
 MPG LEVEL 1

notes_mpgl1_chapter10.docx Release 1.0 Page 1 of 20

Chapter 10:
PWM

 PWM
PWM

 PWM
PWM

This chapter examines yet another very important and fundamental service that an embedded system

often provides: Pulse Width Modulation (PWM). We will look at what PWM means, some applications,

and how to implement it on the development board both using brute force techniques and the PWM

peripheral. The LED application will be updated to make use of your new PWM skills, and an audio

driver will be written so you can start producing ridiculously irritating noise from your buzzer. The

chapter exercise creates a very nice color-cycling backlight on the LCD.

10.1 PWM Concepts
Digital systems are great because there are only two voltage states, high and low, that carry any

information. The potential difference between the two provides a lot of noise immunity making for very

robust systems. However, since the world is analog, digital systems must have a way to step out of the

binary realm and into the infinite states of analog. There are an infinite number of analog voltage levels

that are used to adjust volume or intensity, and time-varying signals are the essence of analog

communication and audio. Digital systems can achieve some forms of analog output through digital to

analog conversion, but only at discrete levels. The only “wave” that a digital processor is capable of

producing is a square wave since it can only toggle a digital output high or low. However, it turns out

that a square wave is a very powerful tool when it comes to achieving analog capability in a digital

system. Through frequency and duty cycle adjustments of the digital pulses, external systems can be

modulated to give the appearance of analog voltages – this is what PWM is all about.

When you blink an LED at 1Hz, you are in fact generating a square wave, albeit a very slow one. The LED

is on for 500ms and off for 500ms. Since the signal is high for half of the time, we call this “50% duty

cycle.” Now would be a good time to remind you that the “period” of a wave is the time between

repetitions of the signal and the inverse of period is frequency. Duty cycle is the ratio of the time the

pulse is high to the total period. Figure 10.1.1 shows some details of a 75% duty cycle PWM.

Figure 10.1.1: PWM signal details (75% duty cycle)

If you sped the signal up to 1 kHz, the digital behavior of the LED is exactly the same. The LED is on for

500us and off for 500us. Since LEDs are very fast at reacting to changes in signal voltage, the LED is in

fact going from fully-on to fully-off at the drive rate, which you can verify by attaching an oscilloscope

and looking at the waveform. However, if you are looking at the LED while this is happening, you will

 MPG LEVEL 1

notes_mpgl1_chapter10.docx Release 1.0 Page 2 of 20

not see it blinking because your eye cannot respond that quickly. In fact, your eye can only distinguish

changes at about 10Hz, though you might see some flicker as fast as 30Hz. Instead, you will see the LED

as if it is running at about half the voltage as your supply rail, so it will appear to be half as bright. So a

50% duty cycle – if the frequency is high enough – results in an effective 50% supply voltage.

If you actually measure the effective luminous output it probably is not exactly half, but as a general rule

of thumb, the LED brightness is equal to the duty cycle of the PWM signal driving it. If you change your

driving signal to be on for 250us but off for 750us, the period of the signal remains 1ms, but now you are

running “25% duty cycle” and the LED will appear about one quarter of its full brightness. As long as you

maintain the frequency and just vary the duty cycle (on time vs. off time), then you can make the LED

any brightness that you want.

Not only does this work for varying LED brightness in a digital system, it has many other applications as

well. You have already witnessed PWM in action with the switching power supply on the course

development board. The integrated circuit that converts the high input voltage (7-30V) down to a

regulated 5V uses a fast switch and varying duty cycle to down-convert the higher voltage to the lower

voltage. This is why switching power supplies are much more efficient than linear regulators – power is

only “sampled” as it is needed from the input. If there was no capacitance on the 5V rail, than the

switching frequency of the buck converter (which is a few hundred kHz), would be visible and you would

not have a very good power supply! Switching power supplies require careful calculation of their output

capacitors so that an acceptable amount of “ripple” can be attained (you will always see some evidence

of the switching signal). Generally speaking, the larger the capacitor, the less ripple will be in the system

because the cap stores more energy.

PWM is also used in motor controllers and essentially works the same way to apply an effective voltage

to the motor thereby giving you control over the speed at which the motor is running. This applies in

both AC and DC systems and many microcontrollers have built-in PWM peripherals to target

applications like this. In this way, the PWM signal is essentially pulsing a fly wheel to keep it spinning.

The momentum of the fly wheel is analogous to capacitance in a purely electrical system. If you have a

dimmer switch on some incandescent light bulbs in your home, the same principle applies, but this time

it is the slow reaction and heat build-up of the light bulb that is acting like “capacitance” in the system to

smooth out the PWM action and make it appear as a steady-state lower voltage. As it turns out, the

concept of PWM is everywhere!

10.2 PWM the Hard Way
There is no better way to really understand a concept than to work through an exercise that forces you

to explicitly implement every bit of functionality related to it. So the first PWM exercise we will do is an

upgrade to the LED driver that we have already built for the development board to allow dimming of the

lights via PWM. This will be a great demonstration of what it takes to “bit-bash” some desired

functionality and will give you a bit of an appreciation for the various peripherals that automatically

implement common functions. We have to do this the hard way because the LPC214x processor does

not have enough PWM outputs to drive each LED (it would be very unlikely that you would find a

processor that would have eleven PWMs!).

notes_mpgl1_chapter10.docx

The goal is to create an application that will automatically take care of blinking the LEDs but also provide

a facility to dim the lights by using PWM. Thou

effects, the main purpose is to have dimming control

red, green and blue lights (denoted “

adding them together with different levels of intensity will allow you to form any color you want!

This is exactly how LED displays work

simply dimmed to a level to create the d

256 levels of intensity (in other words, 8bits to control the level), then you can achieve 256 x 256 x 256 =

16.7 million colors! Not that your eye can distinguish that many different co

no doubt experience when shopping for monitors or displays, “24bit” or higher color is a major selling

feature that you will pay a bunch of money for (note that no one really knows for sure how many colors

you can resolve and the arguments tend to be more philosophical than logical

anywhere from a few thousand to several million).

blue, the result is white.

10.2.1 Application design

As of Chapter 9, we have a simple set of function calls living in the board

ehdw-01. We want to write a reasonably generic LED driver that could be ported to other systems.

LEDs tend to be very board-specific as far as their individual pin conn

driver we develop will need to account for that

code required to turn the LEDs on and off is quite generic. The complexity of what we want to achieve

provides reasonable justification to pull that code out of the generic file and into its own application

files. The names of the files will be leds2.c and leds_deva7.h.

If you have not downloaded the “start” code for this chapter yet, do that now and load up the pro

IAR. The code will not build yet because there are several places where you will have to finish the code

snippets. For now, spend a few minutes getting familiar with the code, namely the new files specific to

the LED application and the Chapter 1

The biggest problem of bit-bashing is the overhead required to program each part of the function. This

becomes increasingly difficult as the speed of whatever signal you are trying to create increases, or as

the complexity of the waveform tha

communication protocol that transmits and receives at MHz speeds

running at only 12MHz. In this case, you might be stuck writing assembler routines to

efficient algorithm, and even then you might not be able to do it!

In designing the LED PWM driver, we have to consider the resources that are available and the system

rules we can work with. Ideally we should take advantage of the known 1ms

calls. It so happens that this will work quite nicely, though it is not perfect because we will come very

close to the limit of what we can do given the speed of the core system. The defining

capability of the LEDs. As discussed earlier in the chapter, the frequency of the PWM driving signal for

an LED must be fast enough to trick your eye into seeing a steady, dimmed LED instead of a flickering

light. The minimum frequency for this is

mind.

Release 1.0

The goal is to create an application that will automatically take care of blinking the LEDs but also provide

a facility to dim the lights by using PWM. Though dimming of the discrete LEDs will allow for some nice

e dimming control for the LCD backlight LEDs. Since the backlight has

denoted “RGB” and are the primary colors of light) that light up

adding them together with different levels of intensity will allow you to form any color you want!

This is exactly how LED displays work – if you look closely, you will see groups of RGB LED

level to create the desired color just like mixing paint in art class. If each color has

256 levels of intensity (in other words, 8bits to control the level), then you can achieve 256 x 256 x 256 =

16.7 million colors! Not that your eye can distinguish that many different colors, but as you have or will

no doubt experience when shopping for monitors or displays, “24bit” or higher color is a major selling

feature that you will pay a bunch of money for (note that no one really knows for sure how many colors

the arguments tend to be more philosophical than logical – opinions have it ranging

anywhere from a few thousand to several million). By the way, if you have equal parts red, green and

e have a simple set of function calls living in the board-specific source file deva7

01. We want to write a reasonably generic LED driver that could be ported to other systems.

specific as far as their individual pin connections to the processor, so the

driver we develop will need to account for that and be flexible. Once the definitions are in place, the

code required to turn the LEDs on and off is quite generic. The complexity of what we want to achieve

nable justification to pull that code out of the generic file and into its own application

files. The names of the files will be leds2.c and leds_deva7.h.

If you have not downloaded the “start” code for this chapter yet, do that now and load up the pro

IAR. The code will not build yet because there are several places where you will have to finish the code

snippets. For now, spend a few minutes getting familiar with the code, namely the new files specific to

the LED application and the Chapter 10 exercise.

bashing is the overhead required to program each part of the function. This

becomes increasingly difficult as the speed of whatever signal you are trying to create increases, or as

the complexity of the waveform that you are trying to create goes up. For example, bit bashing a

communication protocol that transmits and receives at MHz speeds is very challenging if the processor is

only 12MHz. In this case, you might be stuck writing assembler routines to

you might not be able to do it!

