
User Manual

Adaptive Wavelet Collocation Method (AWCM)

Code Structure and Setup

(alpha release)

August 25, 2006

AWCM Solver

1 Code Structure

1.1 Overall Code Organization

Adaptive wavelet collocation method (AWCM) solver consists of two parts:

1. elliptic solver and

2. time evolution solver.

The elliptic solver can be used either to solve general elliptic problems of the type Lu = f

or as a part of initial condiitons, where a linear system of PDEs is solved during each

grid iteration instead of prescribing u analytically. The adaptive grid refinement procedure

provides a way to obtain the solution (initial conditions) on an optimal (compressed) grid.

The pseudocode for the iterative global elliptic solver is shown in Algorithm 1. Note that

if this part of the code is used for initial conditions, analytical expression for u is provided

instead of solving elliptic problem. The pseudocode for the time evolution problem is shown

in Algorithm 2.

1

User Manual

initial guess (m = 0): um
k and Gm

≥

while m = 0 or m > 1 and
[
Gm
≥ 6= Gm−1

≥ or ‖fJ − LuJ
≥‖∞ > δε

]
m = m + 1

perform forward wavelet transform for each component of um
k

forall levels j = J : −1 : 1

create a mask M for |dµ,j
l | ≥ ε

end

extend the mask M with adjacent wavelets

perform the reconstruction check procedure

construct Gm+1
≥

if Gm+1
≥ 6= Gm

≥

interpolate um
k to Gm+1

≥

end if

solve Lu = f using Local Multilevel Elliptic Solver.

end

Algorithm 1. Global Elliptic Solver.

initial conditions (n = 0): un
k and Gn

≥

while tn < tmax

tn+1 = tn + ∆t

integrate the system of equations using Krylov time integration to obtain un+1
k

perform forward wavelet transform for each component of un+1
k

forall levels j = J : −1 : 1

create a mask M for |dµ,j
l | ≥ ε

end

extend the mask M with adjacent wavelets

perform the reconstruction check procedure

construct Gn+1
≥

if Gn+1
≥ 6= Gn

≥

interpolate un+1
k to Gn+1

≥

end if

n = n + 1

end

Algorithm 2. Time Evolution Solver.

2

AWCM Solver

1.2 Code Categories and Files

The codes consist of the FORTRAN and Matlab files. FORTRAN code saves results in

terms of active wavelet coefficients, while Matlab files are set up to read output files from

the FORTRAN code, perform inverse wavelet transform, and visualize the results.

The FORTRAN files can be divided into the followqing categories:

Case Files:

user case.f90

user input.inp

where the user case is the name of a specific case set up by user that can be located in any

directory, while user input in the user defined input file. Note that the same case can have

multiple input files.

Core Files:

wlt 3d main.f90

wavelet 3d.f90

wavelet filters.f90

elliptic solve 3d.f90

time int cn.f90

time int krylov 3d.f90

This category inculdes all the core files for the Adaptive wavelet collocation method. We

don’t need to modify any part of these files.

Data-Structure files:

wavelet 3d wrk.f90

wavelet 3d wrk vars.f90

Shared Variables Files:

shared modules.f90

wavelet 3d vars.f90

elliptic solve 3d vars.f90

wavelet filters vars.f90

io 3d vars.f90

This category includes all the variable only modules, i.e. these modules contain no functions

or subroutines.

3

User Manual

Supplementary Utility Files:

input files reader.f90

read init.f90

read data wray.f90

io 3d.f90

util 3d.f90

default util.f90

vector util.f90

endienness big.f90

endienness small.f90

reverse endian.f90

Supplementary FFT Package Files:

fft.f90

fftpacktvms.f90

fft.interface.temperton.f90

fft util.f90 spectra.f90

ch resolution fs.f90

These supplementary files are located in subdirectory FFT and, if necessary, can be used for

extracting statistics in homogeneous directions.

