High-Performance Process Manager Parameter Reference Dictionary

HP09-540

Total Plant

Implementation High-Performance Process Manager - 2

High-Performance Process Manager Parameter Reference Dictionary

HP09-540 Release 530 8/97

Total Plant

Copyright, Trademarks, and Notices

© Copyright 1995 - 1997 by Honeywell Inc.

Revision 04 - August 1, 1997

While this information is presented in good faith and believed to be accurate, Honeywell disclaims the implied warranties of merchantability and fitness for a particular purpose and makes no express warranties except as may be stated in its written agreement with and for its customer.

In no event is Honeywell liable to anyone for any indirect, special or consequential damages. The information and specifications in this document are subject to change without notice.

TotalPlant and TDC 3000 are U.S. registered trademarks of Honeywell Inc.

Other brand or product names are trademarks of their respective owners.

About This Publication

This publication defines the parameters for the HPM data point types implemented through **TotalPlant** Solution (TPS) system network Release 500 - 530. TPS is the evolution of TDC 3000^{X} .

Change bars are used to indicate paragraphs, tables, or illustrations containing changes that have been made to this manual effective with Release 530. Pages revised only to correct minor typographical errors contain no change bars.

Table of Contents

1 INTRODUCTION

- 1.1 Purpose
- 1.2 Use of This Publication
- 1.3 Parameter Definition Format
- 1.4 Parameters Per Point Type and Algorithm Type
- 1.5 Full Points and Component Points
- 1.6 Abbreviations
- 1.7 CL Access
- 1.7.1 Parameters Not Accessible to CL
- 1.7.2 CL Restricted Parameters

2 PARAMETERS PER POINT TYPE

- 2.1 Analog Input (AnalgIn)
- 2.2 Analog Output (AnalgOut)
- 2.3 Array
- 2.4 Box (HPM Box)
- 2.5 Box Flag
- 2.6 Box Numeric
- 2.7 Box Timer
- 2.8 Device Control (DevCont)
- 2.9 Digital Composite (DigComp)
- 2.10 Digital Input (DigIn)
- 2.11 Digital Output (DigOut)
- 2.12 Reserved
- 2.13 IOP
- 2.14 Logic
- 2.15 Process Module (ProcMod)
- 2.16 UCN Network
- 2.17 UCN Node

3 PARAMETERS PER ALGORITHM TYPE

- 3.1 Auto Manual (AutoMan)
- 3.2 Calculator (Calcultr)
- 3.3 Data Acquisition (DataAcq)
- 3.4 Flow Compensation (FlowComp)
- 3.5 General Linearization (GenLin)
- 3.6 High-Low Average (HiLoAvg)
- 3.7 Incremental Summer (IncrSum)

i

- 3.8 Middle-of-3 (MidOf3)
- 3.9 Override Selector (ORSel)

Table of Contents

- Pid 3.10
- Pid with External Reset Feedback (PidErfb) 3.11
- 3.12 Pid with Feed Forward (PidFf)
- Pid with Position Proportional (PidPosPr) 3.13
- Position Proportional (PosProp) 3.14
- Ramp Soak (RampSoak) Ratio Control (RatioCtl) 3.15
- 3.16
- Summer (RegCtl) Summer (RegPV) 3.17
- 3.18
- 3.19 Switch
- 3.20 Totalizer (Totalizr)
- 3.21 Variable Dead Time with Lead/Lag (VdtLdLag)

\$–Y PARAMETER DEFINITIONS

INTRODUCTION Section 1

1.1 PURPOSE

This publication defines the user-visible parameters that exist in the **TotalPlant** Solution (TPS) System High-Performance Process Manager (HPM) and Network Interface Module (NIM). It also provides listings of parameters that are applicable to various HPM point types and algorithms.

For information on how the parameters are related to each other in terms of point types and algorithms, refer to the *High-Performance Process Manager Control Functions and Algorithms* manual in the *Implementation/High-Performance Process Manager - 1* binder.

1.2 USE OF THIS PUBLICATION

Use this publication during configuration and during operation when detailed information about HPM and NIM parameters is required.

For use in data point configuration, this publication provides definitions for each entry that can be made on the *High-Performance Process Manager Point Configuration Forms*, *HP88-500* in the *Implementation/High-Performance Process Manager - 1* binder, and in the Parameter Entry Displays at the Universal Station.

For use in process operation, this publication provides information about the parameters that appear for the process data points and HPM Box Data Point on the displays of Universal Stations that are running with the Operator personality.

1.3 PARAMETER DEFINITION FORMAT

In this dictionary, the parameter definitions are listed in alphabetical order according to the parameter name, which can be up to eight characters in length. Each parameter in this publication is defined using the format shown below for the **ALMOPT** parameter, as an example. The following paragraphs describe the entries that appear within each parameter definition.

ALMOPT (DigIn)

-	(J /	
Type:	e(\$ALMOPT)	Alarming Option—Defines the alarming option for a digital input point whose
Lock:	Eng/PB	DITYPE is Status.
Default:	None	
PtRes:	APM	
Range:	0-None (No ala	rms are to be detected)
	1-Offnorml (Of	f Normal; alarm if current PV state is not the PVNORMAL state. PVNORMAL is
	defi	ned by the STATETXT(0) or STATETXT(1) descriptor, as configured by the user.)
	2-ChngofSt (A	n alarm is generated when the digital input changes state in either direction).
	<u> </u>	

Helpful Hint: ALMOPT configuration requires DITYPE = Status.

For many parameters, the function of the parameter is described using the long name of the parameter (**Alarm Option**), followed by a description as shown in the above example. Some parameters in this dictionary do not have functional descriptions following the long name; this is because the long name of the parameter sufficiently describes the parameter function.

Туре

This entry is the data type that defines how the parameter is viewed by the system. The following data types are used in this dictionary:

- E:—Enumeration; the value for the parameter is chosen from a set of predefined character strings. In the above example, the enumerations of **\$ALMOPT** are **None**, **Offnorml**.
- **SD_ENM**:—Self-Defining Enumeration; the value for the parameter is chosen from the user-defined character strings.
- Ent.Prm—consists of a 1-16 character tag name, a period, and a 1-8 character parameter name.
- Integer—a 16-bit whole number that does not contain a decimal point (\pm 32767).
- **Logical**—a binary type with the values of ON (True) and OFF (False), or 0 (Off) and 1 (On).
- NaN—although not a data type, is used to represent "Not A Number" and is stored in IEEE format.
- **Prm_Id**—1-8 character parameter name.
- **Real**—a 32-bit floating-point number in IEEE format.
- **String_L**—a character string of maximum length = L. Same as Ascii_L.
- **Time**—The time of day in one of the following formats: DDD HH:MM:SS for durations, and DDMMYY HH:MM:SS for an absolute date or time stamp.
- Universal Ent.Prm—Universal Entity Parameter Identifier. It is basically the same as Ent.Prm, but the entity name can be entered as an external 16-character tag name or as the HPM's internal hardware reference address. The hardware reference address syntax can be used to access parameters of points (within this same HPM) that are untagged or tagged.

The following are examples of hardware reference addresses*:

Туре	Hardware Reference Address
AO Processor Output	!AO11S03.OP (Parameter OP of Slot #3 of AO processor #11)
DI Processor PV	!DI05S07.PVFL (Parameter PVFL of Slot #7 of DI processor #5)
DO Processor Status Output	ID015S12.SO (Parameter SO of Slot #12 of DO processor #15)
DO Processor ON Pulse Command	ID015S12.ONPULSE (Parameter ONPULSE of Slot #12 of DO processor #15)
DO Processor OFF Pulse Command	IDO15S12.OFFPULSE (Parameter OFFPULSE of Slot #12 of DO processor #15)

Lock

The access lock defines "who" or "what" can change the parameter's value or option and the access level defines "who" or "what" is requesting a parameter value or option change. For example, if a requestor with an access level of Supr tries to change a parameter that has an access lock of Engr, the request will be denied. The two charts below describe how access levels and access locks work.

Access Level	Used By Who Or What When A Parameter Change Request Is Made					
Oper Supr or Sup Engr, Eng, or Eg Cont OnProc HPMMCc Prog PtBld or PB	Operator Supervisor Engineer Continuous_Control (from a Module on the LCN) On Process HPMM_Continuous_Control (from HPMM) CL/HPM Sequence_Programs Point_Builder (Data Entity Builder)					
Access Lock	Access L	evel of Re	equestors	That Car	n Change The Paran	neter
Oper Supr Engr	Oper	Supr Supr	Engr Engr Engr	Cont	HPMMCc Prog HPMMCc Prog HPMMCc Prog	PtBld PtBld PtBld
OnProc Sup/Eg EgOnly	Oper	Supr Supr	Engr Engr Engr			

a useable default database.

Prog

PtBld

Eng/PB

View (Read Only)

*The Analog Input address !AImmSss.Parameter is not supported because the Analog Input point does not have

Engr

PtBld

PtBld

PtBld

Cont HPMMCc Prog

Default

The default for the parameter is the default value assigned by the system. The system automatically enters the default value for a parameter when a range or a selection is not entered for a parameter during point building. The default values are also shown on the configuration forms and parameter entry displays.

PtRes

This defines where the parameter physically resides. The following residency locations are used in the parameter definitions:

PtRes	Definition
HPM	High-Performance Process Manager
NIM	Network Interface Module
SI	Serial Interface

Range

This defines the range of the value that can be entered for this parameter. Integers that precede HPM resident enumeration parameters are sometimes needed by advanced CL users. These integers specify the member's position within the set (that is, the ordinal). CL programs external to the UCN (such as AM/CL) will see the same enumeration strings, but in some cases, with different ordinal values.

Helpful Hint

Some parameter definitions contain a *Helpful Hint* box at the end of the definition. This box contains additional information about the parameter, such as prerequisites, etc.

1.4 PARAMETERS PER POINT TYPE AND ALGORITHM TYPE

In addition to the parameter definitions, this dictionary also contains listings of the parameters that are applicable to each HPM point type and algorithm type. Parameters-per-point-type are defined in Section 2; parameters-per-algorithm-type are defined in Section 3.

1.5 FULL POINTS AND COMPONENT POINTS

Separate functional elements of the HPM are used to implement various parts of typical control loops and control strategies. Each of these functional elements can be assigned a user-defined tag name to allow for location-independent reference to the data associated with that function. For example, point tags are assigned by the user for analog input and analog output slots. The I/O Processor data (engineering-unit range for inputs, characterization option for outputs, etc.) is configured as part of the point-build process for these points. A separate tag is configured for each regulatory control (RegCtl) slot that is linked to the assigned analog I/O tags through input/output connections.

The HPM provides a configurable parameter called PNTFORM (Point Form) that allows the user to define which points are to be used as the primary operator interface for point data. The PNTFORM parameter provides the user with two choices for point form: "Full" and "Component." Points that are configured as having "Full" point form include alarmrelated parameters and sometimes, some other miscellaneous parameters. This information is needed when the point is to be used as the primary operator interface to the point's data.

Points that are configured as having "Component" point form should be used to provide inputs to the "Full" point and also for those points that handle the outputs from the "Full" points. "Component" points should be used as part of the "Full" point that has been designated a primary operator interface point.

1.6 ABBREVIATIONS

AM	Application Module				
AnalgIn	Analog Input Data Point				
AnalgOut	Analog Output Data Point				
AO	Analog Output				
HPM	High-Performance Process Manager				
HPMM	High-Performance Process Manager Module				
HPM Box	HPM Box Data Point				
Array	Array Data Point				
AutoMan	Auto Manual algorithm				
Box	Box Data Point				
Calcultr	Calculator algorithm				
CM	Computing Module 50 or 60				
DevCtl	Device Control Data Point				
DI	Digital Input				
DigComp	Digital Composite Data Point				
DigIn	Digital Input Data Point				
DigOut	Digital Output Data Point				
DISOE	Digital Input Sequence of Events				
DO	Digital Output				
ESI	Extended Standard International Engineering Units				
FBus	Field Bus				
Flag	Flag Data Point				
FlowComp	Flow Compensation algorithm				
FTA	Field Termination Assembly				
GenLin	General Linearization algorithm				

HiLoAvg	High Low Average algorithm
HLAI	High Level Analog Input
IncrSum	Incremental Summer algorithm
IOL	I/O Link
IOP	I/O Processor
Logic	Logic Data Point (Slot)
LCN	Local Control Network
LLAI	Low Level Analog Input (or LLAI-8)
LLMUX	Low Level Analog Input Multiplexer (or LLAI-16/32)
MidOf3	Middle-of-3 Selector algorithm
MulDiv	Multiply Divide algorithm
NIM	Network Interface Module
ORSel	Override Selector algorithm
PI	Pulse Input
Pid	Proportional, Integral, Derivative,
PidErfb	Proportional, Integral, Derivative with External Reset Feedback algorithm
PidFf	PID with Feedforward algorithm
PidPosPr	PID With Position Proportional algorithm
PosProp	Position Proportional algorithm
ProcMod	Process Module Data Point
PSDP	Processor Status Data Point
RampSoak	Ramp Soak algorithm
RatioCtl	Ratio Control algorithm
RegCtl	Regulatory Control Data Point or algorithm
RegPV	Regulatory PV Data Point or algorithm
RHMUX	Remote Hardened Analog Input Multiplexer (or RHMUX-16/32)
SI	Serial Interface
SDI	Serial Device Interface
STI	Smart Transmitter Interface
Switch	Switch algorithm
Summer	Summer algorithm
Timer	Timer Data Point
Totalizr	Totalizer algorithm
UCN	Universal Control Network
VdtLdLag	Variable Deadtime Lead Lag algorithm

1.7 CL ACCESS

1.7.1 Parameter Not Accessible to CL

Parameter \$EVNTREC is not accessible to Control Language (CL) sequences.

1.7.2 CL Restricted Parameters

The following parameters are not accessible to PM/CL sequences. They are not *directly* available to AM/CL sequences. Access to AM/CL is through a custom data segment parameters attached to AM regulatory points as described below.

BHALMFL1-BHALMFL7 NODESTS NODETYP UCNRECHN

These parameters are available to user schematics using the NIM reserved data point, e.g., NMuuBnn.param, where uu = UCN number and nn = UCN node number.

AM/CL programs can access the restricted parameters as Regulatory Point General inputs (using ordinary point parameter access). They must be transferred to parameters of AM regulatory points. There are two ways to do this:

- 1. Boolean parameters (BHALMFLn), can be referenced as general inputs to a Switch algorithm. A CL program can access the switch parameters.
- 2. For Enumerations (NODEOPER, NODESTS, NODETYP, POSITION, AND UNRECHN) a custom data segment is created to allow the parameters to be referenced as general inputs and transferred to user-defined parameters (of a RegCtl Point) that can be accessed by Cl.

PARAMETERS PER POINT TYPE Section 2

This section contains listings of parameters that are applicable to each data point type in the HPM, except for the Regulatory Control and Regulatory PV data points which can be found in Section 3. Refer to Sections \$ - X for the definitions of the parameters.

2.1 Analog Input (AI)

The parameters of the Analog Input Data points are listed below in alphabetical order. (F) indicates that the parameter is applicable when the PNTFORM = Full.

2.2 Analog Output (AO)

The parameters of the Analog Output Data point are listed below in alphabetical order. (F) indicates that the parameter is applicable when the PNTFORM = Full.

ASSOCDSP	Modnum	OPFINAL	OPOUT2	PNTTYPE
CASREQ (F)	Name	OPIN0	OPOUT3	PRIMMOD (F)
EUDESC	Nmodattr (F)	OPIN1	OPOUT4	PTDESC
KEYWORD	Nmode (F)	OPIN2	OPOUT5	PTEXECST
LOCALMAN	Nodenum	OPIN3	OPTDIR	RCASOPT
MODATTR (F)	Nodetyp	OPIN4	\$OPTOL	REDTAG (F)
MODE (F)	Ntwknum	OPIN5	PNTFORM	RINITREQ (F)
MODEAPPL (F)	Op	OPOUT0	PNTMODTY	SLOTNUM
MODEPERM (F)	Opchar	OPOUT1	PNTNODTY	STDBYMAN
MODEPERM (É)	OPCHAR	OPOUT1	PNTNODTY PNTSTATE	STDBYMAN UNIT

1

2.3 Array

The parameters of the Array Data Point are listed below in alphabetical order. The Point Form parameter is set to Full.

2.4 Box (HPM Box)

The parameters of the High-Performance Process Manager Box Data Point are listed below in alphabetical order.

Some of the parameters in the above listing are arrays and are not defined in this publication.

2.5 Box Flag

The parameters of the Box Flag Data Point are listed below in alphabetical order. (F) indicates that the parameter is applicable when the PNTFORM = Full; an * indicates that the parameter is applicable to flag slots 1-128.

\$AUXUNIT (F)*	CONTCUT (F)*	NODETYP	PRIMMOD (F)*	S1BOXCLR
ALENBST (F)*	EIPPCODE (F)*	NTWKNUM	PTDESC	SLOTNUM
ALPRIOR	EUDESC	OFFNRMPR (F)*	PV	STATE0
ASSOCDSP	HIGHAL (F)*	PNTFORM	PVFL	STATE1
BOXCLR	KEYWORD	PNTNODTY	SOBOXCLR	STATETXT
CNFMU	NAME	PNTTYPE		UNIT
CNFPU	NODENUM			

2.6 Box Numeric

The parameters of the Box Numeric Data Point are listed below in alphabetical order. The Point Form parameter is set to Full.

ASSOCDSP	EUDESC	NODETYP	PNTNODTY	PV
CNFMU	KEYWORD	NTWKNUM	PNTTYPE	PVFORMAT
CNFPU	NAME NODENUM	PNTFORM	PRIMMOD PTDESC	SLOTNUM UNIT

2.7 Box Timer

The parameters of the Box Timer Data Point are listed below in alphabetical order. The Point Form parameter is set to Full.

ASSOCDSP	NAME	PNTNODTY	PV	SP
COMMAND	NODENUM	PNTTYPE	RV	STATE
EUDESC	NODETYP	PRIMMOD	SLOTNUM	TIMEBASE
KEYWORD	NTWKNUM	PTDESC	SO	TIMOUTFL
	PERIOD			UNIT

2.8 Device Control (DevCtl)

The parameters of the Device Control Data Point are listed below in alphabetical order. (F) indicates that the parameter is applicable when the PNTFORM = Full.

\$AUXUNIT (F) ACCELTIM ALENBST (F) ASSOCDSP BADPVFL (F) BADPVPR (F) BADPVTXT BADSVFL BADSVFL BADSVPR (F) BOXCLR	(#Inputs>0) (#Inputs>0)	LOCALMAN LODSTN 1-2 LOENBL 1-2 LOGICSRC LOSRC 1-2 MAINDAT MAINTOPT MANMODFL MASKTIM MAXTIMOH	(#Outputs>0)	OVRCTIM OVRDCONF OVRDDESC OVRDIOFL OVRD1FL OVRD2FL OVRDALOP OVRDALPR (F) OVRDSIFL P0	(#Outputs>0)
BYPASS CMDDISFL CMDDISPR (F) CMDFALFL CMDFALTM CNFERRFL CNFMU CNFPU CONTCUT D1		MAXTIM1H MAXTIM2H MAXTRAN0 MAXTRAN1 MAXTRAN2 MODATTR MODE MODEAPPL MODEPERM MODENTE	(#Outputs>0) (#Outputs>0) (#Outputs>0) (#Outputs>0)	P1 P2 PAUSETIM PERIOD PFDLYFL PGALGID 1-4 PGDSTN 1-4 PGPLSWTH 1-4 PGSO 1-4 PIALGID 1-12 PIALGID 1-12	(#Outputs>0) (#Outputs>0)
D1_0 D1_1 D2 D2D1_00	(#Inputs>0) (#Inputs=1) (#Inputs=1)	MOMSTATE MOVPVFL MOVPVTXT NAME	(#Outputs>0) (#Inputs>0)	PIDEADBD1-12 PINN 1-12 PISO 1-12 PISRC 1-12	
D2D1_01 D2D1_10 D2D1_11 D3 D4	(#Inputs=2) (#Inputs=2) (#Inputs=2) (#Inputs=2) (#Inputs=2)	NI0 NI1 NI2 NMODATTR NMODE	(#Outputs>0) (#Outputs>0) (#Outputs>0) (#Outputs>0) (#Outputs>0)	PNTFORM PNTMODTY PNTNODTY PNTSTATE PNTTYPE	
D5 DB_VALID DEADBAND DEADTIME DISRC DODSTN	(#inputs=z)	NN NNINSET 1-10 NODENUM NODETYP NODINPTS NODOPTS	(#Outputs>0)	PRGATRFL PRIMMOD (F) PSDLYFL PTDESC PTEXECST PTINAL	
EIPPCODE (F) EUDESC EVTOPT (F) FBTIME (F)	(#Inputs>0) (#Outputs>0)	NOLINPTS NOLOPTS NONECONF NONE_OP1-3		PULSEWTH PV PVAUTO PVFL	(#Outputs>0) (#Inputs>0) (#Inputs>0) (#Inputs>0)
FL 1-12 HIGHAL (F) HIGHALPR HISVPEAK I0 I0CONF	(#Inputs>0)	NOPGATE NORMCYCL NOSGATE NOSIOVRD NOSTATES NOTRANS0		PVNORMAL (F) PVNORMFL PVSOURCE (F) PVSRCOPT (F) PVSTATES 0-4 PVTXTOPT	(#Inputs>0) (#Inputs>0) (#Inputs>0)
I1 I1CONF I2	(#Outputs>0) (#Outputs>0)	NOTRANS1 NOTRANS2 NRMATRFL		REDTAG (F) RESETFL SOBOXCLR	(#Outputs>0)
I2CONF INITMAN INITREQ KEYWORD	(#Outputs>0)	NSIO NTWKNUM OFFNRMFL OFFNRMPR (F) OP	(#Outpute>0)	S1BOXCLR S2BOXCLR SCHSTS SEALOPT SECVAR	
L LIBADOPT LIDESC LISRC 1-12 LMREV LMSRC		OP OPCMD OPFINAL OPRATRFL OROPT	(#Outputs>0) (#Outputs>0) (#Outputs>0) (#Outputs>0) (#Outputs>0)	SGALGID 1-2 SGDSTN 1-2 SGPLSWTH 1-2 SGSO 1-2	

2.8 Device Control (DevCtl) con't

Continuation of the Device Control parameters are listed below in alphabetical order. (F) indicates that the parameter is applicable when the PNTFORM = Full.

2.9 Digital Composite (DigComp)

The parameters of the Digital Composite Data Point are listed below in alphabetical order. (F) indicates that the parameter is applicable when the PNTFORM = Full.

\$AUXUNIT (F) ALENBST (F) ALPRIOR ASSOCDSP BADCTLPR	(#Inputs>0)	Modattr Mode Modeappl Modeperm Modnum	(#Outputs>0) (#Outputs>0) (#Outputs>0) (#Outputs>0)	PRIMMOD (F) PRGATRFL PSDLYFL PTDESC PTEXECST	
BADPVFL (F) BADPVPR (F) BADPVTXT BOXCLR BYPASS CMDDISFL CMDDISPR	(#Inputs>0)	Momstate Movpvfl Movpvtxt Name NI0 NI1 NI2	(#Outputs>0) (#Inputs>0) (#Outputs>0) (#Outputs>0) (#Outputs>0)	PTINAL PULSEWDTH PV PVAUTO PVFL 0-2 PVNORMAL (F) PVSOURCE (F)	(#Outputs>0) (#Inputs>0) (#Inputs>0) (#Inputs>0)
CMDFALFL CMDFALTM CNFERRFL CNFMU CNFPU CONTCUT (F)		NMODATTR NMODE NODENUM NODETYP NODINPTS NODOPTS	(#Outputs>0) (#Outputs>0)	PVSRCOPT (F) PVSTATES 0-4 PVTXTOPT REDTAG (F) RESETFL S0BOXCLR	(#Inputs>0) (#Inputs>0) (#Inputs>0) (#Outputs>0)
D1 D1_0 D1_1 D2 D2D1_00	(#Inputs>0) (#Inputs=1) (#Inputs=1)	NONECONF NONE_OP1-3 NORMCYCL NOSIOVRD NOSTATES		S1BOXCLR S2BOXCLR SCHSTS SEALOPT SI0	
D2D1_01 D2D1_10 D2D1_11 DISRC 1-2 DODSTN 1-3 EIPPCODE (F)	(#Inputs=2) (#Inputs=2) (#Inputs=2) (#Inputs=2) (#Inputs=2) (#Inputs>0)	NOTRANS1 NOTRANS0 NOTRANS2 NRMATRFL NSI0 NTWKNUM	(#Outputs>0)	SIOALOPT SIOALPR (F) SIOCONF SLOTNUM SO SOCMD	(#Outputs>0)
EUDESC EVTOPT (F) FBTIME (F) HIGHAL (F) HIGHALPR	(#Outputs>0) (#Outputs>0)	OFFNRMFL OFFNRMPR (F) OP OPCMD OPFINAL	(#Outputs>0) (#Outputs>0) (#Outputs>0)	ST0_OP1 ST0_OP2 ST0_OP3 ST1_OP1 ST2_OP1	(#Outputs>0) (#Outputs>0) (#Outputs>0) (#Outputs>=2) (#Outputs>=3) (#Outputs>0)
I0 I0CONF I0DESC I1 I1CONF	(#Outputs>0) (#Outputs>0)	OPRATRFL OVRDALOP OPSTTEXT OVRDALPR (F) OROPT	(#Outputs>0) (#Outputs>0)	ST1_OP2 ST2_OP2 ST1_OP3 ST2_OP3 STATE0	(#Outputs>0) (#Outputs>=2) (#Outputs>=2) (#Outputs>=3) (#Outputs>=3)
I1DESC I2 I2CONF I2DESC INITMAN INITREQ	(#Outputs>0)	OVRDCONF OVRDDESC OVRDI0FL OVRDI1FL OVRDI2FL OVRDSIFL		STATE1 STATE2 STATETXT 0-4 STATTIM0 STATTIM1 STATTIM2	
KEYWORD LOCALMAN LOGICSRC MAINDAT MAINTOPT MAXTIM0H MAXTIM1H	(#Outputs>0)	P0 P1 P2 PAUSETIM PERIOD PFDLYFL PNTFORM	(#Outputs>0) (#Outputs>0) (#Outputs>0)	STCHGOPT STSMSG TRANTIM1 TRANTIM2 UNCMDFL UNIT USERID	
MAXTIM2H MAXTRAN0 MAXTRAN1 MAXTRAN2		PNTMODTY PNTNODTY PNTSTATE PNTTYPE			

The parameters of the Digital Input Data point are listed below in alphabetical order. (L), (S), or (A)—parameter applies only when DITYPE = Latched, Status, or Accum. (F) indicates that the parameter is applicable when the PNTFORM = Full.

\$AUXUNIT (F)	DLYTIME (S) (F)	OVERVAL (A) (F)	PVSOURCE (L) (F)
ALENBST (S) (F)	EIPPCODE (S) (L) (F)	PNTFORM	PVSRCOPT (S) (L) (F)
ALMOPT (S) (F)	EUDESC	PNTNODTY	RESETFL (A)
ALPRIOR	EVTOPT (L) (F)	PNTMODTY	RESETVAL (A)
ASSOCDSP	HIGHAL (S)	PNTSTATE	S0BOXCLR (S) (L)
AV (A)	INPTDIR (F)	PNTTYPE	S1BOXCLR (S) (L)
AVTV (A)	KEYWORD	PRIMMOD (F)	SLOTNUM
AVTVFL (A)	MODNUM	PTDESC	STARTFL (A)
BADPVFL (F)	NAME	PTEXECST	STATE (A)
BADPVPR	NODENUM	PV (S) (L)	STATE0 (S) (L)
BOXCLR (L)	NODETYP	PVAUTO (S) (L)	STATE1 (S) (L)
COMMAND (A)	NTWKNUM	PVCHGDLY (S) (L) (F)	STATETXT 0-2 (S) (L)
CONTCUT (S) (F)	OFFNRMFL (S)	PVFL (S) (L)	STOPFL (A)
COUNTDWN (A)	OFFNRMPR (S) (F)	PVNORMAL (S) (F)	UNIT
DEBOUNCE (S) (L)	OLDAV (A)	PVNORMFL (S)	
DITYPE (F)	OVERFLOW (A)	PVRAW	

2.11 Digital Output (DigOut)

The parameters of the Digital Output Data point are listed below in alphabetical order. (S) or (P) parameter applies only when DOTYPE = Status or Pulse Width Modulated (PWM). This point type is available only in the component form.

ASSOCDSP	NAME	OP (P)	PNTSTATE	SLOTNUM
DOTYPE	NODENUM	OPTDIR (P)	PNTTYPE	SO (S)
EUDESC	NODETYP	PERIOD (P)	PTDESC	STATEO (S)
INITREQ	NTWKNUM	PNTFORM	PTEXECST	STATE1 (S)
KEYWORD	OFFPULSE (S)	PNTMODTY	S0BOXCLR (S)	STDBYMAN
MODNUM	ONPULSE (S)	PNTNODTY	S1BOXCLR (S)	UNIT

2.10

2.12 Reserved

2.13 IOP

The parameters of the Input/Output Processor Point are listed below in alphabetical order.

CALIBALL	IOMACTYP	IOMTYPE	IORECCHN	RJRAW
CALIBRJ	IOMFWREV	IOMSTS	LINEPERD	SLOT0SF
FAILOPT	IOMHWREV	IONTOKEN	MAXSLOTS	STDBYSTS
FTAPRES	IOMLHFST	IOPSTR1	NODETYP	SWTCHACT
FREQ6050	IOMOPER	IOPSTR2	PIUOTDCF	WARMSTRT

Some of the parameters in the above listing are arrays and are not defined in this publication.

2.14 Logic

The parameters of the Logic Data Point (otherwise referred to as the Logic Slot) are listed below in alphabetical order. (F) indicates that the parameter is applicable when the PNTFORM = Full.

2.15 Process Module (ProcMod)

The parameters of the Process Module Data Point are listed below in alphabetical order. (F) indicates that the parameter is applicable when the PNTFORM = Full.

ABHHOLDIABHRSTRIABHSHDNIACP (F)IALPRIOR (F)IANAME 1-3IASSOCDSPIASTEP 1-3IASTMT 1-3IAVGPUIBADIOLPFICNFPUI	DIAGCMD FL 1-27 IOLPSERR IOLPSOPT LSTWHNER MAXPU MSGPEND NAME (F) NN 1-80 NODENUM NODETYP NOOVRRUN NTWKNUM OVERPHAS OVERSTAT	OVERSTEP OVRRUNFL OVRRUNPR PERIOD PFDLYFL PHASE PHASEAL PHASETIM PHREMTIM PNTFORM PNTNODTY PNTTYPE PROCMOD PRIMMOD (F) PSDLYFL	PTDESC RESTART RSTROPT RUNSTATE SEQERR SEQEXEC SEQMODE SEQNAME SEQOBJSZ SEQPR (F) SEQSLTSZ SLOTNUM SNAME 1-2 SPLOCK SSTEP 1-2	SSTMT 1-2 STATMENT STEP STR8 1-16 STR16 1-8 STR32 1-4 STR64 1-2 STRLEN STSMSG SUSPSTAT SUSPTIME TIME 1-4 UNIT USERID
--	--	--	---	---

2.16 UCN Network

Listed below in alphabetical order are the parameters of the UCN Network Data Point (system parameter \$NTWRKnn where nn = the UCN number).

CHPINHWY	HWYCTLST	NIMADDR	NIMREV	NMSGTXT
CLPZMXC	LOADSCOP	NIMDAY	NIMVERS	TIMESYNC
CLPZMXP	MSGTXT 0-15	NIMMONTH	NIMYEAR	UPGRADE

2.17 UCN Node

The parameters of the UCN Node Data Point are listed below in alphabetical order. They can be accessed as follows:

\$NMuuNnn.parameter where,

uu is the UCN network number, and nn is the UCN node number.

\$UCNLSB 1-50	NODESTS	NTRQUAVG*	UCNRECHN
CABLESTS	NODESTAT	NTRQUMAX*	UPGRADE
CLPZMXC	NODETYP	NTRSPAVG*	UTSDRIFT
CLPZMXP	NPRQUAVG*	NTRSPMAX*	UTSNODE
LOADSCOP	NPRQUMAX*	TIMESYNC	UTSTBCRV
MDMHWREV	NPRSPAVG*	TRATAVG	UTSTIME
MODNUM	NPRSPMAX*	TRATMAX	UTSTIMST
NMSGTXT			

*These parameters are indexed. The index is either an odd number from 1 to 63 and represents either-

· the UCN node number of a peer node for peer-to-peer statistics with that node

• 0 for the sum of all peer-to-peer statistics

Example for case 2 is: NPRQUAVG(0) = NPRQUAVG(1) + NPRQUAVG(3) + ... + NPRQUAVG(63)

PARAMETERS PER ALGORITHM TYPE Section 3

This section contains listings of parameters that are applicable to each PV and control algorithm in the HPM. Refer to Sections \$ - X for the definitions of the parameters.

3.1 Auto Manual (AutoMan)

The parameters of the Auto Manual control algorithm are listed below in alphabetical order. (F) indicates that the parameter is applicable when the PNTFORM = Full.

I

3.2 Calculator (Calcultr)

The parameters of the Calculator PV algorithm are listed below in alphabetical order. (F) indicates that the parameter is applicable when the PNTFORM = Full.

BADPVFL (F)NODETYPPNBADPVPR (F)NOPINPTSPNC1NORMCYCLPNC2NTWKNUMPNC3OVERVAL (F)PNC4P1PRCALCEXPP1STSPSCNFMUP2PTICNFPUP2STSPTICONTCUT (F)P3STSPTEUDESCP4PVHIGHAL (F)P5PVKEYWORDP5STSPVLASTPVP6PVMODNUMP6STSPV	NTFORM PV NTMODTY PV NTNODTY PV NTSTATE PV NTTYPE PV RIMMOD (F) PV SDLYFL PV SDLYFL PV FDESC PV FEXECST PV FINAL PV /ALDB (F) PV /ALDBEU (F) PV /ALDBEU (F) PV /ALGID PV /AUTO PV	VEXEUHI I VEXEULO I VEXHIFL I VEXLOFL I VFORMAT I VHHFL I VHHPR (F) I VHIFL I VHIPR (F) I VHIPR (F) I VHIT (F) I VLLFL I VLLFL I VLLPR (F) I VLOFL I	PVROCNFL PVROCNPR (F) PVROCPFL PVROCPFL PVROCPPR (F) PVROCPTP (F) PVSGCHTP (F) PVSGCHTP (F) PVSGCOPT (F) PVSRCOPT (F) PVSTS PVTV (F) PVTVP (F) SCHSTS SLOTNUM STSMSG TF UNIT USERID
---	--	--	---

3.3 Data Acquisition (DataAcq)

The parameters of the Data Acquisition PV algorithm are listed below in alphabetical order. (F) indicates that the parameter is applicable when the PNTFORM = Full.

ALENBST (F)NOIASSOCDSPNTVBADPVFL (F)OVIBADPVPR (F)P1CONCUT (F)P1SCNFMUPEFEUDESCPIDHIGHAL (F)PISHIGHALPR (F)PNTKEYWORDPNTLASTPVPNTNODENUMPNTNODENUMPRINODETYPPSI	RMCYCL PTIN WKNUM PV ERVAL (F) PVAI STS PVAI RIOD PVAI DLYFL PVAI OSTN PVC, SRC PVCI TFORM PVEI TMODTY PVEI TNODTY PVEI TNODTY PVEI TSTATE PVEI TTYPE PVEI	IAL P\ LDB (F) P\ LDBEU (F) P\ LGID P\ UTO P\ UTOST P\ ALC P\ LAMP P\ UHI P\ ULO P\ XEUHI P\ XEULO P\	VHHPR (F) I VHHTP (F) I VHIFL I VHIPR (F) I VHITP (F) I VUNIT I VLLFL I VLLFL I VLLPR (F) I VLOFL I VLOFL I VLOPR (F) S VLOTP (F) S VP S VROCNFL I	PVROCNPR (F) PVROCNTP (F) PVROCPVFL PVROCPPR (F) PVROVPTP (F) PVSGCHTP (F) PVSGURCE (F) PVSTCOPT (F) PVSTS PVTV (F) PVTVP (F) SCHSTS SLOTNUM STSMSG IF UNIT USERID
---	---	---	--	--

3.4 Flow Compensation (FlowComp)

The parameters of the Flow Compensation PV algorithm are listed below in alphabetical order. (F) indicates that the parameter is applicable when the PNTFORM = Full.

\$AUXUNIT (F) ALENBST (F) ASSOCDSP BADPVFL (F) BADPVPR (F) C C1 C2 CNFMU CNFPU COMPHILM COMPLOLM COMPTERM CONTCUT (F) EUDESC F FSTS G GSTS HIGHAL (F) HIGHALPR (F)	LASTPV MODNUM NAME NODENUM NODETYP NOPINPTS NORMCYCL NTWKNUM OVERVAL (F) P PERIOD PFDLYFL P0 PIDSTN PISRC PNTFORM PNTMODTY PNTNODTY PNTSTATE PNTTYPE PRIMMOD (F)	PSDLYFL PTDESC PTEXECST PTINAL PV PVALDB (F) PVALDBEU (F) PVALGID PVAUTO PVAUTOST PVCALC PVCHAR PVCLAMP PVEQN PVEUHI PVEULO PVEXEUHI PVEXEULO PVEXEUHI PVEXEULO PVEXHIFL PVEXLOFL PVFORMAT	PVHHFL PVHHPR (F) PVHHTP (F) PVHIFL PVHIPR (F) PVHIPR (F) PVINIT PVLLFL PVLLPR (F) PVLLTP (F) PVLOPR (F) PVLOPR (F) PVLOPR (F) PVROCNFL PVROCNFL PVROCNFL PVROCPFL PVROCPFL PVROCPFL PVROCPPR (F) PVROCPPR (F) PVROCPPP (F) PVSGCHTP (F)	PVSRCOPT (F) PVSTS PVTV (F) PVTVP (F) Q QSTS RG RP RQ RT RX SCHSTS SLOTNUM STSMSG T T0 TF TSTS UNIT USERID X
KEYWORD	PSTS		PVSOURCE (F)	XSTS

3.5 General Linearization (GenLin)

The parameters of the General Linearization PV algorithm are listed below in alphabetical order. (F) indicates that the parameter is applicable when the PNTFORM = Full.

3.6 High-Low Average (HiLoAvg)

The parameters of the High-Low Average PV algorithm are listed below in alphabetical order. (F) indicates that the parameter is applicable when the PNTFORM = Full.

3.7 Incremental Summer (IncrSum)

The parameters of the Incremental Summer control algorithm are listed below in alphabetical order. (F) indicates that the parameter is applicable when the PNTFORM = Full.

3.8 Middle-of-3 (MidOf3)

The parameters of the Middle-Of-3 PV algorithm are listed below in alphabetical order. (F) indicates that the parameter is applicable when the PNTFORM = Full.

\$AUXUNIT (F) ALENBST (F) ASSOCDSP BADPVFL (F) BADPVPR (F) CNFMU CNFPU CONTCUT (F) EUDES C HIGHAL (F) HIGHALPR (F) KEYWORD LASTPV MODNUM NAME NODENUM NODETYP NOPINPTS	NORMCYCL NTWKNUM OVERVAL (F) P1 P1STS P2 P2STS P3 P3STS PERIOD PFDLYFL PIDSTN PISRC PNTFORM PNTMODTY PNTNODTY PNTNODTY PNTSTATE PNTTYPE PRIMMOD (F)	PSDLYFL PTDESC PTEXECST PTINAL PV PVALDB (F) PVALDBEU (F) PVALGID PVAUTO PVAUTOST PVCALC PVCLAMP PVEQN PVEUHI PVEULO PVEXEUHI PVEXEULO PVEXHIFL	PVEXLOFL PVFORMAT PVHHFL PVHHPR (F) PVHIFL PVHIFR (F) PVHITP (F) PVINIT PVLLFL PVLLPR (F) PVLOFL PVLOFL PVLOPR (F) PVLOTP (F) PVP PVROCNFL	PVROCNPR (F) PVROCNTP (F) PVROCPFL PVROCPPR (F) PVROCPTP (F) PVSGCHTP (F) PVSGCHTP (F) PVSOURCE (F) PVSRCOPT (F) PVSTS PVTV (F) PVTVV (F) PVTVP (F) SCHSTS SELINP SLOTNUM STSMSG TF UNIT USERID
---	--	--	---	--

3.7

I

3.9 Multiply/Divide (MulDiv)

I

The parameters of the Multiply/Divide control algorithm are listed below in alphabetical order. (F) indicates that the parameter is applicable when the PNTFORM = Full.

ARWOPCVMCASSOCDSPCVEUHINAAUTMODFLCVEULONMBESWAUTONMB1, B2, B3ESWCASNOBADCTLFLESWENBSTNOBADCTLOPESWMANNOBADCTLPR (F)EUDESCNOBCAMODFLEXTSWOPTNRCASMODFLHIGHAL (F)NRCASREQHIGHALPR (F)NTCIDSTNINITMANOPCNFMUK1, K2, K3OPCODSTNLOCALMANOPCONTCUT (F)MANMODFLOP	ODNUM (AME (C) MODATTR (C) MODE (C) ODENUM (C) ODENUM (C) ODETYP (C) ORMCYCL (C) RMATRFL (F) PALDB (F) (F) PHAFL (F) (F) PHIFL (F) (F)	OPLOLM OPLOPR (F) OPLOTP (F) OPMCHLM OPRATRFL OPROCLM \$OPTOL OVERVAL (F) PERIOD PFDLYFL PNTFORM PNTFORM PNTMODTY PNTNODTY PNTSTATE PNTTYPE PRGATRFL	PTORST RARWSTS RATE1 RCASOPT REDTAG (F) RINITREQ RINITVAL SAFEOP SCHSTS SHEDMODE SHEDTIME SHUTDOWN SLOTNUM STDBYMAN STSMSG UNIT USERID X1, X2, X3
--	--	--	--

3.10 Override Selector (ORSel)

The parameters of the Override Selector control algorithm are listed below in alphabetical order. (F) indicates that the parameter is applicable when the PNTFORM = Full.

3.10 Pid

The parameters of the Pid control algorithm are listed below in alphabetical order. (F) indicates that the parameter is applicable when the PNTFORM = Full.

3.11 Pid with External Reset Feedback (PidErfb)

The parameters of the Pid with External Reset Feedback control algorithm are listed below in alphabetical order. (F) indicates that the parameter is applicable when the PNTFORM = Full.

\$AUXUNIT (F) ADVDEVFL ADVDEVPR (F) ADVDEVTP (F) ADVSP (F) ADVSPP (F) ALENBST (F) ARWNET ARWOP ASSOCDSP ASPPROC (F) AUTMODFL BADCTFL BADCTFL BADCTLOP BADCTLPR (F) BADPVFL (F) BADPVFL (F) BADPVFL (F) BADPVFL (F) BCAMODFL BIAS BSHILM BSLOLM CASMODFL CASREQ CIDSTN CISRC CNFMU CNFPU CODSTN CONTCUT (F) CTLACTN CTLALGID CTLEQN CTRLINIT CV CVEUHI CVEULO DELCV	DEV DEVHIFL DEVHIPR (F) DEVLOFL DEVLOFL DEVLOPR (F) DEVLOTP (F) ESWAUTO ESWCAS ESWENBST ESWMAN EUDESC EXTSWOPT GAINOPT GAPHI GAPLO HIGHAL (F) HIGHALPR (F) INITMAN K K1 KEXT KEYWORD KGAP KLIN KNL LASTPV LOCALMAN MANMODFL MODEAPPL MODEAPPL MODEPERM MODENUM NAME NLFM NLGAIN NMODATTR	NMODE NOCINPTS NOCOPTS NODENUM NODETYP NORMCYCL NRMATRFL NRMMODFL NTWKNUM OP OPALDB (F) OPEU OPHAFL (F) OPHIFL OPHIFL OPHIFL OPHIPR (F) OPHIPR (F) OPHIPR (F) OPLOFL OPLOFL OPLOFL OPLOFM OPLOPR (F) OPLOTP (F) OPLOTP (F) OPLOTP (F) OPNCHLM OPRATRFL OPROCLM \$OPTOL OVERVAL (F) PERIOD PFDLYFL PIDFORM PNTFORM PNTFORM PNTFORM PNTFORM PNTFORM PNTSTATE PNTTYPE PRGATRFL PSDLYFL PTDESC	PTEXECST PTINAL PTORST PV PVALDB (F) PVALDBEU (F) PVAUTO PVAUTO PVAUTOST PVEUHI PVEULO PVFORMAT PVHHFL PVHHFR (F) PVHHPR (F) PVHIFL PVHIPR (F) PVHIFL PVLLFL PVLLFL PVLLFL PVLLFL PVLLFR (F) PVLOFL PVLOFL PVLOFR (F) PVLOFL PVLOPR (F) PVROCNFL PVROCNFL PVROCNFL PVROCNFL PVROCPTP (F) PVROCPTP (F) PVSGCHTP (F) PVSOURCE (F) PVSOURCE (F) PVSTS PVTRACK RAMPTIME RARWSTS	RATIO RBOPT RCASOPT RCASSHED REDTAG (F) RFB RINITREQ RINITVAL RTHILM RTLOLM S1 SAFEOP SCHSTS SHEDMODE SHEDTIME SHUTDOWN SLOTNUM SP SPEUHI SPEULO SPFORMAT SPHIFL SPHILM SPLOFL SPFORMAT SPHIFL SPHILM SPLOFL SPFORMAT SPFORMAT SPFORMAT SPFORMAT SPFORMAT SPFORMAT SPFORMAT SPFORMAT SPFORMAT SPFORMAT SPFORMAT SPFORMAT SPFORMAT SPTVP STSMSG STDBYMAN T1 T2 TRFB TVPROC UNIT USERID
---	--	--	---	--

|

3.12 Pid with Feed Forward (PidFf)

The parameters of the Pid with Feed Forward control algorithm are listed below in alphabetical order. (F) indicates that the parameter is applicable when the PNTFORM = Full.

\$AUXUNIT (F) ADVDEVFL ADVDEVPR (F) ADVDEVTP ADVSP (F) ADVSPP (F) ALENBST (F) ARWNET ARWOP ASPPROC (F) ASSOCDSP AUTMODFL BADCTLFL BADCTLOP BADCTLPR (F) BADPVFL (F) BADPVFR (F) BADPVFR (F) BCAMODFL BFF BIAS BSHILM BSLOLM CASMEQ CIDSTN CISRC CNFMU CNFPU CODSTN CONTCUT (F) CTLACTN CTLALGID CTLEQN CTRLINIT CV CVEUHI CVEULO	DELCV DEV DEVHIFL DEVHIPR (F) DEVLOFL DEVLOFL DEVLOPR (F) DEVLOTP (F) ESWAUTO ESWCAS ESWENBST ESWMAN EUDESC EXTSWOPT FF FFOPT GAINOPT GAPHI GAPLO HIGHAL (F) HIGHALPR (F) INITMAN K KEXT KEYWORD KFF KGAP KLIN KNL LASTPV LOCALMAN MANMODFL MODE MODEAPPL MODEPERM MODNUM	NAME NLFM NLGAIN NMODATTR NMODE NOCINPTS NOCOPTS NODENUM NODETYP NORMCYCL NRMATRFL NRMMODFL NTWKNUM OP OPALDB (F) OPEU OPHAFL (F) OPHIFL OPHIFL OPHILM OPHIPR (F) OPHIPR (F) OPHOFL OPLOFL OPLOFL OPLOFL OPLOFL OPLOFM OPLOFR (F) OPLOFL OPLOFM OPLOFR (F) OPLOFR (F) OPLOFR (F) OPLOFL OPLOFM OPLOFR (F) OPLOFL OPLOTP (F) OPLOFL OPCLM OPROCLM \$OPTOL OVERVAL (F) PERIOD PFDLYFL PIDFORM PNTFORM PNTFORM PNTSTATE PNTTYPE	PRGATRFL PSDLYFL PTDESC PTEXECST PTINAL PTORST PV PVALDBEU (F) PVALDBEU (F) PVAUTO PVAUTOST PVEUHI PVEULO PVFORMAT PVHHFL PVHHPR (F) PVHHFR (F) PVHIFL PVHIFL PVHIFR (F) PVHIFL PVHIFR (F) PVHIFL PVLLFL PVLLFL PVLLFL PVLLFL PVLOFL PVLOFL PVLOFL PVLOFL PVP PVROCNFL PVROCNFL PVROCPFL PVROCPFL PVSGCHTP (F) PVSGCHTP (F) PVSOURCE (F) PVSOURCE (F) PVSTS	PVTRACK RAMPTIME RARWSTS RATIO RBOPT RCASOPT RCASOPT RCASSHED REDTAG (F) RINITREQ RINITVAL RTHILM RTLOLM SAFEOP SCHSTS SHEDMODE SHEDTIME SHEDTIME SHEDTIME SHEDTIME SHEDTIME SHEDTIME SHEDTIME SHEDTIME SHEDTIME SHEUHI SPEUFU SPEUHI SPEUFU SPEUHI SPEUFU SPEUHI SPEUFU SPE
--	--	--	---	---

The parameters of the PID Position Proportional control algorithm are listed below in alphabetical order.

\$AUXUNIT (F)DELCVADVDEVFLDEVADVDEVPR (F)DEVHIFLADVDEVTP (F)DEVHIPR (F)ADVSPP (F)DEVLOFLALENBST (F)DEVLOPR (F)ARWNETDEVLOPR (F)ARWOPESWAUTOASPPROC (F)ESWCASASSOCDSPESWENBSTAUTMODFLESWMANBADCTLFLEUDESCBADCTLOPEXTSWOPTBADCTLPR (F)GAINOPTBADPVFL (F)GAPHIBADPVFR (F)GAPLOBADPVR (F)HIGHAL (F)BCAMODFLHIGHALPR (F)BIASINITMANBSHILMKBSLOLMK1CASREQKEYWORDCIDSTNKGAPCISRCKLINCNFPULASTPVCODSTNLMSRCCONTCUT (F)LOCALMANCTLACTNLOWRATECTRLINITMANOPCMDDEADBANDMANOPTIMDEADBANDMANOPTIM	MINPULSE MODATTR MODE MODEAPPL MODEPERM MODNUM NAME NLFM NLGAIN NMODATTR NMODATTR NMODE NOCINPTS NOCOPTS NOCOPTS NOCOPTS NODENUM NODETYP NORMCYCL NRMATRFL NRMMODFL NTWKNUM OPCMD OPHIFL OPHISRC OPLOFL OPLOSRC OVERVAL (F) PERIOD PFDLYFL PIDFORM PNTFORM PNTFORM PNTFORM PNTFORM PNTFORM PNTFORM PNTNODTY PNTSTATE PNTTYPE PRGATRFL PRIMMOD (F) PSDLYFL PTDESC	PTEXECST PTINAL PTORST PV PVALDB (F) PVALDBEU (F) PVAUTO PVAUTO PVAUTOST PVEUHI PVEULO PVFORMAT PVHHFL PVHHPR (F) PVHHPR (F) PVHIFL PVHIPR (F) PVHIFL PVHIPR (F) PVLOFL PVLOFL PVLOFL PVLOFL PVLOFL PVLOFL PVLOFL PVLOFL PVLOFL PVROCNFL PVROCNFL PVROCNFL PVROCNFL PVROCPFL PVROCPFL PVROCPFL PVROCPFL PVSGCHTP (F) PVSGCHTP (F) PVSOURCE (F) PVSOURCE (F) PVSOURCE (F) PVSTS PVTRACK RAISDSTN RAISETIM RAISRATE	RAMPTIME RARWSTS RATIO RBOPT RCASOPT RCASOPT RCASSHED REDTAG (F) RINITREQ RINITVAL RP RT RTHILM RTLOLM SAFEOPCMD SCHSTS SHEDMODE SHEDTIME SHEDMODE SHEDTIME SHUTDOWN SLOTNUM SP SPEUHI SPEULO SPFORMAT SPEULO SPFORMAT SPHIFL SPHILM SPLOFL SPFOL SPFOL SPFOL SPTV SPTV SPTVP STDBYMAN STSMSG T1 T2 TVPROC UNIT USERID
--	---	--	---

I

3.14 Position Proportional (PosProp)

The parameters of the Position Proportional control algorithm are listed below in alphabetical order. (F) indicates that the parameter is applicable when the PNTFORM = Full.

3.15 Ramp Soak (RampSoak)

I

The parameters of the Ramp Soak control algorithm are listed below in alphabetical order. (F) indicates that the parameter is applicable when the PNTFORM = Full.

\$AUXUNIT (F)DEVHITP (F)ADVDEVFLDEVLOFLADVDEVPR (F)DEVLOPR (F)ADVDEVTP (F)DEVLOPR (F)ADVSP (F)ESWAUTOADVSPP (F)ESWCASALENBST (F)ESWENBSTARWNETESWENBSTARWOPEUDESCASPPROC (F)EXTSWOPTASSOCDSPHIGHAL (F)AUTMODFLHIGHAL (F)BADCTLFLHOLDCMDBADCTLPR (F)INITMANBCAMODFLLASTPVCASREQLOCALMANCIDSTNMODEAPPLCODSTNMODEAPPLCODSTNMODEPERMCONTCUT (F)MODNUMCTLALGIDNXRMPDEV'CTRLINITMXSOKDEVCURSEGIDNAMECVNMODATTRCVEUHINMODECVEULONOCINPTSCYCLEOPTNOCOPTSDEVNODENUMDEVHIFLNOESSEQ	NORMCYCL NRMATRFL NRMMODFL NTWKNUM NXTSOAKV OP OPEU OPHIFL OPHILM OPLOFL OPLOLM OPRATRFL OPROCLM \$OPTOL OVERVAL (F) PERIOD PFDLYFL PNTFORM PNTMODTY PNTNODTY PNTNODTY PNTSTATE PNTTYPE PRGATRFL PRIMMOD PSDLYFL PTDESC PTEXECST PTINAL PTORST PV PVEUHI PVEULO	PVFORMAT PVP PVSTS RAMPTIME RARWSTS RATE1 RATE2 RATE3 RATE4 RATE5 RATE6 RATE5 RATE6 RATE7 RATE8 RATE9 RATE10 RATE10 RATE11 RATE12 REDTAG (F) REMSOAKT RINITREQ RINITVAL S1 S1BGNTIM S1SEGID S2 S2BGNTIM S2ENDTIM S2ENDTIM S2SEGID SAFEOP SCHSTS SEGTYPE SHUTDOWN	SLOTNUM SOAKT1 SOAKT2 SOAKT3 SOAKT4 SOAKT5 SOAKT6 SOAKT6 SOAKT7 SOAKT9 SOAKT10 SOAKT10 SOAKT10 SOAKT11 SOAKT12 SOAKV1 SOAKV1 SOAKV1 SOAKV2 SOAKV3 SOAKV4 SOAKV5 SOAKV5 SOAKV5 SOAKV5 SOAKV6 SOAKV7 SOAKV1 SOAKV3 SOAKV3 SOAKV3 SOAKV3 SOAKV3 SOAKV3 SOAKV3 SOAKV3 SOAKV3 SOAKV3 SOAKV3 SOAKV3 SOAKV3 SOAKV3 SOAKV3 SOAKV3 SOAKV3 SOAKV3 SOAKV3 SOAKV4 SOAKV3 SOA SOAKV3 SOAKV3 SOAKV3 SOAKV3 SOAKV3 SOAKV3 SOAKV3 SOAKV3
--	---	---	---

3.16 Ratio Control (RatioCtl)

The parameters of the Ratio-Control control algorithm are listed below in alphabetical order. (F) indicates that the parameter is applicable when the PNTFORM = Full.

\$AUXUNIT (F) ADVDEVFL ADVDEVPR (F) ADVDEVTP (F) ADVSP (F) ADVSP (F) ALENBST (F) ARWNET ARWOP ASPPROC (F) ASSOCDSP AUTMODFL B1 B2 BADCTLFL BADCTLFL BADCTLPR (F) BADPVFL (F) BADPVFL (F) BADPVFL (F) BCAMODFL CASMODFL CASMODFL CASREQ CIDSTN CISRC CNFMU CNFPU CODSTN CONTCUT (F) CTLALGID CTRLINIT CV CVEUHI CVEULO DEV	DEVHIFL DEVHIPR DEVHIPP DEVLOFL DEVLOFL DEVLOPR (F) DEVLOTP (F) ESWAUTO ESWCAS ESWENBST ESWENBST ESWENBST ESWENBST ESWENBST ESWENBST ESWENBST ESWENBST ESWENBST ESWENBST ESWENBST ESWENBST ESWENBST ESWENBST ESWEND LASTPV LOCALMAN MANMODFL MODATTR MODE MODEAPPL MODEPERM MODEAPPL MODEPERM MODNUM NAME NMODATTR NMODE NOCINPTS NOCOPTS NOCENUM NODETYP	NORMCYCL NRMATRFL NRMMODFL NTWKNUM OP OPALDB (F) OPEU OPHAFL (F) OPHIFL OPHIFR OPHIPR (F) OPLAFL (F) OPLAFL (F) OPLOFL OPLOFL OPLOFL OPLOPR (F) OPLOPR (F) OPLOTP (F) OPLOTP (F) OPLOTP (F) OPLOTP (F) OPLOTP (F) OPMCHLM OPRATRFL OPROCLM \$OPTOL OVERVAL (F) PERIOD PFDLYFL PNTFORM PNTMODTY PNTNODTY PNTNODTY PNTSTATE PNTTYPE PRIMMOD (F) PSDLYFL PTDESC PTEXECST	PTORST PRGATRFL PV PVALDB (F) PVALDBEU (F) PVAUTO PVAUTOST PVEUHI PVEULO PVFORMAT PVHHFL PVHHPR (F) PVHHTP (F) PVHITP (F) PVHITP (F) PVLLFL PVLLPR (F) PVLLFL PVLLPR (F) PVLOFL PVLOFL PVLOFL PVLOFR (F) PVLOFL PVLOFR (F) PVLOFL PVLOFR (F) PVROCNFL PVROCNFL PVROCNFL PVROCPFL PVROCPFL PVROCPFL (F) PVSGCHTP (F) PVSGCHTP (F) PVSGCOPT (F) PVSTS	RARWSTS RATE1 RCASOPT RCASSHED REDTAG (F) RINITREQ RINITVAL SAFEOP SCHSTS SHEDMODE SHEDMODE SHEDTIME SHUTDOWN SLOTNUM SP SPEUHI SPEULO SPFORMAT SPEULO SPFORMAT SPHIFL SPHILM SPLOFL SPLOLM SPOPT SPP \$SPTOL SPTV SPTVP STDBYMAN STSMSG TVPROC UNIT USERID X2 X2EILT
DEV	NODETYP	PTEXECST PTINAL	PVSTS RAMPTIME	X2FILT X2TF

I

I

The parameters of the Reguatory Control Summer algorithm are listed below in alphabetical order. (F) indicates that the parameter is applicable when the PNTFORM = Full.

\$AUXUNIT (F)CTRLINITALENBST (F)CVARWNETCVEUHIARWOPCVEULOASSOCDSPESWAUTOAUTMODFLESWCASBESWENBSTBADCTLFLESWMANBADCTLOPEUDESCBADCTLPR (F)EXTSWOPTBCAMODFLHIGHAL (F)CASREQINITMANCIDSTNKCONFPULOCALMANCODSTNMCONTCUT (F)MANMODFLCTLALGIDMODATTRCTLEQNMODE	MODEAPPL MODEPERM MODNUM NAME NMODATTR NMODE NOCINPTS NODENUM NODETYP NORMCYCL NRMATRFL NRMMODFL NTWKNUM OP OPALDB (F) OPEU OPHAFL (F) OPHIFL OPHILM OPHIPR (F) OPHITP (F) OPLAFL (F)	OPLOFL OPLOLM OPLOPR (F) OPLOTP (F) OPMCHLM OPRATRFL OPROCLM \$OPTOL OVERVAL (F) PERIOD PFDLYFL PNTFORM PNTMODTY PNTNODTY PNTSTATE PNTTYPE PRGATRFL PSDLYFL PRIMMOD (F) PTDESC	PTEXECST PTINAL PTORST RARWSTS RATE1 RCASOPT REDTAG (F) RINITREQ RINITVAL SAFEOP SCHSTS SHEDMODE SHEDTIME SHUTDOWN SLOTNUM STDBYMAN STSMSG UNIT USERID X1, X2, X3, X4 XEUHI XEULO
--	--	---	--

3.18 Summer (RegPV)

The parameters of the Summer Reguatory PV algorithm are listed below in alphabetical order. (F) indicates that the parameter is applicable when the PNTFORM = Full.

\$AUXUNIT (F) ALENBST (F) ASSOCDSP BADPVFL (F) BADPVPR (F) C C1 C2 C3 C4 C5 C6 CNFMU CNFPU CONTCUT D EUDESC HIGHAL (F) HIGHALPR (F) KEYWORD LASTPV	N MODNUM NAME NODENUM NODETYP NOPINPTS NORMCYCL NTWKNUM OVERVAL (F) P1 P1STS P2 P2STS P3 P3STS P3 P3STS P4 P4STS P5 P5STS P6 P6STS	PERIOD PFDLYFL PISRC PIDSTN PNTFORM PNTMODTY PNTNODTY PNTSTATE PNTTYPE PRIMMOD (F) PSDLYFL PTDESC PTEXECST PTINAL PV PVALDB (F) PVALDBEU (F) PVALGID PVAUTO PVAUTOST PVCALC	PVCLAMP PVEQN PVEULO PVEUHI PVEXEUHI PVEXEULO PVEXHIFL PVEXLOFL PVFORMAT PVHHFL PVHHPR (F) PVHIFL PVHIPR (F) PVHITP (F) PVINIT PVLLFL PVLLPR (F) PVLOFL	PVLOPR (F) PVLOTP (F) PVP PVROCNFL PVROCNPR (F) PVROCPFL PVROCPPR (F) PVROCPTP (F) PVSOURCE (F) PVSOURCE (F) PVSTS PVTV (F) PVTVP (F) SCHSTS SLOTNUM STSMSG TF UNIT USERID
--	--	---	--	--

The parameters of the Switch control algorithm are listed below in alphabetical order. (F) indicates that the parameter is applicable when the PNTFORM = Full.

CV NMODATTR OPMCHLM RINITREQ XEULO	\$AUXUNIT (F) ALENBST (F) ARWNET ARWOP ASSOCDSP AUTMODFL BADCTLOP BADCTLPR (F) BCAMODFL CASMODFL CASREQ CIDSTN CISRC CNFMU CNFPU CODSTN CONTCUT (F) CTLALGID CTLEQN CTRLINIT	CVEUHI CVEULO ESWAUTO ESWCAS ESWENBST ESWMAN EUDESC EXTSWOPT HIGHAL (F) HIGHALPR (F) INITMAN KEYWORD LOCALMAN M MANMODFL MODATTR MODE MODEAPPL MODEPERM MODNUM NAME	NMODE NRMATRFL NRMMODFL NOCINPTS NOCOPTS NODENUM NODETYP NTWKNUM OP OPALDB (F) OPEU OPHAFL (F) OPHIFL OPHILM OPHIPR (F) OPLAFL (F) OPLOFL OPLOFL OPLOPR (F) OPLOTP (F)	OPROCLM \$OPTOL OVERVAL (F) PERIOD PFDLYFL PNTFORM PNTMODTY PNTNODTY PNTSTATE PNTTYPE PRGATRFL PRIMMOD (F) PSDLYFL PTDESC PTEXECST PTINAL PTORST RARWSTS RCASOPT RCASSHED REDTAG (F)	S1 S2 S3 S4 SAFEOP SCHSTS SELXINP SHEDMODE SHEDTIME SHUTDOWN SLOTNUM STDBYMAN STDBYMAN STSMSG TRACKING UNIT USERID X1 X2 X3 X4 X4 XEUHI	Ι
OPRATRFL RINITVAL	CTRLINIT	NAME	oplotp (f) opmchlm	REDTAG (F) RINITREQ	XEUHI	

3.20 Totalizer (Totalizr)

The parameters of the Totalizer PV algorithm are listed below in alphabetical order. (F) indicates that the parameter is applicable when the PNTFORM = Full.

