
BL1300
C-Programmable Controller

User�s Manual
Revision 3

Z-World � BL1300

User�s Manual � Part Number 019-0006-03
Revision 3 � 021-0021-03 � Printed in U.S.A.
Last Revised by TI � August 25, 1998

Copyright

© 1998 Z-World, Inc. All rights reserved.

Z-World reserves the right to make changes and improvements to its
products without providing notice.

Trademarks
� Dynamic C® is a registered trademark of Z-World.
� PLCBus� is a trademark of Z-World.
� SmartBlock

�
 is a trademark of Z-World.

� Windows® is a registered trademark of Microsoft Corporation.

Notice to Users
When a system failure may cause serious consequences, protecting life and
property against such consequences with a backup system or safety device
is essential. The buyer agrees that protection against consequences
resulting from system failure is the buyer�s responsibility.

This device is not approved for life-support or medical systems.

Company Address

Z-World
2900 Spafford Street
Davis, California 95616-6800 USA

Telephone:
Facsimile:

24-Hour FaxBack:
Web Site:

E-Mail:

(530) 757-3737
(530) 753-5141
(530) 753-0618
http://www.z w orld.com
zworld@zworld.com

BL1300 Table of Contents s iii

TABLE OF CONTENTS

About This Manual vii

Overview 1-1
BL1300 Overview.. 1-2
SmartBlock Features .. 1-4
Options and Upgrades .. 1-5
Software Development and Evaluation Tools 1-5

Getting Started 2-1
Initial BL1300 Setup .. 2-2

Parts Required ... 2-2
Connecting the BL1300 to a Host PC .. 2-2
Running Dynamic C ... 2-5

Test the Communication Line ... 2-5
Selecting Communications Rate, Port, and Protocol 2-5

Running a Sample Program ... 2-5

BL1300 Operation 3-1
Operating Modes ... 3-2

Run Mode .. 3-3
Changing Baud Rate on the BL1300 .. 3-3

EPROM.. 3-3
Programming EPROMs .. 3-3
Choosing EPROMs ... 3-4
Copyrights ... 3-5

System Development 4-1
Dynamic C Libraries .. 4-2
Data Communication ... 4-3

Parallel Communication .. 4-3
Serial Communication ... 4-3

Z180 Serial Ports ... 4-7
ASCI Status Registers ... 4-9

ASCI Control Register A .. 4-10
ASCI Control Register B .. 4-12

Software Drivers for Z180 Serial Ports 4-14

Serial Communication Controller Ports ... 4-16
RS-485 Network ... 4-17
SCC Baud Rate Generation ... 4-19
SCC Software Drivers ... 4-21

Parallel Communication ... 4-24
Parallel Connections ... 4-24
Using Protocol Switch PIOs ... 4-27

Use BL1300 to Drive a Printer ... 4-27
BL1300 Printer Emulation .. 4-28

BL1300 Digital Interfaces ... 4-29
PIO LSI Interface Chip ... 4-29

Using PIO Ports .. 4-31

References 5-1

Appendix A: Troubleshooting A-1
Out of the Box..A-2
Dynamic C Will Not Start ..A-2
Dynamic C Loses Serial Link ..A-3
BL1300 Resets Repeatedly ..A-3
Interrupts Off for Long Periods ...A-3
Input/Output Problems ...A-3
Power-Supply Problems ...A-3
Common Programming Errors ...A-4

Appendix B: Specifications B-1
Hardware Dimensions .. B-2
Jumper and Header Specifications ... B-4

Appendix C: Memory, I/O Map, and Interrupt Vectors C-1
BL1300 Memory ... C-2

Physical Memory .. C-2
Memory and Input/Output Cycle Timing C-3

Input/Output Cycle Timing ... C-5
Execution Timing .. C-6

Memory Map ... C-7
Input/Output Select Map ... C-7
Z180 Internal Input/Output Registers Addresses 00-3F C-8
KIO Registers 0040-004F on Dynamic Interface Board

(8-bit decode) ... C-10
BL1300 Registers 0080-00D0 (8-bit decode) C-11
Epson 72421 Timer Registers 4000-400F C-12
Other Addresses .. C-12

 iv s Table of Contents BL1300

BL1300 Table of Contents s v

Interrupt Vectors .. C-13
Nonmaskable Interrupts .. C-14

Power Failure Interrupts ... C-14
Jump Vectors ... C-15
Interrupt Priorities ... C-16

Initialized RAM Locations .. C-16

Appendix D: SmartBlock Subsystems D-1
EEPROM Parameters ..D-2
Library Routines ..D-3
Time/Date Clock ..D-3

Time/Date Functions ...D-4
Watchdog Timer ...D-5

Use of Watchdog Timer ..D-5

Appendix E: PLCBus E-1
PLCBus Overview ... E-2
Allocation of Devices on the Bus .. E-6

4-Bit Devices .. E-6
8-Bit Devices .. E-7

Expansion Bus Software .. E-7

 Appendix F: Simulated PLCBus Connection F-1
BL1300 .. F-2

Appendix G: Power Management G-1
Power Consumption ...G-2
Intermittent Operation ..G-2

Appendix H: Hardware Configuration H-1

Appendix I: Battery I-1
Battery Life and Storage Conditions ... I-2
Replacing Soldered Lithium Battery ... I-2
Battery Cautions ... I-3

Index

Schematics

 vi s Table of Contents BL1300

About This Manual s vBL1300

ABOUT THIS MANUAL

This manual provides instructions for installing, testing, configuring, and
interconnecting the Z-World BL1300 controller.

Instructions to get started using Dynamic C programming functions are
included. Complete C and Dynamic C references and programming
resources are referenced when necessary.

Assumptions
Assumptions are made regarding the user's knowledge and experience in
the following areas:

� Ability to design and engineer the target system that a BL1300 will
control.

� Understanding of the basics of operating a software program and
editing files under Windows on a PC.

� Knowledge of the basics of C programming.

� Knowledge of basic Z80 assembly language and architecture.

$ For a full treatment of C, refer to the following texts.

The C Programming Language by Kernighan and
Ritchie (published by Prentice-Hall).

and/or

C: A Reference Manual by Harbison and Steel
(published by Prentice-Hall).

$ For documentation from Zilog, refer to any of the
following texts.

Z180 MPU User's Manual
Z180 Serial Communication Controllers
Z80 Microprocessor Family User's Manual

BL1300vi s About This Manual

Acronyms
Table 1 lists acronyms that may be used in this manual.

Table 1. Acronyms

 Acronym Meaning

 EPROM Erasable Programmable Read Only Memory

 EEPROM Electronically Erasable Programmable Read
Only Memory

 NMI Nonmaskable Interrupt

 PIO Parallel Input/Output Circuit
(Individually Programmable Input/Output)

 PRT Programmable Reload Timer

 RAM Random Access Memory

 RTC Real Time Clock

 SIB Serial Interface Board

 SRAM Static Random Access Memory

 UART Universal Asynchronous Receiver Transmitter

Conventions
Table 2 lists and defines the typographic conventions that may be used in
this manual.

Table 2. Typographic Conventions

Example Description

 While Courier font (bold) indicates a program, a fragment of a
program, or a Dynamic C keyword or phrase.

 // IN-01… Program comments are written in Courier font, plain face.
 Italics Indicates that something should be typed instead of the

italicized words (e.g., in place of filename, type a file’s
name).

 Edit Sans serif font (bold) signifies a menu or menu selection.
 . . . An ellipsis indicates that (1) irrelevant program text is

omitted for brevity or that (2) preceding program text may
be repeated indefinitely.

 [] Brackets in a C function’s definition or program segment
indicate that the enclosed directive is optional.

 < > Angle brackets occasionally enclose classes of terms.
 a | b | c A vertical bar indicates that a choice should be made from

among the items listed.

About This Manual s viiBL1300

Programming Pseudo Types

For convenience, this manual uses the following pseudo types:

� uint means unsigned integer
� ulong means unsigned long

These pseudo types are not standard C keywords; therefore, they will not
function in an application unless first declared with typedef or
#define.

Pin Number 1

A black square indicates
pin 1 of all headers.

Measurements

All diagram and graphic measurements are in inches followed by millime-
ters enclosed in parenthesis.

Icons
Table 3 displays and defines icons that may be used in this manual.

J1Pin 1

Table 3. Icons

 Icon Meaning

 $ Refer to or see

 (Please contact

 Caution

 ! Note

 High Voltage

 7,3

Tip

 Factory Default

FD

BL1300viii s About This Manual

BL1300 Overview s 1-1

OVERVIEW

Chapter 1 provides an overview and a brief description of the BL1300
features.

BL13001-2 s Overview

BL1300 Overview
The BL1300 is a general-purpose communications hub that transfers and
controls data across any of its six communication ports, with an emphasis
on supporting IBM PC or compatible computers. The BL1300 consists of
a main board with a Z-World SmartBlockTM that provides the processing
power, as shown in Figure 1-1.

Figure 1-2 shows the layout of the main board and Figure 1-3 shows the
layout for the SmartBlock.�

Two ASCI serial ports (1 and 2) are implemented using the serial ports of
the Z180 microprocessor chip. These RS-232 ports are asynchronous.

Both Zilog Serial Communication Controller (SCC) serial ports (3 and 4)
can be configured as either RS-485/RS-422 or RS-232 interfaces, and are
implemented using the SCC. The SCC supports both asynchronous and
synchronous communications with various protocols, such as SDLC,
HDLC and Bisync. The clock can be transmitted on a separate signal line
or embedded in the data signal using any of several standard techniques.
Either full-duplex or half-duplex can be implemented in RS-485 multidrop
systems.

26-pin square
connectors
parallel ports SmartBlock

Microprocessor
Module

DB25 Connector

Reset
Pushbutton

DIN Connectors
RS-232 Drivers
RS-485 Drivers

Figure 1-1. BL1300 Features

BL1300 Overview s 1-3

U5

J7J8 J3 J2 J1

J4

R5

J5

J6 J10

Z180

CRYSTAL

U1

EEPROM

U4

U3 PAL

SRAM

CLOCK
U2

U6

Supervisor

U7

EPROM

Figure 1-3. SmartBlock Layout

P
1

P
2

P
3

P
4

U
5

J1
3

J1
5

J1
1

J7

J1

J8J9

U
10U
9

J2

J3

J1
2

J1
4

P
05

P
5

P
6

J5
J4

U
8

J6

J1
6

J1
0

PAL

Jack U
12

R
P

4R
P

1
R

P
2

R
P

3

SCC

PIO PIO

U
1

U
2

U
3

U
4

U
6

U
7

Reset
Pushbutton

LEDs

Figure 1-2. BL1300 Main Board Layout

BL13001-4 s Overview

The BL1300 has two 16-bit parallel ports with 16 lines that can be
configured as a Centronics style interface. Each line can be configured as
a TTL-level input or output. The lines can be programmed to interrupt the
microprocessor in response to various external signals. The ports are
implemented with the Zilog PIO. Cabling and software make it easy to use
these ports for bidirectional communications with a PC bidirectional
printer port. The maximum data rate is approximately 60,000 bytes per
second from the computer to the BL1300, or 30,000 bytes per second to
the PC. The parallel ports are general and can be used for other purposes,
such as driving industrial I/O Opto 22 racks.

The BL1300 can be mounted in the standard enclosure shown in Fig-
ure 1-4. The four mounting holes in the board can be used to mount the
board in another enclosure. Screw holes are also provided to fasten the
SmartBlock to the main board for high-vibration environments.

Figure 1-4. Optional BL1300 Enclosure

SmartBlock Features
� Z180 microprocessor running at 9.216 MHz

� Memory management unit (MMU) to address 1M

� Two programmable reload timers

� Two DMA channels.

� Two asynchronous serial ports

� One clocked serial port

� Dynamic Random Access Memory (DRAM) refresh unit

� Wait state generator

� Interface device for Motorola-type peripherals

� 32K SRAM with provision for battery backup, also accepts 128K,
256K, or 512K memory chips with 28 or 32 pins

� 32K EPROM, also accepts up to 256K chips with 28 or 32 pins

BL1300 Overview s 1-5

$ Appendix B provides detailed specifications for the BL1300.

For ordering information, or for more details about the
various options and prices, call your Z-World Sales
Representative at (530) 757-3737.

(

$ Z-World�s Dynamic C reference manuals provide complete
software descriptions and programming instructions.

� Epson 72421 battery backed time of day clock.

� 512 byte EEPROM, the upper 256 bytes can be write-protected

� Microprocessor supervisor provides power fail detect, power on reset,
battery backup and watchdog timer.

� 18.432 MHz system crystal providing a 9.216 MHz microprocessor
clock

� Lithium backup battery

Options and Upgrades
The following accessories are available for the BL1300.

� Protective enclosure

� Developer�s kit with RS-485/RS-422 driver chips and resistor packs for
RS-485 multidrop networks

� Switching power regulator

� Mini DIN-8 to DB25M cable

� Mini DIN-8 to DB9F null modem cable

� Mini DIN-8 to bare leads cable

Software Development and Evaluation Tools
Dynamic C, Z-World�s Windows-based real-time C language development
system, is used to develop software for the BL1300. The host PC down-
loads the executable code through the Dynamic C Interface Board to one
of the following places:

� battery-backed RAM, or
� ROM written on a separate ROM programmer and then substi-

tuted for the standard Z-World ROM.

This allows fast in-target development and debugging.

BL13001-6 s Overview

BL1300 Getting Started s 2-1

GETTING STARTED

Chapter 2 provides instructions for connecting the BL1300 to a host PC
and running a sample program.

BL13002-2 s Getting Started

Do not plug the transformer into the wall until all the
connections and jumpers have been set.

Only one set of drivers may be installed in U1/U2 or U3/U4
at one time. The ports will not work if both sets of drivers
are installed at the same time, and the components may be
damaged.

For information about the BL1300 accessory kit
containing the RS-485 drivers, call your Z-World Sales
Representative at (530) 757-3737.

(

Initial BL1300 Setup

Parts Required

� 24 V unregulated DC power supply

� Programming cable

� Dynamic C Interface Board

Connecting the BL1300 to a Host PC
1. Connect the power supply to the BL1300 power supply jack J4.

2. Check the drivers in positions U1, U2, U3, and U4. The factory-
installed LT1180 chips at U1 and U2 support RS-232 communication
at P3 and P4. To enable the RS-485/RS-422 ports at P3 and P4,
remove the LT1180 drivers from U1 and U2, and install a 75175 in U3
and a 75174 in U4. Figure 2-1 illustrates the locations.

P
1

P
2

P
3

P
4

U
5

J1
1

J7

J1 J1
0

R
P

4R
P

1
R

P
2

R
P

3

SCC

U
1

U
2

U
3

U
4

Reset
Pushbutton

Figure 2-1. Location of Driver Chips and Serial Ports

BL1300 Getting Started s 2-3

U02

J08

J01

J02

U03

J04

U06

U04

U05

J05

J03

U01

J07
J06

Reset
Button

57,500

19,200

9600

28,800

2 4 6 8

DC Power
Connector

R1

40-pin connection to BL1300
SmartBlock�

R
S

-4
85

R
S

-2
32

RS-232RS-485

Baud Rate

KIO

Jack

1416

1
15

Connect pins 1-2
to run program
in RAM

Connect pins 7-8 to
disable Interface Board
(behave as if not connected)

Leave disconnected

1012

Figure 2-2. Dynamic C Interface Board

Figure 2-3. Using Dynamic C Interface Board to Program BL1300

Transformer

J1

Dynamic C
Interface
Board

To PC

Programming
Cable

J01/J02

J06

BL1300

3. Set the jumpers on jumper block J04 of the Dynamic C Interface Board
for RS-232 or RS-485 according to the communication protocol to be
used. Set the baud rate using pins 3-4 and 5-6 on jumper block J07 on
the Interface Board. Connect pins 1-2 on J07 to run the program in the
battery-backed RAM on reset, instead of Dynamic C. Figure 2-2
shows the Interface Board and its jumper configurations.

4. Establish a serial communications link. Connect header J06 on the
Dynamic C Interface Board to the 40-pin header, J1, on the BL1300�s
SmartBlock.� The 40-wire cable is included with the Dynamic C
Interface Board. Figure 2-3 shows the connections.

BL13002-4 s Getting Started

6

To PC

5

1

2
3

9 3M 3473

3M 3631

9

1

To Dynamic C
Interface Board

9-pin to 25-pin
adapter
(optional)

To PC

Figure 2-4. BL1300 Developer�s Kit Programming Cable

A PC �communicates� with the BL1300 via the Dynamic C Interface
Board using an RS-232 or an RS-485 serial link. There are two 10-pin
serial headers on the Dynamic C Interface Board, one for RS-232
communication (J01) and one for RS-485 communication (J02).
Connect the programming cable to the appropriate header. Figure 2-4
shows the programming cable included in the developer�s kit.

Although the Interface Board has its own power supply connections at
J03, as shown in Figure 2-2, do not connect the transformer to the
Interface Board. The Interface Board will receive its power through
the 40-wire cable connecting it to the BL1300 SmartBlock.�

The reset button on the Interface Board is connected in parallel with
the reset button on the BL1300.

5. Connect pins 2-3 on SmartBlock jumper block J2 to write-enable the
EEPROM. Connect the pins on SmartBlock jumper block J3 to enable
the watchdog timer.

See Appendix D, �SmartBlock Subsystems,� for more
information about the EEPROM.$

6. The BL1300 is now ready for programming. The power supply
transformer may be plugged in and turned on.

BL1300 Getting Started s 2-5

See Appendix A, Troubleshooting, if an error message such as
Target Not Responding or Communication Error appears.

$
Once the necessary changes have been made to establish
communication between the host PC and the BL1300, use the
Dynamic C shortcut Ctrl Y to reset the controller and initiate
communication.

!

Running Dynamic C

Test the Communication Line

Double-click the Dynamic C icon to start the software. Note that the PC
attempts to communicate with the BL1300 each time Dynamic C is started.
No error messages are displayed once communication is established.

Selecting Communications Rate, Port, and Protocol

The communication rate, port, and protocol are all selected by choosing
Serial Options from Dynamic C�s OPTIONS menu.

The BL1300�s default communication rate is 19,200 bps. However, the
Dynamic C software shipped by Z-World may be initialized for a different
rate. To begin, adjust the communications rate to 19,200 bps.

Make sure that the PC serial port used to connect the serial cable (COM1
or COM2) is the one selected in the Dynamic C OPTIONS menu. Select
the 1-stop-bit protocol.

Running a Sample Program
A sample program, PSFLASH.C, is supplied in the Dynamic C SAMPLES
subdirectory. This program flashes the LEDs on the board.

Prior to running this test, be sure to set the communications parameters in
Dynamic C so that the PC and the BL1300 are handshaking properly.

1. Compile the program by pressing F3 or by choosing Compile from the
COMPILE menu. Dynamic C compiles and downloads the program.

2. Run the program by pressing F9 or by choosing Run from the RUN
menu. The LEDs on the BL1300 will begin flashing continuously.

4. Press Ctrl Z to stop execution of the program.

5. If needed, press F9 to restart execution of the program.

The Dynamic C SAMPLES subdirectory contains other sample programs
that illustrate the features of the BL1300. These programs may be used as
a basis for new applications.

BL13002-6 s Getting Started

BL1300 Operation s 3-1

BL1300 OPERATION

Chapter 3 describes how to use the BL1300, with a focus on

� how to set the run and programming modes, and

� how to burn a custom program on EPROM.

BL13003-2 s Operation

Operating Modes
A hardware reset takes place when the BL1300 is powered up, when the
reset button is pressed, or when the watchdog timer times out.

If a valid program (created with Dynamic C) has been installed in
EPROM, the program starts running. A valid program is recognized by a
code that Dynamic C places in the file used to burn the EPROM.

The flowchart in Figure 3-1 shows the startup sequence of the BL1300
after a hardware reset.

Valid
program in

EPROM?

Begin from
hardware reset

Dynamic C
Interface board

connected?

Run program.
YES

YES

NO

Flash Error Signal
LED 4

YES

Run application in RAM.

