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ABSTRACT

The use of near field communication (NFC) has expanded as rapidly as Bluetooth

or similar technologies and shows no signs of slowing down. It is used in many differ-

ent systems such as contactless payment processing, movie posters, security access

and passport identification. NFC enabled devices include cell phones, credit cards

and key chains. With the spread of any new technology come security vulnerabilities

that malicious users will try to exploit. NFC is particularly vulnerable to what is

known as a relay attack. The relay attack is similar to the man-in-the-middle at-

tack but the data need not be unencrypted to be vulnerable. The relay attack is

currently undetectable and unstoppable. Many solutions have been proposed but no

real-world solution has been found that does not require significant changes to the

NFC protocol, or even the hardware. In this work we propose a technique that uses

careful timing analysis of tag communication to identify a transaction as dangerous

and thus set off an alert of the potential threat. This could be built into mobile

devices and readers already deployed and provide a level of security to the market

not currently available while maintaining the protocols set forth by the ISO. A proof

of concept has been built and tested on custom hardware as well as on an Android

Nexus 4 to detect and prevent the relay attack. In this thesis we give an overview

of security issues in NFC communication, describe the relay attack in detail, present

our timing based countermeasures and its implementation, and give results of our

evaluation of timing based relay prevention.
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NOMENCLATURE

AES Advanced Encryption Standard

CE Consumer Electronics

CM Centimeters

ECDH Elliptic Curve Diffie-Hellman

ECMA European Association for Standardizing Information and

Communication Systems

I2C Inter-Integrated Circuit (I-squared-C)

ICT Information and Communication Technology

IEC International Electrotechnical Commission

ISO International Organization for Standardization

KBPS Kilobit Per Second

MHz Megahertz

MS Milliseconds

NDEF NFC Data Exchange Format

NFC Near Field Communication

PC Personal Computer

PCD Proximity Coupling Device

PICC Proximity Inductive Coupling Card

RFID Radio-frequency Identification

SCH Secure Channel service

SPI Serial Peripheral Interface
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SSE Shared Secret Service

UHF Ultra High Frequency

UID Unique Identifier

USB Universal Serial Bus
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1. INTRODUCTION

Near field communication is a form of wireless radio communication designed to

work over a very short range, usually up to 10 cm [30]. It was originally based off

of RFID (Radio-frequency identification) [36] and operates at 13.56 MHz communi-

cating very small amounts of data [25], at rates between 106 and 424 kbps. NFC

is designed to communicate this small amount of information wirelessly between

two devices, commonly between a passive tag and an active reader. NFC has been

growing significantly in popularity since its development and can be found in a large

number of devices, including transit cards, movie posters, hobby tags, mobile devices,

business cards, cell phones, health care devices, passports, credit cards, contactless

payment terminals and even identification cards used to access secure locations [17].

The technology has gained significant popularity especially as a payment method and

for security access. The disbursement of NFC technology shows no signs of slowing

down [43].

Whether the devices employing NFC technology are for fun, or for more sensitive

communication, security is always going to be a concern. With movie posters, where a

user may just tap his or her phone to visit a web site promoting the movie, malicious

parties could simply add a tag to the poster taking the user to their website or

attempt to activate functions not intended. If more secure transactions are taking

place, such as financial, the need for security is even higher [35]. Credit card fraud is

already widespread [19] and moving to a contactless medium for conducting business

adds another layer of complexity [30]. The security of NFC is a significant concern

and as the use of this technology grows, that concern grows with it [7].
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1.1 Participants

NFC has two basic types of devices that communicate, passive and active. Active

devices have their own power source and can usually act as either a reader or a tag,

some with additional capabilities depending on how they are programmed. Passive

devices do not have a power source but instead get their power through electromag-

netic induction when brought within range of an active device [26]. An example of

this would be the passive NFC chip embedded in a credit card which can be brought

into the range of a credit card payment terminal (an active device). Bringing the

credit card into close proximity to the terminal would activate the NFC inside the

card, powering it and beginning an exchange of data between the two devices. The

typical range for communication is up to about 10 cm between devices following the

ISO 14443 standard.

NFC devices have three basic modes depending on the type of device. Active

devices can work in target mode, initiator mode or peer-to-peer mode where passive

devices work only in target mode. An initiator is a reader or electrical component

of some sort that generates the electromagnetic field that in turn provides the power

for passive devices. Peer-to-peer mode involves two active devices with their own

power supply such as two cell phones. Passive devices are commonly thought of as

tags but can exist in a variety of other mediums such as credit cards, transit cards,

stickers and even wearable rings [17].

There are several different types of tags available on the market today, all of

which fall into four main categories [17, 36]:

• Type 1 Tags based on ISO/IEC 14443A. These tags can be read from or

written to and re-written. They can be locked to prevent re-writing. They

hold between 48 bytes and 2 Kbytes of data. They communicate at 106 kbps.
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Innovision produces one such tag product called Topaz [36]

• Type 2 Tags based on ISO/IEC 14443A. These tags can be read from or

written to and re-written. They can be locked to prevent re-writing. They

hold between 48 bytes and 2 Kbytes. They communicate at 106 kbps. NXP

produces the chips for tags called Mifare Ultralight [36].

• Type 3 Tags based on the Japanese Industrial Standard (JIS) X 6319-4 or

FeliCa. They are configured at the manufacturer to be either readable and

re-writable or read only. Memory is variable but should cap at about 1 Mbyte.

They communicate at 212 kbps. Sony produces the FeliCa tag [36].

• Type 4 Tags are fully compatible with the ISO/IEC 14443 standards, A and B.

They are configured at the manufacturer to be either readable and re-writable

or read only. The hold up to 32 Kbytes and communication can occur according

to the ISO/IEC 14443 or the ISO 7816-4 with speeds up to 106 kbps. Type

A & B cards differ by initialization procedures and coding, but use the same

transmission from Part 4 of the standards. NXP Semiconductor produces both

DESfire and SmartMX tags [36].

There is an additional type of tag called the Mifare Classic which does not fall into

these four categories but, with its chip from NXP Semiconductor, it will communicate

with most NFC devices [17] at some level. Figure 1.1 shows the various forms of NFC

messages that can be communicated and the communication mode allowed for them.

For example, basic tag operations for type 1-4 tags are done in reader and writer

mode, but some messages can be passed in peer-to-peer mode also.