\$AUXUNIT (F) ACCTYPE ALENBST (F) ASSOCDSP AVDEV1FL AVDEV1TP AVDEV2FL AVDEV2TP AVTV AVTVFL BADPVFL (F) BADPVPR (F) C COMMAND CONTCUT (F) CNFMU CNFPU CUTOFFLM EUDESC HIGHAL (F)	HIGHALPR (F) KEYWORD LASTPV MODNUM NAME NODENUM NODETYP NOPINPTS NORMCYCL NTWKNUM OLDAV OVERVAL (F) P1 P1STS P2 P2STS PERIOD PFDLYFL PIDSTN PISRC	PNTMODTY PNTNODTY PNTSTATE PNTTYPE PRIMMOD (F) PSDLYFL PTDESC PTEXECST PTINAL PV PVALDB (F) PVALDBEU (F) PVALGID PVAUTO PVAUTO PVAUTOST PVCALC PVCLAMP PVEQN PVEUHI PVEULO	PVEXEULO PVEXHIFL PVEXLOFL PVFORMAT PVHHFL PVHHPR (F) PVHIFL PVHIPR (F) PVHIPR (F) PVHITP (F) PVLIFL PVLLFL PVLLPR (F) PVLLTP (F) PVLOFL PVLOPR (F) PVLOPR (F) PVLOTP (F) PVP PVROCNFL PVROCNPR (F)	PVROCPFL PVROCPPR (F) PVROCPTP (F) PVSGCHTP (F) PVSOURCE (F) PVSTS PVTV (F) PVTVP (F) RESETFL RESETVAL SCHSTS SLOTNUM STARTFL STATE STOPFL STSMSG TF TIMEBASE UNIT
HIGHAL (F)	PISKC	PVEULO	PVROCNPR (F) PVROCNTP (F)	USERID

3.21 Variable Dead Time with Lead/Lag (VdtLdLag)

The parameters of the Variable Dead Time with Lead/Lag PV algorithm are listed below in alphabetical order. (F) indicates that the parameter is applicable when the PNTFORM = Full.

C1NORMCYCLPTINALPVHIFC2NTWKNUMPVPVHIFCNFMUOVERVAL (F)PVALDB (F)PVHITCNFPUP1PVALDBEU (F)PVINICONTCUT (F)P1STSPVALGIDPVLLFCUTOFFLMP2PVAUTOPVLLFDP2STSPVAUTOSTPVLLFD1PERIODPVCALCPVLOD2PFDLYFLPVCLAMPPVLOEUDESCPIDSTNPVEQNPVLOHIGHAL (F)PISRCPVEULOPVRO	ITP (F)PVSOURCE (F)FLPVSRCOPT (F)PR (F)PVSTSTP (F)PVTV (F)ITPVTVP (F)FLSCHSTSPR (F)SLOTNUMTP (F)STSMSG
--	--

\$ADD (Array)

Type:LogicalLock:PtBldDefault:OnPtRes:HPMRange:OffOn

Add Point Last Parameter Indicator—The last parameter sent to the HPM during point build of an array point.

Helpful Hint: Do not remove \$ADD from an exception build file or the point will not load properly.

\$AUXUNIT

Type:	E:UNIT	Auxiliary Unit—The Auxiliary Unit of an alarmable process point. If an
Lock:	Oper	Auxiliary Unit ID is specified, alarms from this point go to the Auxiliary Unit
Default:	Null	instead of the Primary Unit. If the \$AUXUNIT parameter is set to null (),
PtRes:	NIM	alarms go to the Primary Unit. Available in Release 520 and later software.

Range: A-Z, 0-9 and Null - (Any valid unit ID as configured in the NCF)

Helpful Hint: A Network configuration option sets the keylevel required to change \$AUXUNIT.

\$COMCFLM (HPM Box)

Type:	Real
Lock:	Engineer
Default:	10
PtRes:	HPM

Comm Processor CPU Free Low Limit in per cent —

Helpful Hint: This parameter cannot be reset.

Range: 0 - 100

\$COMCUOS (HPM Box)

Type:RealLock:ViewDefault:0.0PtRes:HPMCommDescent

Comm Processor CPU Utilization (System)— Specifies the CPU Utilization (in per cent) for the Comm Processor operating system, device drivers, and interrupt handlers.

Helpful Hint:	This parameter cannot be reset.	

Range: **0 - 100**

\$COMCUTS(0 - 99) (HPM Box)

Type:RealComm Processor CPU Utilization (Task)— CPU Utilization (in per cent) for
each Comm Processor Task.Default:0.0PtRes:HPM

Helpful Hint: This parameter cannot be reset.

Range: 0 - 100

\$CTLCFLM (HPM Box)

Type:RealControl Processor CPU Free Low Limit—Lock:EngineerDefault:10PtRes:HPM

Helpful Hint: This parameter cannot be reset.

Range:

\$CTLCUOS (HPM Box)

Type:RealControl Processor CPU Utilization (system) — specifies the CPU UtilizationLock:View(in per cent) for the Control Processor operating system, device drivers, andDefault:0.0interrupt handlersPtRes:HPM

Helpful Hint: This parameter cannot be reset.

Range: 0 - 100

\$CTLCUTS(0 - 99) (HPM Box)

Type:RealLock:ViewDefault:0.0PtRes:HPM

Control Processor CPU Utilization (Task) — specifies the CPU Utilization (in per cent) for each Control Processor Task

Helpful Hint: This parameter cannot be reset.

Range: **0 - 100**

\$DBVALID (HPM Box)

Type:	E:\$ACCSRC HPM Database Valid
Lock:	Eng
Default:	DB Invalid
PtRes:	HPM
Range:	0-DB_Valid (An IOP database is valid and the IOP can be started)
	1-DBInvalid (An IOP database is not valid and the IOP will not start)

\$IOMPADD(1)-(168)

Type:IntegerIOP AddressLock:View(File-1)*16 + card + 127Default:PtRes:HPMRange:0, 129 - 255

\$OPTOL (RegCtl, AO)

Type:	Real (in	Output Tolerance Parameter Definition—Tolerance limit for a manually entered
	Percent)	OP. The difference between a new OP and a current OP is compared against
Lock:	Engineer	\$OPTOL. If the tolerance is violated in either a positive or negative direction
Default:	0.0	from the current value of the OP, operator confirmation is required before the
PtRes:	HPM	value is stored. A value of 0.0 disables this check. An NaN or a negative value is not allowed.
Range:	0.0 to 106.9	

\$SPTOL (RegCtl)

Type:	Real (in
	Engineering
	Units)
Lock:	Engineer
Default:	0.0
PtRes:	HPM
Range:	>= 0.0

Setpoint Tolerance Parameter Definition—Tolerance limit for a manually entered SP. The difference between a new SP and a current SP is compared against \$SPTOL. If the tolerance is violated in either a positive or negative direction from the current value of the SP, operator confirmation is required before the value is stored. A value of 0.0 disables this check. An NaN or a negative value is not allowed.

\$UCNLSB(1)-(50)

Type: Real Lock: View Default: PtRes: HPM Range: Local UCN Communications Statistics

\$UCNLSB(45) (NIM)

Local Statistics Block—The number of auto reconnects.

Type:RealLock:ViewDefault:0PtRes:HPM, NIMRange: ≤ 0

-A-

AB_DATA1 (SI - Array)

Type:RealLock:EngDefault:NaNPtRes:HPMRange:N/A

Auxiliary A-B Data 1—Specifies the Allen-Bradley PLC family type: 2.0, 3.0, or 5.0. Refer to the *APM/HPM Serial Interface Options* manual when configuring for diagnostics.

Helpful Hint: Use of this parameter is only required to configure Serial Interface mapping to/from an Allen-Bradley programmable logic controller device. This parameter should be set to NAN if it is not being used.

AB_DATA2 (SI - Array)

Type:	Real	Auxiliary A-B Data 2—Specifies the Allen-Bradley PLC File Number (in
Lock:	Eng	decimal) from which data is read into the Array point for PLC-3 or PLC-5
Default:	NaN	controllers. Must be NaN for PLC-2.
PtRes:	HPM	
Range:	0 - 999, NaN	

Helpful Hint: Use of this parameter is only required to configure Serial Interface mapping to/from an Allen-Bradley programmable logic controller device. This parameter should be set to NAN if it is not being used.

AB_DATA3 (SI - Array)

Type:	Real	Auxiliary A-B Data 3—Specifies the data type for Allen-Bradley PLC-2 or PLC-5
Lock:	Eng	controllers or section ID for PLC-3 controllers. Refer to the APM/HPM Serial
Default:	NaN	Interface Options manual for additional information.
PtRes:	HPM	
Range:	0 - 13	
, in the second s		

Helpful Hint: Use of this parameter is only required to configure Serial Interface mapping to/from an Allen-Bradley programmable logic controller device. This parameter should be set to NAN if it is not being used.

AB_DATA4 (SI - Array)

Type:	Real	Auxiliary A-B Data 4—Specifies the Allen-Bradley PLC scan frequency: 0
Lock:	Eng	indicates that the point is to be scanned as fast as possible. 1-255 indicates the
Default:	NaN	number of seconds for the polling period; $256 = scan once$. Note that the report
PtRes:	HPM	by exception feature can work with any scan rate selection. Refer to the
		APM/HPM Serial Interface Options manual for more information.
Range:	0 - 256	
0		

Helpful Hint:	Use of this parameter is only required to configure Serial Interface mapping
	to/from an Allen-Bradley programmable logic controller device. This parameter
	should be set to NAN if it is not being used.

ABHEMSD (ProcMod)

Type:	Logical	Abnormal Handler Emergency Shutdown Enable Flag—Indicates if the
Lock:	View	Emergency Shutdown abnormal handler sequence is currently enabled.
Default:	Off	
PtRes:	HPM	
Range:	On (Emergency	Shutdown abnormal handler is enabled)
-	Off (Emergency	Shutdown abnormal handler not enabled)

ABHHOLD (ProcMod)

Type:	Logical	Abnormal Handler Hold Enable Flag—Indicates if the Hold abnormal handler
Lock:	View	sequence is currently enabled.
Default:	Off	
PtRes:	HPM	
Range:	On (Hold abnor	mal handler is enabled)
, in the second s	Off (Hold abnor	rmal handler not enabled)

ABHRSTR (ProcMod)

Type:	Logical	Abnormal Handler Restart Enable Flag-Indicates if the Restart abnormal handler
Lock:	View	sequence is currently enabled.
Default:	Off	
PtRes:	HPM	
Range:	On (Restart abn	ormal handler is enabled)
-	Off (Restart abr	normal handler not enabled)

ABHSHDN (ProcMod)

Type:	Logical	Abnormal Handler Shutdown Enable Flag—Indicates if the Shutdown abnormal
Lock:	View	handler sequence is currently enabled.
Default:	Off	
PtRes:	HPM	
Range:	On (Shutdown	abnormal handler is enabled)
	Off (Shutdown	abnormal handler not enabled)

ACCELTIM (DevCtl)

Type:	Time Acceleration Time—The amount of time the SECVAR parameter exceeded the	
	(Duration)	SVHITP parameter while not in State0. This parameter resets to zero each time
Lock:	View	the state transitions to State0.
Default:	0	
PtRes:	HPM	
Range:	0 to 4000 days (With a resolution of 1 second)	
	•	

ACCTYPE (Totalizer)

E:\$ACCTYPE Accumulator Operation Mode—Specifies the type of input. Type:

Lock:	Eng/PB
Default:	Analog
PtRes:	HPM

g

Range: 0-Pulse Pulse input 1-Analog Analog input

ACP (ProcMod)

Type:	Ent_Id Advanced Control Point ID—Defines the name of the point in the CG or CM to			
Lock:	PtBld which this process module is assigned. The NIM notifies the advanced control			
Default:	Null point when the process module sends a special sequence message.			
PtRes:	NIM			
Range:	Tag name can be up to 16 characters, and the			
-	permissible character set is as follows:			
	Alphabetics A-Z (uppercase only)			
	Numerics 0-9 (an all numeric tag name is not allowed)			
	Underscore (_) cannot be used as the first character			
	or the last character, and consecutive			
	underscores are not allowed.			
	Embedded space characters are not allowed.			
	-			

ACTPRIM(1)-(40) (HPM Box)

Type:	E:\$ACTPRIM	Acting Primary I/O module—Specifies the acting primary I/O module.
Lock:	View	nn = 1-40 corresponds to the 40 logical I/O modules.
Default:		Applies to primary IOP only.
PtRes:	HPM	
Range:	0-IOM_A (The	A module is the acting primary)
-		

1-**IOM_B** (The B module is the acting primary)

ADVDEVFL

Type: Logical Advisory Deviation Alarm Flag-Indicates whether an advisory alarm has been Lock: View detected. Default: Off

PtRes: HPM

Off (Alarm has not been detected) Range:

On (Alarm has been detected. PV - ADVSP is greater than ADVDEVTP)

Helpful Hint: ADVDEVFL is never On unless SPOPT = Asp.

ADVDEVPR

Type:	E:ALPRIOR	Advisory Deviation Alarm Priority—Determines the priority of the advisory		
Lock:	Engr	deviation alarm.		
Default:	Low			
PtRes:	NIM			
Range:	JnlPrint (Alarm is historized and reported to the printer but not annunciated)			
	Printer (Alarm is reported to the printer but not historized and not annunciated)			
	Emergncy (Ala	arm is historized, annunciated, and reported to all alarm summary displays)		
	High (Alarm is	historized, reported to Area Alarm Summary Display and Unit Alarm Summary		
	Display)			
	Τ (Λ 1 '	1 de la companya de la		

Low (Alarm is historized, reported to the Unit Alarm Summary Display, and annunciated) Journal (Alarm is historized but not reported to Universal Stations and not annunciated) NoAction (Alarm is not reported to the system and not annunciated)

ADVDEVPR configuration requires SPOPT = Asp. Helpful Hint:

ADVDEVTP

Type:	Real	Advisory Deviation Alarm Trip Point—An alarm will be generated when the
Lock:	Supr	difference between PV and ADVSP exceeds the value in this parameter.
Default:	NaN	•
PtRes:	HPM	
Range:	≥ 0.0	
	NaN	

Helpful Hint:	1.	ADVDEVTP change requires $SPOPT = Asp$.	
	2.	Alarm generation requires ASPPROC = Enable and	
		abs(PV - ADVSP) > ADVDEVTP.	
		When abs(PV - ADVSP) < ADVDEVTP * .9 alarm returns to normal.	

ADVSP

Type:	Real Adviso	ory Setpoint in Engineering Units
Lock:	Supr	
Default:	N/A	
PtRes:	HPM	
Range:	SPLOLM to SPHILM	

Helpful Hint: ADVSP change requires (SPOPT = Asp) + (ASPPROC = Enable). Alarm generation requires ASPPROC = Enable and abs(PV - ADVSP) > ADVDEVTP. When abs(PV - ADVSP) < ADVDEVTP * <u>9 alarm returns to normal.</u>

ADVSPP

Type:	Real
Lock:	View
Default:	N/A
PtRes:	HPM
Range	N/A

Advisory Setpoint in Percent

Range: N/A

Helpful Hint: ADVSPP cannot be viewed unless SPOPT = Asp.

ALENBST

Type:E:ALENBST
Lock:Alarm Enable Status—Defines the alarm reporting function that is to be used
when an alarm condition is detected in this data point. Note that even when
alarms are disabled, the alarm indicators still appear on the Group and Detail
displays. With Release 510 and later software, the word DIS appears in half
height text above the tag name on the Point Detail or Group Display for a point
with ALENBEST set to Disable.

Range:	Enable Disable Inhibit	<u>Displayed</u> Yes No No	<u>Logged</u> Yes Yes No	Reported to EIP Yes Yes No
	Helpful H		ons. For B	ld not be set to Disable or Inhibit for points critical to safe Box Flag points, this parameter applies to only slots 1
	Reference		e informati	<i>eference Manual in the</i> Alarm Management section, tion on what should happen under different possible alarm

NOTE

The access lock for the ALENBST parameter is configurable through System-Wide Values.

ALMOPT (DigIn)

 Type:
 E:\$ALMOPT
 Alarming Option—Defines the alarming option for a digital input point whose

 Lock:
 Eng/PB
 DITYPE is Status.

 Default:
 None

 PtRes:
 HPM

 Range:
 0-None (No alarms are to be detected.)

 1-Offnorml (Off Normal; alarm if current PV state is not the PVNORMAL state. PVNORMAL is defined by the STATETXT(0) or STATETXT(1) descriptor, as configured by the user.)

 2-ChngofSt (An alarm is generated when the digital input changes state in either direction. Note that IOP firmware must support Change of State Reporting.)

Helpful Hint: ALMOPT configuration requires DITYPE = Status.

ALPRIOR (ProcMod)

Type:E:ALPRIORAlarm Priority—Defines the alarm priority for Process Module points. Note that
even when the alarm priority is Journal, the alarm indicators still appear on the
Group and Detail displays.

PtRes: 1 Range: 1

NIM Emergncy (Alarm is historized, annunciated, and reported to all alarm summary displays) High (Alarm is historized, reported to Area Alarm Summary Display and Unit Alarm Summary Display)

Low (Alarm is historized, reported to the Unit Alarm Summary Display, and annunciated) JnlPrint (Alarm is historized and reported to the printer but not annunciated) Printer (Alarm is reported to the printer but not historized and not annunciated)

Journal (Alarm is historized but not reported to Universal Stations and not annunciated) **NoAction** (Alarm is not reported to the system and not annunciated)

Helpful Hint: Access to ALPRIOR is by schematic or CL. ALPRIOR is retained in R500 for compatibility with earlier software. Use SEQPR for new points.

Reference: See *Engineer's Reference Manual in the* Alarm Management section, for more information on what should happen under different possible alarm actions.

ALPRIOR (DigComp, DigIn, FL)

	•					
Type:	E:ALPRIOR	Composite Alarm Priority—When read, returns a value equal to the highest				
Lock:	Engr	configured priority among all alarm parameters for the point. When written, sets				
Default:	Low	all of the point's alarm priority parameters equal to the value being stored. Note				
PtRes:	NIM	that individual parameters such as BADPVPR, etc. can be stored individually.				
		If a point's separate alarm priorities are all set to the same priority, ALPRIOR is				
		compatible with R400 and earlier software.				
Range:	Emergncy (Ala	arm is historized, annunciated, and reported to all alarm summary displays)				
	High (Alarm is	s historized, reported to Area Alarm Summary Display and Unit Alarm Summary				
	Display)					
	Low (Alarm is	historized, reported to the Unit Alarm Summary Display, and annunciated)				
	JnlPrint (Aları	m is historized and reported to the printer but not annunciated)				
	Printer (Alarm is reported to the printer but not historized and not annunciated)					
	Journal (Alarm is historized but not reported to Universal Stations and not annunciated)					
		rm is not reported to the system and not annunciated)				
	Helpful Hint:	Access to ALPRIOR is by schematic or CL. No value is actually read from				
	ALPRIOR on a read and no value is actually stored to ALPRIOR on a write. Values are copied					
	to and from the separate alarm priorities.					
	to and nom the separate atain promites.					
	Reference:	See Engineer's Reference Manual in the Alarm Management section,				
	reference.	for more information on what should happen under different possible alarm				
		for more mormation on what should happen under different possible alarm				

ANAME(1)-(3) (ProcMod)

actions.

Type:	String_8
Lock:	View
Default:	Spaces
PtRes:	HPM

Abnormal Sequence Name—Indicates the name of the abnormal handler currently being executed by the process module. A value of " " means that an abnormal handler is not executing. ANAME(1) returns the abnormal handler name, while both ANAME(2) and ANAME(3) return the names of the two abnormal subroutine levels being executed.

Range: N/A

AOCALIB(1)-(168)

 Type:
 Logical
 AO Calibration In Progress Flag—Shows which AO modules are in the process

 Lock:
 Eng/PB
 of calibration.

 Default:
 PtRes:
 HPM

 Range:
 Off (No calibration in progress)
 On (Calibration in progress)

ARWNET (RegCtl)

E:WINDUP

View

Windup Status of the Input—Indicates the windup status for the SP or another initializable input.

Default: Normal

Type:

Lock:

PtRes: HPM Range: 0-Nor

HPM 0 Normal (Free to move in either dir

0-**Normal** (Free to move in either direction) 1-**Hi** (Free to move in the lower direction)

2-Lo (Free to move in the higher direction)

3-HiLo (Not free to move in any direction)

ARWOP (RegCtl)

E:WINDUP Windup Status of the Output—Indicates the output (OP) windup status.

Lock: View

Type:

Default: Normal

PtRes: HPM

Range: 0-Normal (Free to move in either direction)

1-Hi (Free to move in the lower direction)

2-Lo (Free to move in the higher direction)

3-HiLo (Not free to move in any direction)

ASSOCDSP

String_8
Engr
Blank
NIM
N/A

Associated Display—Specifies a user configured schematic that is associated with this point. Available on Release 510 and later software.

Helpful Hint: The specified associated display can be called from a Point Detail Display, or from any summary display or the Group display when the point is selected.

ASPPROC (RegCtl)

Type:	E:ASPPROC	Advisory SP Processor State
Lock:	Supr	-
Default:	Disable	
PtRes:	HPM	
Range:	0-Disable (Disal	low advisory deviation alarming)
e	1-Enable (Allow	advisory deviation alarming)
	XX 1 0 1 XX	

Helpful Hint: ASPPROC change requires SPOPT = Asp.

ASTEP(1)–(3) (ProcMod)

Type:	String_8
Lock:	View
Default:	Spaces
PtRes:	HPM
מ	

Abnormal Step Name—ASTEP(1) indicates the step name of the abnormal handler that is executing in this process module. A value of ""means no abnormal handler is presently executing. Both ASTEP(2) and ASTEP(3) indicate the step names of the first and second level subroutines called from the abnormal handler.

Range: N/A

ASTMT(1)-(3) (ProcMod)

Type:	Integer
Lock:	View
Default:	Blank
PtRes:	HPM

Abnormal Statement Number—ASTMT(1) indicates the statement number of the abnormal handler that is presently executing in the process module. Both ASTMT(2) and ASTMT(3) give statement numbers for first and second level subroutines executing from an abnormal handler. A value of 0 indicates no sequence is being executed.

Range: 0 to 255

AUTMODFL (RegCtl)

Type:	Logical	Automatic Mode Flag—Indicates whether the current mode of the point is
Lock:	View	Automatic.
Default:	N/A	
PtRes:	HPM	
Range:	Off (Current me	ode is not Automatic)
	On (Current mo	ode is Automatic)

AUXDATA1 (SI-Array — Generic Modbus)

Type:	Real	FTA Driver Auxiliary Data 1—Keep Alive Address for Modbus devices.
Lock:	Eng	Specifies the address of a coil that is written to every 10 seconds (Force Single
Default:	NaN	Coil On function). NaN (dashes) = Keep Alive function is inactive.
PtRes:	HPM	
Range:	1 - 9999, NaN	
, in the second s		

Helpful Hint: AUXDATA1 can be configured separately for each Array point. No two Array points should write to the same coil address. This parameter should be set to NAN if it is not being used.

AUXDATA2 (SI-Array — Generic Modbus)

Type:	Real	FTA Driver Auxiliary Data 2— Specifies the time interval that the FTA waits
Lock:	Eng	before a message retry to the Modbus is attempted. NaN (dashes) indicates a 1.5
Default:	NaN	second timeout.
PtRes:	HPM	
Range:	.25 - 5 Sec., Na	N

Helpful Hint: After three retries, a message timeout error is displayed on the Point Detail display. AUXDATA2 can be configured separately for each Array point. This parameter should be set to NAN if it is not being used.

AUXDATA3 (SI-Array — Generic Modbus)

Type:	Real	FTA Driver Auxiliary Data 3—Signaling mode.Modem support (in
Lock:	Eng	integer/decimal format). Integer = 232 or 485 .
Default:	NaN	(232 = EIA-232, 485 = EIA-485 Multidrop).
PtRes:	HPM	Decimal (EIA-232 only) = $.0$ or $.1$ ($.0$ = no modem control, $.1$ = modem control).
		NaN (dashes) = 232.0 (EIA-232 without modem control).

Range: 232.0, 232.1, or 485.0

Helpful Hint:	All array points that are loaded to the same FTA must have the same
	AUXDATA3 settings. This parameter should be set to NAN if it is not being
	used.

AUXDATA4 (SI-Array — Generic Modbus)

Type:	Real	FTA Driver Auxiliary Data 4—Baud Rate.Parity (in integer/decimal format).
Lock:	Eng	Baud Rates = 1200, 2400, 4800, 9600, or 19200.
Default:	NaN	Parity: $.0 = no parity$, $.1 = odd parity$, $.2 = even parity$.
PtRes:	HPM	NaN (dashes) = $9600.1 = (9600 \text{ baud}, \text{ odd parity}).$

integer = 1200, 2400, 4800, 9600, or 19200 Range: decimal = .0, .1, or .2

> Helpful Hint: All array points that are loaded to the same FTA must have the same AUXDATA4 settings. This parameter should be set to NAN if it is not being used.

AV (DigIn)

Type:	Integer	Accumulated Value in Engineering Units—Indicates the current value
Lock:	Oper	accumulated in the accumulator.
Default:	0	
PtRes:	HPM	
Range:	032767	

AV (RegCtl)

APM 0..32767

Type:

Lock:

PtRes:

Range:

Integer Accumulated Value in Engineering Units-Indicates the current value Configurable accumulated in the accumulator. *Default:* **0**

AVDELTHS (PI)

Type: Lock:	0	The Last Half-second's AV
Default:	0	
PtRes:	HPM	
Range:	≥ 0	

AVDEV1FL (Totalizr)

Type:	Logical	Accumulated Value; 1st Deviation Flag—Indicates whether PVCALC is greater
Lock:	View	than AVTV minus AVDEV1TP. (PVCALC > AVTV - AVDEV1TP). This is
Default:	N/A	the first "slowdown" or "near-target" flag.
PtRes:	HPM	
Range:	Off (PVCALC	is not $>$ AVTV - AVDEV1TP)
	On (PVCALC	is > AVTV - AVDEV1TP)

AVDEV1TP (Totalizr)

Real
Supr
NaN
HPM
≥ 0.0,
NaN

Accumulated Value; 1st Deviation Trip Point (deviation from AVTV)

AVDEV2FL (Totalizr)

Type:	Logical	Accumulated Value; 2nd Deviation Flag—Indicates whether PVCALC is greater
Lock:	View	than AVTV minus AVDEV2TP. (PVCALC > AVTV - AVDEV2TP). This is
Default:	N/A	the second "slowdown" or "near-target" flag.
PtRes:	HPM	
Range:	Off (PVCALC is not > AVTV - AVDEV2TP)	
-	On (PVCALC	is > AVTV - AVDEV2TP)

AVDEV2TP (Totalizr)

 $\label{eq:accumulated} \mbox{ Accumulated Value; 2nd Deviation Trip Point} \ (\mbox{ deviation from AVTV})$

Type:	Real
Lock:	Supr
Default:	NaN
PtRes:	HPM
Range:	≥ 0 . 0,
	NaN

AVGPU (ProcMod)

	•••
Type:	Real
Lock:	View
Default:	0
PtRes:	HPM
Range:	N/A

Average PUs—Specifies the average PUs used for point processing

AVGTF (NIM, HPM Box)

Type:	Real	Average Statistics Single Lag Filter Time Constant—Defines the filter time in
Lock:	Engineer	the single lag filter used to calculate average values of the performance statistics.
Default:	1.00 Minutes	
PtRes:	HPM	
Range:	0.0 - 1440.0 (0	= no filter)

AVSTS (PI)

Type:E:PVVALSTValue Status of AVLock:ViewDefault:BadPtRes:HPMRange:0-Bad2-Normal

AVTV (DigIn)

Type:IntegerAccumulator Target Value—Specifies the target value of the accumulator.Lock:OperAVTV appears on a group or detail display as the SP value.Default:0PtRes:HPMRange:0 to 32767

Helpful Hint: AVTV change requires DITYPE = Accum.

AVTV (Totalizr)

Type:	Real
Lock:	Oper
Default:	NaN
PtRes:	HPM
Range:	N/A,
Ũ	NaN

Accumulator Target Value—Specifies the target value of the totalizer. AVTV appears on a group or detail display as the SP value.

AVTVFL

Type:	Logical
Lock:	View
Default:	N/A
PtRes:	HPM
Range:	Off
, in the second s	On

Accumulated Value Target Reached Flag—AVTVFL is the accumulated value's "target value reached" flag. It is turned On whenever $PVCALC \ge AVTV$. Parameter AVTV contains the target value last entered by the operator.

B (AutoMan)

Type:	Real
Lock:	Oper
Default:	0.0
PtRes:	HPM
Range:	N/A

Overall Bias—Defines the overall bias which consists of BO plus BI. Refer to the *HPM Control Functions and Algorithms* manual for a detailed description.

B (MulDiv, RegCtl Summer)

Type:	Real
Lock:	Oper
Default:	0.0
PtRes:	HPM
Range:	N/A

Overall Bias—Defines the overall bias which consists of BO plus BI. Refer to the *HPM Control Functions and Algorithms* manual for a detailed description.

B0 (AutoMan, MulDiv, RegCtl Summer)

Type:	Real
Lock:	View
Default:	0.0
PtRes:	HPM
Range:	N/A

Last Operator-Entered Output Bias

B1 (RatioCtl)

Type:RealLock:SuprDefault:0.0PtRes:HPMRange:N/A

Output Bias Constant—If the Calcultr PV algorithm is being used in conjunction with this algorithm, the value of B1 should be the same as C3.

B2 (RatioCtl)

Type:	Real
Lock:	Supr
Default:	0.0
PtRes:	HPM
Range:	N/A

Bias for Input X2—If the Calcultr PV algorithm is being used in conjunction with this algorithm, the value of B2 should be the same as C4.

B1, B2, B3 (MulDiv)

Type:	Real	Bias for Inputs for X1, X2, and X3—
Lock:	Supr	
Default:	0.0	
PtRes:	HPM	
Range:		

BADCTLFL

Logical

View

Bad-Control Alarm Flag-Indicates whether a bad control alarm has been detected.

Default: Off

Type:

Lock:

PtRes: HPM Range: **Off** (Bad-control alarm not present)

On (Bad-control alarm present)

BADCTLOP

E:\$BADCTLO Bad Control Option—Indicates if the mode sheds to manual when bad PV or CV Type: occurs for regulatory control points. It also shows the value of the output.

Lock: Engr

Default: No Shed

PtRes: HPM

- Range: 0-No_Shed (The point holds its output and mode, resuming control after initialization upon recoverv)
 - 1-ShedHold (The mode sheds to manual, the mode attribute goes to operator, while the output is held and external mode switching is disabled)
 - 2-ShedLow (The mode sheds to manual, the mode attribute goes to operator, while the output goes to -6.9% and external mode switching is disabled)
 - 3-ShedHigh (The mode sheds to manual, the mode attribute goes to operator, while the output goes to 106.9% and external mode switching is disabled)
 - 4-ShedSafe (The mode sheds to manual, the mode attribute goes to operator, while the output goes to SafeOP and external mode switching is disabled. If SafeOP is NaN, the output is held as if the Bad Control Option is ShedHold.

BADCTLPR

E:ALPRIOR Type: Bad Control Alarm Priority—Defines the priority of the bad control alarm.

Lock: Engr Default: Low PtRes:

Range:

Type:

Lock:

PtRes:

Range:

NIM

JnlPrint (Alarm is historized and reported to the printer but not annunciated) **Printer** (Alarm is reported to the printer but not historized and not annunciated) **Emergncy** (Alarm is historized, annunciated, and reported to all alarm summary displays)

High (Alarm is historized, reported to Area Alarm Summary Display and Unit Alarm Summary Display)

Low (Alarm is historized, reported to the Unit Alarm Summary Display, and annunciated) Journal (Alarm is historized but not reported to Universal Stations and not annunciated) **NoAction** (Alarm is not reported to the system and not annunciated)

BADIOLPF (ProcMod)

Logical **Bad IOL Prefetch**—Set to ON, by the system if any IOL prefetch value is bad. View Default: Off **HPM** Off () **On** (IOL prefetch value is bad)

BADOCFL (RegCtl)

Logical
View
OFF
HPM

Bad Output Connection Flag (BADOC) Alarm—ON indicates that the RegCtl point cannot drive at least one Analog Output point (out of 4 possible). The alarm appears on the Alarm Summary display and in the Real Time Journal as a BADOC alarm. If it is the highest level alarm on the point, it appears on the Point Detail or Group displays as BOC.

Range: **Off** (Point is not in alarm) **On** (Point is in alarm)

BADOC1FL

Type:	Logical
Lock:	View
Default:	OFF
PtRes:	HPM
Range:	Off
	On

Bad Output Connection Flag 1—ON indicates that the RegCtl point cannot drive Output 1 to an AO point (if configured).

BADOC2FL

Type:	Logical
Lock:	View
Default:	OFF
PtRes:	HPM
Range:	Off
5	On

Bad Output Connection Flag 2—ON indicates that the RegCtl point cannot drive Output 2 to an AO point (if configured).

BADOC3FL

Type:	Logical
Lock:	View
Default:	OFF
PtRes:	HPM
Range:	Off
Ū.	On

Bad Output Connection Flag 3—ON indicates that the RegCtl point cannot drive Output 3 to an AO point (if configured).

BADOC4FL

Type:	Logical
Lock:	View
Default:	OFF
PtRes:	HPM
Range:	Off
	On

Bad Output Connection Flag 4—ON indicates that the RegCtl point cannot drive Output 4 to an AO point (if configured).

BADOCPR (RegCtl)

Type:	E:ALPRIOR	Bad Output Connection (BADOC) Alarm Priority—Indicates the priority of the
Lock:	Engr	Bad Output Connection (BADOC) alarm
Default:	Low	
PtRes:	NIM	
Range:	NoAction	
	JnlPrint	
	Printer	
	Journal	
	Low	
	High	
	Emergncy	

Helpful Hint: The value of this parameter can be changed on the Point Detail display with Engineering keylevel access.

BADOCOPT (RegCtl)

Type:	Logical	Bad Output Connection Alarm Option (BADOC)—ON indicates that the Bad
Lock:	Eng/Pb	Output Connection (BADOC) alarm can be generated (or is permitted).
Default:	OFF	
PtRes:	HPM	
Range:	Off (BADOC a	larms are suppressed)
	On (BADOC al	larms are permitted)

Helpful Hint: The value of this parameter can be changed on the Point Detail display with Engineering keylevel access.

BADPVFL

Type:	Logical	Bad PV Flag—Indicates that a bad PV value has been detected at this data point.
Lock:	View	For an analog input, a bad PV is defined as a PV whose value is NaN (Not a
Default:	Off	Number).
PtRes:	HPM	
Range:	Off (PV is not b	pad)
	On (PV is bad)	

BADPVFL (DI)

Type: Lock: Default: PtRes:	Logical View On HPM	•	 Bad PV Flag—Indicates that a bad PV value has been detected at this data point. BADPVFL is shown on the detailed display only when PNTFORM = Full. For a Digital Input, the Bad PV Flag is on when: The PV source is not equal to Manual and DITYPE is set to Accumulator. The PV source has just been switched to Substituted but the PV has not wet been undated
			• The PV source has just been switched to Substituted but the PV has not yet been updated.
			yet been updated.

- The PV source = Substitute or Auto and PTEXECST = Inactive or the module is not in the RUN state.
- PVSOURCE = Auto and there is no FTA connected or there is a Soft Fail that is preventing this chanel from working.

Range: Off (PV is not bad) On (PV is bad)

BADPVFL (DevCtl, DigComp)

Type: Logical Lock: View Default: Off PtRes: HPM Off (PV is not bad) Range: On (PV is bad)

Bad PV Flag-For a Digital Composite or Device Control point, the Bad PV Flag is is set to ON when the PV is bad.

BADPVPR

E:ALPRIOR Bad PV Alarm Priority—Defines the priority of the bad PV alarm.

Lock: Engr

Default: Low NIM

PtRes:

Type:

Emergncy (Alarm is historized, annunciated, and reported to all alarm summary displays) Range: High (Alarm is historized, reported to Area Alarm Summary Display and Unit Alarm Summary Display)

Low (Alarm is historized, reported to the Unit Alarm Summary Display, and annunciated) JnlPrint (Alarm is historized and reported to the printer but not annunciated)

Printer (Alarm is reported to the printer but not historized and not annunciated)

Journal (Alarm is historized but not reported to Universal Stations and not annunciated) NoAction (Alarm is not reported to the system and not annunciated)

BADPVTXT (DevCtl, DigComp, NIM)

Type:	String_8	Bad PV State Descriptor—Defines the state descriptor that is displayed when the
Lock:	PtBld	digital composite or device control point state is indeterminate or bad. The bad
Default:	BAD	state can result when the PV input signals from the process are in an
PtRes:	NIM	inconsistent state (e.g., for a valve, the limit switches indicating open and closed
		are on at the same time). This state descriptor is configured on a per point basis
		and is valid only when the PVTXTOPT parameter is On.

Range: The permissible character set for the up to eight character descriptor is as follows: Alphabetics A-Z (upper case only) Numerics 0-9, Underscore (_)

BADSVFL (DevCtl)

 Type:
 Logical
 Bad SV Alarm Flag—Indicates a bad secondary value alarm.

 Lock:
 View

 Default:
 Off

PtRes: HPM Range: Off (Good data being read) On (SV parameter = BAD or NaN)

BADSVPR (DevCtl)

Type: **E:ALPRIOR Bad SV Alarm Priority**—Indicates the alarm priority for the secondary value.

Lock: Engr

Default: Low

PtRes: NIM Range: JnlP

JnlPrint (Alarm is historized and reported to the printer but not annunciated) Printer (Alarm is reported to the printer but not historized and not annunciated) Emergncy (Alarm is historized, annunciated, and reported to all alarm summary displays) High (Alarm is historized, reported to Area Alarm Summary Display and Unit Alarm Summary Display)

Low (Alarm is historized, reported to the Unit Alarm Summary Display, and annunciated) Journal (Alarm is historized but not reported to Universal Stations and not annunciated) NoAction (Alarm is not reported to the system and not annunciated)

BCAMODFL (RegCtl)

Type:	Logical	Backup Cascade Mode Flag—Indicates if the mode of the point is Backup
Lock:	View	Cascade.
Default:	N/A	
PtRes:	HPM	
Range:	Off - (point is n	ot in Backup Cascade mode)
	On - (point is in	Backup Cascade mode)

BCOMPOPT (FlowComp)

Type: Lock: Default: PtRes: HPM **Bad Compensation Input Option**—

Range: Set_PVCALC_Bad Use Last Goood Comp Term Use_LastGood_Comp_Input

BFF (PidFf)

Type: Real Lock: Supr Default: 0.0 PtRes: HPM N/A Range:

Feed Forward Input Bias—Defines the bias value for multiplicative action.

BHALMFL1–BHALMFL7

Alarm Flags Type: String 2 Lock: View Default: PtRes: NIM Hexadecimal characters 00 - FF Range:

BIAS (Pid)

Type:

Bias—Defines the value which is added to the SP.

Lock: Oper Default: 0.0 PtRes: HPM Range: **BSLOLM** to **BSHILM**

Real

BLK INFO

Type: **Blind Record** Lock: View Default: N/A PtRes: IOP Range:

Function Block Summary Information-Provides Function Block summary information needed by the NIM for checkpointing

BNDRESET (NIM, HPM Box)

Type:	Logical
Lock:	Operator
Default:	Off
PtRes:	HPM
Range:	Off/On

Bounds (Minimum/Maximum) Statistics Reset Flag-A write of ON resets the following maximum/minimum statistics to their default values: HPM CPU free percentage events, UCN transaction, UCN parameter statistics and UCN average statistics.

Helpful Hint: A read of BNDRESET always returns OFF.

BNDRSTIM (NIM, HPM Box)

Time of Last Bounds (Minimum/Maximum) Statistics Reset.

Type:	1 ime 1	ш
Lock:	View	
Default:	Time of HPM Startu	р
PtRes:	HPM	_
Range:	N/A	

Helpful Hint: This statistic can be viewed on the Toolkit Displays.

BOXCLR(0)-(2) (DevCtl, DigComp)

Type: Lock:	E:BOXCOLOR Eng/PB	Box Color for Digital Displays —Defines the color of the upper, middle, and lower boxes that are used to display the current state of the point on the Group and Detail Displays. The lower box and its default (Red) do not apply if NOSTATES = 2 for this point.
Default:	Green [Upper-box	default (State 1)]
	Yellow [Middle-bo	(State 0)]
	Red [Lower-box de	efault (State 2)]
PtRes:	NIM	
Range:	Red	
	Green	
	White	
	Black	
	Cyan	
	Yellow	
	Blue	
	Magenta	

Helpful Hint: BOXCLR has an access lock of View if PNTFORM = Component.

BOXCLR(0)-(1) (DigIn, Flag)

Type: **E:BOXCOLOR** *Lock:* **Eng/PB** **Box Color for Digital Displays**—Defines the color of the upper and lower boxes that are used to display the current state of the point on the Group and Detail Displays. Boxes are applicable when DITYPE is Latched or Status.

Default:Green [Upper box default color (State 1)]
Yellow [Lower-box default color(State 0)]PtRes:NIMRange:RedGreenWhiteBlackCyanYellowBlueBlueMagenta

BSHILM

Real

Type

Bias High Limit—Defines the upper limit of the bias.

Type.	Mai	Dias High Limit —Defines the upper limit of the blas.
Lock:	Supr	
Default:	50.0	
PtRes:	HPM	
Range:	≥BSLOLM,	
	NaN	

Helpful Hint: Entering NaN disables the BSHILM function with NaN being stored in the database.

BSLOLM

Type:	Real	Bias Low Limit—Defines the lower limit of the bias.	
Lock:	Supr		
Default:	-50.0		
PtRes:	HPM		
Range:	≤BSHILM,		
	NaN		
	Helpful Hint:	Entering NaN disables the BSLOLM function with NaN being stored in the	

BYPASS (DevCtl, DigComp)

database.

Type:	Logical	Interlock Bypass—Allows bypassing the permissive and override interlocks
Lock:	Oper	when ON. The Safety Override Interlock (SI0) is not affected. Only applies if
Default:	Off	Override Option (OROPT) is selected.
PtRes:	HPM	-
Range:	Off (Interlocks	not bypassed)
-	On (Interlocks b	bypassed)

BYPASS (ORSel)

 Type:
 Logical
 Override Input Bypass Enable—Allows the operator to select the bypass function

 Lock:
 Oper
 for the X1-X4 inputs.

 Default:
 Off

 PtRes:
 HPM

 Range:
 Off (Bypass of inputs is not allowed) On (Bypass of inputs is allowed)

BYPASSX1-BYPASSX4 (ORSel)

Type:	Logical	Bypass X1–X4 Input—Refer to the HPM Control Functions and Algorithms
Lock:	Oper	manual for a detailed description. BYPASSXn being On does not bypass
	_	X1-X4 unless $BYPASS = On$.
Default:	BYPASSX1 = 0	Off
	BYPASSX2-X4	4 = On
PtRes:	HPM	
Range:	Off	
Ū.	On	

C (FlowComp, Summer, Totalizer, and VdtLdLg)

Type:RealScale Factor—Value in C is used in the calculation of PVCALC. Refer to the
HPM Control Functions and Algorithms manual for the equation.Default:1.0

PtRes: HPM

Range: Anything except NaN

C1–C2 (FlowComp)

Type:	Real	Correction
Lock:	Supr	PVCALC, a
Default:	1.0	Refer to the
PtRes:	HPM	description.
Range:	C1 ≥ 0.1	_
	$C2 \ge 0.1$	

Correction Constants—Values in C1 and C2 are used in the calculation of PVCALC, and serve as factors in compensating for assumed design conditions. Refer to the *HPM Control Functions and Algorithms* manual for a detailed description.

C1–C2 (PI)

Type:	Real
Lock:	Supr
Default:	1.0
PtRes:	HPM
Range:	$C1 \ge 0$
	C2 > 0

Scaling Constants—Values in C1 and C2 are used in the calculation of PVCALC. Refer to the *HPM Control Functions and Algorithms* manual for a detailed description.

C1–C2 (VdtLdLg)

Type:	Real
Lock:	Supr
Default:	1.0
PtRes:	HPM
Range:	≥ 0. 0

Scaling Constant For Input P1–P2—Values in C1 and C2 are used in the calculation of TD (fixed time delay) and TDNEW (calculated new delay time).

C1–C4 (Calcultr)

Type:	Real
Lock:	Supr
Default:	N/A
PtRes:	HPM
Range:	N/A

Intermediate Results of Calculations

C1–C6 (Summer)

Type:	Real
Lock:	Supr
Default:	1.0
PtRes:	HPM
Range:	N/A

Scaling Constants 1-6—Defines the scaling constants to be used with the respective inputs P1-P6.

C1–C4DESC (Logic)

String_8	C
Engr	al
Blank	
HPM	
8 Character S	tring
	Engr Blank

Custom Alarm Descriptors—Defines the state for each of the four custom alarms.

C1–C4FL (Logic)

Type:	Logical	Custom Alarm Flags—Defines the state for each of the four custom alarms.
Lock:	Program	These flags can be written to if C1–C4SRC=None.
Default:	Off	
PtRes:	HPM	
Range:	Off (A custom	alarm is not active)
	On (A custom	alarm is active)

C1–C4PR (Logic)

Type:	E:ALPRIOR	Custom Alarm Priorities—Defines the alarm priorities for each of the four	
Lock:	Engr	custom alarms.	
Default:	NoAction		
PtRes:	NIM		
Range:	JnlPrint (Alarm is historized and reported to the printer but not annunciated)		
-	Printer (Alarm	is reported to the printer but not historized and not annunciated)	
	Emergncy (Ala	rm is historized, annunciated, and reported to all alarm summary displays)	
	High (Alarm is	historized, reported to Area Alarm Summary Display and Unit Alarm Summary	
	Display)		

Low (Alarm is historized, reported to the Unit Alarm Summary Display, and annunciated) Journal (Alarm is historized but not reported to Universal Stations and not annunciated) NoAction (Alarm is not reported to the system and not annunciated)

C1–C4SRC (Logic)

Type: E:\$LGALSRC Custom Alarm Source-Indicates the alarm source for each of the four custom alarms.

- Lock: **PtBld**
- Default: None HPM
- PtRes:
- Range: **NONE** (No source configured for alarms)

L1..L12 (Alarm source is the configured input connection; they can be either On or Off) SO1..SO24 (Alarm source is the status output (SOn) from another logic block) FL1..FL12 (Alarm source is a local flag; they can be either On or Off)

CABLESTS (NIM)

Type:	Integer C	verall Cable Status for a UCN Node
Lock:	View	
Default:	N/A	
PtRes:	NIM	
Range:	0-(Both cables are OK)	
	1-(Cable A has fail	ed)
	2-(Cable B has fail	ed)
	3-(Both cables hav	e failed)

CALCEXP (Calcultr)

Type:String_40Lock:Eng/PBDefault:blankPtRes:HPMRange:N/A

Calculator Expression—Allows the user to set up an equation that can be up to 40 characters in length, which is to be solved by the Calcultr algorithm. Input values P1-P6 and intermediate results values C1-C4 can be used in the equation.

CALIBALL (1)-(168)

Type:LogicalFull Calibration Enable FlagLock:EngrDefault:OffPtRes:HPMRange:Off (Card calibration is disabled)
On (Card calibration is enabled)

CALIBRJ (1)-(168)

Type:LogicalReference Junction Calibration Enable FlagLock:Eng/PBDefault:OffPtRes:HPMRange:Off (Disable Reference Junction calibration)
On (Enable Reference Junction calibration)

CASMODFL (RegCtl)

Type:	Logical	Cascade Mode Flag—Indicates whether the current mode of the point is Cascade.
Lock:	View	
Default:	N/A	
PtRes:	HPM	
Range:	On - (point is in	cascade mode)
	Off - (point is n	ot in cascade mode)
	-	

CASREQ (AnalgOut, RegCtl)

Type: Lock: Default: PtRes:	E:CASREQ Prog NotReq HPM	Remote Cascade Request Flag—Defines whether the remote cascade mode has been requested for the data point. The remote cascade mode exists when MODE is changed to Cas and RCASOPT is Ddc or DdcRsp. When a request to change MODE to Cas is received from a US or a program, MODE does not immediately change to Cas. Instead, CASREQ is set to Request and a -C appears to the right of the mode indicator on the Group and Detail displays. When continuous control in an AM determines that CASREQ contains Request, it requests the mode to go to Cas, and changes CASREQ to NotReq. Should the point shed while it is in the remote cascade mode, MODE goes to the state defined in SHEDMODE, and CASREQ goes back to Request.
Range: 0-NotReq 1-Request		(Remote cascade mode request not made) (Remote cascade mode request made; operator or program has requested the cascade mode)
	Helpful Hint:	CASREQ does not apply for an AnalgOut point if RCASOPT = None. CASREQ does not apply for a RegCtl point unless RCASOPT = Spc, Ddc, or DdcRsp. If Spc has been entered for the RCASOPT parameter, the AM writes to the setpoint. Ddc is the only remote cascade option for an analog output point.

CHPINHWY (UCN)

Type:	E:CHPINDAC	Automatic Checkpoint Inhibit
Lock:	Supr	-
Default:	Enable	
PtRes:	NIM	
Range:	0-Enable (Enable	automatic checkpointing of data bases on this UCN)
	1-Inhibit (Inhibit a	automatic checkpointing)

CHPINOPR (HPM Box)

Type:	E:CHPINDAC	Automatic Checkpoint Inhibit Operation—Defines whether automatic
Lock:	Supr	database saves are to be performed for the devices connected to this NIM.
Default:	Enable	
PtRes:	NIM	
Range:	Enable (Automatic	database saves are enabled)
	Inhibit (Automatic	database saves are inhibited)

CIDSTN(1)-CIDSTN(4) (RegCtl)

Type:	Prm_ID	Conti
Lock:	PtBld	etc.) i
Default:	Based on	"Tagn
·	CTLALGID,	CISR
	CTLEQN, N	
PtRes:	HPM	
Range:	N/A	
0		
	r	

Control Input Connection Destination—Defines the parameter name (PV, SP, etc.) in the RegCtl point that is to receive the value fetched using the "Tagname.Parameter" or the hardware reference address specified in parameter CISRC, Control Input Connection Source.

Helpful Hint: 1. CIDSTN must contain a legitimate parameter of one to eight characters.
2. Default to PV, SP, or some other parameter depends on parameters CTLALGID, CTLEQN, and M.

CISRC(1)-CISRC(4) (RegCtl)

Type:	Ent.Prm	Control Input Connection Source—Defines the "Tagname.Parameter" of the	
Lock:	PtBld	parameter whose value is to be obtained and then stored in one of up to four	
Default:	null.null	RegCtl algorithm inputs. Refer to the HPM Control Functions and Algorithms	
PtRes:	HPM	manual for a detailed description.	
Range:	Use Tagname.P	arameter for tagged points where Tagname can be up to 16 characters, and the	
	permissible character set is as follows:		
	Alphabetics A-Z (uppercase only)		
	Numerics 0-9 (an all numeric tag name is not allowed)		
	Underscore (_) cannot be used as the first character or the last character, and consecutive		
	under	rscores are not allowed.	
	Embedo	led space characters are not allowed.	
	An * is	used to default to this point's tag name.	
	Parame	ter name can be up to eight characters and must be a legitimate parameter name.	

CLBACK (ProcMod)

Type:	Integer
Lock:	Engr
Default:	0
PtRes	HPM
Range:	(0 - 240)

Number of Backward Branches -- Specifies how many backward brances may occur when executing GOTO WHEN ERROR, & REPEAT, before preemption occurs. 0 = preempt every backward branch.

CLPZMXC (UCN)

Type:	Logical	Overall Cable Status for UCN Cable A
Lock:	View	
Default:	N/A	
PtRes	NIM	
Range:	Off (Cable A	A status is OK)
	On (Cable A	A status is not OK)

CLPZMXP (UCN)

Type:	Logical	Overall Cable Status for UCN Cable B
Lock:	View	
Default:	N/A	
PtRes	NIM	
Range:	Off (Cable	B status is OK)
	On (Cable]	B status is not OK)

CMD (RegCtl)

Type:	Logical	Command Fail Alarm Flag—Indicates if the PV failed to move after the output
Lock:	Configurable	command within the allowed command fail time. Command Fail Alarm priority
Default:	Off	is determined by CMDDISPR.
PtRes:	APM	
Range:	Off (PV moved after the output command)	
, i i i i i i i i i i i i i i i i i i i	On (PV did not move after the output command)	

CMDDISFL (DevCtl, DigComp)

Type:	Logical	Command Disagree Alarm Flag—Indicates whether a field device did not go to
Lock:	View	the commanded state within the allowed feedback time.
Default:	Off	
PtRes:	HPM	
Range:	Off (No comma	and disagree alarm)
	On (Command	disagree alarm has been detected by this point)

Helpful Hint: A slow-responding field device can cause a premature alarm. If so, adjust the time in parameter FBTIME.

CMDDISPR (DevCtl, DigComp)

Type:	E:ALPRIOR	Command Disagree Alarm Priority—Defines the alarm priority of command	
Lock:	Engr	disagree, command fail, and uncommanded change alarms.	
Default:	Low		
PtRes:	NIM		
Range	Emergncy (Alarm is historized, annunciated, and reported to all alarm summary displays)		
	High (Alarm is	historized, reported to Area Alarm Summary Display and Unit Alarm Summary	
	Display)		
	Low (Alarm is	historized, reported to the Unit Alarm Summary Display, and annunciated)	
	JnlPrint (Alarn	n is historized and reported to the printer but not annunciated)	
	Printer (Alarm	is reported to the printer but not historized and not annunciated)	

Journal (Alarm is historized but not reported to Universal Stations and not annunciated)

NoAction (Alarm is not reported to the system and not annunciated)

CMDFALFL (DevCtl, DigComp)

Type:	Logical	Command Fail Alarm Flag—Indicates if the PV failed to move after the output
Lock:	View	command within the allowed command fail time. Command Fail Alarm priority
Default:	Off	is determined by CMDDISPR.
PtRes:	HPM	

Range: **Off** (PV moved after the output command) **On** (PV did not move after the output command)

CMDFALTM (DevCtl, DigComp)

Type: Lock:	Integer Supr if CMDFALTM is changed from a non-zero value to a zero value, else Eng/PB	Command Fail Timeout —Sets the amount of time (in seconds) that the point should wait before generating a "command fail" alarm, if the PV has not changed after changing the output. Command Fail Alarm priority is determined by CMDDISPR.
Default:	0	
PtRes:	HPM	
Range:	0 to 999 seconds (0	indicates command fail alarming is disabled)

CMDHWREV

Type:	String_2	HPMM Communications Daughter Card Revision
Lock:	View	
Default:		
PtRes:	HPM	
Range:	Hexadecimal ch	aracters 00 - FF

CMFLTIME (HPM BOX)

Type:TimeLock:ViewDefault:N/APtRes:HPM

HPMM Communications Failure Time—

Helpful Hint: If a value of 0 is returned for the time from the UCN, a parameter status of Parameter Invalid is returned on the LCN.

Range:

CMIDTXT (HPM BOX)

Type:	String_16	HPMM Communications Identification Text String
Lock:	View	
Default:	Blank	
PtRes:	HPM	
Range:	Hexadecimal c	haracters 00 - FF
0		

CMPLTIME

Type:TimeLock:ViewDefault:0PtRes:HPMRange:

Compile Time—Specifies the sequence compile time (CL object header)

CNFERRFL

Type:	Logical
Lock:	View
Default:	Off
PtRes:	HPM
Range:	Off
-	On

Configuration Error Flag—This flag is set if any configuration requirement is violated.

CNFERRPR

Type:E: ALPRIORConfiguration Error Priority—Lock:Eng/PBDefault:LowPtRes:HPMRange:Low

CNFLUA(n)

Type:	Real	Configured Link Units on Link A—
Lock:	View	n = 1 - 64 for per cycle totals
Default:	0.0	n = 257 - 320 for per cycle non-SI IOP loading
PtRes:	HPM	n = 513 - 576 for per cycle SI array slot loading
Range:		

CNFLUB(n)

Type:	Real	Configured Link Units on Link B—
Lock:	View	n = 1 - 64 for per cycle totals
Default:	0.0	n = 257 - 320 for per cycle non-SI IOP loading
PtRes:	HPM	n = 513 - 576 for per cycle SI array slot loading
Range:		

CNFMU

Default: N/A PtRes:

Integer

View

HPM

Type:

Lock:

Range:

Configured Memory Units—Configured size of slot in Memory units.

CNFPU(1 - 64) (HPM Box)

Type: Real Lock: View *Default:* **0** HPM PtRes: Range:

Configured Process Units Per Cycle-

CNFPU

Type:RealLock:PtBldDefault:2.0PtRes:HPMRange:

Configured Process Units Per Cycle—Process Units Configured as being required to execute point processing.

Helpful Hint: Can only be written for ProcMod points.

CNFPUP (1 -64)

Configured PUs Percent-Specifies the Configured Process Units in percent

Default: **0** PtRes: **HPM** Range:

Type:

Lock:

CNTLLOCK

Real

View

Type:E:ACCLVLLock:EngrDefault:OPERATORPtRes:HPM

Control Lock—Attempts to write values in the following parameters are subject to the access-lock value contained in CNTLLOCK. The check is bypassed for the exceptions.

Parameter	Exceptions
PROCMOD	New value = START
SEQEXEC	None
SEQMODE	None
OVERPHAS	SEQEXEC = FAIL or ERROR
OVERSTEP	SEQEXEC = FAIL or ERROR
OVERSTAT	SEQEXEC = FAIL or ERROR

Range: 0-OPERATOR - Operator and higher keylock positions allow store access.
 1-SUPERVIS - Supervisor and higher keylock positions allow store access.
 2-ENGINEER - Engineer and higher keylock positions allow store access.
 3-PROGRAM - Only the program has store access.

CODSTN(1)-CODSTN(4) (RegCtl)

Type: Lock:	Universal Ent.Prm PtBld	Control Output Connection Destination —Defines up to four different "Tagname.Parameter" or hardware reference address destinations to which the output value from RegCtl point is to be written. Refer to the <i>HPM Control</i>
Default:	null.null	Functions and Algorithms manual for a detailed description.
PtRes:	HPM	
Range:	Use Tagname.Pa	arameter for tagged points where Tagname can be up to 16 characters, and the
	permissible char	cacter set is as follows:
	Alphabe	tics A-Z (uppercase only)
	Numerio	cs 0-9 (an all numeric tag name is not allowed)
		ore (_) cannot be used as the first character or the last character, and consecutive scores are not allowed.
	Embedded space characters are not allowed.	
	An $*$ is used to default to this point's tag name.	
	Parameter name can be up to eight characters and must be a legitimate parameter name.	
	MT is the	reference address !MTmmSss.Parameter for untagged or tagged points where ne IOP type, such as AO (analog output) ne IOP Card number (1-40)
		slot number on the IOP Card (refer to SLOTNUM parameter) er name can be up to eight characters and must be a legitimate parameter name.

COMCFAVG (HPM Box)

Type:	Real
Lock:	View
Default:	NaN
PtRes:	HPM
Range:	0 - 100

Average HPM Communication CPU Free Percentage—The average percent of time the Communications Processor is not busy.

Helpful Hint: This statistic can be viewed on the Toolkit Displays.

COMCFMAX (HPM Box)

Type:	Real
Lock:	View
Default:	NaN
PtRes:	HPM
Range:	0 - 100

Maximum HPM Communication CPU Free Percentage—The maximum percent of time the Communications Processor is not busy.

Helpful Hint: This statistic can be viewed on the Toolkit Displays.

COMCFMIN (HPM Box)

Type:	Real
Lock:	View
Default:	NaN
PtRes:	HPM
Range:	0 - 100

Minimum HPM Communication CPU Free Percentage—The minimum percent of time the Communications Processor is not busy.

Helpful Hint: This statistic can be viewed on the Toolkit Displays.

COMDAUGH

Type:	Logical	HPMM Communications Daughter Card Present Flag.
Lock:	View	
Default:		
PtRes:	HPM	
Range:	Off (No daughte	r card present)
Ū.	On (Daughter c	ard present)
		▲ ·

COMDAY

Creation Day of HPMM Communications Personality.

Type:IntegerLock:ViewDefault:N/APtRes:HPMRange:1 - 31

COMFWREV

 Type:
 String_2
 HPMM Communications Firmware Revision.

 Lock:
 View

 Default:
 PtRes:
 HPM

 Range:
 Hexadecimal characters 00 - FF

COMDGAVG (HPM Box)

Average Diagnostic cycle time (in minutes) in the Comm CPU—

Type:RealLock:ViewDefault:0.0PtRes:HPMRange:

COMDGMAX (HPM Box)

Maximum Diagnostic cycle time (in minutes) in the Comm CPU—

Type:RealLock:ViewDefault:0.0PtRes:HPMRange:

COMHOUR (HPM BOX)

Type:IntegerLock:ViewDefault:0PtRes:HPMRange:

HPMM Communications Personality Creation Date-Hour

COMHWREV

 Type:
 String_2
 HPMM Communications Hardware Revision.

 Lock:
 View

 Default:
 View

PtRes:HPMRange:Hexadecimal characters 00 - FF

COMLUAVG (1) - (2) (HPM Box)

 Type:
 Real

 Lock:
 View

 Default:
 0.0

 PtRes:
 HPM

 Range:
 0 - 100

Average HPM IOL Utilization (inPercent) by the Comm CPU, per I/O Link—

COMLUMAX (1) - (2) (HPM Box)

 Type:
 Real

 Lock:
 View

 Default:
 0.0

 PtRes:
 HPM

 Range:
 0 - 100

Maximum HPM IOL Utilization (inPercent) by the Comm CPU, per I/O Link—

COMMAND (DigIn)

Type: **E:COMMAND** Accumulator Commands—Allow the operator to control the accumulator.

Lock: Oper

Default: None

PtRes: HPM

Range: 0-None (No effect on accumulator)

1-Start (Start the accumulator)

2-Stop (Stop the accumulator)

3-**Reset** (Reset the accumulation to zero)

Helpful Hint: COMMAND applies only when DITYPE = Accum.

COMMAND (STI)

Type:E:COLock:OperDefault:NonePtRes:HPM

E:COMMAND Command—Allows the user to do database transfers between the STI point and the smart transmitter, and to calibrate the transmitter.

NOTE

During an up-load operation, previously unseen data is read from the transmitter database and stored in the STI database. If this data is not desired, the data can be restored by using the checkpoint restore or load IDF functions.

Range: 0-None (A command has not been issued by the STI point)
1-DnLoadDb (Loads the transmitter parameters from the STI point data base into the transmitter)
2-UpLoadDb (Loads the transmitter data base from the transmitter into the STI point)
3-Set_LRV (Sets the Lower Range Value)
4-Set_URV (Sets the Upper Range Value)
5-Cor_LRV (Corrects the Lower Range Value)
6-Cor_URV (Corrects the Upper Range Value)
7-Cor_Inpt (Corrects the zero point for the PV value)
8-RstCor (Sets all input calibration parameters to their default values)

Helpful Hint: If PV or PV_SV has been entered for the DECONF parameter, the only command supported is DnLoadDB.

COMMAND (Timer)

E:COMMAND Type: Timer Commands—Allow the operator to control the operation of the timer Lock: Oper data point.

Default: None

PtRes: HPM

Range: 0-None (No effect on the timer)

1-Start (Starts the timer)

2-Stop (Stops the timer)

3-Reset (Resets the timer to zero)

4-RestStrt (Resets the timer, then starts the timer)

COMMAND (Totalizr)

E:COMMAND Type: Totalizer Commands-Allow the operator to control the operation of the Lock: Oper totalizer.

Default: None PtRes: HPM

0-None (No effect on totalizer) Range:

1-Start (Starts the totalizer)

2-Stop (Stops the totalizer)

3-Reset (Resets the totalizer to RESETVAL)

COMMIN (HPM BOX)

Type: Integer Lock: View Default: 0 PtRes: HPM Range:

Type:

Lock:

Range:

Default: N/A PtRes:

HPMM Communications Personality Creation Date-Minute

COMMONTH Integer

View

HPM

1 - 12

Creation Month of HPMM Communications Personality

COMNAME

Type: String 8 Lock: View Default: PtRes: HPM Range:

HPMM Communications Personality Name

COMPHILM (FlowComp)

Type: Real Lock: Supr Default: 1.25 PtRes: HPM Range: COMPLOLM NaN		Compensation Term High Limit —Defines the upper limit of the COMPTERM (compensation term) parameter. to 10.0 ,
	Helpful Hint:	Entering NaN disables high-limit checking by forcing its value to the extreme (10.0).

COMPLOLM (FlowComp)

Type:	Real	Compensation Term Low Limit—Defines the lower limit of the COMPTERM
Lock:	Supr	(compensation term) parameter.
Default:	0.8	
PtRes:	HPM	
Range:	0.0 to COMPH	ILM,
	NaN	
	Helpful Hint:	Entering NaN disables low-limit checking by forcing its value to the extreme

COMPTERM (FlowComp)

(0.0).