NO

YES

Valid program
in RAM?

Valid program
in RAM?

YES

Error halt
Dynamic C

Interface Board
connected?

Interface
Board J07:1-2
connected?

Run Dynamic C at baud
rate specified by Interface
Board J07:3-4 & J07:5-6

Figure 3-1. BL1300 Activity at Startup

BL1300 Operation s 3-3

If the Dynamic C EPROM is present on the board, the
BL1300 executes the program stored in battery-backed
RAM�that is, the program last run under Dynamic C. If
the Dynamic C EPROM has been replaced with a custom
EPROM, then the BL1300 executes that program.

!

Run Mode

Before running a program from battery-backed RAM, be sure pins 1 and 2
on jumper block J07 of the Dynamic C Interface Board are connected. If a
valid user program is already in EPROM, that program will run when the
reset button is pushed.

Changing Baud Rate on the BL1300

The baud rate may be changed by connecting the appropriate pins on
jumper block J07 of the Dynamic C Interface Board, as shown in Figure
2-2, then pushing the reset button.

Be sure the power to the BL1300 is disconnected before
changing any jumper connections.

EPROM

Programming EPROMs

Dynamic C can be used to create a file for programming an EPROM by
selecting the Compile to File option in the COMPILE menu. The BL1300
must be connected to the PC running Dynamic C during this step because
essential library routines must be uploaded from the Dynamic C EPROM
and linked to the resulting file. The output is a binary file (optionally an
Intel hex format file) that can be used to build an application EPROM.
The application EPROM is then programmed with an EPROM program-
mer that reads either a binary image or the Intel hex format file. The
resulting application EPROM can then replace the EPROM that came with
the BL1300.

Whenever the Dynamic C EPROM is replaced by a custom EPROM, the
BL1300 ignores the program in battery-backed RAM in favor of the
program stored in EPROM.

When doing program development with Dynamic C, it is best to use a
128K SRAM or larger. Dynamic C will work with a 32K SRAM, but the
total program space will be limited to 16K of root and 16K of extended
memory. This is enough for many programs, but it is inconvenient to run

BL13003-4 s Operation

out of memory during development. Once a program is burned into
EPROM, there is no reason to use SRAM larger than 32K unless the data
space is larger than 32K.

Choosing EPROMs

Socket U6 can accommodate several different types of EPROMs, includ-
ing the following.

27C256 32K 28 pins
27C512 64K 28 pins
27C010 128K 32 pins
27C020 256K 32 pins

When using a 28-pin EPROM, four pin positions at one end of the socket
are left empty, as shown In Figure 3-2.

The corresponding jumper settings for jumper blocks J4, J5, and J6 are
shown in Figure 3-3.

Either 28-pin or 32-pin SRAM chips may be used.

Figure 3-2. Placement of 28-pin and 32-pin EPROMs on BL1300

U1U5
32-pin
SRAM

U5
28-pin
SRAM

EPROM EPROM

U6 U6

J6

J5

J4

J6

J5

J4

J4

32K�128K
SRAM

256K�512K
SRAM

J5
64K or
larger

EPROM

32K
EPROM

J6

32-pin
EPROM

28-pin
EPROM

FD

FD FD

Figure 3-3. BL1300 Jumper Settings for Different-Sized SRAM and EPROM

BL1300 Operation s 3-5

Copyrights

The Dynamic C library is copyrighted. Place a label containing the
following copyright notice on the EPROM whenever an EPROM that
contains portions of the Dynamic C library is created.

©1991�1995 Z-World, Inc.

Your own copyright notice may also be included on the label to protect
your portion of the code.

Z-World grants purchasers of the Dynamic C software and the copyrighted
SmartBlock EPROM permission to copy portions of the EPROM library as
described above, provided that:

1. The resulting EPROMs are used only with the BL1300 control-
lers manufactured by Z-World, Inc., and

2. Z-World�s copyright notice is placed on all copies of the EPROM.

BL13003-6 s Operation

BL1300 System Development s 4-1

SYSTEM DEVELOPMENT

Chapter 4 provides the following information to develop the BL1300 for
specific uses.

� Dynamic C libraries

� Data communication

� Serial ports

� Serial Communication Controller ports

� Parallel communication

� Digital interfaces

BL13004-2 s System Development

Dynamic C Libraries
Functions specific to the BL1300 can be found in the software libraries
supplied with Dynamic C. These libraries are maintained in source code
so they can be easily modified or augmented by the user. The BL1300
functions are in the BL13XX.LIB, DRIVERS.LIB, PRPORT.LIB, and
SERIAL.LIB libraries.

Whenever unresolved calls to functions remain after an application is
compiled, Dynamic C scans all the source libraries for functions with that
name. When found, the functions are extracted from the library and are
compiled with the application. The libraries are scanned until no more
unresolved names are found, so library functions can call other library
functions and their order of appearance in the library is not important.

Dynamic C also accesses a library in the EPROM on the BL1300 board.
This library is in machine language and the library functions can be called
directly from a program. This library has the advantage that the code does
not need to be downloaded, reducing the compile time, particularly for the
standard version of Dynamic C with its slower communication rate. The
EPROM library version is used if the same function appears in both the
EPROM library and the source library.

Use the following preprocessor command to replace a function in the
EPROM library.

#KILL func1, func2, func3 . . .

This causes the specified functions in the EPROM library to be ignored.
Replaceable functions in the EPROM library have a period (.) in their
name. The KILL directive will change the period to an underscore (_),
causing a search for a legal C name to occur. Your own version of the
function can then be added to the program or taken from one of the
libraries.

BL1300 System Development s 4-3

Data Communication
The BL1300 is capable of both parallel and serial communication. These
options are described briefly in the following sections.

Parallel Communication

Parallel communication uses four or eight data paths to transfer data. In
serial communication, a single bit at a time is transferred, and only one
data path in the direction of transmission is required (two data paths are
required if an external data clock is used). Parallel communication can be
much faster, but is more expensive because of the need for multiple com-
munication lines.

Personal computers are usually equipped with a parallel communication
port to drive a printer. It is possible to communicate between the PC and
the BL1300 using such a parallel port at a much higher data rate than can
be obtained with a serial port, that is, about 40,000 bytes per second out of
the PC and 10,000 bytes per second to the PC. The maximum rate
possible on a serial port is 115,200 bits per second.

The parallel interface capability of the BL1300 makes it suited for many
jobs that could otherwise only be accomplished by using special interface
cards plugged into the PC. Parallel communication uses an interlocked
handshake so that data are not lost if the PC or BL1300 get distracted by
higher priority tasks. This high-speed protocol is discussed in more detail
later in this chapter.

Serial Communication

The serial data communication modes available on the BL1300 are varia-
tions of asynchronous and synchronous protocols, as shown in Figure 4-1.

Asynchronous serial communication is characterized by individual data
characters prefixed by a start bit and terminated by at least one stop bit,
with optional parity bits. Asynchronous data can be sent slowly, with
arbitrary gaps between characters. At least 10 bits must be sent to transmit
eight data bits. Data are sent with the least significant bit first.

Figure 4-2 shows the format of a single character.

Besides the overhead of the start and stop bits, another disadvantage to
asynchronous communication is the chance that the communications will
get out of sync with the data stream. This can occur if the data are sent
continuously, with the next start bit immediately following the last stop bit.
Although asynchronous communications can run at high speeds, particu-
larly if a separate clock line is used, it is more commonly used at lower
speeds of 115,200 bps or less.

BL13004-4 s System Development

S D D D D D D D D P ST ST

Start Bit Data Bits
7 or 8

Parity Bit Stop Bits
1, 1.5 or 2

T=1/baud_rate

RS-232 voltage levels are shown

Figure 4-2. Format of Single Character in Asynchronous
Serial Communication

Serial

Synchronous

External Clock
Clock Recovered from Data

Asynchronous

Monosync
Bisync
SDLC

Clock

Mode

Signal
Level

Unbalanced (RS-232)
Balanced (RS-485)

Encoding

Signal
Level

Modes

Clock

Unbalanced (RS-232)
Balanced (RS-485)

NRZ, NRZI, FM0, FM1

Internal, external

Parity, stop bits, data bits

Figure 4-1. Serial Communication Protocols

BL1300 System Development s 4-5

Synchronous communication does not use start and stop bits. It requires a
separate clock and a regular procedure for detecting the start of a message
and identifying the first bit. The clock can either be transmitted on a
completely separate line or embedded in the signal and then extracted by a
phase-locked loop.

SDLC is the most popular synchronous transmission method. SDLC is a
bit stream made up of a multiple of 8-bit bytes. It follows the rule that no
more than five 1s can appear consecutively in the data stream, and en-
forces this rule by inserting a �0� following any group of five 1s. The
receiver deletes any zeros following five 1�s, thus reversing the insertion of
the spurious zeros. A special flag character, �01111110,� with six 1s is
used to mark the start and end of a frame of data. A few other special
characters with more than five 1s are used for control.

This �bit stuffing� algorithm guarantees that there will be transitions in the
data stream when using NRZI encoding of the data. This makes it possible
to recover the clock from the data stream using a phase-locked loop. A
phase-locked loop observes transitions in the data stream and keeps inter-
nal clock transitions lined up with the transitions in the data by speeding up
or slowing down the internal clock by a small amount.

An SDLC data frame is followed by a special 2 byte cyclic redundancy
check word having a high probability of detecting errors in the data stream.
All bit stuffing and check sums are handled by hardware, allowing very
high data rates of millions of bits per second. Direct Memory Access
(DMA) transfers are necessary at baud rates above 400,000 bits per second
since data cannot be handled by programmed inputs/outputs at such
speeds. DMA transfers use special hardware to move data directly
between the microprocessor memory and the serial port.

Various errors can occur in serial communication. When a low is detected
where a stop bit should be, this is called a framing error. An overrun error
occurs if data come in faster than the microprocessor removes it, to the
point where the input queue overflows. A parity error occurs if parity is
enabled and the parity bit is not correct (it can be even or odd parity).

Serial data are often transmitted over wires using unbalanced (RS-232) or
balanced (RS-485/RS-422) voltage-level signaling. RS-232 signaling is
used by the standard IBM PC�s COM port. The voltage levels range from
�6 V for a �1� to +6 V for a �0.� RS-232 is suitable only for low to moder-
ate speeds over short distances, such as 15 m (50 ft). RS-485 signaling is
over a twisted-pair transmission line using balanced signaling�a �1�
indicates that the + signal is higher than the � signal, while a �0� indicates
the opposite. This type of signaling is suitable for longer distances and
data rates, such as 100,000 bits per second at 1000 m. Slower speeds and
thicker wire allow even greater distances. Usually the voltage swing on

BL13004-6 s System Development

each side of a balanced pair is 0 V to 2 V, although the standard allows a
much greater range and a considerable difference in ground potential
between the two sides of the link.

RS-485 communication can be full-duplex or half-duplex. In half-duplex,
the transmitter sends a message, then stops driving the transmission line.
The receiver can then begin to drive the line and send a reply. Data are
sent in one direction at a time and only a single twisted pair plus ground is
necessary. In full-duplex, a twisted pair in each direction is needed. The
communication is multidrop if a number of stations listen to the messages
at one time and have the option of replying. The twisted-pair communica-
tion lines must be terminated by their characteristic impedance and biased
if there are times when no transmitter is driving the line.

Modems are used to transmit data over the universal telephone system or
over lines too long for RS-485. Modems are also used for broadband
systems where many data signals are multiplexed at radio frequencies over
coaxial cable, radio, or microwave. Modems convert the high and low
voltage levels to shifts in frequency or phase of the signal in such a way
that the signal is not degraded by the transmission.

BL1300 System Development s 4-7

Z180 Serial Ports
Two of the BL1300�s serial ports use the asynchronous serial controller
interface (ASCI) built into the Z180 microprocessor. These ports are
available through P1 (Channel 0) and P2 (Channel 1) of the ASCI. These
ports can deliver a maximum baud rate of 57,600 bps with the standard
9.216 MHz system clock. There is a separate baud-rate generator for each
channel. The baud rate can be divided down from the microprocessor
clock for either channel. One of the internal DMA controllers can be used
with the internal serial ports. Figure 4-3 shows the signals available on
jacks P1 and P2.

The serial ports have an optional multiprocessor communication feature.
When enabled, an extra bit is included in the transmitted character where
the parity bit would normally go. Receiving Z180s can be programmed to
ignore all received characters except those with the extra multiprocessing
bit set. This provides a 1 byte attention message that can wake up a
processor without the processor having to intelligently monitor all traffic
on a shared communications link.

The block diagram in Figure 4-4 shows Serial Channel 0. Serial Channel 1
is similar, but modem control lines RTS1 and CTS1 are not available
directly. DTR and DCD from the serial communication controller can be
used if handshaking lines are required for Channel 1. Five of the seven
registers are directly accessible as internal I/O registers.

Z180_TXA0

Z180_TXA1

Z180_/RTS0

Z180_RXA0

Z180_RXA1

Z180_/CTS0

Z180
/TXA1
/RXA1

TXA1
RXA1

TXA0
RXA0

/TXA0
/RXA0

U6

U7/DTRA

/DCDA

/RTS0
/CTS0

RTS0
CTS0

DTRA
DCDA

SCC_/DTRA

SCC_/DCDA
SCC

J1

4

31

2 P4

P7

P4

P2

P6
P8

P1
P2

P1

P6
P8

P1
P2

8 7 6

5
4

3

12

P1 (z0)

1 RTS0

2 CTS0

6 TX

8 RX

Shield GND

P2 (z1)

1 DTRA (SCC)

2 DCDA (SCC)

6 TX

8 RX

Shield GND

MINI8

RS-232

RS-232

Back Side of
DIN Connector

Figure 4-3. Signals on BL1300 on P1 and P2 Jacks,
ASCI Channels 0 and 1, RS-232 Driver Chips

BL13004-8 s System Development

microprocessor internal bus

RDR0 TDR0

RSR0 TSR0RXA0 TXA0

Shift Register OutShift Register In

Baud Rate
Generator

CLKA0CNTLA0

STAT0

CNTLB0

�RTS0

�CTS0

�DCD0

Figure 4-4. Z180 Serial Channel 0

A separate interrupt vector is used by each of the two channels. The
interrupt vectors are SER0_VEC and SER1_VEC. The Channel 0 interrupt
has the higher priority.

The serial ports can be polled or interrupt-driven. A polling driver tests the
ready flags (TDRE and RDRF) until a ready condition appears (transmitter
data register empty or receiver data register full). If an error condition
occurs on receive, the routine must clear the error flags and take appropri-
ate action, if any. If the CTS line is used for flow control, transmission of
data is automatically stopped when CTS goes high because the TDRE flag
is disabled. This prevents the driver from transmitting more characters
because the driver thinks the transmitter is not ready. The transmitter will
still function with CTS high, but care should be exercised since TDRE is not
available to properly synchronize loading of the data register (TDR).

An interrupt-driven port works when the receiver interrupt is enabled as
long as the program wants to receive characters. The transmitter interrupt
is enabled only while characters are waiting in the output buffer. When an
interrupt occurs, the interrupt routine must determine the cause: receiver
data register full, transmitter data register empty, or receiver error. All of
these interrupts are level-triggered, and another interrupt will occur imme-
diately if the interrupts are re-enabled without disabling the condition
causing the interrupt.

BL1300 System Development s 4-9

ASCI Status Registers

The Z180 incorporates an asynchronous serial communication interface
(ASCI) that supports two independent full-duplex channels. Appendix C
summarizes the addresses of these registers. A status register for each
channel provides information about the state of each channel and allows
interrupts to be enabled and disabled.

 STAT0 (04H)
7 6 5 4 3 2 1 0

RDRF OVRN PE FE RIE /DCD0 TDRE TIE

R R R R R / W R R R / W

 STAT1 (05H)
7 6 5 4 3 2 1 0

RDRF OVRN PE FE RIE CTS1E TDRE TIE

R R R R R / W R / W R R / W

/DCD0 (Data Carrier Detect)

This bit echoes the state of the /DCD0 input pin for Serial Channel 0.
However, when the input to the pin switches from high to low, the data bit
switches low only after STAT0 has been read. The receiver is held reset as
long as the input pin is held high. This function is not generally useful
because an interrupt is requested as long as /DCD0 is a 1. This forces the
programmer to disable the receiver interrupts to avoid endless interrupts.
A better design would cause an interrupt only when the state of the pin
changes. This pin is tied to ground.

TIE (Transmitter Interrupt Enable)

This bit masks the transmitter interrupt. If set to 1, an interrupt is re-
quested whenever TDRE is 1. The interrupt is not edge triggered. This bit
must be set to 0 when there is a need to stop sending. Otherwise, interrupts
will be requested continuously as soon as the transmitter data register is empty.

TDRE (Transmitter Data Register Empty)

A 1 means that the channel is ready to accept another character. A high
level on the /CTS pin forces this bit to 0 even though the transmitter is ready.

CTS1E (CTS Enable, Channel 1)

The signals RXS and CTS1 are multiplexed on the same pin. A 1 stored in
this bit selects the pin to serve the CTS1 function. A 0 selects the RXS
function. (The pin RXS is the CSIO data receive pin.) The CTS line has
no effect when RXS is selected. It is not advisable to use the CTS1
function on the BL1300 because the RXS line is needed to control several
other devices on the board.

BL13004-10 s System Development

RIE (Receiver Interrupt Enable)

A 1 enables receiver interrupts and 0 disables them. A receiver interrupt is
requested under any of the following conditions: /DCD0 (Channel 0 only),
RDRF (receiver data register full), OVRN (overrun), PE (parity error), FE
(framing error). The condition causing the interrupt must be removed
before interrupts are re-enabled, or another interrupt will occur. Reading
the receiver data register (RDR) clears the RDRF flag. The EFR bit in
CNTLA is used to clear the other error flags.

FE (Framing Error)

A stop bit was missing, indicating scrambled data. This bit is cleared by
the EFR bit in CNTLA.

PE (Parity Error)

Parity is tested only if MOD1 in CNTLA is set. This bit is cleared by the
EFR bit in CNTLA.

OVRN (Overrun Error)

Overrun occurs when bytes arrive faster than they can be read from the
receiver data register. The receiver shift register (RSR) and receiver data
register (RDR) are both full.

RDRF (Receiver Data Register Full)

This bit is set when data are transferred from the receiver shift register to
the receiver data register. It is always set when one of the error flags is set,
in which case defective data are loaded to RDR. The bit is cleared when
the receiver data register is read, when the /DCD0 input pin is high, and by
RESET and IOSTOP.

ASCI Control Register A

Control Register A affects various aspects of the serial channel operation.

CNTLA0 (00H)
7 6 5 4 3 2 1 0

MPE RE TE /RTSO
MPBR/

EFR MOD2 MOD1 MOD0

R / W R / W R / W R / W R / W R / W R / W R / W

CNTLA1 (01H)
7 6 5 4 3 2 1 0

MPE RE TE CKA1D
MPBR/

EFR MOD2 MOD1 MOD0

R / W R / W R / W R / W R / W R / W R / W R / W

BL1300 System Development s 4-11

MOD0�MOD2 (Data Format Mode Bits)

MOD0 controls stop bits: 0 ⇒ 1 stop bit, 1 ⇒ 2 stop bits. If 2 stop bits
are expected, then 2 stop bits must be supplied.

MOD1 controls parity: 0 ⇒ parity disabled, 1 ⇒ parity enabled. (See
PEO in ASCI Control Register B for even/odd parity control.)

MOD2 controls data bits: 0 ⇒ 7 data bits, 1 ⇒ 8 data bits.

MPBR/EFR (Multiprocessor Bit Receive/Error Flag Reset)

Reads and writes on this bit are unrelated. Storing a byte when this bit is 0
clears all the error flags (OVRN, FE, PE). Reading this bit obtains the
value of the MPB bit for the last read operation when multiprocessor mode
is enabled.