The International Organization for Standardization (ISO) is an independent mem-

bership based organization of 163 member countries that sets standards for prod-
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Figure 1.1: NFC Forum specifications for peer-to-peer mode, reader/writer mode and
card emulation mode [17]. Communication shown across different operating modes.

ucts and services in an attempt to ensure interoperability, quality, safety and effi-

ciency [27]. Included among their 19,500+ publications are specifications for NFC

communication, ISO/IEC 14443: Identification cards - Contactless integrated circuit

cards - Proximity cards [26]. There are four parts to the standard detailing NFC as

follows:

• ISO/IEC 14443-1:2008 Part 1. Physical characteristics of proximity cards

(PICC) [26]. This details the physical traits of the devices, how they hold

up under certain circumstances and how they will function.

• ISO/IEC 14443-2:2008 Part 2. Radio frequency power and signal interface

[26]. This details how power will be transferred and communication will occur

between proximity cards and proximity coupling devices (PCD).

• ISO/IEC 14443-3:2008 Part 3. Initialization and anti-collision [26]. This in-

cludes how a PCD will react in the presence of multiple cards at the same time,

including how they will initially connect and what will happen when there is
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interference.

• ISO/IEC 14443-4:2008 Part 4. Transmission Protocol [26]. This section de-

tails the transmission protocols which will be used including the needs of the

contactless environment and specifications on the activation and deactivation

sequences for type A and type B cards.

ECMA International was originally the European Computer Manufacturers As-

sociation but changed to a standards organization and kept the ECMA title. They

produce industry driven standards for Information and Communication Technol-

ogy (ICT) and the Consumer Electronics (CE) industry, while cooperating with the

ISO [15]. Through cooperation between ISO and ECMA the standards are published

and acknowledged by each other and both work towards the same objective of inter-

operability and facilitation of standardization [15, 27]. The basic standards for the

operational ranges, initialization and radio frequencies were established by ISO [26]

and ECMA has published documents relating to the cryptographic standards, wire-

less interface and other material similar to the ISO 14443 documents [10–14].

1.2 Importance of Problem

With the widespread disbursement of NFC technology, prevention of malicious

activity is a very real concern. One of the major benefits of the technology is the ease

with which transactions can occur through the contactless state, which also becomes

one of the major downfalls. As with any technology where the transfer of potentially

sensitive data can occur, those with malicious intent will try to intervene. This can

take several forms. Eavesdropping is secretly listening into a conversation usually

without the knowledge of the victim. Eavesdropping on communication and stealing

sensitive data, such as credit card or transit token information, security keys and

even personal passport data, is a significant threat with NFC [7].
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Other common threats associated with NFC have already been discussed, and

following is a brief summary of these threats addressed in a recent paper [7]. Tags

and emulated devices have a unique identification number (UID) that are used to

identify the tag. These UID numbers are set by either the manufacturer in passive

devices or by the active device when they are initialized. They can be thought of

as a label. The UID is inherently unsafe as it is transmitted in the open regardless

of the rest of the communication, mainly to allow for proper handling of multiple

tags being present in the same field. Cloning a tag, the process of creating an exact

duplicate is a possibility. The UID numbers on passive devices are encoded at the

manufacturer, are set as unchangeable, and are supposed to be controlled. There are

devices however that can emulate these numbers [31] such as the ProxMark3 [41],

and some manufacturers in China are offering tags with a programmable UID [32].

This prevents the UID from being used for any type of security. Denial of service

attacks are a concern where mobile devices can either be locked up while in an NFC

field or communication could be completely prevented [7]. Eavesdropping in both

peer-to-peer and card emulated mode can be a problem even though distances are

more limited [30]. Identity authentication is a process that lets one device know

who the other device is when communicating. If identity authentication is used,

the manufacturers tag identity would need to be known, and even do some of its

own verification, otherwise a nearby malicious device could steal data simply when a

user tried to read a movie poster. Phishing is where a malicious entity tries to steal

sensitive information from a user by simulating a bona-fide source, such as a fake

web page to log into a bank account. Once the sensitive data is entered into the fake

site the malicious party then will then have access to the account. Ticket cloning

for e-payment systems can present two problems. First, tickets could be issued and

then cloned prior to verification creating many fake but valid tickets. Second, tickets
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could be cloned from the verified original and then used from each separate source,

exhausting its limit more quickly then intended.

One of the inherent security structures built into NFC technology is the proximity

for communication [26]. Because tags are only able to communicate over about 10 cm

eavesdropping on the communication can prove to be challenging. Kfir has already

shown that distance can actually be increased to at least 50 cm [30]. While any

attack involving the transfer of secure information is a concern, the relay attack is

one of the most critical.

1.3 Remote Eavesdropping of NFC Communication

Eavesdropping distances are varied and the true distances allowed are still being

debated [39]. Some reports have even made false statements claiming distances of 30

feet were successfully achieved, but the experiment only detected communication 30

feet away between devices that were only inches apart communicating with each other

[30]. The data in this transmission could not actually be eavesdropped. Regardless

of ranges the threat presented by remote eavesdropping is high, and by increasing

the ranges that NFC can communicate increases the risk posed by relay attacks as

well [30].

1.3.1 Theoretical Studies of Eavesdropping Ranges

A study of the available literature points to the possibility of receiving useful

NFC signals from a significant distance. For example, Pfeiffer et al. [39] give a

number of theoretical bounds on the distance limits for eavesdropping on 14443 class

A communication. Assuming that the attacker wishes to capture 64-byte frames, for

example, the bit-error-rate (BER) would have to be in the order of 0.01 or 0.001

to achieve success rates above 90% in the frame detection. They assume two types

of loop antennas: Antenna type Reader 1 has a radius of 3cm and a zero-distance
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magnetic field strength of 1.5A/m (rms), while antenna type Reader 2 has a radius

of 7.5cm and magnetic field strength 7.4 A/m (rms). Their results for eavesdropping

on the downlink signal (i.e. the signal generated by the NFC reader) are summarized

in Table 1.1 and Table 1.2.

Noise Source
demodulation Business Residential Galactic
Reader 1
non-coherent 7.9m 12.8m 76.3m
coherent 10.9m 18.4 107.8m
Reader 2
non-coherent ca. 0.6km ca. 1.0km ca. 6km
coherent ca 0.9km ca. 1.5km ca. 8.5km

Table 1.1: Maximum downlink eavesdropping ranges for BER of 0.1% [39].