Type:	Real	Compensation Term—This term differs in each of the five flow compensation
Lock:	View	equations, A through E. Refer to the HPM Control Functions and Algorithms
Default:	1.0	manual for a detailed description.
PtRes:	HPM	
Range:	COMPLOLM t	o COMPHILM

COMRDRRV

Type:	Integer	Rdr Revision
Lock:	View	
Default:		
PtRes:	HPM	
Range:		

COMRDRVS

Type:IntegerRdr VersionLock:ViewDefault:PtRes:HPMRange:

COMREV

Type:IntegerLock:ViewDefault:N/APtRes:HPMRange:N/A

HPMM Communications Software Revision

COMVERS

Integer
View
N/A
HPM
N/A

HPMM Communications Software Version

COMYEAR

Type:	Integer
Lock:	View
Default:	N/A
PtRes:	HPM
Range:	0 - 99

Creation Year of HPMM Communications Personality

CONTCUT

Type:	Logical
Lock:	Prog
Default:	Off
PtRes:	HPM

Contact Cut Out —Defines whether alarms detected at this data point are to be cut out to prevent this data point's alarms from being reported to the operator. The alarms continue to be reported to the AM or CM through the EIPPCODE parameter.

CONTCUT can be used to cutout alarms on a point when the alarms are generated because of specific conditions at other points which themselves have alarms. As an example, the user could configure a logic point so that the logic point would monitor the nuisance alarm conditions and then store the contact cutout state of this point using an output connection. It can also be stored by the sequence program in the HPM or the AM which could monitor the process conditions to determine when the alarms have to be suppressed.

Range: Off (Alarms are not cut out)

On (Alarms are cut out)

Helpful Hint: Cutout alarms behave the same as inhibited alarms; that is, when a point's contact cutout state is true—

alarms are not distributed to the US or HM
return to normal events are not distributed to the US or HM
EIP events triggered by the alarm condetion are not distributed

For HPM Box Flag points, CUTOUT applies to only slots 1–128.

COUNTDWN (DigIn)

Type:	Logical	Accumulator Count Down Flag—Determines whether the accumulator is to
Lock:	Eng/PB	count down or count up.
Default:	Off	
PtRes:	HPM	
Range:	Off (Accumulator is to count up)	
-	On (Accumulat	tor is to count down)
	·	

Helpful Hint: COUNTDWN configuration requires DITYPE = Accum.

CPMSGSEC (NIM PSDP)

Type:	Real
Lock:	View
Default:	0
PtRes:	NIM
Range:	N/A

Number of Checkpoint Messages—Specifies the Number of Checkpoint Messages per second.

CPTIMAVG (NIM PSDP)

Type:	Real
Lock:	View
Default:	0
PtRes:	NIM
Range:	N/A

Average Time to Complete a Checkpoint Request—Specifies the Average Time (in msec.) to Complete a Checkpoint Request.

CPTIMMAX (NIM PSDP)

Type:	Real
Lock:	View
Default:	0
PtRes:	NIM
Range:	N/A

Maximum Time to Complete a Checkpoint Request—Specifies the Maximum Time (in msec.) to Complete a Checkpoint Request.

CRIOLORN (1) - (4) (HPM Box)

Type:	Integer
Lock:	View
Default:	0
PtRes:	HPM

Current Hour IOL Fetch/Store Overrun Counter—A counter that accumulates and shows the number of I/O Link fetch/store time outs that have occurred during the current hour.

In arrays 1 through 4, the counter is indexed by the cycle. In array 0, the counter is totaled for all cycles.

Range: ≥ 0

CRPPXORN (0 - 8) (HPM Box)

Type: Lock:	Integer View	Current Period Point Processing Overruns Per Cycle —A counter that accumulates and shows the number of HPMM point processing overruns that
Default:	0	have occurred during the current hour.
PtRes:	HPM	-
		In arrays 1 through 8, the counter is indexed by the cycle
		In array 0, the counter is totaled for all cycles.

Range: ≥ 0

CRUCNORN (HPM Box)

Type:	Integer
Lock:	View
Default:	0
PtRes:	HPM
Range:	≥ 0

Current-Hour UCN Access Overruns—Indicates the number of UCN access overruns that have occurred in the current hour. Refer to the *HPM Control Functions and Algorithms* manual for a detailed description of overrun handling.

CTFLTIME (HPM Box)

Type:TimeLock:ViewDefault:N/APtRes:HPM

HPMM Control Failure Time—defines

Helpful Hint: If a value of 0 is returned for the time from the UCN, a parameter status of Parameter Invalid is returned on the LCN.

Range: N/A

CTIDTXT (HPM BOX)

Type:String_16HPMM Control Functionality ID Text String—definesLock:ViewDefault:BlankPtRes:HPMRange:N/A

CTLACTN

 Type:
 E:POLARITY
 Control Action—Defines the direct/reverse action of this algorithm's output.

 Lock:
 Eng/PB

 Default:
 Reverse

 PtRes:
 HPM

 Range:
 0-Direct (As PV increases, output increases)

 1-Reverse (As PV increases, output decreases)

CTLALGID (RegCtl)

Type: Lock: Default:		Control Algorithm Identifier —Defines the algorithm that is to be used for this RegCtl point.
PtRes:	HPM	
Range:	0-Null (No algorithm selected)	
	1-Pid (Proportional, I	ntegral, Derivative)
	2-PidFf (PID with Fee	edforward)
	3-PidErfb (PID with External Reset Feedback)	
	7-RatioCtl (Ratio Control)	
	8-RampSoak (Ramp Soak)	
	9-AutoMan (Auto M	anual Station)
	10-IncrSum (Increme	ental Summer)
	11-Switch (Switch)	
	12-ORSel (Override S	Selector)
	13-PosProp (Position	n Proportional)
	• ·	D with Position Proportional output)

CTLCFAVG (HPM Box)

Type:	Real
Lock:	View
Default:	NaN
PtRes:	HPM
Range:	0 - 100

Average HPM Control Processor CPU Free Percentage—The average percent of time the HPM Control Processor is not busy.

Helpful Hint: This statistic can be viewed on the Toolkit Displays

CTLCFMAX (HPM Box)

Type:	Real	Maximum HPM Control Processor CPU Free Percentage—The maximum
Lock:	View	percent of time the HPM Control Processor is not busy.
Default:	NaN	
PtRes:	HPM	
Range:	0 - 100	

Helpful Hint: This statistic can be viewed on the Toolkit Displays.

CTLCFMIN (HPM Box)

Type:	Real	Minimum HPM Control Processor CPU Free Percentage—The minimum
Lock:	View	percent of time the HPM Control Processor is not busy.
Default:	NaN	-
PtRes:	HPM	
Range:	0 - 100	

Helpful Hint: This statistic can be viewed on the Toolkit Displays.

CTLDAY

Integer
View
N/A
HPM
1 - 31

Creation Day of HPMM Control Personality

CTLDGAVG (1) - (2) (HPM Box)

Type:	Real
Lock:	View
Default:	0.0
PtRes:	HPM
Range:	N/A

Average Diagnostic cycle time (in minutes) in the Control CPU—

CTLDGMAX (1) - (2) (HPM Box)

Maximum Diagnostic cycle time (in minutes) in the Control CPU-

Type:RealLock:ViewDefault:0.0PtRes:HPMRange:N/A

CTLEQN (AutoMan)

Type:E:ALGOEQNControl Equation TypeLock:Eng/PBDefault:EqAPtRes:HPMRange:0-EqA (CV = X1 + B +BI)1-EqB (CV = X1 + (K*X2) + BI)

CTLEQN (ORSel)

 Type:
 E:ALGOEQN
 Control Equation Type—Defines whether the highest or the lowest input is

 Lock:
 PtBld
 to be selected.

 Default:
 EqA

 PtRes:
 HPM

 Range:
 0-EqA (Selects the highest input)

 1-EqB (Selects the lowest input)

CTLEQN (Pid)

 Type:
 E:ALGOEQN
 Control Equation Type—Defines how Proportional (P) or gain, Integral (I) or reset, and Derivative (D) action is applied to a PID-type algorithm's calculated Error (PV - SP).

 Default:
 EqA
 calculated Error (PV - SP).

 PtRes:
 HPM

 Range:
 0-EqA (P, I, and D act on Error)

 1-EqB (P and I act on Error, D acts on PV)
 2-EqC (I acts on Error, P and D act on PV)

 3-EqD (Integral-only control)

CTLEQN (Switch)

Type:	E:ALGOEQN	Control Equation Type—Defines whether the operator, the user-written
Lock:	Eng/PB	program, or the logic slot controls the selection of one of the four inputs
Default:	EqA	(X1-X4) as the input to this algorithm.
PtRes:	HPM	
Range:	0-EqA (Operator controls switch position)	
-	1-EqB (Program or logic point controls switch position)	

CTLHOUR (HPM Box)

Type:IntegerLock:ViewDefault:0PtRes:HPMRange:N/A

HPMM Control Personality Creation Date-Hour

CTLMIN (HPM Box)

Type:IntegerLock:ViewDefault:0PtRes:HPMRange:N/A

HPMM Control Personality Creation Date-Minute

CTLMONTH

Type:IntegerLock:ViewDefault:N/APtRes:HPMRange:1 - 12

Creation Month of HPMM Control Personality

HPMM Control Personality Name

HPMM Control Processor Option

CTLNAME

Type:String_8Lock:ViewDefault:N/APtRes:HPMRange:N/A

....

CTLOPT (HPM Box)

Type: Logical

Lock: PtBld

Default: On PtRes: HPM

PtRes: Range:

e: **On** (All point types can be configured)

Off (DigComp, Logic, RegCtl, or RegPV points cannot be configured; only I/O points can be configured. This usually means that the control processor hardware is missing from the HPM).

CTLREDUN

Type:	Logical
Lock:	View
Default:	N/A
PtRes:	HPM
Range:	Off
0	On

HPMM Control Redundancy Present Flag

CTLREV

Type:	Integer
Lock:	View
Default:	N/A
PtRes:	HPM
Range:	N/A

HPMM Control Personality Revision

CTLVERS

Type:IntegerLock:ViewDefault:PtRes:HPMRange:N/A

HPMM Control Personality Version

CTLYEAR

Type:IntegerLock:ViewDefault:N/APtRes:HPMRange:0 - 99

Creation Year of HPMM Control Personality

CTRLINIT (RegCtl)

Type:	Logical
Lock:	Prog
Default:	Off
PtRes:	HPM
Range:	Off
0	On

Control Initialization Request Flag—A user-written program or a logic slot can cause a data point to initialize by setting the point's control initialization-request flag to On.

CURCOMFL

E:\$PMMHFST Type: **Current HPMM Communications Board Failure** Lock: View Default: PtRes: HPM Range: Null (Unknown Error) Pwrdwn (Power Down) Lr Par (Parity Error) Lr_Lram (Local Ram Error) Lr Ck (Local Ram Check) Lr_Exc (Local Ram Exception) Lr_Hrev (Local Ram Hardware Revision) Mm_Hrev (Memory Board Hardware Revision) Lr Tmr (Local Ram Timer Error) Lr Ptrn (Local Ram Pattern Check Error) Lr Byte (Local Ram Byte Error) Lr Adcd (Local Ram Address Decode Test) Lr_Addl (Local Ram Additional Check) Lr_Clrr (Local Ram Scrub Incomplete) Sr Par (Shared Ram Parity) Sr Ptrn (Shared Ram Pattern Check Error) Sr Adcd (Shared Ram Address Decode Test) Sr Addl (Shared Ram Additional Checks) Gr_Par (Global Ram Parity) Gr_Ptrn (Global Ram Pattern Check Error) **Gr** Byte (Global Ram Byte Error) Gr Adcd (Global Ram Address Decode Test) Gr Addl (Global Ram Additional Checks) Gr_Clrr (Global Ram Scrub Incomplete) 31_Nr (IOL Processor, No Response or Failure) **31_Aliv** (IOL Processor, Transmitter Not Alive) **31 Iltn** (IOL Processor, Illegal Transition) Nmi_Unk (Unknown NMI Request) Baducnn (UCN Address Parity or Duplicate Address) Nr (No Response From Other Processor) Mrft (Memory Reference Table (Pattern Build Fail) Nomtos (No MTOS Readout) Llc Comm (LLC Communication Fatal Error) Ucndrv (UCN Driver, Fatal Error) Rd_Hrev (Redundancy Card Version/Revision Mismatch) Sw Error (Software Error) Md_Hrev (Modem Card Version/Revision Mismatch) Da_Ptrn (Daughter Card Pattern Test) Da Byte (Daughter Card Byte Write Test) Da Adcd (Daughter Card Address Decode) Da_Addl (Daughter Card Additional Test) Da_Clrr (Daughter Card Scrub Incomplete) Rd_Snps (Redundancy Card 96 Kw Snapshot Error) Rd_Bslk (Redundancy Card Bus Lock Fail)

CURCTLFL

Type:

E:\$PMMHFST

Current HPMM Control Failure

Lock: View Default: PtRes: HPM Range: Null (U: Pwrdwn Lr_Par (Lr_Lran Lr_Ck (Lr_Exc Lr_Hrev Mm_Hr Lr Tmr

Null (Unknown Error) Pwrdwn (Power Down) Lr Par (Parity Error) Lr_Lram (Local Ram Error) Lr_Ck (Local Ram Check) Lr_Exc (Local Ram Exception) Lr_Hrev (Local Ram Hardware Revision) Mm_Hrev (Memory Board Hardware Revision) Lr Tmr (Local Ram Timer Error) Lr Ptrn (Local Ram Pattern Check Error) Lr Byte (Local Ram Byte Error) Lr Adcd (Local Ram Address Decode Test) Lr_Addl (Local Ram Additional Checks) Lr_Clrr (Local Ram Scrub Incomplete) Sr Par (Shared Ram Parity) Sr Ptrn (Shared Ram Pattern Check Error) Sr Adcd (Shared Ram Address Decode Test) Sr Addl (Shared Ram Additional Checks) Gr_Par (Global Ram Parity) Gr_Ptrn (Global Ram Pattern Check Error) **Gr** Byte (Global Ram Byte Error) Gr Adcd (Global Ram Address Decode Test) Gr Addl (Global Ram Additional Checks) Gr_Clrr (Global Ram Scrub Incomplete) 31_Nr (IOL Processor, No Response or Failure) **31_Aliv** (IOL Processor, Transmitter Not Alive) **31 Ilatn** (IOL Processor, Illegal Transition) Nmi_Unk (Unknown NMI Request) Baducnn (UCN Address Parity or Duplicate Address) Nr (No Response From Other Processor) Mrft (Memory Reference Table - Pattern Build Fail) Nomtos (No MTOS Readout) Llc Comm (LLC Communication Fatal Error) Ucndrv (UCN Driver, Fatal Error) Rd Hrev (Redundancy Card Version/Revision Mismatch) **Sw_Error** (Software Error) Md_Hrev (Modem Card Version/Revision Mismatch) Da_Ptrn (Daughter Card Pattern Test) Da Byte (Daughter Card Byte Write Test) Da Adcd (Daughter Card Address Decode) Da_Addl (Daughter Card Additional Tests) Da_Clrr (Daughter Card Scrub Incomplete) Rd_Snps (Redundancy Card 96 Kw Snapshot Error)

Rd_Bslk (Redundancy Card Bus Lock Fail)

CURIOLFL

View

Type:

Lock:

Default: PtRes:

Range:

E:\$IOMHF

Current HPMM IOL Interface Failure

HPM Unknown - (Unknown Error) Powerdwn - (Power Is Off) Invprgex (Invalid Program Execution) **Epromerr** (EPROM Error) Ramcnter (Ram Contents Error) Ramadrer (Ram Address Error) Dpaerror (Device Physical Address Error) **Dsaerror** (Device Soft Address Error) **Rxbufofl** (Receive Buffer Overflow Error) Ioljaber (IOL Jabber Error; Module saw or talked too much on link) **Badpgjmp** (Bad Program Jump) Adcincmp (A/D Incompatible) Adoutovf (A/D Overflow) Adoutudf (A/D Underflow) Adccaler (A/D Calibration Error) Baddcltc (Bad DC LTC) Dmt_tmot (Deadman Time Out) Mltoutfl (Multiple Output Failure) Datbusfl (Data Bus Failure) **Baddarng** (Bad A/D Range) Mstrtmot (Master Timeout) Ctrcktfl (Counter Circuit Failure)

CURPINAM (n)

Type:	String_8
Lock:	View
Default:	N/A
PtRes:	IOP
Range:	N/A

Current PI Filename—Defines the personality Image filename that currently resides in this IOP where n is the IOP number 1 - 40.

CURSEGID (RampSoak)

Type:	E:CURSEGID	Current Segment ID—Defines the current ramp or soak segment.
Lock:	Oper	
Default:	Ramp1	
PtRes:	HPM	
Range:	0- Ramp1	1-Soak1
	2-Ramp2	3-Soak2
	: ar	nd :
	20-Ramp11	21 -Soak11
	22-Ramp12	23-Soak12

CUTOFFLM (Totalizr)

Type:	Real	Zero-Flow Cutoff Limit—Allows the user to specify a cutoff limit such that
Lock:	Supr	when the value of input parameter P1 falls below the limit specified, its value is
Default:	0.0	replaced by 0.0.
PtRes:	HPM	
Range:	≥ 0.0 ,	
	NaN (Cutoff li	imit is not applicable)

CUTOFFLM (VdtLdLag)

Type:	Real	Zero-Flow/Belt-Speed Cutoff Limit—Allows the user to specify a cutoff limit
Lock:	Supr	for equations C and D.
Default:	NaN	
PtRes:	HPM	
Range:	≥ 0.0 ,	
-	NaN (Bypasses	the limit check)

CV

Type:	Real	Calculated Variable—The result (calculated value) of the calculation of the
Lock:	Prog	control algorithm. The value can be in percent or in engineering units depending
Default:	NaN	on the control algorithm.
PtRes:	HPM	
Range:	N/A	

CVEUHI

Type:

Real

Calculated Value's High Limit in Engineering Units

Lock:	Engr
Default:	100.0
	(GPM,
	PPH, etc.)
PtRes:	HPM
Range:	≥ CVEUL0

≥ CVEULO	
Helpful Hint:	CV ranges track X-input ranges if CTLALGID = AutoMan, ORSel, IncrSum,
	or Switch. For CTLALGID = PidErfb and RampSoak, CV ranges are
	configurable. For CTLALGID = Pid, Pidff, and RatioCtl, if NOCOPTS = 0,
	then the CV ranges are configurable, otherwise, the CV ranges track the ranges

CVEULO

Type:	Real	Calculated Value's Low Limit in Engineering Units
Lock:	Engr	
Default:	0.0 (GPM,	
	PPH, etc.)	
PtRes:	HPM	
Range:	≤ CVEUHI	
0	_	

of the secondary output connection.

Helpful Hint: Same as above for CVEUHI.

CYCLEOPT (RampSoak)

Type:	E:\$CYCLOPT	Ramp/Soak Cycle Option—Defines whether the ramp/soak cycle stops after
Lock:	Oper	a single cycle, or is continuous. For detailed information, refer to the HPM
Default:	Cyclic	Control Functions and Algorithms manual.
PtRes:	HPM	
Range:	0-Single (Stop after	completing one complete cycle)
-	1-Cyclic (Repeat co	mplete cycles over and over)

Helpful Hint: If Cyclic is entered, repeats complete ramp/soak cycles after Mode is changed from Man to Auto. If Single is entered, performs one ramp/soak cycle and then stops.

CYCLETIM

Type:	Real	PosProp Output Cycle Time in Seconds—Determines the rate at which raise or
Lock:	Supr	lower output pulses are going to be generated. PV - SP determines the width of
Default:	10.0 seconds	the output pulse.
PtRes:	HPM	

Range: 0.25 to 1000.0 seconds

CYCOVRO (FBus)

Type:RealLock:ViewDefault:0PtRes:IOP

Times Write Buffer Not Empty During Cycle-

Range: N/A

Overall Bias—Defines the overall bias used in calculating PVCALC.

D (Summer, VdtLdLag)

Type:RealLock:SuprDefault:0.0PtRes:HPMRange:N/A

D1 (VdtLdLag)

Type:RealFixed Deadtime in Minutes—Bias value for the variable time delay.Lock:SuprDefault:0.0 minutesPtRes:HPMRange:0.0 to 400.0 minutes

D1, D2 (DigComp, DevCtl)

ately indicates whether

D1_0 (DigComp, DevCtl)

Type:	E:\$PVSTATS	Digital Input 1 Equal to A PV State of 0—Defines the PV state that
Lock:	View	corresponds to input $D1 = Off$. $D1_0 =$ true only if INPTDIR = Direct and the
Default:	PVState0	field contact feeding D1 is open, or INPTDIR = Reverse and contact is cleared.
PtRes:	HPM	
Range:	0-PVState0 (STA	TETXT(0) describes $D1 = 0$)
	1-PVState1 (STA	TETXT(1) describes $D1 = 0$)

Helpful Hint: Applies only if NODINPTS = 1. D1_0 is always the opposite state of D1_1.

D1_1 (DigComp, DevCtl)

Type:	E:\$PVSTATS	Digital Input 1 Equals A PV State of 1-D1_1 defines the PV state that
Lock:	Eng/PB	corresponds to D1 (Input 1 status) = On. $D1_1$ = true only if INPTDIR =
Default:	PVState1	Direct and the field contact feeding D1 is closed, or INPDIR = Reverse and
PtRes:	HPM	contact is open.
Range:	0- PVState0 (STATETXT(0) describes D1 = 1)	
	1- PVState1 (STATETXT(1) describes D1 = 1)	

Helpful Hint: D1_1, Digital Input 1 Equal To A PV State Of 1, applies only if NODINPTS = 1. D1_1 is always the opposite state of D1_0 and vice versa.

D2 (VdtLdLag)

Type:	Real
Lock:	Supr
Default:	0.0
PtRes:	HPM
Range:	≥ 0.0

Bias for Input P2

D2D1_00 (DigComp, DevCtl)

Type:	E:\$PVSTATS	D2_D1 Zero_Zero PV State—Defines the PV state descriptor that is to be
Lock:	Eng/PB	used and displayed when inputs D2 and D1 are both Off (00).
Default:	MovPV	
PtRes:	HPM	
Range:	0-PVState0 (STA	ATETXT(0) descriptor)
-	1-PVState1 (STA	ATETXT(1) descriptor)
	2-BadPV (BADP	VTXT descriptor)
	3-MovPV (MOV	PVTXT descriptor)
	4-PVState2 (STA	ATETXT(2) descriptor)
		-

Helpful Hint:D2D1_00 configuration requires NODINPTS = 2. Option PVState2 cannot be
selected unless NOSTATES = 3. STATETXT(0-2) is configured for each
DigComp or DevCtl point; BADPVTXT and MOVPVTXT are configured
during Box Data Point configuration for all DigComp or DevCtl points in this
box.

D2D1_01 (DigComp, DevCtl)

E:\$PVSTATS D2D1 Zero_One PV State—Defines the PV state descriptor that is to be used and displayed when input D2 is Off and input D1 is On (01).

Default: PVState1

Type: Lock:

PtRes: HPM Range: 0-PVSt

0-PVState0 (STATETXT(0) descriptor)

- 1-PVState1 (STATETXT(1) descriptor)
- 2-BadPV (BADPVTXT descriptor)
- 3-MovPV (MOVPVTXT descriptor)
- 4-PVState2 (STATETXT(2) descriptor)

Helpful Hint:D2D1_01 configuration requires NODINPTS = 2. Option PVState2 cannot be
specified unless NOSTATES =3. STATETXT(0-2) is configured for each
DigComp or DevCtl tag name; BADPVTXT and MOVPVTXT are configured
during Box Data Point configuration for all DigComp or DevCtl points in the
box.

D2D1_10 (DigComp, DevCtl)

1-PVState1 (S ² 2-BadPV (BAI 3-MovPV (MC 4-PVState2 (S ²	rATETXT(0) descriptor)		
Range: 0-PVState0 (S ⁷ 1-PVState1 (S ⁷ 2-BadPV (BAI 3-MovPV (MC 4-PVState2 (S ⁷	rateTXT(0) descriptor)		
1-PVState1 (S ² 2-BadPV (BAI 3-MovPV (MC 4-PVState2 (S ²	rateTXT(0) descriptor)		
2-BadPV (BAI 3-MovPV (MC 4-PVState2 (S			
3- MovPV (MC 4- PVState2 (S	1- PVState1 (STATETXT(1) descriptor)		
4- PVState2 (S	2-BadPV (BADPVTXT descriptor)		
,	3-MovPV (MOVPVTXT descriptor)		
,	4- PVState2 (STATETXT(2) descriptor)		
Helpful Hint:			
	D2D1_10 configuration requires NODINPTS = 2. Option PVState2 cannot be specified unless NOSTATES = 3. STATETXT($0-2$) is configured for each		

D2D1_11 (DigComp, DevCtl)

box.

Type: Lock: Default:	E:\$PVSTATS Eng/PB BadPV	D2D1 One_One PV State —Defines the PV state descriptor that is to be used and displayed when inputs D2 and D1 are both On (11).	
PtRes:	HPM		
Range:	0- PVState0 (STATETXT(0) descriptor)		
	1- PVState1 (STATETXT(1) descriptor)		
	2-BadPV (BADPVTXT descriptor)		
	3-MovPV (MOVPVTXT descriptor)		
	4- PVState2 (STATETXT(2) descriptor)		
	Helpful Hint:	$D2D1_{11}$ configuration requires NODINPTS = 2. Option PVState2 cannot be specified unless NOSTATES = 3. STATETXT(0–2) is configured for each	
		DigComp or DevCtl point; BADPVTXT and MOVPVTXT are configured	
		during Box Data Point configuration for all DigComp or DevCtl points in the	
		box.	

DAMPING (STI)

Type: Real Lock: Supr/View Default: 0.0 PtRes: HPM

Damping—Defines the first-order PV filtering option for the smart transmitter. User can also implement PV filtering by using this parameter or the TF parameter; however, DAMPING is the preferred parameter. If DAMPING has been configured at the transmitter using the Universal Station, the STI IOP adjusts the entered value to one of the values in the range shown below for the appropriate transmitter type. For Multivariable transmitters with SENSRTYP = SFM the IOP will not adjust the damping value.

Any real number in the range of damping specified by the transmitter user manual can be used. It can be changed only when the STI point execution state PTEXECST is Inactive.

Range:

Transmitter Type			
Spt	Stt	Sfm	
0.0	0.0	0.0	
		0.0	
0.16	0.30	0.5	
0.32	0.70	1.0	
0.48	1.5	2.0	
1.00	3.10	3.0	
2.0	6.3	4.0	
4.0	12.7	5.0	
8.00	25.5	10.0	
16.0	51.1	50.0	
32.0	102.3	100	
NaN	NaN	NaN	

DATE (HPM Box)

Time Type: Lock: View Default: N/A PtRes: Range: N/A

Current Date/Time—Value of the LCN date in the HPM.

HPM

DAY (HPM Box)

Type: Integer Lock: View Default: N/A PtRes: HPM Range: 1 to 31

Current Day-Value of the LCN date in the HPM.

DB_VALID(1)-(40) (HPM Box)

Type:	E:\$DBVALID	Database Valid—Indicates if the database is valid. The IOP cannot be set to	
Lock:	Engr	RUN unless the database is valid.	
Default:	Invalid		
PtRes:	HPM		
Range:	Valid (Database is valid)		
	Invalid (Database is <u>not</u> valid)		

DEADBAND(1)-(24) (Logic)

Type:RealLock:SuprDefault:1.0PtRes:HPMRange: ≥ 0.0

Deadband Value—Defines the value of the deadband for the specified logic block within the logic slot.

Helpful Hint: DEADBAND requires LOGALGID = EQ, NE, GT, GE, LT, or LE.

DEADBAND (PosProp, PIDPosPr)

Type:	Real
Lock:	Supr
Default:	5.0%
PtRes:	HPM
Range:	0.0 to 100.0 %

Deadband in Percent of Full Scale—Defines the error deadband.

DEADTIME (PosProp, PIDPosPr)

Type:	Real	Deadtime (in seconds)—Additional pulse time required to overcome the friction
Lock:	Supr	in the motor when it begins to move or change direction. It is added to the
Default:	0.0	calculated pulse time except when the pulse that was issued in the last cycle time
PtRes:	HPM	was in the same direction (as the pulse this time), and the pulse width was equal
		to CYCLETIM.

Range: **0.0** to **60.0** seconds

DEBOUNCE (DigIn)

Type:IntegerContact Debounce Time in Milliseconds—The length of time an input mustLock:Engr/PBremain in a new state for it to be declared as a valid event by the DISOE IOP.Default:10 millisecondsRefer to the Absolute Delay Across parameter located in the Digital InputPtRes:HPMProcessor table of the HPM Specification and Technical Data.Range:0 to 50 milliseconds

DECONF (STI)

Type:	E:\$DECONF	Digitally Enhanced Configuration Mode—Defines the contents of the data that
Lock:	Eng/View	will be sent by the smart transmitter to the STI point.
Default:	Pv_Sv_Db	The use of Pv_Db and Pv_Sv_Db is recommended because they offer database
PtRes:	HPM	mismatch detection and on-process mismatch recovery.

This parameter can be changed only when the STI point execution state PTEXECST is Inactive.

Range: 0-Analog (Not Supported)

1-Pv (Transmits only the PV; 4-byte format)

2-Pv_Sv (Transmits the PV and the secondary variable (SV); 4-byte format)

3-**PV_Db** (Transmits the PV and the transmitter database; 6-byte format)

4-Pv_Sv_Db (Transmits the PV, SV, and the transmitter database; 6-byte format)

Helpful Hint: For the PV_Db and Pv_Sv_Db selections, one byte of the transmitter database is transmitted each time the PV is transmitted to the STI IOP.

DELCV (IncrSum)

Type:	Real	Delta CV in Engineering Units—Indicates the calculated change in the CV
Lock:	View	output value in engineering units.
Default:	N/A	
PtRes:	HPM	
Range:	N/A	

DELCV (Pid)

Real
View
N/A
HPM
N/A

Delta CV in Percent—Indicates the calculated change in the CV output value in percent.

DEV (RegCtl)

Type:	Real
Lock:	View
Default:	N/A
PtRes:	HPM
Range:	N/A

Deviation-Indicates the deviation (PV - SP) in engineering units.

DEVADDR (Array)

Type:	Real
Lock:	PtBld
Default:	NaN
PtRes:	HPM
Range:	N/A

Serial Link Device Address—Indicates the serial link address of the device containing data.

Deviation High Alarm Flag—Indicates whether the DEVHITP has been

DEVHIFL (RegCtl)

exceeded.

Type: Logical Lock: View Default: Off PtRes: HPM Off (No DEVHI alarm) Range: **On** (DEVHITP has been exceeded)

DEVHIPR (RegCtl)

Type: **E:ALPRIOR** Deviation High Alarm Priority-Defines the priority of the deviation high Lock: Engr alarm. Default: Low

PtRes: NIM

Range:

JnlPrint (Alarm is historized and reported to the printer but not annunciated) Printer (Alarm is reported to the printer but not historized and not annunciated) Emergncy (Alarm is historized, annunciated, and reported to all alarm summary displays) High (Alarm is historized, reported to Area Alarm Summary Display and Unit Alarm Summary Display)

Low (Alarm is historized, reported to the Unit Alarm Summary Display, and annunciated) Journal (Alarm is historized but not reported to Universal Stations and not annunciated) NoAction (Alarm is not reported to the system and not annunciated)

DEVHITP (RegCtl)

Deviation High Alarm Trip Point—Defines the upper limit for the deviation.

Type:	Real
Lock:	Supr
Default:	NaN
PtRes:	HPM
Range:	≥ 0.0

0.0, NaN

> Alarm occurs when the PV is higher than SP + DEVHITP Helpful Hint:

DEVLOFL (RegCtl)

Type:	Logical	Deviation Low Alarm Flag—Indicates whether the DEVLOTP has been	
Lock:	View	exceeded.	
Default:	Off		
PtRes:	HPM		
Range:	Off (DEVLOTP has not been exceeded)		
	On (DEVLOTP	has been exceeded)	

DEVLOPR (RegCtl)

Type: **E:ALPRIOR Deviation Low Alarm Priority**—Defines the priority of the deviation low alarm.

Lock: Engr

Default: Low

PtRes: NIM

Range: JnlPrint (Alarm is historized and reported to the printer but not annunciated)
 Printer (Alarm is reported to the printer but not historized and not annunciated)
 Emergncy (Alarm is historized, annunciated, and reported to all alarm summary displays)
 High (Alarm is historized, reported to Area Alarm Summary Display and Unit Alarm Summary Display)

Low (Alarm is historized, reported to the Unit Alarm Summary Display, and annunciated) Journal (Alarm is historized but not reported to Universal Stations and not annunciated) NoAction (Alarm is not reported to the system and not annunciated)

DEVLOTP (RegCtl)

Type:RealLock:SuprDefault:NaNPtRes:HPMRange: \geq 0.0,NaN

Deviation Low Alarm Trip Point—Defines the lower limit for the deviation.

Helpful Hint: Alarm occurs when the PV is lower than SP - DEVLOTP.

DHTIMMAX(1) - (5) (NIM PSDP)

Type:	Real
Lock:	View
Default:	0
PtRes:	NIM
Range:	N/A

Maximum Time to Complete a Data Handler Request—Specifies the maximum time to complete a Data Handler request in msec.

DIAGCMD (ProcMod)

Helpful Hint: DIAGCMD resets the ProcMod overrun statistics and AVGPU and MAXPU values.

DISP_SIM (HPM Box)

Type: Logical

Simulation Indicator Display Switch—see also SIM_TXT

- Lock: Prog
- Default: On
- PtRes: HPMM

Range: Off (Simulation indicator is not required to be displayed On (Simulation indicator is required to be displayed

DISRC(1)-(2) (DigComp, DevCtl)

Type:	Universal	Digital Composite and Device Control Input-Connection Source—Specify the	
	Ent.Prm	sources whose values are to be fetched and delivered to Digital Composite data	
Lock:	PtBld	point inputs D1 and D2. The source can be specified using the	
Default:	null.null	"Tagname.Parameter" format or the hardware reference address format. Refer to	
PtRes:	HPM	the HPM Control Functions and Algorithms manual for a detailed description.	

Range: Use Tagname.Parameter format for tagged points where Tagname can be up to 16 characters and the permissible character set is as follows:

Alphabetics A-Z (uppercase only)

Numerics 0-9 (an all numeric tag name is not allowed)

Underscore (_) cannot be used as the first character or the last character, and consecutive underscores are not allowed.

Embedded space characters are not allowed.

An * is used to default to this point's tag name.

Parameter name can be up to eight characters, and must be a legitimate parameter name.

Some possible input-connection sources are

a."DigIn slot Tagname.PVFL"

- b."DigOut slot Tagname.SO"
- c."Logic slot Tagname.SO(nn)" where nn = 1-24
- d."Logic slot Tagname.Fl(nn)" where nn = 1-12
- e."ProcMod slot Tagname.Fl(nnn)" where nnn = 1-127
- f."Box Flag slot Tagname.PVFL
- g."!Box.FL(nnnn)" for a box flag that resides in the same box; nnnn = 1-16,384
- h."\$NMhhBxx.FL(nnnn)" for a box flag that resides in a different HPM box on the same UCN; hh is the NIM UCN address, xx is the HPM box number, and nnnn = 1–4095

Use the hardware reference address !MTmmSss.Parameter for untagged or tagged points where

- MT is the IOP type, such as DI (Digital Input)
- mm is the IOP Card number (1-40)
- The letter "S" is a constant
- ss is the slot number on the IOP Card (refer to SLOTNUM parameter)

Parameter name can be up-to-eight characters and must be a legitimate parameter name.

DITYPE

E:SDITYPE Digital Input Type—Defines the type of digital input point.

Lock: PtBld Default: Status

Type:

- PtRes: HPM Range: 0-Stat
 - e: 0-Status (Point is to be used for alarming and event reporting)
 - 1-Latched (Point is to be used for event reporting)

2-Accum (Point is to be used for accumulating pulses)

DLYTIME (DigIn)

Type: Lock: Default: PtRes:	Integer Supr 5 seconds HPM	Delay Time —For an off-normal alarm, defines the time (in seconds) that a point with a previously detected alarm condition is guaranteed to remain in alarm, even if the condition clears. If an alarm condition exists when the delay timer expires, the point is held in alarm.
Range:	0 to 60 seconds	For a change of state (COS) alarm, if the PV is in the same state when the delay timer expires, future state changes are immediately alarmed. If the PV is in the opposite state, a second COS alarm is produced and the delay timer is restarted.

DLYTIME(1)-(24) (Logic)

Type:	Real	Alarm Delay in Seconds for Logic Block
Lock:	Supr	
Default:	1 second	
PtRes:	HPM	
Range:	1-8000 seconds	
0		

Helpful Hint: DLYTIME requires LOGALGID = Pulse, MinPulse, MaxPulse, OnDelay, OffDelay, or Watchdog.

DODSTN(1)-(3) (DigComp, DevCtl)

	• •		
Type:	Universal	Digital Composite and Device Control Output-Connection Destination—	
	Ent.Prm	Specifies up to three output connection destinations that are to receive the OP	
Lock:	PtBld	output from this point. The destination can be specified using the	
Default:	null.null	"Tagname.Parameter" format or the hardware reference address format. Refer to	
PtRes:	HPM	the HPM Control Functions and Algorithms manual for a detailed description.	
Range:		Parameter for tagged points where Tagname can be up to 16 characters and the	
-	permissible cha	aracter set is as follows:	
	Alphab	etics A-Z (uppercase only)	
	Numeri	ics 0-9 (an all numeric tag name is not allowed)	
		core (_) cannot be used as the first character or the last character, and consecutive rscores are not allowed.	
		ded space characters are not allowed.	
		used to default to this point's tag name.	
		there have been been been been been been been be	
	raiaine	ter name can be up to eight characters, and must be a regitimate parameter name.	
	Some possible output-connection destinations are		
	a."DigOut slot tagname.ONPULSE or OFFPULSE"		
	b."DigOut slot Tagname.SO"		
	c."Logic slot Tagname.Fl(nn)" where $nn = 7-12$		
	d."ProcMod Tagname.Fl(nnn)" where $nnn = 1-127$		
		slot Tagname.PVFL	
		.FL(nnnn)" for a box flag that resides in the same HPM box; nnnn = 1–16,384.	
		IhhBxx.FL(nnnn)" for a box flag that resides in a different HPM box on the same	
		; hh is the NIM UCN address, xx is the HPM box number, and	
		= 1–4095.	
	Use the hardware	e reference address !MTmmSss.Parameter for untagged or tagged points where	
	MT is t	the IOP type, such as DO (Digital Output)	
		the IOP Card number (1–40)	

The letter "S" is a constant.

ss is the slot number on the IOP Card (refer to SLOTNUM parameter)

Parameter name can be up to eight characters and must be a legitimate parameter name.

DOTYPE (DigOut)

 Type:
 E:\$DOTYPE
 Digital Output Type—Determines the type of digital output point.

 Lock:
 PtBld

 Default:
 Status

 PtRes:
 HPM

 Range:
 0-Status (Status output type)

 1-Pwm (Pulse Width Modulated output type)

DSA

Type:	Integer	Device Soft Address—The logical address of an IOP: 1-40 for primary IOPs
Lock:	View	and 129 - 168 for secondary IOPs.
Default:	N/A	
PtRes:	HPM	
P	4 40 0	TOD

Range: 1 - 40 for primary IOPs 129 - 168 for secondary IOPs

EIPPCODE

Ent Id Event-Initiated Processing Point Identifier—Defines the tag name of the point in Type: Lock: Engr the AM or CM that is to be notified when an event is detected by this point. Default: Null PtRes: NIM Range: Tag name of the data point can be up to 16 characters and the permissible character set is as follows: Alphabetics A-Z (uppercase only) Numerics 0-9 (an all numeric tag name is not allowed) Underscore (_) cannot be used as the first character or the last character, and consecutive underscores are not allowed. Embedded space characters are not allowed.

Helpful Hint: EIPPCODE configuration requires PNTTYPE = DigIn, DigComp, Logic, Flag or DevCtl and EVTOPT = Eip or Eip_Soe. For HPM Box Flag points, this parameter applies only to slots 1 through 128.

EQUOBJNM

Type:	String
Lock:	View
Default:	Blank
PtRes:	HPM
Range:	N/A

Equipment List Object Name—Specifies the Equipment List Object Name (CL object header)

ERRCODE (Array)

String_8
View
Spaces
HPM

Serial Interface/Serial Link Communication Error Code—When the BADPVFL parameter = ON, this parameter provides additional information if initialized by the serial interface FTA driver program.

SI Array Point Error Code Values

<u>HPM</u>

HPM Idle—When the HPMM status is IDLE, Array point configuration may or may not be loaded to the SI IOP.

Iop Comm—When the HPMM status is RUN, Array point configuration is NOT loaded to the SI IOP.

<u>SI IOP</u>

No_FTA—Appears when the power adapter panel is not connected to the IOP. **FTA_Comm**—Appears when the corresponding FTA is not connected to the power adapter panel, or when communication between the IOP and FTA has failed.

CFG_Load—Appears when configuration data is downloaded to the FTA. **Mod_Idle**—Appears when configuration data is downloaded to the FTA and the IOP is in IDLE mode, or when the IOP operating state is switched from RUN to IDLE.

SI IOP FTA Common

Dev Addr—The device address has a configuration error
Data Type—The data type has a configuration error
Startidx—The start index has a configuration error
Elemnt—A number of elements configuration error has occurred
Config—An application-specific configuration error has occurred
Inv Resp—An invalid field device response has occurred
Parity, Checksum, MsgTmout, ChrTmout—A field device communication error has occurred
Ex or xx—An exception or other field device error has occurred. The "xx" error code is specific to the field device
Fac Test—A factory test is in progress
OK—No errors exist

Range: N/A

ESWAUTO (RegCtl)

Type:	Logical
Lock:	Prog
Default:	Off
PtRes:	HPM
Range:	Off
	On

External Switching Flag for Automatic Mode—When On, means that this point's operating mode has been switched from some mode other than automatic to the automatic mode by an external source.

ESWCAS (RegCtl)

ogical
rog
ff
PM
ff
n

Eternal Switching Flag for Cascade Mode—When On, means that this point's operating mode has been switched from some mode other than cascade to cascade mode, by an external source.

ESWENBST (RegCtl)

E:ENBLSTAT	External Mode Switching Enable State—Defines whether external mode	
Oper	switching is permitted for this point.	
Disable		
HPM		
0-Disable (Does not allow external switching of point's mode)		
1-Enable (Allows external switching of point's mode)		
	Oper Disable HPM 0-Disable (Does n	

Helpful Hint: ESWENBST cannot be changed if parameter SHUTDOWN is On or if parameter REDTAG is On.

ESWMAN (RegCtl)

Type:	Logical
Lock:	Prog
Default:	Off
PtRes:	HPM
Range:	Off
0	On

External Switching Flag for Manual Mode—When On, means that this point's operating mode has been switched from some mode other than the manual mode to the manual mode by an external source.

EUDESC

Type:	String_8	Engineering Units Descriptor—An eight-character descriptor that defines the
Lock:	PtBld	name of the engineering units (EU) that are displayed on the Group and Detail
Default:	Blank	Displays for this point as shown in Figure N-1 (see NAME). In this figure,
PtRes:	NIM	LBS/SEC is the engineering unit descriptor.

<sup>Range: Permissible character set consists of all characters on the Engineer's Keyboard. Basically this set consists of alphabetics A-Z, numerics 0-9, and the following special characters: space ! % & '
() * + - / :; > < = ? _ , . \$</sup>

EUNDESC (1)-(168)

Range: nn = 1-40 specifies one of the 40 acting primaries. nn = 129-168 specifies one of the 40 acting secondaries.

EVRCINPG

Type:	Logical	NIM Event Recovery in Progress Flag
Lock:	View	
Default:		
PtRes:	HPM	
Range:	Off	
Ū.	On	

EVTOPT (DigComp)

 Type:
 E:\$EVTOPT
 Event Reporting Option—If EVTOPT = Eip and the PV changes or a PV alarm

 Lock:
 PtBld
 is generated, the AM or CM data point named EIPPCODE is notified and a

 Default:
 None
 "process special" on that data point takes place.

 PtRes:
 HPM

 Range:
 0-None (Event-Initiated Processing is not allowed)

 1-Eip (Process special is triggered in AM/CM)

Helpful Hint: EVTOPT configuration requires NODINPTS > 0.

EVTOPT (DevCtl, DigIn)

Type:E:\$EVTOPTLock:PtBldDefault:NonePtRes:HPMEvent Reporting Option—If EVTOPT = Eip and the PV changes, the AM or
CM data point named EIPPCODE is notified and a "process special" on that
data takes place. If EVTOPT = Soe and a PV change occurs, Sequence Of
Events Processing is notified. If EVTOPT = EipSoe, the actions in both
apply.

Range: 0-None (Neither Eip nor Soe is allowed)

- 1-Eip (Process special is triggered in AM/CM)
- 2-**Eip_Soe** (Eip and Soe are both allowed)

3-Soe (Point notifies Sequence of Events Processing)

Helpful Hint: EVTOPT configuration requires DITYPE = Status or Latched. If DITYPE = Latched, EVTOPT cannot = EIPSOE or SOE.

EXTDATA (Array)

Type:	E:\$EXTDATA	External Data Option-Indicates if either the Array point flags, numerics, or
Lock:	PtBld	strings are mapped from a serial interface.
Default:	None	
PtRes:	HPM	
Range:	None (None of th	e flags, numerics, or strings are mapped from a serial interface)
	IO_FL (IO flags a	re mapped from a serial interface)
	IO_NN (IO nume	rics are mapped from a serial interface)
	IO_STR (IO strin	gs are mapped from a serial interface)
	UCN_FL (Reserv	ed for future use)
	UCN_NN (Reserv	red for future use)
	UCN_STR (Reserved)	rved for future use)

Helpful Hint: You can map either flags, numerics, or strings from the Serial Interface to a single Array point.

EXTSWOPT

Type:	E:EXTSWOPT
Lock:	Eng/PB
Default:	None
PtRes:	HPM

External Mode Switching Option—External mode switching is typically used to establish mode interlocks, or under certain process conditions, to restrict the use of a mode that invokes a higher level of control. Refer to the *HPM Control Functions and Algorithms* manual for a detailed description of external mode switching.

Range: 0-None (No external mode switching is allowed)

1-Ems (External source can change point's mode)

2-Emp (Not implemented)

F (FlowComp)

Type:	Real
Lock:	View
Default:	NaN
PtRes:	HPM
Range:	N/A

Flow Input—Indicates the value of the uncompensated flow input. This input is a square-rooted, differential pressure input.

FAILCODE

Type:E:\$IOMHFLock:ViewDefault:N/APtRes:IOP

I/O Processor Hard Fail Status—

0-Unknown (Unknown status) Range: 1-PowerDwn(This IOP Powered Down) 2-InvPrgEx(Invalid Program Execution) 3-EpromErr(EPROM Checksum Error) 4-RamCntEr(RAM Contents Error) 5-RamAdrEr(RAM Addressing Error) 6-**DpaError**(Device Physical Address Error) 7-DsaError(Device Soft Address Error) 8-RxBufOfl(I/O Link Receive Buffer Overflow) 9-**IOLJaber**(I/O Link Jaber Circuit Failure) 10-11-BadPgJmp(Illegal Value of Case Control) 12-AdCIncmp(A to D Conversion Incomplete) 13-AdOutOvf(A to D Output Value Overflow) 14-AdOutUdf(A to D Output is less than Zero) 15-AdCCalEr(A to D Calibration is incorrect) 16-BadDcLtc(Bad DC LTC) 17-**Dmt Tmot**(Dead Man Timer Timeout) 18-MLtOutFl(Multiple Output Failure) 20-BadDaRng(Bad D to A Range) 21-MstrTmot(Master 68K Timeout)

FAILOPT(1)-(168) (IOP)

Type:E:FAILOPTLock:Eng/PBDefault:UnpowerPtRes:HPM

Failure Option for Outputs—Defines the state which an AO or DO IOP goes into if the IOP itself, or the HPMM fails. If the IOP failure is due to power loss, outputs go to unpowered regardless of the FAILOPT value. When power is restored to the module, outputs are reset regardless of the FAILOPT values.

Range: 0-Hold (Hold output at last good value) 1-Unpower (Remove power from the output)

FBTIME (DevCtl, DigComp)

	•	
Type:	Integer	Feedback Time—Sets the amount of time (in seconds) that the point should wait
Lock:	Supr if	before generating a "command disagree" alarm after the operator has issued a
	CMDFALTM	start/stop-type command to a field device.
	is changed from	
	a non-zero value	2
	to a zero value,	
	else Eng/PB	
Default:	0	
PtRes:	HPM	
Range:	0 to 1000 secon	ds (0 indicates that command disagree alarming is disabled)
	Helpful Hint:	FBTIME can be increased to compensate for a slow-responding field device
	10	that does not respond to the operator's command in time to prevent a

FF (PidFf)

Type:	Real	Feed Forward Algorithm Input—FF is the feedforward input signal value that is
Lock:	View	added to (FFOPT = Add) or multiplied by (FFOPT = Multiply) the PidFf
Default:	N/A	algorithm's incremental output, before the full-value output is accumulated. FF
PtRes:	HPM	is normally a parameter with a percentage value.
Range:	N/A	

command-disagree alarm.

FFOPT (PidFf)

 Type:
 E:FFOPT
 Feed Forward Type—Determines whether a PidFf algorithm's feedforward input signal (FF) is added to or multiplied by the incremental output, before the full-Default:

 Multiply
 value output is accumulated.

 PtRes:
 HPM

 Range:
 0-Add (Scaled Feedforward + Feedback)

 1-Multiply (Feedback x Scaled, Biased Feedforward)

FL(i) (Array)

Type:	Logical	Array Point Flag Variables—The flags are mapped from either the HPM
Lock:	Determined by	box (defined by FLSTIX and NFLAG parameters), or from a serial interface
	SPLOCK	IOP-connected device (when EXTDATA=IO_FL, mapping is defined by
	parameter	IOPNUM, FTANUM, DEVADDR, FLSTIX, and NFLAG parameters).
Default:	N/A	
PtRes:	HPM	
Range:	1 ≤ i ≤ Array parameter NFLAG	

FL(1)-(12) (DevCtl, Logic)

Type:	Logical	Logic Slot Flags —Twelve flags, FL(1) to FL(12), are provided for each logic
Lock:	View; FL1-FL5	slot. The states of flags $FL(1)$ to $FL(6)$ are controlled by the HPM and cannot
	Prog; FL6	be changed by the user. FL(7)-FL(12) are assigned by the user for controlling
	Oper; FL7-	the path of the logic in the respective logic slot. Refer to the HPM Control
	FL12	Functions and Algorithms manual for a detailed description
Default:	FL2 = On,	
	rest = Off	These flags are local to the logic slot and are different than the 127 flags
PtRes:	HPM	provided with each process module, and the 1023 flags provided in each HPM
		box.
Range:	Off (Flag is off)	
	On (Flag is set)	

FL(1)-(127) (ProcMod)

Type:	Logical	Lo
Lock:	Determined	car
	by SPLOCK	pro
	parameter	pro
Default:	Off	-
PtRes:	HPM	
Range:	Off (Flag is off)	
5	On (Flag is set)	

Local Flag Variables—Each process module in the HPM has 127 local flags that can be used for implementing batch operations. These flags are local to the process module and are different than the 12 logic-slot flags, and the 1023 flags provided in each HPM box.

FL(1)-(16,384) (HPM Box)

Type:	Logical
Lock:	Oper
Default:	Off
PtRes:	HPM

Box Flag Variables—Each HPM box has a set of 16,384 local flag variables that can be used by process modules in this HPM to implement batch operations. The first 2047 box flags are taggable. These flags are local to the HPM box and are different than the 12 logic-slot flags, and the 127 flags provided in each process module. The LCN index limit is 4095; there is no index limit for the UCN. Array points can be used to address flags with an index greater than 4095.

Range: Off (Flag is off) On (Flag is set)

Helpful Hint: For the first 128 flags, the On state is alarmed.

FLDESC (Array)

Type:	String_64	FL Array Descriptor—Describes FL data for the Array point.
Lock:	PtBld	
Default:	Spaces	
PtRes:	HPM	
Range:	N/A	

FLSTIX (Array)

Type:	Real	Flag Array Start Index—Defines the flag array start index in Box FL variables or
Lock:	PtBld	serial interface-connected devices.
Default:	0.0	
PtRes:	HPM	
Range:	0 to 99,999 (WI	nen EXTDATA = IO_FL, 0 can be a valid device index)
0	0 to 16,384 (W	nen EXTDATA \neq IO_FL, 0 indicates that no flags are configured)

FORCE (HiLoAvg)

Type:	Logical	Forced Input Request Flag—Defines whether the operator, a user-written
Lock:	Oper	program, or an input connection has requested that an input be used as the forced
Default:	Off	input for this algorithm.
PtRes:	HPM	
Range:	Off (No request	t to force an input)
	On (Request ha	s been made to force an input)
	· •	• · · ·

Helpful Hint: FORCE change requires FRCPERM = On.

FRCPERM (HiLoAvg)

Type:	Logical	Forced Input Permissive—Defines whether an operator or a user-written program
Lock:	Eng/PB	can force-select an input. FRCPERM must be On before the operator or a
Default:	Off	program can select an input to be used as a forced input to this algorithm.
PtRes:	HPM	
Range:	Off (Forced-selection function is disabled)	
0	On (Forced- selection function is enabled)	

FREQ6050(1)-(168)

Type:	E:FRQ6050
Lock:	Eng/PB
Default:	60Hz
PtRes:	HPM
Range:	0-60 Hz
	1-50 Hz

Frequency 60/50Hz—Defines the 60/50 Hz frequency configuration needed for a Low Level AI Mux or STI Temperature Transmitter. For the STI, if a mismatch occurs between this parameter and the transmitter's internal 60 Hz/50 Hz frequency parameter, a database download from the STI IOP to the transmitter will clear this condition.

FRQUTAVG (NIM, HPM Box)

Type:	Real
Lock:	View
Default:	NaN
PtRes:	HPM
Range:	N/A

Average UCN Fetch Request Trip Time—The average time in milliseconds it takes to receive a response to this node's UCN fetch requests.

Helpful Hint: This statistic can be viewed on the Toolkit Displays.

FRQUTMAX (NIM, HPM Box)

Type:	Real
Lock:	View
Default:	NaN
PtRes:	HPM
Range:	N/A

Maximum UCN Fetch Request Trip Time—The maximum time in milliseconds it takes to receive a response to this node's UCN fetch requests.

Helpful Hint: This statistic can be viewed on the Toolkit Displays.

FRSPTAVG (NIM, HPM Box)

Type:RealLock:ViewDefault:NaNPtRes:HPMRange:N/A

Average UCN Fetch Response Trip Time—The average time in milliseconds for this node to respond to fetch requests from other UCN nodes.

Helpful Hint: This statistic can be viewed on the Toolkit Displays.

FRSPTMAX (NIM, HPM Box)

Type:	Real	Ma
Lock:	View	mil
Default:	NaN	
PtRes:	HPM	
Range:	N/A	

Maximum UCN Fetch Response Trip Time—The maximum time in milliseconds for this node to respond to fetch requests from other UCN nodes.

Helpful Hint: This statistic can be viewed on the Toolkit Displays.

FSELIN (HiLoAvg)

	•	•/	
Type:	E:PINP	Force Selected Input—Defines the one of six inputs to be used as the forced	
Lock:	Oper/PB	input to this algorithm.	
Default:	SelectP1		
PtRes:	HPM		
Range:	1-SelectP1 (Input P1 is the forced input)		
	2-SelectP2 (In	put P2 is the forced input)	
	3-SelectP3 (Input P3 is the forced input)		
	4-SelectP4 (Input P4 is the forced input)		
	5-SelectP5 (Input P5 is the forced input)		
	6-SelectP6 (In	put P6 is the forced input)	
	Helpful Hint:	FSELIN change by an operator requires FRCPERM = On.	

FSTS (FlowComp)

 Type:
 E:PVVALST
 Flow Input Value Status—Indicates the current status of flow input F.

 Lock:
 View

 Default:
 Bad

 PtRes:
 HPM

 Range:
 0-Bad (Value is bad and replaced with NaN)

 1-Uncertn (Status of the value is uncertain)

 2-Normal (Value is good)

FTA1TYPE, FTA2TYPE (HPM Box)

Type:	E:\$FTATYPE
Lock:	View
Default:	None
PtRes:	HPM
Range:	0-None
	1- TC
	2- RTD

Type of FTA Connected to the LLMUX IOP or RHMUX IOP—The FTA type applies to both FTA positions (1 and 2). The FTA supplies 16 points per FTA for a total of 32 points.

FTACONN(1)-(168) (HPM Box)

Type:E:\$FTACONFTA connection to I/O module file. Indicates which FTA connector is connectedLock:Viewto this module. It is primarily used with the diagnostic displays.Default:CONN_Ann = 1-40 specifies FTA connection for one of the 40 acting primaries. nn =PtRes:HPM129-168 specifies FTA connection for one of the 40 acting secondaries.Range:0-CONN_A (Module is connected to FTA connector A)1-CONN_B (Module is connected to FTA connector B)

FTANUM (Array)

Type:	Integer	IOP FTA Number —Indicates the FTA number of the serial interface IOP.
Lock:	PtBld	
Default:	1	
PtRes:	HPM	
Range:	1 to 10	
-		

Helpful Hint: Only FTA Numbers 1 and 2 are presently applicable.

FTAPRES(1)-(168)

IOP FTA Present Flag—For primary and secondary IOPs.

Type: Logical Lock: View Default: PtRes: HPM Range: Off (FT

: Off (FTA Missing) On (FTA Present)

G (FlowComp)

Type:RealLock:ViewDefault:1.0PtRes:HPMRange:N/A

Specific Gravity Input—Indicates the value of the measured or calculated specific gravity or molecular weight.

GAINOPT (Pid)

Type:	E:GAINOPT Gain (K) Option	
Lock:	Eng/PB	
Default:	Lin	
PtRes:	HPM	
Range:	0-Lin (Applies linear gain, with overall gain $(K) = KLI$	N)
Ũ		ŕ

1-Gap (Reduces the sensitivity of control action when the PV is within a narrow band around the setpoint. If the PV is outside the gap, overall gain (K) = KLIN. If (SP - GAPLO) < PV < (SP + GAPHI), K = KLIN times KGAP)

2-**Nonlin** (Makes control action proportional to the error (PV - SP) squared with overall gain (K) =KLIN times KNL, where KNL = NLFM plus (NLGAIN times PV - SP)/100)

3-**Ext** (Applies external gain. Overall gain (K) = KLIN times KEXT, where KEXT is the positive external gain modifier)

GAPHI (Pid)

Type:	Real
Lock:	Supr
Default:	0.0
PtRes:	HPM
Range:	≥ 0.0

Gap High Limit—Defines the upper limit of the gap in the same engineering units as the PV.

GAPLO (Pid)

Type:	Real
Lock:	Supr
Default:	0.0
PtRes:	HPM
Range:	≥ 0.0

Gap Low Limit—Defines the bottom limit of the gap in the same engineering units as the PV.

GENDESC (1)–(12)

Type:	String_8
Lock:	PtBld
Default:	Blanks
PtRes:	NIM

Generic Descriptors—Define up to 12 generic descriptors that can be assigned to logic-slot parameters. As an example, six descriptors could be assigned to six logic-slot inputs, two descriptors to the logic block flags which will describe the current state of the logic slot based on the inputs, and two descriptors to the SO outputs from the logic slot. Refer to the description of the PRMDESC parameter, and to the *HPM Control Functions and Algorithms* manual for a detailed description.

Range: Permissible character set for the eight-character generic descriptors consists of all characters on the Engineer's Keyboard. Basically this set consists of alphabetics A-Z, numerics 0-9, and the following special characters: space ! "% & '() * + - / : ; > < = ? _ , . \$</p>

Helpful Hint: Example: GENDESC(7) is the descriptor for parameter PRMDESC(7), etc.

GENDESC(nn)

Type:	String_72	Generic Descriptor—Used as additional display text to help the operator
Lock:	View	diagnose potential problems with the IOP. It is primarily used with
Default:	Blanks	diagnostic displays.
PtRes:	HPM	nn = 1-40 specifies one of the 40 acting primaries.
		nn = 129 - 168 specifies one of the 40 acting secondaries.

GISRC(1-4) (RegCtl, RegPV)

Type:	
Lock:	
Default:	
PtRes:	HPM
Range:	

General Input Source—Specifies the Tag.Parameter source of General Input Connection.

GIDSTN(1—4) (RegCtl, RegPV)

Type: Lock: Default: PtRes: **HPM** Range: **Parameter Destination General Input Connection**—Specifies the RegPV/RegCtl parameter destination of the General Input Connection

GIENBL(1—4) (RegCtl, RegPV)

Type: Lock: Default: PtRes: **HPM** Range: General Input Connection Enable Flag—

GOSRC(1-4) (RegCtl, RegPV)

Type: Lock: Default: PtRes: **HPM** Range: **Parameter Source of General Output Connection**—Specifies the RegPV/RegCtl parameter source of the General Output Connection

GODSTN(1-4) (RegCtl, RegPV)

Type: Lock: Default: PtRes: **HPM** Range: **Parameter Destination General Output Connection**—Specifies the Tag.parameter destination of the General Output Connection

GOENBL(1-4) (RegCtl, RegPV)

General Output Connection Enable Flag-

Type: Lock: Default: PtRes: **HPM** Range:

GSTS

 Type:
 E:PVVALST
 Gravity Input Value Status—Indicates the status of the gravity input value.

 Lock:
 View

 Default:
 Normal

 PtRes:
 HPM

 Range:
 0-Bad (Value is bad and replaced with NaN)

 1-Uncertn (Status of the value is uncertain)
 2-Normal (Value is good)

HIGHAL (AnalgIn, RegCtl, RegPV)

Type:E:ALMTYPEHighest Alarm Detected—Indicates the highest alarm currently detected at the
data point. This parameter is used by the system to ensure that when two or
more different types of alarms occur on a point at the same time, the most
important or highest level alarm appears on the point's Group, Detail, and
Alarm Summary displays. For example, if both the PV High High and PV
High alarm priorities are set to Emergency, and both are in alarm, HIGHAL
contains the PVHH value.

Range:NoAlarm (No alarm exists—lowest level alarm)
AdvDev (Advisory Deviation)
DevHi (Deviation High)
DevLo (Deviation Low)
PVRocN (PV Rate Of Change Negative)
PVRocP (PV Rate Of Change Positive)
PVHi (PV High)
PVHH (PV High High)
PVLD (PV Low)
PVLL (PV Low Low)
BadCtt (Bad Control)
BadPV (Bad PV—highest level alarm)
BOC (Bad Output alarm)

HIGHAL (DevCtl, DigComp, DigIn, Flag, Logic)

Type: Lock: Default: PtRes:	E:ALMTYPE View NoAlarm NIM	Highest Alarm Detected —Indicates the highest alarm currently detected at the data point. This parameter is used by the system to ensure that when two or more different types of alarms occur on a point at the same time, the most important or highest level alarm appears on the point's Group, Detail, and Alarm Summary displays.
Range:	NoAlarm (No alar	m has been detected)
Ũ	OffNorm (Curren	at PV state is not the configured PVNORMAL state. For a flag point, the STATE1) is the alarmed state.)
		in event was detected. Does not apply to a flag point.)
		nd Disagree; field device did not respond to commanded output state. Does not
	apply to a flag po	
	BadPV (PV is bad	,
	C1 - C4ALM (1 to 4 custom logic alarms)	
	Chngofst (State has changed)	
	Cmdfail (PV failed to change after OP changed)	
	SVHI (SECVAR>SVHITP)	
	SVHH (SECVAR>SVHHTP)	
	BadSV (SECVAR is Bad)	
	OVRDI2 (Override Interlock I2)	
	OVRDI1 (Override Interlock I1)	
	OVRDI0 (Overrid	,
		v Override Interlock)
	BadCtl (Bad Cont	trol) (DevCtl and DigComp only)

HIGHALPR (AnalgIn, RegCtl, RegPV)

Type:E:ALPRIORHighest Level Alarm's Priority—Defines the priority of the highest alarm
currently detected at the data point. Associated with HIGHAL.Default:NoActionPtRes:NIMRange:Emergncy (Alarm is historized, annunciated, and reported to all alarm summary displays)

Emergncy (Alarm is historized, annunciated, and reported to all alarm summary displays)
 High (Alarm is historized, reported to Area Alarm Summary Display and Unit Alarm Summary Display)

Low (Alarm is historized, reported to the Unit Alarm Summary Display, and annunciated) JnlPrint (Alarm is historized and reported to the printer but not annunciated) Printer (Alarm is reported to the printer but not historized and not annunciated) Journal (Alarm is historized but not reported to Universal Stations and not annunciated) NoAction (Alarm is not reported to the system and not annunciated)

HISVPEAK (DevCtl)

Type:	Real	Highest Peak SECVAR Value—The highest peak value of the SECVAR
Lock:	View	parameter since the most recent reset of maintenance statistics.
Default:	0.0	
PtRes:	HPM	
Range:	≥ 0	

HLCALIB(1)-(168)

 Type:
 Logical
 HLAI in Calibration Flag—Shows which HLAIs are presently in calibration

 Lock:
 Eng/Pb

 Default:
 PtRes:

 PtRes:
 HPM

 Range:
 Off - Calibration is not in progress

 On - Calibration is in progress

HOLDCMD (RampSoak)

Hold Command Flag—If On, allows users to hold the ramp or soak segment at its current position to customize the guaranteed ramp and soak function.

