wolfMQTT User Manual

November 16, 2015
Version 0.3

Table of Contents

Chapter 1: Introduction
1.1 Protocol overview
Chapter 2: Building wolfSSL
2.1 Getting the Source Code
2.2 Building on *nix
2.3 Building on Windows
2.4 Building in a Non-Standard Environment
2.5 Cross Compiling
Chapter 3: Getting Started
3.1 Example
Chapter 4: Library Design
Chapter 5: API Reference
4.1 MqttPacketResponseCodes (enum)
4.2 MaqttClient_Init
4.3 MqttClient_Connect
4.4 MqttClient_Publish
4.5 MqttClient_Subscribe
4.6 MaqttClient_Unsubscribe
4.7 MqttClient_Ping
4.8 MqttClient_Disconnect
4.9 MqttClient_WaitMessage
4.10 MaqttClient_NetConnect
4.11 MqttClient_NetDisconnect
4,12 MaqttClient_ReturnCodeToString



Chapter 1: Introduction

This is an implementation of the MQTT (Message Queuing Telemetry Transport) Client
written in C. This library was built from the ground up to be multi-platform, space
conscience and extensible. It supports all Packet Types, all Quality of Service (QoS)
levels 0-2 and supports SSL/TLS using the wolfSSL library. This implementation is
based on the MQTT v3.1.1 specification.

1.1 Protocol Overview

MQTT is a lightweight open messaging protocol that was developed for constrained
environments such as M2M (Machine to Machine) and IoT (Internet of Things), where a
small code footprint is required. MQTT is based on the Pub/Sub messaging principle of
publishing messages and subscribing to topics. The protocol efficiently packs messages
to keep the overhead very low. The MQTT specification recommends TLS as a
transport option to secure the protocol using port 8883 (secure-mqtt). Constrained
devices can benefit from using TLS session resumption to reduce the reconnection
cost.

MQTT defines QoS levels 0-2 to specify the delivery integrity required.

0 = At most once delivery: No acknowledgment.

1 = At least once delivery: Sends acknowledgment (PUBLISH_ACK).

2 = Exactly once delivery: Sends recevied (PUBLISH_REC), gets back released
(PUBLISH_REL) and then sends complete (PUBLISH_COMP).

Highlights:

e A publish message payload can be up to 256MB (28 bits).

e Packet header remaining length is encoded using a scheme where the most
significant bit (7) indicates an additional length byte.

e Packets which require a response must include a 16-bit packet Id. This needs to
be unique for any outstanding transactions. Typically an incremented value.

e A client can provide a last will and testament upon connect, which will be
delivered when the broker sees the client has disconnected or network
keep-alive has expired.



e The packet types are: CONNECT, CONNECT_ACK, PUBLISH, PUBLISH_ACK,
PUBLISH_REC, PUBLISH_REL, PUBLISH_COMP, SUBSCRIBE,
SUBSCRIBE_ACK, UNSUBSCRIBE, UNSUBSCRIBE_ACK, PING_REQ,
PING_RESP and DISCONNECT.

e The connect packet contains the ASCII string “MQTT” to define the protocol
name. This can be useful for wireshark/sniffing.

Multiple topics can be subscribed or unsubscribed in the same packet request.
Each subscription topic must define a QoS level. The QoS level is confirmed in
the subscription acknowledgment.

e A publish message can be sent or received by either the client or the broker.
Publish messages can be flagged for retention on the broker.

A QoS level 2 requires two round-trips to complete the delivery exchange
confirmation.

e Strings are UTF-8 encoded.

See hitp://mgtt.ora/documentation for additional MQTT documentation.



http://mqtt.org/documentation

Chapter 2: Building wolfMQTT

wolfMQTT was written with portability in mind, and should generally be easy to build on
most systems. If you have difficulty building, please don’t hesitate to seek support
through our support forums (http://www.wolfssl.com/forums) or contact us directly at
support@wolfssl.com.

