-downs), then use an asterisk (*) so the tester 
will not drive these nodes when executing the test program.

assign TCK      to nodes "TCK"     ! Enter nodes
assign TMS      to nodes "TMS"
assign TDI      to nodes "TDI"
assign TDO      to nodes "TDO_TDI_2"
assign TRST     to nodes *
assign ENABLE   to nodes *

The TRST and ENABLE nodes should have an asterisk only if they are being controlled by GP 
relays. These signals should not glitch during programming and we therefore recommend 
controlling these signals directly with GP relays at all times during JTAG-ISP.

The MACHPRO-generated PCF files are large and it is necessary to partition this file into smaller 
files. Vantis provides an “Automatic Partition Generator” (APG) program that runs on the HP3070 
platform. APG will automatically partition files into sizes that the tester can handle. APG will break 
or partition files at a point where the critical signals TCK and TMS are being driven high. The last 
vector in one file is always the first vector in the next file and helps to maintain glitch-free program 
transition. If the test programmer has adequately taken care of the persistence of critical signals 
along with any disabling required, the tests should transition glitch-free.

To use the APG program, copy the file to your HP3070, open a BASIC window in the directory 
where your MACHPRO files reside, and then load the APG BASIC program. Run it using the 
following commands:

1. Type load basic “apg.bas” at the prompt. The APG code should now be loaded and visible in
the window.

2. When APG.BAS is loaded, type run.

3.  The program will prompt you for a filename. Enter the MACHPRO-generated PCF filename you
created and press return.

---------------------------------------------------------
----------- APG Test Consultants, Inc.-------------------
---------------------------------------------------------
---------- MACH IEEE.1149.1 Programming------------------
---------------------------------------------------------
---------- PCF File Partitioning Utility ----------------
---------------------------------------------------------

Enter the PCF MACH file you would like to Partition >

The actual number of partitioned test files that the APG utility will generate depends on the size of the 
original PCF file. As a rule of thumb one file partition is created for each device being programmed. If 
you have a JTAG chain with two M4-128/64 devices, then two partitions will be generated. For a single 
MACH device not in a large chain, it is possible that the MACHPRO-generated PCF test file will compile 
without partitioning. Try to compile the MACHPRO-generated PCF test file first, and use the APG utility 
only if memory warning/error messages are generated by the PCF compiler.
5-13



  

V A N T I S

 

The APG utility creates names for the partitioned files by appending an underscore and a number 
to the original file name to indicate the number of generated test files and the order in which to 
apply the tests. If the input file name was mach-prog.pcf then the files produced by the APG utility 
will be called mach-prog.pcf_1, mach-prog.pcf_2, mach-prog.pcf_3,  etc.

Shown below is an example of an HP3070 test plan showing how to execute the tests in sequential 
order. The GP relay connect statements are there to insure the persistence of the critical signals 
during programming.

gpconnect “disabling_nodes” to “VCC”
gpconnect “TRST” to “VCC”
gpconnect “ENABLE” to “GROUND”

test “digital/mach-prog.pcf_1”
test “digital/mach-prog.pcf_2”
test “digital/mach-prog.pcf_3”

After the files are partitioned they will have to be added to the HP3070 test order file and compiled. 
The files can take up to one hour to compile depending upon the system load. When the files are 
compiled they are ready for execution on the tester.

Programming on PC Based Testers

The development of the IEEE 1149.1 standard using a simple 4-pin interface has led to an arena 
of low-cost, bench-top test equipment.  There are several vendors offering these types of systems 
including JTAG Technologies, Asset Intertech and Corelis.  Many of these vendors have the ability 
to read in vectors written in SVF (Serial Vector Format), a language created specifically for JTAG 
testability.  MACHPRO can generate SVF vectors in either the DOS or Windows versions of the 
programs.  Many of these testers will then be able to directly read in the vectors and program the 
devices.  

To generate an SVF vector file, use the “-s <A|P> filename” option in the DOS version of 
MACHPRO.

Example: C:\> machpro -i project.chn -z 3 -1 -s A projname.svf

This will generate an SVF file which can be used to program and verify all of the devices in the 
chain specified by project.chn.  This file can then be used as input into the bench-top test 
equipment to program the devices.

Additional Information

Additional information concerning programming on board test systems can be found in the 
literature section of the Vantis web site at www.vantis.com.  
5-14



Publication#  21571 Rev: A
Amendment/0 Issue Date:  September 1997

 

CHAPTER 6

 

6

    
Chapter 6
Enhancing Board Testability using
MACH JTAG-ISP Devices
High-density and high-speed complex programmable logic devices (CPLDs) such as MACH 4 and 
MACH 5 families give today’s system designers the logic capacity and features to cost-effectively 
implement large customized controllers. These include state machines for Ethernet or ATM 
network boards and application-specific PCI bus interface circuitry. The MACH 4 and MACH 5 
devices come in a high-pin count and fine pitch lead package to meet designers’ demands for 
smaller integrated circuit package outlines.

To facilitate testing and programming, the MACH 4 and MACH 5 families have IEEE 1149.1 (JTAG) 
test interface pins and are in-system configurable through the same set of test pins. Three types of 
testing can therefore be performed using JTAG: board connectivity testing using the JTAG EXTEST 
instruction, dynamic (high-speed) testing by reprogramming test logic into the CPLD through the 
JTAG test port, and static (slow-speed) testing through the JTAG INTEST instruction. These testing 
capabilities become more valuable as advanced packaging options such as Ball Grid Array (BGA) 
and micro-BGA become more prevalent.

Interconnectivity Testing

The MACH 4 and MACH 5 families have a JTAG test port and are fully compliant with the IEEE 
1149.1 test standard. The MACH 4 and MACH 5 parts can be placed in a serial JTAG chain 
containing other JTAG-compliant devices (Figure 6-1). It is recommended that engineers use 
buffers (e.g., 74HC244) to drive and/or balance the distribution of the TCK and TMS signals on a 
board containing five or more JTAG devices connected in the same chain since these two signals 
are connected in parallel. The buffers will also help if the JTAG devices in the chain are physically 
spaced far apart on the board.

Various PC or workstation-based JTAG test systems from ATE or board test vendors can then use 
the boundary scan registers in these MACH devices and other JTAG devices to perform board 
connectivity testing (Figure 6-2).

Interconnectivity or continuity testing is done using the boundary scan registers in the devices and the 
SAMPLE/PRELOAD and EXTEST instructions. JTAG instructions and boundary scan data are loaded 
serially by manipulating the Test Access Port (TAP) controller using the TCK, TMS and TDI signals. A 
JTAG test system will obtain the boundary scan register information for a device from the device’s 
Boundary Scan Description Language (BSDL) file. The JTAG test software will have the netlist for the 
board being tested and will generate the interconnectivity test program using this information.

To verify a connection between an I/O on part A (the source) and an input on part B (the destination), 
serially shift a “1” or “0” (in the preload phase of SAMPLE/PRELOAD) into the boundary scan cell of 
the I/O pin being tested. The EXTEST instruction is then loaded to  drive the “1” or “0” in the boundary 
scan cell onto the I/O pin. The SAMPLE/PRELOAD instruction is executed again so that part B now 
samples the value at its input pin before shifting data out through the TDO pin. The JTAG test software 
analyzes the appropriate bit in the TDO serial data stream to determine whether the sampled value 
matches the preloaded value. Trace opens and shorts are detected in this manner.
6-1



  

V A N T I S
JTAG
Interface

Connector
TDI TDO

TMS

TCK

M5-256/160

TDI TDO

TMS

TCK

M4-256/128

TDITDO

TMS

TCK

AMD K6

TDITDO

TMS

TCK

M4-256/128

TDITDO

TMS

TCK

74ABT502

TDO

TCK

TMS

TDI

TDI TDO

TMS

TCK

M4-256/128

21571A-1

Figure 6-1. Board with Vantis MACH and other JTAG devices connected in a serial JTAG chain. TDI and 
TDO are connected in series while TMS and TCK are in parallel

TDI TDO

0

X

1

0

0

0

TDI TDO

JTAG Part A

0

0

1

1

1

0

TAP

JTAG Part B

TMS

TCK

OPEN

1001101X0000

OPEN

TAP

21571A-2

Figure 6-2. Interconnectivity/continuity tests can be performed using JTAG Test Access Port (TAP) pins. 
An open between 2 parts can be detected by JTAG test software
6-2



 

Chapter 6

 

V A N T I S

      
Programming New Test Logic

Once the board connections have been verified, the test engineer can use the same JTAG test port 
to program the target function pattern into the MACH device for system testing. JTAG programming 
software from Vantis called MACHPRO can reprogram any MACH device in the chain; all other 
JTAG devices in the chain will be placed into BYPASS mode and will continue operating normally. 
MACHPRO can use the boundary scan registers in the MACH 4 and MACH 5 devices to individually 
set and hold the state of the I/O pins while the device is being configured. This guarantees that 
there will be no signal contention on the board caused by circuitry driven by the MACH devices’ 
I/O pins being in an unknown or invalid state while the MACH devices are being configured. The 
MACHPRO software is available at no charge from the Vantis website at www.vantis.com.

JTAG in-system configurability enables designers to program different functions into the MACH 
devices to facilitate board debugging and testing. For example, different logic can be programmed 
into the MACH devices to test portions of the board circuitry (Figure 6-3) controlled by the MACH 
devices or to test new functions and improved algorithms.

The MACH 4 and MACH 5 devices’ architectures help maintain the existing pinouts. This is 
accomplished by redirecting the modified logic (which may use more logic resources) to the same 
pinouts. This capability is paramount because the devices have already been soldered on the 
board.

Internal Function Testing

The MACH 4 and MACH 5 devices have the optional JTAG INTEST instruction. This instruction can 
be used to functionally test a part (after it has been configured) using the function test vectors in 
a JEDEC programming map. This process is analogous to performing functional verification after 
programming a MACH device with a JEDEC map containing test vectors using a CPLD device 
programmer (Figure 6-4).

A MACH Device

with Test Pattern 1

IN_1

IN_2

OUT_1

OUT_2

TEST

POINTS

A MACH Device

with Test Pattern 2

IN_1

IN_2

OUT_1

OUT_2

TEST

POINTS

21571A-3

Figure 6-3. Use JTAG in-system configurability (ISC) to program the same MACH CPLD with new logic 
patterns to bring signals being analyzed to more accessible test points
6-3



  

V A N T I S

 

MACHPRO configures the MACH 4 and MACH 5 devices with the bits specified in the JEDEC map 
and then serializes the test vectors in the same JEDEC map before shifting them to the MACH 
devices’ boundary scan registers using the SAMPLE/PRELOAD instruction. When the INTEST 
instruction is executed, input values in the test vector (i.e., zeros and ones) that were loaded into 
the input boundary scan cells (BSC) are applied to the inputs of the MACH devices. Outputs from 
the on-chip system logic (programmed into the MACH device) resulting from application of these 
inputs are clocked into the boundary scan registers in the capture data register phase of  the 
INTEST instruction and then shifted out. The JTAG software then compares the captured values in 
the I/O pins’ boundary scan cells with the expected values specified in the JEDEC test vector to 
determine if the device pins are functioning as expected.