Noise Source
demodulation Business Residential Galactic
Reader 1
non-coherent 7.2m 10.5m 63.4m
coherent 8.8m 15.2m 89.4m
Reader 2
non-coherent ca. 0.5km ca. 0.9km ca. 5km
coherent ca 0.7km ca. 1.2km ca. 7km

Table 1.2: Maximum downlink eavesdropping ranges for BER of 0.01% [39].

The theoretical bounds on uplink (i.e. the signal generated by the tag) eaves-

dropping are significantly smaller, however, as seen in Table 1.3 and Table 1.4.

These numbers contradict previous results from other studies, for example [37],

where significantly longer eavesdropping ranges were predicted. This discrepancy is
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Noise Source
demodulation Business Residential Galactic
1.5 A/m (rms)
non-coherent 2.8m 3.4m 7.2m
coherent 3.2m 3.9m 9.4m
4.5 A/m (rms)
non-coherent 2.0m 2.4m 4.7m
coherent 2.2m 2.7m 5.5m

Table 1.3: Maximum uplink eavesdropping ranges for BER of 0.1% [39].

Noise Source
demodulation Business Residential Galactic
Reader 1
non-coherent 2.6m 3.2m 6.6m
coherent 3.0m 3.6m 7.7m
Reader 2
non-coherent 1.8m 2.2m 4.4m
coherent 2.1m 2.5m 5.1m

Table 1.4: Maximum uplink eavesdropping ranges for BER of 0.01% [39].

due largely to the low bit error rates that are assumed by Pfeiffer et al.. The other

studies assume that communication can be eavesdropped at bit error rates that are

significantly higher than those assumed by Pfeiffer et al.. These authors discuss two

ways that would enable successful communication at comparatively high error rates:

1. The use of forced retransmissions of each frame by selectively interfering with

the transmission of single bits. In this way the detection can be improved

despite high bit error rates.

2. The use of wires, wiring in walls, door frames, etc., to increase the range

through coupling effects and so in effect decrease the bit error rates at range.
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1.4 Relay Attacks on NFC Communication

The relay attack has been well described as an attacker burrowing the victims

card [21]. The man-in-the-middle attack is another common way of picturing the

relay attack. A man-in-the-middle attack is shown in Figure 1.2. Here an intruder

intercepts communication between two devices and can listen in, copy, and change

data as she sees fit before forwarding it on to the intended target. The relay attack is

similar to this where the unwanted party ’sits’ in the middle of the communication.

Different to the man-in-the-middle attack, the tag owner and the reader might never

even intend for the communication to happen in the first place. The intruder launches

a relay attack by placing a malicious reader near the tag owners authentic tag and

a malicious tag near the authentic reader. The malicious tag and the malicious

reader are connected and form a link to pass all activity back and forth between the

authentic tag and authentic reader. The relay can be connected over any medium

such as the Internet or Bluetooth, and all traffic between the authentic tag and

authentic reader is transferred directly to the other end. Figure 1.3 illustrates a

relay attack. Here we can see the malicious tag C comes into range of the authentic

reader D which requests communication. This request is passed through the relay

to the malicious reader B and the request is made to the authentic tag A. Tag A

responds and that data is transferred back through the link to the authentic reader

D. The authentic tag and authentic reader both believe they are speaking directly

to the authentic device in close proximity. This faith of proximity is bypassed by

the relay, and the inherent security feature fails. Because tags are designed to be

activated without user interaction they are particularly susceptible to this attack. A

malicious party could bring one end of their relay up to an authentic tag while it is

in a pocket or bag. Without the owner of the tag knowing, a connection between

10



Figure 1.2: Man-in-the-middle attack scenario.

tag and reader can be established and a complete transaction could be processed

in seconds. Neither of the authentic devices on either end would be aware a relay

attack had even happened [28]. If this attack is performed efficiently the victims

will never know it occurred until it is far too late. This would take a bit of set up

by the intruder, as she would have to get close to the victims tag with the proxy

reader disguised, and would have to place a proxy tag at the other end that would

appear close to what would be expected at the authentic reader if it was under any

scrutiny [24]. While proper setup would be required in this scenario, the setup is

not particularly difficult. This relay attack example is both difficult to detect and

hard to stop [28]. The relay attack as presented is a significant security threat to the

technology that needs to be addressed.

Cryptography protocols, the encryption of data for transmission, can be imple-

mented to protect NFC against various forms of attacks [25]. Having two devices

lacking prior knowledge of secret keys, the standards suggest a public key exchange

scheme which is used to establish a Shared Secret Service (SSE) and Secure Channel

Service (SCH) [9, 10]. The two devices would share data publicly and through a
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Figure 1.3: Relay attack example. Tag A and Reader D are authentic. C is the
emulated tag (proxy) and B is the fake reader (mole). B and C are connected over
some communication medium [33].

combination of this data establish a key that is then used to encrypt and decrypt the

rest of the communication. Even using these cryptographic methods can not protect

against man-in-the-middle attacks as it lacks device authentication [9] and all data

can still just be transferred between endpoints with a relay attack [24, 28]. Device

authentication is more secure in peer-to-peer mode using public key cryptography,

but active devices do not check identification of passive targets and remain suscep-

tible to certain attacks. For example, a device in close proximity to a tag that can

store key data during setup and later use it to take malicious actions, like activating

Bluetooth and transferring data to the victim device at will [7, 9]. The standards

actually suggest that the proximity of NFC provides risk at a low enough level to

be acceptable and that the end user should remain cautious of any implementation

vulnerability [9]. Security through proximity still remains a problem for relays.

While the ISO 14443 standards create the protocol for the hardware and tag

communication, they do not include any protocols to deal with the security vulner-
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abilities addressed so far [26,28]. The ISO protocol does provide details which could

be exploited by attackers to gain access to information such as waiting time exten-

sions and error recovery [28, 31]. Through waiting time extensions an attacker can

continually request additional time that can be used to complete the relay attack.

This time can be extended to at least 4.95 seconds. Error bits can be introduced into

the communication that will cause the reader to send additional requests to the tag,

giving the attacker more time to complete the attack [28]. This error bit technique

was shown to only be a weakness depending on the implementation in the reader.

Tag data can be encrypted, excluding the UID, but this only protects the data.

If eavesdropping attacks are being performed then encryption seems like a good

solution. The relay attack remains a threat as the attacker does not need to under-

stand any of the transmitted data to take full advantage of the transfer. Completely

encrypted communication between endpoints is still susceptible to relay attacks [21].