This chapter explains how to build wolfMQTT on Unix and Windows, and provides
guidance for building in a non-standard environment. You will find a getting started
guide and example client in Chapter 3.

When using the autoconf / automake system to build, wolfMQTT uses a single Makefile

to build all parts and examples of the library, which is both simpler and faster than using
Makefiles recursively.

2.1 Getting the Source Code

The most recent version can be downloaded from the GitHub website here:
https://qgithub.com/wolfSSL/wolfMQTT

Either click the “Download ZIP” button or use the command “git clone
git@github.com:wolfSSL/wolfMQTT.git”

2.2 Building on *nix

When building on Linux, *BSD, OS X, Solaris, or other *nix-like systems, use the
autoconf system. To build wolfMQTT you only need to run three commands:

./autogen.sh
./configure
make


https://github.com/wolfSSL/wolfMQTT

You can append any number of build options to ./configure. For a list of available build
options, please see Section 2.5 or run:

./configure --help

from the command line to see a list of possible options to pass to the ./configure script.
To build wolfMQTT, run:

make
To install wolfMQTT run:

make install

You may need superuser privileges to install, in which case precede the command with
sudo:

sudo make install

To test the build, run the testsuite program from the root wolfMQTT source directory:
./examples/mgttclient/mgttclient

If you want to build only the wolfMQTT library and not the additional items (examples,
testsuite, benchmark app, etc.), you can run the following command from the wolfMQTT

root directory:

make src/libwolfmgtt.la

2.3 Building on Windows

Visual Studio 2015: The wolfmqtt.sIn solution is included for Visual Studio 2015 in the
root directory of the install.

To test each build, choose “Build All” from the Visual Studio menu and then run the



mqttclient program. To edit build options in the Visual Studio project, select your
desired project (wolfmqtt, mqttclient) and browse to the “Properties” panel.

For instructions on building the required wolfssl.dll see
https://www.wolfssl.com/wolfSSL/Docs-wolfss|-visual-studio.html. When done copy the
“‘wolfssl.dll” and “wolfssl.lib” into the wolfMQTT root. The project also assumes the
wolfSSL headers are located “../wolfssl|/”.

Cygwin: If using Cygwin, or other toolsets for Windows that provides *nix-like
commands and functionality, please follow the instructions in section 2.2, above, for
“Building on *nix”. If building wolfMQTT for Windows on a Windows development
machine, we recommend using the included Visual Studio project files to build
wolfMQTT.

2.4 Building in a non-standard environment

While not officially supported, we try to help users wishing to build wolfMQTT in a
non-standard environment, particularly with embedded and cross-compilation systems.
Below are some notes on getting started with this.

1. The source and header files need to remain in the same directory structure as
they are in the wolfMQTT download package.

2. Some build systems will want to explicitly know where the wolfMQTT header files
are located, so you may need to specify that. They are located in the
<wolfmqtt_root>/wolfmqtt directory. Typically, you can add the <wolfmqtt_root>
directory to your include path to resolve header problems.

3. wolfMQTT defaults to a little endian system unless the configure process detects
big endian. Since users building in a non-standard environment aren't using the
configure process, BIG_ENDIAN_ORDER will need to be defined if using a big
endian system.

4. Try to build the library, and let us know if you run into any problems. If you need
help, contact us at info@wolfssl.com.



https://www.wolfssl.com/wolfSSL/Docs-wolfssl-visual-studio.html
mailto:info@wolfssl.com

2.5 Cross Compiling

Many users on embedded platforms cross compile for their environment. The easiest
way to cross compile the library is to use the ./configure system. It will generate a
Makefile which can then be used to build wolfMQTT.