In designing the LED PWM driver, we have to consider the resources that are available and the system

rules we can work with. Ideally we should take advantage of the known 1ms period of our application

calls. It so happens that this will work quite nicely, though it is not perfect because we will come very

close to the limit of what we can do given the speed of the core system. The defining factor

LEDs. As discussed earlier in the chapter, the frequency of the PWM driving signal for

an LED must be fast enough to trick your eye into seeing a steady, dimmed LED instead of a flickering

The minimum frequency for this is around 30Hz which gives a period of 33.3ms. Keep that in

MPG LEVEL 1

Page 3 of 20

The goal is to create an application that will automatically take care of blinking the LEDs but also provide

gh dimming of the discrete LEDs will allow for some nice

for the LCD backlight LEDs. Since the backlight has

that light up the screen,

adding them together with different levels of intensity will allow you to form any color you want!

if you look closely, you will see groups of RGB LEDs that are

. If each color has

256 levels of intensity (in other words, 8bits to control the level), then you can achieve 256 x 256 x 256 =

lors, but as you have or will

no doubt experience when shopping for monitors or displays, “24bit” or higher color is a major selling

feature that you will pay a bunch of money for (note that no one really knows for sure how many colors

opinions have it ranging

By the way, if you have equal parts red, green and

specific source file deva7-

01. We want to write a reasonably generic LED driver that could be ported to other systems.

ections to the processor, so the

. Once the definitions are in place, the

code required to turn the LEDs on and off is quite generic. The complexity of what we want to achieve

nable justification to pull that code out of the generic file and into its own application

If you have not downloaded the “start” code for this chapter yet, do that now and load up the project in

IAR. The code will not build yet because there are several places where you will have to finish the code

snippets. For now, spend a few minutes getting familiar with the code, namely the new files specific to

bashing is the overhead required to program each part of the function. This

becomes increasingly difficult as the speed of whatever signal you are trying to create increases, or as

t you are trying to create goes up. For example, bit bashing a

very challenging if the processor is

get a very

In designing the LED PWM driver, we have to consider the resources that are available and the system

period of our application

calls. It so happens that this will work quite nicely, though it is not perfect because we will come very

factor is the PWM

LEDs. As discussed earlier in the chapter, the frequency of the PWM driving signal for

an LED must be fast enough to trick your eye into seeing a steady, dimmed LED instead of a flickering

a period of 33.3ms. Keep that in

notes_mpgl1_chapter10.docx

The second thing to consider is how much PWM resolution we need / want in the system. For example,

if you wanted 1% duty cycle control, you would need to have a total PWM period of 100 “units” so that

you could adjust the duty cycle in 1 unit increments thereby achieving 1% duty cycle steps. Therefore,

each LED could have 100 levels of brightness

problem is that we need 100 cycles available to manage that

have 1ms periods/cycles to work with. That would mean we could only achieve 10Hz frequency for the

LEDs and guaranteed you would see them flicker.

So we have to compromise. Either we move away from our 1ms “c

or we admit that we really do not need a million backlight colors!

necessary, you would have to either adapt the 1ms

interrupt to dedicate to the PWM. However, higher resolution is NOT necessary, so we proceed with

our 1ms system intact.

To make numbers work out nicely, let us choose to generate the PWM signal at 50Hz which equates to

20ms periods for the PWM. This gives 5% duty c

plenty, be assured, to create a very nice display as you will see once you have completed the chapter

exercise. Note that we could probably get away with

likely that some people would notice flicker in the slower signal.

With those decisions made, writing the driver is almost easy. Keep in mind that it still requires a lot of

thought, and though you may read the following description in a few minut

pretty simple, know that designing, coding, testing and tweaking this driver took about 20 hours to

complete when all was said and done

We do not have to build a state machine for the LED system because a single function

and perform updates is all that is needed. The function will be called LedUpdate() and will

LED explicitly. LedOn(), LedOff() and LedToggle() become private functions to the LED driver.

LedUpdate() will use the private fun

code is captured in specific LED source files.

10.2.1 Header file leds_deva7.h

A header file is used for the board-specific parameters for the LED driver.

many LEDs there are in the system and the names that will be used to identify each

enumerated type for the LED names helps to make the API easier to use. LedNumberType takes care of

this and hopefully it is obvious what LED each word correspond

track of the LED mode, location (i.e. port number) and current duty cycle that you will

for running the driver. The code is shown here

#define TOTAL_LEDS (u8)11

#define LED_PWM_PERIOD (u8)20

typedef enum {WHITE = 0, PURPLE,

 RGB_GREEN, RGB_BLUE} LedNumberType;

typedef enum {NORMAL = 0, PWM} LedModeType;

typedef enum {PORT0 = 0, PORT1 = 0x08} LedPortType;

/* $$$$ Add a typedef enum called LedPWMDutyType, where "LOW" = 0 and "HIGH" = 1 */

Release 1.0

The second thing to consider is how much PWM resolution we need / want in the system. For example,

if you wanted 1% duty cycle control, you would need to have a total PWM period of 100 “units” so that

just the duty cycle in 1 unit increments thereby achieving 1% duty cycle steps. Therefore,

each LED could have 100 levels of brightness and you could have 100
3
 = 1 million different colors. The

problem is that we need 100 cycles available to manage that amount of resolution but of course we only

to work with. That would mean we could only achieve 10Hz frequency for the

LEDs and guaranteed you would see them flicker.

Either we move away from our 1ms “clock” so we can get better resolution,

e really do not need a million backlight colors! If higher resolution was really

necessary, you would have to either adapt the 1ms system tick, or use another timer to provide a faster

dedicate to the PWM. However, higher resolution is NOT necessary, so we proceed with

To make numbers work out nicely, let us choose to generate the PWM signal at 50Hz which equates to

This gives 5% duty cycle resolution and results in 20
3
 = 8000 colors

plenty, be assured, to create a very nice display as you will see once you have completed the chapter

exercise. Note that we could probably get away with 25Hz and thus 40 cycles to work with, but

likely that some people would notice flicker in the slower signal.

With those decisions made, writing the driver is almost easy. Keep in mind that it still requires a lot of

thought, and though you may read the following description in a few minutes and agree that it is in fact

pretty simple, know that designing, coding, testing and tweaking this driver took about 20 hours to

when all was said and done.

We do not have to build a state machine for the LED system because a single function to manage timers

and perform updates is all that is needed. The function will be called LedUpdate() and will

LedOn(), LedOff() and LedToggle() become private functions to the LED driver.

will use the private functions and manage timers to turn the lights on and off.

code is captured in specific LED source files.

10.2.1 Header file leds_deva7.h

specific parameters for the LED driver. The key information is how

LEDs there are in the system and the names that will be used to identify each LED

enumerated type for the LED names helps to make the API easier to use. LedNumberType takes care of

this and hopefully it is obvious what LED each word corresponds to. Other typedefs are used to keep

track of the LED mode, location (i.e. port number) and current duty cycle that you will

The code is shown here – you need to add typedef for LedPWMDutyType

TOTAL_LEDS (u8)11

#define LED_PWM_PERIOD (u8)20

typedef enum {WHITE = 0, PURPLE, BLUE, CYAN, GREEN, YELLOW, ORANGE, RED, RGB_RED,

RGB_GREEN, RGB_BLUE} LedNumberType;

typedef enum {NORMAL = 0, PWM} LedModeType;

= 0, PORT1 = 0x08} LedPortType;

/* $$$$ Add a typedef enum called LedPWMDutyType, where "LOW" = 0 and "HIGH" = 1 */

MPG LEVEL 1

Page 4 of 20

The second thing to consider is how much PWM resolution we need / want in the system. For example,

if you wanted 1% duty cycle control, you would need to have a total PWM period of 100 “units” so that

just the duty cycle in 1 unit increments thereby achieving 1% duty cycle steps. Therefore,

= 1 million different colors. The

amount of resolution but of course we only

to work with. That would mean we could only achieve 10Hz frequency for the

lock” so we can get better resolution,

If higher resolution was really

system tick, or use another timer to provide a faster

dedicate to the PWM. However, higher resolution is NOT necessary, so we proceed with

To make numbers work out nicely, let us choose to generate the PWM signal at 50Hz which equates to

= 8000 colors. That is

plenty, be assured, to create a very nice display as you will see once you have completed the chapter

25Hz and thus 40 cycles to work with, but it is

With those decisions made, writing the driver is almost easy. Keep in mind that it still requires a lot of

es and agree that it is in fact

pretty simple, know that designing, coding, testing and tweaking this driver took about 20 hours to

to manage timers

and perform updates is all that is needed. The function will be called LedUpdate() and will address each

LedOn(), LedOff() and LedToggle() become private functions to the LED driver.

ctions and manage timers to turn the lights on and off. All of the

The key information is how

LED. Using an

enumerated type for the LED names helps to make the API easier to use. LedNumberType takes care of

s to. Other typedefs are used to keep

see are necessary

for LedPWMDutyType.

, GREEN, YELLOW, ORANGE, RED, RGB_RED,

/* $$$$ Add a typedef enum called LedPWMDutyType, where "LOW" = 0 and "HIGH" = 1 */

notes_mpgl1_chapter10.docx

Since the behavior of every LED is independent from the rest, e

keep track of its specific settings (i.e. is it blinking or in PWM mode and what rate is it currently set at)

To manage the PWM function, every LED

in a struct whose typedef is also in the LED header file.

typedef struct

{

 LedModeType eMode;

 LedRateType eRate;

 u16 u16Count;

 LedPWMDutyType eCurrentDuty;

 DeviceActiveType eActiveState;

 LedPortType ePort;

} LedConfigType;

Since the board-specific values are kept in the header file, the source file can be

and “just work” as long as the correct header file is used. That is true at least within the LPC214x family

of processors on any development board. If ported to a different processor, then some updates would

likely be required.

10.2.2 Source file leds2.c

The LED driver source file has some board

will have the same format regardless of where the code is ported too

define the bit numbers for each LED

the programmer that the order of the bit positions in the array must correspond to the order of the LEDs

defined in LedNumberType in the header file.

define the array. The exact names of the pins from the schematics should be used, and these symbols

have already been defined for this specific development board in deva7

/* LED locations: order must corre

header file. */

u32 LGau32LedBitPositions[] =

The second local global variable needed keeps track of th

the code to easily accommodate different development boards with different numbers of LEDs, all of

the parameter structs for each LED

TOTAL_LEDS defined in the header fi

addressing each LED one at a time.