Supplementary LINPACK files:

d1mach.f

derfc.f

derf.f

dgamma.f

dgeev.f

dgels.f

dqage.f

dqag.f

dtrsm.f

dum.f

fort.1

gaussq.f

needblas.f

r1mach.f

zgetrf.f

zgetri.f

4

AWCM Solver

Visualization Files:

c wlt 3d.m

c wlt 3d movie.m

c wlt inter.f90

inter3d.m

mycolorbar.m

mycontourf.m

c wlt 3d isostats.m

vor pal.m

These are are used to visualize the output results. All these files are contained in subdirectory

post process.

5

User Manual

2 Case Files

This section will attempt to provide some familiarization with the more intricate details of

setting up your own case. The code is equipped with some test cases that can be used as

a reference for setting up a new case. Each test case has a set of subroutines that must be

present in order for the code to function properly. If one of the functions does not apply in

your case, it must remain present, but you can leave the contents (other than variable def-

initions) blank. For example, if you are using periodic boundary conditions, you can leave

the details in the user algebaic BC function blank, but do not delete the function itself.

Each case should have its own separate directory with its own case files and results/ output

directory. Two case files are needed for each case: casename.f90 and casename.inp, where

casename is the name of the particular case your are running, e.g., case elliptic poisson or

case small vortex array. Casename.f90 will be the actual FORTRAN code that is compiled

in the source directory. Casename.inp will contain any variables that are not hard coded

into the .f90 file. The casename.f90 file contains all the subroutines you see below followed

by a brief description of what they do. There are two modules that are needed for memory

and variable allocation specific two your case and the rest are functions or subroutines.

Modules

Subroutine Name Description

user case db Module created for database memory allocation.

user case This is the actual case module that contains all

of the functions and subroutines that are used in

this file.

Subroutines

Subroutine Name Description

user setup pde Sets up the number of variables that are inte-

grated or interpolated on the initial time step and

any subsequent step.

user exact soln Stores the exact solution in memory.

user initial conditions Defines the initial conditions if they can be deter-

mined analytically.

user algebaic BC Sets conditions on boundaries

user algebaic BC diag Determines the diagonal term for calculating

boundary conditions.

6

AWCM Solver

user rhs BC Sets the right hand side for the boundary condi-

tions.

Laplace Sets up the Laplacian.

Laplace diag Sets up the diagonal terms for the Laplacian

user rhs Sets the right hand side of the PDE being solved

user Drhs Sets the Jacobian of the right hand side of the

PDE.

user Drhs diag Sets up the diagonal terms for the Jacobian when

the Crank-Nicolson time integration method is

used.

user project Used for Crank-Nicolson time integration to get

projections of variables that are needed for inte-

gration, but not actually integrated with the ac-

tual solver.

user chi This is your boundary that you define us-

ing Brinkman penalization (Not implemented

yet).

user stats Any user specified statistics that need to be calcu-

lated to analyze new data can be calculated here.

user cal force Used to calculate lift and drag on any bodies in

the flow (Not implemented yet).

user read input Any user defined variables defined in the case-

name.inp file are read through this subroutine.

user additional vars Where any additional variables are calculated.

user scalar vars Any scalar non field parameters that need to be

calculated can be done here.

user scales Used to override the default scales routine.

user cal cfl Override default cfl condition and use user created

condition.

7

User Manual

2.1 CaseFile.f90 Details:

Now that we’ve taken a general look at how the case files are structured, let’s look at a

specific case and explain how it is set up. The compressible.f90 case is set up to solve the

Euler equations for a two dimensional explosion. The initial conditions are

ρins = 1.0 ρout = 0.125

uins = 0.0 uout = 0.0

vins = 1.0 vout = 0.0

pins = 1.0 pout = 0.1

where the subscripts ins and out denote the inside and outside of a circle of radius 1.0 in a

6.0 x 6.0 domain in the x−y plane. For simplicity we will only solve the euler equations, but

to prevent shock formation a smooth discontinuity will be used instead of a full discontinuity.

A hyperbolic solver is being developed, but in the mean time it is best to implement the

full Navier-Stokes equations to model compressible flow for long time periods. We will also

make the boundaries periodic as an introductory case. Now let’s look at each module and

subroutine one by one.