Authentication, privacy protocols, tag blocking, encryption, behavioral analysis,

timing, distance-bounding protocols and even hardware to attach to the back of

mobile devices have all been proposed by various authors [1, 16, 22, 23, 28, 46]. An

extremely important aspect of any solution to the relay attack problem will fit within

the existing technology and protocols put forth by the ISO 14443 standard. A

solution creating a minimal amount of change to existing devices as well as a low

cost for implementation is required.

1.5 Countermeasures against Relay Attacks

A good countermeasure solution against the relay attack addressed here will be

an implementation that can work within the operating constraints of the existing ISO

and ECMA standards. By providing a small change to the software at the reader or

initiator we can essentially provide a solution with a software or firmware update.
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This would not create changes to any of the existing tags, which have already been

manufactured and distributed. Rather changes would remain limited to the readers,

and could create an affordable and easy-to-implement solution to this problem. We

do not propose a change to any of the standards, to the communication methods or

anything to compromise alternate tag type compatibility, but instead offer a warning

mechanism to detect and counter possible relay attempts.

This solution has been implemented and tested with Type 2 Mifare Ultralight A

tags. It is functional and consistent. We only used Mifare Ultralight A tags in this

project, but if alternate tag types not tested here were to present additional timing

artifacts, such as anomalies in the time readings, then at the worst warnings would be

generated. The implementation could allow for disabling such warnings if necessary.

In a case where those other kinds of cards were seldom seen, the occasional warning

may even be acceptable. We would advise against allowing a system to present

warnings constantly as users could tend to become complacent and unaware when

real problems occurred [20]. If different tag types were to be used additional research

into timing for those tags should be evaluated. We need this solution to be robust

against attacks and consistent in its warnings. In Android devices for example a

quick code update could create the warning and verification system needed to protect

against relay attacks and could be pushed out to the devices as any normal software

update would be.
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2. CURRENT WORK

Some of the more promising work done in relay attack prevention use distance-

bounding protocols, which set an upper bound to the distances allowed [16,24]. This

is achieved by requiring a cryptographic challenge-response mechanism to measure

the proximity to the authentic device. This approach can present challenges, such as

time for processing such responses, elimination of time extensions for responses, and

dealing with noisy channels. The more error resistance is incorporated into them the

more open to attacks these bounding protocols can become [23, 24]. Some promis-

ing work incorporates a full-duplex secret key agreement scheme into the distance-

bounding [29]. This would hopefully help with power consumption and computation

demands due to the cost of cryptographic operations. Even when proper encryption

techniques are used the protocols still remain vulnerable to relay attacks [28].

Without authentication of the reader an attacker could query the tag early on and

replay the information at a later time [30], which is sometimes referred to as terrorist

fraud. Eavesdropping, or listening in on such conversations, has been identified

as a problem. Unless encryption of data is used in some form this remains an

issue. The ECMA even state in one of their documents [9] that users should plan

implementations carefully around possible vulnerabilities. As encryption is not built

into NFC, security is left up to the application developer, or the end user of the

technology, which is not a comforting prospect [35]. Even encryption schemes may

be ineffective without prior sharing of device authentication [9].

With the relay attack if we could store the data from the tag and send it to the

proxy to emulate the tag then detection in this manner becomes impossible. There

would be no additional timing delays in such a setup. This is also not accurately
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described as a relay attack however. This is more of a true man-in-the-middle or just

store and replay attack. This type of security vulnerability has already been seen

in attacks such as ticket cloning [7]. Even a replay attack for passport control was

discussed and is vulnerable [30], but again, this is a replay, not a relay attack.

The UID, which is supposed to uniquely identify each tag or other NFC com-

munication participant, can not be used in any security protocol, as it can be faked

or manipulated. With custom made equipment, attack windows can be extended

through waiting-time extensions and bit faults up to very large amounts of time in

which to perform attacks [31].

To add to security a user behavioral profile can be created and updated on mobile

devices [1]. These profiles monitor a users normal activity. Once created they can

compare the current activity with the profile and perform a security risk assessment

based on that activity. This could create additional authentication needs, such as

requiring a pin to be entered to activate functions considered unusual for that user.

This kind of detection and profiling, called active authentication, is still in the early

stages of development but shows promise.

Additional prevention techniques also include gesture recognition and position

data [45]. These methods use the device location to verify close proximity to the

actual reader for security.

Malicious software installed onto devices could even take advantage of the NFC

technology, and software-based attacks could be activated, without the victim’s

knowledge [45]. Google Wallet [18] provides users with a convenient method to

store credit card data and uses NFC by only carrying their phones, but software

based attacks can create vulnerabilities in programs like this [40]. In addition, these

contactless payment methods provide no protection against relay attacks.

There have been more extreme techniques suggested, such as enclosing readers
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inside of Faraday cages [21]. This limits all signals from traveling outside of a prede-

fined physical area. Faraday cages could also be used to enclose tags when not in use,

but if used on a phone would limit connectivity or create a burden on the user. There

is work suggesting attaching such a device to phones to prevent eavesdropping [46].

Devices such as these seem impractical and would most likely not be popular in the

market unless they could be included in the phone at the manufacturer. Asking

consumers to purchase and attach additional hardware is an unreasonable solution

and only addresses eavesdropping, not relay attacks, which would remain a security

risk. There have been RFID blocking wallets [42] available for some time, but they

are not wide spread.

If efficient analog systems over a close transmittable distance are set up, even

timing analysis may not be efficient enough to prevent relay attacks, most certainly

not during the anti-collision and initialization phases of tag communication [21].

Such systems would not take advantage of longer-distance communication mediums

such as the Internet but still provide viable attack scenarios.

Techniques for formal analysis such as probabilistic model checking can provide

insight into complex systems and help find additional security threats [3]. These

methods provide a good technique for evaluating the NFC protocols and finding

weaknesses.

NFC is being looked at in health care applications as well, and with it come

all the same security vulnerabilities [4]. Naturally negative side effects of security

threats affecting the application of NFC technology in medical devices or health care

applications in general would be devastating. Proposals to secure the use of NFC

in this domain include multi-dimensional classifications of NFC devices and sug-

gest evaluation at many different points for determining the systems vulnerabilities.