/* Control array for all LEDs in system initialized for LedInit() */

LedConfigType LGasLeds[TOTAL_LEDS] =

{ {PWM, LED_PWM_100, 0, HIGH, ACTIVE_HIGH, PORT0}, /* White */

 {PWM, LED_PWM_100, 0, HIGH, ACTIVE_HIGH, PORT0}, /* Purple */

 {PWM, LED_PWM_100, 0, HIGH, ACTIVE_HIGH, PORT1}, /*

 {PWM, LED_PWM_100, 0, HI

 {PWM, LED_PWM_100, 0, HIGH, ACTIVE_HIGH, PORT1}, /* Green */

 {PWM, LED_PWM_100, 0, HIGH, ACTIVE_HIGH, PORT1}, /* Yellow */

Release 1.0

Since the behavior of every LED is independent from the rest, each LED will need to have a set of data to

s (i.e. is it blinking or in PWM mode and what rate is it currently set at)

To manage the PWM function, every LED will need a counter variable. All of the parameters will be kept

in the LED header file.

LedPWMDutyType eCurrentDuty;

DeviceActiveType eActiveState;

specific values are kept in the header file, the source file can be almost

and “just work” as long as the correct header file is used. That is true at least within the LPC214x family

of processors on any development board. If ported to a different processor, then some updates would

has some board-specific Local Globals, though they are easily adjustable and

regardless of where the code is ported too. The first is an array of values that

r each LED (i.e. their GPIO bit positions). There is a note in the code to remind

the programmer that the order of the bit positions in the array must correspond to the order of the LEDs

in the header file. It is up to you to add the 11 pin definitions to correctly

The exact names of the pins from the schematics should be used, and these symbols

have already been defined for this specific development board in deva7-ehdw-01.h.

/* LED locations: order must correspond to the order set in LedNumberType in the

u32 LGau32LedBitPositions[] = {Add the pin location constants to define this array};

The second local global variable needed keeps track of the parameters for each LED. To

accommodate different development boards with different numbers of LEDs, all of

for each LED are kept in an array. The size of this array depends on the constant

DS defined in the header file. The code is then written to loop through the whole array

 The last four definitions are left for you do to.

/* Control array for all LEDs in system initialized for LedInit() */

LedConfigType LGasLeds[TOTAL_LEDS] =

{ {PWM, LED_PWM_100, 0, HIGH, ACTIVE_HIGH, PORT0}, /* White */

{PWM, LED_PWM_100, 0, HIGH, ACTIVE_HIGH, PORT0}, /* Purple */

{PWM, LED_PWM_100, 0, HIGH, ACTIVE_HIGH, PORT1}, /* Blue */

{PWM, LED_PWM_100, 0, HIGH, ACTIVE_HIGH, PORT1}, /* Cyan */

{PWM, LED_PWM_100, 0, HIGH, ACTIVE_HIGH, PORT1}, /* Green */

{PWM, LED_PWM_100, 0, HIGH, ACTIVE_HIGH, PORT1}, /* Yellow */

MPG LEVEL 1

Page 5 of 20

have a set of data to

s (i.e. is it blinking or in PWM mode and what rate is it currently set at).

a counter variable. All of the parameters will be kept

almost entirely generic

and “just work” as long as the correct header file is used. That is true at least within the LPC214x family

of processors on any development board. If ported to a different processor, then some updates would

specific Local Globals, though they are easily adjustable and

The first is an array of values that

. There is a note in the code to remind

the programmer that the order of the bit positions in the array must correspond to the order of the LEDs

the 11 pin definitions to correctly

The exact names of the pins from the schematics should be used, and these symbols

spond to the order set in LedNumberType in the

onstants to define this array};

To be able to write

accommodate different development boards with different numbers of LEDs, all of

The size of this array depends on the constant

le. The code is then written to loop through the whole array

 MPG LEVEL 1

notes_mpgl1_chapter10.docx Release 1.0 Page 6 of 20

 {PWM, LED_PWM_100, 0, HIGH, ACTIVE_HIGH, PORT1}, /* Orange */

 /* Add the remaining 4 definitions */

 };

You can see that every LED struct is initialized on startup. By default the LEDs are all on as part of the

LED application startup routine. Only the RGB red LED is active low, and the port number for every LED

is captured as well. So everything we need to access and manage every LED is contained in this array.

We will look through each of the functions in the source file now to go over how they came to be,

starting with the ones that you are already familiar with.

10.2.2.1 LedOn(), LedOff() and Led Toggle()

We wrote functions in Chapter 9 to handle the simple tasks of turning LEDs on or off. Since we were

only working with the discrete LEDs that are all active high, it was not necessary to account for active

low LEDs – but that is not very generic and one of the LCD backlight LEDs is active low so the function

must be updated.

The old function from Chapter 9 looked like this:

void LedOn(LedNumberType eLed_)

{

 /* Set pu32SetAddress to the correct FIOxSET register address */

 u32 *pu32SetAddress = (u32*)(&FIO0SET + LGasLeds[eLed_]);

 /* Set the bit corresponding to the LED of interest by writing to the pointer */

 *pu32SetAddress = LGau32LedBitPositions[(u8)eLed_];

} /* end LedOn() */

The “trick” to this function was that pu32SetAddress was loaded with the address of the FIOxSET

register for the correct port in which the LED lives. The array LGasLeds only contained the offset

constant PORT0 or PORT1 that would make this adjustment based on the LED of interest. Once the

address was set, the correct bit was indexed to turn the LED on.

The updated function has two main differences and looks like this:

void LedOn(LedNumberType eLed_)

{

 u32 *pu32SetAddress = (u32*)(&FIO0SET + LGasLeds[eLed_].ePort);

 u32 *pu32ClearAddress = (u32*)(&FIO0CLR + LGasLeds[eLed_].ePort);

 /* Check for active high or active low */

 if(LGasLeds[eLed_].eActiveState)

 {

 /* Set the bit corresponding to eLed_ if active high */

 *pu32SetAddress = LGau32LedBitPositions[(u8)eLed_];

 }

 else

 {

 /* Clear the bit corresponding to eLed_ if active low */

notes_mpgl1_chapter10.docx

 *pu32ClearAddress = LGau32LedBitPositions[(u8)eLed_];

 }

} /* end LedOn() */

Can you spot the changes? Better yet, are the changes that you see immediately obvious as to why they

are necessary? The most significant change is that the function now handles active low and active high

LEDs. The other difference is that the specific LED information like what port it is on and if it is active

high or active low is now in an array of structs that was introduced

parameter now indexes the LED data array and we have to select the field in the indexed struct to get

the data we want, namely LGasLeds[eLed_].ePort and LGasLeds[eLed_].eActiveState.

The exact same updates are necessary fo

to the Chapter 9 code since you do not have to care about the active state of an LED when you are

toggling it. So the only change is to properly index the LED parameter array.

10.2.2.2 LedSet()

The first new function of the LED driver is called LedSet() and is responsible for updating certain

parameters that define an LED’s current behavior.

void LedSet(LedNumberType eLed_, LedModeType eMode_,

{

 LGasLeds[(u8)eLed_].eMode = eMode_;

 /* $$$$ Add two lines of co

 if(eMode_ == PWM)

 {

 LGasLeds[(u8)eLed_].eCurrentDuty = HIGH;

 }

} /* end LedSet() */

We use a function like this to abstract the details of how the LED data is stored and provide a single

“entry point” into the LED driver for a user to use. LedSet() becomes the one and only public API

function for the system and should be the only function

applications that you write. Yes, there is added complexity for the user to use LedSet() in lieu of LedOn()

and LedOff() if they only want to toggle an LED now and then. However, the simplicity of blinking or

PWMing an LED thanks to LedSet() far outweighs the minor overhead of using the same function to

simply toggle it now and then.

10.2.2.3 LedUpdate()

The function that puts everything together and actually updates the LEDs is called LedUpdate().

this function should appear in the main super loop

very specific. The function expects

does not run every 1ms, then the PWM bit

LedUpdate() is a fairly long function and takes a few hundred instruction cycles to process all the LEDs.

It is written in a way that tries to operate as quickly as possible as it works through all of the LEDs

board. For any given LED, the fastest states are ON and OFF, so LedUpdate() t

Release 1.0

*pu32ClearAddress = LGau32LedBitPositions[(u8)eLed_];

Better yet, are the changes that you see immediately obvious as to why they

significant change is that the function now handles active low and active high

LEDs. The other difference is that the specific LED information like what port it is on and if it is active

high or active low is now in an array of structs that was introduced already. So the eLed_ function

parameter now indexes the LED data array and we have to select the field in the indexed struct to get

the data we want, namely LGasLeds[eLed_].ePort and LGasLeds[eLed_].eActiveState.

The exact same updates are necessary for LedOff(). You might notice that LedToggle() is almost identical

to the Chapter 9 code since you do not have to care about the active state of an LED when you are

toggling it. So the only change is to properly index the LED parameter array.