2.1.1 MODULE user case db

This is a temporary solution for memory allocation in the database. Simply make sure that

n var db is at least as big as the number of variables you will be using.

2.1.2 MODULE user case

This is the main module that the entire case file is built into. Any variables that you want to

be available globally throughout the entire module should be defined in this section. Below

where it says “case specific variables,” the variable n var pressure is declared. As of now,

this parameter must always be declared because the code is set up to solve both compressible

and incompressible flows. Following are some non-dimensional parameters Re and gama as

well as initial condition parameters delta and radius. As you will see, these variables are

imported from the compressible.inp file in the user read input subroutine.

2.1.3 SUBROUTINE user setup pde

In this routine we set the global parameters the main code uses to know how many equations

it is integrating, interpolating, saving and how many variables there is an exact solution for.

The number of variables that are integrated n integrated is set to dim + 2 since we are

solving for ρ, ρe, and the momentum equations in dim dimensions. In the compressible.inp

file dim = 2. Leave n time levels and n var time levels as they are. They will soon be

phased out. Any additional variables that are not integrated, but you want calculated at

8

AWCM Solver

each time step set as n var additional. As an example, n var additional is set to 1 so that

we can calculate the pressure and save it at each time step. This is totally unnecessary as

pressure can be calculated during the post processing step, but it is pure for demonstration.

The next step is to fill in the variable names according to how we arrange our variables.

We will fill in the variables depending upon how many dimensions there are starting with

density as the first variable, x-momentum as the second and so on.

The grid does not need to adapt to all 5 variables. Pressure (the 5th variable) is sim-

ply found using the 4 conserved variables. Obviously we will only need the grid to adapt

to the 4 conserved variables, so we set n var adapt to n var adapt(1:n integrated,0) and

n var adapt(1:n integrated,1) to .TRUE. The 0 index indicates adaptation when setting up

the initial condition and 1 index adapting at each time step afterwards. We also need the

grid to interpolate all of the integrated variables as time moves along as well. Adaptation

means that the grid will evolve based upon a given variable. Interpolation is what needs to

happen in order to add a previous time step to the next. In this case, it is not necessary to

interpolate the pressure so we have set the first 4 variables to be interpolated both at the

initial condition and all time steps thereafter.

Need more explanation on the different between adaptation and interpolation.

We want to save all 5 variables at each write step, so we have set n var save as true for

all variables n var.

For the time being, please ignore the time level counters and leave them the way they

are. These will most likely be phased out in the future.

There is no exact solution for the problem we’re solving so we have set n var save to zero.

If you find that you need more points due to a a certain variable, you can create a

scaleCoeff < 1.0 to add more points to that variable. If it is left as 1.0 it will scale the

solution in its default manner according to your error threshold parameter ε.

2.1.4 SUBROUTINE user exact soln

This is where we would calculate an exact solution if we had one. In our case we do not,

but if you did you would enter the exact solution into the array u in the same order you

defined in the setup pde routine. For example, u(1 : nlocal, 1) = ... for the density ρ,

u(1 : nlocal, 2) = ... for the x-momentum and so on. Even though it is called u, it is not the

same u that is used to numerically calculate the solution. The main code takes this u and

stores it as the exact solution somewhere else.

2.1.5 SUBROUTINE user initial conditions

If you know the analytical initial condition, it is set up here. Instead of using the sign()

function for our initial condition, we have used the heavy-side function tanh() in conjunction

9

User Manual

with a width parameter delta to ensure a smooth initial condition. We also decided to save

the pressure at the initial condition as well even though it is a bit redundant.

2.1.6 SUBROUTINE user algebaic BC

Algebraic boundary conditions are set by solving the general equation

Lu = f .

There are three main subroutines used to solve this equation. The first is user algebaic BC.

This subroutine sets up the Lu portion of the equation.

2.1.7 SUBROUTINE user algebaic BC diag

Since the equation above is solved iteratively, the diagonal terms of L need to be provided.

user algebaic BC diag becomes this term.