These types of applications in health care will most certainly have to be scrutinized
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at many levels as the author argues. The susceptibility of these kinds of devices in

regard to the relay attack has not been evaluated yet.
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3. IMPLEMENTING A SOLUTION

In the following we present an approach to detect relay attacks by monitoring the

communication delays and by responding to timing anomalies. The premise for this

work is that (a) we can observe how long it takes to communicate with a tag and

(b) if our timing is accurate enough predict the likelihood of whether or not a relay

attack is occurring. In order to be feasible, this solution requires an accurate analysis

of the consistency of timing between tags. A timing based anomaly detection is only

as accurate as the underlying behavior is predictable. Once timing is shown to be

consistent we proceed to demonstrate that the implementation of a relay detector is

possible at low cost.

In order to collect tag read latency and relay latency data we implemented a relay

system. A breakdown of the tag communication steps at a low level will help us with

understanding where any timing anomalies occur. We will show that by eliminating

all extra time built into this tag communication library the actual delay caused is

minimal and then by evaluating that delay over the relay system we can show that

it is detectable and preventable.

We implemented a relay system consisting of an Arduino microcontroller to run

two NFC PN532 breakout boards, each of which can act as a tag or NFC reader.

This setup will provide the fastest possible data transfer between the mole and proxy

so any real world relay could only possibly add to the time delays through their

connection. We have two Arduino microcontrollers attached separately to PN532

breakout boards, one is a basic tag reader to verify normal communication, the other

is a ’relay safe’ version which prevents the communication if a relay is detected. We

show that both readers will read a basic tag in authentic fashion consistently and
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the ’relay safe’ reader will show a warning when trying to read the tag through the

relay setup.

Various forms of relay attack setups have been built before, for example, an initial

relay attack setup was created and tested using an inexpensive analog transfer of

data over a short range radio frequency [21]. This method did not buffer any data to

send in packets or take advantage of digital communication mediums which reduced

the effective ranges and technology available. This work also mentions the delay

introduced in the relay was only about 20 µs, but this was during the initialization

and anti-collision phase of communication. The timing done for this project will be

at the page communication level and can be read for all sections of communication

as we will show.

This enabled us to build and test a Arduino controlled PN532 NFC reader that

is hardened against page-level relay attacks. Increasingly, smart phone based NFC

applications are becoming popular, and solutions must be found to harden smart

phones against NFC relay attacks. In a second phase of this project we will looked

at the Android operating system to include a timing based relay detector into the

kernel. This could be included with any distribution or update of Android. The

solution will cause the device to disconnect if a relay is detected so as to completely

prevent the communication from occurring and prevent any unwanted loss of data.

This could be extended to issue a warning and request additional user authorization

instead and so allow the device to transmit its contents on a second attempt. In

contrast to the microcontroller based system used in the first phase, any timing

based detector in an Android device has to deal with latencies on the device. In

order to test the robustness of our relay detector we measured its performance on an

Android system with a benchmarking tool to verify operational consistency under

variously strained real world scenarios.
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These solutions are robust for the tags tested, all Mifare Ultralight A, and con-

sistent in behavior. A worst case example for the Android system would include the

occasional false positive which is a much better solution then an occasional false neg-

ative. This system can be built into existing readers and secondary authentication

could be requested in more secure applications. This would not prevent tags com-

munication which took more time, but would add a level of security to misbehaving

tags. If applications were less secure, or a decision was made that a relay attack

was unlikely or unimportant to the application the feature could just be ignored or

turned off. This approach fits into the RFID/NFC standard with a minimal impact

to existing technology. It causes absolutely no changes to all the tags out now and

being produced in the future.

3.1 Equipment Setup

For this project we used the following setups to read tags and take timing mea-

surements. First, we used an ACR122u contactless smartcard reader/writer con-

nected to a personal computer (PC) over USB. The computer was a model hp work-

station xw9300 running Ubuntu version 12.04 LTS operating system. We installed

the software from libnfc [33] and any additional support drivers to get the ACR122u

working.

Nexus 4 Android cell phone. This has a PN544 chip by NXP Semiconductor

inside it which runs the NFC communication. We wrote application level software

to do some analysis and later modified the kernel code from Cyanogenmod [8], an

open source development of the Android operating system.

The PN532 breakout board is an NFC controller from Adafruit Industries. It is

an integrated contactless control board for NFC communications designed to work

as both a tag and initiator [38]. It can be hooked up to either a PC through a
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USB connection or to other devices over either an I2C (I-squared-C) or SPI (Serial

Peripheral Interface) connection (two different interfaces for short distance wired

communication).

Arduino is an open-source electronics platform designed to be easy to use for all

kinds of interactive projects [6]. We chose this platform because we could wire our

PN532 breakout boards to it, have access to the connections easily if we wanted to

attach a logic analyzer and because there is no operating system running on it. There

is only a main loop which repeats with a specified delay. This became our controller

for the PN532 boards and was used to build our readers and our relay system.

We used a Logic16 analyzer from Saleae [34] for looking at the signals transferred

between the Arduino and PN532. This unit was self contained and interfaced with

a PC to give readings on the signals between devices. The timing and flow of the

algorithms were more easily analyzed using the logic analyzer.

3.1.1 Tag Timing

We started off our time measurements looking at how long it took for one page of

data to be sent to the initiator after a read request. This means that after we have

a connection between the PCD and PICC we would do a series of read requests to

transfer all the data on the tag to the initiator. The initiator will issue a read request

from the tag and the tag will respond with the data for the page requested. Figure

3.1 shows an example of this. The reads are repeated for as many sections of data as

are requested. The host in the figure can be the PC, the Android operating system

or the Arduino and the controller, which is either the ACR122u, the PN532 or the

PN544 chip inside the Android phone, depending on which setup is being used. The

data reads are further broken down in the tag analysis section.

To do an accurate analysis we needed to take timing measurements on different

22



devices. To do this we needed to verify what devices were giving us accurate time

readings. 1

We went on to implement a system using the PN532 connected to an Arduino.

While the PN532 could be connected to a PC over a USB connection we would have

just encountered the same issue as before with the ACR122u, therefore programming

the Arduino to implement the reading was the best approach. The Arduino only

runs a simple control loop so we could control all aspects of what was running on the

device. We connected the Arduino to the PN532 over the SPI interface and loaded

the libraries put out by Adafruit [2] for the PN532 to run the system. While there

were many functions to drive the PN532 from the Arduino included, the library was

not complete. We completed portions of it to increase functionality but it could

still be expanded further. From this setup with the Arduino we again took timing

measurements and we saw a minimum time of approximately 50 ms, more then the

original time from the Android system. With this surprising result we then looked

into the library in detail and found there were waiting time extensions built in that

were causing excessive delays.