Type:LogicalLock:ProgDefault:OffPtRes:HPMRange:OffOn

HOUR (HPM Box)

Type:IntegerLock:ViewDefault:N/APtRes:HPMRange:0 to 23

Current Hour—The value of the LCN time in the HPM.

Only full array access is supported.

HWYCTLST (UCN)

Type:	E:\$NODFSTA	UCN Network Functional State
Lock:	Supr	
Default:	Basic	
PtRes:	NIM	
Range:	Full (All LCN de	vices can do read/write operations to this UCN)
-	Basic (AM and C	M cannot write to this UCN)

I0-2 (DevCtl, DigComp)

Type:	Logical	Override Interlocks for Output States 0-2-Override interlocks force the
Lock:	Engr	commanded output to a specific state regardless of the condition of the
Default:	Off	permissive interlocks or the previous point state. The operator and user program
PtRes:	HPM	cannot change the output state when any override interlock is On. An override
		interlock is provided for each of the three states. Refer to the HPM Control
		Functions and Algorithms manual for a detailed description.
Range:	Off (Override i	nterlock has no effect on the point state)

age: Off (Override interlock has no effect on the point state) On (Override interlock sets the point to the respective state)

Helpful Hint:	1.	When I0 is On, forces the output to STATE0, regardless of the permissives or any other overrides.
	2.	When I1 is On and I0 is Off, forces the output to a STATE1, regardless of the permissives or any other overrides.
	3.	When I2 is On and I0 and I1 are both Off, forces the output to STATE2 regardless of the permissives or any other overrides.
	4.	I0-I2 change by the engineer, requires PTEXECST = InActive or PNTSTATE = Idle for each interlock.

I0CONF (DigComp,DevCtl)

Type:	Logical
Lock:	Oper
Default:	Off
PtRes:	HPM
Range:	N/A

Override Interlock 0 Alarm Confirmation Flag—Indicates that the Override Interlock 0 Alarm needs to be confirmed.

I0DESC-I2DESC (DigComp)

Type:	String_8	I0-I2 Alarm Descriptor —The override Interlock for States 0, 1, or 2 indicating
Lock:	Engr	which text should be copied into the OVRDDESC parameter when an override
Default:	Blank	alarm occurs. The text appears in the Alarm Display and can be configured to
PtRes:	HPM	indicate the cause for the alarm.

Range: 8 Character String

I1CONF (DigComp,DevCtl)

Type:	Logical	Override Interlock 1 Alarm Confirmation Flag—Indicates that the Override
Lock:	Oper	Interlock 1 Alarm needs to be confirmed.
Default:	Off	
PtRes:	HPM	
Range:	N/A	

I2CONF (DigComp,DevCtl)

Type:	Logical
Lock:	Oper
Default:	Off
PtRes:	HPM
Range:	N/A
-	

Override Interlock 2 Alarm Confirmation Flag—Indicates that the Override Interlock 2 Alarm needs to be confirmed.

IN0-12 (GenLin)

Type:	Real
Lock:	Supr
Default:	NaN
PtRes:	HPM
Range:	> prev. coord.
	< next coord.

Input Coordinates 0–12—Define the input value at the respective coordinate. IN0 <IN1 <IN2, <IN12

INITMAN

Type:	Logical	Initialization Manual Flag—When On, indicates that this point is in	
Lock:	View	Initialization Manual. The mode of the point does not change; however, INIT	
Default:	Off	appears on the point's detail or group display to indicate that the point is in	
PtRes:	HPM	Initialization Manual. While the point is in Initialization Manual, an operator,	
		supervisor, or engineer cannot change the point's output. The output is	
		indisposable because initialization is being requested from downstream. Upon	
		leaving Initialization Manual, the point's output is initialized from the point's	
		secondary as determined by the point's output connection.	

Range: Off (Mode ≠ Initialization Manual) On (Mode = Initialization Manual)

Helpful Hint: OP changes with Operator, Supervisor, or Engineer access level, requires MODE = Man and INITMAN = Off. SP changes with Operator, Supervisor, or Engineer access level, for non-PID algorithms requires MODE = Auto and INITMAN = Off, while for PID algorithms requires that MODE = Auto, and also that INITMAN = Off and PTEXECST = Active if PVTRACK = Track.

INITMAN (DigComp, DevCtl, RegCtl)

Type:	Logical	Initialization Manual Flag—On, indicates that an output is storing to a DO
Lock:	View	point that has its INITREQ flag set and the point is forced into initialization.
Default:	On	When the DO point becomes available, the initialization state is cleared.
PtRes:	HPM	
Range:	Off (Mode ≠ Initialization Manual)	
-	On (Mode = Ini	tialization Manual)

INITREQ(1)-(4) (RegCtl)

Type:	Logical	Initialization Request Flags (1-4)—Indicates whether an initialization request has
Lock:	View	been made. Each flag represents a request to the primary point pushing to the
Default:	Off	corresponding input to be initialized as follows:
PtRes:	HPM	Flag 1: SP or X1
		Flag 2: RATIO or X2
		Flag 3: X3
		Flag 4: X4
Range:	Off (No initializ	zation request)
Ū.	On (Initializatio	on request)

INITREQ (Array)

Type: Lock:	Logical View	Initialization Request Flag —Indicates whether a Serial Interface-connected device can be written to, where $OFF = yes$, or $ON = no$. The flag is always OFF if EXTDATA = None.
Default:	On when EXTI	DATA = IO_FL, IO_NN, or IO_STR
5	Off when EXT	
PtRes:	HPM	
Range:	Off (EXTDATA	A=None, or Serial interface-connected device can be written to)
0	,	face-connected device cannot be written to)
	*	,

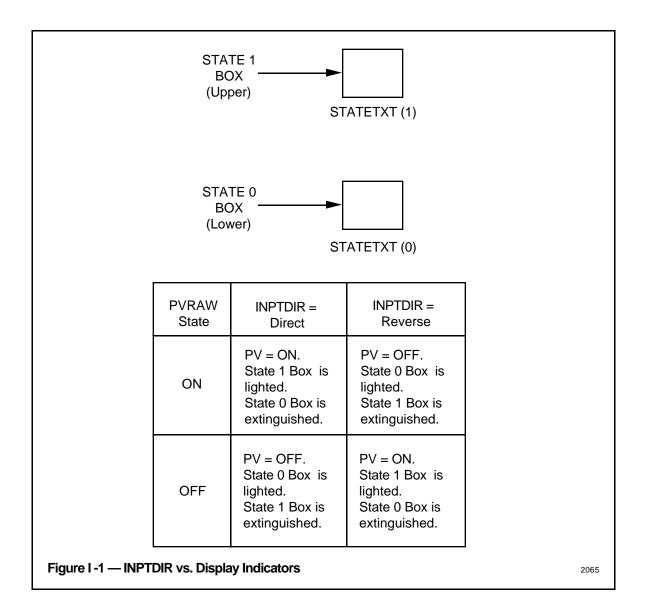
INITREQ (AO, DO)

Type:	Logical	Initialization Request Flag—When On, indicates that control strategies in the
Lock:	View	HPM cannot manipulate the output to the field. It is set to ON when:
Default:	On	
PtRes:	HPM	• the PWM type output is configured
		• the point is inactive

- the point is macrive
 the module is idle
- there is a soft failure such that the channel is not working
- The output is connected to standby-manual device

Range: **Off** (No initialization request) **On** (Initialization request)

INITREQ(0)-(2) (DigComp, DevCtl)


Type:	Logical	Initialization Request Flag—When On, indicates that CL programs or logic can
Lock:	View	not change the output to $State(i)$, where $i = 0, 1$, or 2.
Default:	On	
PtRes:	HPM	

Range: Off On

INITVAL

Type:	Real
Lock:	View
Default:	N/A
PtRes:	HPM
Range:	N/A

Initialization Value—Indicates the value to which the primary point is to be initialized.

INPTDIR (DigIn)

Type:	E:POLARITY	Digital Input Direction—Defines the contact conditions required to light the
Lock:	Eng/PB	upper or lower boxes on a Group or Detail Display for a digital input point.
Default:	Direct	See Figure I-1.
PtRes:	HPM	-
Range:	0-Direct	
U	State 0 (lower)	how lighted \rightarrow PVR AW - Off

State 0 (lower) box lighted =>PVRAW = Off State 1 (upper) box lighted =>PVRAW = On

1-Reverse

State 0 (lower) box lighted =>PVRAW = On State 1 (upper) box lighted =>PVRAW = Off

IOLASTS (HPM Box)

Type:	Logical	I/O Link Cable A Status
Lock:	View	
Default:	Off	
PtRes:	HPM	
Range:	Off (I/O Link	cable A not in error)
	On (I/O Link	cable A in error)

IOLBSTS (HPM Box)

Type:	Logical	I/O Link Cable B Status
Lock:	View	
Default:	Off	
PtRes:	HPM	
Range:	Off (I/O Link cable B not in error)	
	On (I/O Link ca	ble B in error)

IOLCHAER (HPM Box)

Type:IntegerLock:ViewDefault:0PtRes:HPMRange: ≥ 0

 $\epsilon \ge 0$

IOLCHASL (HPM Box)

Type:IntegerLock:ViewDefault:0PtRes:HPMRange: ≥ 0

I/O Link Channel A Silence Count

I/O Link Channel A Error Count

IOLCHBER (HPM Box)

Type:	Integer	I/O Link Channel B Error Count
Lock:	View	
Default:	0	
PtRes:	HPM	
Range:	<u>> 0</u>	
0		

IOLCHBSL (HPM Box)

Type:IntegerLock:ViewDefault:0PtRes:HPMRange: ≥ 0

I/O Link Channel B Silence Count

IOLCHERT (HPM Box)

Type:	Integer
Lock:	EngOnly
Default:	10
PtRes:	HPM
Range:	≥ 0

I/O Link Channel Error Threshold—Defines the acceptable number of I/O Link channel errors per minute before disabling the periodic I/O Link channel swap.

IOLCMD (HPM Box)

Type:	E:\$IOLCMD I/O Link Command
Lock:	EngOnly
Default:	None
PtRes:	HPM
Range:	0-None (No effect)
	1-SelChnA (Select I/O Link Channel A)
	2-SelChnB (Select I/O Link Channel B)
	3-EnbPerSw (Enable periodic swapping of IOL cables)
	4-DisPerSw (Disable periodic swapping of IOL cables)
	5- RsIoLCom (Reset IOL communication error count to 0)

IOLHWREV (HPM Box)

Type:String_2Lock:ViewDefault:BlankPtRes:HPMRange:

HPMM I/O Link Interface Processor Card Hardware Revision—

IOLPERSW (HPM Box)

 Type:
 E:ENBLSTAT
 I/O Link Periodic Cable Swap

 Lock:
 View

 Default:
 N/A

 PtRes:
 HPM

 Range:
 0-Disable (Swapping of I/O Link cables A & B is disabled)

 1-Enable (Swapping of I/O Link cables A & B is enabled)

IOLPSERR (ProcMod)

Type:	E:Pastatus	I/O Link Poststore Failure Option — Contains the IOL Poststore PA status
Lock:	View	failure code, or null.
Default:	NoError	
PtRes:	HPM	
	Helpful Hint:	This parameter sould be used with IOLPSOPT.

Range: NoError

IOLPSOPT (ProcMod)

Type:E:\$IOLPSOPTI/O Link Poststore Failure Option —Lock:EngrDefault:FailPtRes:HPM

Helpful Hint: The program should check the value of IOLPSERR if this parameter is continue.

Range: Fail (program fails on a bad IOL store) Continue (program continues on a bad IOL store)

IOLREV (HPM Box)

Type:	Integer
Lock:	View
Default:	Blank
PtRes:	HPM

HPMM I/O Link Software Revision—

Range:

IOLVERS (HPM Box)

Type:	Integer
Lock:	View
Default:	Blank
PtRes:	HPM
Range:	

HPMM I/O Link Software Version-

IOMACTYP(1)-(168)

Type:	E:\$PMMDTY	IOP Actual Type — Actual type of IOP at module address.
Lock:	View	This should match the configured type.
Default:	None	
PtRes:	HPM	
Range:	None (Not Config	gured)
	LLAI (Low Leve	l Analog Input)
	HLAI (High Lev	el Analog Input)
	DI (Digital Input)	
	DO (Digital Outp	but)
	AO (Analog Out	put
	HPMM (HPM M	lodule)
	LLMUX (Low L	evel Analog Input Multiplexer) Also includes RHMUX (Remote Hardened
	Analog	Multiplexer)
	STIM (Smart Tra	Insmitter Interface Module)
	PI (Pulse Input)	

IOMCARD(1)-(168) (HPM Box)

Type:	Integer
Lock:	View
Default:	N/A
PtRes:	HPM
Range:	1-15

I/O module card position for the acting primary/secondary (used for diagnostic displays).
nn = 1 - 40 correspond to card positions of the 40 acting primaries nn = 129 - 168 correspond to card positions of the 40 acting secondaries

IOMCARDA(1)-(40) (HPM Box)

Type:	Integer	I/O modu
Lock:	PtBld	modules.
Default:	0 in IOP database;	A. Appli
	per PKGOPT on GDF	
PtRes:	HPM	
Range:	0 - 15 (0 specifies Not (Connected)

I/O module A card position. 1–40 specifies one of the 40 logical I/O modules. The corresponding IOP must be connected to FTA connector A. Applies to the primary IOP only.

IOMCARDB(1)-(40) (HPM Box)

Integer	I/O mod
PtBld	modules.
0 in IOP database;	B. Appl
none on GDF	
HPM	
0 - 15 (0 specifies Not C	onnected)
	PtBld 0 in IOP database; none on GDF HPM

//O module B card position. 1-40 specifies one of the 40 logical I/O nodules. The corresponding IOP must be connected to FTA connector 3. Applies to primary IOP only.

IOMCHAER(1)-(168)

Type:	Integer	IOP Channel A Error Count—for a specific IOP
Lock:	View	
Default:	N/A	
PtRes:	HPM	
Range:	0 - 255	

IOMCHASL(1)-(168)

Type:	Integer	IOP Channel A Silence Count—for a specific IOP
Lock:	View	
Default:	N/A	
PtRes:	HPM	
Range:	0 - 255	
0		

IOMCHBER(1)–(168)

Type:IntegerLock:ViewDefault:N/APtRes:HPMRange:0 - 255

IOP Channel B Error Count-for a specific IOP

IOMCHBSL(1)-(168)

 Type:
 Integer

 Lock:
 View

 Default:
 N/A

 PtRes:
 HPM

 Range:
 0 - 255

IOP Channel B Silence Count-for a specific IOP

IOMCMD (HPM Box)

Type: E:\$IOI Lock: Oper Default: None PtRes: HPM Range: None Run Idle Swap

E:\$IOMCMD IOP Module Command—Indicates IO module state, or whether to swap redundant pairs.

IOMCOMER(1)–(168)

Type:E\$:IOMCOMMIOPLock:ViewDefault:N/APtRes:HPM

IOP Communications Error Status—for a specific IOP

Range: None - No error Invalert - Invalid alert; message bit problem Invdest - Invalid destination Invchcnt - Invalid character count; message corrupted Invsourc - Invalid source Invcmd - Invalid command Checksum - Checksum error No_resp - No response Chtimout - Channel time out Msgovrun- Message overrun Gaperror - Gap error; message gap too long Lpbckerr - Loopback error Nth_0 - Next token holder equals zero Tknrecov - Token recovery in progress Rplbufov - Reply buffer overflow

IOMFILE(1)-(168) (HPM Box)

Type:	Integer	I/O Module File Position for the Acting Primary/Secondary
Lock:	View	(used for diagnostic displays).
Default:	N/A	nn = 1 - 40 are file positions of the 40 acting primaries.
PtRes:	HPM	nn = 129 - 168 are file positions of the 40 acting secondaries.

Range: 0 - 8 (0 specifies Not Connected)

IOMFILEA(1)-(40) (HPM Box)

Type:	Integer	I/O Module A File Position—1-40 specifies one of the 40 logical I/O
Lock:	PtBld	modules. The corresponding IOP must be connected to FTA connector
Default:	0 in IOP data base;	A. Applies to the primary IOP only.
	per PKGOPT on GDF	
PtRes:	HPM	
Range:	0 - 8 (0 specifies Not Co	nnected)
0	· •	

IOMFILEB(1)-(40) (HPM Box)

Type:	Integer	I/O Mo
Lock:	PtBld	module
Default:	0 in IOP data base;	B. App
	none on GDF	
PtRes:	HPM	
Range:	0 - 8 (0 specifies Not C	connected)

I/O Module B File Position—1-40 specifies one of the 40 logical I/O modules. The corresponding IOP must be connected to FTA connector B. Applies to the primary IOP only.

IOMFWREV(1)-(168)

Type:	Ascii_2	IOP Card Firmware Revision Status
Lock:	View	(This is not the same as the external letter code on the card)
Default:	N/A	
PtRes:	HPM	
Range:	X.Y	X = Version, Y = Revision
		(For Release 300, X = 3)

IOMHWREV(1)–(168)

Type:	Ascii_2	IOP Card Hardware Revision Status
Lock:	View	The status of R300 boards appears as \$2x, the status of R210
Default:	N/A	appears as \$0x, where x is the version (0=A, 1=B, 2=C, etc.)
PtRes:	HPM	
Range:	Hexadecimal ch	aracters 00–FF

IOMLHFST(1)-(168)

Type: E:\$IOMHF Input/Output Processor Last Hard Fail Status—Refer to the HPM Service Lock: View *Manual* for a detailed description and the recommended corrective action. Default: N/A PtRes: HPM 0-Unknown (Unknown Status) Range: 1-PowerDwn (This IOP Powered Down) 2-InvPrgEx (Invalid Program Execution) 3-EpromErr (EPROM Checksum Error) 4-RamCntEr (RAM Contents Error) 5-RamAdrEr (RAM Addressing Error) 6-DpaError (Device Physical Address Error) 7-DsaError (Device Soft Address Error) 8-RxBufOfl (I/O-Link Receive Buffer Overflow) 9-IOLJaber (I/O-Link Jabber Circuit Failure) 11-BadPgJmp (Illegal Value of Case Control) 12-AdCIncmp (A-to-D Conversion Incomplete) 13-AdOutOvf (A-to-D Output Value Overflow) 14-AdOutUdf (A-to-D Output is less than Zero) 15-AdCCalEr (A-to-D Calibration is incorrect) 16-BadDcLtc (Bad DC LTC) 17-Dmt Tmot (Dead Man Timer Timeout) 18-MLtOutFl (Multiple Output Failures) 20-BadDaRng (Bad D-to-A Range) 21-MstrTmot (Master 68 k Timeout)

IOMNUM

Type:	Integer
Lock:	PtBld
Default:	N/A
PtRes:	HPM
Range:	1 to 40

IOP Number—IOMNUM specifies the IOP on the I/O Link that this point references for its process data.

IOMOPER(1)-(168) (HPM Box, IOP)

Type:	E:\$PRIMSEC
Lock:	View
Default:	N/A
PtRes:	HPM
Range:	0-Primary (Prim
	1- Secondry (Sec

Input/Output Processor In Operation

0-**Primary** (Primary IOP is operating) 1- **Secondry** (Secondary IOP is operating)

IOMREALT (HPM Box)

Type:	E:\$PMMDTY Actual Input/Output Processor Type
Lock:	View
Default:	None
PtRes:	HPM
Range:	0-None (Not Configured)
	1-LLAI
	2-HLAI (High-Level Analog Input)
	3- DI (Digital Input)
	4-DO (Digital Output)
	5-AO (Analog Output)
	7-LLMUX (Low-Level Analog Input Multiplexer) also includes RHMUX (Remote Hardened Analog Multiplexer)
	14-STIM (Smart Transmitter Interface Module)
	17-PI (Pulse Input)

IOMRECHN(1)-(168) (HPM Box)

Type:	E:\$RECCHN
Lock:	View
Default:	N/A
PtRes:	HPM
Range:	ChannelA
Ũ	ChannelB

IOP Receive Channel

IOMSEVER(1)-(168) (HPM Box)

Type:	E:\$SEVERTY	Error Severity Based on Input/Output Processor State
Lock:	View	nn = 1 - 40 specifies the severity of 1 of the 40 acting primaries
Default:		nn = 129 - 168 specifies the severity of 1 of the 40 acting secondaries
PtRes:	HPM	
Range:	Ok (I/O Processor	r has no errors and is OK)
0	Fail (I/O Processo	or has failed)

Inform (I/O Processor has failed) **Warning** (I/O Processor should be calibrated soon) **Warning** (I/O Processor is on the verge of failing)

IOMSTS(1)-(168) (HPM Box)

Type:	E:\$IOMSTS	Input/Output Module State	
Lock:	View	nn = 1 - 40 specifies the status of 1 of the 40 acting primaries	
Default:	N/A	nn = 129 - 168 specifies the status of 1 of the 40 acting secondaries	
PtRes:	HPM		
Range:	0-PowerOn (Tr	ransient state when power is turned on)	
-	1-Idle (In the Id	lle State)	
	2- OK (Running)		
	3-NoResp (No	Response)	
	4-IdleSF (In the	e Idle State and has a Soft Failure)	
	5-SoftFail (Rui	nning and has a Soft Failure)	
	6-CommErr (C	Communication Error)	
	7-ConfgMis (C	Configuration Mismatch)	
	0 N. + C C - (T	$\mathbf{U} = \mathbf{U} \mathbf{D} \mathbf{D} \mathbf{U} + \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U}$	

8-NotConfg (This IOP is Not Configured)

9-NonExist (This IOP does Not Exist)

UnAvail (Transient state during which status for this IOP is unavailable)

IOMTYPE(1)-(168) (IOP)

Type: **E:\$PMMDTY**

Input/Output Processor Type

Lock: View

Default: None

PtRes: HPM

Range: 0-None (Not Configured)

LLAI (Low Level Analog Input)
HLAI (High Level Analog Input, 16 slot)
DI (Digital Input, 32 slot)
DO (Digital Output, 32 slot)

F-AO (Analog Output, 8 slot)
Clow Level Analog Input Multiplexer) also includes RHMUX (Remote Hardened Analog Multiplexer)
I0-SI (Serial Interface)
I4-STIM (Smart Transmitter Interface Module)
I6DISOE (Digital Input, Sequence of Events)
I7-PI (Pulse Input)
24-AO16 (Analog Output, 16 slot)
25DO32 (Digital Output, 32 slot)

IOMTYPE (HPM Box)

Type:	E:\$PMMDTY Configured Input/Output Processor Type
Lock:	PtBld
Default:	NotConfg
PtRes:	HPM
Range:	0-NotConfg (Not Configured)
	1-LLAI (Low-Level Analog Input)
	2-HLAI (High-Level Analog Input)
	3-DI (Digital Input)
	4-DO (Digital Output)
	5-AO (Analog Output)
	7-LLMUX (Low Level Analog Input Multiplexer) also includes RHMUX (Remote Hardened
	Analog Multiplexer)
	14-STIM (Smart Transmitter Interface Module)
	17-PI (Pulse Input)
	-DISOE (Digital Input, Sequence of Events)
	-SI (Serial Interface)
	-AO-16 (Analog Output)
	- DO-32 (Digital Output)

IONTOKEN (HPM Box)

Type:IntegerLock:ViewDefault:N/APtRes:HPM

IOP Next Token Holder

NOTE

This parameter is available to the nodes on the LCN, but cannot be accessed on the UCN, either by HPM/CL programs or print connections.

Range: 0, or 128 to 255

IOPDESC(1 - 40)

Type:String_8IOP Description—Provides an 8-character description of the IOP.Lock:ViewDefault:SpacesPtRes:HPM

Helpful Hint: An 8-character string is read from the IOP's EPROM and stored in the HPMM. The text string appears on the IOP Detail Display. Even if the IOP fails, an operator can identify the IOP/FTA for maintenance. Not all IOPs have this feature yet.

Range: 8 characters

IOPIDAY (HPM Box)

Type:IntegerLock:ViewDefault:0PtRes:HPM

HPMM I/O Link Personality Creation Date- Day

Range:

IOPIMON (HPM Box)

Type:IntegerLock:ViewDefault:0PtRes:HPM

HPMM I/O Link Personality Creation Date- Month

Range: N/A

IOPIYEAR (HPM Box)

Type:IntegerLock:ViewDefault:0PtRes:HPMRange:N/A

HPMM I/O Link Personality Creation Date- Year

IOPNUM (Array)

Type:	Integer
Lock:	PtBld
Default:	N/A
PtRes:	HPM
Range:	1 to 127
_	

Serial Interface IOP Module Number—Defines the module number of the serial interface IOP.

IOPSTR1(1)–(40) (HPM Box)

Type:	String_64
Lock:	View
Default:	Spaces
PtRes:	SĪ
Range:	N/A

IOP String for FTA #1—Contains user-defined string data shown in the Box Detail display such as the FTA application name, its revision number, and date. NN = 1-40 specifies the Serial Interface IOP module number.

IOPSTR2 (1)–(40) (HPM Box)

Type:String_64Lock:ViewDefault:SpacesPtRes:SIRange:N/A

IOP String for FTA #2—Contains user-defined string data shown in the Box Detail display such as the FTA application name, its revision number, and date. NN = 1-40 specifies the Serial Interface IOP module number.

IORECCHN (HPM Box)

 Type:
 E:\$RECCHN
 I/O Link Receive Cable—The cable the I/O module is currently listening on.

 Lock:
 PtBld

 Default:
 None

 PtRes:
 HPM

 Range:
 A (I/O module is listening on Cable A) B (I/O module is listening on Cable B)

IOREDOPT(1)-(40) (HPM Box)

Type:E:\$REDOPTLock:PtBldDefault:NonRedunPtRes:HPMRange:0-Redun1-NonRedun

IOP Redundancy Option—Indicates if an IOP is configured for redundancy

IOSTKNDR

Type:IntegerIOP Token Drop CountLock:ViewDefault:N/APtRes:HPMRange:0 to 32767

IOSCNCYC(1 - 40)

Type:	Integer
Lock:	PtBld
Default:	0.0
PtRes:	HPM
Range:	0 - 16

Control base cycle number— The index to this parameter specifies the IOP number for which this information is being accessed.

IOSCNPER(1 – 40) (AnalgIn)

Type:	Real	IO data Scan Period — the I/O data scan period in seconds for IO processors that
Lock:	PtBld	support Analong Input point types. The index to this parameter specifies the
Default:	0.0	IOP number for which this information is being accessed.
PtRes:	HPM	-
Range:	0.0, 0.0625, 0.1	125, 0.25, 0.5, 1.0

K (AutoMan)

Type:RealLock:SuprDefault:1.0PtRes:HPMRange:N/A

Gain Constant for X2 Input—Refer to the *HPM Control Functions and Algorithms* manual for a detailed description.

K (MulDiv, RegCtl Summer)

Overall Gain—

Type:RealLock:SuprDefault:1.0PtRes:HPMRange:

K (Pid)

•	/
Type:	Real
Lock:	Supr
Default:	1.0
PtRes:	HPM
Range:	0.0 to 240.0

Overall Gain—Value of K depends on the chosen gain option. Refer to the *HPM Control Functions and Algorithms* manual for a detailed description.

K (PosProp)

Type:RealGain ConstantLock:SuprDefault:1.0PtRes:HPMRange:0.0 to 10.0

K1 (PidErfb)

Type:RealExternal Reset Feedback GainLock:SuprDefault:0.0PtRes:HPMRange:0.0 to 1.0

K1 (PIDPosPr)

Type:RealGain ConstantLock:SuprDefault:1.0PtRes:HPMRange:0.0 to 10.0

Κ

K1-K2 (RatioCtl)

Type:	Real
Lock:	Supr
Default:	1.0
PtRes:	HPM
Range:	N/A

K1 = Ratio Scale Factor; K2 = Scale Factor for X2 Input—When used in conjunction with the Calcultr algorithm, K1 must be equal to C1, and K2 must be equal to C2.

K1–K3 (MulDiv)

Gain Constants for X1-X3 Inputs

Type:RealLock:SuprDefault:1.0PtRes:HPMRange:

2:

K1–K4 (RegCtl Summer)

Type:RealLock:SuprDefault:1.0PtRes:HPMRange:

Gain Constants for X1–X4 Inputs

K1-K4 (IncrSum)

Type:	Real
Lock:	Supr
Default:	1.0
PtRes:	HPM
Range:	≥ 0.0

Gain Constants for X1–X4 Inputs

KEXT(Pid)

Type:	Real
Lock:	Prog
Default:	1.0
PtRes:	HPM
Range:	0.0 to 240.0

External Gain Modifier—Defines the external gain modification factor. It can be entered by a user-written program, or it can be an input from another data point.

KEYWORD

String_8	Keyword Descriptor— An eight-character descriptor that is used to describe an
PtBld	important aspect of this particular data point. For example, in Figure N-1 (see
Blank	NAME) the keyword for the data point is REFLUX.
NIM	
Alphabetics A-2	Z (upper case only).
Numerics 0-9 (a	an all numeric keyword is not allowed).
Underscore (_)	cannot be used as the first character or the last character in a keyword.
	derscores are not allowed. Do not use quote marks (").
	PtBld Blank NIM Alphabetics A-2 Numerics 0-9 (a Underscore ()

KFF (PidFf)

Type:	Real
Lock:	Supr
Default:	1.0
PtRes:	HPM
Range:	≥ 0.0 to ≤ 1.0

Gain for Feed Forward Input—Scale factor which is used in converting the FF input value to percent.

KGAP (Pid)

Type:	Real
Lock:	Supr
Default:	1.0
PtRes:	HPM
Range:	00 to 1.0

Gap Gain Factor—Defines the gain-modification factor.

KLIN (Pid)

Type:

Linear Gain Factor—Defines the linear gain in percent per percent.

 Lock:
 Supr

 Default:
 1.0

 PtRes:
 HPM

 Range:
 0.0 to 240.0

Real

KNL (Pid)

Type:RealLock:ViewDefault:N/APtRes:HPMRange:N/A

Nonlinear Gain Modifier—Indicates the calculated value of the nonlinear gain modifier.

-L-

L(1)-(12) (DevCtl, Logic)

Type:Logical, RealValue of the External Input—L(1)–L(12) are the 12 inputs to a logic slot fetchedLock:Viewwith input connections from other points. Each input can be a Boolean, anDefault:N/AInteger, or a Real number. Integer input values are converted to real numbersPtRes:HPMbefore being stored into the database.Range:Real

Helpful Hint: L, if accessed from the LCN, must be accessed as a Logical data type.

LCNRECHN (HPM Box)

 Type:
 E:\$RECCHN
 LCN Receive Channel—Indicates the LCN channel to which the NIM is

 Lock:
 View
 listening.

 Default:
 ChanneLA

 PtRes:
 HPM

 Range:
 0-ChanneLA (NIM is listening to LCN channel A)

 1-ChanneLB (NIM is listening to LCN channel B)

LDNGNODE (HPM Box)

Type:IntegerLock:ViewDefault:PtRes:HPMRange:

UCN Node Performing Personality Image Load to This Node

LIBADOPT (DevCtl, Logic)

Type:	E:\$LIBADOP	Logic Bad Input Handling Option—If a Boolean input is not successfully	
Lock:	PtBld	fetched for an input connection to the logic slot, its value is defaulted to one	
Default:	Hold	of the values (Off, On, Hold) selected through this parameter. Refer to the	
PtRes:	HPM	HPM Control Functions and Algorithms manual for a detailed description.	
Range:	<i>uge:</i> 0- On (On state is substituted for bad input)		
1- Off (Off state is substituted for bad input)			
2-Hold (Last good value is substituted for bad input)			

LIBRYNUM

Type:	Integer	NIM Library Number—Specifies the number of the NIM Library being
Lock:	PtBld	configured. For Parameter Entry Display use only.
Default:	1	
PtRes:	NIM	
Range:	1-3	

LIBRYTXT(1)-(1000)

Type:	String_8
Lock:	PtBld
Default:	N/A
PtRes:	NIM
Range:	N/A

NIM Library Text

LIDESC(1)-(12) (DevCtl) *Type:* String_8 Input Descriptor—External input descriptors.

Type:	String_8	Input
	in an Array	
	(112)	
Lock:	Engr	
Default:	Blank	
PtRes:	HPM	
Range:	8 Character Stri	ng

LINEPERD (1)-(168)

Type:	Real Line Period in Microseconds
Lock:	View
Default:	N/A
PtRes:	HPM
Range:	15616.0 to 21759.0

LISRC(1)-(12) (DevCtl, Logic)

Type:	Universal	Logic Input Connection Source—Define the parameters whose current values are
	Ent.Prm	to be supplied to one or more of up-to-12 logic slot or Device Control inputs.
Lock:	PtBld	The parameters can be specified using the "Tagname.Parameter" format or the
Default:	null.null	hardware reference address format. Refer to the HPM Control Functions and
PtRes:	HPM	Algorithms manual for a detailed description.
Range:	Use Tagnam	ne.Parameter for tagged points where Tagname can be up to 16 characters and the
	permissible	character set is as follows:
	Alpl	habetics A-Z (uppercase only)
		nerics 0-9 (an all numeric tag name is not allowed)
		erscore (_) cannot be used as the first character or the last character, and consecutive
	ur	nderscores are not allowed.
		bedded space characters are not allowed.
		* is used to default to this point's tag name.
	Para	meter name can be up to eight characters and must be a legitimate parameter name.
	Some possib	ble input-connection sources are
		AnalgIn slot Tagname.PV"
	b."D	DigIn slot Tagname.PVFL"
	c."L	ogic slot Tagname.SO(nn)" where $nn = 1-24$
	d."L	logic slot Tagname.Fl(nn)" where $nn = 1-12$
	e."L	ogic slot Tagname.NN(nn)" where nn = 1-8
	f."Pi	rocMod slot Tagname.Fl(nnn)" where nnn = $1-127$
		ProcMod slot Tagname.NN(nn)" where $nn = 1-80$
		RegCtl slot Tagname.PV"
		egPV slot Tagname.PV"
		ox Flag slot Tagname.PVFL
		Box Numerics slot Tagname.NN" where nnnnn = 1-16,384
		Box.FL(nnnn)" for a box flag that resides in the same box where $nnnn = 1-16,384$
		NMhhBxx.FL(nnnn)" for a box flag that resides in a different HPM box on the same
		CN; hh is the NIM UCN address, xx is the HPM box number, and
	nr	nnn = 1-4095 (data access limit)
	Use the hard	ware reference address !MTmmSss.Parameter for untagged or tagged points where
	MT	is the IOP type, such as DI (Digital Input)
	mm	is the IOP Card number $(1, 40)$

mm is the IOP Card number (1-40)

The letter "S" is a constant

ss is the slot number on the IOP Card (refer to SLOTNUM parameter)

Parameter name can be up to eight characters and must be a legitimate parameter name.

LMREV (DevCtl)

<i>Type:</i> E:POLARITY Local Manual Polarity —Indicates whether point processing inverts t	he local
Lock: Engr/PB manual input value.	
Default: Direct	
PtRes: HPM	
Range: Direct (Value is not inverted)	
Reverse (Value is inverted)	

LMSRC (DevCtl, PosProp, PIDPosPr)

Type:	Universal	Local Manual Source—The input connection for the local manual input.		
T 1	Ent.Prm	Only inputs with logical data types are valid.		
Lock:	PtBld Null.null			
Default: PtRes:	HPM			
Range:		ameter for tagged points where Tagname can be up to 16 characters and the		
Runge.	permissible character set is as follows:			
	Alphabetics A-Z (uppercase only)			
		5 0-9 (an all numeric tag name is not allowed)		
	Undersco	re (_) cannot be used as the first character or the last character, and consecutive cores are not allowed.		
	Embedded space characters are not allowed.			
	An * is used to default to this point's tag name.			
	Parameter	r name can be up to eight characters and must be a legitimate parameter name.		
	Some possible in	put-connection sources are		
		slot Tagname.PVFL"		
		slot Tagname.SO(nn)" where $nn = 1-24$		
		slot Tagname.Fl(nn)" where $nn = 1-12$		
		od slot Tagname.Fl(nnn)" where $nnn = 1-127$		
	e."Box Fl	ag slot Tagname.PVFL		
	g."\$NMh UCN; ł	L(nnnn)" for a box flag that resides in the same box where nnnn = 1–16,384 hBxx.FL(nnnn)" for a box flag that resides in a different HPM box on the same h is the NIM UCN address, xx is the HPM box number, and 1–4095 (data access limit)		
		reference address !MTmmSss.Parameter for untagged or tagged points where IOP type, such as DI (Digital Input)		
		e IOP Card number (1–40)		
		"S" is a constant		
		lot number on the IOP Card (refer to SLOTNUM parameter)		
		r name can be up to eight characters and must be a legitimate parameter name		

Parameter name can be up to eight characters and must be a legitimate parameter name.

LOADFAIL

Type:IntegerLock:ViewDefault:PtRes:HPMRange:

Node Load Failure Information

LOADFLAG

Type:String_2Load FlagLock:ViewDefault:PtRes:HPMRange:Hexadecimal characters 00 to FF

LOADPCKT

Current Personality Image Packet Being Loaded to This Node

Type: Integer Lock: View Default: PtRes: HPM Range:

LOADSCOP (NIM)

Type:E:\$LOADSCPLock:PtBldDefault:NIMAndPmPtRes:NIM

Load Scope—Defines the scope of the point-build procedure for NIM and HPM configuration. The point information is loaded to both the NIM and HPM or to the NIM only. A value of NIMONLY is typically used to configure points into the NIM only during installation of a new system without HPMs.

NOTE

When points are built to a NIM and the NIM is restarted with no database, the points need to be reloaded from checkpoint or the points must be reconfigured. If the database is to be reconfigured, the HPMM must be in Idle, and the point execution state must be Inactive. This allows the point build operation to override the database that already exists there.

NOTE

To delete active entities from the HPM database, the point must be put to the inactive state. An alternative is to delete the entity in the NIM only by changing the LOADSCOP parameter for the NIM to NimOnly and deleting the point. Be sure to restore LOADSCOP to NimAndPM after deleting points.

Range: NimOnly (Configured data is to be loaded into the NIM only) NimAndPm (Configured data is to be loaded into the NIM and HPM)

LOADSTAT

E:LOADSTAT Load Status Type: Lock: View Default: PtRes: HPM Range: Notload Loaded Loading Unlding

LOCALMAN (AnalgOut, RegCtl)

Type:	Logical	Local Manual Flag—Indicates whether the associated hardware output of this
Lock:	View	point is being controlled by a manually-operated analog display.
Default:	Off	
PtRes:	HPM	
Range:	Off (Output is 1	not being controlled by an Analog Display)
	On (Output is b	being controlled by an Analog Display)
	· •	

LOCALMAN (DigComp, DevCtl)

Type:	Logical	Local Manual Flag—When On, indicates that the output(s) is being locally
Lock:	Prog	controlled and not by the HPM. When this flag is on, it usually indicates that
Default:	Off	the "hand/off/auto" switch is not in the "auto" position.
PtRes:	HPM	
Range:	Off	
0	On	

LOCPRIM(1-4)

Type:		Local Primary—Returns the tag name of a primary point in the same HPM that
Lock:	View	is storing to this point's parameters.
Default:		
PtRes:	HPM	The parameter index indicates the parameter being pushed to by the primary as
		follows, depending on the algorithm configured in the Regulatory Control point:
		1 = SP or X1
		2 = Ratio or X2
		3 = X3
		4 = X4
Range:		

Helpful Hint: LOCPRIM returns a null entitty ID if the connection is not configured or the primary point is in a different node (such as, a peer-to-peer connection).

LODSTN(1)-(12) (Logic)

Type: Lock: Default: PtRes:	Blind Record in an Array (112) PtBld null.null HPM	Logic Output-Connection Destination —Specifies up to 12 destinations to which the current values of the logic slot outputs are supplied. The destinations can be specified using the "Tagname.Parameter" format or the hardware reference address format. Refer to the <i>HPM Control Functions and Algorithms</i> manual for a detailed description.
Range:	Use Tagname.H	Parameter for tagged points where Tagname can be up to 16 characters, and the
0		aracter set is as follows:
		etics A-Z (uppercase only)
	Numer	ics 0-9 (an all numeric tag name is not allowed)
		core (_) cannot be used as the first character or the last character, and consecutive rscores are not allowed.
	Embed	ded space characters are not allowed.
	An * is	s used to default to this point's tag name.
	Parame	eter name can be up to eight characters, and must be a legitimate parameter name.
	Some possible	output-connection destinations are
	a."Dig	Out slot tagname.ONPULSE or OFFPULSE"
	b."Dig	Out slot Tagname.SO"
	c."Logi	ic slot Tagname.Fl(nn)" where $nn = 7-12$
		:Mod Tagname.Fl(nnn)" where $nnn = 1-127$
		slot Tagname.PVFL
		x.FL(nnnn)" for a box flag that resides in the same HPM box where $a = 1-16,384$.
	g."\$NN UCN	AhhBxx.FL(nnnn)" for a box flag that resides in a different HPM box on the same J ; hh is the UCN number, xx is the HPM box number of the destination meter, and nnnn = 1-4095 (data access limit).
	Use the hordwar	e reference address IMTmmSss Parameter for untagged or tagged points where

Use the hardware reference address !MTmmSss.Parameter for untagged or tagged points where

MT is the IOP type, such as DO (Digital Output) mm is the IOP Card number (1-40)

The letter "S" is a constant

ss is the slot number on the IOP Card (refer to SLOTNUM parameter)

Parameter name can be up to eight characters and must be a legitimate parameter name.

LODSTN(1)-(2) (DevCtl)

Type:	Blind Record in an Array (12)	Device Control Output Connection Destination —Specifies up to 2 destinations to which the current values of the Device Control slot outputs are supplied. The destinations can be specified using the "Tagname.Parameter" format or the
Lock:	PtBld	hardware reference address format Refer to the HPM Control Functions and
Default:	Null	Algorithms manual for a detailed description.
PtRes:	HPM	
Range:		arameter for tagged points where Tagname can be up to 16 characters and the
		racter set is as follows:
		etics A-Z (uppercase only)
		cs 0-9 (an all numeric tag name is not allowed)
		core (_) cannot be used as the first character or the last character, and consecutive recores are not allowed.
	Embedd	led space characters are not allowed.
	An * is	used to default to this point's tag name.
	Parame	ter name can be up to eight characters and must be a legitimate parameter name.
	Some possible of	putput-connection destinations are
	a."DigO	Dut slot tagname.ONPULSE or OFFPULSE"
	b."DigO	Dut slot Tagname.SO"
	c."Logi	c slot Tagname.Fl(nn)" where $nn = 7-12$
	d."Proc	Mod Tagname.Fl(nnn)" where nnn = $1-127$
	e."Flag	slot Tagname.PVFL
		.FL(nnnn)" for a box flag that resides in the same HPM box where
		= 1-16,384.
	UCN	IhhBxx.FL(nnnn)" for a box flag that resides in a different HPM box on the same ; hh is the UCN number, xx is the HPM box number of the destination neter, and nnnn = 1-4095 (data access limit).
	Use the hardwar	re reference address 'MTmmSss Parameter for untagged or tagged points where

Use the hardware reference address !MTmmSss.Parameter for untagged or tagged points where

MT is the IOP type, such as DI (Digital Input)

mm is the IOP Card number (1-40)

The letter "S" is a constant

ss is the slot number on the IOP Card (refer to SLOTNUM parameter)

Parameter name can be up to eight characters and must be a legitimate parameter name.

LOENBL(1)-(2) (DevCtl)

Type:	E:\$PMDVPRM	Device Control Output Enable—Allows the respective output connection
	in an Array	defined by LODSTN to write the value of the specified Device Control
	(12)	parameter to the destination. The logic output is allowed when the enable
Lock:	PtBld	function, selected from the list below, is On. If the FL1 parameter is
Default:	FL2	specified and the output data type is logical, output occurs only during
PtRes:	HPM	change (normally, it is continuous).

Range:	FL1FL12 [Local flag; either a 1 (On) or a 0 (Off)]
	D1, D2 [Digital PV inputs, either a 1 (On) or a 0 (Off)]
	SI0 [Safety interlocks, either a 1 (On) or a 0 (Off)]
	I0, I1, I2 [Interlocks, either a 1 (On) or a 0 (Off)]
	P0, P1, P2 [Permissives, either a 1 (On) or a 0 (Off)]
	PISO1PISO12 [Primary Input Gate Values (logical)]
	SISO1SISO12 [Secondary Input Gate Values (logical)]
	PGSO1PGSO4 [Primary Gate Output Values (logical)]
	SGSO1, SGSO2 [Secondary Gate Output Values (logical])
	L1L12 [Logic input value to device control slot (logical)]

LOENBL(1)-(12) (Logic) Type: E:\$PMMLGPM Logic Output E

Type:	E:\$PMMLG
Lock:	PtBld
Default:	FL2
PtRes:	HPM

Logic Output Enable—Allows the respective output connection defined by LODSTN to write the value of the specified logic-slot parameter to the destination. The logic output is allowed when the enable function, selected from the list below, is On. If the FL1 parameter is specified and the output data type is logical, output occurs only during change (normally, it is continuous).

Range: FL1...FL12 [Local flag; either a 1 (On) or a 0 (Off)]
 SO1...SO24 [Logic-block output; either a 1 (On) or a 0 (Off]
 L1...L12 [Logic input value to logic slot (logical)]

LOGALGID(1)-(24) (Logic)

Type:	E:\$PMMLGAL	Logic Block Algorithm Identifier—Defines the log	gic algorithm to be used
Lock:	PtBld	for a particular logic block. A different logic algorithm can be specified for	
Default:	NULL	each logic block within a logic slot. Refer to the HPM Control Functions	
PtRes:	HPM	and Algorithms manual for a detailed description o	f each logic algorithm.
Range:	Algorithm ID	Description	Input(s)
-	0-NULL	No logic algorithm is executed	
	1-AND	AND Gate	*S1, S2, S3
	2- OR	OR Gate	*S1, S2, S3
	3- NOT	NOT Gate	S 1
	4-NAND	NAND Gate	*S1, S2, S3
	5-NOR	NOR Gate	*S1, S2, S3
	6- XOR	XOR Gate	S1, S2
	7-QOR2	Qualified OR Gate with 2 Inputs On	S1, S2, S3, S4
	8-QOR3	Qualified OR Gate with 3 inputs On	S1, S2, S3, S4
	9-SWITCH	Switch	S1, S2, S3
	10- EQ	Compare equal with deadband	R1, R2, DEADBAND
	11- NE	Compare not equal with deadband	R1, R2, DEADBAND
	12 -GT	Compare > than with deadband	R1, R2, DEADBAND
	13- GE	Compare > than or = with deadband	R1, R2, DEADBAND
	14 -LT	Compare < than with deadband	R1, R2, DEADBAND
	15- LE	Compare < than or = with deadband	R1, R2, DEADBAND
	16-CheckBad	Check for Bad	R1
	17- Pulse	Fixed-size Pulse	S1, DLYTIME
	18-MinPulse	Pulse with minimum time limit	S1, DLYTIME
	19-MaxPulse	Pulse with maximum time limit	S1, DLYTIME
	20- Delay	Either Direction	S 1
	21-OnDly	Off-On Delay	S1, DLYTIME
	22-OffDly	On-Off Delay	S1, DLYTIME
	23-WatchDog	Watchdog Timer	FL6
	24-FlipFlop	Flip Flop	S1, S2, S3
	25-ChDetect	Change Detect	S1, S2 , S3
	26-DISCREP3	Discrepancy Gate with 3 inputs plus delay	S1, S2, S3, DLYTIME

*Inputs S1-S3 can be inverted as required

LOGICSRC (DigComp, DevCtl)

Type:	Ent_Id	Logic Source —Specifies the tag name of a point, usually a logic slot, that is	
Lock:	PtBld	controlling the interlock signals.	
Default:	Null		
PtRes:	NIM		
Range:	Tag name can b	e up to sixteen characters and the permissible character set is as follows:	
	Alphabetics A-Z (uppercase only)		
	Numerics 0-9 (a	an all numeric tag name is not allowed)	
	Underscore (_) underscores ar	cannot be used as the first character or the last character, and consecutive e not allowed.	
	Embedded space	e characters are not allowed.	

LOGMIX (Logic)

 Type:
 E:\$LOGMIX
 Logic Mix—Defines the number of input connections, logic blocks, and output connections this logic slot contains.

 Default:
 12_24_4

 PtRes:
 HPM

		Input Connections	Number of	Output Connections
Range:		LISRC(1)-LISRC(12)	Logic Blocks	LOSRC(1)-LOSRC(12)
	12_24_4	12	24	4
	12_16_8	12	16	8
	12_8_12	12	8	12

LOSRC(1)-(2) (DevCtl)

E:\$PMDVPRM Device Control Output Connection Source-Defines the Device Control Type: parameter that is to provide its value to the output connection specified by in an Array (1..2)parameter LODSTN(n), Device Control Output Connection Destination. Lock: **PtBld** Default: **FL1** PtRes: HPM FL1...FL12 [Local flag; either a 1 (On) or a 0 (Off]) Range: D1, D2 [Digital PV inputs, either a 1 (On) or a 0 (Off)] **SI0** [Safety interlocks, either a 1 (On) or a 0 (Off)] **I0, I1, I2** [Interlocks, either a 1 (On) or a 0 (Off)] P0, P1, P2 [Permissives, either a 1 (On) or a 0 (Off)] PISO1..PISO12 [Primary Input Gate Values (logical)] SISO1..SISO12 [Secondary Input Gate Values (logical)] PGSO1..PGSO4 [Primary Gate Output Values (logical)] SGSO1, SGSO2 [Secondary Gate Output Values (logical)] L1..L12 [Logic input value to device control slot (either logical or real)] NN1..NN8 [Local numerics (real)] PINN1..PINN12 [Numeric constant for arithmetic comparisons (real)] SECVAR [Secondary variable input value (real)]

LOSRC(1)-(12) (Logic)

Type:	E:\$PMMLGPM	Logic Output Connection Source—Defines the logic-slot parameter that is	
Lock:	Eng/PB	to provide its value to the output connection specified by parameter	
Default:	FL1	LODSTN(n), Logic Output Connection Destination.	
PtRes:	HPM		
Range:	FL1FL12 [Local flag; either a 1 (On) or a 0 (Off)]		
-	SO1SO24 [Logic block output; logical 1 or 0)]		
	L1L12 [Input to the logic slot (logical or real value)]		
	NN1NN8 [Local n	umeric; data type of Real]	

LOWERTIM

Type:	Real
Lock:	View
Default:	N/A
PtRes:	HPM
Range:	N/A

Lower Output Pulse Time (In Seconds)—Indicates the lower output pulse time in seconds. This value is clamped to MAXPULSE or CYCLETIM, whichever is lower. If LOWERTIM is smaller than RP*MINPULSE, no pulse is issued.

LOWRDSTN

Type:	Universal	Lower OP Pulse
	Ent.Prm	pulse. LOWRD
Lock:	PtBld	OFFPULSE of a
Default:	Null	
PtRes:	HPM	
Range:	ONPULSE	
Ŭ	OFFPULSE	

Lower OP Pulse Destination—Defines the destination of the Lower output pulse. LOWRDSTN must point to parameter ONPULSE or parameter OFFPULSE of a DigOut point.

LOWRRATE

 Type:
 Real
 Lower OP Stroke Rate in Percent/Second

 Lock:
 Supr

 Default:
 100.0%/sec.

 PtRes:
 HPM

 Range:
 >0.0 percent/second

LRL (STI)

Type:	Real
Lock:	View
Default:	NaN
PtRes:	HPM
Range:	N/A, NAN

Lower Range Limit—Indicates the lower range limit of the PV at the smart transmitter. This limit is fixed and cannot be changed. Refer to the description of the STI_EU parameter for the LRL engineering units.

LRV (STI)

Type:	Real
Lock:	Supr/View
Default:	NaN
PtRes:	HPM

Lower Range Value—Defines the lower end of the operating range for the PVRAW value. User entry for PVEULO is the user-entered engineering-unit value that corresponds to LRV. Refer to description of the STI EU parameter for the LRV engineering units.

This parameter can be changed only when the STI point execution state PTEXECST is Inactive.

Range: N/A, NaN

LSEQNUMR

Type:	Integer
Lock:	Eng
Default:	0
PtRes:	IOP
Range:	?
0	

Last Sequence Number-Specifies the sequence number of the last personality image file packet received by the IOP.

LSIOLORN(0) - (4) (HPM Box)

Type:	Integer
Lock:	View
Default:	0
PtRes:	HPM
Range:	<u>≥</u> 0

Last Hour's I/O Link Fetch/Store Overruns-Indicates the number of I/O Link access overruns that have been detected in the last hour.

LSIOLORN is set equal to the contents of CRIOLORN, every hour on the hour.

LSPPXORN(0 - 8) (HPM Box)

Type:	Integer	Last Hour's Point Processing Overruns Per Cycle—Indicates the number of
Lock:	View	point processing overruns that have been detected in the last hour.
Default:	0	
PtRes:	HPM	LSPPXORN is set equal to the contents of parameter CRPPXORN, every hour
		on the hour.

Range: ≥ 0

LSTWHNER (ProcMod)

Last When Error-The CL Fail/Error code masked by the "When Error" clause.

Type:	Integer
Lock:	View
Default:	0
PtRes:	HPM
Range:	<u>≥</u> 0

LSUCNORN (HPM Box)

Type:	Integer
Lock:	View
Default:	0
PtRes:	HPM
Range:	<u>></u> 0

Last Hour's UCN Access Overruns-LSUCNORN is set equal to the contents of parameter CRUCNORN, the current hour's UCN Access Overruns, every hour on the hour.

M (IncrSum, ORSel, Switch)

Type:IntegerLock:PtBldDefault:2PtRes:HPMRange:2 to 4

Number of Inputs

MAINDAT (DevCtl, DigComp)

 Type:
 Time
 Maintenance Reset Statistics Date—The date and time of the reset of maintenance

 Lock:
 Engr
 statistics that can also be written by the engineer. Statistics can be reset by the

 Default:
 Time of Point Build
 operator only when the device is red tagged, while programs can reset them at any time. Resetting is accomplished by setting the RESETFL to ON.

 PtRes:
 HPM

 Range:
 Time Stamp (DD MMM YY HH:MM:SS)

Helpful Hint: This parameter is reset when the RESETFL parameter = ON.

MAINTOPT (DevCtl, DigComp)

 Type:
 Logical
 Maintenance Option—Indicates if the maintenance statistics option is used.

 Lock:
 PtBld

 Default:
 Off

 PtRes:
 HPM

 Range:
 Off (Maintenance statistics are not available) On (Maintenance statistics are available)

MANMODFL (RegCtl)

Type: Logical Lock: View

Manual Mode Flag—Indicates whether the current mode of the slot is Manual.

Default: N/A PtRes: HPN

 PtRes:
 HPM

 Range:
 Off (Current mode is other than Manual)

 On (Current mode is Manual)

MANOPCMD

Type:	E:\$MANOPCM	Manual Output Pulse Command—Defines the output pulse command issued
Lock:	Oper	by the operator for raising and lowering the output. See also,
Default:	None	MANOPTIM.
PtRes:	HPM	

Range: 0-None (No change)

- 1-Raise 1 (Raise output by 1 MANOPTIM each keystroke)
- 2-Lower_1 (Lower output by 1 MANOPTIM each keystroke)
- 3-Raise_10 (Raise output by 10 MANOPTIMs each keystroke)
- 4-Lower_10 (Lower output by 10 MANOPTIMs each keystroke)

MANOPTIM

Type:	Real	Manual Output Pulse Time (in seconds)—Defines the width of the raise or lower
Lock:	Eng/PB	output pulse that is issued by the operator.
Default:	1.0	
PtRes:	HPM	
Range:	0.0 to 60.0 seco	onds

MASKTIM (DevCtl)

Type:	Integer	Masktime—The amount of time the SECVAR parameter alarms are masked after
Lock:	Supr	a change in the output state.
Default:	0	
PtRes:	HPM	
Range:	0 to 1000 secon	ds

MAXCNFPU (HPM Box)

Type:	Real	Maximum Configurable PUs—Specifies
Lock:	View	
Default:	N/A	
PtRes:	HPM	
Range:		

Helpful Hint:

MAXPU (ProcMod)

Type:	Real	Maximum PUs—Specifies the maximum PUs used for point processing.
Lock:	View	
Default:	0	
PtRes:	HPM	
Range:	0 to	
0		

Helpful Hint:

MAXPULSE

Type:	Real	Maximum Pulse Time Limit—Defines the maximum pulse time limit. If the
Lock:	Supr	calculated pulse time is greater than this value then a pulse of length
Default:	60	MAXPULSE is issued.
PtRes:	HPM	
Range:	MINPULSE to	60.0 seconds
	NaN	

MAXSLOTS

Type:RealLock:ViewDefault:0PtRes:IOPRange:0 - 127 slots

Maximum Available Slots—Returns the maximum number of slots that can be configured in an IOP.

Helpful Hint: Applies to the following IOP types: AO16, DI32 and DO32.

MAXTIM0H (DevCtl, DigComp)

Type:	Real
Lock:	Supr
Default:	0
PtRes:	HPM
Range:	N/A

Maximum Time Allowed in State 1—The maximum amount of time (based on the PV) in hours allowed for state 1.

MAXTIM1H (DevCtl, DigComp)

Type:	Real
Lock:	Supr
Default:	0
PtRes:	HPM
Range:	N/A

Maximum Time Allowed in State 1—The maximum amount of time (based on the PV) in hours allowed for state 2.

MAXTIM2H (DevCtl, DigComp)

Type:	Real
Lock:	Supr
Default:	0
PtRes:	HPM
Range:	N/A

Maximum Time Allowed in State 2—The maximum amount of time (based on the PV) in hours allowed for state 3.

MAXTRAN0-2 (DevCtl, DigComp)

Type:	Time	Maximum Number of Transitions into State—This is the maximum number of
Lock:	Supr	transitions allowed in each state, and is the target value for maintenance
Default:	0.0	statistics.
PtRes:	HPM	
Range:	0 (There is no l	imit)

MDMHWREV (HPM Box, NIM)

Type:	String_2	Modem Hardware Revision
Lock:	View	
Default:		
PtRes:	HPM, NIM	
Range:	Hexadecimal Ch	naracters 00 to FF

MEMFWREV

Type:String_2Memory Firmware RevisionLock:ViewDefault:PtRes:HPMRange:Hexadecimal Characters 00 to FF

MEMHWREV

 Type:
 String_2
 Memory Hardware Revision

 Lock:
 View
 Default:

 PtRes:
 HPM

 Range:
 Hexadecimal Characters 00 to FF

MINPULSE

 Type:
 Real
 Minimum Pulse Time Limit—Defines the minimum pulse time limit for the Lock:

 Lock:
 Supr
 Raise pulse. If the calculated pulse time value is smaller than this value, no Default:

 Default:
 0.0
 pulse is issued.

 PtRes:
 HPM

 Range:
 0.0 seconds to MAXPULSE NaN

MINUTE (HPM Box)

Integer Current Minute—Value of the LCN time in the HPM.

Lock: View Default: N/A PtRes: HPM Range: 0 to 59

Type:

MNFASIC (HPM Box)

Type:IntegerLock:ViewDefault:0PtRes:HPMRange:1 - 31

HPMM Communications Control Card ASIC Revision—

HPMM Communications Control Card Manufacturing Date-Day-

MNFCCDAY (HPM Box)

Type:IntegerLock:ViewDefault:0PtRes:HPMRange:1 - 31

HPM Parameter Reference Dictionary

MNFCCINF (HPM Box)

Type:String_8Lock:ViewDefault:0PtRes:HPMRange:

HPMM Communications Control Card Manufacturing Information-

MNFCCMTH (HPM Box)

Type:IntegerLock:ViewDefault:0PtRes:HPMRange:1 - 12

HPMM Communications Control Card Manufacturing Date-Month-

MNFCCSER (HPM Box)

Type:String_24Lock:ViewDefault:0PtRes:HPMRange:

HPMM Communications Control Card Serial Number-

MNFCCYR (HPM Box)

Type:IntegerLock:ViewDefault:0PtRes:HPMRange:1 - 99

HPMM Communications Control Card Manufacturing Date-Year—

MNFFPGA (HPM Box)

Type:IntegerLock:ViewDefault:0PtRes:HPMRange:1 - 31

HPMM I/O Link Card FPGA Revision—

MNFIODAY (HPM Box)

Type:IntegerLock:ViewDefault:0PtRes:HPMRange:1 - 31

HPMM I/O Link Card Manufacturing Date- Day

MNFIOINF (HPM Box)

Type:String_8Lock:ViewDefault:BlankPtRes:HPMRange:0 - 99

HPMM IO Link Processor Card Manufacturing Information

MNFIOMTH (HPM Box)

Type:IntegerLock:ViewDefault:0PtRes:HPMRange:1 - 12

HPMM IO Link Card Manufacturing Date-Month

MNFIOSER (HPM Box)

Type:String_24Lock:ViewDefault:0PtRes:HPMRange:

HPMM IO Link Card Serial Number

MNFIOYR (HPM Box)

Type:IntegerHPMM IO Link Card Manufacturing Date-YearLock:ViewDefault:0PtRes:HPMRange:0 - 99

MNFMDDAY (HPM Box)

Type:IntegerLock:ViewDefault:0PtRes:HPMRange:1 - 31

HPMM UCN Interface Card Manufacturing Date-Day

MNFMDINF (HPM Box)

Type:String_8Lock:ViewDefault:BlankPtRes:HPMRange:

HPMM UCN Interface Card Manufacturing Information

MNFMDMTH (HPM Box)

Type:IntegerLock:ViewDefault:0PtRes:HPMRange:1 - 12

HPMM UCN Interface Card Manufacturing Date-Month

MNFMDSER (HPM Box)

Type:String_24Lock:ViewDefault:0PtRes:HPMRange:N/A

HPMM UCN Interface Card Serial Number

MNFMDYR (HPM Box)

Type:IntegerLock:ViewDefault:0PtRes:HPMRange:0 - 99

HPMM UCN Interface Card Manufacturing Date - Year

MODATTR

Type:E:MODATTRMode Attribute—Defines whether the operator or the sequence program has the
authority to change certain parameters of this data point. At the Universal
Station, the mode attribute is displayed next to the mode of the data point. If
the mode attribute is Program, a -P appears to the left of MODE. If the
attribute is operator, blanks are displayed to the left of mode.

Range: 0-Operator (Operator can set Mode, OP, SP, Ratio, Bias)
1-Program (Program can set Mode, OP, SP, Ratio, Bias)
2-Normal
3-None (No mode attribute)

Helpful Hint: MODATTR change requires SHUTDOWN = Off and REDTAG = Off. When the "normal mode" button on the Operator's keyboard is pressed, MODATTR = NMODATTR unless NMODATTR = None.

MODE (AnalgOut)

Type: Lock:	E:MODE Oper	Mode —Defines the current mode of the data point. Parameter MODATTR determines whether operator or the sequence program provides the output value
Default:	-	for this point. If PNTFORM is Component, then MODE parameter is not
PtRes:	HPM	applicable for this data point.
Range:	1- Man	(Operator or Program provides the point's output value (OP))
Ũ	2-Cas	(Data point receives its output value from a primary data point.
		If RCASOPT is DDC, data point receives its output value from an AM point.)
	5-Normal	(Parameter NMODE determines this point's mode)
	Helpful H	<i>lint:</i> 1. MODE change by a program requires MODATTR = Program and
		REDTAG = Off.
		2. MODE change by an operator requires MODATTR = Operator,
		MODEPERM = Permit, and $REDTAG = Off$.

MODE (DigComp, DevCtl)

Type:	E:MODE	Mode of Digital Composite and Device Control Slot—Defines the current mode
Lock:	Oper	of the data point. Parameter MODATTR determines whether operator or the
Default:	Man	sequence program provides the output value for this point. If PNTFORM is
PtRes:	HPM	Component, then MODE parameter is not applicable for this data point.
Range:	1- Man	(Operator or Program controls slot's output (OP))
	5-Normal	(Parameter NMODE contains slot's mode)
	Helpful H	<i>int:</i> 1. MODE change by a program requires MODATTR = Program,

pful Hint:	1.	MODE change by a program requires MODATTR = Program,
		SHUTDOWN = Off, and REDTAG = Off.
	2.	MODE change by an operator requires MODATTR = Operator,
		MODEPERM = Permit, SHUTDOWN = Off, and REDTAG = Off.