/RTS0 (Request to Send, Channel 0)

Store a 1 in this bit to set the RTS0 line from the Z180 high. This line is
further inverted by the output driver. This bit is essentially a 1-bit output
port without other side effects.

CKA1D (CKA1 Disable)

This bit controls the function assigned to the multiplexed pin (CKA1/�
TEND0): 1 ⇒ �TEND0 (a DMA function) and 0 ⇒ CKA1 (external clock
I/O for Channel 1 serial port).

TE (Transmitter Enable)

This bit controls the transmitter: 1 ⇒ transmitter enabled, 0 ⇒ transmitter
disabled. When this bit is cleared, the processor aborts the operation in
progress, but does not disturb TDR or TDRE.

RE (Receiver Enable)

This bit controls the receiver: 1 ⇒ enabled, 0 ⇒ disabled. When this bit is
cleared, the processor aborts the operation in progress, but does not disturb
RDR, RDRF, or the error flags.

MPE (Multiprocessor Enable)

This bit (1 ⇒ enabled, 0 ⇒ disabled) controls multiprocessor communica-
tion mode which uses an extra bit for selective communication when a
number of processors share a common serial bus. This bit has effect only
when MP in Control Register B is set to 1. When this bit is 1, only bytes
with the MP bit on will be detected. Others are ignored. All bytes
received are processed if this bit is 0. Ignored bytes do not affect the error
flags or RDRF.

BL13004-12 s System Development

CNTLB0 (02H) and CNTLB1 (03H)
7 6 5 4 3 2 1 0

MPBT MP /CTS
PS

PEO DR SS2 SS1 SS0

R / W R / W R / W R / W R / W R / W R / W R / W

ASCI Control Register B

Control Register B for each channel configures the multiprocessor mode,
parity, and baud rate selection.

SS (Source/Speed Select)

Coupled with the prescaler (PS) and the divide ratio (DR) The SS bits
select the source (internal or external clock) and the baud rate divider, as
shown in Table 4-1.

The prescaler (PS), the divide ratio (DR), and the SS bits form a baud-rate
generator (see Figure 4-5).

Prescaler
(PS) Divider

Divide
Ratio
(DR)Processor

Clock
External

Clock
16
or
64

1
2
...

64

÷10
or

÷30

Figure 4-5. Baud-Rate Generator

DR (Divide Ratio)

This bit controls one stage of frequency division in the baud-rate generator.
If 1 then divide by 64. If 0 then divide by 16. This is the only control bit
that affects the external clock frequency.

Table 4-1. Baud Rate Divide Ratios
for Source/Speed Select Bits

SS2 SS1 SS0 Divide Ratio

0 0 0 ÷ 1

0 0 1 ÷ 2

0 1 0 ÷ 4

0 1 1 ÷ 8

1 0 0 ÷ 16

1 0 1 ÷ 32

1 1 0 ÷ 64

1 1 1 external clock

BL1300 System Development s 4-13

PEO (Parity Even/Odd)

This bit affects parity: 0 ⇒ even parity, 1 ⇒ odd parity. It is effective only
if MOD1 is set in CNTLA (parity enabled).

�CTS/PS (Clear to Send/Prescaler)

When read, this bit gives the state of external pin /CTS: 0 ⇒ low,
1 ⇒ high. When /CTS pin is high, RDRF is inhibited so that incoming
receive characters are ignored. When written, this bit has an entirely
different function. If a 0 is written, the baud rate prescaler is set to divide
by 10. If a 1 is written, it is set to divide by 30.

MP (Multiprocessor Mode)

When this bit is set to 1, multiprocessor mode is enabled. The multipro-
cessor bit (MPB) is included in transmitted data.

start bit, data bits, MPB, stop bits

The MPB is 1 when MPBT is 1 and 0 when MPBT is 0.

MPBT (Multiprocessor Bit Transmit)

This bit controls the multiprocessor bit (MPB). The MPB is 1 when
MPBT is 1 and 0 when MPBT is 0. When the MPB is 1, transmitted bytes
will get the attention of other units listening only for bytes with MPB set.

Table 4-2 relates ASCI Control Register B to the baud rate in bits per
second. The baud rate at 18.432 MHz is, of course, twice that at
9.216 MHz.

Table 4-2. Baud Rates for ASCI Control Register B

ASCI
B Value

Baud Rate at
9.216 MHz

(bps)

Baud Rate at
18.432 MHz

(bps)

ASCI
B Value

Baud Rate at
9.216 MHz

(bps)

Baud Rate at
18.432 MHz

(bps)

00 57,600 115,200 20 19,200 38,400

01 28,800 57,600 21 9600 19,200

02 or 08 14,400 28,800 22 or 28 4800 9600

03 or 09 7200 14,400 23 or 29 2400 4800

04 or 0A 3600 7200 24 or 2A 1200 2400

05 or 0B 1800 3600 25 or 2B 600 1200

06 or 0C 900 1800 26 or 2C 300 600

0D 450 900 2D 150 300

0E 225 450 2E 75 150

BL13004-14 s System Development

Software Drivers for Z180 Serial Ports

A function to compute the control word for CNTLB0/CNTLB1 is built
into the following function call.

int z180baud(int clock, int baud)

This functions return the byte to be stored in CNTLB0/CNTLB1, consider-
ing only the bits needed to set the baud rate. Both the clock and baud rates
are expressed in multiples of 1200. Thus a 9.216 MHz clock is expressed
as 7680 and 19,200 bits per second is expressed by 16. The return value is
�1 if the baud value cannot be derived from the given clock frequency.
The function sysclock returns the system clock frequency in multiples of
1200 Hz.

Each port is supported by four routines that control initialization, sending,
receiving, and resetting. These routines are full-duplex, buffer-oriented,
and interrupt-driven. These library functions can be used to send and
receive messages on Serial Port 1.

int ser_init_z1(char mode, char baud)
int ser_send_z1(char* buf, byte* count)
int ser_rec_z1 (char* buf, byte* count)
int ser_kill_z1()

The function ser_init_z1 initializes Serial Port 1 as specified. The
mode parameter is a set of flags, as shown below. The baud parameter is
expressed in multiples of 1200 bits per second.

bit 0 0 1 stop bit
1 2 stop bits

bit 1 0 no parity
1 parity enabled

bit 2 0 7-bit data
1 8-bit data

bit 4 0 even parity
1 odd parity

For example, the statement below would initialize Port Z1 to communicate
with 8 data bits, no parity, and 1 stop bit at 9600 baud.

ser_init_z1(4,9600/1200); // Initialize ZIO port 1

After initialization, the functions ser_send_z1 and ser_rec_z1 are
used to transfer data between the buffer and the serial port. The count
parameter is decremented as characters are transferred. When count
reaches zero, the transfer stops and the serial port is disabled. The calling
program can monitor count to see the progress of the transfer. The
ser_kill_z1 function immediately turns off both send and receive.

BL1300 System Development s 4-15

It is important to remember that the serial routines supplied with
Dynamic C are interrupt-driven. This means that the transmission will
continue in the background while the program is doing other things.
Pointers are passing to a counter and a buffer. Both the counter and the
buffer are changed by the interrupt routines. Always use static or global
variables for the counter and buffer.

A demonstration program, SER_DEMO.C, is available to demonstrate the
use of the serial driver.

Declare count to be a shared variable if the library
functions are modified so that count is an int rather than
a char.

!

The stack and the program will be corrupted if pointers to
function variables stored on the stack are passed to the
interrupt service routine and then that function is exited.

!

Make count a shared variable if the library functions are
modified so that count is larger than a byte.!

BL13004-16 s System Development

Serial Communication Controller Ports
The serial communication controller (SCC) ports of the BL1300 can be
configured to be either RS-232 or RS-485. They are factory-configured as
RS-232 ports with RTS/CTS handshaking for both ports. SCC Channel A
can also use the DCDA and DTRA signals when pins 1�3 and 2�4 on
header J1 are connected. These signals are hardwired into jack P2, which
is controlled by ZIO Channel 1, so care is needed when using both
channels. Figure 4-6 shows the signals and jumper connections available
to configure the SCC RS-232 ports.

See Chapter 2, �Getting Started,� for details about enabling
the RS-485 ports in jacks P3 and P4 by replacing the RS-232
driver chips with RS-485 driver chips.

$

SCC_/DTRA

SCC_/DCDA

SCC_RXCA

SCC_/CTSA

SCC_TXCA

SCC_TXDA

SCC_RXDA

SCC_/RTSA

U7

/DTRA

/DCDA
DTRA
DCDA

U2U4

U2U3

TXDA

RXDA

J15

J14

J12

U2

P41

P42

/TXDA

/RXDA

J13 U1U4

U1U3

P31

P32

/TXDA
/RXDA

TXDA

RXDA

U1SCC_RXCB

SCC_/CTSB

SCC_TXCB

SCC_TXDB
SCC_RXDB

SCC_/RTSB

SCC

J1
4

31

2

MINI8

P2

P6
P8

P1
P2

P4
P1

P4
P7

P2

P6

P8

P3

P1

P2

P6

P8

P3 (scc1)

1 /RTSB

 or

 TXCB

2 /CTSB

 or

 RXCB

6 TX

8 RX

Shield GND

P4 (scc0)

1 /RTSA

 or

 TXCA

2 /CTSA

 or

 RXCA

4 DTRA

7 DCDA

6 TX

8 RX

Shield GND

8 7 6

5
4

3

12

RS-232

RS-232

RS-232

Back Side of
DIN Connector

Figure 4-6. Signals on BL1300 on P3 and P4 Jacks,
SCC Channels A and B, RS-232 Driver Chips

BL1300 System Development s 4-17

RS-485 Network

Figure 4-7 shows the signal flow and jumpers available for configuring the
SCC RS-485 ports.

Figure 4-7. Signals on BL1300 on P3 and P4 Jacks,
SCC Channels A and B, RS-485 Driver Chips

SCC_/DTRA

SCC_/DCDA

SCC_RXCA

SCC_/CTSA

SCC_TXCA

SCC_TXDA

SCC_RXDA

SCC_/RTSA

U7
/DTRA

/DCDA
DTRA
DCDA

U2U4

TXDA

J15

J14 U4 P1
P4

U2U3

RXDA U3

SCC

J1
4

31

2

MINI8

P2

P6
P8

P1
P2

P4

8 7 6

5
4

3

12

P6
P3

P2
P7

P8
P5

P2
P7

P8
P5

P6
P3

P1
P4

P4 (scc0)

1 /RTS-

 or

 TXC-

2 /CTS+

 or

 RXC+

3 TX-

4 /RTS+

 or

 TXC+

5 RX-

6 TX+

7 /CTS-

 or

 RXC-

8 RX+

Shield GND

RS-232

RS-485

RS-485

Back Side of
DIN Connector

(a) SCC Channel A, RS-485 Driver

U1U4

TXDB

J13

J12 U4 P1
P4

U1U3

RXDB U3

SCC
P3

8 7 6

5
4

3

12

P6
P3

P2
P7

P8
P5

P2
P7

P8

P5

P6
P3

P1
P4

SCC_TXDB

SCC_RXDB

SCC_/RTSB

SCC_TXCB

SCC_/CTSB

SCC_RXCB

P3 (scc1)

1 /RTS-

 or

 TXC-

2 /CTS+

 or

 RXC+

3 TX-

4 /RTS+

 or

 TXC+

5 RX-

6 TX+

7 /CTS-

 or

 RXC-

8 RX+

Shield GND

RS-485

RS-485

Back Side of
DIN Connector

(b) SCC Channel B, RS-485 Driver

BL13004-18 s System Development

Do not install jumpers at J1 for Channel A when using the
RS-485 driver, as these are connections for DCDA and
DTRA with an RS-232 interface.

Four resistor packs are supplied with the BL1300 accessory kit: 120 Ω
(RP4, red dot, Bourne PN 4608X-102-121), 220 Ω (RP3, yellow dot,
Bourne PN 4608X-102-221), and 680 Ω (RP2, RP1, green dot, Bourne PN
4608X-102-681). The 120 Ω resistor pack (RP4) is for terminating
RS-485 multidrop networks that have a long length. These packs should
only be installed in the first and last boards in the network; a terminating
resistor pack usually has to be installed in the last board in the network.
Resistor packs for RP1, RP2 and RP3 provide bias for the signal pairs.
These resistor packs are only needed for half-duplex multidrop networks
when there is a chance that there will be no board driving a line.

Figure 4-8 shows the locations for installing these resistor packs.

P
1

P
2

P
3

P
4

U
5

J1
1

J7

J1 J1
0

R
P

4R
P

1
R

P
2

R
P

3

SCC

U
1

U
2

U
3

U
4

Reset
Pushbutton

Figure 4-8. Location of BL1300 Bias and Termination Resistor Packs

Figure 4-9 shows the mini DIN-8 connections on the BL1300 board. The
view is from the bottom of the board with the mini DIN-8 connectors on
the right edge of the board.

1
2

3
4

5

6

7
8

Figure 4-9. BL1300 mini-DIN Connections
(view from bottom side of board)

BL1300 System Development s 4-19

SCC Baud Rate Generation

The clock used by the SCC, PCLK, operates at the same frequency,
9.216 MHz, as the SmartBlock system clock. The frequency of the
SmartBlock system clock can be changed by changing the crystal on the
SmartBlock.�

In addition to using the SmartBlock system clock as a source for clocking
data communications, the SCC can use either a separate oscillator crystal
or an externally supplied clock for each of its two channels. The clock
source is divided by internal baud-rate generators so that each channel is
able to generate its own clock at the desired frequency.

A third source of a clock is the digital phase-locked loop inside the SCC,
which can recover clock information from the incoming signal.

Figure 4-10 illustrates these clock generation schemes.

When there is no clock supplied externally, the maximum data rate for
asynchronous communication is 1/16 the maximum baud rate, which is ¼
the system PCLK. Two formulas are available to calculate the time
constant when the baud rate is known, or to calculate the baud rate when
the time constant is known.

2
rate baudrateclock2

frequencyclock
constanttime −

××
=

2)constanttime(rateclock2

frequencyclock
ratebaud

+××
=

PCLK

RTxC

RTxC

BAUD

BAUD

DPLLDigital Phase-
Locked Loop

Baud-
Rate

Generator

Baud Rate Generator

Baud rate divisor is
4 to 262144

Maximum clock frequency is
20 MHz

Digital Phase-Locked Loop

Figure 4-10. Alternate SCC Clock Generation Schemes

BL13004-20 s System Development

The baud rates listed in Table 4-3 can be obtained with various baud rate
divisors and a system clock of 9.216 MHz, or with the auxiliary
7.3728 MHz crystal installed on Channel A. The auxiliary crystal in-
creases the choice of baud rates to all the baud rates that are obtainable
from the serial port on an IBM PC.

The maximum baud rate in synchronous modes or in asynchronous mode
with an external clock is 16 times higher, or 2.304 MHz, when the
9.216 MHz PCLK is used.

The SCC has a built in digital phase-locked loop that can be used to
recover a clock from a data stream. When the internal phase-locked loop
is used to generate the clock from the data stream, the data rate is limited
to 1/16 or 1/32 the driving frequency of the phase-locked loop, which in
turn is limited to 10 MHz, the maximum auxiliary crystal frequency that is
allowed. The 1/16 factor applies in FM0 and FM1 modes. The 1/32 factor
applies in NRZ, NRZI and Manchester modes. This limits the maximum
data rate to 625,000 bps in the FM mode, and to 312,500 bps in the other
modes.

Table 4-3. SCC Baud Rates for Selected Divisors and Clock
Frequencies

Clock Frequency Asynchronous Parameters

9.216 MHz 7.3728 MHz Time Constant Divisor

144,000 115,200 0 64

96,000 76,800 1 96

72,000 57,600 2 128

57,600 46,080 3 160

48,000 38,400 4 192

36,000 28,800 6 256

32,000 25,600 7 288

28,800 23,040 8 320

24,000 19,200 10 384

19,200 — 13 480

14,400 — 18 640

12,000 9,600 22 768

9,600 — 28 960

BL1300 System Development s 4-21

The various methods of encoding and decoding the data stream are shown
in Figure 4-11. The SCC can decode Manchester data, but it cannot
encode it. The NRZ mode can be used in an asynchronous mode or with
an external clock. The NRZI mode provides sufficient transitions to
recover the clock if SDLC is used. SDLC never has more than five 1�s in
sequence because of the �bit stuffing� used. The clock can always be
recovered in the FM modes.

1 1 0 0 1 0Data

NRZ

NRZI

FM1

FM0

Manchester

Direct representation

Transition on zero

Extra transition on 1

Extra transition on 0

Transition in center,
up zero, down 1

Figure 4-11. Methods for Encoding and Decoding
Data Stream in SCC

SCC Software Drivers

The BL1300 lacks both a hardware reset for initializing the SCC ports and
an interrupt line for the SCC. Always perform a software reset upon entry
into the program. The SCC uses INT1 to generate an interrupt to the
processor. This interrupt must be enabled before the SCC functions
supplied in BL13XX.LIB can be used. The following program lines
perform a software reset for both channels and enables INT1.

scc_rst(2);
outport(ITC, inport(ITC) | 0x02);

The function scc_rst(channel) accepts a channel number to specify an
individual channel or a 2 to reset both channels. After resetting the SCC
ports and enabling INT1, use the following library functions to send and
receive messages on SCC Serial Ports 0 and 1.

int asyn_init_scc0 (char mode, char baud)
int asyn_send_scc0 (char* buf, char* count)
int asyn_rec_scc0 (char* buf, char* count)
int asyn_kill_scc0 ()
int asyn_init_scc1 (char mode, char baud)
int asyn_send_scc1 (char* buf, char* count)
int asyn_rec_scc1 (char* buf, char* count)
int asyn_kill_scc1 ();

BL13004-22 s System Development

If the library functions are modified so that count is type
int rather than char, then count should be declared to be
a shared variable.

!

The function asyn_init_sccx initializes the specified SCC port. The
mode parameter controls the data format as follows.

bit 0 0 1 stop bit
1 2 stop bits

bit 1 0 no parity
1 parity enabled

bit 2 0 7-bit data
1 8-bit data

bit 3 0 even parity
1 odd parity

bits 5 & 4 clock rate
0 0 data rate
0 1 16 times data rate
1 0 32 times data rate
1 1 64 times data rate

bit 6 0 use system clock (9.216 MHz)
1 user-installed crystal

For example, if mode is 0x14, the port is set for 8-bit data, no parity, 1
stop bit and 16 times data rate. If mode is 12, the port is set for 7-bit data,
even parity, one stop bit and 16 times data rate. Always use at least 16
times data rate for asynchronous communications. Using 1 times data rate
will result in framing errors.

The baud parameter must be expressed in multiples of 1200 bps. For
example, a value of 8 specifies 9600 bps. If a user-installed crystal is used,
set the external integer variable CLOCKSPEED to 1/1200 the speed of the
crystal. For example, a 7.3728 Hz crystal (crystal for Port 0 installed in
factory) would require a value of 6,144. Save the actual value of
CLOCKSPEED and restore it after initializing the SCC port.

After initialization, the functions asyn_send_sccx and asyn_rec_sccx
are used to transfer data between the buffer and the serial port. The count
parameter is a pointer to a type char that is decremented as characters are
transferred. When count reaches zero, the transfer stops and the serial
port is disabled. The count parameter can be monitored to see the
progress of the transfer. The asyn_kill_sccx function immediately
turns both send and receive off.

BL1300 System Development s 4-23

It is important to remember that the SCC routines supplied with
Dynamic C are interrupt-driven. This means that they will continue to
execute in the background while the main program continues running.
This is a problem only if the send or receive routines are called from
functions other than main. Remember that pointers are being passed to a
counter and a buffer, and these items will be changed by the interrupt
routines. The stack will become corrupted if the interrupt routine pointers
are passed to variables stored on a function�s stack and then that function is
exited. Always use static or global variables for count and buf.