2.1.8 SUBROUTINE user algebaic BC rhs

To finish setting up the equations that need to be solved, user algebaic BC rhs is the right

hand side of the above equation f .

2.1.9 FUNCTION Laplace

2.1.10 FUNCTION Laplace diag

2.1.11 FUNCTION user rhs

Since this manual uses the compressible case to demonstrate its features, we must assume

that not all readers are familiar with the governing equations and briefly introduce. We will

then reconstruct them in a more general form that is easily implemented into the user rhs

function.

In order to solve for the flow we write the equations in terms of the conserved quantities

ρ, ρu, ρv and the total energy ρe. We can write them in vector notation as follows

∂U

∂t
= −∂F(U)

∂x
− ∂G(U)

∂y

where U , F (U) and G(U) are defined as

U =


ρ

ρu

ρv

ρe

, F =


ρu

ρu2 + P

ρuv

(ρe + P)u

, G =


ρv

ρvu

ρv2 + P

(ρe + P)v

 .

10

AWCM Solver

If we rewrite these equations in terms of the U vector quantities [U1, U2, U3, U4], F (U) and

G(U) become

F =


U2

U2
2

U1
+ P

U2U3

U1

(U4 + P)U2

U1

, G =


U3

U2U3

U1
U2

3

U1
+ P

(U4 + P)U3

U1


and our normalized pressure is

p = (γ − 1)

(
U4 −

1

2

U2
2 + U2

3

U1

)
.

In the function user rhs, we need to supply the right hand side of the main governing

equation. The left hand side is the time derivative that we’re integrating and the right hand

side is everything else. This is supplied to the function user rhs. As you can see in the

function user rhs, we defined our F(U) with an extra index of length dim. For the 2-D case

this will account for our F(U) and G(U). F(U) is calculated just as the equations above

demand. When we call the subroutine c diff fast, it calculates the derivatives in dim number

of dimensions regardless of whether or not you need that many derivatives for that term.

For example, even though the first derivative call has a first derivative output named dux,

it really contains both the information for the x and y direction derivatives. If you look

down where the user rhs output variable is created, you’ll see that the difference between

dux(ie,:,1) and duy(ie,:,2) lies in the final index. An index of 1 corresponds to the derivative

in the x-direction, 2 in the y-direction and 3 in the z-direction. This will later be changed so

that you can choose whether or not you want to calculate both derivatives or not. The do

loop sorts through the four different equations for the conserved variables and creates the

right and side exactly as is needed.

2.1.12 FUNCTION user Drhs

Since the Crank-Nicolson and Krylov are implicit iterative time integration solvers, we need

to provide a first order perturbation to help the iterative solver converge more quickly. The

user provides this perturbation to the main code through the function user Drhs. Since the

right hand side has already been defined, finding the perturbation is simply a matter of

applying the linearized theory. If we define our RHS as L(U) then our DRHS can be found

by

DRHSi =
∂Li(U)

∂Uj

∣∣∣∣∣
Up

U
′

j

11

User Manual

where the Jacobian is evaluated at the previous time step Up and U
′
i is the perturbation

term. Implementing this equation into user Drhs is fairly simple. Since L(U) is a linear

operator, we can pull the spatial derivative out and re-write our F
′
(Up) and G

′
(Up) as

F
′
=



U
′
2

−
(

U2p

U1p

)2
U

′
1 + 2

(
U2p

U1p

)
U

′
2 + P

′

−
(

U2pU3p

U2
1p

)
U

′
1 +

(U2pU
′
3+U3pU

′
2)

U1p

(U
′
4 + P

′
)U2p

U1p
+ (U4p + Pp)

(
U

′
2

U
′
1

− U2p

U2
1p

U
′
1

)


G =



U
′
3

−
(

U2pU3p

U2
1p

)
U

′
1 +

(U2pU
′
3+U3pU

′
2)

U1p

−
(

U3p

U1p

)2
U

′
1 + 2

(
U3p

U1p

)
U

′
3 + P

′

(U
′
4 + P

′
)U3p

U1p
+ (U4p + Pp)

(
U

′
3

U
′
1

− U3p

U2
1p

U
′
1

)


and the pressures Pp and P

′
are

Pp = (γ − 1)

(
U4p −

1

2

U2
2p + U2

3p

U1p

)

P
′
= (γ − 1)

(
U

′

4 +
1

2

(U2
2p + U2

3p)

U2
1p

U
′

1 −
U2pU

′
2 + U3pU

′
3

U1p

)
.