Positive or negative edge-triggered clocks in a JEDEC functional test vector are applied by expanding 
the vector with the clock symbol into three separate vectors. For positive edge-triggered clocks, the 
first vector will set up the input conditions with a “0” in the system clock’s BSC. The second vector 
will be the same as vector 1 except the clock BSC will now contain a “1”. The third vector will have 
a “0” reloaded into the clock BSC to complete the 0-1-0 clock transition. For negative edge-triggered 
clocks, the clock symbol will be expanded to represent a 1-0-1 clock transition.

INTEST allows internal functional testing of programmed MACH 4 or MACH 5 devices on the 
board. JTAG test software from most major ATE vendors have sophisticated testing capabilities that 
include using the boundary scan registers on JTAG parts surrounding non-JTAG devices to 
functionally test logic in the non-JTAG parts in the system (Figure 6-5).

21571A-4

Figure 6-4. JEDEC map with test vectors appended

M4-256/128
FULLFUN*
QV06*
QP208*
QF121152*
G0*F0*
L000000  1110 1011 1000 1011 1111 1111 1111 1001 *
L000032  1111 1111 1111 1111 1110 1100 0111 1111 *
L000660  1111 1111 0111 1111 1111 1111 1111 1111 *
L000726  1111 1111 1011 1111 1110 1111 1111 1111 *
L000858  0000 0000 0000 0000 0000 0000 0000 0000 *
L000924  0000 0000 0000 0000 0000 0000 0000 0000 *
L121000  0111 0000 0001 1111 0111 0100 1001 0110 *
U110 0101 1101 1011 0011 0010 1101 000 * N 32-bit USERCODE*
N 2 test vectors *
V001  NN00XXXXXXXX0NNN0XXXX...XXXXXXXXLHLXXXXLL00000XXXXXX*
V002  NN10XXXXXXXX1NNN0XXXX...XXXXXXXXLHHHHXXLL00000XXXXXX*
6-4



 

Chapter 6

 

V A N T I S
TMS

TCK

TDI

JTAG Part A

0

0

0

1

0

1

TAP

TDI

JTAG Part A

1

0

0

0

1

1

TAP

I/O pads accessible by

board tester

Non-JTAG Logic

21571A-5

Figure 6-5. Test non-JTAG logic sections using boundary scan cells of JTAG parts
6-5



Publication#  21572 Rev: A
Amendment/0 Issue Date:  September 1997

 

APPENDIX A

 

A

                       
APPENDIX A
A
ppendix A
Hardware Specification of MACHPRO Buffered Programming Cable 

The following describes the hardware specification of the MACHPRO buffered programming cable 
(part# 7265-PC-0002) for the PC parallel port, which works with both the 44-pin in-system 
programming (ISP) board (part# 7265-PC-0001) from Vantis and MACHPRO user’s own boards. For 
further information about the MACHPRO buffered programming cable and the ISP board from 
Vantis, please call 1-888-VANTIS2 or visit www.vantis.com.

The MACHPRO buffered programming cable has the following features and characteristics.

Features

◆ Supports MACHPRO software on DOS, Windows 3.1, Windows 95 and Windows NT platforms

◆ Supports in-system programming of MACH 1 & 2 SP, MACH 4 and MACH 5 devices

— Connects to PC parallel port

— Drives the 44-pin ISP board from Vantis

— Supports in-system programming on MACHPRO user’s boards

Characteristics

◆ Cable Length: 6.0 feet

◆ Connectors: DB-25P, 3M 3473-7610 or equivalent

◆ VCC range: 2.0 to 6.0-V DC

Figure A-1 shows the schematic diagram of the buffered programming cable.  The buffer obtains 
VCC through pin 6 of the ISP board or user’s own boards. The buffer must work with 3.3-V or 5.0-
V devices while the SN74HC244N device meets this requirement, operating with VCC ranging from 
2.0 to 6.0 volts and acceptable edge rates. 

Figure A-2 shows the pinout of the header on the 44-pin ISP board from Vantis, which mates with 
the 10-pin cable connector.  The header may be 3M part number 2510-5002-UG, or DuPont part 
number 71918-110.  Both are 10-pin polarized headers to ensure reliable connections.

This buffered cable is backwards compatible with the original MACHPRO cable and will work with 
MACHPRO versions 1.25 and earlier if the cable is connected directly to the parallel port (i.e., no 
software keys attached).  MACHPRO ver. 1.4x or later must be used when a software key is 
attached to the parallel port of the PC.
A-1



  

V A N T I S
10 K 10 K 10 K 10 K 10 K 10 K
0.01

chip

Six-foot

Ribbon cable 6 VCC

9 TRST*

1 TCK

5 TDI

3 TMS

10 ENABLE*

7 TDO
2
4
8

GND

82

110

82

82

82

82

0.01

chip

1
19

NC

51

3M  3473-7610 or equiv.

WIREMOUNT SOCKET

(Mates with 3M

2510-5002-UG header)

SN74HC244N

DB-25P

STROBE 1

D0 2

D1 3

D2 4

ACT_SEL 17

PRINTER

_BUSY

11

GND

18
19
20
21
22
23
24
25




21572A-1

Figure A-1. Schematic Diagram of MACHPRO Buffered Cable

2 4 6 8 10

1 3 5 7 9

21572A-2

Figure A-2. Top View and Pinout of Header Connector

Pin  1:  TCK Pin  2:  no connect (GND in cable)

Pin  3:  TMS Pin  4:  GND

Pin  5:  TDI Pin  6:  VCC

Pin  7:  TDO Pin  8:  GND

Pin  9:  TRST* Pin 10:  ENABLE*
A-2



 

A
ppendix A

 

V A N T I S

                   
Approved Programmer Vendors List

Advin
1050-L E. Duane Ave.
Sunnyvale, CA  94086
USA
Tel (408) 243-7000
Fax (408) 736-2503
BBS (408) 737-9200

System General (Taiwan)
3F, No. 1, Alley 8, Lane 45
Bao Shing Road
Shi Dien, Taipei
Taiwan
Tel (886) 2-917-3005
Fax (886) 2-911-1283

BP Microsystems
1000 N. Post Oak Rd. Suite 225
Houston, TX  77055-7237
USA
Tel (800) 225-2102 
Fax (713) 688-0920
BBS (713) 688-9283

System General (USA)
1603-A South Main Street
Milpitas, CA  95035
USA
Tel (408) 263-6667
Fax (408) 262-9220
BBS (408) 262-6438

Data I/O Corp.
10525 Willows Road N.E.
Redmond, WA  98073-9746
USA
Tel (800) 426-1045
Fax    (206) 882-1043
BBS (206) 882-3211

Tribal Systems (HiLo)
44388 South Grimmer Blvd.
Fremont, CA  94538
USA
Tel (510) 623-8859
Fax (510) 623-9925
BBS (510) 623-0430

HI-LO Systems
4F, No. 2, Sec. 5, Ming Shen E. Rd
Taipei, Taiwan
Tel (886) 2-764-0215
Fax (886) 2-756-6403

SMS Gmbh
Im Grund 15
D-7988 Wangen
Germany 
Tel 4975-2297280
Fax 4975-22972850
BBS 4975-22972888

Stag Microsystems
Silver Court Watchmead
Welwyn Garden City, Herts  AL7 1LT
UK
Tel 44-1-707-332148
Fax 44-1-707-371503
A-3



  

V A N T I S

    
MACH Socket Adapters

The following sockets are available for adapting MACH products for programming on approved 
programmers.

Device Package
California Integration 

Coordinators, Inc. Emulation Technology, Inc.

MACH 110 44 pin PLCC AS-44-28-01P-300-YAM

MACH 111 44 pin PLCC AS -44-28-01P-300-YAM

44 pin TQFP
CIC-44TQ-28D-B6-ENP
CIC-44TQ-28D-A6-ENP

AS -44-28-01TQ-6ENP-SP
AS -44-28-01TQ-600-ENP

MACH 111SP 44 pin PLCC AS -44-28-01P-300-YAM

44 pin TQFP CIC-44TQ-28D-B6-ENP AS -44-28-01TQ-6ENP-SP

MACH 120 68 pin PLCC CIC-68PL-28D-A6-YAM AS -68-28-05P-300-YAM

MACH 130 84 pin PLCC CIC-84PL-28D-A6-YAM AS -84-28-04P-600-YAM

MACH 131 84 pin PLCC CIC-84PL-28D-A6-YAM AS -84-28-04P-600-YAM

MACH 131/1 84 pin PLCC CIC-84PL-28D-A6-YAM AS -84-28-04P-600-YAM

MACH 131SP 100pin PQFP CIC-100QF-28D-A6-YAM AS -100-28-03Q-600

100pin TQFP CIC-100TQ-28D-B6-YAM 

MACH 210 44 pin PLCC AS -44-28-01P-300-YAM

44 pin TQFP
CIC-44TQ-28D-B6-ENP
CIC-44TQ-28D-A6-ENP

AS -44-28-01TQ-6ENP-SP
AS -44-28-01TQ-600-ENP

MACH 211 44 pin PLCC AS -44-28-01P-300-YAM

44 pin TQFP
CIC-44TQ-28D-B6-ENP
CIC-44TQ-28D-A6-ENP

AS -44-28-01TQ-6ENP-SP
AS -44-28-01TQ-600-ENP

MACH 211SP 44 pin PLCC AS -44-28-01P-300-YAM

44 pin TQFP CIC-44TQ-28D-B6-ENP AS -44-28-01TQ-6ENP-SP

MACH 215 44 pin PLCC AS -44-28-01P-300-YAM

MACH 220 68 pin PLCC CIC-68PL-28D-A6-YAM AS -68-28-05P-300-YAM

MACH 221 68 pin PLCC CIC-68PL-28D-A6-YAM AS -68-28-05P-300-YAM

MACH 221SP 100pin PQFP CIC-100QF-28D-A6-YAM AS -100-28-03Q-600

100pin TQFP CIC-100TQ-28D-B6-YAM

MACH 230 84 pin PLCC CIC-84PL-28D-A6-YAM AS -84-28-04P-600-YAM

MACH 231 84 pin PLCC CIC-84PL-28D-A6-YAM AS -84-28-04P-600-YAM

MACH 231/1 84 pin PLCC CIC-84PL-28D-A6-YAM AS -84-28-04P-600-YAM

MACH 231SP 100pin PQFP CIC-100QF-28D-A6-YAM AS -100-28-03Q-600

100pin TQFP CIC-100TQ-28D-B6-YAM 

MACH 355 144pin PQFP AS -144-28-01Q-600

MACH 435 84 pin PLCC CIC-84PL-28D-A6-YAM AS -84-28-04P-600-YAM

MACH 436
(M4-128N/64)

84 pin PLCC CIC-84PL-28D-A6-YAM AS-84-28-04P-600-YAM

MACH 445 100pin PQFP CIC-100QF-28D-A6-YAM AS -100-28-03Q-600

MACH 446
(M4-128/64)

100pin PQFP CIC-100QF-28D-A6-YAM AS -100-28-03Q-600
A-4



 

A
ppendix A

 

V A N T I S

       
Contacts:

MACH 466
(M4-256/128)