Because of the high baud rates available to the SCC, data can be input
faster than even a polled driver can handle. DMA transfers, which support
these high data rates, are supported with the following functions.

int dma_mem_scc0 (long mem, int size);
int dma_scc0_mem (long mem, int size);
int dma_mem_scc1 (long mem, int size);
int dma_scc1_mem (long mem, int size);

These functions use the Z180�s DMA channels to transfer data between a
memory location and an SCC port. The memory location can be within the
Z80�s 64K code space, or the memory location can be at any physical
SRAM location that is not mapped into code space. The long mem
argument is the physical address of the buffer. The function phy_adr(
char* buf) returns the long address of a Dynamic C variable. This
variable should be global or static to avoid problems with overwriting the
stack.

The function dma_mem_sccx outputs characters to the SCC port, while
dma_sccx_mem inputs characters. The demonstration programs
DMA_OUTx.C, DMA_INx.C and DMALPBK.C provide examples of the use
of the DMA transfer functions.

For a complete description of the Z85C30 SCC, consult the
Serial Communication Controllers manual, available from
Zilog or from Z-World.

$

BL13004-24 s System Development

Parallel Communication
The �standard� IBM PC printer port originated with the original IBM PC
and is probably a variation of a printer port designed by the Centronics
Company. The BL1300 is able to communicate with such a port.

These three methods for using the printer port are available.

1. The BL1300 looks to the PC like a printer. Thus, unmodified PC
software can send print output to the BL1300

2. The BL1300 drives an IBM-style printer.

3. The printer ports are used for bidirectional communications at much
higher speeds than can be obtained using serial ports. Data rates of
60,000 bytes per second are possible.

Parallel Connections

Figure 4-12 shows the standard cables and connectors for interfacing the
BL1300 to a Centronics parallel port.

Standard
IBM PC
printer cable

EIA DB25
connector
(female, front
view, interface
end)

Centronix style
36-pin
connector
(printer cable
end, male)

1

19

18
36

1
2

25

26

1

14

13
25

Communication bits:
D0-D7 outbound bits
B0-B3 inbound bits

N.C.

Figure 4-12. Interfacing BL1300 with Centronics Parallel Port

The BL1300 has two parallel ports. Both ports are available on 26-pin
headers that cable directly to a DB25 connector with the correct assign-
ments for a printer port. One of the ports is also available on a female
DB25 connector.

BL1300 System Development s 4-25

Table 4-4. BL1300 PIO Pin Assignments

PIO Pin
No.

DB25
Pin No. Description PIO Pin

No.
DB25

Pin No. Description

1 1 PB0 / –Strobe 14 20 GND

2 14 AF2=+5 / –Autofeed 15 8 PA6 / Data Bit 6

3 2 PA0 / Data Bit 0 16 21 GND

4 15 PB7–B3 / -Error 17 9 PA7 / Data Bit 7

5 3 PA1 / Data Bit 1 18 22 GND

6 16 PB2=INIT1 / –Int 19 10 PB1 / –Ack

7 4 PA2 / Data Bit 2 20 23 GND

8 17 PB3 / –Select Input 21 11 PB4–B0 / +Busy

9 5 PA3 / Data Bit 3 22 24 GND

10 18 GND 23 12 PB5–B1 / +P. End

11 6 PA4 / Data Bit 4 24 25 GND

12 19 GND 25 13 PB6–B2 / +Select

13 7 PA5 / Data Bit 5 26 — not connected

A standard PC printer cable has a 36-pin male Centronics connector on the
printer end and a 25-pin male DB25 connector on the other end. The PC
printer interface and the BL1300 both have a DB25 female connector. A
straight through male-male DB25 cable can be used to connect the
BL1300 parallel port to a PC parallel port, allowing high-speed communi-
cation with the proper software.

Table 4-4 lists the signals on the corresponding PIO parallel ports and the
printer interface lines. Lines PA0�PA7 belong to PIO Port A and lines
PB0�PB7 belong to PIO Port B.

BL13004-26 s System Development

Table 4-5 maps the pins on the DB25 connector to the pins on the
Centronics connector.

Table 4-5. DB25 and Centronics Pin Mapping

BL1300
Signal

DB25 Pin
No.

Centronix
Pin No. Name Function

PA0 2 2 Data 0 Parallel data line to printer

PA1 3 3 Data 1 Parallel data line to printer

PA2 4 4 Data 2 Parallel data line to printer

PA3 5 5 Data 3 Parallel data line to printer

PA4 6 6 Data 4 Parallel data line to printer

PA5 7 7 Data 5 Parallel data line to printer

PA6 8 8 Data 6 Parallel data line to printer

PA7 9 9 Data 7 Parallel data line to printer

PB0 1 1 –Strobe
Negative-going 1 µs pulse to
indicate data ready on data
lines

PB1 10 10 –Ack
Negative-going 5 µs pulse to
indicate data received by
printer

PB2 31 16 –Int 50 µs pulse to initialize printer

PB3 36 17
–Select
Input

Set negative to indicate printer
is selected (do not drive high)

PB4 11 11 +Busy
Indicates printer cannot
receive data

PB5 12 12
+P.
End

Indicates printer is out of
paper

PB6 13 13 +Select Indicates printer is selected

PB7 32 15 –Error Iindicates error, off line, etc.

+5 V 14 14
–Auto
Feed

Causes printer to automati-
cally add a line feed in certain
circumstances; pull high with
resistor if needed

GND All others Signal ground

BL1300 System Development s 4-27

Figure 4-13 shows the standard communication protocol between a PC and
a printer.

Strobe

Busy

Ack

~5 µs

~5 µs

Interrupt on
falling edge
if enabled

Standard IBM Protocol

Data

Figure 4-13. Standard PC�Printer Communication Protocol

The standard protocol can be captured with the BL1300�s PIO Port 0
mimicking a printer.

Using Protocol Switch PIOs

The functions in this section are in the Dynamic C PRPORT.LIB library.
The PIO port addresses in the function descriptions depend on which
device is being run with the BL1300. The BL1300 preprocessor needs the
port addresses. Use one of the following commands for functions that do
not specify the PIO port directly.

#ifdef USEPS1 1 // use PIO Port B on the
// BL1300

#define PIODA_1 0x90
#define PIOCA_1 0x92
#define PIODB_1 0x91
#define PIOCB_1 0x93

#else // use PIO Port A on the
// BL1300 (default)

#define PIODA_1 0x80
#define PIOCA_1 0x82
#define PIODB_1 0x81
#define PIOCB_1 0x83

Use BL1300 to Drive a Printer

� int prsend0_init()

Initializes the PIO Port 0 to output characters to an IBM-style printer.

� int prsend0(char data)

Sends one character to the printer connected to PIO Port 0.

BL13004-28 s System Development

Use the functions prsend1_init and prsend1 for PIO Port 1.

The functions prsend0 and prsend1 return the following codes.

0 character sent correctly

1 printer is off line

2 printer is out of paper

These functions are not interrupt-driven.

BL1300 Printer Emulation

Several functions enable the BL1300 to receive data like a printer.

� int plink_init0(struct circ_buf *ptr,
char* buf, int amask)

Initializes first PIO port to receive characters sent to a printer.

PARAMETERS: circ_buf has several indices and a mask.

ptr points to one structure in static memory used to keep track of data
in the buffer.

buf points to an array that must be a power of 2 in size.

amask reflects the size of *buf, and is 7, 15, 31, 63, 127, etc., depend-
ing on the buffer size. If the buffer size is 128 bytes, then the mask
must be 127.

� int plink_rdy0()

Returns 1 if a printer character is waiting in the buffer. Returns zero if
the buffer is empty.

� int plink_getc0(int no_purge)

Retrieves the next character from the circular buffer. If no_purge is 1,
the character is not removed from the buffer. If no_purge is 0, the
character is removed from the buffer.

Interrupts must be enabled when this function is called.

These BL1300 printer emulation functions are interrupt-driven. Each
character received causes an interrupt that adds the character to the buffer.

BL1300 System Development s 4-29

BL1300 Digital Interfaces

PIO LSI Interface Chip

The Zilog PIO interface chip at U9 and U10 is a 44-pin chip that provides
16 parallel input/output lines, each of which can be set up individually as
an input or an output. The lines can also be used to detect transitions and
interrupt the microprocessor in various ways. Figure 4-14 illustrates the
interface signals.

PB0

PA0

PA1

PA3

PA4

PA5

PA6

PA7

AF1

3

5

7

9

15
17

19

21

23

25

2

4

6

13

11

8

+5 V

10 kΩ

+5 V
10 kΩ

P5/P6

PB1

PB4

PB5

PB6

PA2

PB7

PB2 or INIT

PB3

10 kΩ

J6
1

3

5

7

9

2

4

6

8

10

ARDY1

BRDY1

ARDY2

BRDY2

GND

/ASTB1

/BSTB1

/ASTB2

/BSTB2

GND

1

2

3

PB2

INIT

/RESET

J5
PIO Port A = P5/P05
PIO Port B = P6

Figure 4-14. PIO Header Connections

The PIO lines are available on headers P5, P05 (PIO Port A) and P6 (PIO
Port B). Each of the port lines PA0�PA7 and PB0�PB7 can serve as inputs
or outputs, depending upon the mode. The eight lines on header J6 are
handshaking lines consisting of a ready line and a strobe line for each of
the ports.

The signals on header J5 are used to reset the BL1300 through a parallel
connection to PIO Port A. With a jumper across pins 1�2 (factory default),
the signal from pin 6 (INIT) on header P5 goes to PB2. Jumpering pins
2-3 on header J5 ties pin 6 on header P5 to /RESET so that bringing this
line low will reset the BL1300.

BL13004-30 s System Development

The connections on these ports are designed for interfacing to a Centron-
ics-compatible port. Connector P05 provides a pin-compatible DB25
connector that can be connected directly to either a printer or to a PC print-
er port with a standard Centronics printer cable or a straight-through cable.

Dynamic C functions are provided in the PRPORT.LIB li-
brary to drive these ports for printer control with a PC. See
the section on �Parallel Communication� in Chapter 4 for
more information on the use of these ports as a printer driver.

$

The parallel port can also be used to read a cross-wire keyboard by setting
each row to zero volts and monitoring the columns, which are held up by
the pull-up resistors. The microprocessor can use the parallel port to
detect closures of any of the keys in the keypad.

The output impedance of the PIO ports is approximately 80 Ω for sinking
current and 160 Ω for sourcing current.

Do not apply voltages below ground or above VCC to the
PIO ports.!

The PIO ports are flexible, and have a number of operating modes. The
four ports are controlled by the following eight registers.

0x80 PIO Port A 1 data (PIODA_1)
0x82 PIO Port A 1 command (PIOCA_1)
0x81 PIO Port B 1 data (PIODB_1)
0x83 PIO Port B 1 command (PIOCB_1)
0x90 PIO Port A 2 data (PIODA_2)
0x92 PIO Port A 2 command (PIOCA_2)
0x91 PIO Port B 2 data (PIODB_2)
0x93 PIO Port B 2 command (PIOCB_2)

These addresses are not defined in EPROM as most of the device ad-
dresses for the SmartBlock are. So for convenience you may want to use
the #define statement to assign these values to easily remembered names.
The names in parenthesizes are recommended for compatibility with the
sample programs.

Each pair of registers controls one of the 8-bit ports and the two handshak-
ing lines associated with each port. The bits associated with each port are
shown in the PIO header connection diagram in Figure 4-14. For example,
PB0 is bit 0 in Port B.

BL1300 System Development s 4-31

The ports have these four modes of operation.

1. Mode 0�strobed byte output.

When a byte is stored in the data register by the microprocessor, the eight
associated output lines change their level, to high for a �1� and to low for a
�0�. The ready handshake line is also set high. If an external device
pulses the /Strobe signal, the ready line will be reset. If interrupts are
enabled for the port, a PIO interrupt will be requested. This allows for
interrupt-driven parallel output to an external device.

2. Mode 1�strobed byte input.

Mode 1 latches eight bits into the PIO registers on the /Strobe signal from
an external device. The /Strobe signal also causes the ready line to go low.
An interrupt is then requested. After the microprocessor reads the data
register, the Ready line is raised to indicate to the external device that the
port is ready for another data character.

3. Mode 2�bidirectional strobed communication (Port A only).

Mode 2 uses Port A and all four handshake lines. It allows data to be
transferred in both directions under control of the four handshake lines.

4. Mode 3�static input or output , input/output selectable by bit.

Mode 3 is a general-purpose input/output mode, and each bit can be
individually specified as input or output. In Mode 3 the input lines can
also serve as interrupt request lines. Either transition to high or low can be
specified for the interrupt request. Interrupts for specific input lines are
controlled with a mask and specifying an AND or an OR function of the
masked lines. Interrupts on PIO ports are edge triggered.

Using PIO Ports

In order to set up a port, a sequence of bytes is first written to the com-
mand register. The data register is then subsequently read or written to
transfer data. Figure 4-15 shows the control register bytes.

0 0 = Mode 0
0 1 = Mode 1
1 0 = Mode 2
1 1 = Mode 3

Identifies this as
mode control word

1D7 D6 X X 1 1 1

Figure 4-15. BL1300 PIO Port Control Register Bytes

The mode control word specifies the mode for the port.

BL13004-32 s System Development

The input/output register control word must immediately follow the mode
control word only when the mode is Mode 3. This specifies which bits are
inputs and which bits are outputs. See Figure 4-16.

0 � bit is output
1 � bit is input

D0D7 D6 D5 D4 D3 D2 D1

Figure 4-16. BL1300 PIO Port I/O Register Control Word

The interrupt vector word specifies the interrupt vector for the relevant
PIO channel. See Figure 4-17.

Interrupt vector
Identifies this as
interrupt vector word

0D7 D6 D5 D4 D3 D2 D1

Figure 4-17. BL1300 PIO Port Interrupt Vector Word

The vectors for the PIO ports are as follows.

0x12 PIO Port A 1 (PIOA_1_VEC)
0x14 PIO Port B 1 (PIOB_1_VEC)
0x32 PIO Port A 2 (PIOA_2_VEC)
0x34 PIO Port B 2 (PIOB_2_VEC)

The interrupt control word specifies the conditions under which an
interrupt is generated. See Figure 4-18.

0 No mask world follows
1 Mask word follows

Identifies this as
interrupt control word

0 Active level for interrupt is low
1 Active level is high

0 Interrupt on OR function
1 Interrupt on AND function

0 Interrupt disabled
1 Interrupt enabled (after M1)

1D7 D6 D5 D4 0 1 1

Figure 4-18. BL1300 PIO Port Interrupt Control Word

BL1300 System Development s 4-33

The mask control word must immediately follow the interrupt control word
if bit D4 is set. Always mask output bits of the port, as unpredictable
behavior will result from these bits being specified as interrupt bits. See
Figure 4-19.

Figure 4-19. BL1300 PIO Port Mask Control Word

Mask bits: A bit is monitored and an interrupt
is generated if the bit is set as input and the
mask bit is set to 0. Do not set a bit specified
as output as a mask bit.

D0D7 D6 D5 D4 D3 D2 D1

The interrupt disable word allows you enable and disable an interrupt for a
port that is already defined by an interrupt control word. The interrupt
disable word can also be used to disable interrupts on an unconfigured
port. See Figure 4-20.

Identifies this as
interrupt disable word

1D7 X X X 0 1 1

0 Interrupt disable
1 Interrupt enable

Figure 4-20. BL1300 PIO Port Interrupt Disable Word

The sample Dynamic C program PIODEMO.C in the SAMPLES directory
illustrates how to configure a PIO port for interrupts.

BL13004-34 s System Development

BL1300 References s 5-1

REFERENCES

BL13005-2 s References

Z-World Technical Manuals
Dynamic C Technical Reference Manual.

� A detailed manual on the use of Dynamic C.

Zilog Technical Manuals
Not all of these manuals are available from Z-World. Check with your
local Zilog office (Campbell, CA, Tel. 408-370-8120) before contacting
Z-World.

Z80 PIO Parallel Input/Output Technical Manual (DC-0008-03).

� Covers the parallel ports on the BL1300 in more detail.

Z80 Assembly Language Programming (03-0002-02).

� A good reference on assembly language.

Serial Communications Controllers (DC-8316-00).

� Data on SCC serial port. A necessity for most SCC programming,
especially for synchronous modes.

Z180 MPU User�s Manual.(DC-8276-04)

� Description of the Z180 processor and internal �peripherals.� Some
material relating to interface with Z80 style peripherals may be covered
better in the Z80 User�s Manual.

Z80 User�s Manual (DC-8309-01)

Hitachi Technical Manuals
Available from Z-World or from Hitachi America (San Jose, CA,
Tel. 408-435-8300).

HD64180 8-Bit Microprocessor Hardware Manual (U77).

� Covers the HD64180Z, which is functionally identical to the Z180 used
in the SmartBlock.

HD64180 8-Bit Microprocessor Programming Manual (U92).

� Gives a very detailed description of each operation code.

Specifications on Integrated Circuits
Please contact the following companies directly for data on these compo-
nents.

24C04 EEPROM

� Microchip, Chandler, AZ (602) 963-7373.

� Xicor, Milpitas, CA (408) 432-8888, has similar parts and parts of
larger capacity.

BL1300 References s 5-3

Epson 72421 Real-Time Clock

� Integrated Electronics Corp. (IEC) Sacramento, CA (916) 363-6030.

Maxim MAX691 Watchdog Timer

� Bell Industries, Rocklin, CA (916) 652-0414.

BL13005-4 s References

BL1300 Appendix A: Troubleshooting s A-1

APPENDIX A: TROUBLESHOOTING

Appendix A provides procedures for troubleshooting system hardware and
software.

BL1300A-2 s Appendix A: Troubleshooting

Out of the Box
Check the items listed below before starting development. Rechecking
may help to solve problems found during development.

� Verify that the entire system has good, low-impedance, separate
grounds for analog and digital signals. The BL1300 is often connected
between the host PC and another device. Any differences in ground
potential can cause serious problems that are hard to diagnose.

� Do not connect analog ground to digital ground anywhere.

� Verify that the host PC�s COM port works by connecting a known-good
serial device to the COM port. Remember that a PC�s COM1/COM3
and COM2/COM4 share interrupts. User shells and mouse software, in
particular, often interfere with proper COM-port operation. For
example, a mouse running on COM1 can preclude running Dynamic C
on COM3.

� Use the Z-World power supply supplied with the developer�s kit. If
another power supply must be used, verify that it has enough capacity
and filtering to support the BL1300.

� Use the Z-World cables supplied.

Dynamic C Will Not Start
If Dynamic C will not start, an error message on the Dynamic C screen (for
example, Target Not Responding or Communication Error), announces
a communication failure:

� Wrong Baud Rate � Either Dynamic C�s baud rate is not set correctly
or the Interface Board baud rate is not set correctly. Both baud rates
must be identical. The baud rate is stored in the EEPROM. Chapter 2
described how to change this rate using J07 in the Interface Board.
Dynamic C�s baud rate is set by the Serial Options command in the
OPTIONS menu.

� Wrong System Clock Speed in EEPROM �The EEPROM stores the
system clock speed as a word at location 0x108 in multiples of
1200 Hz. If the EEPROM is corrupted, then only the 9600 bps setting
will work until the correct clock speed is entered into the EEPROM. A
9.216 MHz clock is assumed if there is no EEPROM.

BL1300 Appendix A: Troubleshooting s A-3

� Wrong Communication Mode � Both the PC and the BL1300 must be
using the same protocol: RS-232 (EIA) or RS-485. Check the jumper
settings on the Interface Board�s J04. Make sure J01 is used for
RS-232, J02 for RS-485. Use Dynamic C�s Serial Options command
in the OPTIONS menu to check and alter the protocol for the PC.

� Wrong COM Port � A PC generally has two serial ports, COM1 and
COM2. Specify the one used in the Dynamic C Serial Options
command in the OPTIONS menu. Use trial and error, if necessary.

� Wrong Operating Mode � Check jumper J4 and the connections on
header J9, as described in Chapter 2.

Dynamic C Loses Serial Link
Dynamic C will lose its link if the program disables interrupts for more
than 50 ms. If a communication method is used that is not driven by the
nonmaskable interrupt (NMI), make sure that interrupts are not disabled
for more than 50 ms. This is not a concern if a communication method
driven by NMI is used.