When cross compiling, you’ll need to specify the host to ./configure, such as:
./configure --host=arm-linux

You may also need to specify the compiler, linker, etc. that you want to use:

./configure --host=arm-linux CC=arm-linux-gcc AR=arm-linux-ar
RANLIB=arm-linux

After correctly configuring wolfMQTT for cross-compilation, you should be able to follow
standard autoconf practices for building and installing the library:

make
sudo make install

If you have any additional tips or feedback about cross compiling wolfMQTT, please let
us know at info@wolfssl.com.



mailto:info@wolfssl.com

Chapter 3 : Getting Started

Here are the steps for creating your own implementation:

1. Create network callback functions for Connect, Read, Write and Disconnect. See
‘examples/mqttnet.c’ and ‘examples/mqttnet.h’ for reference implementation.

2. Define the network callback functions and context in a "MqttNet" structure.

3. Call "MqttClient_Init" passing in a "MqttClient’ structure pointer, "MqttNet’
structure pointer, "MqttMsgCb" function callback pointer, TX/RX buffers with
maximum length and command timeout.

4. Call "MqttClient_NetConnect' to connect to broker over network. If ‘use_tls’ is
non-zero value then it will perform a TLS connection. The TLS callback
"MqttTIsCb’ should be defined for WolfSSL certificate configuration.

5. Call "MqttClient_Connect’ passing pointer to "MqttConnect’ structure to send
MQTT connect command and wait for Connect Ack.

6. Call "MqttClient_Subscribe™ passing pointer to "MqttSubscribe™ structure to send
MQTT Subscribe command and wait for Subscribe Ack (depending on QoS

level).

7. Call "MqttClient_WaitMessage’ passing pointer to "MqttMessage’ to wait for
incoming MQTT Publish message.

3.1 Example

An example MQTT client implementation is located in /examples/mqttclient/. This
example exercises all exposed API’'s and prints any incoming publish messages for
subscription topics “subtopic1” and “subtopic2”.

Usage

Jexamples/maqttclient/mqttclient -?

mqttclient:
-?

-h <host>
-p <num>
-t

-c <file>
-q <num>

Help, print this usage

Host to connect to, default iot.eclipse.org

Port to connect on, default: Normal 1883, TLS 8883
Enable TLS

Use provided certificate file

Qos Level 0-2, default 0



-S Disable clean session connect flag
-k <num> Keep alive seconds, default 60

-i <id> Client Id, default WolfMQTTClient

-l Enable LWT (Last Will and Testament)
-u <str> Username

-w <str> Password

Output

Jexamples/maqttclient/mqttclient

MQTT Client

MQTT Net Init: Success (0)
MQTT Init: Success (0)
MQTT Socket Connect: Success (0)
MQTT Connect: Success (0)
MQTT Connect Ack: Return Code 0, Session Present 0
MQTT Ping: Success (0)
MQTT Subscribe: Success (0)
Topic subtopic1, Qos 0, Return Code 0
Topic subtopic2, Qos 0, Return Code 0
MQTT Publish: Topic pubtopic, Success (0)
MQTT Waiting for message...
ACReceived SIGINT
MQTT Unsubscribe: Success (0)
MQTT Disconnect: Success (0)
MQTT Socket Disconnect: Success (0)
MQTT Net Delnit: Success (0)



Chapter 4: Library Design

Library header files are located in the /wolfmqtt directory. Only the
/wolfmqtt/mqtt_client.h header is required to be included:

#include <wolfmgtt/mgtt client.h>

The library has three components:

1. mqtt_client

This is where the top level application interfaces for the MQTT client reside. If the API
performs a network write it will block on a network read if an acknowledgment is
expected.

2. mqtt_packet
This is where all the packet encoding/decoding is handled. This contains the MQTT
Packet structures for:

Connect: "MqttConnect’

Publish / Message: "MqttPublish’ / "MqttMessage™ (they are the same)
Subscribe: "MqttSubscribe’

Unsubscribe: "MqttUnsubscribe’

3. mqtt_socket

This is where the transport socket optionally wraps TLS and uses the "MqttNet’
callbacks for the platform specific network handling. This contains the MQTT Network
structure "MqttNet for network callback and context.



Chapter 5: APl Reference

This describes the public application interfaces for the wolfMQTT library.