Once the equations are constructed we enter them into user Drhs in the same fashion as

user rhs and the DRHS assignment is complete. If there is a mistake made when entering

the equations into DRHS it may still converge, but it may take a few more iterations.

Otherwise, the solver will continue to iterate without reaching its error threshold criteria

indefinitely.

2.1.13 FUNCTION user Drhs diag

When using the Crank-Nicolson technique, a diagonal term needs to be created from our

DRHS. The diagonal term is found by letting all U
′
i → 0 for all terms besides the term

you are looking for Uj 6=i. Each term in F(U)
′

is much simpler than in the original DRHS.

Not only do we set all other U
′
i to zero, we set Uj 6=i equal to 1 as well to find the diagonal

derivative coefficients. The flux functions F(U)
′

are exactly this situation. To demonstrate,

the fluxes before setting the U
′
i terms to zero is

F
′
diag =


0

(3− γ)U2p

U1p
U

′
2

U2p

U1p
U

′
3

γ U2p

U1p
U

′
4

G
′
diag =


0

U3p

U1p
U

′
2

(3− γ)U3p

U1p
U

′
3

γ U3p

U1p
U

′
4


where the pressure has been substituted into the equations already. The equations are now

in the form of some function of un-primed terms multiplied by prime terms. Note when the

12

AWCM Solver

derivative is taken, no chain rule is applied as in analytical case, since when spatial derivatives

are taken using finite difference, the whole nonlinear term in front of U
′
i is multiplied by

corresponding weight. Thus, we simply replace U
′
i by diagonal weight corresponding to the

differential operator. In the case when the term is written in algebraic from, U
′
i is simply

replaced by unity.

Note that this is only for the Crank-Nicolson method. When using the Krylov integrator

this section does not need to be defined because it is not used.

2.1.14 SUBROUTINE user project

This routine is mostly used for incompressible flows where the pressure needs to be tracked,

but not integrated. The Crank-Nicolson method is used with this projection step to ensure

that the velocity vector v remains divergent free. The small vortex array case demonstrates

this feature more clearly.

2.1.15 FUNCTION user chi

If there is to be an obstacle in the flow using Brinkman penalization, you would determine

your χ function here. If it is equal to 1.0 it is inside the boundary and if it is equal to zero

then it is outside. Note that this function is not fully implemented yet.

2.1.16 SUBROUTINE user stats

After results of a new time step are available, you may want to generate some statistics

based on those results. This function serves that purpose and is called from the main code.

User stats allows you to make these calculations without touching the main code.

2.1.17 SUBROUTINE user cal force

If an obstacle has been defined in the user chi function, the lift and drag are calculated here.

2.1.18 SUBROUTINE user read input

In the subroutine setup pde we defined our variables Re, gama, delta and radius. This is

where we read them into the module from the compressible.inp input file. Each variable is

read in separately with its own input real command. The input real command is only used

to input real type numbers. If you want to read an integer you would use input integer.

The parameter ’stop’ tells the code that if that variable is not read properly, it will stop the

code execution. If you look in the compressible.inp file, you can see how to set up your own

variables just like these.

13

User Manual

2.1.19 SUBROUTINE user additional vars

Any additional variables that aren’t integrated but are stored in the main storage array u

are calculated here. In our case, we are storing pressure in the n var pressure portion of u

that we created in setup pde. Again, normally it would be better to calculate pressure in

the post processing step, but we are storing it here as an example.