The first new function of the LED driver is called LedSet() and is responsible for updating certain

parameters that define an LED’s current behavior. There are two lines of code for you to add.

void LedSet(LedNumberType eLed_, LedModeType eMode_, LedRateType eRate_)

LGasLeds[(u8)eLed_].eMode = eMode_;

/* $$$$ Add two lines of code to update eRate and u16Count (both set to eRate_) */

LGasLeds[(u8)eLed_].eCurrentDuty = HIGH;

use a function like this to abstract the details of how the LED data is stored and provide a single

“entry point” into the LED driver for a user to use. LedSet() becomes the one and only public API

function for the system and should be the only function you ever use to access the LEDs

applications that you write. Yes, there is added complexity for the user to use LedSet() in lieu of LedOn()

and LedOff() if they only want to toggle an LED now and then. However, the simplicity of blinking or

LedSet() far outweighs the minor overhead of using the same function to

The function that puts everything together and actually updates the LEDs is called LedUpdate().

function should appear in the main super loop, and we consider it “protected” since the usage is

 to run every 1ms and is thus coded based on that assumption

does not run every 1ms, then the PWM bit-bashing it is doing will not work properly.

is a fairly long function and takes a few hundred instruction cycles to process all the LEDs.

operate as quickly as possible as it works through all of the LEDs

. For any given LED, the fastest states are ON and OFF, so LedUpdate() takes care of th

MPG LEVEL 1

Page 7 of 20

Better yet, are the changes that you see immediately obvious as to why they

significant change is that the function now handles active low and active high

LEDs. The other difference is that the specific LED information like what port it is on and if it is active

already. So the eLed_ function

parameter now indexes the LED data array and we have to select the field in the indexed struct to get

r LedOff(). You might notice that LedToggle() is almost identical

to the Chapter 9 code since you do not have to care about the active state of an LED when you are

The first new function of the LED driver is called LedSet() and is responsible for updating certain

There are two lines of code for you to add.

LedRateType eRate_)

(both set to eRate_) */

use a function like this to abstract the details of how the LED data is stored and provide a single

“entry point” into the LED driver for a user to use. LedSet() becomes the one and only public API

to access the LEDs in other

applications that you write. Yes, there is added complexity for the user to use LedSet() in lieu of LedOn()

and LedOff() if they only want to toggle an LED now and then. However, the simplicity of blinking or

LedSet() far outweighs the minor overhead of using the same function to

The function that puts everything together and actually updates the LEDs is called LedUpdate(). A call to

, and we consider it “protected” since the usage is

and is thus coded based on that assumption. If it

is a fairly long function and takes a few hundred instruction cycles to process all the LEDs.

operate as quickly as possible as it works through all of the LEDs on the

akes care of those checks

notes_mpgl1_chapter10.docx

first. OFF is the first check because that is most likely the state of an LED at any given time in the

system. The blinking and PWM states are checked las

counters that are tracking a change of state.

not have to be checked.

ON and OFF functionality should be trivial. If an LED is off, the eRat

or LED_PWM_0. If so, a call to LedOff ensures that it is off. Making this call every time LedUp

called might not be the best idea because if an LED is already off, then why turn it off again? However,

to check the current state and make a decision about whether or not you need to call LedOff() would

probably take more code and instruction cycles than just calling it every

is written.

/* If LED_OFF, make sure it's off */

if((LGasLeds[i].eRate == LED_OFF) || (LGasLeds[i].eRate == LED_PWM_0))

{

 LedOff((LedNumberType)i);

}

/* $$$$ If LED_ON, make sure it's on */

else if (() || ())

{

 /* Turn the LED on */

}

Indexing on the current loop counters lets you generically m

code. Since the loop index is an unsigned integer, it

LedNumberType or else the compiler will generate a warning. Note that type casting enums to ints or

visa-versa is not an ideal programming practice, so you must be careful on how the enums are set up so

that it works with what you plan to do

traverse the elements of an enum.

The ON check and action is left for you do. This exists as an “else if” because we do not want to run the

code if we have already determined that the LED is off. Ditto for the subsequent check that manages a

blinking or PWMing LED. Modulation code requires a bit more work, and

case of just blinking the LED and the case of managing PWM since blinking is an adjustment of frequency

and PWM is an adjustment of duty cycle.

/* Otherwise LED is being modulated in some way */

else

{

 /* LED is in normal mode */

 if(LGasLeds[i].eMode == NORMAL)

 {

 /* Decrement counter; toggle and reload if counter reaches 0 */

 if(--LGasLeds[i].u16Count == 0)

 {

 LedToggle((LedNumberType)i);

 LGasLeds[i].u16Count = LGasLeds[i].eRate;

 }

Release 1.0

first. OFF is the first check because that is most likely the state of an LED at any given time in the

system. The blinking and PWM states are checked last as those state require further tests based on the

counters that are tracking a change of state. As soon as the current state is found, the other states do

ON and OFF functionality should be trivial. If an LED is off, the eRate parameter will be either LED_OFF

or LED_PWM_0. If so, a call to LedOff ensures that it is off. Making this call every time LedUp

called might not be the best idea because if an LED is already off, then why turn it off again? However,

the current state and make a decision about whether or not you need to call LedOff() would

probably take more code and instruction cycles than just calling it every time, thus that is how the code

/* If LED_OFF, make sure it's off */

GasLeds[i].eRate == LED_OFF) || (LGasLeds[i].eRate == LED_PWM_0))

/* $$$$ If LED_ON, make sure it's on */

Indexing on the current loop counters lets you generically make changes to each LED with a single line of

dex is an unsigned integer, it must be type casted to the enumerated type

LedNumberType or else the compiler will generate a warning. Note that type casting enums to ints or

is not an ideal programming practice, so you must be careful on how the enums are set up so

that it works with what you plan to do, especially in cases like this where a loop index is assumed to

you do. This exists as an “else if” because we do not want to run the

code if we have already determined that the LED is off. Ditto for the subsequent check that manages a

Modulation code requires a bit more work, and it is slightly different for the

case of just blinking the LED and the case of managing PWM since blinking is an adjustment of frequency

and PWM is an adjustment of duty cycle.

/* Otherwise LED is being modulated in some way */

if(LGasLeds[i].eMode == NORMAL)

/* Decrement counter; toggle and reload if counter reaches 0 */

LGasLeds[i].u16Count == 0)

LedToggle((LedNumberType)i);

LGasLeds[i].u16Count = LGasLeds[i].eRate;

MPG LEVEL 1

Page 8 of 20

first. OFF is the first check because that is most likely the state of an LED at any given time in the

t as those state require further tests based on the

As soon as the current state is found, the other states do

e parameter will be either LED_OFF

or LED_PWM_0. If so, a call to LedOff ensures that it is off. Making this call every time LedUpdate() is

called might not be the best idea because if an LED is already off, then why turn it off again? However,

the current state and make a decision about whether or not you need to call LedOff() would

time, thus that is how the code

GasLeds[i].eRate == LED_OFF) || (LGasLeds[i].eRate == LED_PWM_0))

ake changes to each LED with a single line of

must be type casted to the enumerated type

LedNumberType or else the compiler will generate a warning. Note that type casting enums to ints or

is not an ideal programming practice, so you must be careful on how the enums are set up so

, especially in cases like this where a loop index is assumed to

you do. This exists as an “else if” because we do not want to run the

code if we have already determined that the LED is off. Ditto for the subsequent check that manages a

it is slightly different for the

case of just blinking the LED and the case of managing PWM since blinking is an adjustment of frequency

notes_mpgl1_chapter10.docx

 }

 /* LED is in PWM mode */

 else

 {

 /* Decrement counter; toggle and reload if counter reaches 0 */

 if(--LGasLeds[i].u16Count == 0)

 {

 if(LGasLeds[i].eCurrentDuty == HIGH)

 {

 LGasLeds[i].u16Count = LED_PWM_PERIOD

 LGasLeds[i].eCurrentDuty = LOW;

 LedOff((LedNumberType)i);

 }

 else

 {

 LGasLeds[i].u16Count = LGasLeds[i].eRate;

 LGasLeds[i].eCurrentDuty = HIGH;

 LedOn((LedNumberType)i);

 }

 }

 } /* end LED PWM mode */

} /* end LED modulated */

The source code in the leds2.c file is missing the “normal” mode code that is shown above. For a bit of a

challenge you can try to figure it out yourself, or if you want to move on then simply copy the code

above.

10.2.2.4 LedInit()

LedInit() is discussed last here as it turns out to be the most complicated and relies on LedUpdate().

you should know by now, every application that is added to the system will need an initialization

function to properly set it up before the main program super loop starts to run. There are no timing

rules during initialization, but also no 1ms calls to the function that you can

functions run once, and are permitted to take as long as necessary (th

if something does not work and should do everything possible to not crash the system

the automatic 1ms timing is not available, t

is called so you can still make use of them

function.

The init function for the LED system does not

state that makes sense for the main program to

a means to self test all of the LEDs (the user is responsible for verifying

things a bit interesting, and demonstrate the operation of the LED driver,

shown. The plan is to turn on all of the LEDs at full

seconds. We want to use our LedUpdate() function during

time writing different code, however we do not yet have the super loop 1ms system running so we have

to work around that. The structure of LedInit() is as follows:

Release 1.0

/* Decrement counter; toggle and reload if counter reaches 0 */

LGasLeds[i].u16Count == 0)

if(LGasLeds[i].eCurrentDuty == HIGH)

LGasLeds[i].u16Count = LED_PWM_PERIOD - LGasLeds[i].eRate;

LGasLeds[i].eCurrentDuty = LOW;

LedOff((LedNumberType)i);

LGasLeds[i].u16Count = LGasLeds[i].eRate;

LGasLeds[i].eCurrentDuty = HIGH;

LedOn((LedNumberType)i);

file is missing the “normal” mode code that is shown above. For a bit of a

challenge you can try to figure it out yourself, or if you want to move on then simply copy the code

is discussed last here as it turns out to be the most complicated and relies on LedUpdate().

you should know by now, every application that is added to the system will need an initialization

it up before the main program super loop starts to run. There are no timing

rules during initialization, but also no 1ms calls to the function that you can make use of

functions run once, and are permitted to take as long as necessary (though they should never fail to exit

and should do everything possible to not crash the system). Even though

the automatic 1ms timing is not available, the system tick timers are in fact running by the time LedInit()

you can still make use of them for timing purposes. To use them, use the IsTimeUp() utility