MODE (RegCtl)

Type: Lock: Default: PtRes:	E:MODE Oper Man HPM	Mode of Regulatory Control Slot—Defines the mode of the RegCtl point.		
Range:	1- Man	(Operator or discontinuous program controls slot's output (OP), regardless of any automatic control strategy)		
	2-Cas	(Upstream slot's OP is this slot's SP)		
	3-Auto	(OP value is computed by the configured RegCtl algorithm, and the setpoint (SP) comes from the local setpoint (LSP) location in the RegCtl point. An operator or a discontinuous program can change the setpoint value.		
	4-Bcas	(Local cascade mode where the RegCtl point receives its setpoint from the OP of a primary data point, even though the entry for the RCASOPT parameter is Spc, DdcRsp, or Rsp (where the AM provides the setpoint). In this way, should the AM or the NIM fail, the control strategy will shed to the local cascade mode.)		
	5-Normal	(Parameter NMODE determines the normal mode of this slot)		
	Helpful H	<i>int:</i> 1. MODE change by a program requires MODATTR = Program and REDTAG = Off.		
		2. MODE change by an operator requires MODATTR = Operator,		

MODEAPPL(1)-(4) (DevCtl, DigComp, RegCtl)

Type:	Logical	Mod
Lock:	View	poin
Default:	Man=On	MO
U	MODEAPPL [Auto]=Off	MO
	MODEAPPL [Bcas]=Off	MO
	MODEAPPL[Cas]=Off	MO
	Static for DevCtl	
	and Digcomp points	
PtRes:	HPM	
Range:	N/A	

Mode Applicability—Defines changes for Regulatory Control points:

MODEAPPL[1] = ON if MAN mode if valid, else it is OFF MODEAPPL[2] = ON if AUTO mode is valid, else it is OFF MODEAPPL[3] = ON if CAS mode is valid, else it is OFF MODEAPPL[4] = ON if BCAS mode is valid, else it is OFF

MODEPERM (AO)

Type:	E:MODEPERM	Mode Permissive—Determines whether the operator can change the mode of
Lock:	Eng/PB	this data point.
Default:	Permit	
PtRes:	HPM	
Range:	0-Permit (Operator	can change this point's mode)
-	1-NotPerm (Operate	or cannot change this point's mode)
	· -	

MODEPERM (DevCtl, DigComp, RegCtl)

Type:	E:MODEPERM	Mode Permissive—Determines whether the operator can change the mode of
Lock:	Eng	this data point.
Default:	Permit	
PtRes:	HPM	
Range:	0-Permit (Operator	can change this point's mode)
	1-NotPerm (Operat	or cannot change this point's mode)

MODNUM

Type:	Integer	HPMM/IOP Module Number—Defines the module number in the HPM. The
Lock:	PtBld	HPMM is module number 0; the IOP Cards are module numbers 1–40.
Default:	N/A	
PtRes:	NIM	
Range:	0 to 40	(0 is reserved for the HPMM)

MOMSTATE (DevCtl, DigComp)

Type:	E:\$MOMSTAT	Momentary Output States—Defines which of the output states are
Lock:	Eng/PB	momentary. Refer to the HPM Control Functions and Algorithms manual
Default:	None	for a detailed description.
PtRes:	HPM	-
Range:	0-None (No momentary output states)	
, in the second s	1-Mom_1 (State 1	is momentary if NOSTATES = $2 \text{ or } 3$)
	2-Mom_0 (State 0	is momentary if NOSTATES = 2)
	3-Mom 2 (State 2	is momentary if NOSTATES $= 3$)

4-Mom_1_2 (State 1 and State 2 are momentary; valid if NOSTATES = 3)

MONPER (HPM Box)

Type:IntegerMonitoring Period—Specifies the monitoring period in secondsLock:EngDefault:3600PtRes:HPMRange:4 - 3600 (must be in multiples of 4 seconds)

MONTH (HPM Box)

Type:IntegerCurrent Month—The value of the LCN date in the HPM.Lock:ViewDefault:N/APtRes:HPMRange:1 to 12 (January to December)

MOVPVFL

Logical

Type:

Moving PV Flag—Indicates whether the PV is moving from one state to another state.

Lock:ViewanotherDefault:OffPtRes:HPMRange:Off (PV is not moving)On (PV is moving)

MOVPVTXT (HPM Box, DevCtl, DigComp)

Type:String_8
Lock:Moving PV Text Descriptor—Defines the state descriptor that is displayed when
the Digital Composite or Device Control point is changing states (moving from
one state to another), or is in-between states. This descriptor, defined on the
HPM box point, is displayed for all digital composite or device control points in
this HPM box if PVTXTOP, defined on the Digital Composite or Device
Control point, = OFF. This parameter contains the text for a configured moving
PV on a per point basis if the PVTXTOPT is ON.

Range: The permissible character set for the up to eight character descriptor is as follows: Alphabetics A-Z (uppercase only) Numerics 0-9, Underscore (_)

MPCFWREV (HPM Box)

Type:String_2Lock:ViewDefault:BlankPtRes:HPMRange:

HPMM Master Processor Card Firmware Revision-

HPMM Master Processor Card Hardware Revision-

MPCHWREV (HPM Box)

Type:String_2Lock:ViewDefault:BlankPtRes:HPMRange:

MSGPEND (ProcMod)

Type:	Logical
Lock:	View
Default:	None
PtRes:	HPM
Range:	N/A

Sequence Message Pending—Indicates that a confirmable sequence message requiring confirmation has been issued to the operator.

MSGTXT(0)-(15) (NIM)

Type:	String_8
	in an Array
	(015)
Lock:	PtBld
Default:	Blank
PtRes:	NIM
Range:	0 to 15
Ũ	

Status Message Text—Indicates the text for the self-defined enumeration of STSMSG. MSGTXT(0) is always NONE, and cannot be configured. Refer to "Status Messages" in the Control Functions and Algorithms Manual for more information.

MXRMPDEV (RampSoak)

Type: Lock:	Real Supr NaN
Default: PtRes: Range:	$\begin{array}{l} \text{Nalv} \\ \text{HPM} \\ \geq 0.0, \\ \text{NaN} \end{array}$

Maximum Ramp Deviation Value—If the PV falls behind the SP during a ramp segment by more than the value of MXRMPDEV, the ramping action is stopped until the PV reaches the SP.

MXSOKDEV (RampSoak)

Type:	Real
Lock:	Supr
Default:	NaN
PtRes:	HPM
Range:	≥ 0.0 ,
-	NaN

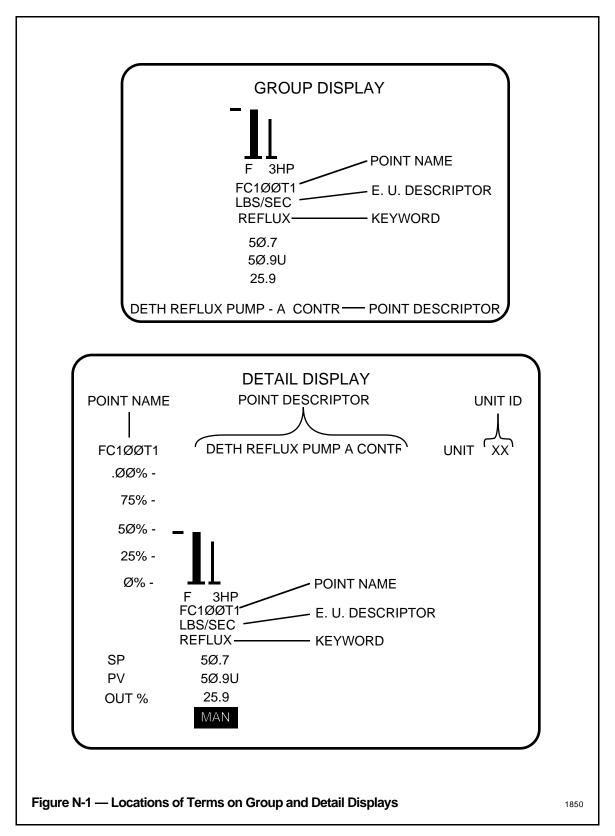
Maximum Soak Deviation Value—If the PV falls behind the SP during a soak segment by more than the value of MXSOKDEV, the soak timer is stopped until the PV reaches SP.

N (Calcultr)

Integer

Number of Inputs—Defines the number of inputs to this algorithm.

Type: Lock: PtBld Default: 1 PtRes: HPM Range: 1 to 6


N (HiLoAvg, Summer)

Type: Integer Number of Inputs—Defines the number of inputs to this algorithm. PtBld Lock: Default: 2

PtRes: HPM 2 to 6 inputs Range:

NAME

Type: Lock: Default:		Point Name —Identifies this point to the system and on displays, reports, and logs. Figure N-1 shows examples of the Group and Detail Displays on which the point name appears.
PtRes:	NIM	Digital Input, Digital Output, Analog Output, Flag, and Numeric-type data points do not have to be configured by using the point builder (DEB). All other types of data points have to be configured by using the DEB and require that a point name be specified during the point build process.
Range:	Alphabetics A-2 Numerics 0-9 (Underscore (_) underscores a	be up to 16 characters, and the permissible character set is as follows: Z (uppercase only) an all numeric point name is not allowed) cannot be used as the first character or the last character, and consecutive are not allowed. e characters are not allowed.

NARRSLOT (HPM Box)

 Type:
 Integer

 Lock:
 PtBld

 Default:
 0

 PtRes:
 HPM

 Range:
 0 to 500

Number of Array Slots in an HPM

NCTLSLOT (HPM Box)

Type:	Integer
Lock:	PtBld
Default:	0
PtRes:	HPM
Range:	0 to 250

Number of Regulatory Control Slots in an HPM—Refer to the *HPM Control Functions and Algorithms* manual for a detailed description of HPM processing capacity.

NDCSLOT (HPM Box)

Type:	Integer
Lock:	PtBld
Default:	0
PtRes:	HPM
Range:	0 to 999

Number of Digital Composite Slots in an HPM—Refer to the *HPM Control Functions and Algorithms* manual for a detailed description of HPM processing capacity.

NDEVSLOT (HPM Box)

Type:	Integer
Lock:	PtBld
Default:	0
PtRes:	HPM
Range:	0 to 400

Number of Device Control Points Configured—The number of Device Control points in an HPM Box point. Refer to the *HPM Control Functions and Algorithms* manual for a detailed description of HPM processing capacity.

NEIPRQU (NIM PSDP)

Type:	Real
Lock:	View
Default:	0
PtRes:	NIM
Range:	N/A

Number of Event Initiated Processing Requests—The number of Event Initiated Processing requests sent in the last 15 seconds.

NEVTAVG (HPM Box)

Type:RealLock:ViewDefault:0PtRes:HPMRange:N/A

Average number of Events per Second—Average number of events generated by the HPM per second.

Helpful Hint: This statistic can be viewed on the Toolkit Displays.

NEVTMAX (HPM Box)

Type:	Real	Max
Lock:	View	gene
Default:	0	
PtRes:	HPM	
Range:	N/A	
0		

Maximum number of Events per Second—Maximum number of events generated by the HPM per second.

Helpful Hint: This statistic can be viewed on the Toolkit Displays.

NFASTCTL (HPM Box)

Type:	Integer	Number of Fast Regulatory Control Slots—Fast slots are processed four times
Lock:	PtBld	per second.
Default:	0	
PtRes:	HPM	
Range:	0 to 100, cannot exceed NCTLSLOT	

NFASTDC (HPM Box)

Type:IntegerNumber of Fast Digital Composite Slots—Fast slots are processed four timesLock:PtBldper second.Default:0PtRes:HPMRange:0 to 999, cannot exceed NDCSLOT

NFASTDEV (HPM Box)

Type:	Integer	Number of Fast Device Control Points Configured—The number of fast device
Lock:	PtBld	control points in an HPM Box data point. Fast slots are processed four times
Default:	0	per second.
PtRes:	HPM	
Range:	0 to 100, cannot	t exceed NDEVSLOT

NFASTLOG (HPM Box)

 Type:
 Integer
 Number of Fast Logic Slots—Fast slots are processed four times per second.

 Lock:
 PtBld

 Default:
 0

 PtRes:
 HPM

 Range:
 0 to 100, cannot exceed NLOGSLOT

NFASTPV (HPM Box)

 Type:
 Integer
 Number of Fast Regulatory PV slots—Fast slots are processed four times per Lock:

 PtBld
 second.

 Default:
 0

 PtRes:
 HPM

 Range:
 0 to 100, cannot exceed NPVSLOT

NFLAG (HPM Box)

Type:	Integer
Lock:	View
Default:	16, 384
PtRes:	HPM
Range:	16,384

Number of Flags in HPM Box Data Point—The HPM always provides 16, 384 box flag variables.

NFLAG (Array)

Type:IntegerNumber of Flags in Array Point FL Array—Defines the number of mapped flagsLock:PtBldfrom either the HPM box (EXTDATA \neq IO_FL) or a serial interface IOP-Default:0connected device (EXTDATA=IO_FL).PtRes:HPMRange:0 to 512 (When EXTDATA = IO_FL)
0 to 1023 (When EXTDATA \neq IO_FL)

NI0-2 (DevCtl, DigComp)

 Type:
 Logical
 Inverted Interlocks Value—The negative value of the corresponding interlock.

 Lock:
 Engr

 Default:
 On

 PtRes:
 HPM

 Range:
 On (Interlock inactive)

Off (Interlock inactive) **Off** (Interlock active)

Helpful Hint: This parameter can be changed by the engineer only if the point is inactive or if the HPM is idle.

NIMDAY (NIM)

Type:IntegerDay in Which the NIM Personality was CreatedLock:ViewDefault:1PtRes:NIMRange:1 to 31

Helpful Hint: This parameter is accessed using \$NTWRKuu.NIMDAY (where uu = UCN Network number).

NIMMONTH (NIM)

Type:	Integer	Month in Which the NIM P	Personality was Ci	reated
Lock:	View		•	
Default:	1			
PtRes:	NIM			
Range:	1 to 12			

Helpful Hint: This parameter is accessed using \$NTWRKuu.NIMMONTH (where uu = UCN Network number).

NIMREV (NIM)

Type:	Integer	Revision Number of the NIM Personality
Lock:	View	
Default:	0	
PtRes:	NIM	
Range:	N/A	

Helpful Hint: This parameter is accessed using \$NTWRKuu.NIMREV (where uu = UCN Network number).

NIMVERS (NIM)

Type:	Integer	Version Number of the NIM Personality
Lock:	View	
Default:	0	
PtRes:	NIM	
Range:	N/A	

Helpful Hint: This parameter is accessed using \$NTWRKuu.NIMVERS (where uu = UCN Network number).

NIMYEAR (NIM)

Type:	Integer	Year in Which the NIM Personality was Created
Lock:	View	
Default:	0	
PtRes:	NIM	
Range:	0 - 99	
-		

Helpful Hint: This parameter is accessed using \$NTWRKuu.NIMYEAR (where uu = UCN Network number).

NLFM

Type:IntegerNoLock:SuprDefault:1PtRes:HPMRange:0 or 1

Nonlinearity Form—Defines the form of the nonlinear gain.

NLGAIN (Pid)

 Type:
 Real

 Lock:
 Supr

 Default:
 0.0

 PtRes:
 HPM

 Range:
 0.0 to 240.0

Nonlinear Gain—Defines the value of the nonlinear gain factor KNL.

NLOC (VdtLdLag)

Type:IntegerNumber of Locations in Delay TableLock:EngDefault:30PtRes:HPMRange:2 to 30

NLOGSLOT (HPM Box)

Type:	Integer
Lock:	PtBld
Default:	0
PtRes:	HPM
Range:	0 to 400

Number of Logic Slots in the HPM—Refer to the *HPM Control Functions and Algorithms* manual for a detailed description of HPM processing capacity.

NMIN (HiLoAvg)

Type:IntegerMinimum Number of Good InputsDefines the minimum number of validLock:Suprinputs (PV status is good or uncertain) to this algorithm.Default:1PtRes:HPMRange:1 to N (N is the number of inputs selected by N parameter)

NMODATTR (RegCtl)

Type:	E:MODATTR	Normal Mode Attribute—Defines whether an operator or a program can change
Lock:	Engr	certain parameters such as the mode, SP, or OP of a data point when the
Default:	None	point is in the normal mode.
PtRes:	HPM	

Range: 0-Operator (MODATTR can be set equal to Operator)

- 1-Program (MODATTR can be set equal to Program)
- 2-Normal

3-None (MODATTR is not affected by this parameter)

If NMODATTR = Operator or Program and the "normal mode" button on the Helpful Hint: Operator's keyboard is pressed, MODATTR = NMODATTR. If NMODATTR is to be changed, the engineer must change it.

NMODE (AnalgOut)

Type: E:MODE Normal Mode-Allows user to define the normal mode for this data point.

Lock: Engr/PB

Default: None PtRes: HPM

Range: 0-None (No configured "normal" operating mode) 1-Man (Manual is configured "normal" mode)

2-Cas (Cascade is configured "normal" mode)

NMODE configuration for the Cas option requires RCASOPT = Ddc. Helpful Hint:

NMODE (DevCtl, DigComp)

E:MODE Normal Mode-Allows user to define the normal mode for this data point. Type: Lock: View

Default: Man

PtRes: **HPM**

1-Man (Manual is the "normal" operating mode) Range:

NMODE (RegCtl)

E:MODE **Normal Mode**—Allows user to define the normal mode for this data point.

Type: Lock: Engr Default: None PtRes: HPM 0-None (No configured "normal" operating mode) Range: 1-Man (Manual is the "normal" operating mode) 2-Cas (Cascade is the "normal" operating mode) 3-Auto (Automatic is the "normal" operating mode)

4-Bcas (Backup Cascade is the "normal" operating mode)

Helpful Hint: Mode. If NMODATTR = None and the "normal mode" button on the Operator's keyboard is pressed, MODE is set to the contents of NMODE.

NMODETRK (HPM Box)

Type:	E:\$NMODETR
Lock:	PtBld
Default:	Enable
PtRes:	HPM
Range:	Enable
	Disable

Normal Mode Tracking Supression —Enable/disable Normal Mode and Normal Mode attribute from tracking mode and mode attribute changes.

NMSGTXT (NIM)

Type:	Integer
Lock:	PtBld
Default:	0
PtRes:	NIM
Range:	0 to 15

Number of Message Text Items—Defines the number of message text items that you can enter. See MSGTXT.

NN(i) (Array)

Type:	Real	Array Point Numeri
Lock:	Determined by	(defined by NNUME
	SPLOCK	connected device (wh
	parameter	IOPNUM, FTANUM
Default:	N/A	
PtRes:	HPM	
Range:	1≤i≤Array pa	rameter NNUMERIC

Array Point Numeric Variables—Numerics are mapped from either the HPM box (defined by NNUMERIC and NNSTIX parameters) or from a serial interface IOP-connected device (when EXTDATA=IO_NN, mapping is defined by the IOPNUM, FTANUM, DEVADDR, NNSTIX, and NNUMERIC parameters).

NN(1)-(8) (DevCtl, Logic)

Type:	Real
Lock:	Supr
Default:	NaN
PtRes:	HPM
Range:	N/A

Numerics 1-8—Eight numerics are provided with each device control and logic slot. The numerics can be used as reference values for the comparison logic algorithms, or they can be used as source parameters for the output connections when writing predefined analog constants to other points. The values of the numerics can be changed from the Universal Station, by other device control logic slots, or by user-written programs.

NN(1)-(80) (ProcMod)

Type:	Real
Lock:	Determined
	by SPLOCK
	parameter
Default:	NaN
PtRes:	HPM
Range:	N/A

Numeric Variables—Each process module in the HPM has 80 numerics that can be used for implementing batch operations.

NN(1)-(16,384) (HPM Box)

Type:	Real
Lock:	Oper
Default:	NaN
PtRes:	HPM

Range: N/A

Numeric Value—This is an array of up to 16,384 numeric variables. The upper bound of this array is determined by the NNUMERIC parameter. Numerics NN(1) to NN (2047) are taggable. Numerics NN(1) to NN (4095) are accessible from the LCN by using hardware form [!Box.NN()]. Numerics 4096 through 16,384 are accessible only through Array points.

NNDESC (Array)

Type:String_64NN Array Descriptor—Describes NN data for the Array point.Lock:PtBldDefault:SpacesPtRes:HPMRange:N/A

NNINSET(1)-(10) (DevCtl)

Integer
in an Array
(110)
Supr
0
HPM
0 to 32767

Numeric 1 - 10—A set of 10 integers that are used by the primary input gate IN_SET algorithm.

NNSTIX (Array)

Type:	Real	Numeric Array Start Index—Defines the start index in Box NN variables, or a	
Lock:	PtBld	serial interface-connected device.	
Default:	0		
PtRes:	HPM		
Range:	0 to 99,999 (When EXTDATA=IO_NN, 0 can be valid device index)		
	0 to Box param	eter NNUMERIC (When EXTDATA≠IO_NN, 0 indicates no numerics are	
	configured)		

NNUMERIC (HPM Box)

Type:	Integer	Number of Numerics in HPM Box Data Point—The number of box numerics is
Lock:	PtBld	determined in intervals of 16 numerics.
Default:	0	
PtRes:	HPM	
Range:	0 to 16,384	
0		

NNUMERIC (Array)

Type:	Integer	Number of Numerics in Array Point NN Array—Defines the number of
Lock:	PtBld	numerics mapped from either the HPM box (EXTDATA≠ IO_NN), or a serial
Default:	0	interface IOP-connected device (EXTDATA=IO_NN). For external data, the valid
PtRes:	HPM	range depeneds on how numeric data is organized in the device.

Range: 0 - 16 (Floats), 0 - 32 (Integers), 0 - 64 (Byte Integers) When EXTDATA = IO_NN 0 to 240 When EXTDATA ≠ IO_NN

NOCINPTS (RegCtl)

Type:	Integer	1
Lock:	PtBld	(
Default:	Based on	
	CTLALGID,	
	CTLEQN, M	
PtRes:	HPM	
Range:	0 to 4	

Number of Control Input Connections—Defines the number of control input connections for this algorithm.

NOCOPTS (RegCtl)

Type:	Integer	Number of Control Output Connections—Defines the number of control output
Lock:	PtBld	connections from this RegCtl point.
Default:	1	
PtRes:	HPM	
Range:	0 to 4	
0		

Helpful Hint:	Control output engineering ranges (CVEULO, CVEUHI) must be entered
	for CTLALGID = PidErfb and Rampsoak, and must be entered for
	CTLALGID = Pid, PidFf, and RatioCtl when NOCOPTS = 0. For
	CTLALGID = Pid, PidFf, and RatioCtl, with NOCOPTS > 0, the CV
	ranges are obtained from a secondary output connection.

NODEASSN (HPM Box)

Type:	E:\$NODEASN	Node Assignment—Defines whether the NIM on this logical UCN or a NIM
Lock:	PtBld	on another logical UCN is the primary NIM for this UCN node.
Default:	ThisNIM	
PtRes:	NIM	
Range:	ThisNIM (The NI	M on this logical UCN is responsible for parameter fetch/stores,
	alarming	, AM control strategy and checkpointing for this UCN node.)

RemotNIM (A NIM on another logical UCN is responsible for configuring, checkpointing, and restoring the database through this UCN node.)

NODECMD (HPM Box)

Type: **E: \$PMCMD** Node Command—Defines the command issued to the HPM.

Lock: Eng Default: None PtRes:

HPM

Range: 0-None (No request made to the HPM)

- 1-Run (HPM requested to go to the Run state)
- 2-Idle (HPM requested to go to an Idle state)
- 3-Warmstrt (Warm Start requested)
- 4-Coldstrt (Cold Start requested)
- 5-Pause (HPM requested to go to the Simul_Pause state)
- 6-Resume (HPM requested to go to the Simul_Run state)

NODECONF (HPM Box)

Type: E:\$PMCONF Node Configuration for the HPM—Currently not used. This parameter must Lock: View always be set to manual. Default: Manual PtRes: **HPM** Range: Manual Auto

NODENUM (NIM)

Type: Integer PtBld Lock: Default: N/A NIM PtRes: Range: 1 to 64 Node Number—Defines the address of the NIM on the UCN.

NOTE

The node number assigned to the NIM should be the lowest node number on the UCN (see Timesync).

NODENUM (HPM Box)

Type:	Integer
Lock:	PtBld
Default:	N/A
PtRes:	NIM
Range:	1 to 64

Node Number-Defines the address of the HPMs on the UCN. NODENUM assigned for any HPM must be odd whether PKGOPT equals Option 1 (nonredundant) or Option 2 (redundant). Because of this restriction and because the NIM takes up one odd address and the next even address, the maximum number of HPM's that can be on the UCN is 31. The primary HPMM is assigned an odd address, the associated secondary (redundant) HPMM is assigned the next (even) address.

NODEOPER

Type:	E:\$PRIMSEC Node Operating Mode
Lock:	View
Default:	
PtRes:	NIM
Range:	Primary (HPM/NIM is the acting primary node)
	Secndry (HPM/NIM is the acting secondary)
	Section y (III W/I (IIV is the defining secondary)

NODESC (Logic)

Type:	Integer
Lock:	PTBLD
Default:	0
PtRes:	NIM
Range:	0 to 12

Number of Generic Descriptors—Defines the number of user-defined generic descriptors that are to be used on this logic slot. For each descriptor, the parameter in the logic slot to which the generic descriptor is attached is defined by the PRMDESC(n) parameter, and the corresponding descriptors are defined by the GENDESC(n) parameters. This allows the user to customize the descriptors used for displaying the logic slot on the Universal Station displays.

NODESTAT (HPM Box)

Type:	E:\$NODESTA	HPM Node Status
Lock:	View	
Default:	N/A	
PtRes:	HPM	
Range:	OffNet (HPM is	not running on UCN)
-	OK (HPM is con	figured and running)

NODESTAT (NIM)

Type:E:\$NODESTANIM's Node StatusLock:ViewDefault:N/APtRes:NIMRange:OffNet (NIM is not running on UCN)
OK (NIM is configured and running)

NODESTS (NIM)

 Type:
 E:\$DSPSTAT
 NIM Node Summary Status—Indicates the current overall status of the NIM.

 Lock:
 View

 Default:
 N/A

 PtRes:
 NIM

Range: OffNet (NIM cannot communicate with HPMM) OK (NIM is performing normally)

NODESTS (HPM Box)

Type:	E:\$DSPSTAT	HPM Node Summary Status—Indicates the current overall status of the HPM
Lock:	View	on the UCN.
Default:	N/A	
PtRes:	HPM	
Range:	0-OK (HPM is pe	erforming normally)
	1-IOIDL (At leas	t one IOP has entered the idle state)
	2-IDLE (HPMM	has entered the idle state)
	3-PF_IOIDL (Pa	rtial failure in one or more idle IOPs)
	4-PF_IDLE (Par	tial failure in HPMM that is in idle state)
		al failure in HPMM that is in run state)
		as sent a "failed" message to the NIM)
		t reports or point processing)
		M's personality or database is loading)
		nsitional state when power applied to HPMM)
		annot communicate with HPMM)
		IM cannot be found on the UCN)
		P mismatch in NIM Box point)
	19-Standby	
		I/O simulation mode)
		DL in I/O simulation mode)
		E in I/O simulation mode)
		_IOIDL in I/O simulation mode)
		F_IDLE in I/O simulation mode)
		Fail in I/O simulation mode)
		I is in the simulation pause state)
	27-StandbySF	
	28-Upgrade	
	29-UpgradeSF	

Helpful Hint: Loading the HPMM's operating personality requires NODESTS = Alive.

NODETYP (NIM)

- *Type:* E:\$UCNNDTY UCN Node Type—Defines the node type of this UCN node.
- Lock: PtBld
- Default: NIM
- PtRes: NIM
- Range: NIM (Network Interface Module)

NODETYP (HPM Box)

Type: **E:\$UCNNDTY UCN Node Type**—Defines the node type of this UCN node.

- Lock: PtBld
- Default: HPM
- PtRes: NIM
- Range: HPM (High-Performance Process Manager)

NODETYP (HPM Points)

E:\$UCNNDTY UCN Node Type—Defines which node type supports this point. Type:

Lock: **PtBld** Default: HPM

PtRes: NIM

Range: HPM (High-Performance Process Manager)

NODFSTAT (HPM Box)

E:\$NODFSTA Node's Functional Status—Defines the status of the UCN node. Type:

Lock: Supr

Default: Basic PtRes:

NIM Range: Full (All LCN devices can read/write from/to this node)

Basic (AM and CM cannot write to this node)

NODINPTS (DevCtl, DigComp)

Type: Integer Lock: **PtBld** Default: 1 PtRes: HPM 0 (No inputs) Range: 1 (One input) 2 (Two inputs) Number of Digital Inputs-Defines the number of digital input connections to this data point.

Number of Digital Outputs-Defines the number of digital output connections

NODOPTS (DevCtl, DigComp)

from this data point.

Type: Integer Lock: PtBld Default: 1 PtRes: HPM Range: 0 (No outputs)

1 (One output)

- 2 (Two outputs)
- 3 (Three outputs)

NOGINPTS (RegPV, RegCtl)

Type: Lock: Default: HPM PtRes:

0 - 4

Range:

Number of General Input Connections-

NOGINPTS + NOGOPTS cannot exceed four. Helpful Hint:

NOGOPTS (RegPV, RegCtl)

Type: Lock: Default: PtRes: Range:

Number of General Ouptut Connections-

HPM

0 - 4

NOGINPTS + NOGOPTS cannot exceed four. Helpful Hint:

NOLINPTS (DevCtl, Logic)

Type:	Integer	Number of Logic Inputs—Indicates the number of logic inputs to this logic or
Lock:	View (Logic),	Device Control slot.
	PtBld (DevCtl)	
Default:	12 (Logic)	
	0 (DevCtl)	
PtRes:	HPM	
Range:	0 to 12	

NOLOGBLK (Logic)

Type:	Integer
Lock:	View
Default:	N/A
PtRes:	HPM
Range:	0 to 24

Number of Logic Blocks—Indicates the number of logic blocks that have been configured for a particular logic slot.

NOLOPTS (DevCtl, Logic)

Type:	Integer
Lock:	View (Logic)
	PtBld (DevCtl)

Number of Logic Output Connections-Indicates the number of output connections from this logic slot.

Default: N/A

PtRes: HPM

0 to 12 (Logic), 0 to 2 (DevCtl) Range:

NOOVRRUN (ProcMOD)

Type:	Integer
Lock:	View
Default:	0
PtRes:	HPM
Range:	

Number of Overruns—Indicates the number of times the point has overrun its CNFPU allocation since the last reset.

Helpful Hint: NOOVRRUN is reset along with AVGPU and MAXPU

NOOVRRUN (ProcMod)

Type:	Integer
Lock:	View
Default:	0
PtRes:	HPM
Range:	0 - 4

Number of Overruns—Specifies the number of times the point has overrun its CNFPU allocation since the last reset

NOPGATE (DevCtl)

Type:	Integer	Number of Primary Gates—Indicates the number of primary gates configured for
Lock:	PtBld	a particular Device Control slot.
Default:	0	
PtRes:	HPM	
Range:	0 to 4	
-		

Helpful Hint: All configured primary gates must have at least one input.

NOPINPTS (RegPV)

Integer
View
Based on
PVALGID,
PVEQN, N
HPM
0 to 6

Number of PV Input Connections—Defines the number of PV input connections to this algorithm.

NOPTS(0 - 64)

Type:	Integer	Number of Points Per Cycle—Defines
Lock:	View	
Default:	0	Index = 0 used for total count
PtRes:	HPM	Index = $1 - 64$ used for per cycle count
Range:		

Helpful Hint: The total count may not be equal to the sum of all cycles because most points are in more than one cycle.

NORMCYCL

Type:	Integer	Normal Execution Cycle—Specifies the normal execution cycle.
Lock:	PtBld	
Default:		
PtRes:	HPM	
Range:	1 - 64	for points with $PERIOD = 4$ seconds
	1 - 32	for points with $PERIOD = 2$ seconds
	1 - 16	for points with $PERIOD = 1$ seconds
	1 - 8	for points with $PERIOD = 0.5$ seconds
	1 - 4	for points with $PERIOD = 0.25$ seconds
	1 - 2	for points with $PERIOD = 0.125$ seconds
	1	for points with PERIOD = 0.625 seconds

NORQUAVG (NIM, HPM Box)

Type:	Real
Lock:	View
Default:	0
PtRes:	HPM
Range:	N/A

Average number of Nodes to which UCN Requests are made—Indicates the average number of UCN nodes per second that this node is requesting communications with.

Helpful Hint: This statistic can be viewed on the Toolkit Displays.

NORQUMAX (NIM, HPM Box)

Type:	Real	Maximum number of Nodes to which UCN Requests are made—Indicates the
Lock:	View	maximum number of UCN nodes per second that this node is requesting
Default:	0	communications with.
PtRes:	HPM	
Range:	N/A	
Ũ		

Helpful Hint: This statistic can be viewed on the Toolkit Displays.

NORSPAVG (NIM, HPM Box)

Real
View
0
HPM
N/A

Average number of Nodes to which UCN Responses are made—Indicates the average number of UCN nodes per second that this node is responding to.

Helpful Hint: This statistic can be viewed on the Toolkit Displays.

NORSPMAX (NIM, HPM Box)

Type:	Real
Lock:	View
Default:	0
PtRes:	HPM
Range:	N/A

Maximum number of Nodes to which UCN Responses are made—Indicates the maximum number of UCN nodes per second that this node is responding to.

Sequence

Helpful Hint: This statistic can be viewed on the Toolkit Displays.

NORSSEQ (RampSoak)

Type:	Integer	Number of Ramp/Soak Pairs in the
Lock:	Eng/PB	
Default:	2	
PtRes:	HPM	
Range:	2 to 12	
-		

NOSGATE (DevCtl)

Type:	Integer	Number of Secondary Gates—Indicates the number of secondary gates configured
Lock:	PtBld	for a particular Device Control slot.
Default:	0	
PtRes:	HPM	
Range:	0 to 2	
Ū.		

Helpful Hint: All configured secondary gates must have at least one input.

NOSIOVRD (DevCtl, DigComp)

Type:	Real
Lock:	View
Default:	0.0
PtRes:	HPM
Range:	0 (No limit)

Number of Safety Interlock Overrides—The number of safety interlock overrides that have accumulated since the most recent reset of maintenance statistics.

NOSTATES (DevCtl, DigComp)

Type:	Integer	Number of Digital States—Defines the number of states in this point.
Lock:	PtBld	• State 1 is the first active state
Default:	2	• State 0 is the inactive (middle) state
PtRes:	HPM	• State 2 is the second active state
		Refer to the HPM Control Functions and Algorithms manual for a detailed
		description.
Range:	2 (Two states of	an be configured: STATE 0 and STATE 1)

3 (Three states can be configured: STATE 0, STATE 1, and STATE 2)

NOTRAAVG (NIM, HPM Box)

Type:	Real
Lock:	View
Default:	0
PtRes:	HPM
Range:	N/A

Average number of Nodes to which UCN Transactions are made. This value indicates the average number of UCN nodes (per second) that this node is communicating with (both requests and responses).

Helpful Hint: This statistic can be viewed on the Toolkit Displays.

NOTRAMAX (NIM, HPM Box)

Type:	Real	Maximum number of Nodes to which UCN Transactions are made. This
Lock:	View	value indicates the maximum number of UCN nodes (per second) that this
Default:	0	node is communicating with (both requests and responses).
PtRes:	HPM	
Range:	N/A	

Helpful Hint: This statistic can be viewed on the Toolkit Displays.

NOTRANS0-2 (DevCtl, DigComp)

Type:	Real	Accumulated Transitions—The number of transitions to each state of the
Lock:	View	OPFINAL parameter since the most recent reset of maintenance statistics. The
Default:	0.0	MAXTRAN parameter does not limit the number of transactions unless the user
PtRes:	HPM	writes a program to read MAXTRAN, comparing it to NOTRANS, and thereby
		causing it to stop.
D	0 OT 1' '0	

Range: **0** (No limit)

NPARAVG (NIM, HPM Box)

Type:	Real
Lock:	View
Default:	0
PtRes:	HPM
Range:	N/A

Average number of UCN Parameter Accesses per Second—Average number of UCN parameter accesses per second between this node and all other nodes, including both requests and responses.

Helpful Hint: This statistic can be viewed on the Toolkit Displays.

NPARMAX (NIM, HPM Box)

Type:	Real
Lock:	View
Default:	0
PtRes:	HPM
Range:	N/A

Maximum number of UCN Parameter Accesses per Second—Maximum number of UCN parameter accesses per second between this node and all other nodes, including both requests and responses.

Helpful Hint: This statistic can be viewed on the Toolkit Displays.

NPMSLOT (HPM Box)

Type:	Integer
Lock:	PtBld
Default:	0
PtRes:	HPM
Range:	0 to 250

Number of Process Module Slots—Refer to the *HPM Control Functions and Algorithms* manual for a detailed description of HPM processing capacity.

NPRQUAVG(0-64) (NIM, HPM Box)

Type:	Real
Lock:	View
Default:	0
PtRes:	HPM
Range:	N/A

Average number of UCN Parameter Requests—Average number of UCN parameter requests per second issued from this node to node n.

NOTE

The node address (n) is an odd number (1, 3, 5,...63). Using an even number results in a **Parameter_Invalid** error. Using n = 0 returns average total number of parameter requests to all other nodes.

Helpful Hint: This statistic can be viewed on the Toolkit Displays.

NPRQUMAX(0-64) (NIM, HPM Box)

Type:	Real
Lock:	View
Default:	0
PtRes:	HPM
Range:	N/A
0	

Maximum number of UCN Parameter Requests—Maximum number of UCN parameter requests per second issued from this node to node n.

NOTE

The node address (n) is an odd number (1, 3, 5,...63). Using an even number results in a **Parameter_Invalid** error. Using n = 0 returns maximum total number of parameter requests to all other nodes.

Helpful Hint: This statistic can be viewed on the Toolkit Displays.

NPRSPAVG(0-64) (NIM, HPM Box)

Type:RealLock:ViewDefault:0PtRes:HPMRange:N/A

Average number of UCN Parameter Responses—Average number of UCN parameter responses per second issued from this node to node n.

NOTE

The node address (n) is an odd number (1, 3, 5, ...63). Using an even number results in a **Parameter_Invalid** error. Using n = 0 returns average total number of parameter responses to all other nodes.

Helpful Hint: This statistic can be viewed on the Toolkit Displays.

NPRSPMAX(0-64) (NIM, HPM Box)

Type:RealLock:ViewDefault:0PtRes:HPMRange:N/A

Maximum number of UCN Parameter Responses—Maximum number of UCN parameter responses per second issued from this node to node n.

NOTE

The node address (n) is an odd number (1, 3, 5,...63). Using an even number results in a **Parameter_Invalid** error. Using n = 0 returns maximum total number of parameter responses to all other nodes.

Helpful Hint: This statistic can be viewed on the Toolkit Displays.

NPVSLOT (HPM Box)

Type:	Integer
Lock:	PtBld
Default:	0
PtRes:	HPM
Range:	0 to 125

Number of Regulatory PV Slots—Refer to the *HPM Control Functions and Algorithms* manual for a detailed description of HPM processing capacity.

NRMATRFL (DigComp, DevCtl, RegCtl)

Type: Lock:	Logical View	Normal Mode Attribute Flag —indicates if this point is in the configured Normal Mode attribute.	
Default:	1 = = 1 1	Normai mode attribute.	
v	HPM		
PtRes:	HPM		
Range:	ON - (point is in the configured Normal mode attribute)		
	Off - (point is not in the configured Normal Mode attribute or Normal Mode attribute is		
	not configur	6	
	Helpful Hint:	If Normal mode attribute is not configured then the value returns to OFF.	

NRMMODFL (RegCtl)

 Type:
 Logical
 Normal Mode Flag—indicates if the mode for this point is normal mode.

 Lock:
 View

 Default:
 N/A

 PtRes:
 HPM

 Range:
 On - (Point is in configured normal mode)

 Off - (Point is not in the configured normal mode or normal mode is not configured)

NSCANITM (HPM Box)

Type:IntegerLock:ViewDefault:0PtRes:HPMRange:0 - 50

Number of Scan Items in HPM Scan Table.

NSI0 (DevCtl, DigComp)

Type:	Logical	Inverted Interlocks Value—The negative value of the corresponding interlock.
Lock:	Engr	
Default:	On	
PtRes:	HPM	
Range:	On (Safety in	terlock inactive)
	Off (Safety ir	iterlock active)
	-	

Helpful Hint: This parameter can be changed by the engineer only if the point is inactive, or if the HPM is idle.

NSTRING (HPM Box)

Type:	Integer	Number of Strings in HPM Box Data Point
Lock:	PtBld	
Default:	0	
PtRes:	HPM	
Range:	0 to 16,384	
-		

NSTRING (Array)

Type:	Integer	Number of Strings in Array Point String Array—Defines the number of strings
Lock:	PtBld	(length specified by the STRLEN parameter) mapped to the Array point from
Default:	0	either the HPM box (EXTDATA≠ IO_STR), or a serial interface IOP-connected
PtRes:	HPM	device (EXTDATA=IO_STR).
Range:	0 to 8 (When E	XTDATA=IO_STR)
	0 to 240 (When	EXTDATA≠ IO_STR)

When EXTDATA \neq IO_STR, the range for this parameter applies regardless
of the value of the STRLEN parameter (up to 240 strings, either 8, 16, 32, or
64 characters in length can be mapped to the Array point from the HPM box).
When EXTDATA=IO_STR, only 64 characters of string data are available
(i.e., one 64-character string, two 32-character strings, four 16-character
strings, or eight 8-character strings).

NTIME (HPM Box)

Type:	Integer	Number of Times in HPM Box Data Point
Lock:	PtBld	
Default:	0	
PtRes:	HPM	
Range:	0 to 4,096	

NTIME (Array)

Type:	Integer
Lock:	PtBld
Default:	0
PtRes:	HPM
Range:	0 to 240

Number of Times in Array Point Time Array—Defines the number of Times the Array point has mapped from the HPM box.

NTIMER (HPM Box)

Type:	Integer
Lock:	View
Default:	64
PtRes:	HPM
Range:	64

Number of Timer Points in the HPM Box Data Point

NTRAAVG (NIM, HPM Box)

Type: Lock:	Real View
Default:	0
PtRes:	HPM
Range:	N/A

Average number of UCN Transactions — Average number of UCN transactions (requests and responses) per second between this node and all other nodes.

Helpful Hint: This statistic can be viewed on the Toolkit Displays.

NTRAMAX (NIM, HPM Box)

Type:	Real
Lock:	View
Default:	0
PtRes:	HPM
Range:	N/A

Maximum number of UCN Transactions —Maximum number of UCN transactions (requests and responses) per second between this node and all other nodes.

Helpful Hint: This statistic can be viewed on the Toolkit Displays.

NTRQUAVG(0-64) (NIM, HPM Box)

Type:RealLock:ViewDefault:0PtRes:HPMRange:N/A

Average number of UCN Transaction Requests—Average number of UCN transaction requests per second issued from this node to node n.

NOTE

The node address (n) is typically an odd number (1, 3, 5, ...63). Using an even number results in a **Parameter_Invalid** error. Using n = 0 returns average total number of transaction requests to all other nodes.

Helpful Hint: This statistic can be viewed on the Toolkit Displays.

NTRQUMAX(0-64) (NIM, HPM Box)

Type:RealLock:ViewDefault:0PtRes:HPMRange:N/A

Maximum number of UCN Transaction Requests—Maximum number of UCN transaction requests per second issued from this node to node n.

NOTE

The node address (n) is an odd number (1, 3, 5,...63). Using an even number results in a **Parameter_Invalid** error. Using n = 0 returns maximum total number of transaction requests to all other nodes.

Helpful Hint: This statistic can be viewed on the Toolkit Displays.

NTRSPAVG(0-64) (NIM, HPM Box)

Type:RealLock:ViewDefault:0PtRes:HPMRange:N/A

Average number of UCN Transaction Responses—Average number of UCN transaction responses per second issued from this node to node n.

NOTE

The node address (n) is an odd number (1, 3, 5,...63). Using an even number results in a **Parameter_Invalid** error. Using n = 0 returns average total number of transaction responses to all other nodes.

Helpful Hint: This statistic can be viewed on the Toolkit Displays.

NTRSPMAX(0-64) (NIM, HPM Box)

Type:RealLock:ViewDefault:0PtRes:HPMRange:N/A

Maximum number of UCN Transaction Responses—Maximum number of UCN transaction responses per second issued from this node to node n.

NOTE

The node address (n) is an odd number (1, 3, 5, ...63). Using an even number results in a **Parameter_Invalid** error. Using n = 0 returns maximum total number of transaction responses to all other nodes.

Helpful Hint: This statistic can be viewed on the Toolkit Displays.

NTWKNUM

Type:	Integer
Lock:	PtBld
Default:	N/A`
PtRes:	NIM
Range:	1 to 20

Network Number-Defines on which UCN the NIM and HPMs reside.

NXTPINAM

Type:	String_8	Next Personality Image File—Defines the personality Image file that will be
Lock:	Eng	loaded on the next personallity load request for this IOP.
Default:	N/Ā	
PtRes:	IOP	
Range:	<u>?</u>	

NXTSOAKV (RampSoak)

Type:RealLock:ViewDefault:N/APtRes:HPMRange: ≥ 0.0

Next Soak Value

-0-

OFFNRMFL

Logical Type: Off-Normal Alarm Flag-Indicates whether an off-normal alarm has been Lock: View detected at this data point. Default: Off PtRes: HPM

Range:

Off (No alarm)

On (Current PV state is not the same as the configured PVNORMAL state.)

OFFNRMPR

E:ALPRIOR Offnormal Alarm Priority-Indicates priority of the off normal or change of state ENGR alarms.

Default: Low NIM

PtRes: Range:

Type:

Lock:

Emergncy (Alarm is historized, annunciated, and reported to all alarm summary displays) High (Alarm is historized, reported to Area Alarm Summary Display and Unit Alarm Summary Display)

Low (Alarm is historized, reported to the Unit Alarm Summary Display, and annunciated) JnlPrint (Alarm is historized and reported to the printer but not annunciated) **Printer** (Alarm is reported to the printer but not historized and not annunciated) Journal (Alarm is historized but not reported to Universal Stations and not annunciated)

NoAction (Alarm is not reported to the system and not annunciated)

OFFPULSE (DigOut)

Type:	Real	Off Pulse Command—Command that sets output SO to Off for the specified
Lock:	Oper	number of seconds. At the end of the pulse time, SO is set to On. If 0.0 is
Default:	N/A	entered for OFFPULSE, SO is immediately set to On.
PtRes:	HPM	·
Range:	0.0 to 60.0 seco	nds

OFFPULSE can be written to by only those entities that possess the Helpful Hint: HPMM Cont_Ctl (continuous control) access level. These are Digital Composite points, Logic points, and Regulatory Control Position Proportional points.

OLDAV (DigIn)

Type:	Integer
Lock:	View
Default:	N/A
PtRes:	HPM
Range:	≥ 0

Old Accumulated Value—The value of parameter AV (accumulated value) just before the accumulator was reset. This parameter makes the previous accumulated value available for those functions that need it.

OLDAV (Totalizr)

Real
View
N/A
HPM
≥ 0.0

Old Accumulated Value—The value of parameter PVCALC (calculated PV) just before it is reset. This parameter makes the previous total available to those functions that need it.

ONPULSE (DigOut)

Type:	Real	On Pulse Command—Command that sets output SO to On for the specified
Lock:	Oper	number of seconds. At the end of the pulse time, SO is set to Off. If 0.0 is
Default:	N/A	entered for ONPULSE, SO is immediately set to Off.
PtRes:	HPM	
Range:	<i>e:</i> 0.0 to 60.0 seconds	
-		
	H. L. C. I H.	ONDELL SE can be emitted to be analy these entities that access the LIDNAM

Helpful Hint: ONPULSE can be written to by only those entities that possess the HPMM Cont_Ctl (continuous control) access level. These are Digital Composite points, Logic points, and Regulatory Control Position Proportional points.

OP (AnalgOut)

Type:	Real Output in Percent —Defines the output value from this point in percent.
Lock:	Oper
Default:	-6.9% of full scale
PtRes:	HPM
Range:	-6.9 to 106.9%

Helpful Hint: To manually change the output value requires MODE = Man and REDTAG = Off.

OP (DevCtl, DigComp)

Type:	E:SD-ENM:STATETXT	Digital State Output—Indicates the last commanded output	
Lock:	Oper	state. See also OPFINAL. For Status Outputs, use SO.	
Default:	STATETXT(0)		
PtRes:	HPM		
Range:	STATETXT(0) Descriptor		
	STATETXT(1) Descriptor		
	STATETXT(2) Descriptor (internally set to \$NULL for two-state devices)		
	STATETXT(3) None (Not config	gurable)	

Helpful Hint: OP indicates text for the last commanded output state (i.e., On, Run, etc.). Output state change requires MODE = Man, SHUTDOWN = Off, and REDTAG = Off.

OP (DigOut)

Type:	Real
Lock:	Prog
Default:	0.0%
PtRes:	HPM
Range:	0.0 to 100.0%

Pulsed Digital Output—OP is the percent on-time for the pulsed output. It can be written to by only the controlling slot in the HPMM, such as from the PosProp RegCtl algorithm. Output change requires DOTYPE = Pwm. OP (DigOut) has the same access-level requirement as OFFPULSE and ONPULSE; the writing entity must have an HPMM access level of Cont_Ctrl (continuous control). For Status Outputs, use SO.

For direct action, pulse-on time is calculated as follows:

Pulse On-Time = OP% * PERIOD100

For reverse action:

Pulse On-Time = $\frac{100\% - OP\% * PERIOD}{100}$

Refer to PERIOD parameter for length of period.

OP (RegCtl)

Type:	Real
Lock:	Oper
Default:	-6.9% of full scale
PtRes:	HPM
Range:	-6.9 to 106.9%

Regulatory Control Output—OP is derived from CV, the variable calculated by the control algorithm. OP is checked for minimum output change, output rate-of-change, and output high and low limits. If any of the limits is exceeded, OP is adjusted or clamped as applicable. OP remains in percent of full scale if it is going to a final control element through an IOP Card. If OP is going to a secondary data point, its value is converted to the engineering units of the receiving data point's setpoint (SP).

Helpful Hint: OP change requires MODE = Man, SHUTDOWN = Off, and REDTAG = Off. If the OP is manually set above or below the OP limits and the mode is then changed to automatic or cascade, a process bump may occur.

OPALDB (RegCtl)

ntrol OP
ljusting
TP)/2.

OPCHAR

Type:	Logical	Output Characterization Option—Defines whether the output
Lock:	PtBld	characterization option is to be used for this data point. If this option
Default:	Off	is to be implemented, the user must supply the values for the input
PtRes:	HPM	coordinates (OPIN 1-4) and output coordinates (OPOUT 1-4). Refer to
		the HPM Control Functions and Algorithms manual for a detailed
		description of output characterization.

On (Output characterization is to be used) Range: **Off** (Output characterization is not to be used)

OPCMD (DevCtl, DigComp)

Type:	Logical O	utput Command
Lock:	Prog	
Default:	Off	
PtRes:	HPM	
Range:	Off (Commands the output	state to State0)
	On (Commands the output s	state to State1)

Helpful Hint: If state change did not occur, OPCMD has to be set to the current state, and then to the desired state.

OPCMD

Type: E:\$OPCMD Lock: View

Output Command—Indicates the current output command.

Default: NA HPM

PtRes:

0-Idle (Output is not being affected by Output Command) Range: 1-Lower (Output is being lowered)

2-Raise (Output is being raised)

OPEU

Type:	Real
Lock:	View
Default:	N/A
PtRes:	HPM
Range:	N/A

Output Value in Engineering Units

OPFINAL (AO)

Type:	Real
Lock:	View
Default:	-6.9% of
	full scale
PtRes:	HPM
Range:	N/A

Final Percent Output Sent to Control Element—Output value after direct or reverse control action and output characterization have all been applied. If output has been configured for direct action (OPTDIR), 0.0% represents 4 mA to the control element and 100% represents 20 mA. If configured for reverse action, 0.0% represents 20 mA, and 100% represents 4 mA.

OPFINAL (DevCtl, DigComp)

Type:E:SD_ENM:STATETXTLock:OperDefault:Statetxt(0)PtRes:HPMThis value

Final Output Sent to Control Element—The output value that was last stored. This value can differ from the OP parameter if a sealin has occurred, state change is active, or the Array/SI read-back check evaluates OPFINAL to be NONE. If LOCALMAN = ON, then OP and OPFINAL follow the PV.

 Range:
 Statetxt(0) (Self-defining enumeration)

 Statetxt(1) (Self-defining enumeration)
 Statetxt(2) (Self-defining enumeration)—internally set to \$NULL for two-state devices.

 Statetxt(3) NONE (not configurable)

OPHAFL (RegCtl)

Type:LogicalOutput High Alarm Flag—Indicates when a Regulatory Control Output HighLock:Viewalarm has been detected at this data point. This flag is set when the output valueDefault:Off(OP) exceeds OPHITP and is reset when OP is below OPHITP minus thePtRes:HPMdeadband. Available on Release 510 and later software.

Range: **Off** (OP High alarm is off) **On** (OP High alarm is on)

Helpful Hint: Refer to the diagram with OPLAFL.

OPHIFL (RegCtl)

Type:	Logical	Output High Limit Flag—Indicates whether the OP value has reached its upper
Lock:	Prog	limit specified by OPHILM. If this parameter is set by a program, it will
Default:	Off	inhibit "raise" commands.
PtRes:	HPM	
Range:	Off	
-	On (OP value h	as reached its upper limit)

OPHILM

Type:	Real	Output High Limit in Percent
Lock:	Supr	
Default:	105.0%	
PtRes:	HPM	
Range:	OPLOLM to 10	6.9%,
Ū.	NaN	
	Halpful Hint	Entering NoN disables limit of

Helpful Hint: Entering NaN disables limit checking by forcing OPHILM to its extreme value (106.9%).

OPHIPR (RegCtl)

Type:	E:Alprior	Output High Alarm Priority—Specifies the priority of the Regulatory Control
Lock:	EngPB	Output High alarm. Available on Release 510 and later software.
Default:	Low	
PtRes:	NIM	
Range:	JnlPrint (Alarn	n is historized and reported to the printer but not annunciated)
	Printer (Alarm	is reported to the printer but not historized and not annunciated)
	Emergncy (Ala	rm is historized, annunciated, and reported to all alarm summary displays)
	High (Alarm is	historized, reported to Area Alarm Summary Display and Unit Alarm Summary
	Display)	
	Low (Alarm is	historized, reported to the Unit Alarm Summary Display, and annunciated)
	Journal (Alarm	is historized but not reported to Universal Stations and not annunciated)
	NoAction (Ala	rm is not reported to the system and not annunciated)

OPHISRC

Type:	Universal	Output High Flag Input Source—Defines the input connection that fetches the
	Ent.Prm	OPHIFL parameter to determine windup state.
Lock:	PtBld	
Default:	Null	
PtRes:	HPM	
Range:		Parameter for tagged points where Tagname can be up to 16 characters and the naracter set is as follows:
		betics A-Z (uppercase only)
	Nume	rics 0-9 (an all numeric tag name is not allowed)
		score (_) cannot be used as the first character or the last character, and consecutive erscores are not allowed.
	Embe	dded space characters are not allowed.
	An * i	is used to default to this point's tag name.
	Param	eter name can be up to eight characters and must be a legitimate parameter name.
	Some possible	e input-connection sources are
	a."Dig	JIn slot Tagname.PVFL"
	b."Lo	gic slot Tagname.SO(nn)" where $nn = 1-24$
		gic slot Tagname.Fl(nn)" where $nn = 1-12$
		cMod slot Tagname.Fl(nnn)" where $nnn = 1-127$
		x Flag slot Tagname.PVFL
		x.FL(nnnn)" for a box flag that resides in the same box where nnnn = $1-16$, 384
		MhhBxx.FL(nnnn)" for a box flag that resides in a different HPM box on the same
		N; hh is the NIM UCN address, xx is the HPM box number, and
	nnn	n = 1-4095 (Data access limit)
	MT is	are reference address !MTmmSss.Parameter for untagged or tagged points where the IOP type, such as DI (Digital Input)

mm is the IOP Card number (1-40)

The letter "S" is a constant

ss is the slot number on the IOP Card (refer to SLOTNUM parameter) Parameter name can be up to eight characters and must be a legitimate parameter name.

OPHITP (RegCtl)

Type:RealOutput High Alarm Trip Point—The Regulatory Control Output High alarm isLock:Suprset when the output value (OP) exceeds the high alarm limit specified byDefault:NaNOPHITP. The alarm is removed when OP returns to normal. A suitable deadPtRes:HPMband is provided by OPALDB. See also OPHIPR and the drawing with
OPLAFL. Available on Release 510 and later software.

Range: OPLOTP to OPHILM, NaN

Helpful Hint: The Regulatory Control Output High alarm is only available for points configured as full. The alarm is disabled if OPHITP is not configured.

OPIN0

Type:	Real
Lock:	View
Default:	-6.9%
PtRes:	HPM
Range:	N/A

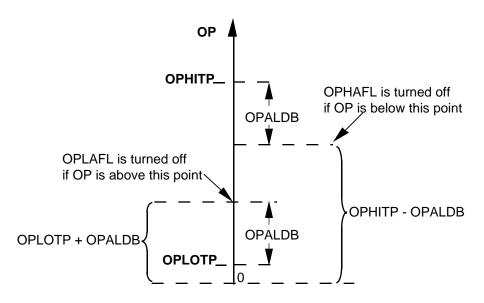
Input Coordinate Number 0 in Percent—Defines the OPIN0 coordinate when output characterization has been selected (OPCHAR is On). This coordinate is fixed at -6.9%.

OPIN1-4

Type:	Real	Input Coordinate Number 1, 2, 3, or 4 in Percent—Define the OPIN1–OPIN4
Lock:	Supr	coordinates when output characterization has been selected (OPCHAR is On).
Default:	N/A	
PtRes:	HPM	
Range:	≥ previous coor	dinate
	≤ next coordina	te

OPIN5

Type:	Real
Lock:	View
Default:	106.9%
PtRes:	HPM
Range:	N/A


Input Coordinate Number 5 in Percent—Defines the OPIN5 coordinate when output characterization has been selected (OPCHAR is On). This coordinate is fixed at 106.9%.

OPLAFL (RegCtl)

Type:	Logical	Output Low Alarm Flag—Indicates if a Regulatory Control Output Low alarm
Lock:	View	has been detected at this data point. This flag is set when the output value (OP)
Default:	Off	is less than OPLOTP and is reset when OP is above OPLOTP plus the
PtRes:	HPM	deadband. Available on Release 510 and later software.

Range: Off (OP Low alarm is off). On (OP Low alarm is on).

The drawing below illustrates the relationship of the output high/low alarm flags, the low alarm trip point OPLOTP, and the deadband OPALDB.

OPLOFL

Type:	Logical	Output Low Limit Flag—Indicates whether the output value OP has reached the
Lock:	Prog	low limit. This parameter must be set by a program or logic point. It will
Default:	Off	inhibit "raise" commands.
PtRes:	HPM	
Range:	Off (OP is above	ve the low limit)
	On (OP has rea	ched the low limit)

OPLOLM

Type:	Real	Output Low Limit in Percent
Lock:	Supr	_
Default:	-5.0%	
PtRes:	HPM	
Range:	-6.9% to	OPHILM,
Ū.	NaN	

Helpful Hint: Entering NaN disables limit checking by forcing OPLOLM to its extreme value (-6.9%).

OPLOPR (RegCtl)

	•	
Type:	E:Alprior	Output Low Alarm Priority—Specifies the priority of the Regulatory Control
Lock:	EngPB	Output Low alarm. Available on Release 510 and later software.
Default:	Low	
PtRes:	NIM	
Range:	JnlPrint (Alarn	n is historized and reported to the printer but not annunciated)
	Printer (Alarm	is reported to the printer but not historized and not annunciated)
	Emergncy (Ala	rm is historized, annunciated, and reported to all alarm summary displays)
	High (Alarm is	historized, reported to Area Alarm Summary Display and Unit Alarm Summary
	Display)	
	Low (Alarm is	historized, reported to the Unit Alarm Summary Display, and annunciated)
	Journal (Alarm	is historized but not reported to Universal Stations and not annunciated)
	NoAction (Ala	m is not reported to the system and not annunciated)

OPLOSRC

Type:	UniversalOutput Low Flag Input Source—Indicates which input connection fetches theEnt.PrmOPLOFL parameter to determine the windup state.
Lock:	HPM
Default:	
PtRes:	Null
Range:	Use Tagname.Parameter for tagged points where Tagname can be up to 16 characters and the permissible character set is as follows:
	Alphabetics A-Z (uppercase only)
	Numerics 0-9 (an all numeric tag name is not allowed)
	Underscore (_) cannot be used as the first character or the last character, and consecutive underscores are not allowed.
	Embedded space characters are not allowed.
	An $*$ is used to default to this point's tag name.
	Parameter name can be up to eight characters and must be a legitimate parameter name.
	Some possible input-connection sources are
	a."DigIn slot Tagname.PVFL"
	b."Logic slot Tagname.SO(nn)" where $nn = 1-24$
	c."Logic slot Tagname.Fl(nn)" where $nn = 1-12$
	d."ProcMod slot Tagname.Fl(nnn)" where $nnn = 1-127$
	e."Box Flag slot Tagname.PVFL
	f."!Box.FL(nnnn)" for a box flag that resides in the same box where $nnnn = 1-4095$
	g."\$NMhhBxx.FL(nnnn)" for a box flag that resides in a different HPM box on the same
	UCN; hh is the NIM UCN address, xx is the HPM box number, and
	nnnn = 1-4095 (Data access limit)
	Use the hardware reference address !MTmmSss.Parameter for untagged or tagged points where
	MT is the IOP type, such as DI (Digital Input)
	mm is the IOP Card number (1–40)
	The letter "S" is a constant

The letter "S" is a constant ss is the slot number on the IOP Card (refer to SLOTNUM parameter) Parameter name can be up to eight characters and must be a legitimate parameter name.

OPLOTP (RegCtl)

Type:RealOutput Low Alarm Trip Point—The Regulatory Control Output Low alarm isLock:Suprset when the output value (OP) drops below the low alarm limit specified byDefault:NaNOPLOTP. The alarm is removed when OP returns to normal. A suitable deadPtRes:HPMband is provided by OPALDB. See also OPLOPR. Available on Release 510
and later software.

Range: OPLOLM to OPHITP, NaN

Helpful Hint: The Regulatory Control Output Low alarm is only available for points configured as full. The alarm is disabled if OPLOTP is not configured.

OPMCHLM

Type:	Real	Output Minimum Change in Percent	
Lock:	Supr	• 0	
Default:	0. 0		
PtRes:	HPM		
Range:	≥ 0.0 ,		
Ũ	NaN		

Helpful Hint: OP changes only if new output % - old output % is greater than the percentage in parameter OPMCHLM. Entering NaN disables limit checking by forcing OPMCHLM to its extreme value (0.0).

OPOUTO

Type:	Real
Lock:	View
Default:	-6.9%
PtRes:	HPM
Range:	N/A

Output Coordinate Number 0 in Percent-Defines the OPOUT0 coordinate when output characterization has been selected. (OPCHAR = On) This coordinate is fixed at a value of -6.9%.

OPOUT1-4

Type:	Real	Output Coordinates Number 1, 2, 3, or 4 in Percent—Define the OPOUT1–
Lock:	Supr	OPOUT4 coordinates when output characterization has been selected (OPCHAR
Default:	N/A	is On).
PtRes:	HPM	
Range:	≥ previous coor	dinate
	\leq next coordina	te

OPOUT5

Type:	Real	Output Coordinate Number 5 in Percent—Defines the OPOUT5 coordinate when
Lock:	View	output characterization has been selected. (OPCHAR = On) This coordinate is
Default:	106.9%	fixed at a value of 106.9%.
PtRes:	HPM	
Range:	N/A	

(OPCHAR = On) This coordinate is

OPRATRFL (DevCtl, DigComp, RegCtl)

Type:	Logical
Lock:	View
Default:	N/A
PtRes:	HPM
Range:	Off (Cu
	On (Cu

Operator Mode Attribute Flag-Indicates whether the current mode attribute is Operator.

Current mode attribute is Program or None) **On** (Current mode attribute is Operator)

OPRINPUT (ProcMod)

Type:	Real
Lock:	Oper
Default:	0.0
PtRes:	HPM
Range:	N/A

Operator Input—Defines the value entered by the operator in response to the last sequence message.

OPROCLM

Type:	Real
Lock:	Supr
Default:	NaN
PtRes:	HPM
Range:	≥ 0.1
	NaN

Output Rate of Change Limit in Percent Per Minute

Helpful Hint: Entering NaN disables limit checking.