2.1.20 SUBROUTINE user scalar vars

If there are any scalar (non-field) parameters defined at the beginning of the module that

need to be calculated, they should be handled here.

2.1.21 SUBROUTINE user scales

In the situation that you wish to override the default scales routine in the main code, you

would do that here.

2.1.22 SUBROUTINE user cal cfl

If you wish to override the default cfl condition you would do that here. The subroutine

get all local h returns the grid spacing for all points on the active grid. We then determine

the cfl for each grid point and ultimately select the largest as cfl out.

2.2 CaseFile.inp Details

The input file is where all of the variables that are not hard coded into your case file are

stored. As seen in the previous section, any variables you need are read using an input real or

input integer statement. For the compressible case, we ran a 2-D euler equation simulation.

Inside if the compressible.inp file you will see all of the parameters that are needed to run

this case.

The first several variables pertain to input output and initialization parameters. file gen

is whatever you want the output in the results subdirectory to be saved as. It is possible to

restart your simulation at any given output time by setting IC restart = T (true) and spec-

ifying which output time with IC restart station. If you wanted to restart from a different

file you can set IC from file = T and specify the format and IC filename. The output can

be formatted text or binary (unformatted). Unformatted is the preferred format due to its

speed and smaller file size.

The domain size is specified with coord min and coord max. We have specified three

different dimensions in the case that dimension is set to 3 then the input file is ready to use.

In the case of our 2-D run, it simply ignores the extra dimension. In order to avoid problems

at the boundaries, it is sometimes necessary to specify a coord zone min and coord zone max.

14

AWCM Solver

Although this example uses periodic boundary conditions, these parameters should usually

be set outside of the actual domain as seen in this example.

The overall solution error is controlled with the parameter ε. The code has been set up

to allow the use of two different ε’s depending on your particular situation. Eps init can be

used as a separate initial thresholding parameter for eps adapt steps number of steps before

using the regular eps run parameter. In our case there is no difference between the two.

Setting a threshold parameter ε is only effective on its own if all integrated variables are

normalized to the same scale. This is usually not the case and a scaling method Scale Meth

needs to be specified to keep the relative error in check. In our compressible case, all the

equations are normalized with a mean value of zero so choosing Linf error as the scaling

method is not a bad choice. However, in other situations it may be better to use an L2-norm

error or possibly a RMS scaling method. In some situations, the time scales can change

very rapidly which causes your scales to rapidly vary as well. Since this can sometimes

be problematic, a temporal filter has been provided to slow the speed at which these scales

change scl fltwt. This parameter has the range of [0, 1] where zero corresponds to no filtering

and 1 corresponds to being completely based upon historical scales.

In every simulation, the minimum and maximum grid size needs to be specified by setting

the minimum and maximum levels of resolution, J MN and J MX, as well as the initial

M vector. In our case the M vector is [4, 4] and J MN and J MX are 2 and 4. The minimum

grid size is M vector ∗ 2J MN (16x16) and the maximum grid size is M vector ∗ 2J MX

(64x64). In our case J MX is set relatively small because it is a test case and we want to

limit the level of resolution for computational reasons.

The boundaries are set to be periodic and the grid is said to be uniform in all directions.

Although our grid is adaptive, the grid spacing on each level of resolution remains constant

throughout the domain, hence the grid is called uniform.

The parameters i h and i l specify the order in which boundaries are stored in the u array

and what type of boundary conditions will be imposed, either algebraic or evolutionary. The

order of the wavelets used are specified with N predict and N update. These parameters

determine how many points are used on either side of the point being interpolated. In our

case they are 2, so we are using 4th order wavelets. N diff is the number of points used on

each side of a centered difference scheme to calculate the derivatives. Since N diff is 2, we

are using a 4th order central differencing scheme. Generally it is wise to make all three of

these parameters the same.

The next two parameters IJ ADJ and ADJ type deal with the fine details of how the

code chooses to pick points. It’s generally good to leave IJ ADJ as 1 for all three levels. If

ADJ type is set to 0 it will use less points and run faster, but if convergence becomes an

issue, set this parameter to more conservative. This alone may solve a convergence issue

when faced with one.