208pin PQFP AS -208-28-01PG-600

MACH5-128 160pin PQFP CIC-160QF-28D-A6-YAM AS-160-28-02Q-600

144pin PQFP CIC-144QF-28D-A6-YAM

100pin PQFP CIC-100QF-28D-C6-YAM

100pin TQFP CIC-100TQ-28D-D6-YAM

MACH5-192 208pin PQFP CIC-208QF-28D-A6-YAM AS-208-28-04Q-6YAM

160pin PQFP CIC-160QF-28D-A6-YAM AS-160-28-02Q-600

144pin PQFP CIC-144QF-28D-A6-YAM

100pin PQFP CIC-100QF-28D-C6-YAM

100pin TQFP CIC-100TQ-28D-D6-YAM

MACH5-256 208pin PQFP CIC-208QF-28D-A6-YAM AS-208-28-04Q-6YAM

160pin PQFP CIC-160QF-28D-A6-YAM AS-160-28-02Q-600

144pin PQFP CIC-144QF-28D-A6-YAM

100pin PQFP CIC-100QF-28D-C6-YAM

100pin TQFP CIC-100TQ-28D-D6-YAM

MACH5-320 208pin PQFP CIC-208QF-28D-A6-YAM AS-208-28-04Q-6YAM

240pin PQFP CIC-240QF-28D-A6-YAM

160pin PQFP CIC-160QF-28D-A6-YAM AS-160-28-02Q-600

256pin BGA CIC-256SBGA-28D-A6-PLA

MACH5-384 208pin PQFP CIC-208QF-28D-A6-YAM AS-208-28-04Q-6YAM

240pin PQFP CIC-240QF-28D-A6-YAM

160pin PQFP CIC-160QF-28D-A6-YAM AS-160-28-02Q-600

256pin BGA CIC-256SBGA-28D-A6-PLA

MACH5-512 208pin PQFP CIC-208QF-28D-A6-YAM AS-208-28-04Q-6YAM

240pin PQFP CIC-240QF-28D-A6-YAM

160pin PQFP CIC-160QF-28D-A6-YAM AS-160-28-02Q-600

256pin BGA CIC-256SBGA-28D-A6-PLA

352pin BGA CIC-352SBGA-28D-A6-PLA

CALIFORNIA INTEGRATION COORDINATORS, Inc.
656 Main Street
Placerville, CA 95667, U.S.A.
Tel. 916-626-6168
Fax 916-626-7740

EMULATION TECHNOLOGY, Inc.
World Headquarters
2344 Walsh Avenue, Building F
Santa Clara, CA 95051-1301, U.S.A.
Tel.  408-982-0660
Fax  408-982-0664

Device Package
California Integration 

Coordinators, Inc. Emulation Technology, Inc.
A-5



  

V A N T I S

   
Sample BSDL file for M4-128/64

The following file is a sample BSDL file for M4 -128/64.

-- Vantis M4_128A6 100 Pin PQFP BSDL description
--
-- Written By:  Mark Moyer
-- Date:  February 1, 1997
-- Version 1.2
--
-- *************************************************************************
-- *  Modifications: *
-- *  07/10/97: (Jeffrey Leong) Updated to contain correct boundary scan *
-- *  cell info for the MACH4_128A6 100 Pin PQFP *
-- * *
-- *************************************************************************
-- *  Copyright 1997, Vantis                     *
-- *  All rights reserved.  No part of this program or publication *
-- *  may be reproduced, transmitted, transcribed, stored in a    *
-- *  retrieval system, or translated into any language or        *
-- *  computer language, in any form or by any means without this *
-- *  notice appearing within.                                    *
-- *  5900 E. Ben White Blvd.,  Austin, Texas 78741               *
-- *************************************************************************
-- *  Vantis makes no warranty for the use of this *
-- *  product and assumes no responsibility for any errors which  *
-- *  may appear within.  Neither does it make a commitment to   *
-- *  update this information.                                    *
-- *************************************************************************
-- *  This is the template BSDL file for the M4-128/64 to be used   *
-- *  for the purpose of verifying the parts compliance with the  *
-- *  IEEE standard 1149.1-1990.  The BSDL language is not at    *
-- *  this time a standard and IEEE holds no opinion on it or its *
-- *  use.  It has been submitted as a proposed addition to the   *
-- *  standard and should be voted on by the working committee    *
-- *  this year.                                                  *
-- *************************************************************************
--
--  This file has been verified by:
--     Teradyne VICTORY v 2.10
--         - Syntax Check using BSA
--         - Test vector generation using BSA
--
--     Hewlett-Packard Boundary-Scan Software
--         - Syntax Check
--
--     Genrad Boundary-Scan Software
--         - Syntax Check
--         - Physical Verification
--
A-6



 

A
ppendix A

 

V A N T I S

 

entity AMD_ M4_128A6 is

generic(PHYSICAL_PIN_MAP : string := "PQFP_100pin");

port    (
DED_IN  : in    bit_vector(0 to 5);  --  Clocks/Inputs
IO              : inout bit_vector(0 to 63);  --  I/O pins
TCK, TMS, TDI, TRST: in  bit;   --  JTAG inputs
TDO             : out bit;      --  JTAG outputs
ENABLEB         : linkage bit;  --  Program Enable pin

VCC             : linkage bit_vector(0 to 7);
GND             : linkage bit_vector(0 to 15)
);

use STD_1149_1_1990.all;  -- get JTAG definitions and attributes

        attribute PIN_MAP of AMD_ M4_128A6 : entity is PHYSICAL_PIN_MAP;

constant PQFP_100pin :  PIN_MAP_STRING :=
"DED_IN:(13,18,54,63,68,4), " &  -- Dedicated Clock/Input Pins

                "IO:(93,94,95,96,97,98,99,100,    " &  --  I/O A
"  5,  6,  7,  8,  9, 10, 11, 12, " &  --  I/O B REV
" 19, 20, 21, 22, 23, 24, 25, 26, " &  --  I/O C
" 31, 32, 33, 34, 35, 36, 37, 38, " &  --  I/O D REV
" 43, 44, 45, 46, 47, 48, 49, 50, " &  --  I/O E
" 55, 56, 57, 58, 59, 60, 61, 62, " &  --  I/O F REV
" 69, 70, 71, 72, 73, 74, 75, 76, " &  --  I/O G
" 81, 82, 83, 84, 85, 86, 87, 88)," &  --  I/O H REV
"ENABLEB:53, " & 
"TDI:3, TMS:27, TCK:28, TRST:77, TDO:78, " &  --  JTAG

"VCC:(14,15,39,42,64,65,89,92), " &  --  POWER
                "GND:(1,2,16,17,29,30,40,41,    " &  --  GROUND PINS

 "51,52,66,67,79,80,90,91)";  -- END OF PIN DEFINITION

attribute TAP_SCAN_IN   of TDI : signal is true;
attribute TAP_SCAN_MODE of TMS : signal is true;
attribute TAP_SCAN_OUT  of TDO : signal is true;
attribute TAP_SCAN_RESET of TRST : signal is true;
attribute TAP_SCAN_CLOCK of TCK: signal is (20.0e6, BOTH);

--  Instruction register definitions

        attribute INSTRUCTION_LENGTH of AMD_ M4_128A6 : entity is 6;
        attribute INSTRUCTION_OPCODE of AMD_ M4_128A6 : entity is

"BYPASS    (111111)," &
"EXTEST    (000000)," &
"SAMPLE    (000010)," &
"IDCODE    (000001)," &
"USERCODE  (010000)," &
"HIGHZ     (010001)," &
"REG_PRE   (001010)," &
"REG_OBS   (001011)," &
"PRIVATE   (110011,110100,110000,110010,100101,101110," &

               "100111,101101,001100,001101,001110,000110," &
                  "000101,000111,001000,001001,001111,000011,000100)";

        attribute INSTRUCTION_CAPTURE of AMD_ M4_128A6 : entity is "000001";
        attribute INSTRUCTION_DISABLE of AMD_M4_128A6 : entity is "HIGHZ";
        attribute INSTRUCTION_PRIVATE of AMD_ M4_128A6 : entity is "PRIVATE";
A-7



  

V A N T I S

 

        attribute IDCODE_REGISTER of AMD_ M4_128A6: entity is
                "0001" &                        -- version number
                "0111010101101000" &            -- part identification

"00000000001" &                 -- company code
"1";                            -- mandatory 1

        attribute USERCODE_REGISTER of AMD_ M4_128A6 : entity is
                "11111111111111111111111111111111";
        attribute REGISTER_ACCESS of AMD_ M4_128A6: entity is

"BYPASS (BYPASS, HIGHZ)," &
"BOUNDARY (EXTEST, SAMPLE, REG_PRE,  REG_OBS)";

-- **************************************************************
-- *    BOUNDARY SCAN CELL REGISTER DESCRIPTION
-- *            THE FIRST CELL (0) IS THE CELL CLOSEST TO TDO
-- **************************************************************

        attribute BOUNDARY_CELLS of AMD_ M4_128A6 : entity is "BC_1";
        attribute BOUNDARY_LENGTH of AMD_ M4_128A6 : entity is 198;

        attribute BOUNDARY_REGISTER of AMD_ M4_128A6 : entity is

--  1.  The order of the I/O cell is OE - OUTPUT - INPUT
--  2.  The output is disabled when a 0 is shifted into the
--        OE cell.
--  3.  The pictoral representation of the Boundary scan 
--        register is found in AMD document no. 93-009-6105-JT-01.
--
--

" 197 (BC_1, IO(0), INPUT, X)," &  
" 196 (BC_1, IO(0), OUTPUT3, X, 195, 0, Z)," &
" 195 (BC_1,     *, CONTROL, 0)," & 
" 194 (BC_1, IO(1), INPUT, X)," &  
" 193 (BC_1, IO(1), OUTPUT3, X, 192, 0, Z)," &
" 192 (BC_1,     *, CONTROL, 0)," & 
" 191 (BC_1, IO(2), INPUT, X)," &  
" 190 (BC_1, IO(2), OUTPUT3, X, 189, 0, Z)," &
" 189 (BC_1,     *, CONTROL, 0)," & 
" 188 (BC_1, IO(3), INPUT, X)," &  
" 187 (BC_1, IO(3), OUTPUT3, X, 186, 0, Z)," &
" 186 (BC_1,     *, CONTROL, 0)," & 
" 185 (BC_1, IO(4), INPUT, X)," &  
" 184 (BC_1, IO(4), OUTPUT3, X, 183, 0, Z)," &
" 183 (BC_1,     *, CONTROL, 0)," & 
" 182 (BC_1, IO(5), INPUT, X)," &  
" 181 (BC_1, IO(5), OUTPUT3, X, 180, 0, Z)," &
" 180 (BC_1,     *, CONTROL, 0)," & 
" 179 (BC_1, IO(6), INPUT, X)," &  
" 178 (BC_1, IO(6), OUTPUT3, X, 177, 0, Z)," &
" 177 (BC_1,     *, CONTROL, 0)," & 
" 176 (BC_1, IO(7), INPUT, X)," &  
" 175 (BC_1, IO(7), OUTPUT3, X, 174, 0, Z)," &
" 174 (BC_1,     *, CONTROL, 0)," & 

" 173 (BC_1, IO(15), INPUT, X)," &  
" 172 (BC_1, IO(15), OUTPUT3, X, 171, 0, Z)," &
" 171 (BC_1,     *, CONTROL, 0)," & 
A-8



 