BL1300 Resets Repeatedly
If the watchdog timer is enabled by installing J3 on the SmartBlock, a
system reset will occur every 1.6 s if the watchdog timer is not �hit.�
Dynamic C �hits� the timer automatically in edit mode or in debug mode,
but a user program must include a call to uplc_init at the start of the
program to make sure the watchdog timer is hit periodically.

Interrupts Off for Long Periods
If communications not driven by the nonmaskable interrupt do not turn off
interrupts for long periods of time in a program, the communication link
with the PC will drop. This is not a problem with the NMI mode on.

Input/Output Problems
A strobe is needed to move data in PIO Modes 0 and 1. The strobe lines
are connected to H5 and H6. Use Mode 3 for static input. Mode 1 may
appear to work, but will be erratic because the strobe line floats.

Power-Supply Problems
If the external power supply does not have sufficient capacity, an addi-
tional load such as an LED can trigger a power-fail interrupt that initiates a
hardware reset. The reset triggers the load to be turned off, but then the
computer restarts and turns the load back on. This oscillation can be
corrected by increasing the size of the power supply.

BL1300A-4 s Appendix A: Troubleshooting

Common Programming Errors
� Values for constants or variables are out of range.

 Type Range

 int –32,768 (–215) to
+32,767 (215–1)

 long int −2,147,483,648 (−231) to
+2147483647 (231−1)

 float –6.805646 × 1038 to
+6.805646 × 1038

� Counting up from, or down to, one instead of zero. In the
software world, ordinal series often begin or terminate with zero,
not one.

� Confusing a function�s definition with an instance of its use in a
listing.

� Not ending statements with semicolons.

� Not inserting commas as required in functions� parameter lists.

� Leaving out an ASCII space character between characters forming
a different legal�but unwanted�operator.

� Confusing similar-looking operators such as && with &, == with
=, // with /, etc.

� Inadvertently inserting ASCII nonprinting characters into a
source-code file.

BL1300 Appendix B: Specifications s B-1

APPENDIX B: SPECIFICATIONS

Appendix B provides the dimensions and specifications for the BL1300
controller.

BL1300B-2 s Appendix B: Specifications

Hardware Dimensions
Figure B-1 illustrates the BL1300�s dimensions.

0.
7

ty
p,

 3
x

(1
8)

0.
48

(1
2)

1.
15

(2
9.

2)

3.
65

(9
2.

7)3.
90

(9
9.

1)

0.43
(11)

4.18
(106) 5.20

(132)

0.
40

 ty
p

(1
0)

~
0.

85
(2

2)

~
1.

0
(2

5)
Figure B-1. BL1300 Dimensions

BL1300 Appendix B: Specifications s B-3

Table B-1. BL1300 Specifications

Parameter Specification

Board Size
5.2" × 3.9" × 1.0"
(132 mm × 99.1 mm × 25 mm)

Enclosure Size
5.45" × 4.15" × 1.6"
(138 mm × 105 mm × 41 mm)

Operating Temperature -40°C to +70°C

Humidity 5% to 95%, noncondensing

Input Voltage and Current
9 V to 36 V (DC), 100 mA at 24 V,
switching regulator option

User-Configurable I/O
32 software-selectable as inputs or outputs, TTL
and CMOS compatible

Digital Inputs See User-Configurable I/O

Digital Outputs See User-Configurable I/O

Analog Inputs No

Analog Outputs No

Resistance Measurement
Input

No

Processor Z180

Clock Speed 9.216 MHz

SRAM 32K (supports up to 512K

EPROM 32K (supports up to 512K)

Flash EPROM No

EEPROM 512 bytes

Counters Software implementable

Serial Ports Two RS-232 (with RTS/CTS handshake) and
two RS-232 or RS-422/RS-485

Serial Rate

• Two ports (selectable RS-232 or RS-422/
RS-485) up to 115,200 bps

• Two ports (fixed RS-232) up to 57,600 bps

Watchdog/Supervisor Yes

Time/Date Clock Yes

Memory-Backup Battery
Yes, Panasonic BR2325-1HG 3-V lithium,
165 mA⋅h, 3-year shelf life, 10-year life in use

Keypad and LCD Display No

PLCBus Port
No, limited expansion capability through PIO
Port B (header P6)

Table B-1 presents the specifications for the BL1300 controllers.

BL1300B-4 s Appendix B: Specifications

Jumper and Header Specifications
Figure B-2 shows the locations of the BL1000 headers and jumper blocks.

P1 P2 P3 P4

U5

J13
J15

J11

J7

J1

J8J9

U10U9

J2 J3

J12J14

P05

P5

P6

J5

J4

J6
J16

J10

Jack

SCC

PIO PIO

Reset
Pushbutton

J7J8 J3 J2 J1

J4

J5

J6 J10

Z180

CRYSTAL

U1

Main Board

SmartBlock
TM

Figure B-2. Locations of BL1300 Headers and Jumper Blocks

BL1300 Appendix B: Specifications s B-5

Table B-2 shows the jumper connections.

Table B-2. BL1300 Jumper Settings

Header Description Factory Setting

Main Board

J1
Connect pins 1–3 and pins 2–4 to bring SCC
signals DTRA and DCDA to jack P4 pins 4 & 7

Not connected

J5
Connect pins 1–2 to connect INIT signal to PIO
Port A, connect pins 2–3 to reset BL1300

Pins 1–2 connected

J8, J9 Pins permanently connected
Permanently
connected

J12
Connect pins 1–2 for RS-232 /RTSB or RS-485
/RTS±, connect pins 2–3 for RS-232 TXCB or
RS-485 TXC±

Pins 1–2 connected

J13
Connect pins 1–2 for RS-232 /CTSB or RS-485
/CTS±, connect pins 2–3 for RS-232 RXCB or
RS-485 RXC±

Pins 1–2 connected

J14
Connect pins 1–2 for RS-232 /RTSA or RS-485
/RTS±, connect pins 2–3 for RS-232 TXCA or
RS-485 TXC±

Pins 1–2 connected

J15
Connect pins 1–2 for RS-232 /CTSA or RS-485
/CTS±, connect pins 2–3 for RS-232 DTRA or
RS-485 RXC±

Pins 1–2 connected

SmartBlock™

J2
Connect pins 1–2 to write-protect EEPROM,
connect pins 2–3 to write-enable EEPROM

Pins 1–2 connected

J3 Connect to enable watchdog timer Not connected

J4
Connect pins 1–2 for 32K–128K SRAM,
connect pins 2–3 for 256K–512K SRAM

Pins 1–2 connected

J5
Connect pins 1–2 for 64K or larger EPROM,
connect pins 2–3 for 32K EPROM

Pins 2–3 connected

J6
Connect pins 1–2 for 32-pin EPROM, connect
pins 2–3 for 28-pin EPROM

Pins 2–3 connected

SCC signals DCDA and DTRA are hardwired into RS-232
port P2. These signals may also be used on jack P4 when
using RS-232 drivers in U1 and U2.

Do not jumper pins 1�3 and 2�4 on header J1 when using
RS-485 drivers in U3 and U4 to avoid conflicts with the
RS-485 signals.

!

BL1300B-6 s Appendix B: Specifications

BL1300 Appendix C: Memory, I/O Map, and Interrupt Vectors s C-1

APPENDIX C: MEMORY,
I/O MAP, AND INTERRUPT VECTORS

Appendix C provides detailed information on memory, provides an I/O
map, and lists the interrupt vectors.

BL1300C-2 s Appendix C: Memory, I/O Map, and Interrupt Vectors

BL1300 Memory
The SmartBlock has two chip sockets, one for ROM and one for RAM.
Sockets U5 and U6 will accept either 28-pin or 32-pin memory chips.

Physical Memory

Figure C-1 shows the memory map of the 1M address space.

00000

40000 256K

768KC0000

1024K
Reserved
for
expansion
board

Socket U5
RAM

Socket U6
EPROM

Figure C-1. Memory Map of 1M Address Space

Figure C-2 shows the memory map within the 64K virtual space.

UNITIALIZED
DATA

USER CODE

LIBRARY

RAM

ROM

RAM

ROM

UNUSED

RAM-Based ROM-Based

0

STACK

XMEM64K

UNITIALIZED
DATA

USER CODE

LIBRARY

UNUSED

STACK

XMEM

Figure C-2. Memory Map of 64K Virtual Space

The various registers in the input/output (I/O) space can be accessed in
Dynamic C by the symbolic names listed below. These names are treated
as unsigned integer constants. The Dynamic C library functions inport
and outport access the I/O registers directly.

data_value = inport(CNTLA0);

outport(CNTLA0, data_value);

BL1300 Appendix C: Memory, I/O Map, and Interrupt Vectors s C-3

T1 T2 TwT3

address

T1 T2 T3

address

data data

TAD = 70 ns TAD = 70 nsTDRS = 25 ns TDRS = 25 ns

0 wait states 1 wait state

/ME

/RD

/WR

Figure C-3. Memory Cycles for 9.216 MHz Processor
With and Without a Wait State

0 wait access time = 2T - 95 ns 1 wait access time = 3T - 95 ns
= 105 ns for 10.00 MHz clock = 205 ns for 10.00 MHz clock
= 122 ns for 9.216 MHz clock = 230 ns for 9.216 MHz clock
= 229 MHz for 6.144 MHz clock = 391 ns for 6.144 MHz clock

Memory and Input/Output Cycle Timing

There are two types of memory cycles that need to be considered: standard
memory cycles and Load Instruction Register (LIR) cycles. LIR cycles,
which fetch the op code, have the most critical timing requirement. The
memory access time, t, in nanoseconds, can be calculated for these cycles
using

t = 2T -95 , (C-1)

where T is the period of a clock cycle. Figure C-3 shows these cycles with
and without a wait state.

The standard version of the PAL generates a wait state only during the LIR
cycles. Therefore it is called a �½ wait state� PAL.

BL1300C-4 s Appendix C: Memory, I/O Map, and Interrupt Vectors

Table C-1. Memory Access Times
(ns)

Clock Frequency EPROM SRAM

9.3 MHz, 0 wait states 122 176

9.3 MHz, 1 wait state 230 283

10 MHz, 0 wait states 105 155

10 MHz, 1 wait state 205 255

11.059 MHz, 0 wait states 85 130

11.059 MHz, 1 wait state 175 220

12.488 MHz, 0 wait states 65 105

12.488 MHz, 1 wait state 145 185

The standard memory cycles require an access time of 2.5T - 95 nanosec-
onds. Table C-1 lists the memory access times required for various clock
frequencies and wait states.

The memory access times in Table C-1 were calculated assuming that LIR
cycles only take place in EPROM. These access times are conservative,
and no problem should be encountered, for example, by using an EPROM
with a memory access time of 150 ns instead of an EPROM with a memory
access time of 120 ns.

The user who consults the schematic will note that chip select is always
enabled in the EPROM and SRAM, allowing access to begin earlier in the
cycle at the expense of increased power consumption. This makes clock
speeds in excess of 10 MHz possible with low-cost memory.

BL1300 Appendix C: Memory, I/O Map, and Interrupt Vectors s C-5

TwT1 T2

A0�A15

/IOE

/RD

/WR

T3Tw1

D0�D7 write

D0�D7 read

Figure C-4. Inserting Wait Cycles in I/O Cycles

Input/Output Cycle Timing

Customer peripheral devices are usually interfaced as I/O devices. This is
convenient because only eight address lines need to be decoded in most
cases. Figure C-4 shows how wait cycles are inserted in I/O cycles. At
least one wait cycle (TW) is always inserted. Up to four additional wait
states can be inserted, depending on the setup of the wait-state generator.
One additional wait state, the default number (TW1), is shown in Figure C-4.

BL1300C-6 s Appendix C: Memory, I/O Map, and Interrupt Vectors

Table C-2. BL1300 Execution Times for Dynamic C

Operation Execution Time
(µs)

DMA copy (per byte) 0.73

Integer assignment (i=j;) 3.4

Integer add (j+k;) 4.4

Integer multiply (j*k;) 18

Integer divide (j/k;) 90

Floating add (p+q;) (typical) 85

Floating multiply (p*q;) 113

Floating divide (p/q;) 320

Long add (l+m;) 28

Long multiply (l*m;) 97

Long divide (l/m;) 415

Floating square root (sqrt(q);) 849

Floating exponent (exp(q);) 2503

Floating cosine (cos(q);) 3049

Execution Timing

The times reported in Table C-2 were measured using Dynamic C and they
reflect the use of Dynamic C libraries. The time required to fetch the
arguments from memory, but not to store the result, is included in the
timings. The times are for a 9.216 MHz clock with 0 wait states.

The execution times can be adjusted proportionally for clock speeds other
than 9.216 MHz. Operations involving one wait state will slow the
execution speed about 25%.

BL1300 Appendix C: Memory, I/O Map, and Interrupt Vectors s C-7

Memory Map

Input/Output Select Map

The Dynamic C library functions IBIT, ISET and IRES in the BIOS.LIB
library allow bits in the I/O registers to be tested, set, and cleared.

Both 16-bit and 8-bit I/O addresses can be used. The I/O select map
shown in Table C-3 indicates the addresses in use.

Table C-3. I/O Select Map

Address (Range) Description

0000–003F Z180 internal control registers (16-bit)

0040–005F Dynamic C Interface Board (8-bit)

0060–007F Available I/O space 8-bit address

0080–00DF BL1300 control and data registers

00E0–00FF Available I/O space 8-bit address

0100–013F Available 16-bit address

2000 Available 16-bit address

4000 Battery-backed clock control

6000 EEPROM clock control register

8000 EEPROM data register

A000 Power fail test register

C000 Watchdog control register

D000–D03F Available 16-bit address

E000–E03F Available 16-bit address

F000–F03F Available 16-bit address

The Dynamic C Interface Board decodes only the low 8 bits of the address.
The registers at 2000, 4000, 6000, 8000 and A000 decode only the upper
4-bits of the I/O address.

BL1300C-8 s Appendix C: Memory, I/O Map, and Interrupt Vectors

Z180 Internal Input/Output Registers Addresses 00-3F

The internal registers for the I/O devices built into to the Z180 processor
occupy the first 40 (hex) addresses of the I/O space. These addresses are
listed in Table C-4.

Table C-4. Z180 Internal I/O Registers Addresses 00-3F

Address Name Description

00 CNTLA0 Serial Channel 0, Control Register A

01 CNTLA1 Serial Channel 1, Control Register A

02 CNTLB0 Serial Channel 0, Control Register B

03 CNTLB1 Serial Channel 1, Control Register B

04 STAT0 Serial Channel 0, status register

05 STAT1 Serial Channel 1, status register

06 TDR0 Serial Channel 0, transmit data register

07 TDR1 Serial Channel 1, transmit data register

08 RDR0 Serial Channel 0, receive data register

09 RDR1 Serial Channel 1, receive data register

0A CNTR Clocked serial control register

0B TRDR Clocked serial data register

0C TMDR0L Timer data register Channel 0, least

0D TMDR0H Timer data register Channel 0, most

0E RLDR0L Timer reload register Channel 0, least

0F RLDR0H Timer reload register Channel 0, most

10 TCR Timer control register

11–13 — Reserved

14 TMDR1L Timer data register Channel 1, least

15 TMDR1H Timer data register Channel 1, most

16 RLDR1L Timer reload register Channel 1, least

17 RLDR1H Timer reload register Channel 1, most

18 FRC Free-running counter

19–1E — Reserved registers

1F CCR
CPU control register for the 18 MHz chip;
write 0x80 to get 18.432 MHz, write 0 to get
9.216 MHz.

continued…

BL1300 Appendix C: Memory, I/O Map, and Interrupt Vectors s C-9

Table C-4. Z180 Internal I/O Registers Addresses 00-3F (concluded)

Address Name Description

20 SAR0L DMA source address Channel 0, least

21 SAR0H DMA source address Channel 0, most

22 SAR0B DMA source address Channel 0, extra bits

23 DAR0L DMA destination address Channel 0, least

24 DAR0H DMA destination address Channel 0, most

25 DAR0B
DMA destination address Channel 0,
extra bits

26 BCR0L DMA byte count register Channel 0, least

27 BCR0H DMA byte count register Channel 0, most

28 MAR1L DMA memory address register Channel 1, least

29 MAR1H DMA memory address register Channel 1, most

2A MAR1B
DMA memory address register Channel 1, extra
bits

2B IAR1L DMA I/O address register Channel 1, least

2C IAR1H DMA I/O address register Channel 1, most

2D — Reserved

2E BCR1L DMA byte count register Channel 1, least

2F BCR1H DMA byte count register Channel 1, most

30 DSTAT DMA status register

31 DMODE DMA mode register

32 DCNTL DMA/WAIT control register

33 IL Interrupt vector low register

34 ITC Interrupt/trap control register

35 — Reserved

36 RCR Refresh control register

37 — Reserved

38 CBR MMU common base register

39 BBR MMU bank base register

3A CBAR MMU common/ bank area register

3B–3D — Reserved

3E OMCR Operation mode control register

3F ICR I/O control register

BL1300C-10 s Appendix C: Memory, I/O Map, and Interrupt Vectors

KIO Registers 0040-004F on Dynamic Interface Board
(8-bit decode)

Table C-5 lists KIO registers 0040-004F on the Dynamic C Interface
Board.

Table C-5. KIO Registers 0040-004F on the
Dynamic C Interface Board

Address Name Description

40 PIODA PIO Port A data

41 PIODB PIO Port B data

42 PIOCA PIO Port A command

43 PIOCB PIO Port B command

44 CTC0 CTC Channel 0

45 CTC1 CTC Channel 1

46 CTC2 CTC Channel 2

47 CTC3 CTC Channel 3

48 SIODA SIO Channel A data

49 SIOCA SIO Channel A command/ status

4A SIODB SIO Channel B data

4B SIOCB SIO Channel B command/status

4C PIAD PIA Port C data

4D PIAC PIA Port C command

4E KIOC KIO command

4F — Reserved

BL1300 Appendix C: Memory, I/O Map, and Interrupt Vectors s C-11

BL1300 Registers 0080-00D0 (8-bit decode)

The names and associated values of the BL1300 registers, listed in
Table C-6, are not defined in the EPROM, and must be defined within the
user program.

Table C-6. BL1300 Registers 0080–00D0

Address Name Description

80 PIODA_1 PIO Port A 1 data

81 PIODB_1 PIO Port B 1 data

82 PIOCA_1 PIO Port A 1 command

83 PIOCB_1 PIO Port B 1 command

90 PIODA_2 PIO Port A 2 data

91 PIODB_2 PIO Port B 2 data

92 PIOCA_2 PIO Port A 2 command

93 PIOCB_2 PIO Port B 2 command

A0 SCCCB SCC Channel B command

A1 SCCCA SCC Channel A command

A2 SCCDB SCC Channel B data

A3 SCCDA SCC Channel A data

B0 EN12 Enable Channel A transmitter (RS-485)

C0 EN34 Enable Channel B transmitter (RS-485)

D0 LD1 LED 1 control

Addresses 0100�3FFF, except addresses

xx40�xx5F (8-bit decodes)
xx80�xxDF (8-bit decodes)

are available for customer use.

BL1300C-12 s Appendix C: Memory, I/O Map, and Interrupt Vectors

Epson 72421 Timer Registers 4000-400F

Table C-7 lists the Epson 72421 timer registers.

Other Addresses

Table C-8 lists the other registers.