4.1 MqgttPacketResponseCodes (enum)

These are the API response codes:

MQTT_CODE_SUCCESS = 0: Success

MQTT_CODE_ERROR_BAD_ ARG = -1: Invalid argument provided
MQTT_CODE_ERROR_OUT_OF_BUFFER = -2: Rx or Tx buffer out of space
MQTT_CODE_ERROR_MALFORMED_DATA = -3: Malformed packet remaining length
MQTT_CODE_ERROR_PACKET_TYPE = -4: Invalid packet type in header
MQTT_CODE_ERROR_PACKET _ID = -5: Packet Id mismatch
MQTT_CODE_ERROR_TLS_CONNECT = -6: TLS connect error.
MQTT_CODE_ERROR_TIMEOUT = -7: Net read/write/connect timeout
MQTT_CODE_ERROR_NETWORK = -8: Network error

4.2 MqttClient_Init

Synopsis:
#include <wolfmqtt/mqtt_client.h>

typedef int (*MqttMsgCb)(struct _MaqttClient *client, MqttMessage *message, byte
is_new, byte is_done);

int MqttClient_Init(
MqttClient *client,
MqttNet *net,
MqttMsgCb cb,
byte *tx_buf, int tx_buf_len,
byte *rx_buf, int rx_buf _len,
int cmd_timeout_ms);



Description:
Initializes the wolfSSL library for use. Must be called once per application and before
any other call to the library.

Return Values:

See MqttPacketResponseCodes in /wolfmqgtt/mqgtt_types.h
MQTT_CODE_SUCCESS - Success
MQTT_CODE_ERROR_BAD_ARG - Invalid argument provided

Parameters:

client - Pointer to MqttClient structure (okay if not initialized).

net - Pointer to MqttNet structure populated with network callbacks and context.
cb - Pointer to MqttMsgCb callback function.

tx_buf - Pointer to transmit buffer used during encoding.

tx_buf_len - Maximum length of the transmit buffer.

rx_buf - Pointer to receive buffer used during decoding.

rx_buf_len - Maximum length of the receive buffer.

connect_timeout_ms - Maximum command wait timeout in milliseconds.

Example:
#define MAX BUFFER SIZE 1024
#define DEFAULT CMD TIMEOUT MS 1000

static int mgttclient message cb (MgttClient *client, MgttMessage *msg, byte
msg new, byte msg done)
{
if (msg new) {
/* Message new */
}
if (msg done) {
/* Message done */

}

return MQTT CODE_ SUCCESS;
/* Return negative to terminate publish processing */

}

int rc = 0;

MgttClient client;

MgttNet net;

byte *tx buf = NULL, *rx buf = NULL;

tx buf = malloc (MAX BUFFER SIZE) ;



rx_buf = malloc (MAX BUFFER SIZE);
rc = MgttClient Init(&client, &net, mgttclient message cb,
tx_buf, MAX BUFFER SIZE, rx buf, MAX BUFFER SIZE,
DEFAULT CMD T IMEOUT_MS) ;
if (rc != MQTT CODE SUCCESS) {
printf ("MQTT Init: %s (%d)\n", MgttClient ReturnCodeToString(rc), rc);
}

See Also:
None

4.3 MqttClient_Connect

Synopsis:
#include <wolfmqtt/mqtt_client.h>

int MqttClient_Connect(
MqttClient *client,
MqttConnect *connect);

Description:

Encodes and sends the MQTT Connect packet and waits for the Connect
Acknowledgement packet. This is a blocking function that will wait for MqttNet.read
data.

Return Values:
See MqttPacketResponseCodes in /wolfmqtt/mqgtt_types.h
MQTT_CODE_SUCCESS - Success

Parameters:
client - Pointer to MqttClient structure already initialized using MqttClient_Init.
connect - Pointer to MqttConnect structure populated with connection options.