3.1.2 Analyzing Tag Communication

We hooked up the Logic16 analyzer to the PN532 to look at the actual bytes

being sent between it and the Arduino. A careful analysis of the signals revealed

several time delays in the sequence which were completely unnecessary. Using the

measurements from the logic analyzer and carefully looking over the library code we

were able to remove almost 60 ms of unneeded delays. We started removing them

and testing reads again until we broke the read functionality, then built it back up

1Previous experiments with and Android based reader yielded minimum times of about 40 ms,
which was due to the measurements being taken at the application level. We also experimented
with using the ACR122u, which gave us latencies of about 19 ms. These delays were due to the
reader being driven by the USB and the measurements returned were USB polling results.
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Figure 3.1: Read request from host controller to NFC radio to receive a section of
data from the tag (16 bytes at a time - 1 section).

until we had a consistently stable read established. This resulted in a total delay of

only 4.7 ms (this was the PN532 to tag communication sequence) and a section read

time of 7.294 ms as seen in Figure 3.2. The delay occurs when the Arduino requests

the data from the PN532 and that command is transmitted to the tag. It then waits

for the 4.7 ms and checks to see if the PN532 is ready to transmit the data back

to the Arduino, which means tag communication for that section was complete. If

it is not ready to return the data, it waits for another delay period of 4.7 ms. This

delay is right on the edge of how long it takes to get the data from the tag, so much

so that a small portion of the reads wait for an extra delay which adds another 4.7

ms in this case to the total read of 7.294 ms. An actual solution would increase this

wait period to include a safety and guaranteed response time of something closer to

5 ms.
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Figure 3.2: Reduced delay on tag time read, timing from logic analyzer.

3.2 Tag Analysis

In order to collect reliable timing data on tag reads we purchased 30 tags from

five different vendors to test. These were all Mifare Ultralight type A tags. Because

the chips are all currently being produced by NXP Semiconductor, there was no real

difference in the chip itself, but the antenna and the medium in which the chips

are embedded vary greatly. We purchased paper, plastic, flexible, rigid, square and

medium tags with different proportions. We timed communication of data on the

tags to verify consistency. Without verification of basic consistency between types

of tags a timing analysis would not have been a realistic approach.

The communication of these tags consist of the initialization and anti-collision,

then a sequence of data transfers in 4 page sections. A page consists of 4 bytes. A

tag contains 42 pages of data and can be completely read in 11 data transfers with

our device. A data transfer consists of 4 pages at a time which we refer to here

as a section. This was set up to maintain read compatibility with other types of

tags and is standardized for the Mifare Ultralight A tags. The final read will wrap

around and return additional data from the beginning of the tag to compensate for
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Figure 3.3: Mifare Ultralight A tags page and section setup. One section consists of
4 pages of data, or 16 bytes.

the end pages as 42 divided by 4 does not come out evenly. The bits use either

Modified Miller or Manchester encoding for the actual data transfer according to

the ISO 14443 specification [26]. Figure 3.3 shows an example of the pages and the

sections that make up a data transfer. Each section of data (4 pages) is considered

one read and this read is what we are timing. Using an Arduino microcontroller and

the PN532 board we took readings on all the tags and compared them looking for

large differences. We found deviations of up to 7 µs with basic tag reads over all

30 tags, read 30 times each. The difference between multiple reads can be seen in

Figure 3.4. This confirmed that with tags of varying makes the time readings were

consistent.
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Figure 3.4: Timing of 1 section of a tag read operation, 1 section = 4 pages (x axis).
5 different sections read here. Measurement (y axis) is in milliseconds (ms).

3.3 Building a Relay

In order to test the timing of a relay attack we needed a functional relay attack

setup. We took the Arduino and hooked it up to two PN532 boards as seen in Figure

3.5. This setup produces the quickest possible page-level data transfer between

devices by using the same array for data storage as it is transfered between the

mole and proxy. Any setup that implemented an additional communication medium

between the mole and proxy, such as a Bluetooth connection, could only hope at

best to match the delay we had and at worst add a significant time delay into the

relay as we have seen before [28]. The relay system first initializes the mole as a

reader and then goes into a loop attempting to connect to a tag. Once a connection

is established it checks to see if there is an initializer present. Once those steps

occur and an initializer is found, the proxy is initialized as an emulated tag, and the

transfer begins. Data is read, and sent, section by section from the authentic tag to

the authentic reader. This attack is fast and effective.

The UID of the tag is not emulated in this setup. The PN532 is designed so
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Figure 3.5: Arduino and two PN532 boards used to create our NFC relay system.

that it can not emulate an authentic tag UID, which is 7 bytes long. The emulated

tag UID is only 4 bytes from the PN532. This is not a problem with the relay

concept as it has already been established that the UID is inherently unsafe in nature,

being transparent and able to be emulated by certain devices [7]. This separate

initialization on either end adds to the relay speed as the tag is initialized before any

communication occurs and never has to transfer that data for any initialization or

anti-collision steps. Any of those steps are already taken care of by the mole and the

proxy on their respective ends. In other relay setups all initialization can be passed

through to either endpoint and encryption standards do not prevent the attack [24].

3.4 Preventing the Relay Attack

Once we had an effective system set up which consistently relayed tags we eval-

uated the timing of the relay. Hooking the logic analyzer up again to the system

and taking readings on all the PN532 boards showed us there was an additional time

delay added between the transfers we could take advantage of to prevent these at-

tacks. We wanted a reader that could warn us if the expected delays were too high.
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The results of the logic analyzer readings are shown in Figure 3.6. The minimal time

for communication we recorded on the relay was 52.765 ms. This was a significant

difference we could use.

We have some additional delays occurring in the boards, specifically between the

authentic reader (security point) and the proxy end of the relay. We did not find the

cause for this extra delay but had we eliminated it there remained a large window of

time to work with. If we did eliminate the extra delays we would still have a relay

attack window of 32.357 ms. With these extra delays in our fastest system we can be

lenient with where we implement our timing analysis to prevent the attack. Given a

7.294 ms delay in an authentic transmission we can look at anything over 10 ms as

questionable, or if we want to be more lenient we could even double that time to 15

ms.

We used the collected timing information to build and test a ’relay safe’ reader.