A
ppendix A

 

V A N T I S

 

" 170 (BC_1, IO(14), INPUT, X)," &  
" 169 (BC_1, IO(14), OUTPUT3, X, 168, 0, Z)," &
" 168 (BC_1,     *, CONTROL, 0)," & 
" 167 (BC_1, IO(13), INPUT, X)," &  
" 166 (BC_1, IO(13), OUTPUT3, X, 165, 0, Z)," &
" 165 (BC_1,     *, CONTROL, 0)," & 
" 164 (BC_1, IO(12), INPUT, X)," &  
" 163 (BC_1, IO(12), OUTPUT3, X, 162, 0, Z)," &
" 162 (BC_1,     *, CONTROL, 0)," & 
" 161 (BC_1, IO(11), INPUT, X)," &  
" 160 (BC_1, IO(11), OUTPUT3, X, 159, 0, Z)," &
" 159 (BC_1,     *, CONTROL, 0)," & 
" 158 (BC_1, IO(10), INPUT, X)," &  
" 157 (BC_1, IO(10), OUTPUT3, X, 156, 0, Z)," &
" 156 (BC_1,     *, CONTROL, 0)," & 
" 155 (BC_1, IO(9), INPUT, X),"  &  
" 154 (BC_1, IO(9), OUTPUT3, X,  153, 0, Z)," &
" 153 (BC_1,     *, CONTROL, 0)," & 
" 152 (BC_1, IO(8), INPUT, X),"  &  
" 151 (BC_1, IO(8), OUTPUT3, X,  150, 0, Z)," &
" 150 (BC_1,     *, CONTROL, 0)," & 

" 149 (BC_1, DED_IN(0), INPUT, X)," &
" 148 (BC_1, DED_IN(1), INPUT, X)," &

" 147 (BC_1, IO(16), INPUT, X)," &
" 146 (BC_1, IO(16), OUTPUT3, X, 145, 0, Z)," &
" 145 (BC_1,     *, CONTROL, 0)," &
" 144 (BC_1, IO(17), INPUT, X)," &
" 143 (BC_1, IO(17), OUTPUT3, X, 142, 0, Z)," &
" 142 (BC_1,     *, CONTROL, 0)," &
" 141 (BC_1, IO(18), INPUT, X)," &
" 140 (BC_1, IO(18), OUTPUT3, X, 139, 0, Z)," &
" 139 (BC_1,     *, CONTROL, 0)," &
" 138 (BC_1, IO(19), INPUT, X)," &
" 137 (BC_1, IO(19), OUTPUT3, X, 136, 0, Z)," &
" 136 (BC_1,     *, CONTROL, 0)," &
" 135 (BC_1, IO(20), INPUT, X)," &
" 134 (BC_1, IO(20), OUTPUT3, X, 133, 0, Z)," &
" 133 (BC_1,     *, CONTROL, 0)," &
" 132 (BC_1, IO(21), INPUT, X)," &
" 131 (BC_1, IO(21), OUTPUT3, X, 130, 0, Z)," &
" 130 (BC_1,     *, CONTROL, 0)," &
" 129 (BC_1, IO(22), INPUT, X)," &
" 128 (BC_1, IO(22), OUTPUT3, X, 127, 0, Z)," &
" 127 (BC_1,     *, CONTROL, 0)," &
" 126 (BC_1, IO(23), INPUT, X)," &
" 125 (BC_1, IO(23), OUTPUT3, X, 124, 0, Z)," &
" 124 (BC_1,     *, CONTROL, 0)," &

" 123 (BC_1, IO(31), INPUT, X)," &              
" 122 (BC_1, IO(31), OUTPUT3, X, 121, 0, Z)," & 
" 121 (BC_1,     *, CONTROL, 0)," &             
" 120 (BC_1, IO(30), INPUT, X)," &              
" 119 (BC_1, IO(30), OUTPUT3, X, 118, 0, Z)," & 
" 118 (BC_1,     *, CONTROL, 0)," &             
" 117 (BC_1, IO(29), INPUT, X)," &              
A-9



  

V A N T I S

 

" 116 (BC_1, IO(29), OUTPUT3, X, 115, 0, Z)," & 
" 115 (BC_1,     *, CONTROL, 0)," &             
" 114 (BC_1, IO(28), INPUT, X)," &              
" 113 (BC_1, IO(28), OUTPUT3, X, 112, 0, Z)," & 
" 112 (BC_1,     *, CONTROL, 0)," &             
" 111 (BC_1, IO(27), INPUT, X)," &              
" 110 (BC_1, IO(27), OUTPUT3, X, 109, 0, Z)," & 
" 109 (BC_1,     *, CONTROL, 0)," &             
" 108 (BC_1, IO(26), INPUT, X)," &              
" 107 (BC_1, IO(26), OUTPUT3, X, 106, 0, Z)," & 
" 106 (BC_1,     *, CONTROL, 0)," &             
" 105 (BC_1, IO(25), INPUT, X)," &              
" 104 (BC_1, IO(25), OUTPUT3, X, 103, 0, Z)," & 
" 103 (BC_1,     *, CONTROL, 0)," &             
" 102 (BC_1, IO(24), INPUT, X)," &              
" 101 (BC_1, IO(24), OUTPUT3, X, 100, 0, Z)," & 
" 100 (BC_1,     *, CONTROL, 0)," &             

"  99 (BC_1, DED_IN(2), INPUT, X)," &

"  98 (BC_1, IO(32), INPUT, X)," &
"  97 (BC_1, IO(32), OUTPUT3, X, 96, 0, Z)," &
"  96 (BC_1,     *, CONTROL, 0)," &
"  95 (BC_1, IO(33), INPUT, X)," &
"  94 (BC_1, IO(33), OUTPUT3, X, 93, 0, Z)," &
"  93 (BC_1,     *, CONTROL, 0)," &
"  92 (BC_1, IO(34), INPUT, X)," &
"  91 (BC_1, IO(34), OUTPUT3, X, 90, 0, Z)," &
"  90 (BC_1,     *, CONTROL, 0)," &
"  89 (BC_1, IO(35), INPUT, X)," &
"  88 (BC_1, IO(35), OUTPUT3, X, 87, 0, Z)," &
"  87 (BC_1,     *, CONTROL, 0)," &
"  86 (BC_1, IO(36), INPUT, X)," &
"  85 (BC_1, IO(36), OUTPUT3, X, 84, 0, Z)," &
"  84 (BC_1,     *, CONTROL, 0)," &
"  83 (BC_1, IO(37), INPUT, X)," &
"  82 (BC_1, IO(37), OUTPUT3, X, 81, 0, Z)," &
"  81 (BC_1,     *, CONTROL, 0)," &
"  80 (BC_1, IO(38), INPUT, X)," &
"  79 (BC_1, IO(38), OUTPUT3, X, 78, 0, Z)," &
"  78 (BC_1,     *, CONTROL, 0)," &
"  77 (BC_1, IO(39), INPUT, X)," &
"  76 (BC_1, IO(39), OUTPUT3, X, 75, 0, Z)," &
"  75 (BC_1,     *, CONTROL, 0)," &

"  74 (BC_1, IO(47), INPUT, X)," &
"  73 (BC_1, IO(47), OUTPUT3, X, 72, 0, Z)," &
"  72 (BC_1,     *, CONTROL, 0)," &
"  71 (BC_1, IO(46), INPUT, X)," &
"  70 (BC_1, IO(46), OUTPUT3, X, 69, 0, Z)," &
"  69 (BC_1,     *, CONTROL, 0)," &
"  68 (BC_1, IO(45), INPUT, X)," &
"  67 (BC_1, IO(45), OUTPUT3, X, 66, 0, Z)," &
"  66 (BC_1,     *, CONTROL, 0)," &
"  65 (BC_1, IO(44), INPUT, X)," &
"  64 (BC_1, IO(44), OUTPUT3, X, 63, 0, Z)," &
"  63 (BC_1,     *, CONTROL, 0)," &
A-10



 

A
ppendix A

 

V A N T I S

 

"  62 (BC_1, IO(43), INPUT, X)," &
"  61 (BC_1, IO(43), OUTPUT3, X, 60, 0, Z)," &
"  60 (BC_1,     *, CONTROL, 0)," &
"  59 (BC_1, IO(42), INPUT, X)," &
"  58 (BC_1, IO(42), OUTPUT3, X, 57, 0, Z)," &
"  57 (BC_1,     *, CONTROL, 0)," &
"  56 (BC_1, IO(41), INPUT, X)," &
"  55 (BC_1, IO(41), OUTPUT3, X, 54, 0, Z)," &
"  54 (BC_1,     *, CONTROL, 0)," &
"  53 (BC_1, IO(40), INPUT, X)," &
"  52 (BC_1, IO(40), OUTPUT3, X, 51, 0, Z)," &
"  51 (BC_1,     *, CONTROL, 0)," &

"  50 (BC_1, DED_IN(3), INPUT, X)," &
"  49 (BC_1, DED_IN(4), INPUT, X)," &

"  48 (BC_1, IO(48), INPUT, X)," &
"  47 (BC_1, IO(48), OUTPUT3, X, 46, 0, Z)," &
"  46 (BC_1,     *, CONTROL, 0)," &
"  45 (BC_1, IO(49), INPUT, X)," &
"  44 (BC_1, IO(49), OUTPUT3, X, 43, 0, Z)," &
"  43 (BC_1,     *, CONTROL, 0)," &
"  42 (BC_1, IO(50), INPUT, X)," &
"  41 (BC_1, IO(50), OUTPUT3, X, 40, 0, Z)," &
"  40 (BC_1,     *, CONTROL, 0)," &
"  39 (BC_1, IO(51), INPUT, X)," &
"  38 (BC_1, IO(51), OUTPUT3, X, 37, 0, Z)," &
"  37 (BC_1,     *, CONTROL, 0)," &
"  36 (BC_1, IO(52), INPUT, X)," &
"  35 (BC_1, IO(52), OUTPUT3, X, 34, 0, Z)," &
"  34 (BC_1,     *, CONTROL, 0)," &
"  33 (BC_1, IO(53), INPUT, X)," &
"  32 (BC_1, IO(53), OUTPUT3, X, 31, 0, Z)," &
"  31 (BC_1,     *, CONTROL, 0)," &
"  30 (BC_1, IO(54), INPUT, X)," &
"  29 (BC_1, IO(54), OUTPUT3, X, 28, 0, Z)," &
"  28 (BC_1,     *, CONTROL, 0)," &
"  27 (BC_1, IO(55), INPUT, X)," &
"  26 (BC_1, IO(55), OUTPUT3, X, 25, 0, Z)," &
"  25 (BC_1,     *, CONTROL, 0)," &

"  24 (BC_1, IO(63), INPUT, X)," &
"  23 (BC_1, IO(63), OUTPUT3, X, 22, 0, Z)," &
"  22 (BC_1,     *, CONTROL, 0)," &
"  21 (BC_1, IO(62), INPUT, X)," &
"  20 (BC_1, IO(62), OUTPUT3, X, 19, 0, Z)," &
"  19 (BC_1,     *, CONTROL, 0)," &
"  18 (BC_1, IO(61), INPUT, X)," &
"  17 (BC_1, IO(61), OUTPUT3, X, 16, 0, Z)," &
"  16 (BC_1,     *, CONTROL, 0)," &
"  15 (BC_1, IO(60), INPUT, X)," &
"  14 (BC_1, IO(60), OUTPUT3, X, 13, 0, Z)," &
"  13 (BC_1,     *, CONTROL, 0)," &
"  12 (BC_1, IO(59), INPUT, X)," &
"  11 (BC_1, IO(59), OUTPUT3, X, 10, 0, Z)," &
"  10 (BC_1,     *, CONTROL, 0)," &
"   9 (BC_1, IO(58), INPUT, X)," &
A-11