The init function for the LED system does not really need to do very much beyond putting the LEDs in a

state that makes sense for the main program to start running (likely this would be all OFF)

self test all of the LEDs (the user is responsible for verifying that they all light up

and demonstrate the operation of the LED driver, a little displa

shown. The plan is to turn on all of the LEDs at full intensity, and then fade them out over a few

e want to use our LedUpdate() function during this initialization so we do not have to waste

ver we do not yet have the super loop 1ms system running so we have

The structure of LedInit() is as follows:

MPG LEVEL 1

Page 9 of 20

file is missing the “normal” mode code that is shown above. For a bit of a

challenge you can try to figure it out yourself, or if you want to move on then simply copy the code

is discussed last here as it turns out to be the most complicated and relies on LedUpdate(). As

you should know by now, every application that is added to the system will need an initialization

it up before the main program super loop starts to run. There are no timing

of. Initialization

ough they should never fail to exit

). Even though

by the time LedInit()

use the IsTimeUp() utility

need to do very much beyond putting the LEDs in a

(likely this would be all OFF). However, as

that they all light up), make

a little display sequence will be

, and then fade them out over a few

so we do not have to waste

ver we do not yet have the super loop 1ms system running so we have

notes_mpgl1_chapter10.docx

Loop to progress through the 20 available duty cycles

{

 Nested loop to wait 40ms at the current intensity

 {

 Delay 1ms using IsTimeUp()

 Call LedUpdate()

 }

 Wait additional 1.5 seconds at full intensity only

 Use a loop to update the PWM duty cycle of all of the LEDs to the next lowest level

}

Final call to LedUpdate() since LEDs will be off

Short delay to complete the display

The nested loop that runs 40 times

called every 1ms to properly implement the PWM functionality that it provides. 40ms x 20 different

PWM levels makes the LEDs fade out over about 800ms which, by test, looks the best.

it down, then the 5% duty cycle steps start to become more obvious. To make the fade out look smooth

when the duty cycle is changed, it is important to make

period. In other words, the delay loop choices are

Updating the LEDs for the next cycle uses

indexes must be typecast to their respective enum types or else the compiler will send up warnings.

 /* Set the intensity for the next iteration */

 for(u8 j = 0; j < TOTAL_LEDS; j++)

 {

 LedSet((LedNumberType)j, PWM, (LedRateType)(i

 }

There are two special cases within LedInit(

at the beginning and at the end. The choice of these time periods is almost entirely arbitrary

look right.

That completes the LED driver. The code should now build so you can see the fruits of your

if you did not understand all of the code to implement the LED driver, the good news is that all you need

to know to use the LEDs from this point on

10.3 PWM the Easy Way -
As you just saw, bit-bashing PWMs is

processor resources to monitor timing and adjust duty cycles. It is functionality that begs for a

peripheral to take care of automatically. PWM is such a fundamental capability of an embedded sy

you can almost guarantee that any microcontroller or microprocessor you choose will have at least one

PWM peripheral capable of running at least a few PWM channels.

Regardless of the processor you are using, a PW

a few extra features (and in some cases, less features than a

difference between the two is that a PWM

Release 1.0

oop to progress through the 20 available duty cycles

oop to wait 40ms at the current intensity

1ms using IsTimeUp()

Wait additional 1.5 seconds at full intensity only

pdate the PWM duty cycle of all of the LEDs to the next lowest level

Final call to LedUpdate() since LEDs will be off

omplete the display

that runs 40 times performs the action of the 1ms super loop. LedUpdate() must be

called every 1ms to properly implement the PWM functionality that it provides. 40ms x 20 different

PWM levels makes the LEDs fade out over about 800ms which, by test, looks the best.

it down, then the 5% duty cycle steps start to become more obvious. To make the fade out look smooth

, it is important to make the duty cycle change only at the end of a

period. In other words, the delay loop choices are limited to 20ms, 40ms, 60ms, etc.

Updating the LEDs for the next cycle uses a loop to run through all the LED arrays. Again, the loop

to their respective enum types or else the compiler will send up warnings.

/* Set the intensity for the next iteration */

for(u8 j = 0; j < TOTAL_LEDS; j++)

LedSet((LedNumberType)j, PWM, (LedRateType)(i - 1));

There are two special cases within LedInit() where extra delay is added to stretch out some

at the beginning and at the end. The choice of these time periods is almost entirely arbitrary

That completes the LED driver. The code should now build so you can see the fruits of your

nderstand all of the code to implement the LED driver, the good news is that all you need

to use the LEDs from this point on is the single API function LedSet().

- LPC214x PWM Peripheral
bashing PWMs is not that difficult, though does require a certain amount of

processor resources to monitor timing and adjust duty cycles. It is functionality that begs for a

peripheral to take care of automatically. PWM is such a fundamental capability of an embedded sy

you can almost guarantee that any microcontroller or microprocessor you choose will have at least one

PWM peripheral capable of running at least a few PWM channels.

Regardless of the processor you are using, a PWM peripheral is pretty much just a timer peripheral with

a few extra features (and in some cases, less features than a timer peripheral). The most notable

is that a PWM peripheral can be set up so that different events can occur at

MPG LEVEL 1

Page 10 of 20

pdate the PWM duty cycle of all of the LEDs to the next lowest level

the action of the 1ms super loop. LedUpdate() must be

called every 1ms to properly implement the PWM functionality that it provides. 40ms x 20 different

PWM levels makes the LEDs fade out over about 800ms which, by test, looks the best. If you try to slow

it down, then the 5% duty cycle steps start to become more obvious. To make the fade out look smooth

only at the end of a

Again, the loop

to their respective enum types or else the compiler will send up warnings.

) where extra delay is added to stretch out some time periods

at the beginning and at the end. The choice of these time periods is almost entirely arbitrary – they just

That completes the LED driver. The code should now build so you can see the fruits of your labor. Even

nderstand all of the code to implement the LED driver, the good news is that all you need

not that difficult, though does require a certain amount of

processor resources to monitor timing and adjust duty cycles. It is functionality that begs for a

peripheral to take care of automatically. PWM is such a fundamental capability of an embedded system,

you can almost guarantee that any microcontroller or microprocessor you choose will have at least one

mer peripheral with

imer peripheral). The most notable

can be set up so that different events can occur at

notes_mpgl1_chapter10.docx

different times in the waveform generation period

timers usually only have one event per period

timer peripherals rather than having discrete PWM

Using the PWM peripheral on the LPC214x processor is straight forward. Just like you did with the Timer

and GPIO peripherals, you need to examine the datasheet to determine what registers are required to

get the peripheral running the way you want.

covers the PWM peripheral. The description of the module indicates that the clock source is PCLK

which, if you refer back to discussions about clock scaling, you know is 1:1 to the main system clock of

12MHz. There is mention about single edge and double edge control that is rightfully confusing, but also

talk about match registers that should make sense even though you do not yet know how everything is

implemented.

If you look at the block diagram that is copied and shown

overwhelmed about the complexity of the PWM peripheral. But fear not, it is actually quite

straightforward to set up and use!

generators (channels) within the peripheral which add a lot to the diagram

complicated. But really there are just

then the system unravels itself. You can spend some time tracing

what is going on for one of the channels

doing some low-level hacking or tweaking, it is unlikely you would devote any effort to deciphering the

internals of a peripheral.

If you need PWM outputs in a design, make sure you correctly assign the hardware that requires PWM to

a pin where PWM output is available. Also check that there are no conflicts with the PWM peripheral

output for the pin you have chosen.

Release 1.0

eneration period and thus allows for varying duty cycles

timers usually only have one event per period. On some processors, PWM functionality is built in to all

timer peripherals rather than having discrete PWMs and timers.

pheral on the LPC214x processor is straight forward. Just like you did with the Timer

and GPIO peripherals, you need to examine the datasheet to determine what registers are required to

get the peripheral running the way you want. Open up the LPC214x User Manual and to Chapter 16 that

The description of the module indicates that the clock source is PCLK

which, if you refer back to discussions about clock scaling, you know is 1:1 to the main system clock of

about single edge and double edge control that is rightfully confusing, but also

talk about match registers that should make sense even though you do not yet know how everything is

If you look at the block diagram that is copied and shown here in Figure 10.3.1, you might feel a bit

overwhelmed about the complexity of the PWM peripheral. But fear not, it is actually quite

 Part of the complexity comes from the fact that there are 6 PWM

within the peripheral which add a lot to the diagram to make it look so

are just six copies of the same PWM architecture, so if you figure one out,

. You can spend some time tracing through the diagram to make sense of

for one of the channels, or you trust that it works and skip that for now.

level hacking or tweaking, it is unlikely you would devote any effort to deciphering the

If you need PWM outputs in a design, make sure you correctly assign the hardware that requires PWM to

a pin where PWM output is available. Also check that there are no conflicts with the PWM peripheral

sen.

MPG LEVEL 1

Page 11 of 20

and thus allows for varying duty cycles, whereas

On some processors, PWM functionality is built in to all

pheral on the LPC214x processor is straight forward. Just like you did with the Timer

and GPIO peripherals, you need to examine the datasheet to determine what registers are required to

r Manual and to Chapter 16 that

The description of the module indicates that the clock source is PCLK

which, if you refer back to discussions about clock scaling, you know is 1:1 to the main system clock of

about single edge and double edge control that is rightfully confusing, but also

talk about match registers that should make sense even though you do not yet know how everything is

, you might feel a bit

overwhelmed about the complexity of the PWM peripheral. But fear not, it is actually quite

Part of the complexity comes from the fact that there are 6 PWM

to make it look so

, so if you figure one out,

through the diagram to make sense of

, or you trust that it works and skip that for now. Unless you are

level hacking or tweaking, it is unlikely you would devote any effort to deciphering the

If you need PWM outputs in a design, make sure you correctly assign the hardware that requires PWM to

a pin where PWM output is available. Also check that there are no conflicts with the PWM peripheral

 MPG LEVEL 1

notes_mpgl1_chapter10.docx Release 1.0 Page 12 of 20

Figure 10.3.1: PWM peripheral controller hardware

Source: LPC214x User manual, UM10139, Rev. 3 – 4 October 2010, p.259. NXP Semiconductors

10.3.1 Single Edge / Double Edge

Single and double edge PWM signals determine how many transitions you will actively manage with

match registers when defining the signal. All PWM signals in this peripheral share a common end point

at the end of one cycle period where a transition may or may not occur depending on the configuration.