Example:

int rc = 0;
MgttClient client;
MgttConnect connect;
MgttMessage lwt msg;



/* Define connect parameters */
connect.keep alive sec = keep alive sec;
connect.clean session = clean session;
connect.client id = client id;

/* Last will and testament sent by broker to subscribers of topic when broker
connection is lost */
memset (&1lwt msg, 0, sizeof (lwt msg));
connect.lwt msg = &lwt msg;
connect.enable lwt = enable 1lwt;
if (enable lwt) {
1wt msg.gos = gos;
lwt msg.retain = 0;
lwt msg.topic name = "lwttopic";
lwt msg.message = (byte*)DEFAULT CLIENT ID;
lwt msg.message len = strlen (DEFAULT CLIENT ID);
}
/* Optional authentication */
connect.username = username;
connect.password = password;

/* Send Connect and wait for Connect Ack */
rc = MgttClient Connect (&client, &connect);
if (rc != MQTT CODE SUCCESS) ({
printf ("MQTT Connect: %s (%d)\n", MgttClient ReturnCodeToString(rc), rc);

See Also:
MqttClient_Init
MqttClient_Disconnect

4.4 MqttClient_Publish

Synopsis:
#include <wolfmqtt/mqtt_client.h>

int MqttClient_Publish(
MqttClient *client,
MqttPublish *publish);



Description:

Encodes and sends the MQTT Publish packet and waits for the Publish response (if
QoS > 0). This is a blocking function that will wait for MqttNet.read data. If QoS level = 1
then will wait for PUBLISH_ACK. If QoS level = 2 then will wait for PUBLISH_REC then
send PUBLISH_REL and wait for PUBLISH_COMP.

Return Values:
See enum MqttPacketResponseCodes in /wolfmqgtt/mqtt_types.h
MQTT_CODE_SUCCESS - success

Parameters:

client - Pointer to MqttClient structure already initialized using MqttClient_Init.
publish - Pointer to MqttPublish structure initialized with message data. Note:
MqttPublish and MqttMessage are same structure.

Example:
#define TEST MESSAGE "test" /* NULL */
int rc = 0;

MgttPublish publish;
wordlé packet id = 0;

/* Publish Topic */
publish.retain = 0;
publish.gos = gos;
publish.duplicate = 0;
publish.topic name = "pubtopic";
publish.packet id = ++packet id;
publish.message = (byte*)TEST MESSAGE;
publish.message len = strlen(TEST MESSAGE) ;
rc = MgttClient Publish(&client, &publish);
if (rc != MQTT CODE SUCCESS) {

printf ("MQTT Publish: %s (%d)\n", MgttClient ReturnCodeToString(rc), rc);
}

See Also:
MqttClient_Init
MqttClient_Subscribe

4.5 MqttClient_Subscribe



Synopsis:
#include <wolfmqtt/mqtt_client.h>

int MqttClient_Subscribe(
MqttClient *client,
MqttSubscribe *subscribe);

Description:
Encodes and sends the MQTT Subscribe packet and waits for the Subscribe
Acknowledgement packet. This is a blocking function that will wait for MqttNet.read data

Return Values:
See enum MqttPacketResponseCodes in /wolfmqgtt/mqtt_types.h
MQTT_CODE_SUCCESS - Success

Parameters:

client - Pointer to MqttClient structure already initialized using MqttClient_Init.
subscribe - Pointer to MqttSubscribe structure initialized with subscription topic list and
desired QoS.