OPTDIR (AO)

Type:	E:POLARITY	Analog Output Direct/Reverse Action—Defines the output action of the
Lock:	Eng/PB	OPFINAL value of the data point.
Default:	Direct	
PtRes:	HPM	
Range:	0-Direct (For fina	al OP: $0\% = 4 \text{ mA}; 100\% = 20 \text{ mA})$
-	1-Reverse (For fi	nal OP: $0\% = 20 \text{ mA}; 100\% = 4 \text{ mA})$

OPTDIR (DigOut)

Type:E:POLARITYOutput Direction—Defines the direct/reverse action of the PWM digital
output.Lock:Eng/PBoutput.Default:DirectPtRes:HPMRange:0-Direct (OP is the % On time)
1-Reverse (OP is the % Off time)

OROFFSET (ORSel)

Type:	Logical	Override Offset—When OROFFSET is On, override initialization of Pid-type
Lock:	Eng/PB	algorithm points connected to this ORSel algorithm applies an override offset
Default:	On	equal to Gain times Error (PV - SP).
PtRes:	HPM	
Range:	Off (No overrid	e offset is applied)
-	On (Offset of C	Gain times Error is applied)

OROPT (DevCtl, DigComp)

Type:	Logical	Override Option—Allows the operator to bypass permissive and override
Lock:	Eng/PB	interlocks by setting BYPASS On.
Default:	Off	
PtRes:	HPM	
Range:	On (Override op	ption enabled)
	Off (Override of	ption disabled)

OROPT (ORSel)

	•	
Type:	Logical	Override Option—Defines whether the operator can put the point in a bypass
Lock:	Eng/PB	state where any of the X1-X4 inputs can be bypassed. Also, when on, the
Default:	Off	feedback value is propagated to nonselected primaries of the override selector
PtRes:	HPM	algorithm. Refer to the HPM Control Functions and Algorithms manual for a
		detailed description.
_		· · · · · · · · · · · · · · · · · · ·

Range: **Off** (No override) On (Inputs can be overridden)

OUT0-12 (GenLin)

Type: Real Output Coordinates 0 -12—Define the output value at the respective coordinates. Lock: Supr Default: NaN PtRes: HPM Range: Any value but NaN

OVERFLOW

Type:	Logical	Accumulation Overflow Flag—Indicates whether the accumulated value has
Lock:	View	overflowed.
Default:	Off	
PtRes:	HPM	
Range:	Off (No overflow	w)
	On (Overflow)	

OVERLAP (Array)

Type:	Integer	Overlapping Array Slot Number-Indicates the Array slot number containing the	
Lock:	View	data being referenced by the slot currently being built.	
Default:	0		
PtRes:	HPM		
Range:	0 through the number of Array slots (NARRSLOT)		

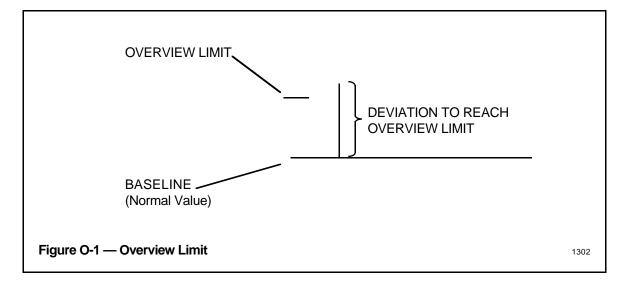
OVERPHAS (ProcMod)

Type:	E:JUMPDIR	Override Current Phase—Allows the operator to override the current phase of the	
Lock:	ONPROC and	sequence by skipping forward to the next phase, or backward to the previous	
	CNTLLOCK	phase. A phase can be overridden in this manner only when the sequence	
	parameters	execution state is PAUSE, FAIL, or ERROR.	
Default:	Blank		
PtRes:	HPM		
Range:	0-Forward (Skip to next phase)		
	1-Backward (G	o back to previous phase)	

OVERSTAT (ProcMod)

Type: Lock:	E:JUMPDIR ONPROC and	Override Current Statement —Allows the operator to override the current statement of the sequence by skipping forward to the next statement, or backward to the next statement. A statement can be overriden in this memory only.	
	CNTLLOCK	to the previous statement. A statement can be overridden in this manner only	
	parameters	when the sequence execution state is PAUSE, FAIL, or ERROR.	
Default:	Blank		
PtRes:	HPM		
Range:	0-Forward (Skip to next statement)		
5	1-Backward (G	o back to previous statement)	

OVERSTEP (ProcMod)


Type:E:JUMPDIR
ONPROCOverride Current Step—Allows the operator to override the current step of the
sequence by skipping forward to the next step, or backward to the previous step.Default:BlankA step can be overridden in this manner only when the sequence execution state
is PAUSE, FAIL, or ERROR.Range:0-Forward (Skip to next step)

unge: 0-Forward (Skip to next step) 1-Backward (Go back to previous step)

OVERVAL

Type:	Integer	Overview Value in Percent—Defines the amount of deviation (PV - SP, in
Lock:	Eng/PB	percent) that causes the PV to reach the overview limit. For digital points, the
Default:	25	display shows the current state of the point.
PtRes:	NIM	As shown in Figure O-1, The baseline shows the normal operating value for this
		PV.

Range: **0** to **100** (Entering a 0 suppresses the value; value is not shown on the display)

OVRCTIM (DevCtl)

Type:TimeTime Over High Trip Limit—The amount of time the SECVAR parameter isLock:Viewcontinuously greater than the SECVAR high trip limit.Default:0

PtRes: HPM

Range: Duration (0 to 9999 days, with a resolution to 1 second)

OVRDALOP (DevCtl, DigComp)

Type:	E:\$OVRALOP	Override Alarm Option —The override alarm option for I0, I1, and I2
Lock:	Eng/PB	parameters.
Default:	None	
PtRes:	HPM	
Range:	0-None (No override	e alarming)
	1-Auto_Rtn (Return	to normal when override is cleared)
	2-Cnfm_Rqd (Conf	irm to clear, after interlock is cleared)
	— - ·	

OVRDALPR (DevCtl, DigComp)

Type:	E:ALPRIOR Override Alarm Priority —Defines the priority of an override alarm.
Lock:	Engr
Default:	Low
PtRes:	HPM
Range:	JnlPrint (Alarm is historized and reported to the printer but not annunciated)
	Printer (Alarm is reported to the printer but not historized and not annunciated)
	Emergncy (Alarm is historized, annunciated, and reported to all alarm summary displays)
	High (Alarm is historized, reported to Area Alarm Summary Display and Unit Alarm Summary
	Display)
	Low (Alarm is historized, reported to the Unit Alarm Summary Display, and annunciated)
	Journal (Alarm is historized but not reported to Universal Stations and not annunciated)
	NoAction (Alarm is not reported to the system and not annunciated)

OVRDCONF (DevCtl, DigComp)

Type:	Logical
Lock:	Oper
Default:	Off
PtRes:	HPM
Range:	Off (An
	0 1

Override Confirmation Flag—Indicates one of the four override alarms SI0CONF or I0CONF-I2CONF has not yet been confirmed. This flag is also used to confirm the alarm.

unge: Off (An alarm is not waiting for confirmation) On (An alarm is waiting for confirmation)

OVRDDESC (DevCtl, DigComp)

Type:	String_8	Override Alarm Descriptor—Input connections and logic gating are examined in
Lock:	View	order to determine which input was the source of change for the interlock. For
Default:	Blank	the Device Control point, descriptor text for this parameter is taken from
PtRes:	HPM	LIDESC (1-12). Descriptive text for the Digital Composite point is taken from
		SI0 DESC or I0-12 DESC parameters.

Range: SI0 Desc (Current interlock or input descriptor)

I0 - I2 Desc (Current interlock or input descriptor)

L1 - L12 Desc (Current interlock or input descriptor, Device Control only)

OVRDI0FL, OVRDI1FL, OVRDI2FL, OVRDSIFL (DevCtl, DigComp)

Type:	Logical	Override and Safety Override Alarm Flag-Indicates that an override is active, or
Lock:	View	that a confirmable override was cleared, but not yet confirmed.
Default:	Off	·

```
PtRes: HPM
```

```
Range: Off (Override flag is not active)
On (Override flag is active)
```

Pressure Input—Indicates the measured actual gage pressure.

P (FlowComp)

Type:RealLock:ViewDefault:1.0PtRes:HPMRange: ≥ 0.0

P0 (FlowComp)

Type:RealZero Reference for Pressure—P0 is the zero reference pressure input and is in the
same engineering units as the P input. P0 is typically 14.696 if P is in psig or
101.325 if P is in kiloPascals. Enter the absolute value of the number.PtRes:HPM
Range:N/A

P0-P2 (DevCtl, DigComp)

	-	
Type:	Logical	Permissive Interlocks for Output States 0, 1, & 2-Permissive interlocks are
Lock:	Engr	controlled by logic slot outputs, and each interlock determines whether the
Default:	On	operator and user program are allowed to use the respective state, or are locked
PtRes:	HPM	out from that state. A permissive interlock (P0-P2) is provided for each state
		(STATE0-STATE2). The permissive interlocks themselves never cause the
		outputs to change. P0-P2 can be changed by a logic block or a program when
		the point is active and the mode attribute is Program. Refer to the HPM
		Control Functions and Algorithms manual for a detailed description.
		~ *

Range: **Off** (Respective state is locked out) **On** (Respective state is permitted to be used)

Helpful Hint: P0–P2 configuration requires PTEXECST = InActive or PNTSTATE = Idle.

P1-P6 (RegPV)

Type: Real Lock: View Default: NaN PtRes: HPM Range: N/A, NaN **PV Inputs 1-6**—Indicates the current values at the inputs to the RegPV algorithm. For Totalizers, P2 is the floating point input of AV.

P1STS-P6STS

Type:	E:PVVALST	P1–P6 Status —Indicate the status of the up to six inputs at the RegPV
Lock:	View	algorithm.
Default:	Bad	-
PtRes:	HPM	
Range:	0-Bad (Value is ba	ad and replaced with NaN)
	1-Uncertn (Status	s of the value is uncertain)
	2-Normal (Value	
	× ×	

PAUSETIM (DevCtl, DigComp)

Type:	Integer	State 0 Pause Time —The amount of time to pause in State 0 on an OP state
Lock:	Supr	change, if the STCHGOPT parameter equals STATE0.
Default:	0	
PtRes:	HPM	
Range:	0 to 1000 seconds	
-		

PERIOD (ProcMod, Timer)

Period—Defines the processing period in seconds.

Type:	Real
Lock:	View
Default:	1 seconds
PtRes:	HPM
Range:	1 seconds
-	

PERIOD (DevCtl, DigComp, Logic, RegCtl, RegPV)

period in seconds.

Type:	Real	Period—Defines the processing
Lock:	View	
Default:	1 second	
PtRes:	HPM	
Range:	0.25, 0.5, or 1	.0 seconds

PERIOD

Type:	Real Period —specifies the scan period in seconds.
Lock:	PtBld
Default:	.25 sec for Logic, DigComp, & DevCtl
	.50 sec for RegPv and RegCtl
	1.00 sec for ProcMod
PtRes:	HPM
Range:	0.0625, 0.125, 0.25, 0.5, 1.0, 2.0, and 4.0 seconds

PERIOD (DigOut)

Type:	Real	Period —Defines length of period for an SO output from DigOut point that has
Lock:	Eng/PB	been configured for a PWM output.
Default:	10.0 seconds	
PtRes:	HPM	
Range:	1.0 to 120.0 sec	conds

PFDLYFL (RegCtl, RegPV, DevCtl, DigComp, Logic, ProcMod)

Type:	Logical	PreFetch Delayed Flag—Set when prefetch data is not available for slot
Lock:	View	execution.
Default:	Off	
PtRes:	HPM	
Range:	Off (prefetch da	ata is available for slot execution.)
, , , , , , , , , , , , , , , , , , ,	On (prefetch da	ta is not available for slot execution.)
	-	

PGALGID(1)-(4) (DevCtl)

Type:	E:\$GTALGID in an Array Boolean logic gates beginning with "P" have a user-defined pulse size.	The
	(14)	
Lock:	PtBld	
Default:	Null	
PtRes:	HPM	
Range:	NULL (No algorithm)	
	AND (And Gate algorithm)	
	OR (Or Gate algorithm)	
	NAND (Nand Gate algorithm)	
	NOR (Nor Gate algorithm)	
	XOR (Exclusive Or Gate algorithm)	
	PAND (Pulse Nand Gate algorithm)	
	POR (Pulse Or Gate algorithm)	
	PNAND (Pulse Nand Gate algorithm)	
	PNOR (Pulse Nor Gate algorithm)	
	PXOR (Pulse Exclusive-Or Gate algorithm)	

PGDSTN(1)-(4) (DevCtl)

Type:	E:\$GATDSTN Primary Gate Destination —Defines the output destination of the primary gate.
	in an Array
	(14)
Lock:	PtBld
Default:	None
PtRes:	HPM
Range:	None (No destination)
	SIO (Output goes to Safety Interlock)
	I0, I1, I2 (Output goes to Interlock)
	P0, P1, P2 (Output goes to Permissives)
	SOCMD0, SOCMD1, SOCMD2 (Output is commanded to go to SOCMD0, 1 or 2)
	OPCMD (Output is commanded to go to OPCMD parameter)
	SG1, SG2 (Output goes to Secondary gates 1 or 2)

PGPLSWTH(1)-(4) (DevCtl)

Type:	Integer in an Array	Primary Gate Pulse Width —Indicates the pulse width for primary gates whose algorithm starts with a "P".
	(14)	
Lock:	Supr	
Default:	0	
PtRes:	HPM	
Range:	0 to 8000 secon	ıds

PGSO(1)-(4) (DevCtl)

Type:	Logical
	in an Array
	(14)
Lock:	View
Default:	Off
PtRes:	HPM
Range:	Off
-	On

Primary Gate Status Output—Indicates the output value of the primary gate.

PHASE (ProcMod)

Type:String_8Lock:ViewDefault:SpacesPtRes:HPMRange:N/A

Phase Name—Indicates the current phase of the sequence executing in the process module.

PHASEAL (ProcMod)

Type:	Logical	Phase Alarm—Indicates whether the current phase of the sequence has been
Lock:	View	completed within the specified time.
Default:	Off	
PtRes:	HPM	
Range:	On (Phase has 1	not been completed in the specified time)
-	Off (No phase a	larm)
	-	

PHASETIM (ProcMod)

Type:	Integer	Phase Time —Indicates the time remaining in minutes in the current phase
Lock:	View	before a phase alarm is generated. The maximum time allowed for the phase is
Default:	0 seconds	defined by the phase statement.
PtRes:	HPM	
Range:	0 to 9999 minu	tes

PHREMTIM (ProcMod)

Type:	Time
Lock:	View
Default:	0 seconds
PtRes:	HPM
Range:	N/A
0	

Phase Time Remaining—Indicates the time remaining in time duration before a phase alarm is generated. This value is displayed in the HPM Detail display.

PIALGID (1)-(12) (DevCtl)

Type:	E:\$I1ALGID in an Array (112)	Primary Input Gate Algorithm ID —The XX algorithms compare this input to the PINN (1)-(12) parameter, and the IN_SET algorithm compares it to the range of 10 values in the NNINSET (1)-(10) parameter. The XX2 algorithms compare	
Lock:	PtBld	this input defined by the PISRC(1)-(12) parameter.	
Default:	Null		
PtRes:	HPM		
Range:	NULL (No algo	orithm)	
0	INVERT (Inve	rt Logical algorithm)	
	GT (Greater Th	an algorithm)	
	GE (Greater Th	an or Equal To algorithm)	
	LT (Less Than algorithm)		
	LE (Less Than or Equal To algorithm)		
	EQ (Equal To algorithm)		
	NE (Not Equal To algorithm)		
	GT2 (Greater T	'han algorithm)	
	GE2 (Greater T	'han or Equal To algorithm)	
	LT2 (Less Than	n algorithm)	
	LE2 (Less That	n or Equal To algorithm)	
	EQ2 (Equal To	algorithm)	
		l To algorithm)	
	IN_SET (Com	pares the input to values in the INSET array)	

PIDEADBD(1)-(12) (DevCtl)

Real
in an Array
(112)
Supr
1.0
HPM
>0

Primary Input Gate Deadband—The deadband for primary input gates that is configured for an arithmetic algorithm.

PIDFORM

 Type:
 E:PIDFORM
 PID Controller Form—Defines the type of Pid controller form. Refer to the HPM Control Functions and Algorithms manual for a detailed description.

 Default:
 Interact

 PtRes:
 HPM

 Range:
 0-Interact [(Proportional + Integral) x Derivative]

 1-Ideal (Proportional + Integral + Derivative)

PIDSTN(1)-(6)

Type:	Ent.Prm PV Input Connection Destination—Defines the parameter in the data point that	
Lock:	View	is to receive the value provided by the respective input connection. There can be
Default:	Based on	up to six input-connection destinations for a RegPV point.
	PVALGID,	
	PVEQN, & N	
PtRes:	HPM	
Range:	1–8 character va	lid parameter name

PINN (1)-(12) (DevCtl)

Type:	Real
Lock:	Supr
Default:	0.0
PtRes:	HPM
Range:	<> NaN

Primary Input Constants Numeric—The numeric constant for arithmetic comparisons of primary input gates using XX algorithms.

PISO (1)-(12) (DevCtl)

Type:	Logical
	in an Array
	(112)
Lock:	View
Default:	Off
PtRes:	HPM
Range:	Off
-	On

Primary Input Gate Output Value—Indicates the output value of the primary input gate.

PISRC(1)-(12) (DevCtl)

Type:	E:\$GATESRC in an Array	Primary Input Source —The source for the second input of primary input gates for arithmetic comparison algorithms that use a second external input (i.e., XX2)
	(112)	algorithms).
Lock:	PtBld	
Default:	Null	
PtRes:	HPM	
Range:	NULL (No sour	ce for input)
	L1L12 (These	values correspond with the LISRC(1)—(12) parameter)

PISRC(1)-PISRC(6)

•	Ent.Prm PtBld null.null	PV Input Connection Source —Define the parameters whose current values are to be fetched and then written to the up to six RegPV algorithm inputs. The source parameter name can be specified using the "Tagname.Parameter" format.	
PtRes:	HPM	Refer to the HPM Control Functions and Algorithms manual for a detailed	
		description.	
Range:	Use Tagname.P	arameter for tagged points where Tag name can be up to 16 characters and the	
permissible character set is as follows:			
Alphabetics A-Z (uppercase only)			
	Numeri	cs 0-9 (an all numeric tag name is not allowed)	
Underscore (_) cannot be used as the first character or the last character, and consecutive underscores are not allowed.			
Embedded space characters are not allowed.			
	An * is	used to default to this point's tag name.	
	Parame	ter name can be up to eight characters, and must be a legitimate parameter name.	

PIUOTDCF (STI, LLMUX, RHMUX)

Logical
Eng/View
On
HPM

Open Thermocouple Detection Enable—Defines whether the point is to detect an open thermocouple condition. This parameter is configurable for each STI point that is connected to a smart temperature transmitter and for each LLMUX point. NOTE: There is no special point type for RHMUX. The LLMUX point type also applies to the RHMUX IOP.

This parameter is a view-only parameter when the point execution state PTEXECST is Active.

Range: **On** (Detect an open thermocouple condition) **Off** (Do not detect an open thermocouple)

PIUOTDCF(1)–(168) (LLAI)

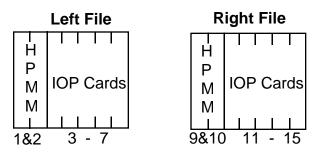
Type:	Logical	LLAI Open Sensor Detection Enable—Defines whether an		
Lock:	Supr	open-sensor condition is to be detected for all eight LLAI points.		
Default:	On			
PtRes:	HPM			
Range:	On (Detect open-sensor conditions)			
, i i i i i i i i i i i i i i i i i i i	Off (Do not detect open-sensor conditions)			
		•		

PKGOPT (HPM Box)

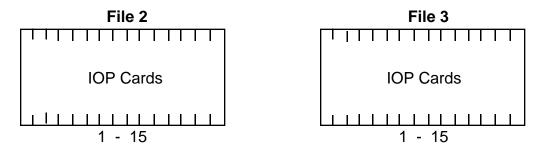
Type:E:\$PKGOPT
Lock:HPMM Hardware Packaging Option. The tables below show the default
hardware location for each choice.Default:REDUN_2F
PtRes:HPM

Range: 1-**REDUN** (HPMMs in two 7-slot files/can have up to 40 IOPs)

2-REDUN_2F (HPMMs in two 15-slot files/can have up to 40 IOPs)
3-REDUN_IO (HPMMs/two separate 15-slot files/can have full redundant IOPs)
4-NODEFALT (Sets file/card positions of IOPs to 0. Used to bypass all defaults for IOP File/Card positions).


Helpful Hints: Parameter NODENUM must be equal to an odd number no matter which option is selected for PKGOPT.

During Node Specific configuration, if you choose Redun_IO, you must type in file and card numbers for the IOP cards. Refer to the tables below or the HPM Node Specific Configuration Form if necessary.

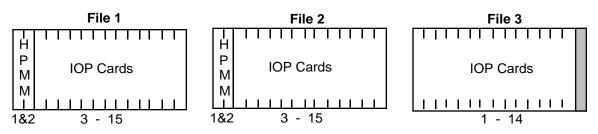

An HPMM can be operated as a non-redundant node independent of the PKGOPT selected.

The options are illustrated or discussed further in the following pages:

REDUN

The Primary and Secondary HPMM Cards must be in Left File Card slots 1 & 2 and Right Card File, Card slots 9 & 10.

The File and Card position of the IOPs are defaulted as follows:


Hardware	File	Card Slot	Hardware	File	Card Slot
IOM-A 1-5	1	3 - 7	IOM-A 11-25	2	1 - 15
IOM-A 6-10	1	11 - 15	IOM-A 26-40	3	1 - 15

NOTE

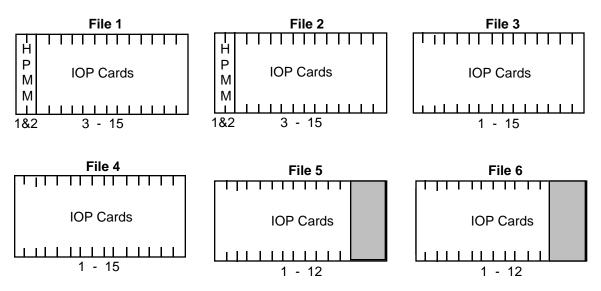
To operate the HPMM as non-redundant, configure PKGOPT = REDUN as above but install only one of the HPMM card sets above. The backplane slot positions vacated by the second HPMM cards can be used to house IOP cards if necessary.

PKGOPT

REDUN_2F

The Primary and Secondary HPMMs must be in File 1, Card slots 1 & 2 and in File 2, Card Slots 1 & 2.

File and Card positions of the IOPs are defaulted as follows:


Hardware	File	Card Slot
IOM-A 1 - 13	1	3 - 15
IOM-A 14 - 26	2	14 - 26
IOM-A 27 - 40	3	1 - 14

NOTE

To operate the HPMM as non-redundant, configure PKGOPT = REDUN_2F as above but install only one of the HPMM card sets above. The backplane slot positions vacated by the second HPMM cards can be used to house IOP cards if necessary.

PKGOPT

REDUN_IO

The Primary and Secondary HPMMs must be in File 1, Card Slots 1 & 2 and in File 2, Card Slots 1 & 2.

The File and Card position of the IOPs are defaulted as follows:

Hardware	File	Card Slot	Hardware	File	Card Slot
IOM-A 1-13	1	3 - 15	IOM-B 1 - 13	2	3 - 15
IOM-A 14-28	3	1 - 15	IOM-B 14 - 28	4	1 - 15
IOM-A 29-40	5	1 - 12	IOM-B 29 - 40	6	1 - 12

Note that on download of this configuration to the HPM, the PKGOPT is changed back to REDUN_2F.

NODEFALT

The HPMM File(s) may be like any of the previous three configurations and up to 40 IOPs are allowed. The IOP file/Card positions must be configured by the user. Note that on download to the HPM, PKGOPT changes to REDUN, or REDUN_2F based on the actual hardware.

I/O Simulator Option

The optional I/O Simulator can be used to build points for this (the host) HPM or another HPM. When using the I/O Simulator personality you may choose a packaging option (PKGOPT) that is different from the physical backplane/hardware configuration of the host HPMM. The intent is to let you choose a PKGOPT based on either the host's hardware configuration or that of another HPMM. This allows you to create databases for other HPMs using a single HPM I/O Simulator independent of its actual physical configuration. The following rules apply:

Host HPM Configuration	Other HPM Configuration	PKGOPT Selection
Any	7 - Slot	REDUN or NODEFALT
Any	15 - Slot	REDUN_2F, REDUN_IO, or NODEFALT

PMEVOVFL

Type:	Logical	HPMM Event Overflow Flag
Lock:	View	
Default:		
PtRes:	HPM	
Range:	Off (No over	flow)
-	On (Overflow	has occurred)

PMMCHAER (HPM Box)

Type:	Integer
Lock:	View
Default:	0
PtRes:	HPM
Range:	<u>≥</u> 0
9	

HPMM I/O Link Channel A Error Count

PMMCHASL (HPM Box)

Type:IntegerLock:ViewDefault:0PtRes:HPMRange: ≥ 0

HPMM I/O Link Channel A Silence Count

PMMCHBER (HPM Box)

Type:IntegerLock:ViewDefault:0PtRes:HPMRange: ≥ 0

PMMCHBSL (HPM Box)

Type:IntegerLock:ViewDefault:0PtRes:HPMRange: ≥ 0

HPMM I/O Link Channel B Silence Count

HPMM I/O Link Channel B Error Count

PMMCMD (HPM Box) Type: E:\$PMMCMD HPMM Command

Type:E:\$PMMCMDLock:OnProcDefault:NonePtRes:HPM

NOTE

When points are built to a NIM and the NIM is restarted with no database, the points need to be reloaded from checkpoint or the points must be reconfigured. If the database is to be reconfigured, the HPMM must be in Idle, and the point execution state must be Inactive. This allows the point build operation to override the database that already exists there.

Range: 0-None (No command request has been issued)

1-Run (To "Run" state for processing points)

2-Idle (To "Idle" state for reloading the database)

3-**RsIoLCom** (Reset I/O Link communication error count = 0)

4-ShutDown (To "Alive" state for reloading personality)

5-RsUcnLsb (Reset the Local Statistics Block to zeroes)

6-SelChnA (Select Input/Output Link Channel A)

7-SelChnB (Select Input/Output Link Channel B)

8-Warmstrt (Warm Start)

9-Coldstrt (Cold Start)

10-SwapPri (Switchover to the redundant HPMM)

PMMCOMER (HPM Box)

 Type:
 E:\$IOMCOMM
 HPMM I/O Link Communication Error Status

 Lock:
 View

 Default:
 N/A

 PtRes:
 HPM

 Range:
 0-None (No communication errors)

 1-InvAlert (Invalid Alert—message bit problem)

 2-InvDest (Invalid Destination)

3-InvChCnt (Invalid Character Count)

4-InvSourc (Invalid Source)

5-**InvCmd** (Invalid Command)

6-Checksum (Data record Checksum Error)

7-No_Resp (No Response)

8-ChTimOut (Channel Time Out)

9-MsgOvRun (Message Overrun)

10-GapError (Message gap is too long)

11-LpBckErr (Loop Back Error)

12-NTH_0 (Next Token Holder equals zero)

13-**TknRecov** (Token Recovery in progress)

14-**RplBufOv** (Reply Buffer Overflow)

PMMCTLST (HPM Box)

Type:	Logical	HPMM Control Processor Status
Lock:	View	
Default:	Off	
PtRes:	HPM	
Range:	Off (Control pro	ocessor has not failed)
	On (Control pro	cessor has failed)

PMMIOLST (HPM Box)

Type:	E:\$IOMSTS
Lock:	View
Default:	
PtRes:	HPM
Range:	Notconfg (IOP not configured)
	Confgmis (Configuration mismatch detected)
	OK (Module is running with no soft fail errors)
	Idle (Module is idle with no soft fail errors)
	Softfail (Module is running with soft fail error(s) present)
	Idlesf (Module is idle with soft failure error(s) present)
	Nonexist (Module does not exist at this address)
	Noresp (No response from module)
	Poweron (Module state is Power On)
	Commerr (Communication error to IOP)
	Unavail (Module is unavailable for communication)

PMMOPER (HPM Box)

Type: E:\$OPERATE Process Manager Module Operation—Indicates the type of HPMM.

Lock: View

Default: N/A

PtRes: HPM Range: 0-Noi

: 0-NonRedun (This HPMM has no redundant HPMM to back it up)

1-Primary (This HPMM is the primary point processor)

2-Secondry (This HPMM is the secondary HPMM that backs up the primary HPMM)

PMMRECCH (HPM Box)

 Type:
 E:\$RECCHN
 HPMM I/O Link Current Receive Channel

 Lock:
 View

 Default:
 N/A

 PtRes:
 HPM

 Range:
 0-ChannelA (Channel A is channel currently receiving)

 1-ChannelB (Channel B is channel currently receiving)

PMMRECHN

Type:	E:\$RECCHN	HPMM Active Receive Channel
Lock:	View	
Default:	N/A	
PtRes:	HPM	
Range:	ChannelA	
	ChannelB	

PMMSFST(1)-(96)

Type: Logical Lock: View Default: PtRes: HPM Range: Off On HPMM Soft Failure

PMMSTS (HPM Box)

Type:	E:\$NODESTA HPMM Primary Status
Lock:	View
Default:	N/A
PtRes:	HPM
Range:	0-OffNet (NIM cannot communicate with the HPMM)
	1-ConfgMs (Configuration mismatch detected)
	2-Idle (Event reports but no point processing)
	3-IdleSF (Soft failure occurred in Idle state)
	4- OK (HPMM is operating normally)
	5-SoftFail (Soft failure while HPMM is running)
	6-Fail (HPMM can be accessed but CPU is halted; box hard failure has been detected)
	10-Alive (No event reports or point processing)
	11-AliveSF (Soft failure during Idle state)
	12- Test (HPMM is in the test mode)
	13-TestSF (Soft failure has been detected while the HPMM is in the test mode)
	15-Loading (Personality or data base is loading)
	16 S_Idle (Idle in Simulation Mode)
	17 S_IdleSf (IdleSF in Simulation Mode)
	18 S_OK (OK in Simulation Mode)
	19 S_SFFail (SoftFail in Simulation Mode)
	20 S_Pause (HPM is in the Simulation Pause state)
	Standby
	StandbySF

Upgrade UpgradeSF

Helpful Hint: Loading the HPMM's operating personality software requires PMMSTS = Alive. Loading the HPMM's database requires PMMSTS = Idle. Use parameter PMMCMD's "Shutdown" and "Idle" command requests, respectively.

PNAMIOPA

Type:String_16PLock:ViewndDefault:Parameter_InvalidPtRes:IOPRange:

Physical Node Name Assigned to IOP A— Returns the Fieldbus physical node name assigned to IOPA.

PNAMIOPB

Type:String_16Lock:ViewDefault:Parameter_InvalidPtRes:IOPRange:

Physical Node Name Assigned to IOP B— Returns the Fieldbus physical node name assigned to IOPB.

PNTFORM

Type:	E:\$PNTFORM	Point Form —Defines the form of the data point that is implemented. Refer
Lock:	View/PB	to the HPM Control Functions and Algorithms manual for a detailed
Default:	Full	description of this function.
PtRes:	HPM	-
Range:	0-Full (Point is ful	ly displayed and alarmed)
	1-Componnt (Poir	it is partially displayed but not alarmed)
	-	

Helpful Hint: This parameter is not applicable to DigOut points.

PNTMODTY

Type: Lock: Default: PTRes:		Point's Module Type —Defines where the data point resides. Control points such as DigComp, RegPV, RegCtl, Logic, Process Module, Array, Box Flags, Box Numerics, and Box Timers reside in the HPMM.	
Range:	τ U Ι	utput/high density)	
	DI (Digital Input)	(utput/lingh density)	
	DO (Digital Outpu	nt)	
		utput/high density)	
	HLAI (High-Level		
		0 1 /	
	LLAI (Low-Level Analog Input) STI8M(Smart Transmitter Interface)		
	NotConfg (Not Co		
	0 (ninguleu)	
	PI (Pulse Input)	forman an Dragons Managar Madula)	
		formance Process Manager Module)	
	,	evel Analog Input Multiplexer) All references to LLMUX also apply to	
		X, except that RHMUX does not support SENSRTYP of RTD.	
	DISOE (Sequence		
	SI (Serial Interface	,	
	AO_16 (Analog O		
	DO_32 (Digital O	utput 52)	

PNTNODTY

 Type:
 E:\$UCNNDTY
 Point's Node Type—Defines the type of node on the UCN

 Lock:
 View

 Default:
 N/A

 PtRes:
 NIM

 Range:
 NIM (Network Interface Module)

 HPM (High-Performance Process Manager)
 NotConfg (Node not configured)

PNTSTATE

Type:E:PNTSTATEPoint's Overall State—Defines the state of the data point, which is based on
the state of the HPMM and the IOP Card in which it resides.Default:N/A

PtRes: **NIM**

Range:Failed (NIM cannot communicate with point's HPMM/IOP)Idle (Point's HPMM or IOP is in the Idle State)OK (Point's HPMM or IOP is the Run State and is OK)UNCERTN (Point's HPMM or IOP state is uncertain)

PNTTYPE

Type: Lock:	E:PNTTYPE Point Type —Defines the type of point in the HPM. PtBld
Default:	Null
PtRes:	
Range:	0-Null (Not configured)
0	1-AnalgIn (Analog Input)
	2-AnalgOut (Analog Output)
	4- DigIn (Digital Input)
	5- DigOut (Digital Output)
	6- DigCom (Digital Composite)
	8- RegPV (Regulatory PV)
	9-RegCtl (Regulatory Control)
	10-Logic (Logic)
	11-Array (Array)
	12-Flag (Flag)
	13-Numeric (Numeric)
	14-ProcModl (Process Module)
	22-Timer (Timer)
	28-DevCtl (Device Control)

Helpful Hint: PNTTYPE of DigOut has a restriction that PNTFORM cannot be = Full.

POSITION (HPM Box)

Type:	E:\$POSITIN HPMM File Position
Lock:	View
Default:	N/A
PtRes:	HPM
Range:	0- Right (HPMM cards are in card file slots 6–10)
	1-Left (HPMM cards are in card file slots 1–5)
	2-File_1 (HPMM cards are in card file 1)
	3-File_2 (HPMM cards are in card file 2)
	4-Pref
	5-Non_Pref
	6-None
	7- Unknown (Not able to determine file position from hardware)

PR2PREFF (HPM Box)

Type:	Real	Peer-to-Peer Communication Efficiency (in percent)—Indicates the rate of
Lock:	View	successful and on time UCN transactions from this node.
Default:	100	
PtRes:	HPM	
Range:	0 - 100	
Ũ		
	Helpful Hint:	This statistic is displayed on the Control Configuration page of the HPM
		Diagnostic Display.

PRGATRFL (DigComp, DevCtl, RegCtl)

Type:	Logical	Program Mode Attribute Flag — indicates if the point is in Program Mode
Lock:	View	attribute.
Default:	N/A	
D+Dag.	HDM	

PtRes: HPM

Range: **On** - (point is in Program mode attribute) **Off** - (point is not in Program mode attribute)

PRIMMOD

Type: Lock: Default: PtRes:	Ent_Id Engr Null NIM	Primary Module Point Identifier —Typically used in Batch Processing, this parameter contains the tag name of an HPM point to which this data point is assigned. Other points that belong to the Batch equipment unit should have their PRIMMOD set to this same point. Primmod is used to collect alarms and events from this point along with others related to the specified Primary Module point. Information is collected into a common file, accessible from the Event History Menu.
Range:	Tag name of the	e process module point can be up to 16 characters, and the permissible character

set is as follows:

Alphabetics A-Z (uppercase only)

Numerics 0-9 (an all numeric tag name is not allowed)

Underscore (_) cannot be used as the first character or the last character, and consecutive underscores are not allowed.

Embedded space characters are not allowed.

Helpful Hint: For Box Flag points, this parameter applies to only slots 1 through 128. LCN entities that can be stored to PRIMMOD in NIM points are restricted to local NIM points.

PRMDESC(1)–(12) (Logic)

Type:	E:\$PMMLGPM	Parameter Descriptor Assignment—Defines up to 12 logic-slot parameters
Lock:	Eng/PB	to which custom generic descriptors entered through parameters
Default:	N/A	GENDESC(1-12) are to be assigned.
PtRes:	NIM	
Range:	L1L12 (Logic-slot	t inputs)
	FL1FL12 (Logic-s	slot flags)
	NN1NN8 (Logic-s	lot numerics)
	SO1SO24 (Logic-	slot outputs)

PROCMOD (ProcMod)

Type: Lock:	E:PROCMOD Determined by CNTLLOCK	Process Module Operating State —Represents the operational condition of a process module. Refer to the <i>HPM Control Functions and Algorithms</i> manual for a state diagram.	
Default	parameter		
Default:	Off		
PtRes:	HPM		
Range:	0- Off (Off)		
	2-Norm (Normal)		
	4-Hold (Hold)		
	5-Shdn (Shutdown	n)	
	6-Emsd (Emergen	cy Shutdown)	
	7-Strt (Start)		
	8-Stop (Stop)		

PRPMMSTS

E:\$NODESTA Type: **Previous HPMM Status** Lock: View Default: PtRes: HPM Range: Offnet (HPMM is offnet with no communications possible) Confgmis (HPMM is in configuration mismatch) Idle (HPMM is idle) **Idlesf** (HPMM is idle with soft failure(s)) OK (HPMM is running with no errors) **Softfail** (HPMM is running with soft failure(s)) Fail (HPMM has failed) **Poweron** (HPMM is in Power On state-startup condition from power loss) Alive (HPMM has passed self diagnostics and is ready to accept personality) Alivesf (HPMM diagnostics have soft failure) Loading (HPMM is loading personality) Notconfg (HPMM is not configured on network) Unavail (HPMM is unavailable on network for communications) Test (HPMM is in Test mode) **Testsf** (HPMM is in Test mode with a soft failure(s)) Standby StandbySF Upgrade UpgradeSF

PRVCOMFL

E:\$PMMHFST Type: **Previous HPMM Communications Board Failure** Lock: View Default: PtRes: HPM Range: NULL (Unknown Error) PWRDWN (Power is Off) LR PAR (Local Ram Parity Error) LR_LRAM (Local Ram Error) LR CK (Local Ram Check) LR EXC (Local Ram Exception) LR_HREV (Local Ram Hardware Revision) MM_HREV (Memory Board Hardware Revision) LR TMR (Local Ram Timer Error) LR PTRN (Local Ram Pattern Check Error) LR BYTE (Local Ram Byte Error) LR ADCD (Local Ram Address Decode Test) LR_ADDL (Local Ram Additional Checks) LR_CLRR (Local Ram Scrub Incomplete) **SR PAR** (Shared Ram Parity) SR PTRN (Shared Ram Pattern) SR ADCD (Shared Ram Address Decode Test) SR_ADDL (Shared Ram Additional Checks) **GR_PAR** (Global Ram Parity) GR_PTRN (Global Ram Pattern Check Error) **GR BYTE** (Global Ram Byte Error) GR ADCD (Global Ram Address Decode Test) **GR ADDL** (Global Ram Additional Checks) **GR** CLRR (Global Ram Scrub Incomplete) 31_NR (IOL Processor, No Response or Failure) **31_ALIV** (IOL Processor, Transmitter Not Alive) **31 ILTN** (IOL Processor, Illegal Transition) NMI UNK (Unknown NMI Request) **BADUCNN** (UCN Address Parity or Duplicate Address) **NR** (No Response From Other Processor) MRFT (Memory Reference Table - Pattern Build Fail) NOMTOS (No MTOS Readout) LLC COMM (LLC Communication Fatal Error) **UCNDRV** (UCN Driver, Fatal Error) RD HREV (Redundancy Card Version/Revision Mismatch) SW ERROR (Software Error) MD_HREV (Modem Card Version/Revision Mismatch) DA_PTRN (Daughter Card Pattern Test) DA BYTE (Daughter Card Byte Write Test) DA_ADCD (Daughter Card Address Decode) DA_ADDL (Daughter Card Additional Tests) DA_CLRR (Daughter Card Scrub Incomplete) RD_SNPS (Redundancy Card 96 Kw Snapshot Error) RD_BSLK (Redundancy Card Bus Lock Fail)

PRVCTLFL

Type: E:\$PMMHFST Lock: View Default: PtRes: HPM

Range:

Previous HPMM Control Failure

NULL (Unknown Error) **PWRDWN** (Power is Off) LR_PAR (Local Ram Parity Error) LR_LRAM (Local Ram Error) LR_CK (Local Ram Check) LR EXC (Local Ram Exception) LR HREV (Local Ram Hardware Revision) MM HREV (Memory Board Hardware Revision) LR TMR (Local Ram Timer Error) LR_PTRN (Local Ram Pattern Check Error) LR_BYTE (Local Ram Byte Error) LR ADCD (Local Ram Address Decode Test) LR_ADDL (Local Ram Additional Checks) LR_CLRR (Local Ram Scrub Incomplete) SR_PAR (Shared Ram Parity) SR_PTRN (Shared Ram Pattern) SR_ADCD (Shared Ram Address Decode Test) **SR ADDL** (Shared Ram Additional Checks) **GR PAR** (Global Ram Parity) **GR PTRN** (Global Ram Pattern Check Error) **GR_BYTE** (Global Ram Byte Error) GR_ADCD (Global Ram Address Decode Test) GR_ADDL (Global Ram Additional Checks) GR CLRR (Global Ram Scrub Incomplete) 31_NR (IOL Processor, No Response or Failure) 31_ALIV (IOL Processor, Transmitter Not Alive) 31_ILTN (IOL Processor, Illegal Transition) NMI_UNK (Unknown NMI Request) BADUCNN (UCN Address Parity or Duplicate Address) NR (No Response From Other Processor) MRFT (Memory Reference Table - Pattern Build Fail) NOMTOS (No MTOS Readout) LLC COMM (LLC Communication Fatal Error) UCNDRV (UCN Driver, Fatal Error) RD HREV (Redundancy Card Version/Revision Mismatch) SW ERROR (Software Error) MD_HREV (Modem Card Version/Revision Mismatch) DA_PTRN (Daughter Card Pattern Test) **DA_BYTE** (Daughter Card Byte Write Test) DA_ADCD (Daughter Card Address Decode) DA_ADDL (Daughter Card Additional Tests) DA CLRR (Daughter Card Scrub Incomplete) RD_SNPS (Redundancy Card 96 Kw Snapshot Error) RD_BSLK (Redundancy Card Bus Lock Fail)

PRVIOLFL

E:\$IOMHF Type: **Previous IOL Failure** Lock: View Default: PtRes: HPM Range: **UNKNOWN** (Unknown Error) POWERDWN (Power is Off) **INVPRGEX** (Invalid Program Execution) **EPROMERR** (EPROM Error) **RAMCNTER** (Ram Contents Error) RAMADRER (Ram Address Error) **DPAERROR** (Physical Address Error) DSAERROR (Soft Address Error) **RXBUFOFL** (Receive Buffer Overflow) IOLJABER (IOL Jabber Circuit - saw too much traffic) **BADPGJMP** (Bad Program Jump) ADCINCMP (A/D Incomplete) ADOUTOVF (A/D Output Overflow) ADOUTUDF (A/D Output Underflow) ADCCALER (A/D Calibration Error) **BADDCLTC** (Bad DC LTC) DMT_TMOT (Dead Man Time Out) MLTOUTFL (Multiple Output Failure) **DATBUSFL** (Data Bus Failure) BADDARNG (Bad D/A Range) **MSTRTMOT** (Master Time Out 68 K) CTRCKTFL (Counter Circuit Failure)

PSDLYFL

 Type:
 Logical
 Poststore Delayed Flag—Set when poststore data is older than 1 second.

 Lock:
 View

 Default:
 Off

 PtRes:
 HPM

 Range:
 Off

On (poststore data is older than 1 second.)

PSTS (FlowComp)

E:PVVALST Pressure Input Value Status—Status of the P input value.

Type:E:PVVLock:ViewDefault:NormalPtRes:HPMRange:0-Bad (

0-**Bad** (Value is bad and replaced with NaN) 1-**Uncertn** (Status of the value is uncertain)

2-Normal (Value is good)

PTDESC

Type:	String_24	Point Descriptor—A 24-character descriptor which is used to describe the point
Lock:	PtBld	and appears on the Group and Detail Displays for the point. Refer to
Default:	Blank	Figure N-1.
PtRes:	NIM	
Range:	Permissible cha	racter set consists of all characters on the Engineer's Keyboard. Basically this set
	consists of alph	abetics A-Z, numerics 0-9, and the following special characters: space ! % & '
	() * + - / :	; > < = ? _ , . \$

PTEXECST

 Type:
 E:PTEXECST
 Point Execution State—Defines the current execution state of the point.

 Lock:
 Supr

 Default:
 Inactive

 PtRes:
 HPM

 Range:
 0-Inactive (Point is not scanned or processed)

 1-Active (Point is scanned and processed)

PTINAL (RegCtl, RegPV)

Type: Logical Lock: View

Point in Alarm Indicator—Indicates when an alarm condition has been detected at this point.

Default: Off

fault: **Off**

PtRes: HPM

Range: **Off** (Point is not in alarm) **On** (Point is in alarm)

PTORST (RegCtl)

Type: **E:ORSTATUS Point Override Status**—Indicates the override status of the point.

Lock: Prog

Default: NotCon

PtRes: HPM

Range: 0-NotCon (Not connected to ORSel algorithm. Also indicates that point has been returned from inactive to active status, or it is undergoing a cold restart, or it is being initialized.)
 1-Sel (Selected as a part of ORSel strategy)

2-NotSel (Not selected as a part of ORSel strategy)

PTSTSIOL

E:\$NODESTA Redundant Partner Status as Seen From the IOL Type: Lock: View Default: PtRes: HPM OffNet (NIM cannot communicate with the HPMM) Range: ConfgMis (Configuration mismatch detected) Idle (Event reports but no point processing) **Idlesf** (Soft failure occurred in Idle state) **Ok** (HPMM is operating normally) **SoftFail** (Soft failure while HPMM is running) Fail (HPMM can be accessed but CPU is halted; box hard failure has been detected) **Powron** (Power is on) Alive (No event reports or point processing) Alivesf (Soft failure during Idle state) Test (HPMM is in the Test mode) TestSF (Soft failure has been detected while the HPMM is in the Test mode) Loading (Personality or database is loading) Notconfg Nosynch Unavail Standby StandbySF Upgrade UpgradeSF

PTSTSUCN

E:\$NODESTA Redundant Partner Status as Seen From the UCN Type: Lock: View Default: PtRes: **HPM** Offnet (NIM cannot communicate with the HPMM) Range: Confgms (Configuration mismatch detected) **Idle** (Event reports but no point processing) **Idlesf** (Soft failure occurred in Idle state) Ok (HPMM is operating normally) **Softfail** (Soft failure while HPMM is running) Fail (HPMM can be accessed but CPU is halted; box hard failure has been detected) Powron (Power is on) Alive (No event reports or point processing) Alivesf (Soft failure during Idle state) **Test** (HPMM is in the Test mode) **Testsf** (Soft failure has been detected while the HPMM is in the Test mode) Loading (Personality or database is loading) Notconfg Nosynch Unavail Standby StandbySF Upgrade UpgradeSF

PULSEWTH (DevCtl, DigComp)

Type:	Real	Pulse Width for Point Outputs
Lock:	Supr	-
Default:	1.0 second	
PtRes:	HPM	
Range:	0.0 to 60.0 seco	nds
Ũ		

Helpful Hint: PULSEWTH change requires DODSTN= "Tagname.ONPULSE" or OFFPULSE. When On is to be written to the DigOut module, a pulse of the specified width is generated. When Off is to be written, no pulse is generated.

PV (Analgin, PI)

Type:	Real	Process Variable —PV is the PV's current value after the PV is selected from one
Lock:	Oper	of the following possible sources: a field device, an operator, or a program. See
Default:	NaN	PVSRCOPT and PVSOURCE.
PtRes:	HPM	

Range: **PVEXEUHI** to **PVEXEULO**,

NaN

Helpful Hint: PV change by a program requires PVSRCOPT = All and PVSOURCE = Sub. PV change by an operator requires PVSRCOPT = All and PVSOURCE = Man.

PV (DevCtl, DigComp)

Type:	E:SD_ENM:PVSTATES	Current State—PV is the PV's current state after the PV is selected	
Lock:	Oper	from one of the following possible sources: a field device, an	
Default:	BADPVTXT	operator, a program, or the output of the PV's data point. See	
PtRes:	HPM	PVSRCOPT and PVSOURCE.	
Range:	0- PVSTATES (0) (Defined by STATETXT (0))		
	1- PVSTATES (1) (Defined by STATETXT (1))		
	2-PVSTATES (2) (Defined by BADPVTXT)		
	3-PVSTATES (3) (Defined by	y MOVPVTXT)	
	4-PVSTATES (4) (Defined by	y STATETXT(2))	
	• • • •		

Helpful Hint: PV change by a program requires PVSRCOPT = All and PVSOURCE = Sub. PV change by an operator requires PVSRCOPT = All and PVSOURCE = Man.

PV (DigIn)

Type: Lock: Default: PtRes: Range:	E:SD_ENM:ST Oper Off HPM STATETXT(0)	ATETXT Current State—Indicates the current state of the PV input to this data point. Not appropriate if DITYPE = ACCUM. or STATETXT(1)
	Helpful Hint:	PV is derived from the open or closed state of field contacts and from the configured direct or reverse input direction (INPTDIR).

PV change by a program requires DITYPE = Latched or status, PVSRCOPT = All, and PVSOURCE = Sub. PV change by an operator requires DITYPE = Latched or status, PVSRCOPT = All, and PVSOURCE = Man.

PV (Flag)

Type: E:SD ENM:STATETXT Lock: Oper Default: Blank PtRes: HPM Range: STATETXT(0) or STATETXT(1)

Current State-Indicates the current state of the flag data point, and it is derived from PVFL. STATETXT(1) is the alarmed state.

PV (Numeric)

Type:	Keal
Lock:	Oper
Default:	NaN
PtRes:	HPM
Range:	N/A

Process Variable-Indicates the value of the numeric. This value maps into parameter NN(n) in the HPM box where n = SLOTNUM.

PV (RegCtl, RegPV)

Type:	Real	Process Variable—Indicates the current value of the PV after the PV is selected
Lock:	View for	from one of the following possible sources: a field device, an operator, or a
	RegCtl,	program. See PVSRCOPT and PVSOURCE.
	Oper for	
	RegPV	
Default:	NaN	
PtRes:	HPM	
Range:	N/A	

PV change by a program requires PVSRCOPT = All and PVSOURCE = Sub. Helpful Hint: PV change by an operator requires PVSRCOPT = All and PVSOURCE = Man.

PV (Timer)

Type:	Integer
Lock:	View
Default:	0
PtRes:	HPM
Range:	0 to 32000

Current Value-Indicates the current time in seconds or minutes. The timer starts at 0 and is incremented towards the preset time established by the SP parameter.

PVALDB (RegCtl, RegPV)

E:PVALDB Type: PV Alarm Deadband — Alarm deadband is used to prevent excessive recurrence of Lock: Eng/PB alarms by adjusting the percent of Engineering Unit range at which the alarm Default: One "returns to normal." PtRes: **HPM** 0-Half (1/2 of 1% of Engineering Unit range)

- Range:
 - 1-One (1% of Engineering Unit range)
 - 2-Two (2% of Engineering Unit range)
 - 3-Three (3% of Engineering Unit range)
 - 4-Four (4% of Engineering Unit range)
 - 5-Five (5% of Engineering Unit range)
 - 6-EU (Specify deadband in Engineering Units)

PVALDBEU (RegCtl, RegPV)

Type:	Real
Lock:	Eng/PB
Default:	NaN
PtRes:	HPM
Range:	≥ 0.0

EU value of alarm deadband

PVALGID

Type:	E:\$PMMPVAG	PV Algorithm Identifier—Defines which PV algorithm is to be used for a	
Lock:	PtBld	RegPV point.	
Default:	Null		
PtRes:	HPM		
Range:	0-Null (No algorithn	n configured)	
	1-DataAcq (Data Acquisition)		
	2-FlowComp (Flow Compensation)		
	3-MidOf3 (Middle-Of-3 Selector)		
	4-HiLoAvg (High Low Average Selector)		
	5-Summer (Summer		
	6-VdtLdLag (Variable Dead Time with Lead Lag)		
	7-TotaLizr (Totalizer	:)	
	8-GenLin (General I	inearization)	
	0 Colorltr (Colorlat		

9-Calcultr (Calculator)

PVAUTO (Analgin, PI)

Type: Real Lock: View Default: NaN HPM PtRes: N/A Range:

PV Auto Value-Value of the PV after PVCALC is range checked, filtered, and clamped.

PVAUTO (DevCtl, DigComp)

Type: **E:PVSTATES** Current PV State-Indicates the current PV state, based on the states of the Lock: View inputs to the point. Default: BADPVTXT PtRes: HPM Range: 0-STATETXT(0) 1-STATETXT(1) 2-BADPVTXT 3-MOVPVTXT 4-STATETXT(2) (only if NOSTATES is 3)

PVAUTO (DigIn)

Type: E:STATETXT Lock:

View

Default: N/A

Current PV State-Indicates the current PV state that corresponds to the field contact input after direct/reverse correction.

PtRes: HPM

STATETXT(0) or STATETXT(1) Range:

PVAUTO (RegCtl)

Real
View
NaN
HPM
N/A

PV Auto Value Fetched Using Control Input Connection—Indicates the current value of the PV when the RegCtl point is in the Auto mode.

PVAUTO (RegCtl, RegPV)

Type:	Real
Lock:	View
Default:	NaN
PtRes:	HPM
Range:	N/A

PV Auto Value—Indicates the current value of the PV after the algorithm calculation is performed, the range is checked, and the PV is filtered and clamped.

PVAUTOST (RegCtl, RegPV)

Type: **E:PVVALST**

PV Auto Value Status—Indicates the current status of the PVAUTO value.

Lock: View

Default: Bad PtRes: HPM

PtRes: HI Range: 0-1

age: 0-**Bad** (All inputs, or result in PVCALC is bad) 1-**Uncertn** (Final result in PVCALC is an uncertain value)

2-Normal (Final result in PVCALC is a normal value)

PVCALC (Analgin, PI)

Type:	Real	Calculated PV—PVCALC is the PV value in Engineering Units after the raw
Lock:	View	PV (PVRAW) input to this data point has been characterized. The value of
Default:	NaN	PVRAW is the PV value provided by the Field Termination Assembly (FTA).
PtRes:	HPM	
Range:	PVEXEUHI to	PVEXEULO,
Ū.	NaN	

PVCALC (RegPV)

Type:	Real
Lock:	View
Default:	NaN
PtRes:	HPM
Range:	N/A,
	NaN

Calculated PV—Indicates the value of the PV after the PV has been calculated by the PV algorithm.

PVCHAR

Type:E:VALCHARLock:PtBldDefault:LinearPtRes:HPM

PV Characterization Option—Defines the display characterization to be used for characterizing the input PV value. Characterization is based on the field sensor type.

HLAI, LLMUX, RHMUX, & LLAI — PV Characterization

									Valid normal	Valid extended
									range	range
									(PVEULO-	(PVEXEULO-
			X = A	llowab	le Sens	or Ty	/pe		PVEUHI)	PVEXEUHI)
				(SEN	SRTYP)				in Degrees C	in Degrees C
									(when TCRNGOPT	(when TCRNGOPT
Range	PNT-	pt4-	0-	1-	0-100	Т	Slide	R	= Normal for	= Extended for
	MODTY	2V	5V	5V	тV	С	wire	Т	SENSRTYP =	SENSRTYP =
	(NOTE 1)							D	Thermcpl)	Thermcpl)
0- Jtherm	HLAI	Х	Х	Х					-200 to 1200	N/A
	LLAI					Х			-100 to 750	-200 to 1200
	LLMUX					Х			-100 to 750	-200 to 1200
1-Ktherm	HLAI	Х	Х	Х					0 to 1100	-200 to 1370
	LLAI					Х			0 to 1100	-200 to 1370
	LLMUX					Х			0 to 1100	-200 to 1370
2-Etherm	HLAI	Х	Х	Х					-200 to 1000	N/A
	LLAI					Х			-150 to 500	-200 to 1000
	LLMUX					Х			-150 to 500	-200 to 1000
3-Ttherm	HLAI	Х	Х	Х					-230 to 400	N/A
	LLAI					Х			-200 to 300	-230 to 400
	LLMUX					Х			-200 to 300	-230 to 400
4-Btherm	HLAI	Х	Х	Х					100 to 1820	N/A
	LLAI					Х			600 to 1650	100 to 1820
	LLMUX	Ň				Х			600 to 1650	100 to 1820
5-Stherm	HLAI	Х	Х	Х					0 to 1700	N/A
	LLAI					Х			550 to 1500	0 to 1700
	LLMUX	X	X	X		Х			550 to 1500	0 to 1700
6-Rtherm	HLAI	Х	Х	Х		v			0 to 1700	N/A
	LLAI					Х			550 to 1500	0 to 1700
		v	v	х		Х			550 to 1500	0 to 1700
7-RPtherm	HLAI	Х	Х	~		v			0 to 1700	N/A
						X X			550 to 1500	0 to 1700
8-DinRtd	LLMUX HLAI	х	х	х		~			550 to 1500	0 to 1700 N/A
o-Dinkta		^	^	^				v	-180 to 800 -200 to 850	N/A N/A
	LLAI							X X	-200 to 850	N/A N/A
9-JisRtd	HLAI	Х	х	х				^	-200 to 850 -180 to 650	N/A N/A
9- 315 Rtu	LLAI	^	^	^				х	-200 to 650	N/A N/A
	LLAI							x	-200 to 650	N/A N/A
10-NicklRtd	HLAI	Х	х	х				^	-45 to 315	N/A
		^	^	^				х	-45 to 315	N/A
								x	-45 to 315	N/A
11-CopprRtd	HLAI	Х	х	х				^	-20 to 250	N/A
	LLAI	~	~	~				х	-20 to 250	N/A
	LLMUX							x	-20 to 250	N/A
12-Linear	HLAI	х	х	Х			х	~	N/A	N/A
	LLAI		x	X	х				N/A	N/A
					x				N/A	N/A
13-Sqrroot	HLAI	х	Х	Х					N/A	N/A
	LLAI		X	X					N/A	N/A
	/ \\				1					

N/A = Not Applicable

NOTE 1: PNTMODTY LLMUX includes RHMUX for all thermocouple types except RTD; RTD type is not supported by RHMUX IOP.

STI — PV Characterization (Pressure and Magnetic Flow Transmitters)

Range	Spt_Dp	Spt_Gp	Spt_Ap	Sfm
Linear	Х	Х	х	Х
Sqrroot	Х			

X = Allowable Sensor Type

STI — PV Characterization (Temperature Transmitters)

Range	Normal Range (PVEULO to PVEUHI) in Degrees C (except where noted)	Maximum Range (PVEXEULO to PVEXEUHI) in Degrees C (except where noted)
Linear	-50 to 220 mV	-1000 to 1000 mV
Thermocouples		
Btherm	400 to 1820	200 to 1820
Etherm Jtherm Ktherm	-100 to 1000 -180 to 1200 -170 to 1250	-200 to 1000 -200 to 1200 -200 to 1370
NiNiMoTC Ntherm Rtherm Stherm Ttherm W3W25TC W5W26TC	600 to 1300 -100 to 1300 0 to 1760 0 to 1760 -120 to 400 0 to 2300 0 to 2300	600 to 1300 -200 to 1300 -50 to 1760 -50 to 1760 -250 to 400 0 to 2300 0 to 2300
RTDs		
Cu10RTD Cu25RTD Pt100 DinRtd Pt100 JisRtd Pt200 RTD Pt500 RTD RH Rad	-20 to 250 -20 to 250 -200 to 450 -200 to 450 -200 to 450 -200 to 450 420 to 1800	-20 to 250 -20 to 250 -200 to 850 -200 to 640 -200 to 850 -200 to 850 700 to 1800
RTD Ohms	0 to 4KΩ	0 to 4KΩ

PVCHAR (FlowComp)

Type:	E:VALCHAR	PV Characterization Option —Defines the display characterization to be used
Lock:	PtBld	for characterizing the input PV value of Regulatory PV point configuring with
Default:	SqRoot	Flow Compensation.
PtRes:	HPM	
Range:	12-Linear (The C	COMPTERM compensation is not square rooted)
-	13 SqRoot (The	COMPTERM compensation is square rooted)

PVCHGDLY

Type:	Integer
Lock:	Supr
Default:	0 seconds
PtRes:	HPM
Range:	0 to 60 seconds

PV Change Delay time in Seconds—Defines the time(in seconds) that a point with a previously detected PV change event is guaranteed to remain at the new value even if the PV returns to its original value. If the point remains at its new value when the delay timer expires, the point is held at the new value.

Helpful Hint: PVCHGDLY requires that EVTOPT = EIP, SOE, or EIPSOE.

PVCLAMP

Type:	E:PVCLAMP	PV Clamping Option—Defines whether PV clamping is to be used for this
Lock:	Eng/PB	data point. If PVCLAMP = Clamp and the PV extended range is exceeded, PV
Default:	NoClamp	value status PVSTS is marked Uncertain and the PV is set equal to the
PtRes:	HPM	extended limit that was violated.

Range: 0-NoClamp (No clamping of the PV value) 1-Clamp (Clamp PV value at range extension limit)

PVEQN (FlowComp)

Type: Lock: Default: PtRes:	E:ALGOE(PtBld EqA HPM	~ I	Type —Defines the equation type (EqA-EqE) to be used for this Refer to the <i>HPM Control Functions and Algorithms</i> manual mation.
Range:		Comp. Inputs	Type of Compensation
	0-EqA	G	Mass/Volumetric flow of liquid
	1-EqB	P and T	Mass flow of gases and vapors
	2-EqC	G, P, and T	Mass flow of gases and vapors w/specific gravity
	3-EqD	G, P, and T	Volumetric flow of gases and vapors
	4-EqE	P, T, X, and Q	Mass flow of steam

G = measured or calculated specific gravity or molecular weight, P = measured actual gage pressure, T = measured actual temperature, X = measured actual steam compressibility and Q = measured actual steam quality.

PVEQN (HiLoAvg)

Type:E:ALGOEQNPV Equation Type—Defines the equation type (EqA-EqC) to be used for thisLock:Eng/PBPV algorithm. Refer to the HPM Control Functions and Algorithms manualDefault:EqAfor more information.PtRes:HPMRange:0-EqA (Select and identify highest of up to six inputs)1-EqB (Select and identify lowest of up to six inputs)

2-EqC (Calculate the average of up to six inputs)

PVEQN

PVEQN (MidOf3)

Type:	E:ALGOEQN	PV Equation Type —Defines the equation type (EqA-EqC) to be used for this
Lock:	Eng/PB	PV algorithm. Refer to the HPM Control Functions and Algorithms manual
Default:	EqA	for more information.
PtRes:	HPM	
Range:	0-EqA (Highest g	good input when one or two are bad)
-	1-EqB (Lowest g	ood input when one or two are bad)
	2-EqC (Average	of all good inputs)

PVEQN (Summer)

Type:	E:ALGOEQN	PV Equation Type —Defines the equation type (EqA or EqB) to be used for	
Lock:	PtBld	this PV algorithm. Refer to the HPM Control Functions and Algorithms	
Default:	EqA	manual for more information.	
PtRes:	HPM		
Range:	0-EqA (P1 input is scaled and biased)		
	1-EqB (Up to six inputs are scaled and summed with an overall bias applied)		

PVEQN (Totalizr)

Type: Lock: Default:	E:ALGOE0 Eng/PB EqA	PV algorithm. Re	PV Equation Type —Defines the equation type (EqA-EqF) to be used for this PV algorithm. Refer to the <i>HPM Control Functions and Algorithms</i> manual for more information.	
PtRes:	HPM			
Range:	Option	Warm Restart Action	Bad Input Handling	
	0-EqA	Continue	Use zero	
	1- EqB	Continue	Use last good value	
	2-EqC	Continue	Set Bad and stop	
	3-EqD	Set Bad, and stop	Use zero	
	4-EqESet Bad, and stop5-EqFSet Bad, and stop		Use last good value	
			Set Bad and stop	

PVEQN (VdtLdLag)

 Type:
 E:ALGOEQN
 PV Equation Type—Defines the equation type (EqA-EqD) to be used for this PV algorithm. Refer to the HPM Control Functions and Algorithms manual for more information.

 Default:
 EqA
 for more information.

 PtRes:
 HPM

 Range:
 0-EqA (Lead-Lag)

 1-EqB (Fixed dead time)
 2-EqC (Variable dead time)

 3-EqD (Variable dead time with two lags)
 Helnful Hint:
 For Equations C and D, the dead time is changed in steps of NLOC*NRATE*TS

Helpful Hint: For Equations C and D, the dead time is changed in steps of NLOC*NRATE*TS where NLOC is configurable from 2 to 30, for better resolution of dead time.