Even if nothing explicitly happens, it is important to understand that this endpoint is the end of a

particular PWM period.

 Single edge behavior allows firmware to specify a single high-to-low transition and leaves the low-to-

high transition to automatically occur at the end of the PWM period. The assumption is that the signal is

high at time = 0 and will go low when the PWM’s counter equals the match register value. Once the

timer reaches the maximum value of the PWM period, the signal transitions back to high. Single edge

PWMs can be kept high (100% duty cycle) by setting the match register larger than the PWM period.

The signal can be kept low by setting the match register to 0.

 MPG LEVEL 1

notes_mpgl1_chapter10.docx Release 1.0 Page 13 of 20

With double edge signals, it is expected that two transitions will be specified in firmware, thus there will

be two transitions inside of the total period defined by the user. This allows several PWMs within the

peripheral to use the same period but select a time within the total period where the signal is high or

low. This is useful in certain motor control applications or any application in general where the PWMs

must be carefully synchronized. For example, three phases in a motor may require a 33% duty cycle for

each phase, but never at the same time. Therefore you could define the PWM period as 99 with three

double-edge PWM channels set to be high for periods 1-33, 34-66 and 67-99. Since they run from the

same PWM peripheral, exact synchronization is ensure which will be appreciated by your customer

when their motor does not blow apart.

The rules for single edge and double edge PWM outputs are clearly listed in the processor user guide. If

you were designing a system that relied on correct operation of the PWM outputs, setting the processor

up and watching all the channels on an oscilloscope would be a good step to perform during the design

phase.

10.3.2 PWM Registers

The registers needed to configure the PWM module are shown in Table 248 of the user manual. Though

it looks like there are quite a few, six of them are just match registers that do the same thing for

different channels and the others are setup registers, some of which we will use and some we can

ignore. Do not forget to turn on the power and clock source to the peripheral in the PCONP register.

Each of the PWM registers is detailed here. The information about the purpose of each register is

almost verbatim from the user manual, though a few clarifications are made. As an engineer, you will

be responsible for using the data sheet to fully understand the peripheral you are working with. You

have to determine how the peripheral works (in general) and then what registers are relevant to your

application. In most cases, choosing the register setup values is straightforward, though occasionally

you will come across some options that do not make immediate sense, in which case you will have to try

them out and see if the behavior is what you want. Some processor documentation does an excellent

job and explaining everything, others seem to leave out important information that you have to find

elsewhere or figure out through trial and error.

PWMIR: Interrupt flag register that will be ignored as PWM interrupts are not required.

PWMTCR: Timer Control Register providing the core on/off and reset control of the peripheral.

PWMTC: Timer Counter register that holds the current value of the timer for the PWM peripheral. You

do not typically use this register, though you need to be aware of its significance with respect to the

behavior of the PWM peripheral.

PWMPR: Prescale register that is optionally used to slow down the clock source to the peripheral.

Prescale registers are clock dividers and while most use bit-wise setting to apply fixed scaling ratios (like

1:2, 1:8, etc.), this peripheral uses an entire counter to count up to a value before the main timer

increments. This register is the value to which the prescale counter counts before the main peripheral

clock increments (and the prescale counter resets and repeats). Set to 0 for no prescale.

PWMPC: The prescale counter register.

PWMMCR: Match control register for configuring what event occurs for each channel of the PWM when

the main counter value reaches the value in a specific match register. For each of the six channels, you

can choose to have an interrupt, reset the timer, or stop the timer.

notes_mpgl1_chapter10.docx

PWMMR0: Match Register 0 is the main

registers are static values that are typically set once for a given PWM signal. The value is compared

against the current PWM counter value (PWMTC) with every clock tick. When PWMTC has incremented

enough to match the value of PWMMR0, then the corresponding event configured in PW

takes place. If this register is set to 0, then the PWM signal is never asserted high (0% duty cycle).

PWMMRx: The remaining Match Registers specify actions of the six PWM channels. For single edge

PWM signals, the value in the corresponding ma

go from high to low. For double edge PWMs, two match registers are required to define the signal

behavior. Generally speaking, the value of PWMMRx (1 <= x <= 6) register is always less than the value

in PWMMR0. If it is greater, then that particular channel will never transition low when in single edge

mode (100% duty cycle).

PWMPCR: PWM Control Register to configure and activate each of the PWM channels. This is where

single or double edge mode is selected (1 bit per channel) and individual channels can be enabled or

disabled with another bit per channel.

PWMLER: Latch Enable Register is a control mechanism to help synchronize updates to the PWM

peripheral. If you change the duty cycle of one or mo

PWMMRx register, the change does not actually take effect until a bit in PWMPCR is set corresponding

to the channel that is updated. This allows you to update several match registers without impacting the

current duty cycles, and then simultaneously applying the changes so that all channels adjust at the

same time. This would be extremely important in applications where duty cycle changes are frequent

and, to cite the motor control example again, are critical in

blow things apart.

Configuration of these registers specific to the course development board is described in the next

section since all settings are highly application

10.4 Development Board Audio
Now that you know how to setup the PWM peripheral, we can introduce the application to which it will

be applied – audio. Generating a square wave to drive a

advantage of a microcontroller’s PWM peripheral,

the way it really is intended to be used

results, but using the PWM for audio will keep a 50% duty cycle and just change the frequency.

As a side note, piezoelectric (pronounced pee

development board respond very nicely to a square

from the processor pin as they are voltage

drive a magnetic coil speaker directly from a processor because they

very little DC resistance. A speaker coil

a processor cannot source directly (at the extreme case, a big sub woofer could pull tens of amps of

current).

Regardless of the type of speaker/buzzer you have, never leave a DC voltage applied to it. If you are not

driving the speaker, the output pin to the speaker should be at 0 volts.

Release 1.0

: Match Register 0 is the main match register that is used to set the PWM period. All match

s that are typically set once for a given PWM signal. The value is compared

against the current PWM counter value (PWMTC) with every clock tick. When PWMTC has incremented

enough to match the value of PWMMR0, then the corresponding event configured in PW

takes place. If this register is set to 0, then the PWM signal is never asserted high (0% duty cycle).

: The remaining Match Registers specify actions of the six PWM channels. For single edge

PWM signals, the value in the corresponding match register is the count at which the PWM output will

go from high to low. For double edge PWMs, two match registers are required to define the signal

behavior. Generally speaking, the value of PWMMRx (1 <= x <= 6) register is always less than the value

in PWMMR0. If it is greater, then that particular channel will never transition low when in single edge

: PWM Control Register to configure and activate each of the PWM channels. This is where

selected (1 bit per channel) and individual channels can be enabled or

disabled with another bit per channel.

: Latch Enable Register is a control mechanism to help synchronize updates to the PWM

peripheral. If you change the duty cycle of one or more PWM channels by changing the respective

register, the change does not actually take effect until a bit in PWMPCR is set corresponding

to the channel that is updated. This allows you to update several match registers without impacting the

duty cycles, and then simultaneously applying the changes so that all channels adjust at the

same time. This would be extremely important in applications where duty cycle changes are frequent

and, to cite the motor control example again, are critical in timing and synchronization so you do not

Configuration of these registers specific to the course development board is described in the next

highly application-specific.

Development Board Audio Driver
Now that you know how to setup the PWM peripheral, we can introduce the application to which it will

a square wave to drive a beeper / buzzer is a great way to

advantage of a microcontroller’s PWM peripheral, even though use of the peripheral in this way is not

to be used. PWM is supposed to adjust duty cycle to achieve different

using the PWM for audio will keep a 50% duty cycle and just change the frequency.

side note, piezoelectric (pronounced pee-EH-zoh-electric) buzzers like the one that is on the course

development board respond very nicely to a square-wave drive and they can usually be driven directly

cessor pin as they are voltage-actuated devices and barely draw any current. You cannot

drive a magnetic coil speaker directly from a processor because they rely principally on current and

very little DC resistance. A speaker coil requires tens if not hundreds of milliamps of drive current

a processor cannot source directly (at the extreme case, a big sub woofer could pull tens of amps of

Regardless of the type of speaker/buzzer you have, never leave a DC voltage applied to it. If you are not

ut pin to the speaker should be at 0 volts.

MPG LEVEL 1

Page 14 of 20

match register that is used to set the PWM period. All match

s that are typically set once for a given PWM signal. The value is compared

against the current PWM counter value (PWMTC) with every clock tick. When PWMTC has incremented

enough to match the value of PWMMR0, then the corresponding event configured in PWMMCR[2:0]

takes place. If this register is set to 0, then the PWM signal is never asserted high (0% duty cycle).