  

V A N T I S

 

"   8 (BC_1, IO(58), OUTPUT3, X, 7, 0, Z)," &
"   7 (BC_1,     *, CONTROL, 0)," &
"   6 (BC_1, IO(57), INPUT, X)," &
"   5 (BC_1, IO(57), OUTPUT3, X, 4, 0, Z)," &
"   4 (BC_1,     *, CONTROL, 0)," &
"   3 (BC_1, IO(56), INPUT, X)," &
"   2 (BC_1, IO(56), OUTPUT3, X, 1, 0, Z)," &
"   1 (BC_1,     *, CONTROL, 0)," &

"   0 (BC_1, DED_IN(5), INPUT, X)"; 

end AMD_M4_128A6;
A-12



Publication#  21578 Rev: A
Amendment/0 Issue Date:  September 1997

 

APPENDIX B

 

B

  
Appendix B
A
ppendix B
MACHPRO VER. 2.0 USER MANUAL
1 Introduction

1.1 Overview
1.2 MACHPRO Basics
1.3 Requesting Assistance

2 Getting Started
2.1 System Requirements
2.2 Installing the software

2.2.1 MS-DOS Version
2.2.2 MS-Windows Version

2.3 Customizing the software
2.3.1 Setup File
2.3.2 JTAG Part Description Files

3 Using MACHPRO (DOS Version)
3.1 Software Options
3.2 Writing a JTAG Scan Path Description File
3.3 Sample MACHPRO Command Line
3.4 Output File Contents

4 Using MACHPRO (Windows Version)
4.1 On-Line Help
4.2 Creating a JTAG Scan Path Description File
4.3 Viewing Output or Result Files

5 Error Messages
B-1



  

V A N T I S

      
1 Introduction

This manual describes the features in MACHPRO, a Vantis-developed software package for 
programming and verifying MACH parts with JTAG circuitry through the JTAG test pins. MACH 
JTAG devices also include 3- and 5-volt programming capability.  This combination gives the ability 
to program MACH devices in-system through a cable driven by an IBM-PC compatible parallel port.

1.1 Overview

In 1986, a group of companies known as the Joint Test Action Group (JTAG) began working on a 
proposal for standardizing boundary scan testability.  This proposal was presented to the Institute 
for Electrical and Electronic Engineers (IEEE) and in 1990 became accepted as IEEE Std. 1149.1.  
This standard deals with how boundary scan testability should be implemented to be compliant.  
Some of the areas it covers include the design and implementation of the boundary scan register, 
the Test Access Port (TAP) through which JTAG is controlled, and the TAP controller, a 
synchronous, finite state machine.  The standard also provides instructions which must be included 
in any implementation of JTAG and optional instructions which are not required.  The JTAG 
standard also allows for additional instructions defined by the device manufacturer as long as those 
instructions do not conflict with IEEE Std. 1149.1.

The Test Access Port used in the MACH devices includes the four mandatory pins, Test Data In 
(TDI), Test Data Out (TDO), Test Mode Select (TMS), and Test ClocK (TCK), along with the 
optional reset pin, TRST*.  TRST* is an active low pin as denoted by the *.  An additional 
programming pin is needed to program, erase, or verify a device.  This pin is ENABLE* and is not 
included as part of the TAP.  All of these pins are dedicated as required by the initial version of 
the standard.  Supplement A to the standard removed this original requirement so that now the 
TAP can essentially be turned on or off.

The MACH implementation of JTAG includes all of the mandatory instructions, three of the 
optional instructions and twelve manufacturer defined instructions.  The mandatory instructions 
include EXTEST, SAMPLE/PRELOAD, and BYPASS. EXTEST is used for connectivity tests.  SAMPLE/
PRELOAD is used to both preload and observe the boundary scan register.  The BYPASS instruction 
is used to remove a part from a scan path by placing a one bit register between TDI and TDO.  
The optional instructions include IDCODE, USERCODE, and HIGHZ.  IDCODE is used to obtain 
the manufacturer’s identification code for the device.  The USERCODE instruction will read back 
a user-specified identification code and the HIGHZ instruction will place all I/Os into a high 
impedance state.  The manufacturer defined instructions provide all of the instructions needed to 
erase, program, verify and secure MACH devices.  Additional instructions allow the user to preload 
and/or observe all of the macrocell registers in a MACH device.

1.2 MACHPRO Basics

A chain file, which is an ASCII text file, describes how JTAG parts are connected in a serial JTAG 
chain on a system board. MACHPRO reads this file and generates the necessary control signals to 
program the MACH JTAG devices on the board through the PC parallel port. One can use any CPLD 
design environment which generates JEDEC-standard programming files for the MACH JTAG parts.
B-2



 

A
ppendix B

 

V A N T I S

                   
After programming the MACH devices, you can use 3rd-party JTAG or boundary scan testing software 
to perform in-circuit or static functional testing to detect board manufacturing process faults.

1.3 Requesting Assistance

A list of error messages, causes, and possible corrective actions is provided in the last part of the 
MACHPRO User Manual. If the messages do not provide sufficient information to fix the problem, 
please call the following support numbers or the local Vantis sales office for assistance.

2 Getting Started

Make a copy of the master disk and install from the copy. If the copy becomes unusable for any 
reason, you can recopy from the master disk and repeat the installation process.

2.1 System Requirements

MACHPRO requires the following system configuration:

◆ an IBM-PC or PC-compatible computer

◆ MS-DOS 3.x and later with 512K of system RAM

◆ MS-Windows 3.1, Win95, or Win NT 4.0

◆ one parallel port

◆ two Mbytes of free disk space

Vantis Corporate Applications Hotline 1-(888) VANTIS2  Monday–Friday*

1-(888) 826-8472

*Check the Vantis website at www.vantis.com for operating hours

Design Environment

MACHPRO data files

MACHPRO

TO JTAG CONNECTOR

ON YOUR BOARD

Synario

ABEL

Viewlogic
Aldec


OrCAD

JEDEC

Result

files

JEDECJEDEC

CHAIN

File

JDFBSDL

PC Parallel Port

21578A-1
B-3



  

V A N T I S

         
Disk space requirements will vary with the number and size of the MACH JTAG parts in the chain. 
Two Mbytes of disk space is enough to hold the JEDEC fuse maps and programming verification 
results of four MACH4-256 devices.

2.2 Installing the software

2.2.1 MS-DOS Version

If this software is to be used as a stand-alone package in the MS-DOS operating system 
environment, create a directory for MACHPRO and switch to that subdirectory. Run the 
JINSTALL.BAT program on the MACHPRO program disk by typing A:JINSTALL. The install batch 
program will copy MACHPRO.EXE and MACHPRO.STF to the directory you just created. After 
installing the program binaries, download the JTAGFILE.ZIP archive from the Vantis website and 
put it in the same directory. This archive contains all the Boundary Scan Description Language 
(BSDL) files and JTAG device format (JDF) files for the MACH devices supported by MACHPRO. 
Use PKUNZIP to unarchive all the files into the current directory. After running JINSTALL, edit the 
configuration file MACHPRO.STF so that the line DEVICE_DATA specifies the directory where all 
the BSDL and JDF files are located.

2.2.2 MS-Windows Version (Win 3.1, Win95, and Win NT 4.0)

MACHPRO is also available as a Windows program. Please make sure that you have Windows 3.1, 
Win95, or Win NT 4.0 installed. To install the Windows version of MACHPRO (i.e., WMACHPRO), 
perform the following steps:

1. If you are in Windows; choose Run from the File menu and type a:\setup.exe. If you are in a
DOS/Win 3.1 system, type win a:\setup.exe.

2. Select either the Win 3.1, Win95 or Win NT 4.0 version of the program to install.

3. The setup program will prompt you to specify a subdirectory name for this program.

4. The setup program will copy the necessary files to the destination subdirectory on your hard
disk, and will create a Windows program group and MACHPRO icon for you.

5. After installation, start the program by double-clicking on the WMACHPRO icon.

After installing the program binaries, download the JTAGFILE.ZIP archive from the Vantis website 
and put it in the same directory. This archive contains all the Boundary Scan Description Language 
(BSDL) files and JTAG device format (JDF) files for the MACH devices supported by MACHPRO. 
Use PKUNZIP to unarchive all the files into the current directory.

If you copy the JTAG data files to another directory, or if MACHPRO does not find the BSDL or 
JDF files, then run MACHPRO and select FILE | MACHPRO Setup. Enter the data file directory path 
in the edit window provided.

Win NT 4.0 users must install the MACHPRO parallel port driver by running the program 
MDRVINST.EXE with the following command line options:

C:\MPROFILE>  MDRVINST mproport  %device_driver_path\mproport.sys

where %device_driver_path is the full path name to the device driver file MPROPORT.SYS. 
MACHPRO needs this device driver to communicate with the parallel port on a Win NT system.
B-4



 

A
ppendix B

 

V A N T I S

                
2.3 Customizing the software

MACHPRO reads the setup file MACHPRO.STF to determine where to find the JTAG data files, and 
what parallel port to use.  This file must be in your current working directory.  You can use any 
word processor or text editor that can read and write ASCII text files to create and edit this file.

If you have installed the Windows version, the setup program will automatically set up the files 
for you. If you have to change the WMACHPRO setup, you can change the settings by choosing 
MACHPRO Setup from the program's File menu.

If MACHPRO was installed using the MACHXL installation program, then it is not necessary to 
modify this file.  You can include comments in the setup file by preceding every comment line 
with a semicolon.

2.3.1 Setup File

A sample MACHPRO.STF file may look like this:

The device_data keyword directs MACHPRO to the directory containing the JTAG part description 
files. If this field is not specified, MACHPRO will look for the files in your current directory.

MACHPRO will use the parallel port specified by the port keyword. For DOS systems, there is 
usually a maximum of three parallel ports allowed,  labeled LPT1 to LPT3. If this field is not 
specified, MACHPRO will use LPT1. MACHPRO will issue a warning if the specified parallel port 
is not installed.

2.3.2 JTAG Part Description Files

There are two JTAG data files for every MACH JTAG part: a BSDL file (MACHXXX.BSM) and a JTAG 
Data File (MACHXXX.JDF). The BSDL file contains JTAG boundary scan information for the part, and 
the JDF contains device programming information for MACHPRO. These files should not be 
modified.  