PVEUHI

Type:RealPV High Range in Engineering Units—Note that PVEUHI cannot be writtenLock:Eng/PBwith NaN. NaN is the default value only.Default:NaNPtRes:HPMRange:PVEULO to PVEXEUHI, NaN

Helpful Hint: For Smartline transmitters, refer to Table A-3 in the *PM/APM Smartline Transmitter Integration Manual*, PM12-410.

PVEULO

Type:	Real	PV Low Range in Engineering Units—Note that PVEULO cannot be written
Lock:	Eng/PB	with NaN. NaN is the default value only.
Default:	NaN	
PtRes:	HPM	
Range:	PVEXEULO to	PVEUHI, NaN
-		

Helpful Hint: For Smartline transmitters, refer to Table A-3 in the *PM/APM Smartline Transmitter Integration Manual*, PM12-410.

PVEXEUHI

Type:	Real	PV Extended Engineering Unit Range High—Both PVEXEUHI and
Lock:	Engr	PVEXEULO are used to clamp or detect a bad PV value. Refer to parameter
Default:	NaN	PVEXEULO. Note that PVEXEUHI cannot be written with NaN. NaN is the
PtRes:	HPM	default value only.
Range:	≥ PVEUHI, Na	N

PVEXEULO

Type:RealPV Extended Engineering Unit Low Range—For the LLAI IOP withLock:EngrThermocouple and RTD sensor types, extended PV range parameters are VIEWDefault:NaNONLY. Their values are defaulted based on the sensor types, the thermocouplePtRes:HPMrange option, and temperature scale. The tables below show the default values in
degrees C. For other engineering units, these values are appropriately converted.
Note that PVEXEULO cannot be written with NaN. NaN is the default value
only.

Range \leq **PVEULO**, **NaN**

Defaults for Extended Range PV Parameters When SENSRTYP = THERMCPL, PVTEMP = Degrees C

Defaults for Extended Range F v Falameters when SENSRTH = THERMOLE, F V FEMI = Degrees C				
	TCRNGOPT = NORMAL		TCRNGOPT = EXTENDED	
PVCHAR	PVEXEULO	PVEXEUHI	PVEXEULO	PVEXEUHI
Btherm	600	1650	100	1820
Etherm	-150	500	-200	1000
Jtherm	-100	750	-200	1200
Ktherm	0	1100	-100	1370
Rtherm	550	1500	0	1700
RPtherm	550	1500	0	1770
Stherm	550	1500	0	1700
Ttherm	-200	300	-230	400

PVEXEULO (continued)

Defaults for Extended Range PV Parameters When SENSRTYP = RTD, PVTEMP = Degrees C

PVCHAR	PVEXEULO	PVEXEUHI
PtDinRTD	-180	800
PtJisRTD	-180	650
NickIRTD	-45	315
CopprRTD	-20	250

PVEXHIFL

Type:	Logical	PV Extended High Range Violation—Indicates that the PV has exceeded the	
Lock:	View	extended-high range alarm trip point.	
Default:	Off		
PtRes:	HPM		
Range:	Off (Extended high range not exceeded)		
-	On (Extended hi	igh range exceeded)	

PVEXLOFL

Type:	Logical	PV Extended Low Range Violation—Indicates that the PV has exceeded the
Lock:	View	extended-low range alarm trip point.
Default:	Off	
PtRes:	HPM	
Range:	Off (Extended le	ow range not exceeded)
	On (Extended lo	ow range exceeded)
		-

PVFL(0)-(2) (DevCtl, DigComp)

Type:LogicalPV Flag—Indicates the current PV state as three separate Boolean parameters.Lock:ViewPVFL(n) is On when the PV is in state "n" where n is 0, 1, or 2.Default:OffPtRes:HPMRange:Off (PV is not in the respective state)

On (PV is in the respective state)

PVFL (DigIn, Flag)

Type:LogicalPV Flag

—Represents the current PV state as a Boolean value.Lock:OperDefault:OffPtRes:HPMRange:Off [PV = STATETXT(0)]

On [PV = STATETXT(1)]

PVFORMAT (RegCtl, RegPV)

Type:E:VALFORMTLock:Engr (/PB)Default:D1PtRes:HPMRange:0-D0 (-XXXXX)1-D1 (-XXXXX)

PV Decimal Point Format—Defines the decimal format that is to be used to display the PV and SP values. It contains up to eight characters including the minus sign and decimal point.

HPM 0-D0 (-XXXXXX.) 1-D1 (-XXXXX.X) 2-D2 (-XXXX.XX) 3-D3 (-XXX.XXX)

PVHHFL (RegCtl, RegPV)

Type:LogicalLock:ViewDefault:OffPtRes:HPMRange:Off (Higher Hermitian Herm

PV High High Alarm Flag—Indicates whether the PV has exceeded the alarm trip point established by the PVHHTP parameter.

PV High High Alarm Priority—Defines the priority of the PV high high alarm.

PtRes: **HPM** *Range:* **Off** (High High limit not exceeded) **On** (High High limit exceeded)

PVHHPR (RegCtl, RegPV)

- *Type:* **E:ALPRIOR**
- Lock: Engr
- Default: Low
- PtRes: NIM

Range: JnlPrint (Alarm is historized and reported to the printer but not annunciated)
 Printer (Alarm is reported to the printer but not historized and not annunciated)
 Emergncy (Alarm is historized, annunciated, and reported to all alarm summary displays)
 High (Alarm is historized, reported to Area Alarm Summary Display and Unit Alarm Summary Display)

Low (Alarm is historized, reported to the Unit Alarm Summary Display, and annunciated) Journal (Alarm is historized but not reported to Universal Stations and not annunciated) NoAction (Alarm is not reported to the system and not annunciated)

Helpful Hint: PVHHPR configuration requires PVHHTP \neq NaN.

PVHHTP (AnalgIn, RegPV)

Type: Real Lock: Supr

PV High High Alarm Trip Point—Defines the PV high high alarm trip point for this point.

Default: NaN

PtRes: HPM Range: PVHITP to PVEXE

PVHITP to PVEXEUHI, NaN

Helpful Hint: PVHHTP configuration requires PVHITP \neq NaN.

PVHHTP (RegCtl, RegPV)

Type: Real Lock: Supr Default: NaN PtRes: **HPM** Range:

PV High High Alarm Trip Point—Defines the PV high high alarm trip point for this point.

PVHITP to **PVEUHI**, NaN

Helpful Hint: PVHHTP configuration requires PVHITP≠ NaN

PVHIFL (RegCtl, RegPV)

Type: Logical PV High Alarm Flag-Indicates that the PV has exceeded the alarm trip point Lock: View established by parameter PVHITP. Default: Off

PtRes:

HPM Off (No PV High alarm) Range: On (High PV alarm)

PVHIPR (RegCtl, RegPV)

E:ALPRIOR Type: PV High Alarm Priority—Defines the priority of the PV high alarm for this Lock: Engr point. Default: Low PtRes: NIM JnlPrint (Alarm is historized and reported to the printer but not annunciated) Range: **Printer** (Alarm is reported to the printer but not historized and not annunciated) **Emergncy** (Alarm is historized, annunciated, and reported to all alarm summary displays) High (Alarm is historized, reported to Area Alarm Summary Display and Unit Alarm Summary Display) Low (Alarm is historized, reported to the Unit Alarm Summary Display, and annunciated) Journal (Alarm is historized but not reported to Universal Stations and not annunciated)

> PVHIPR configuration requires PVHITP \neq NaN. Helpful Hint:

NoAction (Alarm is not reported to the system and not annunciated)

PVHITP

Type: Real **PV High Alarm Trip Point**—Defines the trip point for the PV high alarm for Lock: Supr this point. Default: NaN PtRes: HPM PVLOTP to PVHHTP, NaN Range:

PVINIT

Type:	Logical	PV Initialization Request Flag—Indicates that an initialization request has been
Lock:	Prog	made for this point.
Default:	Off	
PtRes:	HPM	
Range:	Off (No 1-shot	initialization)
_	On (Initializes t	the PV filter and the algorithm for a 1-shot single sample time).

PVLLFL (RegCtl, RegPV)

Type:	Logical	PV Low Low Alarm Flag—Indicates that the PV has exceeded the alarm trip
Lock:	View	point established by the PVLLTP parameter.
Default:	Off	
PtRes:	HPM	
Range:	Off ($PV \ge Low$	Low alarm trip point)
	On (PV \leq Low	Low alarm trip point)
	· <u> </u>	* * ·

PVLLPR (RegCtl, RegPV)

Type: E:ALPRIOR PV Low Low Alarm Priority-Determines the priority of the PV low low alarm for this data point.

Lock: Engr Default: Low

PtRes: NIM

Range: **JnlPrint** (Alarm is historized and reported to the printer but not annunciated) Printer (Alarm is reported to the printer but not historized and not annunciated) **Emergncy** (Alarm is historized, annunciated, and reported to all alarm summary displays) High (Alarm is historized, reported to Area Alarm Summary Display and Unit Alarm Summary Display)

Low (Alarm is historized, reported to the Unit Alarm Summary Display, and annunciated) Journal (Alarm is historized but not reported to Universal Stations and not annunciated) NoAction (Alarm is not reported to the system and not annunciated)

Helpful Hint: PVLLPR configuration requires PVLLTP \neq NaN

PVLLTP (AnalgIn, RegPV, PI)

Type: Real Lock: Supr Default: NaN HPM PtRes: Range:

PV Low Low Alarm Trip Point—Defines the trip point for the PV low low alarm for this point.

PVEXEULO to **PVLOTP**, NaN

Helpful Hint: PVLLTP configuration requires PVLOTP \neq NaN.

PVLLTP (RegCtl)

Type: Real Lock: Supr Default:

PV Low Low Alarm Trip Point-Defines the trip point for the PV low low alarm for this point.

NaN

PtRes: **HPM**

Range: PVEULO to PVLOTP, NaN

> Helpful Hint: PVLLTP configuration requires PVLOTP \neq NaN.

PVLOFL (RegCtl, RegPV)

Type: Logical PV Low Alarm Flag-Indicates that the PV has exceeded the alarm trip point Lock: View established by parameter PVLOTP. Default: Off PtRes: HPM Range: **Off** (PV > Low alarm trip point) **On** (PV \leq Low alarm trip point)

PVLOPR (RegCtl, RegPV)

Type:	E:ALPRIOR	PV Low Alarm Priority—Defines the priority of the PV low alarm for this	
Lock:	Engr	point.	
Default:	Low		
PtRes:	NIM		
Range:	JnlPrint (Alarr	n is historized and reported to the printer but not annunciated)	
	Printer (Alarm	is reported to the printer but not historized and not annunciated)	
	Emergncy (Alarm is historized, annunciated, and reported to all alarm summary displays)		
	High (Alarm is historized, reported to Area Alarm Summary Display and Unit Alarm Summary		
	Display)		
	Low (Alarm is	historized, reported to the Unit Alarm Summary Display, and annunciated)	
	Journal (Alarm is historized but not reported to Universal Stations and not annunciated)		
	NoAction (Ala	rm is not reported to the system and not annunciated)	
	Helpful Hint:	PVLOPR configuration requires PVLOTP \neq NaN.	

PVLOTP (RegCtl, RegPV)

	••••	Jo , J ,
Type: Lock: Default: PtRes:	Real Supr NaN HPM	PV Low Alarm Trip Point —Defines the trip point for the PV low alarm for this point.
Range:	PVLLTP to PV	HITP,
0	NaN	
		(DevCtl, DigIn, DigComp)
Type:	E:STATETXT	PV Normal State —Defines the normal state of the PV using the appropriate
Lock:	Supr	STATETXT descriptor.
	(Engr to change	
	to/from NONE)	
Default:	N/A	
PtRes:	HPM	
Range:	STATETXT(0)	descriptor (Defaulted to Off for PV State 0)
		descriptor (Defaulted to On for PV State 1)
	STATETXT(2)	descriptor (Defaulted to State2 for PV State 2; internally set to \$NULL for two-
		state devices; does not apply to DigIn point)
	NONE (No off i	normal checking)
	Helpful Hint:	PV normal state text descriptor describes the normal (desired) state,
		such as Run, Stop, Open, Closed.

PVNORMFL (DevCtl, DigIn, DigComp)

Type:	Logical	PV Normal State Flag—Indicates whether the normal state of the PV is active.
Lock:	Supr	
Default:	Off	
PtRes:	HPM	
Range:	Off (Point is ir	a state other than the normal state)
	On (Normal sta	ate is active)

Helpful Hint: PVNORMFL change requires ALMOPT = Offnorm for Digital Input points, or that PVNORMAL ≠ None for Digital Composite or Device Control points. If set to On, causes text in STATETXT (1) to be used to describe the normal state of the PV, otherwise text in STATETXT (0) is used.

PVP (RegCtl, RegPV)

Type:RealLock:ViewDefault:NaNPtRes:HPMRange:N/A

PV in Percent—Defines the PV as a percentage.

PVRAW (Analgin)

Type:	Real	PV Raw Value—Indicates the raw input value of the PV from the Field
Lock:	Operator	Termination Assembly (FTA) before PV characterization is performed. The
Default:	NaN	units of value for the PV are determined by the field sensor type as described
PtRes:	HPM	below.
Range:	N/A	

Helpful Hint: If sensor type is 0.4–2 V, 1-5 V, 0 - 5 V, PVRAW is in percent; if sensor type is T/C, PVRAW is in microvolts; if sensor type is in RTD, PVRAW is in milliohms; if sensor type is slidewire, PVRAW is in ratio; if sensor type is 0–100 mV, PVRAW is in millivolts.

PVRAW (DigIn)

Type:	Logica	Raw State of Field Contacts—Indicates the current state of the field contacts.
Lock:	View	
Default:	Off	
PtRes:	HPM	
Range:		
, in the second s	Off	Open contacts
	On	Closed contacts

PVRAW (PI)

Type:	Real
Lock:	View
Default:	NaN
PtRes:	HPM
Range:	N/A

PV Raw Value—Indicates the raw input value of the PV in pulses per second.

PVRAW (STI)

Type:	Real
Lock:	View
Default:	NaN
PtRes:	HPM
Range:	N/A

PV Raw Value—Indicates the raw input value of the PV in % of span based on the transmitter PV after PV characterization (PVCHAR) and DAMPING have been performed. The span of the PV is determined by using LRV as a 0%-point and URV as a 100%-point.

PVRAWHI

Type:	Real	PV Raw High Range —Defines the high end of the normal operating range for
Lock:	Eng/PB	the raw PV value (PVRAW). For a slidewire input, the units are ratio, for a
Default:	NaN	0_100_MV input, the units are in millivolts.
PtRes:	HPM	
Range:	PVRAWLO to 100 for a 0_100_mv input (microvolts)	
	PVRAWLO to 1 for a slidewire input (ratio)	

PVRAWLO

Type:	Real	PV Raw Low Range—Defines the low end of the normal operating range for the
Lock:	Eng/PB	raw PV value (PVRAW).
Default:	NaN	
PtRes:	HPM	
Range:	0-PVRAWHI	(0 to 100 microvolts for a 0_100 mv input, or 0 to 1 ratio for a slidewire input)

PVROCNFL (RegCtl, RegPV)

Type:	Logical
Lock:	View
Default:	Off
PtRes:	HPM
Range:	Off (No

PV Negative Rate-of-Change Alarm Flag—Indicates that the PV negative rateof-change has exceeded the value established by the PVROCNTP parameter.

Off (No PV negative rate-of-change alarm) On (PV negative rate-of-change alarm)

PVROCNPR (RegCtl, RegPV)

Type:	E:ALPRIOR	PV Negative Rate-of-Change Alarm Priority—Defines the priority of the PV			
Lock:	Engr	negative rate-of-change alarm for this point.			
Default:	Low				
PtRes:	NIM				
Range:	JnlPrint (Alarr	n is historized and reported to the printer but not annunciated)			
	Printer (Alarm	is reported to the printer but not historized and not annunciated)			
		arm is historized, annunciated, and reported to all alarm summary displays)			
		s historized, reported to Area Alarm Summary Display and Unit Alarm Summary			
	Display)				
	1 .	historized, reported to the Unit Alarm Summary Display, and annunciated)			
		n is historized but not reported to Universal Stations and not annunciated)			
	NoAction (Alarm is not reported to the system and not annunciated)				
		· · ·			
		PVROCNPR configuration requires PVROCNTP \neq NaN.			
		· · ·			
		· · ·			
PVR	Helpful Hint:	PVROCNPR configuration requires PVROCNTP ≠ NaN.			
PVR	Helpful Hint:	· · ·			
PVR <i>Type:</i> <i>Lock:</i>	Helpful Hint:	PVROCNPR configuration requires PVROCNTP ≠ NaN.			
Type: Lock:	Helpful Hint:	PVROCNPR configuration requires PVROCNTP ≠ NaN. (RegCtl, RegPV) PV Negative Rate-of-Change Trip Point—Defines the trip point for the PV			
Type: Lock: Default:	Helpful Hint: OCNTP Real Supr NaN	PVROCNPR configuration requires PVROCNTP ≠ NaN. (RegCtl, RegPV) PV Negative Rate-of-Change Trip Point—Defines the trip point for the PV negative rate-of-change alarm for this point. Operation is the same as for			
Type: Lock: Default:	Helpful Hint: OCNTP Real Supr NaN	PVROCNPR configuration requires PVROCNTP ≠ NaN. (RegCtl, RegPV) PV Negative Rate-of-Change Trip Point—Defines the trip point for the PV negative rate-of-change alarm for this point. Operation is the same as for PVROCPTP except for the direction of change.			

Range: ≥ 0.0 , NaN

Helpful Hint:	For RegPV points, RegCtl points, and points in a HLAI or LLAI, the	
	maximum rate of change is one step away from PVEXEUHI to PVEXEULO	
	in eight seconds; therefore, the maximum rate of change is	
	(PVEXEUHI - PVEXEULO) * 7.5 units/minute. For SENSRTYP = RTD, the	
	maximum is [800 - (-180)] * 7.5, which is 7350.	

PVROCPFL (RegCtl, RegPV)

Type:	Logical	PV Positive Rate-of-Change Alarm Flag—Indicates that the positive
Lock:	View	rate-of-change of the PV has exceeded the value established by the PVROCPTP
Default:	Off	parameter.
PtRes:	HPM	
Range:	Off (No PV pos	itive rate-of-change alarm)
	On (PV positive	e rate-of-change alarm)

PVROCPPR (RegCtl, RegPV)

Type:	E:ALPRIOR	PV Positive Rate-of-Change Alarm Priority-Defines the priority of the	
Lock:	Engr	positive rate-of-change PV alarm for this point.	
Default:	Low		
PtRes:	NIM		
Range:	JnlPrint (Alarn	n is historized and reported to the printer but not annunciated)	
	Printer (Alarm	is reported to the printer but not historized and not annunciated)	
	Emergncy (Ala	rm is historized, annunciated, and reported to all alarm summary displays)	
	High (Alarm is	historized, reported to Area Alarm Summary Display and Unit Alarm Summary	
	Display)		
	Low (Alarm is	historized, reported to the Unit Alarm Summary Display, and annunciated)	
	Journal (Alarm	is historized but not reported to Universal Stations and not annunciated)	
	NoAction (Alarm is not reported to the system and not annunciated)		
	Helpful Hint:	PVROCPPR configuration requires PVROCPTP \neq NaN.	
PVR	OCPTP	(RegCtl, RegPV)	
Type:	Real		

Default:NaNPtRes:HPMlimit in engineering units/minute for this point; for eminute.The PV value is checked every four secondstrips if the PV rate-of-change value is exceeded for twoalarm is reset if the PV rate-of-change falls below the two successive scans.The maximum rate of change value must be less that		PV Positive Rate-of-Change Trip Point —Defines the positive PV rate-of-change limit in engineering units/minute for this point; for example 25 degrees per minute. The PV value is checked every four seconds. The rate of change alarm trips if the PV rate-of-change value is exceeded for two successive scans. The alarm is reset if the PV rate-of-change falls below the rate of change value for two successive scans. The maximum rate of change value must be less than the absolute value of: (PVEUHI-PVEULO) * $\frac{60}{8}$.
Range:	≥ 0.0, NaN	0
	Helpful Hint:	For RegPV points, RegCtl points, and points in HLAI or LLAI, the maximum rate of change is one step away from PVEXEUHI to PVEXEULO in eight seconds; therefore, the maximum rate of change is: (PVEXEUHI - PVEXEULO) * 7.5 units/minute. Example: for SENSRTYP = RTD, the maximum is: [800 - (-180)] *7.5, which = 7350.

PVSGCHTP (RegCtl, RegPV)

Type:	Real
Lock:	Supr
Default:	NaN
PtRes:	HPM
Range:	≥ 0.0,
	NaN

PV Significant Change Alarm Trip Point—Defines the alarm trip point for an increment of change that occurs between configured PVHITP and PVHHTP or PVLOTP and PVLLTP alarms. For example, consider a temperature point with limits of PVHITP = 800 degrees, PVHHTP = 850, and PVSGCHTP = 10. When the temperature rises to 800 degrees, the PVHITP alarm is annunciated, and should the temperature continue to increase, the alarm is annunciated again when the temperature reaches 810 degrees, 820 degrees, and so on. This allows the alarm to be reannunciated to remind the operator of the existence of an alarm condition.

PVSOURCE (RegCtl, RegPV)

Type:	E:PVSOURCE	PV Source —Defines the source of the PV input to this data point. The PV		
Lock:	Oper	goes to bad when PVSOURCE is switched from Man to Sub.		
Default:	Auto			
PtRes:	HPM			
Range:	0-Sub (Value is provided by a sequence program)			
	1-Man (PV is supplied by operator or program)			
	2-Auto (Field wiring or memory fetch supplies PV)			
	3- Track (PV tracks OP (DigComp points only))			
	Helpful Hint: I	PVSOURCE change by an operator requires PVSRCOPT = All and DITYPE =		

PVSRCOPT (RegCtl, RegPV)

Type:	E:PVSRCOPT	PV Source Option—Defines the PV source options available in this data
Lock:	Eng/PB	point.
Default:	OnlyAuto	
PtRes:	HPM	
Range:	0-OnlyAuto (PV s	source selection is not available and field wiring or memory fetch supplies PV)
	1-All (PV is provid	led by an operator, by a sequence program, or by field wiring)
	· •	

Helpful Hint: PVSRCOPT change by an operator requires DITYPE = Latched if PNTTYPE= DigIn.

PVSTATES(0)-(4) (DevCtl, DigComp)

Latched if PNTTYPE = DigIn.

Type: Lock: Default: PtRes: Range:	String_8 View N/A NIM N/A	PV State Descriptors —The PV state descriptors contain the text that describes the five (0-4) possible states of a DigComp or DevCtl PV. The descriptors are set equal to whatever is configured in BADPVTXT and MOVPVTXT during HPM Box configuration and in STATETXT(0), STATETXT(1), and STATETXT(2) during point configuration (if PVTXTOPT = ON).
	Helpful Hint:	 PVSTATES, if accessed by Control Language programs, obey the following rules: a. PVSTATES (0) = STATETXT (0) b. PVSTATES (1) = STATETXT (1) c. PVSTATES (2) = BADPVTXT d. PVSTATES (3) = MOVPVTXT a. PVSTATES (4) = STATETXT (2): does not apply unless

e. PVSTATES (4) = STATETXT (2); does not apply unless NOSTATES = 3

PVSTS (RegCtl, RegPV)

Type: **E:PVVALST** Status Of PV Input Value—Defines the current status of the PV value.

Lock: View

Default: Bad PtRes: HPM

- *Range:* 0-**Bad** (Value is bad and replaced with NaN. For an STI point, value can be set to Bad based on transmitter gross status.)
 - 1-Uncertn (Status of the value is uncertain)
 - 2-Normal (Value is good)

PVTEMP

Type: **E:TEMPTURE PV Temperature Scale**—Defines the temperature scale to be used in characterizing the PV input.

Default: Degrees C

PtRes: HPM

Range:

- 0-Degrees C (Celsius)
 - 1-Degrees F (Fahrenheit)
 - 2-Degrees R (Rankin)
 - 3-Degrees K (Kelvin)

Helpful Hint: PVTEMP is to be configured when PVCHAR = TC or RTD.

PVTRACK (Pid)

Type:E:TRACKINGPV Tracking Option—Defines whether SP is to be set equal to PV.Lock:Eng/PBDefault:NoTrackPtRes:HPMRange:0-NoTrack (SP is never set equal to PV)
1-Track (Man mode or initialization causes SP to track PV)

Helpful Hint: SP is set equal to PV if PVTRACK = Track and the point is:
a. in manual mode
b. being initialized from a secondary
c. undergoing 1-shot initialization during the first sample time after becoming active.

PVTV

PVTVP

Type:RealPV Target Value in Percent—Indicates the target value of the PV in percent.Lock:ViewDefault:NaNPtRes:HPMRange: \geq 0.0%, NaN

PVTXTOPT (DevCtl, DigComp)

Type:	Logical	PV Text Option —Indicates whether the BADPVTXT and MOVPVTXT
Lock:	PtBld	parameters are configured for this point, or if the default from the box data point
Default:	Off	should be used.
PtRes:	NIM	
Range:	Off (The parameters are not configured for this point)	
	On (The parameters are configured for this point)	

Q

Type:RealLock:ViewDefault:1.0PtRes:HPMRange: ≥ 0.0 ,NaN

Steam Quality Factor Input—Indicates the measured actual steam quality factor.

QSTS (FlowComp)

Type: **E:PVVALST Q Input Value Status**—Indicates the status of the steam quality-factor input.

Lock: View

Default: Normal

PtRes: HPM

Range: 0-**Bad** (Value is bad and replaced by NaN)

1-Uncertn (Status of the value is uncertain)

2-Normal (Value is good)

R1 and R2 inputs of certain logic blocks.

R1(1)-(24), R2(1)-(24) (Logic) E:\$PMMLGPM Real Inputs 1 & 2—Defines the sources that provide the input values for the

Type: Lock: PtBld Default: L1 HPM

PtRes:

Range: 32..47-L1...L12 (Values from Input Connections) 48..51-NN1...NN8 (Local Numerics)

> R1 configuration requires LOCALGID = EQ, NE, GT, GE, LT, LE, or Helpful Hint: CHECKBAD.

RAISDSTN

Type:	Universal
~1	Ent.Prm
Lock:	PtBld
Default:	Null
PtRes:	HPM
Range:	ONPULSE
5	OFFPULSE

Raise Output Pulse Destination—Defines the destination of the Raise output pulse. RAISDSTN must point to parameters ONPULSE or OFFPULSE of a DigOut data point.

RAISETIM

Type:	Real
Lock:	View
Default:	N/A
PtRes:	HPM
Range:	N/A,
	NaN

Raise Output Pulse Time—Indicates the Raise output pulse time in seconds. It is clamped to MAXPULSE or CYCLETIM, whichever is lower. If the value of RAISETIM is smaller than MINPULSE, no pulse is issued.

RAISRATE

Type:	Real	Raise OP Stroke Rate in Percent/Second
Lock:	Supr	
Default:	100.0% per sec.	
PtRes:	HPM	
Range:	> 0.0% per second	nd
	-	

RAMPTIME

Type:	Real	Ramp Time in Minutes
Lock:	Oper	
Default:	0.0	
PtRes:	HPM	
Range:	≥ 0.0	

RAMPTIME change by an operator requires SPOPT = Tv. The minimum value Helpful Hint: is clamped to TS, the point sample time in minutes, while the maximum value is clamped to 32767*TS. To change the RAMPTIME from a logic point requires Node=Auto and Mode Attribute=Program.

RARWSTS (RegCtl)

Type:	E:WINDUP	Remote Anti-Reset Windup Status
Lock:	View	-
Default:	Normal	
PtRes:	HPM	
Range:	0-Normal (Free t	to move in either direction)
	1-Hi (Free to mo	ve lower)
	2-Lo (Free to mo	ve higher)
	3-HiLo (Not free	to move in any direction)

Helpful Hint: RARWSTS applies only if RCASOPT = Spc, Ddc, or DdcRsp.

RATE1 (AutoMan, MulDiv, RegCtl Summer)

Type:	Real	Rate at Which Bias Ramps Down—Rate at which the bias (B) ramps down from
Lock:	Supr	the initialization value to the last value entered by the operator. If a positive
Default:	0.0	value is entered, Rate1 determines the ramp down rate of the internal bias value
PtRes:	HPM	(BI). If 0 is entered, the ramp down of B is disabled. If NaN is entered, the
		internal bias does not decay, but instantaneously changes to 0 and will cause a
		bump in the output.

Range: \geq 0.0 EU's per minute, NaN

RATE1 (RatioCtl)

Type:	Real	Internal Bias Ramps Down Rate—Rate in EUs per minute at which the internal
Lock:	Supr	bias (BI) ramps down from the initialization value to the last value entered by
Default:	NaN	the operator. If BIAS = NaN, initialization for the primary is determined
PtRes:	HPM	through back calculation. If 0 is entered, the ramp down of B is disabled.
Range:	≥ 0.0, NaN	

RATE1–12 (RampSoak)

Type:	Real Ramp Rate for Ramp Soak Segments 1–12
Lock:	Supr
Default:	NaN
PtRes:	HPM
Range:	Negative values are accepted to allow ramping down.

RATIO (Pid) Type

Ratio—Defines the ratio value by which the SP is multiplied.

Type:	Real	Ratio-
Lock:	Oper	
Default:	1.0	
PtRes:	HPM	
Range:	RTLOLM to I	RTHILM

RBOPT (Pid)

Type:	E:RBOPT	Ratio/Bias Option—Defines the type of ratio/bias option to be used for this
Lock:	Eng/PB	algorithm. Refer to the HPM Control Functions and Algorithms manual for a
Default:	NoRatBi	detailed description of bias and ratio options.
PtRes:	HPM	
Range:	0-NoRatBi (No	p ratio/bias is used to calculate the SP)
	1-FixRatBi (Fi	xed ratio (R) and fixed bias (B) are used)
	2-AutoRat (R i	is back-calculated during initialization)
	3-AutoBi (B is	back-calculated during initialization)

Helpful Hint: RBOPT applies to only PID-type RegCtl algorithms.

RCASOPT (AnalgOut)

Type:	E:\$RCASOPT	Remote Cascade Option —Defines whether the AM is to provide the output
Lock:	Eng/PB	value for this data point. This option is available only when the point has
Default:	None	been configured as a Full point.
PtRes:	HPM	
P	0.17 0.7	

Range: 0-None (No cascade mode of any type is allowed)

2-Ddc (Direct Digital Control; in cascade mode, AM point controls this point's OP)

RCASOPT (AutoMan, IncrSum, ORSel, Switch)

Type:	E:\$RCASOPT	Remote Cascade Option —Defines the type of remote cascade mode to be used.
Lock:	Eng/PB	Refer to the HPM Control Functions and Algorithms manual for a detailed
Default:	None	description.
PtRes:	HPM	
Range:	0-None (Only loca	al cascade mode is allowed)
	2-Ddc (In cascade	mode, AM point provides the output OP for this data point)

RCASOPT (Pid)

Type:	E:\$RCASOPT	Remote Cascade Option —Defines the type of remote cascade mode to be used.
Lock:	Eng/PB	Refer to the HPM Control Functions and Algorithms manual for a detailed
Default:	None	description.
PtRes:	HPM	
Range:	0-None (Local cas	scade is the only valid cascade)
	1-Spc (AM write	s to SP within SP limits)
	2-Ddc (AM write	s to OP. No OP limits)
	3-Rsp (AM write	s to SP when this point is in Auto and is being initialized by its secondary. SP
	limits are	applied)

4-**DdcRsp** (AM does Ddc and Rsp functions)

Helpful Hint:	MODE for a point cannot be changed to Cascade by the operator or program if
	a. parameter RCASOPT is configured to Ddc, Spc, or DdcRsp
	b. the AM strategy has not yet stored to MODE, SP, or OP.
	Even if PVTRACK = Track, PV tracking is not performed in auto mode with
	INITMAN = On if RCASOPT = Rsp.

RCASOPT (RegCtl)

Type:	E:\$RCASOPT	Remote Cascade Option —Defines the type of remote cascade mode to be used.
Lock:	Eng/PB	Refer to the HPM Control Functions and Algorithms manual for a detailed
Default:	None	description.
PtRes:	HPM	
Range:	0-None (Only loca	al cascade mode is allowed)

1-**Spc** (In cascade mode, AM point provides the SP for this point)

- 2-**DDC** (In cascade mode, AM point provides the OP for this point)
- 3-**Rsp** (In Auto mode with INITMAN = ON, the AM point provides the SP for this point)
- 4-**DDCRsp** (In cascade mode, AM point provides the OP for this point)

RCASSHED (RegCtl)

Type:Logical
Lock:Remote Cascade Shed—Indicates whether the mode has shed from the Cas mode
to the preconfigured backup mode.

Lock: Vie Default: Off

PtRes: HPM

Range: Off (No mode shed)

On (Mode has shed to the preconfigured backup mode)

Helpful Hint: RCASSHED applies only if RCASOPT = Spc, Ddc, or DdcRsp.

RDNHWREV

 Type:
 String_2
 HPMM Control Daughter Card Revision

 Lock:
 View

 Default:
 PtRes:

 PtRes:
 HPM

 Range:
 Hexadecimal Characters 00 to FF

REDTAG (RegCtl)

Type:E:REDTAGRed Tag State—Allows the user to set the point as being "out of service,"Lock:Sup/Engindicating that this point or the associated control loop needs repair or is beingDefault:Offrepaired. Once this point is put in the red tag condition, the output OP is frozenPtRes:HPMat the last value or state.Range:0-Off (Data point is in service. Point's OP is not frozen)1-On (Data point is out of service = point's OP is frozen)

Helpful Hint: REDTAG change requires MODE = Man and MODATTR = Oper. Once a point is red tagged, parameters MODE, MODATTR, and OP (output) cannot be changed. In addition, for a RegCtl point, ESWENBST cannot be changed.

RELREV (HPM)

 Type:
 String_1
 Overall Software Release Revision Code —

 Lock:
 View
 Default:
 00 (Hex.)

 PtRes:
 HPM
 Image: HPM
 Image: HPM

Range: N/A

RELVERS (HPM)

Type:String_1Lock:ViewDefault:00 (Hex.)PtRes:HPM

Overall Software Release Version Code —

Range: N/A

REMSOAKT (RampSoak)

 Type:
 Real
 Remaining Soak Time—Indicates the amount of time remaining in the current soak segment.

 Lock:
 Oper
 soak segment.

 Default:
 0.0

 PtRes:
 HPM

 Range:
 0.0 to 120.0 minutes

RESETFL (DevCtl, DigComp)

Type:LogicalLock:OperDefault:OffPtRes:HPMRange:Off

Reset Maintenance Statistics Flag—Used to reset maintenance statistics.

On (Storing to this parameter resets maintenance statistics)

Helpful Hint:	This parameter can be reset by the operator only while it is red tagged. A
	program may reset at anytime.

RESETFL (DigIn)

Type:	Logical	Reset Flag—Resets the accumulator to zero when the command flag transitions
Lock:	Prog	from the Off to the On state.
Default:	Off	
PtRes:	HPM	
Range:	Off (No Reset c	ommand)
	On (Reset com	mand is issued to the accumulator)

Helpful Hint: RESETFL change requires DITYPE = Accum

RESETFL (Timer)

HPM

Off On

PtRes: Range:

Type:LogicalReset Timer Command Flag—Resets the total when this flag changes from OffLock:Progto On.Default:Off

RESETFL (Totalizr)

Type:	Logical
Lock:	Prog
Default:	Off
PtRes:	HPM
Range:	Off
Ũ	On

Reset Totalizer Command Flag—Resets the total RESETVAL when this flag changes from Off to On.

RESETVAL (DigIn)

Type:	Integer
Lock:	Oper
Default:	0
PtRes:	HPM
Range:	0-32767

Accumulator Reset Value—Value that is preset in the accumulator. Value can then be incremented or decremented depending on the COUNTDWN parameter.

RESETVAL (Totalizr)

Type:RealLock:OperDefault:0.0PtRes:HPMRange:N/A

Reset Value—Value used for presetting the value to be totaled.

RESTART (ProcMod)

Type:	E:RESTART
Lock:	View
Default:	None
PtRes:	HPM

Process Module Restart State—Indicates the type of restart last performed by the process module. This value will be set to a value other than "None" until the first preemption point.

Helpful Hint: RESTART can be used to determine if the startup was caused by failover. Following failover, RESTART takes on the value "Failover." This value remains until the first preemption point after which it returns to "None."

Range: 0-None (Has not been restarted)

1-Failover (Running for the first time after a failover)

3-Warm (Running for the first cycle after a warm start)

4-Cold (Running for the first cycle after a cold start, or a power up to Run)

5-PTACTVN (Running for the first cycle following the transition from Off state to Run state)

RFB (PidErfb)

Type:	Real
Lock:	View
Default:	N/A
PtRes:	HPM
Range:	≥ 0.0

Reset Feedback Input in Percent—Indicates the PV value of another data point that is receiving its setpoint from this data point.

RG (FlowComp)

Real
Supr
1.0(molecular
weight)
HPM
N/A

Reference Specific Gravity—Defines the reference specific gravity or reference molecular weight, in the same engineering units as G (measured or calculated specific gravity or molecular weight).

RINITREQ (RegCtl)

Type:	Logical	Remote Initialization Request—Indicates whether an initialization request has
Lock:	View	been made.
Default:	On for	
	AnalgOut,	
	Off for	
	RegCtl	
PtRes:	HPM	
Range:	Off (No request)	
0	On (Request has b	een made)

Helpful Hint: RINITREQ does not apply if RCASOPT = None.

RINITVAL (RegCtl)

Real
View
NaN
HPM
N/A,
NaN

Remote Initialization Value

Helpful Hint: RINITVAL does not apply if RCASOPT = None.

RJRAW(1)–(168)

Type:	Real
Lock:	View
Default:	NaN
PtRes:	HPM
Range:	N/A

Reference Junction's Raw Count in µVolts

RJTEMP (LLAI)

al
ew
Ν
M
A

Reference Junction Temperature—Displays the current temperatures (°C) of the reference junction sensor. This value is updated only if the thermocouple input is configured.

RNGCODE3 (ProcMod)

Type: Blind Record Lock: Oper Default: N/A PtRes: HPM Range:

RNGCODE3—

RP (FlowComp)

Type: Real Lock: Supr Default: 1.0 PtRes: HPM Range: N/A

Reference Pressure—RP is the reference pressure input and it is in the same Engineering Unit as the P (measured or actual gage pressure) input.

RP

Type:	Real	Minimum Pulse Time Ratio
Lock:	Supr	
Default:	1.0	
PtRes:	HPM	
Range:	0.01 to 100.0	

RQ (FlowComp)

Type:	Real
Lock:	Supr
Default:	1.0
PtRes:	HPM
Range:	N/A

Reference Steam Quality Factor-Defines the reference steam quality factor which is in the same units as the Q (measured actual steam quality) input.

RSPBGP\$\$ (RampSoak)

Type:	Real
Lock:	View
Default:	N/A
PtRes:	HPM
Range:	≥ 0.0

Ramp/Soak Percent Bar Graph Parameter-If in a ramp sequence, the value of the next soak percent is displayed. If in a soak sequence, the value of parameter REMSOAKT as a percent of total soak time is displayed.

RSTROPT (ProcMod)

Type:	E:\$RSTROPT	Restart Option —Defines how the sequence program is to be started following
Lock:	Eng	an Idle to Run, or power up to Run transition or a warm restart.
Default:	Off	• •

PtRes:

- HPM
 - 0-Off (Sequence is waiting for the operator command to start)
- Range: 1-Restart (Sequence is to be restarted from the beginning)
 - 2-Stop (Sequence positions to beginning of the last preemption following a Warm, Cold, or Power Up Restart and waits for the operator to start

RT (FlowComp)

Real
Supr
1.0
HPM
N/A

Reference Temperature—RT is the reference temperature input and is in the same Engineering Unit as the T (measured actual temperature) input.

RT

Type:	Real	Deadtime Ratio
Lock:	Supr	
Default:	1.0	
PtRes:	HPM	
Range:	0.01 to 100.0	

RTHILM (Pid)

Type:	Real	Ratio High Limit
Lock:	Supr	
Default:	100.0	
PtRes:	HPM	
Range:	RTLOLM t	o 100.0,
-	NaN	

Helpful Hint: Entering NaN forces RTHILM to its extreme value (100.0%).

RTLOLM (Pid)

Type:	Real	Ratio Low Limit
Lock:	Supr	
Default:	0.01	
PtRes:	HPM	
Range:	0.01 to RTHILM	И,
Ũ	NaN	

Helpful Hint: Entering NaN forces RTLOLM to its extreme value (0.01).

RUNSTATE (ProcMod)

Run State—Indicates that the point is in the RUN sequence execution state.

Lock: View Default: Off

Logical

Type:

- PtRes: HPM
- Pikes: **HP** Panaa: **Of**
- *Range:* Off (Process Module point is not in the RUN state) On (Process Module point is in the RUN state)

RV (Timer)

Type:	Integer
Lock:	View
Default:	0
PtRes:	HPM
Range:	>0

Remaining Time—Indicates the amount of time remaining (in seconds or minutes) that the timer is to run.

Helpful Hint: RV represents remaining time computed as SP - PV. If SP = 0, RV is always 0.

RX (FlowComp)

Type:	Real	Reference Steam Compressibility—Defines the reference steam compressibility,
Lock:	Supr	and is in the same engineering units as the X (measured actual steam
Default:	1.0	compressibility).
PtRes:	HPM	
Range:	Anything excep	t NaN

-S-

S0BOXCLR, S1BOXCLR, S2BOXCLR

Type: E:BOXC Lock: View Default: N/A PtRes: NIM Range: Red Green White Black Cyan Yellow Blue Magenta

E:BOXCOLORState Box Color—Used only for US displays; corresponds to the box colorsViewconfigured using S0BOXCLR - BOXCLR(0), S1BOXCLR - BOXCLR(1),N/AS2BOXCLR - BOXCLR(2).

S1 (PidErfb)

Type:	Logical	Tracking Switch—Determines whether the CV value of this data point is
Lock:	Prog	replaced by the tracking value.
Default:	Off	
PtRes:	HPM	
Range:	Off (CV value i	s not replaced)
, e	On (CV value i	s replaced by the tracking value)

S1 (STI)

Type:	String_127	Transmitter Status—Indicates the current status of the smart transmitter
Lock:	View	associated with this STI point. Transmitter status consists of
Default:	Blank	- Transmitter scratch pads 1, 2, 3 & 4
PtRes:	HPM	- Detailed transmitter status
Range:	N/A, Blank	- List of parameters whose values are not the same in both the STI IOP database
		and the transmitter's database. (Parameters are mismatched.)

S1, S2 (RampSoak)

Lock: View Default: Off PtRes: HPM
PtRes: HPM
Range: Off
Ön

Mark 1 and Mark 2 Flags—These flags are used to indicate to other data points that a specified time has elapsed from the beginning of a specified ramp or soak segment. Refer to the *HPM Control Functions and Algorithms* manual for detailed information.

S1(1)–(24) through S4(1)–(24) (Logic)

Type:	E:\$PMMLGPM	Status Inputs 1-4—Defines the input source for each of the S1-S4 inputs to
Lock:	PtBld	the logic block.
Default:	L1	
PtRes:	HPM	
Range:	FL1FL12 (Input	source is a local flag; they can be either On or Off)
	SO1SO24 (Input	source is the status output (SOn) from another logic block.)
	L1L12 (Input sou	rce is the configured input connection; they can be either On or Off)

S1-S4 (Switch)

Type:	Logical	Select X1-X4 Request Flag—Indicate whether the respective input (X1-X4) has
Lock:	Oper	been selected as the input to this algorithm.
Default:	On	
PtRes:	HPM	
Range:	Off	
-	On (Respectiv	re input has been selected)

S1BGNTIM, S2BGNTIM (RampSoak)

Type:	Real	Mark 1 and Mark 2 Begin Times—Times at which Mark Function Flag S1 or
Lock:	Supr	S2 is turned on. Refer to the HPM Control Functions and Algorithms manual
Default:	0.0	for detailed information.
PtRes:	HPM	
Range:	\geq 0.0 to 120 minutes	

S1ENDTIM, S2ENDTIM (RampSoak)

Type:	Real	Mark 1 and Mark 2 End Time—Times at which Mark Function Flags S1 and S2
Lock:	Supr	are turned Off. Refer to the HPM Control Functions and Algorithms manual for
Default:	0.Ū	detailed information.
PtRes:	HPM	
Range:	\geq 0.0 to 120 mi	inutes

S1REV(1)-(24) through S3REV(1)-(24) (Logic)

Type:	Logical	S1, S
Lock:	PtBld	of the
Default:	Off	
PtRes:	HPM	
Range:	Off (Input is	direct)
-	On (Input is	reversed)

S1, S2, S3 Inputs Reversed—Allows the user to selectively reverse (invert) any of the inputs to a logic block.

Helpful Hint: Reversed (inverted) inputs apply only to LOGALGID = And, Or, Nand, and Nor.

S1SEGID, S2SEGID (RampSoak)

Type:	E:CURSEC	JD	Mark 1 and Mark 2 Segment Identifiers—Refer to the HPM Control
Lock:	Supr		Functions and Algorithms manual for detailed information.
Default:	Ramp1		
PtRes:	HPM		
Range:	0-Ramp1		1-Soak1
	2-Ramp2		3- Soak2
	:	and	:
20- Ramp11			21-Soak11
22-Ramp12			23-Soak12

SAFEOP

 Type:
 Real
 Safe Operation For Safety Shutdown—Defines the safe output value (OP) for a point when the SHUTDOWN parameter is set to On.

 Default:
 N/A

 PtRes:
 HPM

 Range:
 -6.9 to 106.9%, NaN

SAFOPCMD (PosProp, PIDPosPr)

Type:E:\$SFOPCMDSafe OP Command—Defines the Safe OP state for position proportional and
PID position proportional.Lock:EngrPID position proportional.Default:Idle

PtRes: HPM

 Range:
 0-IDLE (Output does not change)

 1-RAISE (Output is raised)

 2-LOWER (Output is lowered)

SCANPER (HPM Box)

Type:	Real
Lock:	PtBld
Default:	1.0
PtRes:	HPM
Range:	.25 seconds
	.5 seconds

SI Data Scan Period—Defines the period that the HPMM Control Processor scans serial interface data that is mapped to the Array point.

SCANPRI (Array)

1.0 seconds

 Type:
 E:\$SCANPRI
 SI Data FTA Scan Priority—Indicates which scan priority the serial interface

 Lock:
 PtBld
 FTA is using when reading data from the serial link.

 Default:
 Low

 PtRes:
 HPM

 Range:
 Low (Scan at low priority)

 High (Scan at high priority)

SCANRATE (HPM Box)

Type:	E:\$PMMSNRT
Lock:	PtBld
Default:	Reg1Log1
PtRes:	HPM

Scan Rate—Defines the number of times that all slots of a particular type are scanned and processed. Refer to the *HPM Control Functions and Algorithms* manual for information on how to determine the processing capacity of the HPM. During the load of the HPM Box Data point, the point mix (number of points and box variables) and the scan rate are written to the HPMM by the store of the SCANRATE parameter.

Range:		RegCtl & RegPV Scan Freq	Logic, DigComp & DevCtl Scan Freq	ProcMod Scan Freq
	0-Null			
	1-Reg1Log1	1 second	1 second	1 second
	2-Reg1Log2	1 second	1/2 second	1 second
	3-Reg1Log4	1 second	1/4 second	1 second
	5-Reg2Log2	1/2 second	1/2 second	1 second
	6-Reg2Log4	1/2 second	1/4 second	1 second
	8-Reg4Log4	1/4 second	1/4 second	1 second

CAUTION

If a new point mix or a new SCANRATE is loaded from the DEB, the following items should be noted:

- a. Before making changes to the point mix or SCANRATE, any configured points being removed due to a reduction in the point mix should first be deleted from the system.
- b. Any other currently configured points are preserved in the new point mix (the point database is not defaulted).
- c. If the SCANRATE or any part of the point mix is rejected by the HPMM then the HPMM database remains unchanged; the SCANRATE and the point mix also remain unchanged.
- d. If the SCANRATE and the point mix are equivalent to the previous values, then the HPMM database remains unchanged.

SCHSTS

Type: Logical *Lock:* View

Schedule Status—Indicates the status of the schedule configuration option processing (for example, before/after relationship).

Default: **OK** PtRes: **HPM**

Range: **OK** (the point is correctly assigned to the desired scan cycle or before/after another point with the same status)

Incomplete (the point did not complete loading to the point where the proper scan cycle or before/after point could be determined.)

error (the point could not be placed on the desired scan cycle or before/after the desired point) **Alarm** (the schedule configuration of the point was violated after the configuration of the point was complete and its status was Ok.)

Helpful Hint: The point cannot be made active if SCHSTS = Incomplete or Error.

SEALOPT (DevCtl, DigComp)

 Type:
 E:\$SEALOPT
 Seal-in Circuit Option—Configures the seal-in circuit option.

 Lock:
 Eng/PB

 Default:
 None

 PtRes:
 HPM

 Range:
 0-None (Sealin is not configured)

 1-Sealin (Sealin is configured)

SECOND (HPM Box)

Type:	Integer	Current Second
Lock:	View	
Default:	N/A	
PtRes:	HPM	
Range:	0 to 59	
U		

SECSYNC

Type:E:\$SECSYNC Secondary Synchronization StatusLock:ViewDefault:PtRes:HPMRange:Synched (Modules are synchronized)
NoSynch (Modules are out of synchronization)

SECVAR (DevCtl)

 Type:
 Real
 Secondary Variable—The analog feedback, normally the motor current or flow.

 Lock:
 View

 Default:
 0.0

 PtRes:
 HPM

 Range:
 Real Numbers including NaN

SECVAR (STI)

Type:	Real	Secondary Variable—Displays the value of the secondary variable of the smart
Lock:	View	transmitter as follows:
Default:	NaN	Pressure transmitter—temperature of the transmitter
PtRes:	HPM	Temperature transmitter—cold junction temperature
		Flow transmitter—totalized value.
Range:	N/A, NaN	

SEGTOT (GenLin)

Type:IntegerLock:SuprDefault:1PtRes:HPMRange:1 to 12

Total Number of Segments—Defines the total number of segments in the curve.

HPM Parameter Reference Dictionary

SEGTYPE (RampSoak)

Type:	E:SEGTYPE	Segment Type—Indicates the current segment being executed by the RegCtl
Lock:	View	point.
Default:	N/A	
PtRes:	HPM	
Range:	0-Ramp (Ramp s	egment)
Ũ	1-Soak (Soak seg	ment)

SELINP (HiLoAvg, MidOf3)

Type: **E:PINP Selected Input**—Indicates the selected input for the algorithm.

Lock: View

Default: SelectP1

PtRes: HPM Range: 1-Sele

: 1-SelectP1 (HiLoAvg and MidOf3 algorithms)

2-SelectP2 (HiLoAvg and MidOf3 algorithms)

3-SelectP3 (HiLoAvg and MidOf3 algorithms)

4-SelectP4 (Only HiLoAvg algorithm)

5-SelectP5 (Only HiLoAvg algorithm)

6-SelectP6 (Only HiLoAvg algorithm)

SELXINP (ORSel, Switch)

Type:	E:XINP
Lock:	View
	(for ORSel)
	Oper
	(for Switch)
Default:	SelectX1
PtRes:	HPM
Range:	1-SelectX1
Ū.	2-SelectX2
	3-SelectX3
	4-SelectX4

Selected X Input—For the ORSel algorithm, this parameter indicates the inputs to the algorithm that have not been bypassed by the BYPASS1-BYPASS4 parameters. For the Switch algorithm, this parameter allows the operator to specify the input (X1-X4) to the algorithm. Refer to the *HPM Control Functions and Algorithms* manual for a detailed description.

SENSRTYP (HLAI & LLAI)

Type: E:\$SENSRTY Sensor Type—Defines the type of field sensor connected to the Field Lock: PtBld Termination Assembly (FTA). 0_100_mV, Thermocouple, and RTD sensor Default: 1_5_V types do not apply for HLAI. P4_2_V and slidewire sensor types do not apply PtRes: HPM for LLAI. Refer to PVCHAR for more information. Range: 0-1_5_V (1 to 5 volts) 1-0 5 V (0 to 5 volts) 2-0_100_mV (0 to 100 millivolts) 3-Thermcpl (Thermocouple) 4-RTD (Resistance Temperature Device)

5-**P4_2_V** (0.4 to 2 volts)

6-Slidwire (Slidewire Resistance Device)

SENSRTYP (LLMUX, RHMUX)

Type:	E:\$SENSRTY	Sensor Type—Defines the type of field sensor connected to the Field	
Lock:	PtBld	Termination Assembly (FTA). Refer to PVCHAR for more information.	
Default:	0 - 100 mV		
PtRes:	HPM		
Range:	2-0_100_mV (0 to 100 millivolts)		
	3-Thermcpl (Thermocouple)		
	4-RTD (Resistan	ce Temperature Device) NOTE: RTD is not supported by RHMUX.	

SENSRTYP (STI)

Type:	E:\$SENSRTY	Sensor Type—Defines the Smart Transmitter type. Refer to PVCHAR for		
Lock:	PtBld more information. Note that SENSRTYP must match the FTA. The point			
Default:	Spt_Dp status is set to SOFTFAIL if a mismatch occurs.			
PtRes:	HPM			
Range:	8-SPT_DP (ST3000—differential pressure)			
	9-SPT_GP (ST3000—gauge pressure)			
	10-SPT_AP (ST3000—absolute pressure)			
	11- STT (STT3000—temperature)			
	12-SFM (MagneW 3000—magnetic flow and most Multivariable transmitters)			
		-		
	Helpful Hint:	For multivariable transmitters, refer to the transmitter manual for the default		
	value of the spec	ific device.		

HPM Parameter Reference Dictionary

SEQERR (ProcMod)

Type: Integer Sequence Error—Indicates that a sequence error or failure was detected. A code is Lock: View displayed to indicate the nature of the error or failure. When an error is detected, Default: 0 the sequence execution state is changed to ERROR; when a failure is detected, HPM PtRes: the execution state is changed to FAIL. Range: 0 (No error) 1-100 (Not used) Error Codes 101 (Not used) 102 (Array index error) 103 (Illegal IMD code) **104** (Illegal variable/operator code) **105** (Interpreter stack overflow) **106** (GOTO destination error) 107 (Key level error) 108 (Configuration mismatch error) **109** (I/O Link prefetch overflow) **110** (Subroutine nesting level error) **111** (Illegal value error) 112 (Fail statement) 113 (IOL-Prefetch buffer full) 114 (IOL-Poststore buffer full) 115 (UCN-Prefetch buffer full) 116 ((UCN-Postore buffer full) 117-164 (Not used) Failure Codes 165 (Sequence has been halted by the operator) 166 (Sequence jumped to an abnormal condition handler which was not enabled) 167 (Not used) **168** (Timeout condition occurred on WAIT statement) 169 (An attempt was made to start a sequence that has not been loaded) **170** (Communication error in READ/WRITE statement) 171 (Communication error detected during I/O Link access. This error is also generated for all post-store problems) 172 (Range Error) 173 (An attempt was made to write to a point that was not in the proper mode) 174 (Interlock error)

175-255 (Not used)

SEQEXEC (ProcMod)

Type:E:SEQEXECSequence Execution State—Indicates the current execution state of the
sequence program that is executing in the process module. Refer to the HPM
Control Functions and Algorithms manual for a detailed description of the
execution states.PtRes:HPM

Range: 0-NL (Not Loaded)

1-DLL (Down-line loading is in progress)

2-Loaded (Sequence has been loaded into the process module)

3-End (Sequence has stopped because it has run to completion)

- 4-**Pause** (Sequence has stopped because of a PAUSE statement, or after each step is executed while in the SnglStep sequence execution mode.)
- 5-Fail (Sequence has stopped because a sequence failure was detected)

6-Error (Sequence has stopped because a sequence error was detected)

7-Run (Sequence is running in the process module)

SEQMODE (ProcMod)

Type: Lock:	E:SEQMODE Determined by CNTLLOCK	Sequence Execution Mode—Defines the manner in which the sequence is executed.
	parameter	
Default:	Auto	
PtRes:	HPM	
Range:	,	node of sequence operation. Sequence runs from beginning to end without ntervention.)
	· •	uence stops at all PAUSE statements in the sequence. Operator action is prestart the sequence.)
	2-SnalSten (Secu	ence is executed one step at a time, and operator action is required to resume

2-SnglStep (Sequence is executed one step at a time, and operator action is required to resume execution. This mode is normally used for debugging.)

SEQNAME (ProcMod)

Type:	String_8
Lock:	View
Default:	Blank
PtRes:	HPM
Range:	N/A
5	

Sequence Name—Defines the name of the CL sequence that currently resides in the process module.

SEQOBJSZ (ProcMod)

Type:	Integer
Lock:	View
Default:	0
PtRes:	HPM
Range:	>0

Sequence Program Size—Indicates the number of memory blocks used by the sequence currently loaded in this process module.

SEQPR (ProcMod)

Type:	E:ALPRIOR	Sequence Priority—Defines the alarm priority for Process Module points. Note	
Lock:	Engr	that even when the Sequence priority is Journal, the alarm indicators still appear	
Default:	Low	on the Group and Detail displays.	
PtRes:	NIM		
Range:	Emergncy (Alarm is historized, annunciated, and reported to all alarm summary displays)		
	High (Alarm is historized, reported to Area Alarm Summary Display and Unit Alarm Summary		
	Display)		
	Low (Alarm is historized, reported to the Unit Alarm Summary Display, and annunciated)		
	T-1D-1-4 (A1.	· · · · · · · · · · · · · · · · · · ·	

JnlPrint (Alarm is historized and reported to the printer but not annunciated)
Printer (Alarm is reported to the printer but not historized and not annunciated)
Journal (Alarm is historized but not reported to Universal Stations and not annunciated)
NoAction (Alarm is not reported to the system and not annunciated)

SEQPRGSZ (HPM Box)

Type:	Integer
Lock:	View
Default:	N/A
PtRes:	HPM
Range:	N/A

Sequence Program Size—Gives total HPM memory available for sequence program, in blocks.

SEQPROC (HPM Box)

E:\$SEQPROC Sequence Processing Rate—Specifies the number of processing units per Process Type: Lock: **PtBld** Module data points that can be processed each quarter second cycle.

Default: 1_PU HPM

PtRes:

1 PU One PU per Process Module point is allocated per scan (200 points can be processed Range: per scan)

2_PU Two PUs per Process Module point are allocated per scan (100 points can be processed per scan)

SEQSLTSZ (ProcMod)

Type: Integer Lock: PtBld Default: 0 PtRes: HPM Range: >0

Sequence Slot Size—Defines the size of the program memory allocated for this process module in terms of blocks. Each block is 32 words long. The actual size is limited by the available memory.

SERIALNO (STI)

Type: String_8 Lock: View Default: Blank PtRes: HPM N/A Range:

Serial Number/PROM Number of the Smart Transmitter

SGALGID(1)-(2) (DevCtl)

Type: **E:**\$GTALGID Secondary Gate ID—Defines the algorithm IDs for secondary gates. in an Array (1..2)Lock: **PtBld** Default: None PtRes: HPM Range: NULL (No algorithm) AND (And Gate algorithm) **OR** (Or Gate algorithm) NAND (Nand Gate algorithm) NOR (Nor Gate algorithm) **XOR** (Exclusive Or Gate algorithm) PAND (Pulse Nand Gate algorithm) **POR** (Pulse or Gate algorithm) PNAND (Pulse Nand Gate algorithm) **PNOR** (Pulse Nor Gate algorithm) **PXOR** (Pulse Exclusive or Gate algorithm)

SGDSTN(1)-(2) (DevCtl)

Type:	E:\$GATDSTN	Secondary Gate Destination—Defines the output destination for the secondary	
	in an Array	gates.	
	(12)		
Lock:	PtBld		
Default:	None		
PtRes:	HPM		
Range:	None (No destir	nation)	
	SIO (Output goes to Safety Interlock)		
	I0, I1, I2 (Outp	ut goes to Interlocks)	
	P0, P1, P2 (Ou	tput goes to Permissives)	
	SOCMD0, SO	CMD1, SOCMD2 (Output is commanded to go to SOCMD0, 1 or 2)	
	OPCMD (Outp	ut is commanded to go to OPCMD parameter)	

SGPLSWTH(1)-(2) (DevCtl)

Type:	Integer
	in an Array
	(12)
Lock:	Supr
Default:	0
PtRes:	HPM
Range:	0 to 8000

Pulse Width for Secondary Gate—Indicates the pulse width for gates whose algorithms begin with "P".

SGSO(1)-(2) (DevCtl)

Type:	Logical	Status Output for Secondary Gates
	in an Array	
	(12)	
Lock:	View	
Default:	Off	
PtRes:	HPM	
Range:	Off	
Ū.	On	

SHEDMODE (RegCtl)

•••-		
Type:	E:MODE	Shedmode—Defines the mode to which this point sheds when it sheds from the
Lock:	Engr	Cas mode.
Default:	Man	
PtRes:	HPM	
Range:	1-Man (Manual)
0	3-Auto (Autom	natic; applies to only Pid, PosProp, and RatioCtl algorithms)
	4-Bcas (Backup	
	Helpful Hint:	 SHEDMODE configuration requires RCASOPT = Spc or Ddc for Pid algorithm.
		2. SHEDMODE configuration requires RCASOPT = Ddc for the following algorithms:
		AutoMan
		IncrSum
		ORSel
		Switch
		3. SHEDMODE configuration requires RCASOPT = Spc for the following
		algorithms

- algorithms: PosProp
- RatioCtl

SHEDTIME (RegCtl)

Type:	Integer	Remote Cascade Shed Time—Defines the amount of time between successive
Lock:	Eng/PB	updates of the SP or OP value from the AM. If the update is not received within
Default:	0	the specified time, the AM or the NIM is assumed to have failed, and the backup
PtRes:	HPM	control strategy is substituted by means of changing the mode to a preconfigured
		backup mode.

Range: 0 to 1000 seconds

Helpful Hint: SHEDTIME configuration requires RCASOPT = Spc, Ddc, or DdcRsp, which indicates that the SP or OP value is provided by the AM. To disable mode shed, use the default value of 0 for this parameter.

SHUTDOWN (RegCtl)

Type: Lock: Default: PtRes: Range:	Logical Prog Off HPM Off On	Shutdown Command Flag —This optional parameter allows the user to implement safety interlocks that can effectively shutdown a single control loop. When the SHUTDOWN flag is set to On by a user-written program or logic block, the mode and mode attribute are changed to Man and Oper, respectively, and the OP output is set equal to a predefined safe output value (SAFEOP). As long as the SHUTDOWN flag is On, the MODE, MODATTR, ESWENBST, and OP parameter values cannot be changed. When the SHUTDOWN flag is set to Off, the control loop must be manually restarted.
	Helpful Hint:	Before a program sets this flag to the On state, it should write into parameter SAFEOP a safe shutdown value of 0%, 100%, or NaN (which causes the last good OP value to be used).A Logic Point or CL program must be used to reset the Shutdown Flag.

SI0 (DevCtl, DigComp)

Type:	Logical	Safety Override Interlock Flag
Lock:	Engr	
Default:	Off	
PtRes:	HPM	
Range:	Off (Override i	s not active)
	On (Override is	s active)

Helpful Hint: This parameter can be changed by the engineer only when the point is inactive or when the HPM is idle.