For this we used an Arduino attached to a PN532. Loading the same code as we

previously did on the original reader we added a timer constraint on each communi-

cation block. If any given transmission exceeded 4.7 ms we stopped communication,

issued failures on the remainder of the sections to be read and noted the attempt.

After a predefined number of attempts we blocked the reader from all communica-

tion and issued an on screen warning that too many failures had occurred and a

relay attack was likely. This demonstrated the capability of the ’relay safe’ device to

prevent the relay attack on our system. If the user was not malicious and attempted

once or failed for another unanticipated reason the next success would reset the re-

lay attempts and no lockout would be issued. If they were maliciously attempting a

relay, a warning would alert someone at the reader and cause some form of security

to be alerted.
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Figure 3.6: Timing analysis of relay attack using logic analyzer. Three different
PN532 boards are pictured here, top: security point, middle: proxy on relay, bottom:
mole on relay.

3.4.1 Android NFC

After preventing the relay attack through timing with the PN532 we moved back

to the Android operating system again. We had previously seen large delays through

our application but needed to determine if we could do a lower level timing analysis

to prevent an attack in this type of system as well. We downloaded and evaluated

code both from Google directly and from Cyanogenmod. Cyanogenmod is an open

source community driven project to take the source code for Android from Google

and adapt it to be usable on a wide range of devices [8]. This is necessary because

the source code for Android put forth by Google only works in the original state

for Google devices. To run the Android operating system on other devices there

are changes that must frequently be made by the company putting out the phone,

such as custom device drivers to run specific hardware not originally added into the

source code by Google. Cyanogenmod became a good choice of software to examine
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Figure 3.7: Code change in the BasicTagTechnology.java file to time the sections.

as changes to this code would be compatible with a much larger range of devices and

there exists the possibility of actually adding in the relay prevention code to this

kind of project if it proved functional and useful.

We added latency measurements to the function transceive() located inside the

BasicTagTechnology.java. This function sits at the Framework layer, which is im-

plemented just above the Hardware Abstraction Layer (HAL). Figure 3.7 shows the

change in the java file and Figure 3.9 shows visually where the timing is implemented

within the architecture.

This was implemented in Cyanogenmod version 3.4.0 using Android version 4.4.4

Mako and the kernel was built with the change seen in Figure 3.7. We used 10 ms

as a timing cut-off for the relay detector, allowing for extra time for robustness. If
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Figure 3.8: Histogram plot of tag read times in Android. The majority of reads are
at about 4.5 ms or less. Y axis is sections read over 62 tags, X axis is time for read
on each section.

this time was exceeded then the Android operating system would disconnect the tag

at that point, not allowing for any further communication to occur. This created a

system where the Android would not just provide a warning and still read all the

data, but if a warning was issued the data would not be transferred on that attempt.

It was important to stop this data transfer in addition to a warning for an acceptable

security system. If we provide a warning only and still allow the data to go through

then the attack would succeed before any possible intervention.

Taking timing measurements from the Android device at this point resulted in

tag reads of about 4.5 ms per section. A histogram plot of one tag read is shown

in Figure 3.8. This showed that the timing at this level in the Android was even

tighter then the timing measurements received from the custom readers we created.

We read over 60 tags to get this time result.

Stressing the system to verify the timing on the Android system was then done.
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We loaded the AnTuTu [5] benchmarking software onto the Nexus 4. We ran the

suite of benchmark tests on the device and then started taking time measurements

again. Reading the tags provided additional failures then it had previously. Out of

62 tag reads originally with no stress system running on the phone we saw at least 13

time readings which would be over the 10 ms threshold and give a timing exceeded

failure. With 47 reads while running the benchmark for added stress we saw 15

failures and again with 48 reads saw 14 failures from the timing being exceeded.

This is only an approximate 10% difference. It should be noted that the benchmark

would cut out short of completion due to graphics being initialized and pulling the

phone out of the NFC reading application. This should not be a significant issue

though as users would most likely not be running graphics programs and using the

NFC at the same time.
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Figure 3.9: Android Architecture [44] with timing shown. Timing starts before HAL
layer which sits between the kernel and library layer.
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4. EVALUATION

After evaluating all the tags over the relay system with the normal reader setup,

one of the Arduino to PN532 setups, we found that they all communicated effectively

and consistently through the relay. The second Arduino to PN532 reader was created

which had timing constraints preventing communication if the time was exceeded

and a possible relay was found. This was our ’relay safe’ unit. We verified this

’relay safe’ unit effectively and consistently read data from all 30 tags as the first

unit would under normal direct tag to reader mode. After verifying this we tested

the ’relay safe’ unit with all tags over the relay. This unit consistently detected the

additional communication time and stopped the read, issuing warnings to begin with

then freezing the reader completely after five consecutive relay attempts in a row.

At that point, with our algorithm, a reset of the ’relay safe’ device was required to

continue to function as per our program.

This setup gives us the ability to detect a relay attempt and alert others to the

attempt in the process. If only one read attempt is invalid then no alert is given and

no additional action is needed. The stop functionality could of course be changed to

any number of attempts desired based on the level of security wanted at the reader.

We were not able to test the relay safe reads against a Android because the

Android system has a failure to communicate with the relay system we set up. This

could be due to several factors. The Nexus 4 has a Broadcom Corporation chip

instead of an NXP chip so the make is a little different. The Adafruit site also

talks about the PN532 having an inability to communicate with the Android both

due to incomplete libraries to implement application level communication and due

to its inability to emulate a tag as it has no secure element. The secure element
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is an additional piece of hardware in mobile devices to separate the data from the

communication element providing an additional internal security device. This is not

particularly interesting for the purposes of a relay attack and we have not looked into

any secure elements. This also means that the custom relay we set up only reads on

the PN532 readers, and not on the Android. Testing the timing over the relay for

the Android for this reason did not succeed. There is speculation that the timing

constraints at the hardware level are much tighter on the Android system as well.

While we can attempt to emulate a Mifare Ultralight A tag and the Nexus 4 seems

to detect the tag, there is never any additional information transmitted with it and

a consistent error message that the tag was removed from the field before the read

was completed. Unfortunately, without additional hardware at this time, we do not

believe we can truly emulate a tag detectable by the Android Nexus 4 for the relay

setup.

The benchmark for the Android system while running the NFC reads were only

one way of stressing the system while measuring tag reads, and perhaps not the best.