3 Using MACHPRO (DOS version)

MACHPRO reads a scan chain file which describes the JTAG parts serially linked in your system, 
along with the operations to perform on each part in the chain. You can include non-MACH JTAG 

;==! 08/10/97: MACHPRO setup/startup file. This file should be
;==! in the user's current directory. The following fields are
;==! supported:
;==!
;==!   DEVICE_DATA = D:\jtag\work\ ;
;==!   PORT = lpt1 ;
;==!
;==! - DEVICE_DATA specifies an alternate directory for MACHPRO to
;==!   search when looking for the BSD and other JTAG data files.
;==!   Note that the directory name should end with a slash and
;==!   semicolon.
;==! - PORT will specify the communications port to send and receive
;==!   programming data from.
device_data = d:\jtag\datafile\;
port = lpt1;
B-5



  

V A N T I S

       
parts in this scan file, but they will be put into BYPASS mode because MACHPRO will operate on 
only MACH JTAG devices.

3.1 Software Options

To obtain a list of valid MACHPRO options, just type the program name at the command prompt:

C:\> machpro

Usage: machpro -i <scan file> [-z X] [-c|-u]
    -z X = X is the sum of the following actions selected:
            3 = display status messages
            8 = do all operations even if some are unsuccessful
           32 = retain programming even if verify fails
    -s <A|P> <SVF filename> = Generate SVF output with specified option
           Option: A (program and verify) or P (program only)
    -c = condense JEDEC map for programming
    -u = use condensed JEDEC map
    -1 = Parallel programming mode
    -2 <PCF filename> = Output HP PCF vectors to file
    -3 <Teradyne filename> <maxcount>
          = Output Teradyne vectors to file
          = Limit number of vectors in a file to MAXCOUNT
    -4 <GenRad filename>
          = Output GenRad vectors to the file
    -j X = Pulse parallel port strobe line to make port keys transparent
          X is the level duration (X = 0 to turn off strobe pulsing)
    -w = Insert a wait state between TCK level transitions
          Specify TCK level duration (in processor cycles) using -j X
          Strobe pulsing will be turned OFF

You should supply a scan file to MACHPRO. This text file contains a description of the JTAG chain 
and the operations to be performed on the parts in that chain. Note that MACH and non-MACH 
JTAG parts can be included in this chain.

The X value in the -z X command line option is a 16-bit integer where each bit controls a different 
program operating mode. The different modes are:

xxxx xxxx xxxx xx11 = display status messages; to turn this
                (3)   on, specify a value which sets bit 0
                      and 1 to 1 (e.g.; decimal 3)

xxxx xxxx xxxx 1xxx = do all operations even if some
              (8)     are unsuccessful

xxxx xxxx xx1x xxxx = retain programming even if verify
          (32)        fails

To activate multiple MACHPRO operating modes, specify an X value which is the sum of the 
modes to turn on. For example, to display status messages and to retain programming even if 
program verification  is unsuccessful, specify an X value of 35 (3 + 32). The other bit positions are 
reserved for Vantis use.

MACHPRO will normally terminate processing when an error occurs while processing a part in the 
JTAG chain. By adding 8 to the X value, MACHPRO will inform the user that an error has occurred, 
but will continue processing the remaining parts in the chain.
B-6



 

A
ppendix B

 

V A N T I S

 

Use the “-S [A|P] <SVF_FILENAME> option to generate a Serial Vector Format file. This SVF file 
can then be compiled by JTAG test software that supports this format to do JTAG-ISP programming 
on ATE systems. The ‘A’ option is normally used and will generate SVF statements for programming 
and verifying the pattern programmed into the part. The ‘P’ option is used if you want only 
programming statements in the SVF file.

The -c and -u flags are intended for use in high-volume programming environments. After all the 
designs in a JTAG chain file have been debugged thoroughly, run MACHPRO with the -c flag to 
convert the JEDEC maps used by the parts in the chain into condensed programming data files. 
The JEDEC maps being converted must adhere to the JEDEC 3B format. The resulting converted 
JEDEC maps will have the file extension ".CJF" (Condensed JEDEC Files).

Run MACHPRO with the -u flag to use the CJF files. MACHPRO will execute faster because it reads 
the programming data files and programs the parts without having to do any JEDEC conversions.

The “-1” option instructs the software to do parallel or concurrent programming. If one has 2 
devices in a chain that need to be programmed, then MACHPRO will normally program and 
pattern verify one part at a time and put the other part into BYPASS mode. If it takes 15 seconds 
to program and verify one part, then it will take 30 seconds to program and verify both parts 
sequentially. In concurrent programming mode, MACHPRO will serially shift programming data to 
both devices in the chain and load the program instruction to both parts. Instead of taking 30 
seconds to program both parts in series, it may take only around 18 or 19 seconds in parallel/
concurrent mode. The time savings are not linear because some additional processing time is 
required to send programming data to both parts.

The -2, -3, and -4 options are used to instruct MACHPRO to generate tester program files for use 
by HP, Teradyne, and GenRad ATE systems. For more information, please refer to the Chapter 5 
of this manual.

The “-j X” and “-w” options are used to control parallel port STROBE pulsing or the TCK period. 
If a  software key is attached to your parallel port, then the key must be put into transparent mode 
(by pulsing the parallel port STROBE signal) to allow transmission and reception of signals to and 
from the JTAG chain through the programming cable. To pulse the parallel port strobe line, use 
the "-j X" command line option in the DOS version of MACHPRO.

This option will hold the parallel port STROBE pin LOW for X processor cycles, HIGH for X 
processor cycles, and then brought LOW again for X processor cycles. X can be an integer from 0 
to 32767. If X = 0, then STROBE pulsing is turned off. In the Windows version of MACHPRO, 
specify the strobe pulse width by selecting "Any key attached to parallel port" in the PROJECT | 
OPTIONS menu, and specifying a value in the PROJECT | Advanced Options menu.

Note that the parallel port STROBE line is used by MACHPRO as the TRST(L) line. This means that 
if you are connecting this line on the programming cable to a JTAG device with a TRST(L) pin, 
then you have to remove any software keys from your parallel port (so that the programming cable 
is attached directly to the port), and turn off STROBE pulsing by using the option "-j 0".

In certain board designs, the TDO of the last JTAG device in the chain must be given more time 
to settle at the parallel port before MACHPRO samples it. This may occur if the signal is not 
buffered (e.g., by a 74HC244) and the trace from the TDO of the last device to the JTAG connector 
is long ( > 1 foot). The additional settling time for an unbuffered TDO may be needed because the 
TDO signal also has to drive the 6 foot long programming cable to get back to the parallel port.
B-7



  

V A N T I S

                  
To increase the amount of time for a signal to settle before sampling, use the "-w" option with the 
"-j X" option. For example, if you add the option string "-j 50 -w" to the MACHPRO command line, 
then MACHPRO will turn off strobe pulsing and use the value 50 as the number of processor cycles 
to hold TCK (not STROBE/TRST) LOW, then another 50 processor cycles HIGH, then 50 cycles 
LOW again before sampling. If you specify X = 0, then MACHPRO will generate a LOW-HIGH-
LOW waveform on TCK as fast as it can and samples TDO as soon as TCK goes LOW. To control 
the TDO sampling point in the Windows version of MACHPRO, deselect the option "Any key 
attached to parallel port" in Project | Options and specify the sampling delay time in the PROJECT 
| Advanced Options menu.

There are 2 advanced options that can be controlled from the command line. They are “-a 1” and 
“-a 2”. The “-a 1” option instructs MACHPRO to put all the devices in a chain file into BYPASS 
mode and then generate a continuous square wave on the TDI line. This option is used for 
checking the integrity of the JTAG TDI-TDO serial connection. The “-a 2” option tells MACHPRO 
to use a different parallel port signal mapping. This lets one program MACH parts with a different 
programming cable manufactured by other programmable logic vendors. Specifically, the JTAG 
signals and the optional ENABLE line will use the following parallel port pin assignment:

When using the alternate port mapping, TRST(L) will not be used, and ENABLE(L) will always be 
GND/active.

All flags other than the “-I” flag are optional.

Inside MACHXL, the MACHPRO programming software is invoked by choosing the menu item 
DOWNLOAD>PROGRAM VIA CABLE. One will then have the option of either editing the Scan 
Path Description file or programming the device. If one chooses to program the device, a list of 
options similar to the ones included above will be given in the form of selections which can be 
individually set.

3.2 Writing a JTAG Scan Path Description File

A JTAG scan path description file describes a chain of JTAG parts on your board that have their 
TDI and TDO pins connected serially, and the operations to be performed on each part in the 
chain. The first part in the chain has its TDI pin connected to the board interface, and the last part 
in the chain supplies the TDO pin to the board interface.

A JTAG chain file contains the following fields for each part in the chain:

['Part_ref']  Part_type  act  IR   jed_file   /   [-s 1] [-s 2]   -f   output -o  {0|1|Z|X};

PART_REF: An optional field identifying the part being processed.

JTAG-ISP Signals Normal parallel port pin assignment Alternate parallel port pin assignment

TDI pin 3 pin 2

TCK pin 2 pin 3

TMS pin 4 pin 4

TDO pin 11 pin 10

TRST(L) pin 1 no pin assigned

ENABLE(L) pin 17 pin 5
B-8



 

A
ppendix B

 

V A N T I S

                              
PART_TYPE: The device part number (e.g., M4-128, M4-256). If the part is not a MACH JTAG part, 
then MACHPRO will issue a warning, and you should specify the BYPASS action for this part.

act: This field specifies the operation/action to perform on this part. ACT should be one of the 
following:

If no action is specified for a part (i.e., it is put into BYPASS mode), then just specify the instruction 
register field length and move on to the next part description.

IR: Instruction register field length. All MACH JTAG-ISP devices have 6-bit instruction registers. 
Look in the respective data books for the JTAG instruction register widths of non-MACH JTAG 
devices in the chain.

JED_FILE: JEDEC file name used when programming and verifying, and written to when reading 
the contents of a MACH JTAG device. JEDEC files are produced by development tools such as 
Vantis' MACHXL software.  If the JEDEC file contains functional vectors they will be ignored.

/: The slash separates the required fields and the manufacturer-specific options. The slash is 
required for MACH JTAG parts even if there are no manufacturer's options.

-s 1, -s 2: Optional field instructing MACHPRO to program security fuses 1 and/or 2.  Security fuse 
1 removes the ability to read out the JEDEC pattern programmed into the part.  Security fuse 2 
removes everything security fuse 1 does along with the ability to preload and observe the 
macrocell registers. These security fuses can be erased only by erasing or reprogramming the entire 
device.

-f output: The output file to record results of the operation performed on the part. If this file is 
not specified, MACHPRO will automatically create one using the JED_FILE name but with the 
".OUT" extension.

-o {0|1|Z|X|v(n)}: An optional field indicating the state the IO pins should be in when 
programming. 0 and 1 mean that the IO pins will be driven LOW or HIGH, respectively. If X is 
selected, then the output/IO pins will be in an unknown state. The default is Z (pins tri-stated). 
During programming, some devices can only set their IO pins to tri-state; refer to the device data 
sheet for more information.

p program and program verify only

v program verify only

r
read device contents and write it to the JEDEC file specified in the JED_FILE 
field; also compute the checksum and display on screen

u get the USERCODE

m get the IDCODE

n no action; part will be placed in BYPASS mode

e erase part (I/O pins will be put in tri-state mode)
B-9



  

V A N T I S

                    
For DOS version only: If you want to specify the state of each output/IO pin individually in the 
part being programmed, then specify the part’s output/IO vector using -o v(n), where n is a vector 
defined later in the same chain file. Note that the specified pattern will be activated only when 
programming that device; the other parts will have their IO pins set to the normal operating state.