: The remaining Match Registers specify actions of the six PWM channels. For single edge

tch register is the count at which the PWM output will

go from high to low. For double edge PWMs, two match registers are required to define the signal

behavior. Generally speaking, the value of PWMMRx (1 <= x <= 6) register is always less than the value

in PWMMR0. If it is greater, then that particular channel will never transition low when in single edge

: PWM Control Register to configure and activate each of the PWM channels. This is where

selected (1 bit per channel) and individual channels can be enabled or

: Latch Enable Register is a control mechanism to help synchronize updates to the PWM

re PWM channels by changing the respective

register, the change does not actually take effect until a bit in PWMPCR is set corresponding

to the channel that is updated. This allows you to update several match registers without impacting the

duty cycles, and then simultaneously applying the changes so that all channels adjust at the

same time. This would be extremely important in applications where duty cycle changes are frequent

timing and synchronization so you do not

Configuration of these registers specific to the course development board is described in the next

Now that you know how to setup the PWM peripheral, we can introduce the application to which it will

way to take

though use of the peripheral in this way is not

PWM is supposed to adjust duty cycle to achieve different

using the PWM for audio will keep a 50% duty cycle and just change the frequency.

electric) buzzers like the one that is on the course

wave drive and they can usually be driven directly

vices and barely draw any current. You cannot

rely principally on current and have

tens if not hundreds of milliamps of drive current which

a processor cannot source directly (at the extreme case, a big sub woofer could pull tens of amps of

Regardless of the type of speaker/buzzer you have, never leave a DC voltage applied to it. If you are not

 MPG LEVEL 1

notes_mpgl1_chapter10.docx Release 1.0 Page 15 of 20

What we would like to have out of all of this is an easy way to use the PWM peripheral to send a tone

signal to the piezoelectric buzzer on the development board. To do this, we need to setup the PWM

peripheral and write a few API functions to allow any application in the system to use audio easily. The

goal is to write a simple interface where the tone frequency can be specified and turned on and off. We

do not need to write this as an application since the PWM peripheral pretty much takes care of all the

work. An application might be necessary if you wanted to expand the audio capability to play music, or

allow priority access to the buzzer.

10.4.1 PWM Hardware

The PWM channel used for the buzzer is PWM5. Do you know how to determine this? Figure 10.4.1.1

shows the section of the schematic where the buzzer signal connects to the processor. This pin was

selected carefully in the design phase of the PCB to make sure the PWM resource was available.

Figure 10.4.1.1: Schematic showing buzzer signal connection

Since the function of this pin is assigned to a peripheral, you have to make sure that the relevant GPIO

registers are set to take the pin out of standard GPIO mode and connect it to the peripheral. While this

has already been in place in the code since Chapter 8, this is the first time we are using peripheral

functionality that depends on it so it is a good place to draw some attention to it. Look at the

PINSEL1_INIT value in deva7-ehdw-01.h for P0.21_BUZZER – you can see that it is not “00” like all the

GPIO digital pins, but rather “01.” If you check the Table 38 Pin function Select register 1 (PINSEL1) in

the user guide, you see where this comes from. No mysteries here, just awareness on how the

processor works and how to find and use the relative information. Figure 10.4.2 shows relevant

snippets of the user guide and the header file.

Figure 4.10.2: P0.21 user manual (left) and firmware (right) information

Table 38 Source: LPC214x User manual, UM10139, Rev. 3 – 4 October 2010, p.61. NXP Semiconductors

You must also make sure that the pin is configured as an output since the peripheral is outputting a

signal. Configuring a data direction register based on what the peripheral connected to it does is usually

a safe bet, but you should always read the datasheet to be sure. Some peripherals will have their own

notes_mpgl1_chapter10.docx

output drivers separate from the GPIO driver and require the GPIO data direction register to be set a

certain way for the peripheral outp

should be somewhere in the user manual, although occasionally it is hidden quite well..

NEVER guess at choices you make as an engineer. Read documentation to find the answer you need.

you cannot find the answer, find someone who knows.

a brand new problem, use a systematic process in a controlled e

reliable information as possible to limit the amount of guesswork/experimentation you do

10.4.2 PWM Firmware

The firmware functionality we need to make all of this work is captured in 4 functions that will be

written in the deva7-ehdw-01 source files since they are quite board

• void PWMSetupAudio(void)

• void PWMAudioSetFrequency(u16 u16Frequency_)

desired audio frequency.

• void PWMAudioOn(void) –

• void PWMAudioOff(void) –

line low)

10.4.2.1 PWMSetupAudio()

The PWM peripheral registers that are required for the audio

which is called during board initialization

deva7-ehdw-01.c and find the function to see what registers require configuration. Note that

code executes, the peripheral is ready to be used

is quiet).

The course development board has a dip switch to physically disconnect the beeper. Make sure the

switch is on to hear the sound. If you are

is correct but you do not want to listen to the beeper, you can turn it off but still measure your audio

signal at the BUZZ test point.

Open the deva7-ehdw-01 header file and find the PWM se

characters that bookmark the code

as some definitions for some update

requires extra effort, lets you immediately see the purpose and value of each bit. The

value is left for you to complete. Make sure you fully document the bits, make the correct

assignments in the comments, and then update the hex value that i

A common mistake to make with header files like this is to update the values of comments

updating the hex value that is actually used. A good rule of thumb is to delete the hex value for any

setup value you are working with and retype it when you are done with the comments. If you do this

and forget to update the hex value, at least the compiler will catch your mistake because the value it

tries to use is not complete.

Release 1.0

output drivers separate from the GPIO driver and require the GPIO data direction register to be set a

certain way for the peripheral output to work. You should never have to guess at this –

should be somewhere in the user manual, although occasionally it is hidden quite well..

at choices you make as an engineer. Read documentation to find the answer you need.

you cannot find the answer, find someone who knows. If you have to figure something out because it is

a brand new problem, use a systematic process in a controlled environment and try to use as much

reliable information as possible to limit the amount of guesswork/experimentation you do

functionality we need to make all of this work is captured in 4 functions that will be

01 source files since they are quite board-specific:

void PWMSetupAudio(void) – initialize the PWM peripheral for the specific use of buzzer audio

void PWMAudioSetFrequency(u16 u16Frequency_) – configure the PWM peripheral for the

 activate the PWM peripheral.

 deactivate the PWM peripheral (i.e. turn buzzer off and leave the

The PWM peripheral registers that are required for the audio application are all set up in this function

which is called during board initialization as part of the existing DEVA7RazorSetup() function

01.c and find the function to see what registers require configuration. Note that

the peripheral is ready to be used (but the audio output is not yet enabled

The course development board has a dip switch to physically disconnect the beeper. Make sure the

switch is on to hear the sound. If you are testing audio functions to see if the waveform you are sending

is correct but you do not want to listen to the beeper, you can turn it off but still measure your audio

header file and find the PWM setup values (you can search for a few

the code). Here you will find the INIT values used in the setup function as well

as some definitions for some update mnemonics. As usual, all bits are explained which, though

extra effort, lets you immediately see the purpose and value of each bit. The

o complete. Make sure you fully document the bits, make the correct

assignments in the comments, and then update the hex value that is actually loaded.

A common mistake to make with header files like this is to update the values of comments

updating the hex value that is actually used. A good rule of thumb is to delete the hex value for any

nd retype it when you are done with the comments. If you do this

and forget to update the hex value, at least the compiler will catch your mistake because the value it

MPG LEVEL 1

Page 16 of 20

output drivers separate from the GPIO driver and require the GPIO data direction register to be set a

– the information

should be somewhere in the user manual, although occasionally it is hidden quite well...

at choices you make as an engineer. Read documentation to find the answer you need. If

you have to figure something out because it is

and try to use as much

reliable information as possible to limit the amount of guesswork/experimentation you do.

functionality we need to make all of this work is captured in 4 functions that will be

initialize the PWM peripheral for the specific use of buzzer audio

configure the PWM peripheral for the

deactivate the PWM peripheral (i.e. turn buzzer off and leave the

application are all set up in this function

as part of the existing DEVA7RazorSetup() function. Open

01.c and find the function to see what registers require configuration. Note that after this

audio output is not yet enabled so the beeper

The course development board has a dip switch to physically disconnect the beeper. Make sure the

testing audio functions to see if the waveform you are sending

is correct but you do not want to listen to the beeper, you can turn it off but still measure your audio

tup values (you can search for a few “^^^”

). Here you will find the INIT values used in the setup function as well

. As usual, all bits are explained which, though it

extra effort, lets you immediately see the purpose and value of each bit. The PWMPCR_INIT

o complete. Make sure you fully document the bits, make the correct binary

A common mistake to make with header files like this is to update the values of comments without

updating the hex value that is actually used. A good rule of thumb is to delete the hex value for any

nd retype it when you are done with the comments. If you do this

and forget to update the hex value, at least the compiler will catch your mistake because the value it

 MPG LEVEL 1

notes_mpgl1_chapter10.docx Release 1.0 Page 17 of 20

10.4.2.2 PWMAudioSetFrequency()

The ability to set the tone frequency with a single function is powerful and pretty much a must-have for

any useful API to an audio driver like this. Unfortunately it takes a bit of work and good understanding

of the PWM peripheral to make that happen.

From looking at PWM peripheral registers, you should now know that the total period (and thus the

frequency) of the PWM signal is defined by the PWMMR0 register. We have a 1:1 scaling of the main

clock (12MHz) to the peripheral clock, PCLK. If we wanted to set the PWM period to provide a 1kHz

signal, the period must be 1 / 1kHz = 1ms. So the question is, how many clock ticks at 12MHz does it

take to time out 1ms? The answer is 1ms / (1 / 12MHz) = 12,000.

Generalizing this, we can solve period T for any frequency f given PCLK:

� =
����

�

The calculation really is not difficult, but it is not something you want to forget. You can see, therefore,

that the discussion and resulting equation is written directly into the code comment. Not only does this

give you a reminder of what you did to justify the code implemented, it documents what was done so if

there is an error later on, you can see where that error was made. The importance and significance of

“finding root cause” to a problem cannot be stressed enough. Not that setting buzzer frequency would

ever be a significant problem, but if you did have an issue and could trace it back to the calculation you

derived because you wrote it down, you know for sure that you have solved the problem.