Because of how the NFC is processed in the Android we can not just create a loop

to repeatedly read a tag and then stress the system which would be a more ideal

approach. Running the benchmark and then logging all tag reading results while it

was running was the approach we took, but this does not give us a good idea exactly

what process was being stressed that changed our read timing. It does give us a

good idea of how other processes might effect real world performance during reads

however.

The results of our timing analysis on the Android Nexus 4 can be seen in Table

4.1 and Table 4.2. As you can see the timing analysis gives fairly close results while

stressing the system with the benchmark compared to reading with no additional

programs running. A tag will fail to read if a single section exceeds the 10 ms
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Entire Tag Read
Benchmark Total Reads Failures Failure %
AnTuTu 95 29 30.5
None 62 13 21.0

Table 4.1: Complete Tag Reads. Tag failure if one or more section takes over 10 ms
to read.

window.

In Table 4.2 you can see the timing results of each section during the complete

tag read, if a failure occurs the remaining sections are not attempted and a new read

is started.

Average Time (ms)
Per Section

Sections
Read

Success 4.263 1306
Failure 40933 29

(a) With AnTuTu running.

Average Time (ms)
Per Section

Sections
Read

4.335 1102
16335 14

(b) No additional programs.

Table 4.2: Timing results per section with and without AnTuTu benchmark running.
Average time of a successful or failed read.

It can also be noted that only a portion of the reads which failed during the

benchmarks, about 37%, failed on the first few sections of the reads (first 3 sections).

The remainder failed later on during reads on that tag. One may get better per-

formance by limiting the timing to the first few pages or even to a section of the

tags randomly. Possibly taking a sample section for time readings would accomplish

this. The effect on the safety of the relay prevention should be evaluated if this was

attempted and we present no predictions on that in this work. The timing analysis

done here however is more than adequate for relay attack prevention.
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5. CONCLUSION

NFC is currently a rapidly expanding technology. It surrounds us today and will

continue to in the near future. We have all seen the effects of malicious parties taking

advantage of security vulnerabilities in technology fields, and NFC is no exception

to this. The rapid expansion of the technology and lack of solutions to the security

vulnerabilities are a concern. Relay attacks are a very real and present threat to this

technology, both difficult to detect and to stop.

We show in this work that by timing the communication of NFC tags a section at

a time during data transmissions we can detect relay attacks successfully. Accurate

timing at the right level is critical in this endeavor. After detection, many different

actions can be taken. One such action could be a system that first issues warnings,

then completely stops communication.

By looking at the time it takes for a data read on a tag we can preserve the

existing technologies by adhering to the ISO specifications and enhance security at

the same time. This will not cause major changes to the protocols or the existing

devices on the market today. In the worst case this solution would simply warn

an end user of the possibility of a relay attack, thereby allowing all current NFC

devices to operate under the established protocols and simply alert them of possible

malicious activity. Implementing a solution such as this to fit within the current

ISO specifications without causing major changes or expense is important and this

solution fits that criteria.

This technology benefits many industries and allows for applications in fields

which could be extremely advantageous. We expect that the solutions presented

here will add both a level of security as well as value to NFC technology.
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Future work will include an analysis of other types of tags beyond the Mifare

Ultralight A. Additional relay attacks can be created using faster analog systems to

relay data at the bit level instead by sections. Providing a relay setup to do further

testing against the Android relay prevention code and finding additional constraints

with speed will increase our ability to prevent relay attacks.
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APPENDIX A

VERIFICATION OF TAG TIME MEASUREMENTS

The thirty tags we acquired from five different companies were as significantly

different as we could find, that were still all Mifare Ultralight A. All tags were

in groups of five. Some were large stickers, square, round, plastic, paper and key

chains. Due to constrains in the timing on the testing system we occasionally see

an additional 5 ms increase on the time resulting in a 12.2 ms response instead of

the normal 7.2 ms. We will address the reason for that difference in Appendix B.

The larger response at 12.2 ms all had 0.000 ms differences between those amounts.

While we bought thirty tags for testing, be the time we started taking readings, two

of the tags had failed and only twenty eight were included in the results. The two

tags that failed were from different places (number 16 and 24), not from the same

batch of five.

Table A.1 shows the significant differences in tag timing measurements reading

all data one section at a time. All time measurements were taken using the Arduino

micros() function on an Arduino Uno 16 MHz [6].

Tags Minimum Maximum Difference
1, 3, 5-6, 8-10, 13-15, 18-23, 26-30 7.227 7.233 0.006
2, 4, 7, 11-12, 17, 25 7.227 7.227 0.000

Table A.1: Tag timing using micros() function on Arduino. All times are in millisec-
onds (ms).

The data shows that the most significant difference we have is about 6 µs, and

46



some even smaller. The tag reading times are therefore deterministic to allow for an

accurate timing-based relay detector.
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APPENDIX B

REDUCING THE TIMING IN ARDUINO CODE

The code on the Arduino was originally taken from Adafruit [2]. When first

hooking up the PN532 to the Arduino we found the time for the read was excessive,

about 67 ms total. We attached the Logic16 analyzer to get a better understanding

of where all that extra time was occurring and found many delays spread through

the communication. Matching these timings up with the code we tracked down the

source of each delay. They were caused by calls to the delay() function at various

places. These delays over the course of the entire tag communication added up to

the large 67 ms time we had seen.

In order to get the most accurate and quickest timing analysis we eliminated all

of these delays. These delays were in place to give the PN532 a chance to respond

to requests from the Arduino and without them everything completed much more

quickly. There were several delays we could not avoid, but we did reduce them. By

removing them all we broke the communication, so we then built it back up until

it worked consistently. The only delays we could not remove completely ended up

being a delay waiting for the PN532 to send data after a request for data had gone

out to the device. This delay ended up being 4.795 ms which allowed almost all

sections to communicate. Occasionally, and inconsistently, the PN532 would not be

ready to respond when asked by the Arduino, in which case the Arduino would give

another delay of the 4.795 ms to the PN532 to respond. This caused an infrequent

spike in timing measurements by just over that amount. These higher reading always

returned the same time (12.251 ms) with no differences to the microsecond. These

were considered an anomaly due to tightening the constraints so much and not used
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Figure B.1: Graph showing the timing results of sections being read with the extra
5 ms jump. X axis is section being read, Y axis is time in milliseconds.

in the analysis of the differences in tag reads. You can see an example of the original

graph we created from the timing analysis with the 12.251 ms jump in Figure B.1.

This is the same graph from earlier where we show the 6 µs delay jump, but extended

to show the additional time difference.

49