The format of the programming output vector is:

+N = M BBBB...BBBB *

where N is a unique vector number in this file, M is the size of the vector corresponding to the 
number of pins in the device, and B is the value for each of the M pins. The ‘+’ and ‘*’ symbols 
are required at the beginning and end of the vector.

◆ You can have multiple programming output vectors in a file; they do not have to be in 
sequential order, but they each must have a unique vector number.

◆ You can have more programming output vectors than are actually used in the chain file.

— You can have five vectors defined in a chain file with only two parts. If you need to use a 
different output vector, just change the number N in “-o v(N)” to one of the five vector 
numbers.

◆ A file can have programming output vectors of different sizes.

— If you have a chain file with a M4-128 (100 pins) and a M4-256 (208 pins), then you can have 
two vectors with vectors 100 and 208 elements long.

◆ Each vector element B can be either L, H, X, Z to set the output or IO pin Low, High, don’t care, 
or HIGHZ, respectively. 

— Input pins on the device should be set to X

— VCC and GND pins are set to N (i.e., do not set this pin to anything)

◆ You can put comments in between vector elements to keep track of pin numbers

Example: In the following chain file, two output/IO vector patterns for M4-128/64 devices are 
defined at the end of the file. When the first part is being programmed, the IO pins will be set to 
the states defined in vector 5, while the second device will have its IO pins in the normal operating 
mode. Only when programming the second device will the IO pins be set to the pattern defined 
by vector 6.

;==!====================================================================
;==! Test file which programs and pattern verifies two M4-128/64 devices
;==! with the same JEDEC file. Also programs the two security fuses,
;==! and writes the results to files ORIG_0.OUT and ORIG_1.OUT.
;==!
;==! 08/18/97: To set the state of the IO pins individually while
;==!           programming, use "-o v(n)" where n specifies a vector
;==!           defined later in the same chain file. "n" will be
;==!           preceded by a '+' sign, followed by the number of pins in 
;==!           the device (e.g., 100 for the M4-128/64), and the state
;==!           of all the pins. Use H/L/ for the IO pins and leave the
;==!           inputs pins as X. Anything after a ';' to the end of
;==!           the line is considered a comment.
;==!====================================================================
B-10



 

A
ppendix B

 

V A N T I S

 

 'part1'   M4_128 p 6 pattern1.jed  / -s 1 -s 2 -o v(5) -f orig_0.out;
 'part2'   M4_128 p 6 pattern5.jed  / -s 1 -s 2 -o v(6) -f orig_1.out;

+5 = 100          ;==> Use comments to keep track of pin numbers

     NNXX         ; pins   1 to   4 (GND, GND, TDI, I5)
     HHHHHHHH     ; pins   5 to  12 (IO pins B7 to B0)
     XNNNNX       ; pins  13 to  18 (I0, Vcc, Vcc, GND, GND, I1)
     HLLHLLLL     ; pins  19 to  26 (IO pins C0 to C7)
     XXNN         ; pins  27 to  30 (TMS, TCK, GND, GND)
     HHHHHHHH     ; pins  31 to  38 (IO pins D7 to D0)
     NNNN         ; pins  39 to  42 (Vcc, GND, GND, Vcc)
     HHHHHHHH     ; pins  43 to  50 (IO pins E0 to E7)
     NNXX         ; pins  51 to  54 (GND, GND, ENABLE, I2)
     HHHHHHHH     ; pins  55 to  62 (IO pins F7 to F0)
     XNNNNX       ; pins  63 to  68 (I3, Vcc, Vcc, GND, GND, I4)
     HHHHHHHH     ; pins  69 to  76 (IO pins G0 to G7)
     XXNN         ; pins  77 to  80 (TRST, TDO, GND, GND)
     HHHHHHHH     ; pins  81 to  88 (IO pins H7 to H0)
     NNNN         ; pins  89 to  92 (Vcc, GND, GND, Vcc)
     HHHHHHHH *   ; pins  93 to 100 (IO pins A0 to A7)
+6 = 100
     NNXX         ; pins   1 to   4 (GND, GND, TDI, I5)
     LLLLHHHH     ; pins   5 to  12 (IO pins B7 to B0)
     XNNNNX       ; pins  13 to  18 (I0, Vcc, Vcc, GND, GND, I1)
     HHHHLLLL     ; pins  19 to  26 (IO pins C0 to C7)
     XXNN         ; pins  27 to  30 (TMS, TCK, GND, GND)
     HHHHHHHH     ; pins  31 to  38 (IO pins D7 to D0)
     NNNN         ; pins  39 to  42 (Vcc, GND, GND, Vcc)
     HHHHHHHH     ; pins  43 to  50 (IO pins E0 to E7)
     NNXX         ; pins  51 to  54 (GND, GND, ENABLE, I2)
     HHHHHHHH     ; pins  55 to  62 (IO pins F7 to F0)
     XNNNNX       ; pins  63 to  68 (I3, Vcc, Vcc, GND, GND, I4)
     HHHHHHHH     ; pins  69 to  76 (IO pins G0 to G7)
     XXNN         ; pins  77 to  80 (TRST, TDO, GND, GND)
     HHHHHHHH     ; pins  81 to  88 (IO pins H7 to H0)
     NNNN         ; pins  89 to  92 (Vcc, GND, GND, Vcc)
     HHHHHHHH *   ; pins  93 to 100 (IO pins A0 to A7)
B-11



  

V A N T I S

        
3.3 Sample MACHPRO Command Line

PROJECT1.CHN is a JTAG chain file with six JTAG parts:

To process this JTAG chain file, type:

C:\work_dir> machpro -i project1.chn -z 3

MACHPRO will perform the following operations specified in PROJECT1.CHN:

◆ verify the pattern in PART_U0 (M4-256/128) against the JEDEC file EU_CLK12.JED; since a result 
file was not specified with the -f option, verification results will be written to 
EU_CLK12.OUT

◆ bypass PART_R0 (AMD K6) and PART_R1 (any JTAG part)

◆ program and verify PART_U1 (M4-256/128) with the pattern in DESIGN3.JED and also program 
security fuse 1; since a result file was not specified, program and verification results will be 
written to a file called DESIGN3.OUT

◆ bypass PART_U2 (M4-256/128)

◆ program and verify PART_U3 (M4-256/128) with the pattern in DESIGN1.JED and send the 
results of the operation to the file A_LABEL.OUT.

The -z 3 option will instruct MACHPRO to display status messages on your monitor. If an operation 
is unsuccessful (e.g., PART_U0 did not verify), then the program will stop immediately. To perform 
all specified operations regardless of success, use the -z 11 option.

MACHPRO will read the part IDCODE and compare it with the IDCODE of the device specified 
before performing a programming or verification operation. If it does not match, MACHPRO will 

;==!==================================================
;==! PROJECT1.CHN: JTAG Chain description file
;==!
;==! There are 6 parts in this chain: 4 M4-256/128 devices with
;==! an AMD K6 and one non-MACH JTAG part between the 
;==! first and second MACH devices. The AMD K6 and
;==! non-MACH JTAG parts are put into BYPASS mode.
;==! 
;==! Each part description must end with a semi-colon,
;==! and comments can be put in the scan/chain file
;==! by preceding it with a semi-colon.
;==!==================================================

;==! No manufacturer's options, but still requires the '/'
 'Part_U0'    M4_256 v 6 eu_clk12.jed / ;

 'Part_R0'    AMD_K6 n 5;

 'Part_R1'    X_jtag n 6;        Labels are optional

 'Part_U1'    M4_256 P 6  design3.jed  / -s 1;

 'Part_U2'    M4_256 n 6;        Bypass this MACH JTAG part 

 'Part_U3'    M4_256 P 6  design1.jed  / -f a_label.out;
B-12



A
ppendix B

V A N T I S
issue a warning message and you can force the program to continue when it prompts you. If you 
use the -z 11 option, MACHPRO will skip this device check.

3.4 Output File Contents

The contents of a part's output file will depend on the action specified in the chain file.  If 
programming verification is specified, MACHPRO will read the pattern in the part, compare it with 
the user-specified JEDEC file, and write the results to the output file. A sample output file after 
programming verification  looks as follows:

* Tue Oct 12 16:13:11 1996
JTAG Design [firstmach] Part [d:\jtag\datafile\m4_256.bsm]
=> Verify fuse data in part against JEDEC map [eu_clk12.jed]
Key: - = read  LOW/0 value from part, but JEDEC map specified a HIGH/1
     + = read HIGH/1 value from part, but JEDEC map specified a  LOW/0
L0000000 -000 1001 1111 11-- ---- ---- ---- ---- ---- ---- *
L0000072 1111 -111 1110 1111 1111 ---- ---- ---- ---- ---- *
L0000144 ---- ---- ---- ---- ---- 100+ ++++ ++++ ++++ ++++ *
L0000216 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- * 

As described in the key section, mismatched bits are replaced by - or + in the output file to indicate 
whether they should have been 0 or 1 in the part to match the pattern in the JEDEC file.

If the operation specified is to get the ID or USER codes, then the output file will look as follows:

* Tue Oct 12 16:43:25 1996

  JTAG Design [fifth_mach]
  Part [d:\jtag\datafile\m4_256.bsm]

User code   : 
=> 0000 1111 0000 0101 1110 0101 0000 0100

The usercode is specified by the user and may be used to identify the pattern programmed into 
the part. In a M4-256 device, you have 32 user code bits.

The IDCODE is a fixed, part-specific pattern. MACHPRO will read this pattern and compare it with 
the IDCODE for the device you specified in the chain file. A warning is issued if they do not match.

* Tue Oct 12 16:43:25 1996

  JTAG Design [sixth_mach]
  Part [d:\jtag\datafile\M4_256.bsm]

Part ID code: 
=> 0000 0000 0000 0000 0000 0000 0000 0000
   0000 0111 0110 0000 1000 0000 0000 0011   <== expected

< Data does not match >
B-13



  

V A N T I S

      
 4 Using MACHPRO (Windows Version)

WMACHPRO has the same capabilities as the DOS version, but includes several user-friendly 
features which allow you to easily edit and manipulate JTAG parts in the chain description.

4.1 On-Line Help

WMACHPRO has toolbar buttons at the top of its program window which perform the most 
common functions. To get information on any of the buttons, position the mouse cursor on any 
button and click and hold down the left mouse button. A description of the button's function will 
appear in the bottom status bar. If you do not want to perform the function, drag the mouse away 
from the toolbar button before releasing it.

You can press the F1 function key any time to get help, or click on the on-line help button to get 
more information on using WMACHPRO. Click once on the on-line help icon and the cursor will 
change into the question mark shape. Position this cursor anywhere in the WMACHPRO window, 
and click the left mouse button. Help text will be displayed and you can page through it as required.

 4.2 Creating a JTAG Scan Path Description File

To start a new chain or scan path description, click once on the document icon. A smaller window 
will be created, and you can then use the JTAG device editing buttons to add, edit or delete a JTAG 
device from the chain.

When you add or edit a JTAG device, a dialog box will be displayed in which you can enter the 
necessary data for the device. You can select a JTAG device from a list box, or if a part is not in 
the list, you can specify it by entering the name in the space provided. If you specify the device 
name, you will also have to specify the JTAG instruction register width, which can be obtained 
from the device's datasheet. MACHPRO processing opcodes are also displayed in another list box, 
along with all the other information required for the device.