PWMAudioSetFrequency() determines the new PWM period based on the frequency argument, and

adjusts the value for the MR5 match register to maintain 50% duty cycle. It then updates the two match

registers and flags PWMLER to load the new values.

void PWMAudioSetFrequency(u16 u16Frequency_)

{

 u32 u32MR0Period, u32MR5Period;

 /* The PWM peripheral clock period is 1/PCLK_VALUE and the period of the desired

 audio frequency is 1/u16Frequency_. Therefore, the MR0 match register should be

 set at (1/u16Frequency_) / (1/PCLK_VALUE) = PCLK_VALUE / u16Frequency_ */

 u32MR0Period = PCLK_VALUE / u16Frequency_;

 /* $$$$ Load the value for MR5 (remember we want 50% duty cycle) */

 /* Setup the new values in the match register (kept in shadow registers) */

 PWMMR0 = u32MR0Period;

 PWMMR5 = u32MR5Period;

 /* Flag that the MR0 and MR5 match registers need updating */

 PWMLER = _PWM_ENABLE_MR0_UPDATE + _PWM_ENABLE_MR5_UPDATE;

} /* end PWMAudioSetFrequency() */

 MPG LEVEL 1

notes_mpgl1_chapter10.docx Release 1.0 Page 18 of 20

10.4.2.3 PWMAudioOn()

The easiest way to turn the PWM peripheral on and off is with the match 5 register – when it is set to

zero, the PWM peripheral will keep the line low. It is assumed that the frequency of the desired PWM

signal is set prior to calling PWMAudioOn(), and all the function does is reset MR5 back to half of the

MR0 register.

10.4.2.4 PWMAudioOff()

On this particular processor, turn the PWM signal off by setting MR5 to 0. The frequency last set in the

peripheral will not be disturbed since the period is kept in MR0. Most importantly, this guarantees that

the pin voltage is low so you do not leave a DC bias on the buzzer. The only problem with this method is

that the PWM peripheral is still on and thus consuming current, even though it is not driving the output.

If you had a low power application, then functions to turn the PWM on and off would need to also

manage the PWM power control bit and make sure the buzzer line was low (which probably means you

would need to change the pin mode back to GPIO so you could set it to zero).

10.4.3 Audio Bits

You now have everything you need for the audio driver and the code should build and be ready for test.

As a last bit of info on the subject, here is a quick music lesson that might come in handy:

1. You should fully understand that different musical notes are a function of frequency. The lower

the frequency, the lower the sound. Deep bass is sub 100Hz; the highest sound a human can

hear is around 16kHz depending on how loud your music was when you were a teenager and

thus how sensitive your ears are still. Dogs can hear much higher frequencies.

2. Different speakers are better at reproducing different frequencies (i.e. subwoofers for bass,

tweeters for very high sound).

3. Music is written with notes from A to G which span one “octave”. There are 8 octaves spanning

note frequencies start at C0 = 16Hz all the way to C8 = 4186Hz. In musical terms, it does not

make much sense to talk about sounds above that frequency, though there is theoretically no

upper limit.

4. In every octave, you have the notes A, A-sharp (B-flat), B, C, C-sharp (D-flat), D, D-sharp (E-flat),

E, F, F-sharp (G-flat), G, G-sharp (A-flat of the next octave). The symbol for “sharp” is
#
 like C

#

(not to be confused with the programming language, but no doubt someone thought they were

being clever when they named it) and the symbol for “flat” is
b
 like A

b
.

5. The exact frequencies of notes or someone relative, but are mathematically defined based on a

reference value. Check out this link if you want to learn more:

http://www.phy.mtu.edu/~suits/NoteFreqCalcs.html

6. Music is written by defining single notes or combinations of notes that are played for a certain

duration. These are shown on a five-line “staff.” There are a lot more details beyond that, but

that is enough for now. An example is the sheet music for “Mary had a little lamb” shown in

Figure 10.4.3.1.

notes_mpgl1_chapter10.docx

Figure 10.4.3.1: Music for “Mary and a little lamb”

Source: http://www.enchantedlearning.com/mu

There are some pretty easy ways to program algorithms that will play simple single

piezo buzzer. Essentially you write two arrays: one with the sequence of notes, and one with a

corresponding duration to play each of those notes. There are even some standard algorithms for

computer generated music that you could program and then download source files with various songs.

We will not explore that in this course, but if you are interested it would

exercise to explore. Note that there are three octaves of note constants defined in deva7

you to use.

10.5 Chapter Exercise
This chapter has improved the core firmware that is running on the development board by addin

better LED driver and providing basic audio functionality

comfortable with the use of the LED API function LedSet() where LedNumber, LedMode and LedRate are

specified to manage each LED. You do not need any oth

point on! The audio capability of the board is accessed by setting a frequency with

PWMAudioSetFrequency() and then using the PWMAudioOn/Off() functions to start and stop the

buzzer.

The chapter exercise is in two parts that

are entirely C programming tasks like you would receive in a lab, though they are way cooler because

they run on your own development board.

do not need any additional states.

Tasks:

1. Create a 4-note synthesizer where the notes G4, A4, B4 and D5 will play when BUTTON0 thru

BUTTON3, respectively, are pressed

little lamb” (the sheet music is

example do not worry about what happens when two buttons are pressed

one button will be pressed at the same time. Hint: every time you call PWMAudioOn, the

current PWM cycle is reset

2. Color cycle the RGB backlight.

they mix together and show off most of the 8000 colors you have available. Though you could

write this fairly brute force, take some time to design a solution that is code efficient. The PWM

Release 1.0

Figure 10.4.3.1: Music for “Mary and a little lamb”

http://www.enchantedlearning.com/music/sheetmusic/maryhadalittlelamb.shtml

There are some pretty easy ways to program algorithms that will play simple single-note songs over a

piezo buzzer. Essentially you write two arrays: one with the sequence of notes, and one with a

ation to play each of those notes. There are even some standard algorithms for

computer generated music that you could program and then download source files with various songs.

We will not explore that in this course, but if you are interested it would be an easy programming

Note that there are three octaves of note constants defined in deva7

This chapter has improved the core firmware that is running on the development board by addin

better LED driver and providing basic audio functionality all with the help of PWM. You should be

comfortable with the use of the LED API function LedSet() where LedNumber, LedMode and LedRate are

specified to manage each LED. You do not need any other functions to work with the LEDs from this

point on! The audio capability of the board is accessed by setting a frequency with

() and then using the PWMAudioOn/Off() functions to start and stop the

two parts that test the audio and LED skills separately. Both of these exercises

like you would receive in a lab, though they are way cooler because

they run on your own development board. You may only write code in the Chapter10 source file

 Both tasks must run at the same time when you are complete.

note synthesizer where the notes G4, A4, B4 and D5 will play when BUTTON0 thru

BUTTON3, respectively, are pressed. Prove that your program works by playing “Mary had a

(the sheet music is shown above). It does not have to be absolutely perfect, for

example do not worry about what happens when two buttons are pressed – assume that only

e pressed at the same time. Hint: every time you call PWMAudioOn, the

 so if you call it repeatedly, you will not get the correct tone

Color cycle the RGB backlight. Write a tight piece of code to color cycle the three RGB

they mix together and show off most of the 8000 colors you have available. Though you could

write this fairly brute force, take some time to design a solution that is code efficient. The PWM

MPG LEVEL 1

Page 19 of 20

sic/sheetmusic/maryhadalittlelamb.shtml

note songs over a

piezo buzzer. Essentially you write two arrays: one with the sequence of notes, and one with a

ation to play each of those notes. There are even some standard algorithms for

computer generated music that you could program and then download source files with various songs.

be an easy programming

Note that there are three octaves of note constants defined in deva7-ehdw-01.h for

This chapter has improved the core firmware that is running on the development board by adding a

. You should be

comfortable with the use of the LED API function LedSet() where LedNumber, LedMode and LedRate are

er functions to work with the LEDs from this

() and then using the PWMAudioOn/Off() functions to start and stop the

Both of these exercises

like you would receive in a lab, though they are way cooler because

Chapter10 source file. You

Both tasks must run at the same time when you are complete.

note synthesizer where the notes G4, A4, B4 and D5 will play when BUTTON0 thru

. Prove that your program works by playing “Mary had a

. It does not have to be absolutely perfect, for

assume that only

e pressed at the same time. Hint: every time you call PWMAudioOn, the

so if you call it repeatedly, you will not get the correct tone.

Write a tight piece of code to color cycle the three RGB LEDS so

they mix together and show off most of the 8000 colors you have available. Though you could

write this fairly brute force, take some time to design a solution that is code efficient. The PWM

 MPG LEVEL 1

notes_mpgl1_chapter10.docx Release 1.0 Page 20 of 20

rates for each LED to cycle through a rainbow of colors in the correct ROYGBIV order should be

as follows:

a. Red LED ramps up from 0 to 100%

b. Green LED ramps up from 0 to 100%

c. Red LED ramps down from 100 to 0%

d. Blue LED ramps up from 0 to 100%

e. Green LED ramps down from 100 to 0%

f. Red LED ramps up from 0 to 100%

g. Blue LED ramps down from 100 to 0%

h. Repeat from b

Do not forget to put the call in to initialize and run the Chapter 10 application in main.c.

If you want a hint, here are the variables from Chapter10SMIdle() that the solution uses to accomplish

the task:

static u16 u16Counter = COLOR_CYCLE_TIME;

static u8 au8LEDOrder[] = {RGB_RED, RGB_GREEN, RGB_RED, RGB_BLUE, RGB_GREEN, RGB_RED, RGB_BLUE};

static u8 au8LEDDirection[] = {0x01, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00};

static u8 u8RGBIndex = 0;

static u8 u8RGBCurrentLevel = 0;

static u8 u8RGBCounter = 0;

Remember that there is probably a ton of different ways to program this solution. The code space

required for this implementation was 316 bytes, determined by building the code with and without the

color cycling code and comparing the size of the chapter10.0 object files. You can see the size of your

code by looking at the .map file for the project and finding the MODULE SUMMARY. Figure10.5.1 shows

a screen shot of the object file size including the cycling code.

Figure 10.5.1: Map file showing chapter10.o object size

Closing thought: You could port this code to a purpose-built PCB and create a very neat night light or

other great lighting effects in your home or car. This is a great example of how the learning you do with

a development board can be applied to a real-life product!