Table C-8. Other Register Addresses

Address Name Description

6000 SCL EEPROM clock control register

8000 SDA_RW EEPROM data register

A000 PFO Power fail test register

C000
HWD
WDO

Write (hit watchdog)
Read watch dog state

D000-FFFF — Reserved address space

Table C-7. Epson 72421 Timer Registers 4000-400F

Address Name Bit 3 Bit 2 Bit 1 Bit 0 Meaning Range

4000 SEC1 S8 S4 S2 S1 seconds 0-9

4001 SEC10 — S40 S20 S10 10 seconds 0-5

4002 MIN1 M8 M4 M2 M1 minutes 0-9

4003 MIN10 — M40 M20 M10 10 minutes 0-5

4004 HOUR1 H8 H4 H2 H1 hours 0-9

4005 HOUR10 — AM/PM H20 H10 10 hours 0-2

4006 DAY1 D8 D4 D2 D1 days 0-9

4007 DAY10 — — D20 D10 10 days 0-3

4008 MONTH1 M8 M4 M2 M1 months 0-9

4009 MONTH10 — — — M10 10 months 0-1

400A YEAR1 Y8 Y4 Y2 Y1 years 0-9

400B YEAR10 Y80 Y40 Y20 Y10 10 years 0-9

400C WEEK — W4 W2 W1 week days 0-6

400D TREGD
30
ADJ

IRQ
FLG

BUSY HOLD Register D —

400E TREGE T1 T0 INTR/
STND

MASK
Register E —

400F TREGF TEST 12/24 STOP RSET Register F —

BL1300 Appendix C: Memory, I/O Map, and Interrupt Vectors s C-13

Interrupt Vectors
Table C-9 presents a suggested interrupt vector map. Most of these
interrupt vectors can be altered under program control. The addresses are
given here in hex, relative to the start of the interrupt vector page, as
determined by the contents of the I-register. These are the default interrupt
vectors set by the boot code in the Dynamic C EPROM.

Table C-9. Interrupt Vectors for Z180 Internal Devices

Address Name Description

0x00 INT1_VEC Expansion bus attention INT1 vector.

0x02 INT2_VEC Expansion bus attention INT2 vector.

0x04 PRT0_VEC PRT Timer Channel 0

0x06 PRT1_VEC PRT Timer Channel 1

0x08 DMA0_VEC DMA Channel 0

0x0A DMA1_VEC DMA Channel 1

0x0C CSIO_VEC Clocked serial I/O

0x0E SER0_VEC Asynchronous Serial Port Channel 0

0x10 SER1_VEC Asynchronous Serial Port Channel 1

To �vector� an interrupt to a user function in Dynamic C, use a directive
such as the following.

#INT_VEC 0x10 myfunction

The above example causes the interrupt at offset 10H (Serial Port 1 of the
Z180) to invoke the function myfunction(). The function must be
declared with the interrupt keyword, as shown below.

interrupt [reti] myfunction() {
 ...

}

The optional reti keyword indicates that the return is by a reti instruc-
tion, which is necessary for the KIO peripherals, but not for Z180 periph-
erals.

Refer to the Dynamic C manuals for further details on
interrupt functions.$

BL1300C-14 s Appendix C: Memory, I/O Map, and Interrupt Vectors

Nonmaskable Interrupts

Power Failure Interrupts

The following sequence of events takes place when power fails.

1. The power-failure nonmaskable interrupt (NMI) is triggered when the
unregulated DC input voltage falls below approximately 1.3 V.

2. The system reset is triggered when the regulated +5 V supply falls
below 4.5 V. The reset remains enabled as the voltage falls further. At
this point, the chip select for the SRAM is forced high (standby mode).
The time/date clock and SRAM are switched to the lithium backup
battery as the regulated voltage falls below the battery voltage of
approximately 3 V.

The following function shows how to handle a power-failure interrupt.

#JUMP_VEC NMI_VEC myint

interrupt retn myint(){
body of interrupt routine
while(!IBIT(WDO,0)){}

// input voltage is still below the threshold
// that triggered the NMI

return; // if just a power glitch, return
}

Normally, a power-failure interrupt routine will not return, but will execute
the shutdown code and then enter a loop until the +5 V voltage falls low
enough to trigger a reset. However, the voltage might fall low enough in a
�brownout� situation to trigger a power failure interrupt, but not low
enough to reset, resulting in an endless hangup. Bit 0 of WDO is 0 when
the voltage level is below the NMI threshold, and 1 otherwise. If this bit
indicates that the low-voltage condition has reversed itself, then the power-
fail routine can restart execution. If a low�but not fatally low�voltage
persists, then you will have to decide what action to take, if any.

A situation similar to a brownout will occur if the power supply is over-
loaded. For example, when an LED is turned on, the voltage supplied to
the Z180 may dip below 7.9 V. The interrupt routine does a shutdown.
This turns the LED off, clearing the problem. However, the cause of the
overload may persist, and the system will oscillate, alternately experienc-
ing an overload and then resetting. To correct this situation, you need to
get a larger power supply.

Do not forget the interaction between the watchdog timer and the power-
failure interrupt. If a brownout causes an extended stay in the power-
failure interrupt routine, the watchdog can time out and cause a system
restart.

BL1300 Appendix C: Memory, I/O Map, and Interrupt Vectors s C-15

A few milliseconds of computing time remain when the +5 V supply falls
below 4.5 V, even if power is abruptly cut off from the board. The amount
of time depends on the size of the capacitors in the power supply. The
standard wall transformer provides about 10 ms. If the power cable is
abruptly removed from the BL1300 side, only the capacitors on the board
are available and the computing time is reduced to a few hundred micro-
seconds. These times can vary considerably depending on the system
configuration and loads on the 5 V or 9 V power supplies.

The interval between the power-failure detection and entry to the power-
failure interrupt routine is approximately 100 µs, or less if Dynamic C
NMI communications is not in use.

Testing power-failure interrupt routines presents some problems. Normally,
a power-failure interrupt routine disables interrupts. Probably the best test
method is to leave messages in battery-backed memory to track the
execution of the power-failure routines. Use a variable transformer to
simulate brownouts and other types of power-failure conditions.

The power-failure interrupt must be disabled if an external +5 V power
supply is used.

Jump Vectors

These special interrupts occur in a different manner. Instead of loading the
address of the interrupt routine from the interrupt vector, these interrupts
cause a jump directly to the address of the vector, which will contain a
jump instruction to the interrupt routine. This example illustrates a jump
vector.

0x66 nonmaskable power-failure interrupt

Since nonmaskable interrupts (NMI) can be used for Dynamic C communi-
cations, an interrupt vector for power failure is normally stored just in front
of the Dynamic C program. Use the command

#JUMP_VEC NMI_VEC name

to store the vector here.

The Dynamic C communication routines relay to this vector when the NMI
is caused by a power failure rather than by a serial interrupt.

BL1300C-16 s Appendix C: Memory, I/O Map, and Interrupt Vectors

Table C-10. Interrupt Priorities

Interrupt Priorities

(Highest Priority) Trap (illegal instruction)

NMI (nonmaskable interrupt)

INT 0 (maskable interrupts, Level 0; three modes)

INT 1 (maskable interrupts, Level 1; PLCBus
attention line interrupt)

INT 2 (maskable interrupts, Level 2)

PRT Timer Channel 0

PRT Timer Channel 1

DMA Channel 0

DMA Channel 1

Clocked serial I/O

Z180 Serial Port 0

(Lowest Priority) Z180 Serial Port 1

Interrupt Priorities

Table C-10 lists the interrupt priorities.

Initialized RAM Locations
The following symbols are defined as unsigned integer constants that are
initialized at startup.

CLOCKSPEED�the clock speed as read from the EEPROM at startup (in
multiples of 1200 Hz).

BAUDCODE�the baud rate as read from the EEPROM at startup (in
multiples of 1200 bps).

JUMPERS�byte read from the PIA port of the KIO at startup time.

BL1300 Appendix D: SmartBlock Subsystems s D-1

APPENDIX D:

SMARTBLOCK SUBSYSTEMS

Appendix D describes the basic functional units of the SmartBlock and the
library functions to access and control these subsystems.

BL1300D-2 s Appendix D: SmartBlock Subsystems

EEPROM Parameters
The onboard EEPROM (electrically erasable, programmable, read-only
memory) is used to store the constants and parameters listed in Table D-1.

Table D-1. BL1300 EEPROM Assignments

Address Bytes Function

0 1
Startup Mode. If 1, enter Program Mode. If 8,
execute program loaded at startup.

1 1 Baud rate code (in multiples of 1200 bps).

0x100 6 Unit serial number—binary-coded decimal time
and date in the format seconds, minutes, hour,
day, month, year

0x108 2 Microprocessor clock speed (in multiples of
1200 Hz)

0x10A 2 Network node address.

0x10C 1 Wait states, value to be inserted in DCNTL for
I/O and memory wait states. Default = 0x70 for
4 I/O wait states and 1 memory wait states.
Always initialize this value because it is read by
the startup code and inserted in the DCNTL
register.

The EEPROM has 512 bytes. Bytes 0�255 can be written to at any time,
but the upper 256 bytes can be written to only when jumper J2 on the
SmartBlock is enabled (pins 2 and 3 are connected). Connect pins 1 and 2
on J2 to write-protect the EEPROM.

Figure D-1 shows the EEPROM memory and jumper block J16 settings.

256 x 8

256 x 8
protectable

1 2 3

00

100

200
J2

1 2 3

J2

EEPROM
write-protected

EEPROM
unprotected

Figure D-1. BL1300 EEPROM Memory and Jumper Block Settings

BL1300 Appendix D: SmartBlock Subsystems s D-3

The EEPROM has a rated lifetime of only 10,000 writes
(unlimited reads). Do not write the EEPROM from within a
loop. The EEPROM should be written to only in response to a
human request for each write.

!

Library Routines

The following library routines can be used to read and write the EEPROM:

int ee_rd(int address);

int ee_wr(int address, byte data);

The function ee_rd returns a data value or, if a hardware failure occurred,
�1. The function ee_wr returns �1 if a hardware failure occurred, �2 if an
attempt was made to write to the upper 256 bytes with the protection
jumper (J2) installed, or 0 to indicate a successful write. A write-protec-
tion violation does not wear out the EEPROM. These routines each
require about 2 ms to execute. They are not re-entrant, that is, only one
routine at a time will run.

These functions each require about 2.5 ms to execute, and are not reen-
trant.

Time/Date Clock
The battery-backed real-time clock is based on the Epson 72421 chip,
which is accurate to approximately one second per day. Time is kept to
one second least count and up to 80 years in the future. A Dynamic C
library program is available to read and write the clock chip. The lithium
battery should keep the clock going for about 10 years, except if the board
is run at high temperature for long periods.

An Epson RTC-72421 battery-backed clock appears as 16 registers from
the addresses 4000H�400FH. The registers are four bits wide and appear
as the lower four bits of the data byte, with the upper four bits undefined.

Table C-7 in Appendix C, �Memory, I/O Map and Interrupt
Vectors,� lists the Epson 72421 registers$

The clock appears as 16 input/output registers with addresses of 4000H to
400FH. The 16 registers are each 4 bits, with the upper 4 bits of the
register undefined. The 4-bit registers are mostly binary-coded decimal
numbers making up the date and time. The following steps refer to these
registers.

1. Set the 12/24 bit to 1 for 24-hour mode and 0 for 12-hour mode. The
AM/PM bit will then be set to 1 for PM. Mask out the AM/PM bit in
24-hour mode.

BL1300D-4 s Appendix D: SmartBlock Subsystems

2. The days of the week are represented by 0 for Sunday through 6 for
Saturday.

3. Leap year is automatically taken into account.

4. Set the year to 90 for 1990, to 91 for 1991, and so on.

Time/Date Functions

Time/date functions can be found in the Dynamic C DRIVERS.LIB library.
The sample program SETCLOCK.C provides a keyboard interface to
display and set the time/date clock.

The following structure is defined to hold the time and date.

struct tm{
char tm_sec; // seconds 0-59
char tm_min; // minutes 0-59
char tm_hour; // 24 hour time 0-23
char tm_mday; // day of month 1-31
char tm_mon; // month 1-12
char tm_year // e.g., 90 - 1990, 101 -
2001
char tm_wday; // day of week 0-6/

// Sunday == 0
} tm_val;

Time can also be expressed as �seconds since January 1, 1980� (that is,
midnight, December 31, 1979). The following functions are provided to
read the time/date clock. Note that this takes about 600 µs.

� int tm_rd(struct tm *t)

Sets the real-time clock and returns zero, or returns �1 if the clock is
not working or is not installed.

� ulong clock()

Reads the 72421 timer and returns time as seconds since January 1,
1980.

� int tm_wr(struct tm *t)

Writes the contents of the structure to the clock and returns 0. If the
clock is failing or not installed �1 is returned.

� ulong mktime(struct tm *t)

Converts time expressed as the structure tm into time expressed as
seconds since January 1, 1980 (midnight December 31, 1979). Does
not access the timer chip.

� int mktm(struct *tm, long time)

Converts time expressed as seconds into the structure *tm. Does not
access the timer chip.

BL1300 Appendix D: SmartBlock Subsystems s D-5

The sample program SETCLOCK.C allows you to change the time and date.
The sample program LCDCLK.C shows how to access the time/date clock.

LCDCLK.C cannot be run using the BL1300 as there is no
onboard LCD interface.!

Watchdog Timer
The watchdog timer is a reliability feature. If the watchdog timer is
enabled by connecting a jumper across header J3, a timer starts running
that can be reset by calling the library function hitwd. The watchdog
times out if it is allowed to run for 1.6 seconds without being reset by
hitwd. The SmartBlock is then forced into a hardware reset condition for
50 ms, after which the board resumes operation as if the power has just
been turned on. It is possible to distinguish between a power-on reset and
a watchdog reset when the program starts execution by using the function
wderror. The watchdog is hit frequently while debugging is being done
with Dynamic C. However if you start an application that does not hit the
watchdog, and a jumper is connected across header J3, a reset will take
place after 1.6 seconds and Dynamic C will report a loss of communica-
tions.

The watchdog timer is interfaced with an I/O register at address 0C000HEX.

0C000 HWD�Write to �hit� the watchdog and reset its timer. Use the
library function hitwd to hit the watchdog.

0C000 WDO�Read the state of WDO bit from 72421. This must be read
after startup but before hitting the watchdog. Use the library function
wderror to do this.

� void hitwd (void)

Hits the watchdog timer, postponing an automatic hardware reset for
another 1.6 seconds.

� int wderror (void)

Returns non-zero if the previous reset was caused by the watchdog
timer timing out. This function returns zero if the previous reset was
caused by power-on, or by the reset pushbutton.

Use of Watchdog Timer

The watchdog timer�s purpose is to cause a recovery from a fault condi-
tion, such as an endless loop or an illegal microprocessor state. Such a
fault condition can be caused by an electrical transient or by a software
bug. An electrical transient can generate a state internal to the micropro-
cessor that would be impossible during normal operation. A transient
strong enough to upset the state of the microprocessor or erase part of the

BL1300D-6 s Appendix D: SmartBlock Subsystems

memory can be much weaker than that needed to cause permanent damage,
so it is useful to have the ability to recover from such faults and improve
the system reliability under stressful environmental conditions.

Software bugs that only occur once a week or once a year and cause the
program to enter an endless loop are not unusual, and are difficult to
correct. The following are examples of such bugs.

1. The stack overflows only when a coincidence of events takes place,
such as an interrupt when a seldom-executed, but deeply nested piece
of code is executing. If the seldom-executed code is executed only for
10 µs every 5 min, and the interrupts take place only on the average
once every hour, then it can be computed that the program will crash
about once per year of continuous operation.

2. A multibyte variable is shared between a high-level and an interrupt
routine, and proper precautions are not taken to prevent interrupts
while the high-level function modifies the multibyte variable. In this
case, if the storage to the multibyte variable is interrupted after one or
two bytes have been stored, then the interrupt routine will see a mixture
of two numbers, the old and new, or garbage. If the variable is an
address to jump to, then the program can crash. The shared keyword
is provided in Dynamic C to prevent this type of situation.

3. Hardware and software can interact. For example, a function processes
an analog-to-digital (A/D) conversion value that should always be
positive. If an electrical transient occurs when a nearby motor starts
(which only happens once a day) and makes the value of the A/D
conversion negative, the program will enter an endless loop. The
programmer has made an error since the negative value was not
anticipated, but is unlikely to ever find the error through testing.

Take care to prevent a state that includes hitwd in an
endless loop. If this is not done, the watchdog will be
unable to time out and reset the system.

!

BL1300 Appendix E: PLCBus s E-1

APPENDIX E: PLCBUS

Appendix E provides the pin assignments for the PLCBus, describes the
registers, and lists the software drivers.

BL1300E-2 s Appendix E: PLCBus

PLCBus Overview
The PLCBus is a general-purpose expansion bus for Z-World controllers.
The PLCBus is available on the BL1200, BL1600, BL1700, PK2100, and
PK2200 controllers. The BL1000, BL1100, BL1300, BL1400, and
BL1500 controllers support the XP8300, XP8400, XP8600, and XP8900
expansion boards using the controller�s parallel input/output port. The
BL1400 and BL1500 also support the XP8200 and XP8500 expansion
boards. The ZB4100�s PLCBus supports most expansion boards, except
for the XP8700 and the XP8800. The SE1100 adds expansion capability
to boards with or without a PLCBus interface.

Table E-1 lists Z-World�s expansion devices that are supported on the
PLCBus.

Multiple expansion boards may
be linked together and con-
nected to a Z-World controller
to form an extended system.

Figure E-1 shows the pin layout

for the PLCBus connector.

Table E-1. Z-World PLCBus Expansion Devices

Device Description

EXP-A/D12 Eight channels of 12-bit A/D converters

SE1100 Four SPDT relays for use with all Z-World controllers

XP8100 Series 32 digital inputs/outputs

XP8200 “Universal Input/Output Board”
—16 universal inputs, 6 high-current digital outputs

XP8300 Two high-power SPDT and four high-power SPST relays

XP8400 Eight low-power SPST DIP relays

XP8500 11 channels of 12-bit A/D converters

XP8600 Two channels of 12-bit D/A converters

XP8700 One full-duplex asynchronous RS-232 port

XP8800 One-axis stepper motor control

XP8900 Eight channels of 12-bit D/A converters

2
4

1
3

6 5
8 7

10 9
12 11
14 13
16 15
18 17
20 19
22 21
24 23
26 25

GND
D7X
D5X
D3X
D1X

LCDX
A0X

GND

GND
 attention /AT
strobe /STBXGND
A3XGND
A2XGND
A1X

/RDX
VCC (+5 V)

D0X
/WRX

D4X
D2X

D6X

+24 V
(+5 V) VCC

Figure E-1. PLCBus Pin Diagram

BL1300 Appendix E: PLCBus s E-3

The PLCBus consists of the following lines.

� /STBX�negative-going strobe.

� A1X�A3X�three control lines for selecting bus operation.

� D0X�D3X�four bidirectional data lines used for 4-bit operations.

� D4X�D7X�four additional data lines for 8-bit operations.

� /AT�attention line (open drain) that may be pulled low by any device,
causing an interrupt.

pin 1

P1

H3

OP6000

14-conductor
ribbon cable.
Note position of
arrows.

to keypad
BL1200 connection
at the PLCBus port.
Note position of
connector relative to
pin 1.

Figure E-2. OP6000 Connection to BL1200 PLCBus Port

Two independent buses, the LCD bus and the PLCBus, exist on the single
connector.

The LCD bus consists of the following lines.

� LCDX�positive-going strobe.
� /RDX�negative-going strobe for read.
� /WRX�negative-going strobe for write.
� A0X�address line for LCD register selection.
� D0X-D7X�bidirectional data lines (shared with expansion bus).

The LCD bus is used to connect Z-World�s OP6000 series interfaces or to
drive certain small liquid crystal displays directly. Figure A-2 illustrates
the connection of an OP6000 interface to a BL1200 controller.

BL1300E-4 s Appendix E: PLCBus

The PLCBus may be used as a 4-bit bus (D0X�D3X) or as an 8-bit bus
(D0X�D7X). Whether it is used as a 4-bit bus or an 8-bit bus depends on
the encoding of the address placed on the bus. Some PLCBus expansion
cards require 4-bit addressing and others (such as the XP8700) require
8-bit addressing. These devices may be mixed on a single bus.

There are eight registers corresponding to the modes determined by bus
lines A1X, A2X, and A3X. The registers are listed in Table E-2.