SI0ALOPT (DevCtl, DigComp)

Type:	E:\$OVRALOP	SIO Safety Override Alarm—Indicates the required action to be performed when
Lock:	Eng/PB	a safety interlock occurs.
Default:	None	
PtRes:	HPM	
Range:	None (No override	e alarming)
, in the second s	Auto_Rtn (Return	to normal when override is cleared)
	Cnfm_Rqd (Conf	irm to clear, after interlock is cleared)
	•	

SI0ALPR (DevCtl, DigComp)

E:ALPIROR Override SI0 Alarm Priority-Indicates the alarm priority for the safety Type: Lock: Engr override. Default: NoAction PtRes: NIM Range: JnlPrint (Alarm is historized and reported to the printer but not annunciated) Printer (Alarm is reported to the printer but not historized and not annunciated) Emergncy (Alarm is historized, annunciated, and reported to all alarm summary displays) High (Alarm is historized, reported to Area Alarm Summary Display and Unit Alarm Summary Display) Low (Alarm is historized, reported to the Unit Alarm Summary Display, and annunciated) Journal (Alarm is historized but not reported to Universal Stations and not annunciated) NoAction (Alarm is not reported to the system and not annunciated)

SIALGID(1)–(12) (DevCtl)

Type: E:\$I2ALGID Secondary Input Gate Algorithm ID-Indicates the algorithm IDs for secondary in an Array input gates. (1..12)Lock: PtBld Default: Null PtRes: HPM Range: NULL (No algorithm) **DLY** (Input is Delayed algorithm) **ONDLY** (On Delay algorithm, transition to ON is delayed) **OFFDLY** (Off Delay algorithm, transition to OFF is delayed) PULSE (Input is Pulsed algorithm) MAXPULSE (Maximum Pulse Width algorithm) MINPULSE (Minimum Pulse Width algorithm)

SIDLYTIM(1)-(12) (DevCtl)

Type:	Integer	Secondary Input Gate Delay/Pulse Width—Indicates the delay or pulse width for
	in an Array	secondary input gates.
	(112)	
Lock:	Supr	
Default:	0	
PtRes:	HPM	
Range:	0 to 8000 secon	ıds
Ũ		

SIDSTN(1)-(12) (DevCtl)

E:\$GATDSTN Destination for Secondary Input Gates—Defines the output destination of the Type: in an Array secondary gate. (1..12)**PtBld** Lock: Default: None PtRes: HPM None (No destination) Range: SIO (Output goes to Safety Interlock) I0, I1, I2 (Output goes to Interlocks) P0, P1, P2 (Output goes to Permissives) SOCMD0, SOCMD1, SOCMD2 (Output is commanded to go to SOCMD0, 1 or 2) **OPCMD** (Output is commanded to go to OPCMD) SG1, SG2 (Output goes to Secondary gates 1 or 2) PG1, PG2, PG3, PG4 (Output goes to Primary gates 1, 2, 3 or 4)

SIM_TXT (NIM)

Type:	String_8	Simulation Indicator—see also DISP_SIM
Lock:	View	
Default:	N/A	
PtRes:	HPM	
Range:	N/A	
, in the second s		

SI0CONF (DigComp,DevCtl)

Type:	Logical
Lock:	Oper
Default:	Off
PtRes:	HPM
Range:	N/A

Safety Override Interlock Alarm Confirmation Flag—Indicates that the safety override interlock alarm needs to be confirmed.

SISO(1)-(12) (DevCtl)

Integer

PtBld

NIM

Type:

Lock:

PtRes:

Default: N/A

Type:	Logical in an Array	Status Output for Secondary Input Gates —Indicates the output value of the secondary input gate.
	(112)	
Lock:	View	
Default:	Off	
PtRes:	HPM	
Range:	Off	
	On	
SLO	TNUM	

Slot Number—Defines the slot number where this point resides. For IOP point types (AnalgIn, AnalgOut, DigIn, DigOut), it defines the hardware subslot on the module (IOP card) in which the point resides; refer to description of MODNUM parameter. For control points (DigComp, DevCtl, Array, Logic, RegPV, RegCtl, Flag, Numeric, Timer and ProcMod) it defines the software slot in the PMM. The processing capacity of the HPM depends on the number and mix of configured control points. Refer to the *HPM Control Functions and Algorithms* manual for a detailed description of how to determine the processing capacity of the HPM, based on the number of control points being used.

For multivariable Smartline transmitters, note that although the transmitter is connected to only one slot, you must allocate adjacent slots for the other PVs.

AnalgIn (1-16 for HLAI and STI; 1–32 for LLMUX and RHMUX) Range: AnalgIn (1-8 for LLAI) Array (1-500, but \leq the value of NARRSLOT) **DevCtl** (1-400, but \leq the value of NDEVSLOT) **DigComp** (1-999, but \leq the value of NDCSLOT) **DigIn** (1-32) **DigOut** (1-16 or 1-32) Flag (HPM Box Flag 1-2047) LLMUX (1-32) **Logic** (1-400, but \leq the value of NLOGSLOT) Numeric (HPM Box Numeric 1-2047) **ProcMod** (1-250, but \leq the value of NPMSLOT) PI (1-8) **RegCtl** (1-250, but \leq the value of NCTLSLOT) **RegPV** (1-125, \leq the value of NPVSLOT) **Timer** (HPM box Timer 1-64) AnalgOut (1-8 or 1-16)

Helpful Hint: SLOTNUM configuration for Digcomp, DevCtl, Array, Flag, Numeric, Timer, ProcMod,Logic, RegCtl, and RegPV points require CTLOPT = On.

SLOT0SF(1)-(168)

 Type:
 String_96
 Slot 0 Soft Failures—Returns blind record of box soft failures present at a module address.

 Default:
 PtRes:
 HPM

 Range:
 Hexadecimal Characters 00 to FF

SLWSRCID (AnalgIn)

Type:	Integer	Slidewire Voltage Source Identifier—Defines the slot number of the voltage
Lock:	Eng/PB	source for the slidewire.
Default:	1	
PtRes:	HPM	
Range:	1–16	
	Helpful Hint:	SLWSRCID configuration requires SENSRTYP = Slidewire.

SNAME(1)-(2) (ProcMod)

Type:	String_8	Subroutine Name—Indicates the name of the subroutine currently used by the
Lock:	View	process module. A value of "" means that no subroutine is executing.
Default:	Spaces	SNAME(1) and SNAME(2) display the name of the first and second level
PtRes:	HPM	subroutines called from the main sequence.
Range:	N/A	-

SO (DigOut)

Status Output—The output from a DigOut point.

Type:LogicalStatus OutputThe outputLock:OperDefault:OffPtRes:HPMRange:Off (Field contact is to be de-energized.)On (Field contact is to be energized.)

Helpful Hint: Only the HPMM Cont_Ctl access level can write to this parameter.

SO (Timer)

Type:

Status Output of Timer—Indicates whether the PV (elapsed time) has reached the SP (preset time).

Lock:ViewDefault:OffPtRes:HPMRange:On (PV has

Logical

On (PV has reached the SP)
 Off (PV has not reached the SP)

SO(1)-(24) (Logic)

Type:	Logical	Logic Block Status Output—Indicates the output state of the logic block.
Lock:	View	
Default:	Off	
PtRes:	HPM	
Range:	Off (Output is f	alse)
	On (Output is t	rue)

SO(0)–(2) (DevCtl, DigComp)

s = (2) for state 2

Logical Type: Lock: View Default: Off PtRes: HPM Range: Off On

Status output array—Indicates the current output state of the Digital Composite slot. s = (0) for state 0 s = (1) for state 1

~~				4.0	
50	A	ΚΙ	1-	-12	

Real

Soak Time for Soak Segments 1-12-Define the soak time in minutes for each soak segment.

Lock: Supr Default: 0.0

Type:

HPM PtRes:

0.0 to 120.0 minutes Range:

SOAKV1-12

Type: Real Lock: Supr Default: NaN PtRes: **HPM** Range: N/A

Soak Value for R/S Segments 1–12— Defines the soak values in engineering units for each soak segment.

SOCMD(0)–(2) (DevCtl, DigComp)

Type: Logical Output Status Command—When commanding an OFF to ON write, the OP is Lock: Prog commanded to the state corresponding to the array element written on an off-to-Default: OFF on transition. PtRes: **HPM** Range: On (The OP is commanded to the state corresponding to 'i'. 0=State 0, 1=State 1, 2=State 2 if SOCMD (i) was previously OFF)

Off (No action)

SP (RegCtl) Real

Type:

Setpoint of the PV in Engineering Units

Lock: Oper Default: 0.0 PtRes: **HPM** Range: SPLOLM to SPHILM

Helpful Hint: SP usually does not require a control input connection. If a cascade connection to SP is required, it is typically configured by specifying a control output connection on the primary point.

SP (Timer)

Type:	Integer
Lock:	Oper
Default:	0
PtRes:	HPM
Range:	0 to 32000

Preset Time—Defines the amount of time in seconds or minutes that the timer is to run.

SPEUHI (RegCtl)

Setpoint Engineering Unit High Range

Type:RealLock:ViewDefault:N/APtRes:HPMRange: \geq SPEULO

SPEULO (RegCtl)

Type:RealLock:ViewDefault:N/APtRes:HPMRange: \leq SPEUHI

Setpoint Engineering Unit Low Range

SPFORMAT (RegCtl)

Type:E:VALFORMT
Lock:Setpoint Decimal Point Format—Indicates the format of the SP value.Lock:ViewSPFORMAT tracks with the selected PVFORMAT.Default:N/APtRes:HPMRange:0-D0 (XXXX.)
1-D1 (XXX.X)
2-D2 (XX.XX)
3-D3 (X.XXX)

SPHIFL (RegCtl)

Type:	Logical	Setpoint High Limit Violation Flag—Indicates the SP has exceeded the upper
Lock:	View	limit established by SPHILM.
Default:	Off	·
PtRes:	HPM	
Range:	Off (High limit	not exceeded)
ũ	On (High limit	exceeded)

SPHILM (RegCtl)

Setpoint High Limit—Defines the upper limit for the SP.

Lock: Supr Default: NaN

Type:

PtRes: HPM

Range: SPLOLM to SPEUHI,

Real

NaN

Helpful Hint: 1. Entering NaN disables limit checking by forcing SPHILM to its extreme value (SPEUHI). SPHILM does not apply for the RampSoak algorithm. 2

SPLOCK (ProcMod)

Type:	E:ACCLVL	Setpoint Lock—Stores to the process module point's own flags, numeric,
Lock:	Engr	strings, and time parameters, and are checked against the access lock specified
Default:	Operator	by SPLOCK.
PtRes:	HPM	
Range:	0-Operator (Operator and higher keylock positions allow store access.)	

1-Supervis (Supervisor and higher keylock positions allow store access.)

2-Engineer (Engineer and higher keylock positions allow store access.)

3-Program(Only the program has store access.)

SPLOCK (Array)

E:ACCLVL Setpoint Lock—Indicates the access lock for array point parameters FL, NN, Type: Lock: Engr STRn and TIME.

Default: Operator

PtRes: HPM Range:

0-Operator (Operator and higher keylock positions allow store access.)

1-Supervis (Supervisor and higher keylock positions allow store access.)

2-Engineer (Engineer and higher keylock positions allow store access.)

3-Program(Only the program has store access.)

SPLOCK (Totalizer)

Type: Lock: Engr Default: PtRes: Range:

Setpoint Lock-Stores to AVTV/PVTV parameters, are checked against the access lock specified by SPLOCK.

HPM

0-Operator (Operator and higher keylock positions allow store access.)

1-Supervis (Supervisor and higher keylock positions allow store access.)

2-Engineer (Engineer and higher keylock positions allow store access.)

3-Program(Only the program has store access.)

SPLOFL (RegCtl)

Type:	Logical	Setpoint Low Limit Violation Flag—Indicates that the SP has exceeded the
Lock:	View	lower limit established by SPLOLM.
Default:	Off	
PtRes:	HPM	
Range:	Off (Low limit is not exceeded)	
_	On (Low limit i	is exceeded)

SPLOLM (RegCtl)

Setpoint Low Limit—Defines the lower limit for the SP.

Lock: Supr Default: NaN

Type:

PtRes: HPM

Real

Range: SPEULO to SPHILM, NaN

Helpful Hint: 1. Entering NaN disableslimit checking by forcing SPLOLM to its extreme value (SPEULO).
2. SPLOLM does not apply for the RampSoak algorithm.

SPOPT (RegCtl)

Type:	E:SPOPT	Setpoint Option
Lock:	Eng/PB	
Default:	None	
PtRes:	HPM	
Range:	0-None (No specia	lized options are available)
5	1- TV (Target Value desired setpo	ue processing; provides a smooth transition from an existing setpoint to a int)
	2-Asp (Advisory setpoint processing for Advisory Deviation Alarming)	
	Helpful Hint: 1	. If component has been entered for the PNTFORM parameter, the Asp option cannot be configured.

2. SPOPT does not apply for the RampSoak algorithm.

SPP (ReaCtl)

1) = /
Real	Setpoint in Percent
View	_
N/A	
HPM	
N/A	
	Real View N/A HPM

SPTV (RegCtl)

Type:	Real Set	point Target Value in Engineering Units	
Lock:	Oper		
Default:	N/A		
PtRes:	HPM		
Range:	SPLOLM to SPHILM,		
-	NaN		

Helpful Hint: SPTV change requires SPOPT = TV.

SPTVP (RegCtl)

Type:	Real	Setpoint Target Value in Percent
Lock:	View	
Default:	N/A	
PtRes:	HPM	
Range:	≥ 0.0	

Helpful Hint: SPTVP change requires SPOPT = TV.

SRQUTAVG (NIM, HPM Box)

Type:	Real	Average UCN Store Request Trip Time—The average time in milliseconds
Lock:	View	that it takes to receive a response to this node's UCN store request.
Default:	NaN	
PtRes:	HPM	
Range:	N/A	
e		

Helpful Hint: This statistic can be viewed on the Toolkit Displays.

SRQUTMAX (NIM, HPM Box)

Type:	Real
Lock:	View
Default:	NaN
PtRes:	HPM
Range:	N/A
-	

Maximum UCN Store Request Trip Time—The maximum time in milliseconds that it takes to receive a response to this node's UCN store request.

Helpful Hint: This statistic can be viewed on the Toolkit Displays.

SRSPTAVG (NIM, HPM Box)

Type:	Real
Lock:	View
Default:	NaN
PtRes:	HPM
Range:	N/A

Average UCN Store Response Trip Time—The average time in milliseconds that it takes this node to respond to UCN store requests from other nodes.

Helpful Hint: This statistic can be viewed on the Toolkit Displays.

SRSPTMAX (NIM, HPM Box)

Type:	Real
Lock:	View
Default:	NaN
PtRes:	HPM
Range:	N/A

Maximum UCN Store Response Trip Time—The maximum time in milliseconds that it takes this node to respond to UCN store requests from other nodes.

Helpful Hint: This statistic can be viewed on the Toolkit Displays.

SSTEP(1)-(2) (ProcMod)

Type:	String_8
Lock:	View
Default:	Spaces
PtRes:	HPM
Range:	N/A
5	

Subroutine Step Name—Indicates the current step of the subroutine executing in this Process Module. A value of " " means that no subroutine is executing. SSTEP(1) and SSTEP(2) display the step name of the first and second level subroutines called from the main sequence.

SSTMT(1)-(2) (ProcMod)

Type:	Integer
Lock:	View
Default:	0
PtRes:	HPM
Range:	0 to 255

Subroutine Statement Number—This parameter points to the statement number (in the NIM sequence library) of the current subroutine. A value of 0 indicates that no subroutine is executing. The array index indicates nesting level.

ST0_OP1-3 (DevCtl, Digcomp)

Lock: Eng/PB Default: Off
PtRes: HPM Range: Off On

State 0, Outputs 1 through 3—Defines the value (On or Off) that is to be written to output number 1, 2, and 3 when the OP is in State 0.

ST1_OP1-3 (DevCtl, Digcomp)

Type:	Logical
Lock:	Eng/PB
Default:	Off
PtRes:	HPM
Range:	Off
Ū.	On

State 1, Outputs 1, 2, and 3—Defines the value (On or Off) that is to be written to output number 1, 2, and 3 when the OP is in State 1.

ST2_OP1-3 (DevCtl, Digcomp)

Type:	Logical
Lock:	Eng/PB
Default:	Off
PtRes:	HPM
Range:	Off
Ū.	On

State 2–Outputs 1, 2, and 3—Defines the value (On or Off) that is to be written to output number 1, 2, and 3 when the OP is in State 2.

STARTFL

Type:	Logical	Start Command Flag—Starts DigIn accumulator, RegPV totalizer, or Box
Lock:	Prog	Timer when flag transitions from Off to On.
Default:	Off	
PtRes:	HPM	
Range:	Off (No effect of	on accumulator/totalizer)
	On (Allows the	accumulator/totalizer to begin counting up/down)

STATE (STI)

E:STATE

Current State—Indicates the current state of the STI point.

Lock: View

Type:

Default: N/A

PtRes: HPM Range: 2-Loa

- 2-Loading (Indicates that database loading between the STI point and the transmitter is occurring.)
- 3-Loadcomp (Indicates that the database transfer between the STI point and the transmitter has been successfully completed)
- 4-Loadfail (Indicates that the parameter transfer between the STI point and the transmitter has not been successfully completed)
- 5-Calib (Indicates that certain parameters are being calibrated at the transmitter by the STI point)
- 6-Calcomp (Indicates that the calibration has been successfully completed)
- 7-Calfail (Indicates that the calibration has not been successfully completed)
- 8-OK (Normal state; indicates that the STI point and the transmitter are OK. Transmitter is updating the PV value at the STI point. STATE remains OK when the point is made inactive.)
- 9-**DBChange** (Indicates that a database mismatch between the STI point and the transmitter has been detected. Transmitter is not updating the PV value at the STI point. STATE remains DBChange when the point is made inactive.)

STATE (Timer, DigIn)

Timer State—Indicates the current state of the timer data point.

Type:E:STATELock:ViewDefault:StoppedPtRes:HPMRange:0-Stopped1-Running

STATE (Totalizr)

Type:	E:STATE	Accumulator State—Indicates the current state of the totalizer.
Lock:	View	
Default:	Stopped	
PtRes:	HPM	
Range:	0-Stopped (St	topped)
, in the second s	1-Running (A	Accumulating)

STATE0-2

Type:	String_8	Current State—These parameters represent the state text (STATETXT)
Lock:	View	descriptors as follows:
Default:	1 = On	STATE0 = STATETXT(0)
	0 = Off	STATE1 = STATETXT(1)
	2 = State 2	STATE2 = STATETXT(2); Digital Composite and DevCtl points.
PtRes:	NIM	Refer to the HPM Control Functions and Algorithms manual for a detailed
		description of the Digital Composite point states.
Range:	N/A	
-		

STATETXT(0)-(3) (DevCtl, DigIn, DigComp, Flag)

Type: Lock: Default:	String_8 PtBld 1 = On	State Descriptor Text —Define the states of the point using descriptors which can have up to eight characters.
PtRes:	0 = Off 2 = State 2	STATETXT (1) corresponds to the first ACTIVE state, or the state corresponding to PVFL = On (direct acting) or PVFL = Off (reverse acting). On the Group or Detail Display, it is in the upper box.
T tRes.	11111	STATETXT (0) corresponds to the INACTIVE state, or the state corresponding to PVFL = Off (direct acting) or On (reverse acting). On the Group or Detail Display, it is the middle box for a Digital Composite or DevCtl point. For a Digital Input point, it is the lower box.
		STATETXT (2) corresponds to the second ACTIVE state. On the Group or Detail Display for a Digital Composite or DevCtl point, it is in the lower box. STATETXT(2) does not apply to Digital Input and Flag points. When a two- state device is configured, STATETXT(2) is internally set to \$NULL.
		STATETXT (3) "NONE" (not configurable). STATETXT(3) does not apply to Digital Input and Flag points.

Range: N/A

Helpful Hint: STATETXT has an access lock of View if PNTFORM = Componnt. STATETXT (2) for State 2 applies only if NOSTATES = 3 for digital composite or device control points.

STATMENT (ProcMod)

Type:	Integer
Lock:	View
Default:	0
PtRes:	HPM
Range:	1 to 255

Statement—Indicates the current statement of the sequence executing in this process module. A statement number of 0 indicates that no statement is being executed.

STATTIM0-2 (DevCtl, DigComp)

Type:	Time	State Time—The amount of time based on the PV that has accumulated for
	(Duration)	States 0, 1, and 2 since the most recent reset of maintenance statistics.
Lock:	View	
Default:	0	
PtRes:	HPM	
Range:	0 - 4000 Days (1 second resolution)
0	•	

STDBYMAN (AnalgOut, DigOut, RegCtl)

Type:	Logical	Standby Manual Flag—Indicates whether the associated hardware output is
Lock:	View	connected to a standby manual device. It is not an indication of whether or not
Default:	Off	the output is isolated from the process.
PtRes:	HPM	· ·
Range:	Off (Output is not connected to standby-manual device)	
	On (Output is c	connected to standby-manual device)

STDBYSTS(1)-(168)

 Type:
 Logical
 Standby Status Flag
 Returns blind record of STDBYMAN status

 Lock:
 View
 View

 Default:
 PtRes:
 HPM

 Range:
 Off (No Standby Manual present)
 On (Standby Manual is activated)

STCHGOPT (DevCtl, DigComp)

Type:E:\$STCHGOPState Change Option—State0 passed through before entering a new state. IfLock:Engr/PBcommand disagree alarming is not configured, the point will wait for the
number of seconds designated in the PAUSETIM parameter after State0 is
commanded. If alarming is configured, the system will wait for the PV to go
to State0 (or when the feedback timer expires) before starting the pause timer.

Range: None (State change option is not configured) State0 (State change option is configured)

STEP (ProcMod)

Type:	String_8	Step Name—Indicates the step name of the sequence executing in this process
Lock:	View	module.
Default:	Spaces	
PtRes:	HPM	
Range:	N/A	

STI_EU (STI)

Type:	E:STI_EU
Lock:	Eng
Default:	InH20
PtRes:	HPM

Smart Transmitter Engineering Units—Specifies the units of measurement for parameters LRL, LRV, URL, and URV. These units are used for display only.

For multivariable Smart Transmitters with a SENSRTYP of SFM, choose BLANK. For multivariable slots with a SENSRTYP of SPT_DP, SPT_AP, SPT_GP, or STT, choose the preferred STI_EU (engineering units). When BLANK is selected the limit values URL, LRL, URV and LRV are displayed in the base engineering units specified in the transmitter user manual.

Helpful Hint: Loading an invalid STI_EU type causes an error. An attempt to correct it from the Detail Display is rejected as CONFIG MISMATCH. To recover, load the correct STI_EU parameter from the PED or perform an UPLOAD from the point Detail Display.

Range:

0-InH20 (Pressure transmitter—Inches of water) 1-MMHG (Pressure transmitter—Millimeters of mercury) 2-PSI (Pressure transmitter—Pounds per square inch) 3-**KPA** (Pressure flow transmitter—Kilopascals) 4-MPA (Pressure transmitter—Millipascals) 5-MBar (Pressure transmitter—Millibars) 6-Bar (Pressure transmitter—Bars) 7-G_SQCM (Pressure transmitter—Grams per square centimeter) 8-KG SQCM (Pressure flow transmitter—Kilograms per square centimeter) 9-MMH20 (Pressure transmitter—Millimeters of water) 10-INHG (Pressure transmitter—Inches of mercury) 11-**Deg** C (Temperature transmitter—Degrees Centigrade) 12-Deg_F (Temperature transmitter—Degrees Fahrenheit) 13-Deg_K (Temperature transmitter—Degrees Kelvin) 14-Deg R (Temperature transmitter—Degrees Rankine) 15-MV (Temperature transmitter—Millivolts) 16-V (Temperature transmitter—Volts) 17-Ohms (Temperature transmitter—RTD Ohms) 18-CM_HR (Magnetic flow transmitter (volume)—Cubic Meters per hour) 19-Gal_HR (Magnetic flow transmitter (volume)—Gallons per hour) 20-LIT HR (Magnetic flow transmitter (volume)—Liters per hour) 21-CC_HR (Magnetic flow transmitter (volume)—Cubic Centimeters per hour) 22-CM Min (Magnetic flow transmitter (volume)—Cubic Meters per hour) 23-Gal Min (Magnetic flow transmitter (volume)—Gallons per minute) 24-Lit_Min (Magnetic flow transmitter (volume)—Liters per minute) 25-CC_Min (Magnetic flow transmitter (volume)—Cubic centimeters per minute) 26-CM_Day (Magnetic flow transmitter (volume)—Cubic meters per day) 27-Gal_Day (Magnetic flow transmitter (volume)—Gallons per day) 28-KGal_Day (Magnetic flow transmitter (volume)—Thousands of gallons per day) 29-BRL Day (Magnetic flow transmitter (volume)—Barrels per day) 30-CM_Sec (Magnetic flow transmitter (volume)—Centimeters per second) 31-KG_HR* (Magnetic flow transmitter (mass)—Kilograms per hour) 32-LBS_HR* (Magnetic flow transmitter (mass)—Pounds per hour) 33-Ft_Sec (Magnetic flow transmitter (velocity)—Feet per second) 34-M Sec (Magnetic flow transmitter (velocity)—Meters per second) 35-KG Min* (Magnetic flow transmitter (mass)—Kilograms per minute) 36-KG_Sec* (Magnetic flow transmitter (mass)—Kilograms per second) 37-LBS_Min* (Magnetic flow transmitter (mass)—Pounds per minute) 38-LBS Sec* (Magnetic flow transmitter (mass)—Pounds per second) 39-PRCNT (Percent)

^{*}Not implemented

STI_EU (STI) (continued)

40-BLANK (Blank) - Multivariable transmitter with SFM SENSRTYP 41-LBS (Pounds) 42-KG (Kilograms) 43-TONS (Tons) 44-GRAMS (Grams) 45-OZ (Ounces) 46-GAL (Gallons) 47-BRL (Barrels) 48-CUB_M (Cubic Meters) 49-LITERS (Liters) 50-MLITRES (Milliliters) 51-FL_OZ (Fluid ounce) 52-FEET (Feet) 53-METERS (Meters) 54-MM (Millimeters) 55-INCHES (Inches) 56-KG_CUM (Kilograms per cubic meter) 57-G_CUM (Grams per cubic Meter) 58-LBS_CUFT (Pounds per cubic foot) 59-LBS_CUIN (Pounds per cubic inch)

STISWVER (STI)

Type:String_8Lock:ViewDefault:BlankPtRes:HPMRange:N/A

Software Revision Level of the Smart Transmitter

STITAG (STI)

Type:	String_8	Transmitter Tag Name—Identifies the name of the Smart Transmitter to the
Lock:	Eng/PB	system and on displays, reports, and logs.
Default:	All Spaces	
PtRes:	HPM	

Helpful Hint: For multivariable transmitters, an identical STITAG must be entered for each active slot related to that transmitter. The IOP uses the number of identical STITAG names to calculate the number of PVs associated with with a given transmitter.

Range: Tag name can be up to 8 characters, and the permissible character set is as follows: Alphabetics A-Z (uppercase or lowercase) Numerics 0-9 Embedded space characters are allowed.

STOPFL

Type:	Logical	Stop Command Flag—Stops the DigIn accumulator, RegPV totalizer, or Box
Lock:	Prog	Timer when flag transitions from Off to On.
Default:	Off	
PtRes:	HPM	
Range:	Off (No effect of	on the accumulator/totalizer)
0	On (Stops the a	ccumulator/totalizer from counting up/down)
	· 1	

STR8(1)-(16,384) (HPM Box)

Type:	String_8
Lock:	Oper
Default:	Spaces
PtRes:	HPM
Range:	N/A

Box String Variables—The upper bound limit of this array is determined by the NSTRING Box parameter. The LCN index limit is 4095, while no limit exists for the UCN. Array points may be used to address strings with an index greater than 4095.

STR8(1)–(16) (ProcMod)

Type:	String_8	Local String Variables—Each Process Module point has 16 local STR8
Lock:	Determined by	variables that are different from the HPM Box STR8 variables.
	SPLOCK	
	parameter	
Default:	Spaces	
PtRes:	HPM	
Range:	N/A	
Ū.		

STR16(1)-(8) (ProcMod)

Type:	String_16	Local St
Lock:	Determined by	variables
	SPLOCK	STR16(1
	parameter	
Default:	Spaces	
PtRes:	HPM	
Range:	N/A	

Local String Variables—Each Process Module point has 8 local STR16 variables that overlay the local STR8 variables [for example, STR16(1)=STR8(1) concatenated with STR8(2)].

STR32(1)-(4) (ProcMod)

 Type:
 String_32
 Local String Variables—Each Process Module point has four local STR32

 Lock:
 Determined by
 variables that overlay the local STR8 variables.

 SPLOCK
 parameter

 Default:
 Spaces

 PtRes:
 HPM

 Range:
 N/A

STR64(1)–(2) (ProcMod)

Type:	String_64
Lock:	Determined
	SPLOCK
	parameter
Default:	Spaces
PtRes:	HPM
Range:	N/A

Local String Variables—Each Process Module point has two local STR64 variables that overlay the local STR8 variables [for example, STR64(1)=STR8(1-8)].

STR8(i) (Array)

Type: Lock:	String_8 Determined by SPLOCK parameter	Array Point String Variables —8-character string variables that are mapped to the Array point. The number of variables is dependent on the NSTRING and STRLEN variables.
Default: PtRes: Range:	N/A HPM	arameter NSTRING)/(8/STRLEN)

STR16(i) (Array)

Type:	String_16	Array Point String Array Variables—16-character string variables that are
Lock:	Determined by	mapped to the Array point. These variables overlay the STR8 variables.
	SPLOCK	
	parameter	
Default:	N/A	
PtRes:	HPM	
Range:	$1 \le i \le (Array p)$	arameter NSTRING)/(16/STRLEN)

STR32(i) (Array)

Type:	String_32	Array Point String Variables—32-character string variables mapped to the Array
Lock:	Determined by	point that overlay the STR8 variables.
	SPLOCK	
	parameter	
Default:	N/A	
PtRes:	HPM	
Range:	$1 \le i \le (Array p)$	arameter NSTRING)/(32/STRLEN)

STR64(i) (Array)

Type:	String_64	Array Point String Variables—64-character string variables mapped to the Array
Lock:	Determined by	point that overlay the STR8 variables.
	SPLOCK	
	parameter	
Default:	N/A	
PtRes:	HPM	
Range:	$1 \le i \le (Array p)$	arameter NSTRING)/(64/STRLEN)

STRDESC (Array)

Type:	String_64
Lock:	PtBld
Default:	Spaces
PtRes:	HPM
Range:	N/A

String Array Descriptor—64-character string describing the Array point string data.

STRLEN (Array)

Type:	Integer
Lock:	PtBld
Default:	8
PtRes:	HPM
Range:	8, 16, 32, 64

Array Point String Length—Indicates the length of the configured string (with the STRSTIX and NSTRING parameters) displayed on the Array Point Detail display. Strings can be accessed by STR8, STR16, STR32 or STR64 regardless of this value.

STRLEN (ProcMod)

Type:	Integer	Process Module String Length—Indicates the displayed string length on the
Lock:	PtBld	Process Module Detail display. Strings can still be accessed by STR8, STR16,
Default:	8	STR32, or STR64 regardless of this value.
PtRes:	HPM	
Range:	8, 16, 32, 64	

STRSTIX (Array)

Type:	Real	String Array Start Index—Defines the string array start index in Box STR8
Lock:	PtBld	variables, or the Serial Interface-connected device.
Default:	0	
PtRes:	HPM	
Range:	0 to Box param	neter NSTRING (When EXTDATA≠IO_STR, 0 indicates no strings are configured)
	0 to 99,999 (W	hen EXTDATA=IO_STR, 0 can be a valid device index)

STRTFAIL(1)-(6)

Type:	String_2	Startup/Failover Information
Lock:	View	
Default:		
PtRes:	HPM	
Range:	Hexadecimal c	haracters 00 to FF

STSMSG

Type:	E:MSGTXT	Status Message—A self-defining enumeration of the MSGTXT parameter that
Lock:	Oper	provides additional descriptive information regarding the red tag, batch state, or
Default:	MSGTXT(0)	device state.
PtRes:	HPM	
Range:	MSGTXT(0) to	MSGTXT(15)

SUMSLTSZ (HPM Box)

Type:	Integer
Lock:	View
Default:	0
PtRes:	HPM
Range:	>0
-	

Total Configured Memory for Sequence Programs—This parameter equals the sum of all Process Module SEQSLTSZ parameters, and is shown on the HPMM Control Configuration display.

SUSPSTAT (ProcMod)

Type:	E:\$SUSPST	Suspend State
Lock:	View	-
Default:	None	
PtRes:	HPM	
Range:	0-None	
-	2-Feedback	
	3-Wait	
	4-ConfMsg	
	5-InputMsg	

SUSPTIME (ProcMod)

Type:	Integer	Suspens
Lock:	View	program
Default:	0	executes
PtRes:	HPM	
Range:	0 to 32, 767	minutes

uspension Timer—The remaining time (in minutes) before the sequence rogram resumes execution. This timer is started when a sequence program xecutes a wait statement.

SVALDB (DevCtl)

E:PVALDB SECVAR Alarm Deadband—The deadband for the SECVAR alarm.

Lock: Engr/PB Default: One

Type:

Range:

Default: One PtRes: HPM

0-**Half** (1/2 of 1% of Engineering Unit range)

- 1-**One** (1% of Engineering Unit range)
- 2-**Two** (2% of Engineering Unit range)
- 3-**Three** (3% of Engineering Unit range)
- 4-Four (4% of Engineering Unit range)
- 5-Five (5% of Engineering Unit range)
- 6-EU (Value is defined by SVALDBEU parameter)

SVALDBEU (DevCtl)

 Type:
 Real
 SECVAR Alarm Deadband in Engineering Units—Indicates the alarm deadband

 Lock:
 Engr/PB
 in engineering units when the SVALDB parameter = EU.

 Default:
 0.0

 PtRes:
 HPM

 Range:
 Allowable Engineering Units

SVDESC (DevCtl)

Type:	String_8	SECVAR Descriptor—Defines the SECVAR parameter or secondary variable
Lock:	PtBld	descriptor.
Default:	Blank	
PtRes:	HPM	
Range:	8 Character Stri	ng
0		

SVEUDESC (DevCtl)

Type:	String_8	SECV
Lock:	PtBld	for the
Default:	Blank	
PtRes:	HPM	
Range:	8 Character S	String

ECVAR Engineering Unit Descriptor—Defines the engineering unit descriptor or the SECVAR parameter or secondary variable descriptor.

SVEUHI (DevCtl)

SECVAR Range High—Defines the high engineering unit range for the SECVAR parameter.

SVEULO (DevCtl)

Type:	Real	SECVAR Range Low—Defines the low engineering unit range for the
Lock:	Engr/PB	SECVAR parameter.
Default:	NaN	
PtRes:	HPM	
Range:	<> NaN	

SVHHFL (DevCtl)

Type:	Logical	SECVAR High-High Alarm Flag
Lock:	View	
Default:	Off	
PtRes:	HPM	
Range:	Off (SECVAR)	parameter is below the SVHHTP parameter minus the deadband)
	On (SECVAR p	arameter has exceeded the SVHHTP parameter)
	On (SECVAR p	arameter has exceeded the SVHHTP parameter)

SVHHPR (DevCtl)

Type:	E:ALPIOR	SECVAR High-High Alarm Priority	
Lock:	Engr		
Default:	Low		
PtRes:	NIM		
Range:	JnlPrint (Alar	m is historized, reported to printer, but not annunciated)	
Ū.	Printer (Repor	ted to printer only)	
	Emergncy (Reported to all alarm summary displays)		
	High (Reported to Area Alarm Summary Display and Unit Alarm Summary Display)		
	Low (Reported to Unit Alarm Summary Display)		
	Journal (Logg	ed but not reported to Universal Stations)	
		arm is not reported to the system)	

SVHHTP (DevCtl)

Type:RealSECVAR High-High Alarm Trip Point—No alarms are generated when thisLock:Suprparameter is set to NaN.Default:NaNPtRes:HPMRange: \geq SVHITP or NaN

SVHHTPP (DevCtl)

Type:	Real
Lock:	Supr
Default:	NaN
PtRes:	HPM
Range:	0 to 100

SECVAR High-High Trip Point Percent—The SECVAR High-High Trip Point in terms of engineering units in percent.

SVHIFL (DevCtl)

Type:	Logical	SECVAR High Alarm Flag—This flag is set when the SECVAR exceeds	
Lock:	View	SVHITP and is reset when SECVAR is below SVHIFL minus deadband.	
Default:	Off		
PtRes:	HPM		
Range:	Off (SECVAR parameter is below SVHIFL minus the deadband)		
, in the second s	On (SECVAR parameter has exceeded SVHIFL)		
	` 1		

SVHIPR (DevCtl)

Type: E:ALPRIOR SECVAR High Alarm Priority

Lock: Engr Default: Low PtRes: NIM

PtRes: N Range: Jr

JnlPrint (Alarm is historized and reported to the printer but not annunciated)
Printer (Alarm is reported to the printer but not historized and not annunciated)
Emergncy (Alarm is historized, annunciated, and reported to all alarm summary displays)
High (Alarm is historized, reported to Area Alarm Summary Display and Unit Alarm Summary Display)

Low (Alarm is historized, reported to the Unit Alarm Summary Display, and annunciated) Journal (Alarm is historized but not reported to Universal Stations and not annunciated) NoAction (Alarm is not reported to the system and not annunciated)

SVHITP (DevCtl)

Real

SECVAR High Alarm Trip Point—When this parameter is set to NaN, no alarms are generated.

Lock: Supr Default: NaN

Type:

Default: NaN PtRes: HPM

Range: \geq **SVEULO or NaN**

SVHITPP (DevCtl)

Type:	Real
Lock:	Supr
Default:	NaN
PtRes:	HPM
Range:	0 to 100

SECVAR High Alarm Trip Point Percent—The SECVAR High Trip Point in terms of engineering units percent.

SVP (DevCtl)

Type:	Real
Lock:	View
Default:	NaN
PtRes:	HPM
Range:	0 to 100

SECVAR in Percent of Engineering Range—The percentage for this parameter is calculated from the SECVAR parameter, using both the SVEVHI and SVELVO parameters.

SVPEAK (DevCtl)

Type:	Real	Peak Value of SECVAR—Indicates the highest value of the SECVAR parameter
Lock:	View	since the device changed from state 0.
Default:	NaN	
PtRes:	HPM	
Range:	Real or NaN	

SVSRC (DevCtl)

Type:	Universal Ent.Prm	SECVAR Input Connection —Specifies input connection to which the current values of Device Control inputs are supplied. The connection can be specified
Lock:	PtBld	using the "Tagname.Parameter" format or the hardware reference address format
	Null	Refer to the HPM Control Functions and Algorithms manual for a detailed
PtRes:	HPM	description.
Range:		arameter for tagged points where Tagname can be up to 16 characters and the racter set is as follows:
	Alphabe	tics A-Z (uppercase only)
	Numeric	es 0-9 (an all numeric tag name is not allowed)
	Undersc	ore (_) cannot be used as the first character or the last character, and consecutive scores are not allowed.
	Embedd	ed space characters are not allowed.
		used to default to this point's tag name.
		er name can be up to eight characters and must be a legitimate parameter name.
	Some possible in	nput-connection sources are
	a."Logic	slot Tagname.NN(nn)" where $nn = 1-8$
	b."ProcN	Mod slot Tagname.NN(nnn)" where $nnn = 1-80$
	c."Box l	Numerics slot Tagname.NN" where nnnnn = 1-16,384
	d."!Box.	FL(nnnn)" for a box flag that resides in the same box where $nnnn = 1-16,384$
	MT is th mm is th	e reference address !MTmmSss.Parameter for untagged or tagged points where ne IOP type, such as AI (Analog Input) ne IOP Card number (1–40) er "S" is a constant
	ss is the	slot number on the IOP Card (refer to SLOTNUM parameter) er name can be up to eight characters and must be a legitimate parameter name.

SVTV (DevCtl)

Type:	Real	Secondary Variable Target Value—Indicates the normal or operating setpoint for
Lock:	Oper	the SECVAR parameter.
Default:	NaN	
PtRes:	HPM	
Range:	SVEULO to SV	EUHI
-		

SVTVP (DevCtl)

Type:	Real
Lock:	Oper
Default:	NaN
PtRes:	HPM
Range:	0 to 100

Secondary Variable Target Value in Percent—Indicates the normal or operating setpoint for the SECVAR parameter as a percent.

SWTCHACT (1)-(40) (HPM Box)

Type:	Logical
Lock:	View
Default:	On
PtRes:	HPM
Range:	On-Active
, in the second s	Off-Inactive

IOP Synchronization—When this parameter is Off (inactive), the backup request line from the IOP's partner is not asserted. When this parameter is On (active), the backup request line from the IOP's partner is asserted.

SYNCHSTS(1)-(40) (HPM Box)

Type:	E:\$SYNCHST
Lock:	View
Default:	None
PtRes:	HPM

Primary/secondary Database Synchronization Status. It is set to WARNING when a database inconsistency is first detected, but the secondary appears capable of providing backup. It changes to FAIL when the HPMM has tried to resync but does not succeed or a secondary failure prevents synchronization. nn = 1-40 corresponds to the 40 logical I/O modules. Applies to primary IOP only.

Range: 0-OK - (the secondary is synchronized with the primary and can provide backup if necessary.)
 1-WARNING - (database inconsistency detected but secondary can probably provide backup).
 2-FAIL - (HPMM has tried to resynchronize but has not succeeded or, secondary has also failed).

T (FlowComp)

Type:	Real
Lock:	View
Default:	1.0
PtRes:	HPM
Range:	≥ 0.0

Temperature Input—Indicates the measured actual temperature.

T0 (FlowComp)

Type:	Real	Zero Reference for Temperature—T0 is the zero reference temperature input and
Lock:	Supr	it is in the same engineering units as the T (measured actual temperature) input.
Default:	0.0	T0 is typically -459.69 degrees F or -273.15 degrees C. Enter the absolute value
PtRes:	HPM	of the temperature.
Range:	N/A	

T1

Type:	Real	Integral Time in Minutes—Defines the integral time constant in
Lock:	Supr	minutes-per-repeat.
Default:	0.0 minutes	
PtRes:	HPM	
Range:	0.0 to 1440.0 n	ninutes
U		

Helpful Hint: Integral action can be disabled by setting T1 equal to 0.0.

T2

Type:	Real	Derivative Time in Minutes —Defines the derivative time constant.
Lock:	Supr	
Default:	0.0 minutes	
PtRes:	HPM	
Range:	0.0 to 1440.0 m	inutes

Helpful Hint: Derivative action can be disabled by setting T2 equal to 0.0

TCRNGOPT

Type:	E:\$TCRNGOP	Thermocouple Range Option—Defines the thermocouple range option.
Lock:	Eng/PB	Applies only if a thermocouple (TC) sensor type is used for this data point.
Default:	Normal	
PtRes:	HPM	
Range:	0-Normal (Use PV	'EXEULO's normal range table)
	1-Extended (Use P	VEXEULO's extended range table)

Helpful Hint: TCRNGOPT configuration requires IOTYPE = LLAI, LLMUX, or RHMUX and SENSRTYP = Thermcpl. Refer to parameter PVEXEULO.

TD (VdtLdLag)

Type:	Real
Lock:	Supr
Default:	0.0
PtRes:	HPM
Range:	\geq 0.0 minutes

Total Dead Time in Minutes—Defines the fixed delay time in minutes for equation B, and the actual variable delay time in minutes for equations C and D.

TF Type:

Lock:

Default:

PtRes:

Range:

PV Filter Lag Time in Minutes—Defines the filtering time lag to be used after the PV range has been checked. A value of 0.0 specifies that the PV is not 0.0 minutes delayed.

TIERTYPE (HPM Box)

0.0 to 60.0 minutes

Type:	E:\$TIERTYP
Lock:	View
Default:	
PtRes:	HPM
Range:	
-	

Real

Supr

HPM

TIME(1)-(4095) (HPM Box)

HPMM Tier Type

Time Type: Lock: Oper Default: 0 seconds PtRes: HPM Range: N/A

Box Time Variables-The upper limit of this array is determined by the NTIME parameter. The LCN index limit is 4,095, while the limit on the UCN is 4096. Array points may be used to address Times with an index greater than 4095.

TIME(i) (Array)

Type:	Time	Array Point Time Variables—Times are mapped from the HPM Box defined by
Lock:	Determined by	the TIMESTIX and NTIME parameters.
	SPLOCK	
	parameter	
Default:	N/A	
PtRes:	HPM	
Range:	1≤i≤Array pa	rameter NTIME

TIME(1)–(4) (ProcMod)

Type: Time Local Time Variables—Four local Time variables are available in each Process Lock: Determined by Module point. These variables are different than the HPM Box Time variables. SPLOCK parameter Default: 0 seconds PtRes: HPM Range: N/A

T-2

TD

TIMEBASE (Timer)

Time Base—Defines the time base to be used for the Timer data point.

Type:	E:TIMEBASE
Lock:	Engr
Default:	Seconds
PtRes:	HPM
Range:	0-Seconds
	1-Minutes

TIMEBASE (Totalizr, PI)

Type:	E:TIMEBASE	Totalizer Time Base—Defines whether time base is in seconds, minutes, or
Lock:	Eng/PB	hours.
Default:	Minutes	
PtRes:	HPM	
Range:	0-Seconds (PV and	d Setpoint engineering units (gallons, etc.) per second)
	1-Minutes (PV an	d Setpoint engineering units (gallons, etc.) per minute)
	2-Hours (PV and	Setpoint engineering units (gallons, etc.) per hour)

TIMEDESC (Array)

Type:	String_64	Time Array Descriptor —Sixty four-character string describing Time data.
Lock:	PtBld	
Default:	Spaces	
PtRes:	HPM	
Range:	N/A	

TIMESECS(1)-(240) (Array)

Type:	Time	Array Point Time Variables—Times mapped from the HPM box defined by
Lock:	Determined	TIMESTIX and NTIME parameters.
	by SPLOCK	
	parameter	
Default:	N/A	
PtRes:	HPM	
Range:	1≤i≤NTIME Ar	ray parameter

TIMESTIX (Array)

Type:	Real	Time Array Start Index—Defines the Time data start index in the Box Time
Lock:	PtBld	variables.
Default:	0	
PtRes:	HPM	
Range:	0 to Box paramete	r NTIME (0 indicates there are no Times configured for this point)
	-	

TIMESYNC (UCN)

Type:	E:ENBLSTAT	Timesynch Control—Defines whether SOE timesynch can be performed by	
Lock:	PtBld	this NIM or NIM pair. Normally, the NIM with the lowest address is	
Default:	Disable	configured for this function.	
PtRes:	NIM		
Range:	Enable (This NIM or NIM pair is able to perform SOE time synchronization)		
	Disable (This NIM or NIM pair does not perform SOE time synchronization, but can receive and		
	report SOE	E events)	

TLD (VdtLdLag)

Type:	Real	Lead Time Constant in Minutes—Defines the lead-compensation time constant
Lock:	Supr	in minutes. A 0 (zero) entry specifies no lead compensation.
Default:	0.0 minutes	
PtRes:	HPM	
Range:	-1440.0 to 1440.0 minutes	
-		

TLG1, TLG2 (VdtLdLag)

Type:RealLag Time ConstantLock:SuprDefault:0.0 minutesPtRes:HPMRange:0.0 to 1440.0 minutes (0 specifies no lag compensation)

TMCMD(1)-(64) (HPM Box)

 Type:
 E:COMMAND
 Timer Command—An array of commands issued to the 64 Timer data points.

 Lock:
 Oper

 Default:
 N/A

 PtRes:
 HPM

 Range:
 0-None (A command has not been issued to the timer)

 1-Start (Starts the timer)

 2 Stare (Starts the timer)

- 2-Stop (Stops the timer)3-Reset (Resets the timer to 0)
- 4-**RestStrt** (Resets the timer to 0) and starts the timer)

TMPV(1)-(64) (Timer)

Type:	Integer
Lock:	View
Default:	0
PtRes:	HPM
Range:	>0
0	

Timer PV—Indicates the current (elapsed) time of the Timer data point in seconds or minutes.

TMRV(1)-(64) (Timer)

Integer
View
0
HPM
>0

Timer RV—Indicates the remaining time (TMSP minus TMPV) for the Timer data point.

TMSO(1)–(64) (Timer)

Type:LogicalTimer Status Output—Indicates the current state of the timer output.Lock:ViewDefault:OffPtRes:HPMRange:Off (TMPV \neq TMSP; elapsed time has not reached the preset time)
On (TMPV = TMSP; elapsed time has reached the preset time)

TMSP(1)-(64) (Timer)

Type: Integer Lock: Oper *Default:* **0** PtRes: HPM Range: 0 to 32000

Type:

Type:

Lock:

Default:

PtRes:

Range:

Timer Setpoint-Defines the preset time of the Timer data point, in seconds or minutes.

TMST(1)–(64) (Timer) E:STATE

Timer State-Indicates the current state of the Timer data point.

		~~~~	111010
View			
Stopped			
HPM			
0-Stopped (Timer is cur	rren	tly stop	pped)
1-Running (Timer is cu	irre	ntly rur	nning)
	Stopped HPM 0-Stopped (Timer is cur	Stopped HPM 0-Stopped (Timer is curren	Stopped

#### TMTB(1)–(64) (Timer)

E:TIMEBASE

Engr

HPM 0-Seconds

Seconds

**1-Minutes** 

Timer Time Base—Defines the time base of the timer.

#### TOTLUAVG (1) - (2) (HPM Box)

Type:	Real
Lock:	View
Default:	0.0
PtRes:	HPM
Range:	0 - 100

Average IOL Utilization (in per cent) by the HPM, per I/O Link-(total utilization by the Comm and Control CPUs)

## **TOTLUMAX (1) - (2) (HPM Box)**

Type:	Real
Lock:	View
Default:	0.0
PtRes:	HPM
Range:	0 - 100

Type:

Lock:

Maximum IOL Utilization (in per cent) by the HPM, per I/O Link- (total utilization by the Comm and Control CPUs)

## TRACKING

Logical

Eng/PB

Selected Input Tracking-Allows the selected input to be changed without bumping the output.

Default: Off PtRes: HPM Off (Tracking disabled) Range: On (Tracking is to be used)

Helpful Hint: If On, causes nonselected inputs to track the selected input.

#### TRANTIM0-2 (DevCtl, DigComp)

Type:	Time
Lock:	View
Default:	0
PtRes:	HPM
Range:	Time Stamp

**Transition Time**—The date and time of the most recent transition to each state based on the PV.

#### TRATAVG (NIM, HPM Box)

Type:	Real
Lock:	View
Default:	NaN
PtRes:	HPM
Range:	N/A

Average UCN Transaction Trip Time—The average UCN transaction trip time in milliseconds for both fetch and store responses from this node to other UCN nodes.

Helpful Hint: This statistic can be viewed on the Toolkit Displays

#### TRATMAX (NIM, HPM Box)

Type:	Real
Lock:	View
Default:	NaN
PtRes:	HPM
Range:	N/A

**Maximum UCN Transaction Trip Time**—The maximum UCN transaction trip time in milliseconds for both fetch and store responses from this node to other UCN nodes.

Helpful Hint: This statistic can be viewed on the Toolkit Displays.

#### TRFB (PidErfb)

Type:	Real
Lock:	View
Default:	NaN
PtRes:	HPM
Range:	N/A

**Tracking Feedback Input in Engineering Units**—Indicates the value of the PV or SP of another data point that is receiving its setpoint from this data point.

#### TSCOMP

Type:	Time
Lock:	View
Default:	0
PtRes:	HPM
Range:	N/A

**Time Stamp, CL Source Compatibility**—Specifies the CL Source compatibility time stamp (CL object header)

#### TSSRC

Type:	Time
Lock:	View
Default:	0
PtRes:	HPM
Range:	N/A

Time Stamp, CL Source—Specifies the CL Source time stamp (CL object header)

#### **TSTS (FlowComp)**

Type:	E:PVVALST	Temperature Input Value Status—Status of the T input value.
Lock:	View	
Default:	Normal	
PtRes:	HPM	
Range:	0-Bad (Value is	bad and replaced with NaN)
-	1-Uncertn (Stat	us of the value is uncertain)
	2-Normal (Valu	e is good)

#### **TSUNICHG**

Time Stamp, Unit Change-Specifies the CL Unit Change time stamp (CL object header)

Type: Time Lock: View Default: 0 HPM PtRes: Range: N/A

#### **TVPROC (RegCtl)**

- E:TVPROC **Target Value Processor State** Type: Lock: Oper
- Default: **Off** PtRes:
- HPM Range:
  - 0-Off (No target value processing)
    - 1-Preset (Set up setpoint target value and ramp time) 2-Run (Perform ramping function)

*Helpful Hint:* TVPROC applies only if SPOPT = TV.

#### -U-

#### UCNRECHN (HPM Box, NIM)

 Type:
 E:\$RECCHN
 UCN Receive Channel—Indicates the channel to which the node is listening.

 Lock:
 View
 UCN Receive Channel—Indicates the channel to which the node is listening.

 Default:
 ChannelA

 PtRes
 HPM, NIM

 Range:
 0-ChannelA

 1-ChannelB

#### **UCNSCANT (HPM Box)**

Type:RealPeer-to-Peer Scan Period in secondsLock:Eng/PBDefault:0.5PtRes:HPMRange:0.5, 1.0

#### UCNSFREV

Type:IntegerLock:ViewDefault:N/APtResHPM

**UCN Software Revision** 

#### UCNSFVER

Type:IntegerLock:ViewDefault:N/APtResHPM

**UCN Software Version** 

## UCNWRTLK (HPM Box)

Type:E: UCNWRTLHPM Write LockoutWhen HPM Write Lockout is set to On, allLock:EngWrites to the HPM (except writes to UCNWRTLK and some IOLDefault:WrtLkOffparameters) are locked out including peer-to-peer writes. All parameterPtRes:HPMreads are allowed as well as cable swaps, HPMM swaps and IOP<br/>swaps.

*Range:* 0-WrtLkOff - (Write Lock Off, UCN node is read/write) 1-WrtLkOn - (Write Lock On, UCN node is read only)

*Helpful Hint:* Write Lockout must be set to Off before any changes are made to configuration, modes, or setpoints. The state of UCNWRTLK can only be changed when the HPM is either in RUN or RUNSOFTFAIL state.

UCNWRTL can be changed (under Engineer Key Level) from the HPM Write Lock Control display. Refer to the *HPM Implementation Guidelines* for more information.

#### UNCMDFL (DevCtl, DigComp)

Type:	Logical	Uncommanded Change Alarm Flag—Indicates whether an uncommanded change
Lock:	View	has been detected in the field device. (Field device has changed its state without
Default:	Off	a command.)
PtRes	HPM	
Range:	Off (No uncom	manded change alarm)
	On (Uncomman	nded change alarm has been detected by this point)
PtRes	HPM Off (No uncom	manded change alarm)

#### UNIT

Type:	String_2	Unit Identifier—Defines the process unit to which this point is assigned. The
Lock:	PtBld	unit identifier is originally assigned during network configuration, and it appears
Default:	N/A	in displays and listings throughout the system.
PtRes	NIM	
		<b>Restriction:</b> Two characters are required; blanks are not allowed. For example,
		unit 3 must be entered as 03.

**CL and Picture Editor** — An integer is returned. This number is equivalent to the unit position in the Unit Names configuration list.

*Range:* A-Z, 0-9 (up to 100 unit IDs can be configured)

#### **UPGRADE (UCN)**

Type:	E:UPGRADE	NIM Upgrade Status
Lock:	Oper	
Default:	OK	
PtRes	NIM	
Range:	OK (NIM has no	ot been upgraded and is OK)
Ū.	Upgrade (NIM i	s upgraded and is questionable)

## URL (STI)

Type:	Keal
Lock:	Eng/View
Default:	NaN
PtRes:	HPM
•	

**Upper Range Limit**—Indicates the upper range limit of the PV at the Smart Transmitter. This limit is a fixed limit and cannot be changed. Refer to the description of the STI_EU parameter for the URL engineering units. During configuration, the value entered for this parameter must agree with the URL value of the transmitter. Although any value can be entered during configuration, a database mismatch will occur when the point is put on-process because the transmitter's URL value and the STI IOP's URL value are not the same. If the values are not the same, the STATE parameter value becomes DBChange and PVSTS becomes Bad. Refer to URL in the *PM/APM Smartline Transmitter Integration Manual* for more information.

The corresponding LRL parameter is not a configurable parameter at the Universal Station.

The upper range limits for the Smart Transmitters are as follows:

For the ST3000 Smart Pressure Transmitters (Spt_Dp, Spt_Gp and Spt_Ap):

Xmtr Range	$URL (In H_2O)$
400 inH ₂ O	400.0
600 inH2O	600.0
780 mmHga	400.0
100 PSI	2768.0
200 PSI	5536.13
500 PSI/A	13840.34
1500 PSI	41521.0
2000 PSI	55361.35
3000 PSI	83042.02
6000 PSI	166084.0
10000 PSI	276806.7

For the STT3000 Smart Temperature Transmitter (STT):

URL (in Degrees C except where noted)
1000 mV
1820
1000
1200
1370
1300
1300
1760
1760
400
2300
2300

#### URL (STI) (continued)

RTDs:	
Cu10RTD	250
Cu25RTD	250
DINRTD	850
JISRTD	640
NicklRTD	150
Pt200	850
Pt500	850
RHRad	1800
RTD (ohms)	4000 Ω

For the MagneW 3000 Magnetic Flowmeter (Sfm):

URL (in meters³/hour) =  $\frac{\pi D^2}{4x10^6}$  x 3600 x (N + 1)

where: D = the detector diameter in millimeters as follows: 2.5, 5, 10, 15, 25, 40, 50, 80, 100, 150, 200, 300, 350, 400, 500, 600, or 700 N = the number of dummy submerged detectors, from 0 to 9

Range: N/A, NaN

#### URV (STI)

Type:	Real
Lock:	Supr/View
Default:	NaN
PtRes:	HPM
Range:	N/A, NaN

**Upper Range Value**—Defines the upper end of the operating range for the PVRAW value. Refer to the description of the STI_EU parameter for the URV engineering units.

Although the following maximum values can be entered, values greater than the URL are not recommended and accuracy is not guranteed in such cases.

For a pressure transmitter (Spt):  $URV_{max} = 2.0 \text{ x URL}$ For a temperature transmitter (Stt):  $URV_{max} = 2.0 \text{ x URL}$ For a magnetic flow transmitter (Sfm):  $URV_{max} = 12.0 \text{ x URL}$ 

This parameter is a view-only parameter when the STI point execution state PTEXECST is Active (indicating that changes cannot be made in this parameter value from the Universal Station).

#### USERID (Array, DevCtl, DigComp, ProcMod, RegCtl, RegPV)

Type:	String_16
Lock:	Oper
Default:	Dashes
PtRes	HPM

**User ID Reservation**—The user ID that currently has reserved this point. The User ID can be changed by either a point, program, or operator. The operator can overwrite the USERID parameter at anytime. A program can store a nonblank string in this parameter only if it is blank. If the USERID string starts with three or more dashes (- - -), only the operator can overwrite the ID.

Range: 16 Character String

## UTSDRIFT (HPM Box, NIM)

Type:IntegerLock:ViewDefault:N/APtResHPM, NIMRange:

**UCN Node Clock Drift**—Indicates the current HPMM clock drift rate, calculated by averaging the LCN clock interval and SYNCH CLOCK interval over multiple synchs. Averaging does not occur until UCN time synchronization is in a steady state.

#### UTSNODE (HPM Box, NIM)

Type:IntegerLast UCN Syncher Node—Describes which node is the synch master orLock:Viewsyncher. Normally, this is the primary NIM, even though the secondary NIMDefault:0can also be the syncher. The syncher function performs periodic timePtResHPM, NIMsynchronization on the UCN.

*Range:* 0, 1 to 64 (0 specifies No Syncher Node)

## UTSTBCRV (HPM Box, NIM)

Type:	String_2	<b>TBC Revision</b> —The token bus controller revision number in hexidecimal
Lock:	View	format.
Default:	N/A	
<b>PtRes</b>	HPM, NIM	
Range:	5 to 15	

#### UTSTIME (HPM Box, NIM)

Type:	Time
Lock:	View
Default:	N/A
PtRes	HPM, NIM
Range:	N/A

**Current Time in LCN Node**—Identifies the current time of day for this LCN node, and is useful if there are multiple LCNs or UCNs.

## UTSTIMST (HPM Box, NIM)

Type:	E:\$UCNTMST	Timesynch State of the UCN Node—The state of time synchronization	
Lock:	View	for each UCN node.	
Default:	0		
PtRes	HPM, NIM		
Range:	0-Initial (Waiting for the	first complete synch operation)	
	1-Failed (The maximum a	amount of time has elapsed and no synch operation has occurred,	
	or the NIM does not have a functioning EPNI board)		
	a complete sy	er NIMs and HPMMs, an excessive amount of time has elapsed without nuch operation. In HPMMs, the drift limit between the LCN and has been exceeded)	
	3-LCN_Bad (Synch oper synched with	ations are taking place on a regular basis, but the NIM's clock is not the LCN)	
	4-LCN_OK (Synch opera with the LCN	tions are occurring regularly and the NIM's clock is properly synched	
	5-OK (Synch operations a	are working in an optimal manner)	

-W-

# WARMSTRT(1)-(168)

Type:	Logical	Warm Start Flag
Lock:	View	_
Default:	N/A	
PtRes	IOP	
Range:	On (Warm	start executed)
-	Off (Cold st	tart executed)

#### WEEKDAY (HPPM Box)

 Type:
 Integer
 Current Weekday—The current weekday based on LCN wall clock time.

 Lock:
 View

 Default:
 N/A

 PtRes
 HPM

 Range:
 1 to 7 (Sunday to Saturday)

## WITHBIAS(1)-(40) (HPPM Box)

Type:	Logical	I/O Module Physical Bias State—ON Indicates that the preferred
Lock:	View	primary is really the acting primary; OFF indicates that it is not.
Default:	ON	For IOPs that do not have hardware bias (e.g., HLAI, DI, etc.),
PtRes	HPM	the status of ON is always returned. Applies to primary IOP only.

*Range:* On (The preferred primary is the acting primary) Off (The preferred primary is not the acting primary)

## X (FlowComp)

Type:	Real	Steam Compressibility Input—Indicates the measured actual steam
Lock:	View	compressibility.
Default:	1.0	
PtRes	HPM	
Range:	≥ <b>0.0</b>	

#### X1 (AutoMan)

Type:	Real	X1 Input Value to be Biased
Lock:	Prog	
Default:	NaN	
PtRes	HPM	
Range:	NaN	
0		

#### X1-3 (MulDiv)

Real

Prog

HPM

 $\geq 0.0$ , NaN **Inputs 1-3**—Current values of the inputs to this algorithm.

## X1-4 (IncrSum, ORSel, RegCtl Summer)

	•
Type:	Real
Lock:	Prog
Default:	NaN
PtRes	HPM
Range:	≥ 0.0,
	NaN

Type:

Lock:

**PtRes** 

Range:

Default: NaN

Inputs 1-4—Current values of the inputs to this algorithm.

# X2 (AutoMan)

Type:RealLock:ViewDefault:N/APtResHPMRange:N/A

**Bias Adjustment Input** 

# X2 (RatioCtl)

Type:	Real
Lock:	View
Default:	N/A
PtRes	HPM
Range:	N/A

**Input Number 2**—Indicates the value of the uncontrolled process variable. Source should be the same as for P2 of the Calcultr algorithm, if it is being used in conjunction with the Calcultr algorithm.

## X2FILT (RatioCtl)

Type:	Real
Lock:	View
Default:	N/A
PtRes	HPM
Range:	N/A

Filtered value of the X2 input

*Helpful Hint:* Filter time is determined by X2TF. This filter is only active if the point is in the AUTO or CASC mode.

# X2TF (RatioCtl)

Type:	Real	X2 input filter lag time in minutes
Lock:	Supr	
Default:	0.0	
PtRes	HPM	
Range:	0 - 60 minutes	
-		

### XEUHI (AutoMan, IncrSum, ORSel)

Type:	Real
Lock:	Engr
Default:	100.0
	(equivalent
	to 100%)
PtRes	HPM
Range:	> XEULO

**X Input Engineering Unit High Range**—Defines the upper limit of the value of the X input or inputs.

## XEULO (AutoMan, IncrSum, ORSel)

Type:	Real	X Input Engineering Unit Low Range—Defines the lower limit of the value of
Lock:	Engr	the X input or inputs.
Default:	0.0	
	(equivalent	
	to 0%)	
PtRes	HPM	
Range:	< XEUHI	

## XSTS (FlowComp)

E:PVVALST X Input Value Status—Status of the steam compressibility input.

- Type:E:PVVALSTX Input Value Status—Status—StatusLock:ViewDefault:NormalPtResHPMRange:0-Bad (Value is bad and replaced with NaN)1-Uncertn (Status of the value is uncertain)
  - 2-Normal (Value is good)

## YEAR (HPM Box)

Type: Lock:

Current Year—The value of the LCN date in the HPM.

Integer View

Default: N/A

PtRes HPM *Range:* 1979 to 2115

FAX Transmittal				FA	FAX No.: (602) 313-4842		
то: _	Andrea	Simmons		(in	Total FAX pages: cluding this page)		
			Reader	r Commer	Its		
Title of Document: HPM Parameter Reference Diction				onary			
Document	t Number:	HP09-540		Issue Date:	8/97		
Comments	S:						
Recomme	ndations: _						
FROM:							
Name:					Date:		
Title:							
Company	y:						
Address	:						
City:			5	State:	ZIP:		

You may also call 800-822-7673 (available in the 48 contiguous states except Arizona; in Arizona dial 602-313-5558, or write to:

FAX:____

Honeywell Inc. Industrial Automation and Control Automation College 2820 West Kelton Lane Phoenix, AZ 85023-3028

Telephone: _____



Industrial Automation and Control Automation College 2820 W. Kelton Lane Phoenix, AZ 85023-3028 Helping You Control Your World