When deleting a device from the chain, WMACHPRO will prompt you to confirm your decision.

Create a new chain

JTAG device
editing buttons

Begin MACHPRO processing

On-line help

Create a new chain

Begin MACHPRO processing

On-line help
JTAG device
editing buttons
B-14



A
ppendix B

V A N T I S
If your chain has multiple devices and you need to change the position of a device in the chain, 
first select the device by positioning the cursor on the device name, and then clicking once with 
the left mouse button. Then click and hold the left mouse button while dragging the cursor to the 
new position; the cursor will change shape. Release the left mouse button at the new position to 
place the selected device.

TDI and TDO port indicators are displayed, along with "wires" which connect the parts in series in 
the chain. This gives the user a visual indication of how the parts are connected on the board. Please 
make sure the order specified in WMACHPRO matches the actual serial connections on the board.

After specifying the JTAG chain, click on the GO button to begin processing the parts in the chain.

If you use the TRST line to asynchronously reset any JTAG device in the chain, then it is necessary 
to remove any software keys attached to the parallel port and attach the programming cable 
directly to the parallel port. Click on Project and then Options and deselect the “Software key 
present” option to ensure proper operation.

4.3 Viewing Output or Result Files

Result files will be generated for each device processed. You can view these files using the View 
Results option in the WMACHPRO View menu. Specify the file to view, and the file will be 
displayed in a window. Use the horizontal and vertical scroll bars to move around the file. Click 
on the Continue button to return to WMACHPRO.

5 Error Messages

The error messages are arranged in alphabetical order. If you encounter a message that is not in 
this list, please contact the Vantis Corporate Applications Hotline at (888)-826-8472 for assistance.

◆ Could not access [<filename>]
The software tried to open this file but failed; usually occurs if  you have insufficient disk 
space.

◆ E/U field has control characters
The E (electrical) or U (user-code) field in the JEDEC file has control characters; check that 
your PLD development software is generating a valid JEDEC file.

◆ Exceeded fuse array size [(fuse address):(max fuses)]
MACHPRO is using a fuse address that is greater than the maximum number of fuses in the 
part.

◆ Invalid BSD symbol [<string>]
MACHPRO may not recognize the <string> in the BSDL file; call the Vantis Applications 
Hotline to receive the latest version of MACHPRO.

◆ Invalid JEDEC field qualifier
The software read an unrecognized symbol in the JEDEC file; check that your PLD 
development software is producing a fuse map compatible with the JEDEC 3B standard.

◆ Invalid port number [x]
An invalid parallel port number was given in the setup file. For DOS systems, port numbers 
should usually range from 1 to 3.

◆ Invalid port [<name>]
An invalid parallel port name was specified; use the name LPTx, where x can be 1 to 3.
B-15



V A N T I S
◆ iWidth[<number>]
An invalid instruction register width was given; verify that the width specified in the JTAG 
chain file is correct.

◆ JTAG/scan chain is empty
There are no parts to process in the JTAG chain file; warning only

◆ Memory still allocated [<number>]
Warning message indicating system memory is still allocated by MACHPRO; contact Vantis 
Applications Hotline.

◆ Must be INPUT,OUTPUTx,CONTROL
Warning message produced when MACHPRO reads a MACH BSDL file; it recognizes only 
these three boundary scan register types. BSDL file contents are incorrect.

◆ name exceeds <num> characters
MACHPRO can handle only variable names with 36 characters.

◆ No BSDL datafile for [<part>]
Could not find a boundary scan file for the specified part.

◆ Out of memory [x]
Not enough system memory for MACHPRO; may happen if the number of parts in the JTAG 
chain to be programmed is greater than 12. Modify the chain so that you will only program 
8 parts or less at a time. After programming these parts, edit the chain file again and 
program the other parts.

◆ Parallel port [LPTn:(addr)] may not be installed
The parallel port specified in the setup file may not be installed; check your system 
configuration.

◆ Part does not support 'E/U' field
The JEDEC file specified has E (electrical) and U (user code) fuses, but the MACH JTAG part 
does not have these fuses; these fields will be ignored.

◆ Pin state [<char>]
The user should specify a valid pin state for IO pins to be in when programming, the -o 
field in the JTAG chain file must be either 0, 1, X, or Z.

◆ Pin [<num>] still driving
MACHPRO is applying a test vector which has an IO pin that the user wants to drive, but 
the output buffer is not yet disabled (i.e., tri-stated).

◆ Plug [<pin type>:<pin number>]
The test vector contains an input value for the pin number, but the specified pin cannot be 
used as an input.

◆ PointerNULL
MACHPRO is trying to access a NULL pointer; internal program error: contact the Vantis 
Applications Hotline.

◆ Unknown action code [<char>]
Invalid JTAG action code in the JTAG chain file.

◆ Unknown field [<symbol>]
MACHPRO does not recognize the symbol in the BSDL file; contact the Vantis 
Applications Hotline.
B-16



A
ppendix B

V A N T I S
◆ Unrecognized option [<char>]
Invalid manufacturer's options; should be either o, s, or f.

◆ Unsynchronized state machine [state number]
The JTAG state machine is out of sync; internal program error: contact the Vantis 
Applications Hotline

◆ Vect (vnum): Clock-only pin (num) cannot drive/be tri-stated
Test vector (vnum) has a L, H, or Z for the clock pin; check that the PLD software is 
generating correct test vectors.

◆ Vect (vnum): Incorrect vector size; should have <num> elements
MACHPRO expects each test vector to have the same number of elements as there are 
device pins. Check that the PLD software can produce vectors in this format.

◆ Vect (vnum): Input-only pin (<num>) accepts 0/1/X/F/U/D/N
The input pin is being tested as if it were an output; check that your PLD tool is producing 
the right test vectors

◆ Vect (vnum): Output-only pin (<num>) cannot be driven
The output pin is being tested as if it were an input; check that your PLD tool is producing 
the right test vectors

◆ Vect (vnum): Output-only pin (<num>) cannot be driven/tri-stated
The output only pin is being tested as if it could be tri-stated; check that your PLD tool is 
producing the right test vectors

◆ Vect (vnum): Pin (<num>) is not a logic/clock pin
The device pin <num> is being tested as if it could be used as logic or a clock; check that 
your PLD tool is producing the right test vectors

◆ Vect (vnum): Too many symbols in this test vector
The test vector has more symbols than there are device pins; check that your PLD tool is 
producing the right test vectors.

◆ Vect (vnum): Unexpected vector termination; should have <num> elements
The test vector has fewer symbols than there are device pins; MACHPRO expects each test 
vector to have the same number of elements as there are device pins. Check that your PLD 
tool is producing the right test vectors.

◆ Vect (vnum): Unknown vector symbol (<char>)
Test vector contains an unrecognized character; check that PLD software is producing 
correct test vectors.

◆ [num]: Only 0/1
MACHPRO is expecting a binary value. Your JEDEC file may be corrupted or may be using 
a new JEDEC file format. In the latter case, please download the latest version of MACHPRO 
from www.vantis.com.

Trademarks

Copyright © 1997 Advanced Micro Devices, Inc. All rights reserved.

AMD, Vantis, the Vantis logo and combinations thereof, SpeedLocking and Bus-Friendly are trademarks, MACH, MACHXL, MACHPRO and PAL are 
registered trademarks of Advanced Micro Devices, Inc.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.
B-17


	Introduction
	WHAT IS IN-SYSTEM PROGRAMMING (ISP)?
	BENEFITS OF ISP THROUGH JTAG
	WHO IS VANTIS?
	VANTIS' PRODUCTS
	VANTIS AND JTAG-ISP

	Introduction to JTAG
	HISTORY OF JTAG
	JTAG FROM THE TOP
	JTAG TAP CONTROLLER
	JTAG INSTRUCTIONS
	JTAG DATA REGISTERS

	Introduction to In-System Programming (ISP)
	INTRODUCTION
	BASICS OF PROGRAMMING
	JTAG SCAN CHAINS
	PROGRAMMING ALGORITHM BASICS
	PROGRAMMING TIME
	PROGRAMMING ON A PC
	PROGRAMMING ON A BOARD TEST SYSTEM
	PROGRAMMING ON JTAG TEST SYSTEMS

	MACH In-System Programming–Design & Usage Guidelines
	INTRODUCTION
	CONNECTIONS
	BUFFERING
	TERMINATION OF SIGNALS
	DECOUPLING CAPACITORS
	WHEN BUFFERS ARE NOT USED
	DEBUGGING IN THE ISP ENVIRONMENT
	I/O STATES DURING PROGRAMMING
	CONCLUSION

	Programming MACH JTAG-ISP Devices on Automated Tes...
	INTRODUCTION
	JTAG-ISP: A LONG-TERM, COST-EFFECTIVE SOLUTION
	PROGRAMMING ON BOARD TESTERS
	PRINTED CIRCUIT BOARD LAYOUT CONSIDERATIONS FOR BOUNDARY SCAN CHAINS
	DISABLING UPSTREAM DEVICES
	PERSISTENCE OF CRITICAL SIGNALS & DISABLING DURING PROGRAMMING
	TEST FIXTURE DESIGN CONSIDERATIONS FOR BOUNDARY SCAN CHAINS
	GENERATING VECTOR FILES
	GENERATING A GENRAD VECTOR FILE
	PROGRAMMING ON TERADYNE TESTERS
	THE TERADYNE VECTOR PROCESSOR
	USING THE DIGITAL FUNCTION PROCESSOR
	GENERATING AN HP3070 PATTERN CAPTURE FORMAT (PCF) FILE
	PROGRAMMING ON PC BASED TESTERS
	ADDITIONAL INFORMATION

	Enhancing Board Testability using MACH JTAG-ISP De...
	INTERCONNECTIVITY TESTING
	PROGRAMMING NEW TEST LOGIC
	INTERNAL FUNCTION TESTING

	Appendix A
	HARDWARE SPECIFICATION OF MACHPRO BUFFERED PROGRAMMING CABLE
	FEATURES
	CHARACTERISTICS
	APPROVED PROGRAMMER VENDORS LIST
	MACH SOCKET ADAPTERS
	SAMPLE BSDL FILE FOR M4-128/64

	Appendix B
	INTRODUCTION
	OVERVIEW
	MACHPRO BASICS
	REQUESTING ASSISTANCE
	GETTING STARTED
	SYSTEM REQUIREMENTS
	INSTALLING THE SOFTWARE
	MS-DOS VERSION
	MS-WINDOWS VERSION (WIN 3.1, WIN95, AND WIN NT 4.0)
	CUSTOMIZING THE SOFTWARE
	SETUP FILE
	JTAG PART DESCRIPTION FILES
	USING MACHPRO (DOS VERSION)
	SOFTWARE OPTIONS
	WRITING A JTAG SCAN PATH DESCRIPTION FILE
	SAMPLE MACHPRO COMMAND LINE
	OUTPUT FILE CONTENTS
	USING MACHPRO (WINDOWS VERSION)
	ON-LINE HELP
	CREATING A JTAG SCAN PATH DESCRIPTION FILE
	VIEWING OUTPUT OR RESULT FILES
	ERROR MESSAGES