Table E-2. PLCBus Registers

Register Address A3 A2 A1 Meaning

BUSRD0 C0 0 0 0 Read data, one way

BUSRD1 C2 0 0 1
Read data, another
way

BUSRD2 C4 0 1 0 Spare, or read data

BUSRESET C6 0 1 1
Read this register to
reset the PLCBus

BUSADR0 C8 1 0 0
First address nibble
or byte

BUSADR1 CA 1 0 1
Second address
nibble or byte

BUSADR2 CC 1 1 0
Third address nibble
or byte

BUSWR CE 1 1 1 Write data

Writing or reading one of these registers takes care of all the bus details.
Functions are available in Z-World�s software libraries to read from or
write to expansion bus devices.

To communicate with a device on the expansion bus, first select a register
associated with the device. Then read or write from/to the register. The
register is selected by placing its address on the bus. Each device recog-
nizes its own address and latches itself internally.

A typical device has three internal latches corresponding to the three
address bytes. The first is latched when a matching BUSADR0 is de-
tected. The second is latched when the first is latched and a matching
BUSADR1 is detected. The third is latched if the first two are latched and
a matching BUSADR2 is detected. If 4-bit addressing is used, then there
are three 4-bit address nibbles, giving 12-bit addresses. In addition, a
special register address is reserved for address expansion. This address, if
ever used, would provide an additional four bits of addressing when using
the 4-bit convention.

BL1300 Appendix E: PLCBus s E-5

If eight data lines are used, then the addressing possibilities of the bus
become much greater�more than 256 million addresses according to the
conventions established for the bus.

Place an address on the bus by writing (bytes) to BUSADR0, BUSADR1
and BUSADR2 in succession. Since 4-bit and 8-bit addressing modes
must coexist, the lower four bits of the first address byte (written to
BUSADR0) identify addressing categories, and distinguish 4-bit and 8-bit
modes from each other.

There are 16 address categories, as listed in Table E-3. An �x� indicates
that the address bit may be a �1� or a �0.�

Table E-3. First-Level PLCBus Address Coding

First Byte Mode Addresses Full Address Encoding

– – – – 0 0 0 0
– – – – 0 0 0 1
– – – – 0 0 1 0
– – – – 0 0 1 1

4 bits × 3 256
256
256
256

0000 xxxx xxxx
0001 xxxx xxxx
0010 xxxx xxxx
0011 xxxx xxxx

– – – x 0 1 0 0
– – – x 0 1 0 1
– – – x 0 1 1 0
– – – x 0 1 1 1

5 bits × 3 2,048
2,048
2,048
2,048

x0100 xxxxx xxxxx
x0101 xxxxx xxxxx
x0110 xxxxx xxxxx
x0111 xxxxx xxxxx

– – x x 1 0 0 0
– – x x 1 0 0 1

6 bits × 3 16,384
16,384

xx1000 xxxxxx xxxxxx
xx1001 xxxxxx xxxxxx

– – x x 1 0 1 0 6 bits × 1 4 xx1010

– – – – 1 0 1 1 4 bits × 1 1 1011 (expansion register)

x x x x 1 1 0 0 8 bits × 2 4,096 xxxx1100 xxxxxxxx

x x x x 1 1 0 1 8 bits × 3 1M xxxx1101 xxxxxxxx xxxxxxxx

x x x x 1 1 1 0 8 bits × 1 16 xxxx1110

x x x x 1 1 1 1 8 bits × 1 16 xxxx1111

This scheme uses less than the full addressing space. The mode notation
indicates how many bus address cycles must take place and how many bits
are placed on the bus during each cycle. For example, the 5 × 3 mode
means three bus cycles with five address bits each time to yield 15-bit
addresses, not 24-bit addresses, since the bus uses only the lower five bits
of the three address bytes.

BL1300E-6 s Appendix E: PLCBus

Z-World provides software drivers that access the PLCBus. To allow
access to bus devices in a multiprocessing environment, the expansion
register and the address registers are shadowed with memory locations
known as shadow registers. The 4-byte shadow registers, which are saved
at predefined memory addresses, are as follows.

SHBUS1 SHBUS1+1
SHBUS0 SHBUS0+1 SHBUS0+2 SHBUS0+3

Bus expansion BUSADR0 BUSADR1 BUSADR2

Before the new addresses or expansion register values are output to the
bus, their values are stored in the shadow registers. All interrupts that use
the bus save the four shadow registers on the stack. Then, when exiting the
interrupt routine, they restore the shadow registers and output the three
address registers and the expansion registers to the bus. This allows an
interrupt routine to access the bus without disturbing the activity of a
background routine that also accesses the bus.

To work reliably, bus devices must be designed according to the following
rules.

1. The device must not rely on critical timing such as a minimum delay
between two successive register accesses.

2. The device must be capable of being selected and deselected without
adversely affecting the internal operation of the controller.

Allocation of Devices on the Bus

4-Bit Devices

Table E-4 provides the address allocations for the registers of 4-bit
devices.

Table E-4. Allocation of Registers

A1 A2 A3 Meaning

000j 000j xxxj
digital output registers, 64 registers
64 × 8 = 512 1-bit registers

000j 001j xxxj analog output modules, 64 registers

000j 01xj xxxj
digital input registers, 128 registers
128 × 4 = 512 input bits

000j 10xj xxxj analog input modules, 128 registers

000j 11xj xxxj 128 spare registers (customer)

001j xxxj xxxj 512 spare registers (Z-World)

j controlled by board jumper
x controlled by PAL

BL1300 Appendix E: PLCBus s E-7

Digital output devices, such as relay drivers, should be addressed with
three 4-bit addresses followed by a 4-bit data write to the control register.
The control registers are configured as follows

bit 3 bit 2 bit 1 bit 0
A2 A1 A0 D

The three address lines determine which output bit is to be written. The
output is set as either 1 or 0, according to D. If the device exists on the
bus, reading the register drives bit 0 low. Otherwise bit 0 is a 1.

For digital input, each register (BUSRD0) returns four bits. The read
register, BUSRD1, drives bit 0 low if the device exists on the bus.

8-Bit Devices

Z-World�s XP8700 and XP8800 expansion boards use 8-bit addressing.
Refer to the XP8700 and XP8800 manual.

Expansion Bus Software
The expansion bus provides a convenient way to interface Z-World�s
controllers with expansion boards or other specially designed boards. The
expansion bus may be accessed by using input functions. Follow the
suggested protocol. The software drivers are easier to use, but are less
efficient in some cases. Table E-5 lists the libraries.

Table E-5. Dynamic C PLCBus Libraries

Library Needed Controller

DRIVERS.LIB All controllers

EZIOTGPL.LIB BL1000

EZIOLGPL.LIB BL1100

EZIOMGPL.LIB BL1400, BL1500

EZIOPLC.LIB BL1200, BL1600, PK2100, PK2200, ZB4100

EZIOPLC2.LIB BL1700

EZIOBL17.LIB BL1700

PBUS_TG.LIB BL1000

PBUS_LG.LIB BL1100, BL1300

PLC_EXP.LIB BL1200, BL1600, PK2100, PK2200

BL1300E-8 s Appendix E: PLCBus

There are 4-bit and 8-bit drivers. The 4-bit drivers employ the following
calls.

� void eioResetPlcBus()

Resets all expansion boards on the PLCBus. When using this call,
make sure there is sufficient delay between this call and the first access
to an expansion board.

LIBRARY: EZIOPLC.LIB, EZIOPLC2.LIB, EZIOMGPL.LIB.

� void eioPlcAdr12(unsigned addr)

Specifies the address to be written to the PLCBus using cycles
BUSADR0, BUSADR1, and BUSADR2.

PARAMETER: addr is broken into three nibbles, and one nibble is
written in each BUSADRx cycle.

LIBRARY: EZIOPLC.LIB, EZIOPLC2.LIB, EZIOMGPL.LIB.

� void set16adr(int adr)

Sets the current address for the PLCBus. All read and write operations
access this address until a new address is set.

PARAMETER: adr is a 16-bit physical address. The high-order
nibble contains the value for the expansion register, and the remaining
three 4-bit nibbles form a 12-bit address (the first and last nibbles must
be swapped).

LIBRARY: DRIVERS.LIB.

� void set12adr(int adr)

Sets the current address for the PLCBus. All read and write operations
access this address until a new address is set.

PARAMETER: adr is a 12-bit physical address (three 4-bit nibbles)
with the first and third nibbles swapped.

LIBRARY: DRIVERS.LIB.

� void eioPlcAdr4(unsigned addr)

Specifies the address to be written to the PLCBus using only cycle
BUSADR2.

PARAMETER: addr is the nibble corresponding to BUSADR2.

LIBRARY: EZIOPLC.LIB, EZIOPLC2.LIB, EZIOMGPL.LIB.

BL1300 Appendix E: PLCBus s E-9

� void set4adr(int adr)

Sets the current address for the PLCBus. All read and write operations
access this address until a new address is set.

A 12-bit address may be passed to this function, but only the last four
bits will be set. Call this function only if the first eight bits of the
address are the same as the address in the previous call to set12adr.

PARAMETER: adr contains the last four bits (bits 8�11) of the
physical address.

LIBRARY: DRIVERS.LIB.

� char _eioReadD0()

Reads the data on the PLCBus in the BUSADR0 cycle.

RETURN VALUE: the byte read on the PLCBus in the BUSADR0
cycle.

LIBRARY: EZIOPLC.LIB, EZIOPLC2.LIB, EZIOMGPL.LIB.

� char _eioReadD1()

Reads the data on the PLCBus in the BUSADR1 cycle.

RETURN VALUE: the byte read on the PLCBus in the BUSADR1
cycle.

LIBRARY: EZIOPLC.LIB, EZIOPLC2.LIB, EZIOMGPL.LIB.

� char _eioReadD2()

Reads the data on the PLCBus in the BUSADR2 cycle.

RETURN VALUE: the byte read on the PLCBus in the BUSADR2
cycle.

LIBRARY: EZIOPLC.LIB, EZIOPLC2.LIB, EZIOMGPL.LIB.

� char read12data(int adr)

Sets the current PLCBus address using the 12-bit adr, then reads four
bits of data from the PLCBus with BUSADR0 cycle.

RETURN VALUE: PLCBus data in the lower four bits; the upper bits
are undefined.

LIBRARY: DRIVERS.LIB.

BL1300E-10 s Appendix E: PLCBus

� char read4data(int adr)

Sets the last four bits of the current PLCBus address using adr bits 8�
11, then reads four bits of data from the bus with BUSADR0 cycle.

PARAMETER: adr bits 8�11 specifies the address to read.

RETURN VALUE: PLCBus data in the lower four bits; the upper bits
are undefined.

LIBRARY: DRIVERS.LIB.

� void _eioWriteWR(char ch)

Writes information to the PLCBus during the BUSWR cycle.

PARAMETER: ch is the character to be written to the PLCBus.

LIBRARY: EZIOPLC.LIB, EZIOPLC2.LIB, EZIOMGPL.LIB.

� void write12data(int adr, char dat)

Sets the current PLCBus address, then writes four bits of data to the
PLCBus.

PARAMETER: adr is the 12-bit address to which the PLCBus is set.

dat (bits 0�3) specifies the data to write to the PLCBus.

LIBRARY: DRIVERS.LIB.

� void write4data(int address, char data)

Sets the last four bits of the current PLCBus address, then writes four
bits of data to the PLCBus.

PARAMETER: adr contains the last four bits of the physical address
(bits 8�11).

dat (bits 0�3) specifies the data to write to the PLCBus.

LIBRARY: DRIVERS.LIB.

The 8-bit drivers employ the following calls.

� void set24adr(long address)

Sets a 24-bit address (three 8-bit nibbles) on the PLCBus. All read and
write operations will access this address until a new address is set.

PARAMETER: address is a 24-bit physical address (for 8-bit bus)
with the first and third bytes swapped (low byte most significant).

LIBRARY: DRIVERS.LIB.

BL1300 Appendix E: PLCBus s E-11

� void set8adr(long address)

Sets the current address on the PLCBus. All read and write operations
will access this address until a new address is set.

PARAMETER: address contains the last eight bits of the physical
address in bits 16�23. A 24-bit address may be passed to this function,
but only the last eight bits will be set. Call this function only if the first
16 bits of the address are the same as the address in the previous call to
set24adr.

LIBRARY: DRIVERS.LIB.

� int read24data0(long address)

Sets the current PLCBus address using the 24-bit address, then reads
eight bits of data from the PLCBus with a BUSRD0 cycle.

RETURN VALUE: PLCBus data in lower eight bits (upper bits 0).

LIBRARY: DRIVERS.LIB.

� int read8data0(long address)

Sets the last eight bits of the current PLCBus address using address bits
16�23, then reads eight bits of data from the PLCBus with a BUSRD0
cycle.

PARAMETER: address bits 16�23 are read.

RETURN VALUE: PLCBus data in lower eight bits (upper bits 0).

LIBRARY: DRIVERS.LIB.

� void write24data(long address, char data)

Sets the current PLCBus address using the 24-bit address, then writes
eight bits of data to the PLCBus.

PARAMETERS: address is 24-bit address to write to.

data is data to write to the PLCBus.

LIBRARY: DRIVERS.LIB.

� void write8data(long address, char data)

Sets the last eight bits of the current PLCBus address using address bits
16�23, then writes eight bits of data to the PLCBus.

PARAMETERS: address bits 16�23 are the address of the PLCBus
to write.

data is data to write to the PLCBus.

LIBRARY: DRIVERS.LIB.

BL1300E-12 s Appendix E: PLCBus

 Appendix F: Simulated PLCBus Connections s D-1BL1300

 APPENDIX F:

SIMULATED PLCBUS CONNECTION

F-2 s Appendix F: Simulated PLCBus Connections BL1300

BL1300
Expansion boards can be connected to the BL1300 PIO port on header P5
with an expander cable (Z-World part number 540-0015). The first two
pins of the expander cable must extend past the end of header P5. Cut the
wire that runs from pin 2 of the 26-pin expander cable connection to pin 3
of the 20-pin connector. Then supply +5 V from an external source to the
expansion board at pin 1 of the expander cable.

Dynamic C�s PBUS_LG.LIB library provides software that may be used for
programming.

Use an external power supply with expansion boards
connected to the BL1300. There is no provision in the
expander cable to supply +24 V from the controller to
header P1 or P2 on the expansion boards.

!

Picks up PA0�PA7.
Leaves PB0�PB7
available.

Pin 1

Expander Cable
540-0015

Note: The first two pins of the expander cable
connector must extend past the end of the
controller�s header.

(A 20-pin connector is used because
an 18-pin connector is not available.)

P
LC

B
us

 C
on

ne
ct

or

B
L1

30
0

H
ea

de
r

P
5PA0 (P5:3)

PA1 (P5:5)
PA2 (P5:7)
PA3 (P5:9)
PA4 (P5:11)
PA5 (P5:13)
PA6 (P5:15)
PA7 (P5:17)

/STBX
A3X
A2X
A1X
D2X
D3X
D0X
D1X

PIO
Signal

PLCBus
Signal

Cut the wire leading from pin 1
on BL1300 header P5.
Strip and run this lead to VCC
(available on pin 1 of SmartBlock
header J1).

Figure F-1. BL1300 Expander Cable Connection

BL1300 Appendix G: Power Management s G-1

APPENDIX G: POWER MANAGEMENT

Appendix G provides information about power consumption and intermit-
tent operation.

BL1300G-2 s Appendix G: Power Management

Power Consumption
Table G-1 provides the power consumption for various BL1300 compo-
nents. The figures are approximate. Remember to add a safety margin.

Table G-1. Current Draw of Major BL1300 Components
(mA)

Main Board 4.608 MHz 9.216 MHz

16V8Q PALs 40 45

85C30 SCC 10 12

External crystal (each) 4 4

PIO (2 installed) 10 14

LT1180 RS-232 drivers (2 installed) 46 46

RS-485 drivers (2 installed) 120 120

Sub-total 230 241

SmartBlock™ 4.608 MHz 9.216 MHz

Z180 10 20

22CEV10 PALs 50 55

32K RAM 10 20

64K EPROM 20 30

24C04 EEPROM
Standby

Program

1

7

1

7

72421 clock nil nil

Sub-total 91–97 101–107

BL1300 Total 321–327 342–349

Intermittent Operation
You can turn power on and off under program control on BL1300s
equipped with a switching power supply. This is done under the control of
the time/date clock or by an external switch.

The switching power supply turns off when the signal VOFF is raised high
and turns on when VOFF is pulled low. When the supply turns on, there is
a power-on reset lasting approximately 50 ms. The application�s main
routine begins execution approximately 10 ms after the power-on reset.

BL1300 Appendix G: Power Management s G-3

VOFF can either be driven by an external circuit, or controlled by the open
drain output of the Epson 72421 clock chip. You can control the power in
one of the following two ways.

1. An operator pushbutton grounds VOFF, enabling power. The applica-
tion then calls the library routine powerup to keep the power enabled
after the operator releases the pushbutton. When power is no longer
needed, the program calls the function powerdown to turn the power
off until another external event reenables power. This logic can be
used to create a battery-powered instrument that turns off automatically
after a certain period of inactivity to conserve the battery.

2. Power is enabled periodically for a short period of time. The following
periods are available.

1 second
1 minute
1 hour

The minimum time for power to be on is approximately 60 ms. Power
consumption will be decreased by a factor of approximately 15 to 1 if
the power is on for only 60 ms every second. If the power is on only
once a minute, the ratio will be 900 to 1. Once every hour reduces the
ratio to 54,000 to 1. If a 9 V, 500 mA hour battery is used, the battery
life with power on continuously is only 1.5 h. The battery life would be
extended to approximately one day with power enabled every second.
Enabling power only once a minute extends battery life to approxi-
mately two months. Enabling power every hour extends battery life to
approximately 10 years. This type of power usage is convenient for
data collection applications, for example, recording the temperature at
1 min intervals under battery power.

VOFF can be enabled permanently by installing a
header at J16 and jumpering pins 1�2. For more
information on this option, including factory installa-
tion of J16 for quantity orders, call your Z-World Sales
Representative at (530) 757-3737.

(

The following library functions are used for intermittent operation.

� setperiodic(int period_code)

Specifies the interval between VOFF pulses from the time/date clock.
The values for period_code are 4 =1 second, 8 =1 minute, and
12 = 1 hour.

� void sleep()

Turns power off until next periodic time.

BL1300G-4 s Appendix G: Power Management

The periodic interrupts depend on the modes set into the battery-backed
memory of the time/date clock, the 72421 chip. If the 72421 is upset by a
voltage transient or the lithium battery goes dead, then the board could fail
to wake up at the specified time. For this reason it is advisable to add an
external wake-up circuit to replace or supplement the 72421 for critical
applications that must run unattended.

BL1300 Appendix H: Hardware Configuration s H-1

APPENDIX H: HARDWARE CONFIGURATION

BL1300H-2 s Appendix H: Hardware Configuration

If you change the BL1300 clock speed, you must either calculate the new
baud rates based on the new clock or modify locations 0x108 and 0x109 of
the EEPROM. The Dynamic C EPROM generates baud rates based on the
following considerations.

1. If no EEPROM is installed on the SmartBlock or if the baud rate for
the Dynamic C Interface Board is set to 9600 bps, then the micropro-
cessor clock speed, which affects the baud rate, is assumed to be
9.216 MHz.

2. If an EEPROM is installed and the baud rate jumpers on the
Dynamic C Interface Board are set to 19,200 bps, 28,800 bps, or
57,600 bps, then the system clock speed is taken from address 0x108 of
the EEPROM.

This clock speed is expressed as a 16-bit number in units of 1200 Hz.
Thus, 9.216 MHz is represented by the decimal number 7680. An 18.432
MHz crystal will result in the baud rates corresponding to the jumper
settings listed in chapter Installation.