If non-periodic boundary conditions are used, BNDzone should normally be set to true.

15

User Manual

It will use the parameters coord zone min and coord zone max when this is on. BCtype

specifies the type of boundary conditions used if custom ones are not needed. The time

integration method is chosen in this example to be the Crank-Nicolson scheme. This option

is not yet implemented.

The next several variables all involve temporal aspects of the code. The beginning and

ending of the simulation are specified with t begin and t end. The initial time step used

to start off the run is dt. The minimum and maximum time steps are set with dtmax and

dtmin. Dtmin can serve as a stability indicator in that many times the time step will become

smaller and smaller as the solution begins to diverge. If dt drops below dtmin it is usually

because there is a problem. The parameter t adapt can be used to make all time steps below

t adapt of the same size and once t is greater than t adapt, the time step is free to change

with the solution. The maximum and minimum cfl conditions are set with cflmax and cflmin.

In the compressible case example, we needed the variables gama, delta and radius. They

are set here for no reason in particular. Note that the order in which variables are declared

is not important.

The variable Zero Mean is for cases in which you want the mean value of the first 1:dim

variables to remain zero. The next several variables are for the Krylov time integrator and

the elliptic solver. It is best not to touch these.

If you wish to insert an object into the flow using Brinkman Penalization you would set

the obstacle variable to T. Its location, size and movement directions can all be specified

using the various different variables. You would probably create a few of your own variables

and then make sure to define that objects domain in the user chi subroutine. The rest of

the variables are other integration parameters that should normally be left alone.

16

AWCM Solver

3 Compilation and Execution

In order to have one makefile for different computer architectures, the makefile is setup using

gmake. The casename.f90 is compiled with the rest of the code in the source directory by

providing the compiler flag with the same name, e.g. “gmake CASE=casename”. Once the

code is compiled, it is run with the input argument “casename”. As of now the exact syntax

used to compile is “gmake DB=db wrk CASE=[path of case]/casename wlt 3d”. Make sure

to add the wlt 3d at the end so the compiler will know what to do.

Once the code has compiled, the executable file will be found in the case directory. The

code is executed by using the input file as a command line argument for the executable, e.g.

“./casename.out casename.inp”. The output files will be saved in the results/ subdirectory.

In order to view the output files in MATLAB, the post-process file c wlt inter.f90 needs to

be compiled. From the source directory compile all the needed files by “gmake DB=db wrk

inter”. Once this is done, you are ready to visually view the output using MATLAB.

17

User Manual

4 Data Visualization

Once everything has been compiled and executed we can plot the data using the provided

Matlab routines. It is important to compile the c wlt inter.f90 file prior to data visualization.

In the compressible case directory, there should be a file showme3D.m. This program is run

within Matlab to visualize your data. This program simply runs the more general routine

c wlt 3d.m routine which contains many different input parameters. These parameters are

explained in the showme3d.m file, but we will look at them a bit as well.

If you open the showme3D.m file in the compressible case directory you will notice a line

where the POSTPROCESS DIR variable is defined. Make sure to modify that path to the

path of you own post process directory.

Further down all the arguments used to call the plotting function c wlt 3d are briefly

explained. At the bottom, a call to this function is shown with each argument defined for

you. The first argument in this list is the file name ’euler test.’. You will find this matches

the name in the compressible.inp file. The j range is the range of resolution that Matlab will

use to plot your solution. The bounds argument determines the domain that will be plotted.

The figure is set to plot the solution using a contour plot. If you would like to see the

grid, you must set the figure type to ’grid’. The plot comp variable is the component of the

solution that you want to plot. This is defined in the compressible.f90 code. The station

number is which output step you are plotting. In this case, it is set to 20, which is the final

output time for this case.

18

AWCM Solver

References

Goldstein, D. E. & Vasilyev, O. V., 2004, Stochastic coherent adaptive large eddy simulation

method, Phys. Fluids , 16(7), 2497–2513.

19