Example:
#define TEST TOPIC COUNT 2

int rc = 0;

MgttSubscribe subscribe;

MgttTopic topics[TEST TOPIC COUNT], *topic;
wordl6 packet id = 0;

/* Build list of topics */
topics[0].topic filter = "subtopicl";
topics[0] .gos = gos;

topics[l].topic filter = "subtopic2";
topics[l].gos = gos;

/* Subscribe Topic */

subscribe.packet id = ++packet id;
subscribe.topic count = TEST TOPIC COUNT;
subscribe.topics = topics;

rc = MgttClient Subscribe (&client, &subscribe);



if (rc == MQTT CODE SUCCESS) {
for (i = 0; 1 < subscribe.topic count; i++) {
topic = &subscribe.topics[i];
printf (" Topic %s, Qos %u, Return Code %u\n",
topic->topic filter, topic->gos, topic->return code);

}
else {
printf ("MQTT Subscribe: %s (%d)\n", MgttClient ReturnCodeToString(rc), rc);

}

See Also:
MqttClient_Init
MqttClient_Unsubscribe

4.6 MqttClient_Unsubscribe

Synopsis:
#include <wolfmqtt/mqtt_client.h>

int MqttClient_Unsubscribe(
MqttClient *client,
MqttUnsubscribe *unsubscribe);

Description:

Encodes and sends the MQTT Unsubscribe packet and waits for the Unsubscribe
Acknowledgement packet. This is a blocking function that will wait for MqttNet.read
data.

Return Values:
See enum MqttPacketResponseCodes in /wolfmqgtt/mqtt_types.h
MQTT_CODE_SUCCESS - Success

Parameters:
client - Pointer to MqttClient structure already initialized using MqttClient_Init.
unsubscribe - Pointer to MgttUnsubscribe structure initialized with topic list.



Example:
#define TEST TOPIC COUNT 2

int rc = 0;

MgttUnsubscribe unsubscribe;

MgttTopic topics[TEST TOPIC COUNT], *topic;
wordlé packet id = 0;

/* Build list of topics */
topics[0].topic filter = "subtopicl";
topics[1l].topic filter = "subtopic2";

/* Unsubscribe Topics */
unsubscribe.packet id = ++packet id;
unsubscribe.topic count = TEST TOPIC COUNT;
unsubscribe.topics = topics;
rc = MgttClient Unsubscribe (&client, &unsubscribe);
if (rc != MQTT CODE SUCCESS) {
printf ("MQTT Unsubscribe: %s (%d)\n", MgttClient ReturnCodeToString(rc),
rc);

}

See Also:
MqttClient_Init
MqttClient_Subscribe

4.7 MqttClient_Ping

Synopsis:
#include <wolfmqtt/mqtt_client.h>

int MqttClient_Ping(
MattClient *client);

Description:
Encodes and sends the MQTT Ping Request packet and waits for the Ping Response

packet. This is a blocking function that will wait for MqttNet.read data.

Return Values:



See enum MqttPacketResponseCodes in /wolfmqgtt/mqtt_types.h
MQTT_CODE_SUCCESS - Success

Parameters:
client - Pointer to MqttClient structure already initialized using MqttClient_Init.

Example:

/* Send Ping */

int rc = MgttClient Ping(&client);

if (rc != MQTT CODE SUCCESS) {
printf ("MQTT Ping: %s (%d)\n", MgttClient ReturnCodeToString(rc), rc);

}

See Also:
MqttClient_Init

4.8 MqttClient_Disconnect

Synopsis:
#include <wolfmqtt/mqtt_client.h>

int MqttClient_Disconnect(
MqttClient *client);

Description:
Encodes and sends the MQTT Disconnect packet (no response).

Return Values:
See enum MqttPacketResponseCodes in /wolfmqgtt/mqtt_types.h
MQTT_CODE_SUCCESS - Success

Parameters:
client - Pointer to MqttClient structure already initialized using MqttClient_Init.

Example:

int rc = MgttClient Disconnect (&client);



if (rc != MQTT CODE_SUCCESS)

{
printf ("MQTT Disconnect: %s (%d)\n", MgttClient ReturnCodeToString(rc),

rc);

}

See Also:
MqttClient_Init
MqttClient_Connect

4.9 MqttClient_WaitMessage

Synopsis:
#include <wolfmqtt/mqtt_client.h>

int MqttClient_WaitMessage(
MqttClient *client,
MqttMessage *message,
int timeout_ms);

Description:
Waits for Publish packets to arrive. This is a blocking function that will wait for
MqttNet.read data based on timeout_ms value provided.