If you use a different clock speed for the microprocessor, then either the
value at 0x108 in the EEPROM must be altered, or the new baud rates
must be calculated. For example if a 6.144 MHz clock is used
(12.288 MHz crystal), then 28,800 bps becomes 19,200 bps since the ratio
of 6.144 MHz/9.216 MHz = 19,200 bps/28,800 bps. For the debugging
port, a given baud rate can be generated if the clock speed is exactly
divisible by 32 times the baud rate. Thus, 9,216,000 Hz divided by (32 ×
19,200 bps) = 15, so a baud rate of 19,200 bps can be achieved with a
9.216 MHz clock. But, 38,400 bps can only be achieved by changing the
clock to a different speed, such as 6.144 MHz. Keep in mind that if you
wish to use the asynchronous ports on the Z180, only clock frequencies in
the series 12.288 MHz, 6.144 MHz, 3.072 MHz � or 9.216 MHz,
4.108 MHz � will allow you to obtain the standard baud rates.

For a list of available baud rates, see Table 4-2, �Baud Rates
for ASCI Control Register B,� in Chapter 4, �System Devel-
opment.�

$

BL1300 Appendix I: Battery s I-1

APPENDIX I: BATTERY

Appendix I provides information about the onboard lithium battery.

BL1300I-2 s Appendix I: Battery

Battery Life and Storage Conditions
The battery on the BL1300 controller will provide approximately 9,000
hours of backup time for the onboard real-time clock and static RAM.
However, backup time longevity is affected by many factors including the
amount of time the controller is unpowered and the static RAM size. The
controller should be stored at room temperature in the factory packaging
until field installation. Take care that the controller is not exposed to
extreme temperature, humidity, and/or contaminants such as dust and
chemicals.

To ensure maximum battery shelf life, follow proper storage procedures.
Replacement batteries should be kept sealed in the factory packaging at
room temperature until installation. Protection against environmental
extremes will help maximize battery life.

Replacing Soldered Lithium Battery
Use the following steps to replace the battery.

1. Locate the three pins on the bottom side of the printed circuit board
that secure the battery to the board.

2. Carefully de-solder the pins and remove the battery. Use a solder
sucker to clean up the holes.

3. Install the new battery and solder it to the board. Use only a Panasonic
BR2325-1HG or its equivalent.

BL1300 Appendix I: Battery s I-3

Battery Cautions
� Caution (English)

There is a danger of explosion if battery is incorrectly replaced.
Replace only with the same or equivalent type recommended by the
manufacturer. Dispose of used batteries according to the
manufacturer�s instructions.

� Warnung (German)

Explosionsgefahr durch falsches Einsetzen oder Behandein der
Batterie. Nur durch gleichen Typ oder vom Hersteller empfohlenen
Ersatztyp ersetzen. Entsorgung der gebrauchten Batterien gemäb den
Anweisungen des Herstellers.

� Attention (French)

Il y a danger d�explosion si la remplacement de la batterie est incorrect.
Remplacez uniquement avec une batterie du même type ou d�un type
équivalent recommandé par le fabricant. Mettez au rebut les batteries
usagées conformément aux instructions du fabricant.

� Cuidado (Spanish)

Peligro de explosión si la pila es instalada incorrectamente. Reemplace
solamente con una similar o de tipo equivalente a la que el fabricante
recomienda. Deshagase de las pilas usadas de acuerdo con las
instrucciones del fabricante.

� Waarschuwing (Dutch)

Explosiegevaar indien de batterij niet goed wordt vervagen.
Vervanging alleen door een zelfde of equivalent type als aanbevolen
door de fabrikant. Gebruikte batterijen afvoeren als door de fabrikant
wordt aangegeven.

� Varning (Swedish)

Explosionsfära vid felaktigt batteribyte. Använd samma batterityp eller
en likvärdigt typ som rekommenderas av fabrikanten. Kassera använt
batteri enligt fabrikantens instruktion.

BL1300I-4 s Appendix I: Battery

BL1300 Index s 1

INDEX

Symbols

#INT_VEC C-13
#JUMP_VEC C-14, C-15
/AT E-3
/CTS 4-9, 4-13
/DCD0 4-9, 4-10
/RDX E-3
/RTS0 4-11
/STBX E-3
/WRX E-3
= (assignment) A-4
4-bit bus operations E-4, E-6
5 × 3 addressing mode E-5
75174 driver chip 2-2
75175 driver chip 2-2
8-bit bus operations E-4, E-5, E-7

A

A0X E-3
A1X, A2X, A3X E-3, E-4
accessory kit 2-2
addresses

encoding E-5
inputs/outputs C-7
modes E-5
PLCBus E-4, E-5

ASCI 4-7, 4-9, 4-10, 4-12
description 1-2
handshake signals 4-7
mini-8 connections 4-6
multiprocessor communications

4-7
ASCI serial ports 1-2
ASCI status registers 4-9

Control Register A 4-10
Control Register B 4-12
MOD0 4-11
MOD1 4-10, 4-11, 4-13
MOD2 4-11

asyn_init_scc 4-21

asyn_kill_sccx 4-21
asyn_send_scc 4-21
asynchronous serial communication

4-3
interface 4-9

attention line E-3

B

background routine E-6
battery

cautions I-2, I-3
power consumption G-2
replacing I-2
shelf life B-3

battery-backed
RAM 2-4

battery-backed RAM 1-5, C-15
baud rate 3-2, 4-12, 4-13,

4-14, B-3
adjusting for system clock rate

H-2
ASCI Control Register B 4-13
changing 3-3
divide ratios 4-12
SCC 4-20

BAUDCODE C-16
Bell Industries 5-3
bias

RS-485 4-18
transmission line 4-6

bidirectional data lines E-3
board layout 1-3
brownout C-14, C-15
bus

control registers E-7
expansion E-2, E-3, E-4,

E-5, E-6, E-7
4-bit drivers E-8
8-bit drivers E-10
addresses E-6
devices E-6, E-7

BL13002 s Index

bus
expansion

digital inputs E-7
functions E-8, E-9, E-10,
E-11
rules for devices E-6
software drivers E-7

LCD E-3
operations

4-bit E-4, E-6
8-bit E-4, E-7

BUSADR0 E-4, E-5
BUSADR1 E-4, E-5
BUSADR2 E-4, E-5
BUSADR3 E-10, E-11
BUSRD0 E-7, E-8, E-9, E-11
BUSRD1 E-7, E-8
BUSWR E-8

C

cable
DIN-8 to bare leads 1-5
DIN-8 to DB25M 1-5
DIN-8 to DB9F 1-5

changing baud rate 3-3
CKA1D 4-11
clock D-4

changing clock speed H-2
frequency 4-13, 4-14
real-time 5-3
SCC clock encoding methods

4-21
system A-2
time/date 5-3, C-14

CLOCKSPEED C-16
CNTLA 4-10, 4-13
CNTLB0 4-14
CNTLB1 4-14
common problems

programming errors A-4
wrong COM port A-2

communication
Dynamic C C-15

communication
RS-232 2-4, 3-2
RS-485 2-4, 3-2
serial 2-4, 3-2, 4-8, 4-12,

4-13, 4-14, 4-15, C-8
connecting BL1300 to PLCBus

F-2
connectors

Centronics
pin assignments 4-26

26-pin PLCBus
pin assignments E-2

CTS 4-8
CTS/PS 4-13
CTS1E 4-9

D

D0X�D7X E-3
default communication rate 2-5
digital interfaces 4-29
dimensions B-2
DIN-8 to bare leads cable 1-5
DIN-8 to DB25M cable 1-5
DIN-8 to DB9F null modem cable

1-5
DIP relays E-2
display

liquid crystal E-3
divide ratio 4-12
DMA 4-11
DMA_IN.C 4-23
dma_mem_sccx 4-23
DMA_OUT.C 4-23
dma_sccx_mem 4-23
drivers

expansion bus E-7
4-bit E-8
8-bit E-10

relay E-7
DRIVERS.LIB 4-2, E-7
Dynamic C 2-5, 3-2, 5-2

communications C-15
libraries 4-2

BL1300 Index s 3

Dynamic C
serial options 2-5
standard version 4-2
troubleshooting A-2

Dynamic C Interface Board
2-3, 2-4

J04 2-3
J06 2-3
J07 2-3
KIO registers C-10
run program in RAM 2-3
setting baud rate 2-3
setting RS-232 or RS-485

protocol 2-3

E

ee_rd D-3
ee_wr D-3
EEPROM 1-5, 3-3, 5-2

constants C-13
jumper settings D-2
library routines D-3
write-protect D-2, D-3
writes

lifetime D-3
wrong clock frequency A-2

EFR bit 4-10
EIA levels 4-5
eioPlcAdr12 E-8
eioReadD0 E-9
eioReadD1 E-9
eioReadD2 E-9
eioResetPlcBus E-8
eioWriteWR E-10
enclosure 1-4
EPROM 1-5, 3-2, 3-3

choosing 3-4
copyright 3-5
installing 3-4
options 3-4
programming 3-3

execution times C-6
Exp-A/D12 E-2

expansion boards
reset E-8

expansion bus E-2, E-3, E-4,
E-5, E-6, E-7

4-bit drivers E-8
8-bit drivers E-10
addresses E-6
devices E-6, E-7
digital inputs E-7
expansion register E-6
functions E-8, E-9, E-10, E-11
registers E-4, E-6
rules for devices E-6
software drivers E-7

EZIOBL17.LIB E-7
EZIOLGPL.LIB E-7
EZIOMGPL.LIB E-7
EZIOPL2.LIB E-7
EZIOPLC.LIB E-7
EZIOTGPL.LIB E-7

F

features 1-2
framing error 4-10, 4-11
frequency

system clock 4-13, A-2
function libraries E-4

H

handshake signals
ASCI 4-7
SCC 4-16

HD64180Z microprocessor 5-2
Hitachi America 5-2
Hitachi technical manuals 5-2
hitwd D-5

I

inport C-2, C-7, C-14, E-8,
E-9, E-11

inputs/outputs
cycle timing C-5
devices C-8

BL13004 s Index

inputs/outputs
map C-8
select map C-7
space C-8

Integrated Electronics 5-3
intermittent operation G-2

optional jumper installation G-3
options G-3

interrupt priorities C-16
interrupt routines C-14, C-15
interrupt service routine 4-14
interrupt vectors C-13, C-15

default C-13
Z180 internal devices C-13

interrupts A-3, C-13, C-15,
E-3, E-6

and ASCI 4-9
nonmaskable A-3, C-14, C-15
power failure C-14, C-15
routines E-6
serial 4-8, 4-9, 4-10, C-15

IOSTOP 4-10

J

jump vectors C-15
jumper blocks

connections B-5
location B-4

jumper settings
baud rate 3-3
DCDA 4-16
DTRA 4-16
EEPROM 2-4, D-2
EPROM size 3-4
intermittent operation G-3
J01 Dynamic C Interface Board

2-4
J02 Dynamic C Interface Board

2-4
J04 Dynamic C Interface Board

2-3
J06 Dynamic C Interface Board

2-3
J07 Dynamic C Interface Board

2-3

jumper settings
J1 4-16, 4-19
J1 SmartBlock 2-3
J12 4-17
J13 4-17
J14 4-17
J15 4-17
J16 G-3
J2 SmartBlock 2-4
J3 SmartBlock 2-4
J4 SmartBlock 3-4
J5 SmartBlock 3-4
J6 SmartBlock 3-4
program/run 2-3, 2-4
RS-232 DCDA 4-16
SCC 4-16, 4-17

Channel A 4-19
SRAM size 3-4
summary B-5
watchdog timer 2-4

JUMPERS C-16

K

KILL 4-2
KIO registers

Dynamic C Interface Board C-10

L

LCD E-3
LCD bus E-3
LCDCLK.C D-5
LCDX E-3
LED 2-5, C-14
libraries

function E-4
library

EPROM vs. source 4-2
replacing EPROM functions 4-2
source 4-2

liquid crystal display E-3
lithium backup battery C-14, I-2
lprsend 4-27
LT1180 driver chips 2-2

BL1300 Index s 5

M

memory
access times C-4
battery-backed C-15
map C-2

memory cycles C-3
execution timing C-6
inserting wait states C-5
LIR cycles C-3
standard C-4

Microchip 5-2
mini-8 pin connections to PCB 4-18
mktime D-4
mktm D-4
mode

addressing E-5
modems 4-6
multidrop networks

resistor packs 1-5
multiprocessor bit 4-11, 4-13
multiprocessor communications 4-7
multiprocessor mode 4-13

N

NMI A-3, C-14, C-15
NMI_VEC C-14, C-15
nonmaskable interrupts A-3,

C-14, C-15

O

operating modes 3-2
run mode 3-3

options 1-5
outport 4-21, C-2, C-7,

E-8, E-9, E-11
overloaded power supply C-14
overrun error (OVRN) 4-10, 4-11

P

parallel communication
description 4-3, 4-24
pin assignments 4-25

parallel communication
protocol 4-26
specifying PIO 4-27

parallel ports
see PIO ports

parity 4-11, 4-13, 4-14
error 4-10, 4-11

PBUS_TG.LIB F-2
PC A-3
parity error 4-10, 4-11
periodic interrupts G-4
PIO ports 4-29

bidirectional mode 4-31
bit mode 4-31
connecting to Centronics device

4-25
connector 4-29
description 1-4
handshaking 4-29
I/O register control word 4-32
I/O registers 4-30
input mode 4-31
interrupt control word 4-32
interrupt disable word 4-33
interrupt vector word 4-32
mask control word 4-33
Mode 0 4-31
Mode 1 4-31
Mode 2 4-31
Mode 3 4-31
mode control word 4-31
modes 4-31
output mode 4-31
pin assignments 4-28
printer drivers 4-27
printer emulation 4-28
specifying 4-27
use as digital interface 4-29
using PIO ports 4-31

PIODEMO.C 4-33
PLCBus E-2, E-3, E-4, E-5,

E-6, E-7
26-pin connector

pin assignments E-2

BL13006 s Index

PLCBus
4-bit operations E-4, E-5
8-bit operations E-4, E-5
addresses E-4, E-5
BL1300 connections F-2
memory-mapped I/O register E-4
reading data E-4
relays

DIP E-2
drivers E-7

writing data E-4
plink_getc0 4-28
plink_init0 4-28
plink_rdy0 4-28
Port Z0 4-14
ports

serial 1-5
power consumption G-2
power failure

detection 2-4
interrupts C-14, C-15

power regulator
switching 1-5

power supply
Dynamic C Interface Board 2-4

powerdown G-3
powerup G-3
prescaler 4-12
printer drivers 4-27
printer emulation 4-28
programming 5
PRPORT.LIB 4-2, 4-31
prsend 4-27
prsend_init 4-27
PSFLASH.C 2-5

R

RAM
battery-backed 2-4, C-15

read-only memory 3-2, 3-3
read12data E-9
read24data E-11
read4data E-10
read8data E-11

reading data on the PLCBus
E-4, E-9

real-time clock 5-3
receiver data register 4-8, 4-10, 4-11
receiver enable 4-11
receiver shift register 4-8, 4-10
registers

Dynamic C Interface Board C-10
inputs/outputs C-7
KIO C-10
other C-12
user-defined C-11
Z180 C-8, C-9, C-10

regulated input voltage C-14
reset 4-10

expansion boards E-8
hardware 3-2
system C-14

resistor packs 4-18
receiver interrupts 4-10
ROM

programmable 3-2, 3-3
RS-232 2-4, 3-2, 4-5

driver chips 2-2
mini-8 connections

ASCI 4-6
SCC 4-17

RS-422/RS-485 2-4, 3-2, 4-5, 4-6
bias resistors 4-18
driver chips 1-5, 2-2
mini-8 connections

SCC 4-17
SCC Channel A RS-485 driver

4-16
SCC Channel B RS-485 driver

4-16
terminating resistors 4-18

receiver shift register 4-8, 4-10
running sample program 2-5

S

sample programs 4-23, D-5
LCDCLK.C D-5
PIODEMO.C 4-33

BL1300 Index s 7

sample programs
PSFLASH.C 2-5
SER_DEMO.C 4-15

SCC 1-2
baud rate generation 4-19
baud rate table 4-20
channel signals 4-17
clock encoding methods 4-21
description 1-2, 4-16
digital phase-locked loop 4-18
encoding/decoding data 4-20
handshaking 4-16
initializing 4-22
modes 4-22
ports 4-16
RS-232

mini-8 connections 4-17
RS-422/RS-485

Channel A driver 4-16
Channel B driver 4-16
mini-8 connections 4-17

serial ports 1-2
software drivers 4-21
software reset 4-21
system clock frequency 4-19

scc_rst 4-21
SDLC synchronous transmission 4-5
select PLCBus address E-8
SE1100 E-2
SER_DEMO.C 4-15
ser_init_z0 4-14
ser_init_z1 4-14
ser_kill_z1 4-14
ser_rec_z1 4-14
ser_send_z1 4-14
SER0_VEC 4-8
SER1_VEC 4-8
Serial Channel 0

block diagram 4-7
serial communication 2-4, 3-2,

4-8, 4-12, 4-13, 4-14,
4-15, C-8

character format 4-5
description 4-3, 4-5

serial communication
multiprocessor bit 4-13
protocols 4-5
serial ports 4-7

serial communication controller
see SCC

serial interrupts 4-8, 4-9,
4-10, C-15

serial ports 1-5, 4-8, 4-15
ASCI 1-2
SCC 1-2

SERIAL.LIB 4-2
function library 4-14

set12adr E-8
set16adr E-8
set24adr E-10
set4adr E-9
set8adr E-11
SETCLOCK.C D-5
setperiodic G-3
shadow registers E-6
shared variables 4-14
shutdown C-14
sleep G-3
SmartBlock

EEPROM 2-4
features 1-4
J1 2-3
J2 2-4
J3 2-4
J4 3-4
J5 3-4
J6 3-4
layout 1-3
parts 1-4

software
libraries 4-14, E-4
drivers

SCC 4-21
Z180 serial ports 4-14

source (C term) A-4
specifications B-3
stack corruption 4-14
start bit 4-13

BL13008 s Index

startup sequence 3-2
stop bits 4-11, 4-13, 4-14
switching voltage regulator 1-5
sysclock 4-14
system clock

changing H-2
system clock frequency A-2
system reset C-14

T

terminating resistors
RS-485 4-18

termination
twisted pair 4-6

time and date C-14
time/date clock 5-3, C-14

drivers D-3
registers C-12, D-3

timer C-8
watchdog 3-2, C-14

tm_rd D-4
tm_wr D-4
transmitter data register 4-8, 4-9
transmitter interrupt enable 4-9
transmitter shift register 4-7, 4-8
troubleshooting

baud rate A-2
COM port A-3
communication mode A-3
input/output problems A-3
nonmaskable interrupts A-3
power supply A-3
repeated interrupts A-3
serial link A-3
watchdog timer A-3

U

U1 2-2
U2 2-2
U3 2-2
U4 2-2
unregulated input voltage C-14

V

variables
initialization C-16

VOFF G-2

W

watchdog timer 3-2, A-3,
C-14, D-5

drivers D-5
wderror D-5
write12data E-10
write24data E-11
write4data E-10
write8data E-11
writing data on the PLCBus

E-4, E-10

X

Xicor 5-2
XP8100 E-2
XP8200 E-2
XP8300 E-2
XP8400 E-2
XP8500 E-2
XP8600 E-2
XP8700 E-2, E-4, E-7
XP8800 E-2, E-7
XP8900 E-2

Z

Z180 5-2
channel signals 4-6
internal I/O registers C-8,

C-9, C-10
Port 1 C-13
Serial Channel 0 4-9
serial ports 4-7

software drivers 4-14
z180baud 4-14
Zilog 5-2
ZIO

see Z180 serial ports

Part No. 019-0006-03
Revision 3

Printed in U.S.A.

Z-World
2900 Spafford Street

Davis, California 95616-6800 USA

Telephone:
Facsimile:

24-Hour FaxBack:
Web Site:

E-Mail:

(530) 757-3737
(530) 753-5141
(530) 753-0618
http://www.z world.com
zworld@zworld.com