Return Values:
See enum MqttPacketResponseCodes in /wolfmqgtt/mqtt_types.h
MQTT_CODE_SUCCESS - Success

Parameters:

client - Pointer to MqttClient structure already initialized using MqttClient_Init.
message - Pointer to MqttMessage structure (uninitialized is okay).
timeout_ms - Milliseconds until read timeout.

Example:
#define DEFAULT CMD TIMEOUT MS 1000

int rc = 0;



MgttMessage msg;

/* Read Loop */
while (mStopRead == 0) {
/* Try and read packet */
rc = MgttClient WaitMessage(&client, &msg, DEFAULT CMD TIMEOUT MS);
if (rc >= 0) {
/* Print incoming message */
printf ("MQTT Message: Topic %s, Len %u\n", msg.topic name,
msg.message_ len);

}
else if (rc != MQTT CODE ERROR TIMEOUT) ({

/* There was an error */

printf ("MQTT Message Wait: %s (%d)\n",
MgttClient ReturnCodeToString(rc), rc);

break;

}

See Also:
MqttClient_Init
MqttClient_Publish

4.10 MqttClient_NetConnect

Synopsis:
#include <wolfmqtt/mqtt_client.h>

typedef int (*MqttTIsCb)(struct _MqttClient* client);

int MqttClient_NetConnect(
MqttClient *client,
const char *host,
word16 port,
int timeout_ms,
int use_tls,
MqttTIsCb cb);

Description:
Performs network connect with TLS (if use_tls is non-zero value). Will perform the

MqttTIsCb callback if use_tls is non-zero value.



Return Values:
See enum MqttPacketResponseCodes in /wolfmqgtt/mqtt_types.h
MQTT_CODE_SUCCESS - Success

Parameters:

client - Pointer to MqttClient structure already initialized using MqttClient_Init.
host - Address of the broker server

port - Optional custom port. If zero will use defaults (1883=normal, 8883=TLS)
use_tls - If non-zero value will connect with and use TLS for encryption of data.
cb - A function callback for configuration of the SSL context certificate checking.

Example:

#define DEFAULT CON_TIMEOUT MS 5000
#define DEFAULT MQTT HOST "iot.eclipse.org"

wordl6 port = 0;
const char* host = DEFAULT MQTT HOST;

/* Connect to broker */
int rc = MgttClient NetConnect (&client, host, port, DEFAULT CON_ TIMEOUT MS,
use tls, mgttclient tls cb);
if (rc != MQTT CODE SUCCESS) {
printf ("MQTT Net Connect: %s (%d)\n", MgttClient ReturnCodeToString(rc),
rc);

}

See Also:
MqttClient_NetDisconnect

4.11 MqttClient_NetDisconnect

Synopsis:
#include <wolfmqtt/mqtt_client.h>

int MqttClient_NetDisconnect(
MqttClient *client);



Description:
Performs a network disconnect.

Return Values:
See enum MqttPacketResponseCodes in /wolfmqgtt/mqtt_types.h
MQTT_CODE_SUCCESS - Success

Parameters:
client - Pointer to MqttClient structure already initialized using MqttClient_Init.

Example:

int rc = MgttClient NetDisconnect (&client);
if (rc != MQTT CODE_SUCCESS) {
printf ("MQTT Net Disconnect: %s (%d)\n", MgttClient ReturnCodeToString(rc),
rc);

}

See Also:
MqttClient_NetConnect

4.12 MqttClient_ReturnCodeToString

Synopsis:
#include <wolfmqtt/mqtt_client.h>

const char* MqttClient_ReturnCodeToString(
int return_code);

Description:
Performs lookup of a wolfMQTT API return value.

Return Values:
String representation of the return code.

Parameters:
return_code - The return value from an API function.

Example:



printf ("Return: %s (%d)\n", MgttClient ReturnCodeToString(rc), rc);

See Also:
None



