m l'Fa,J

Z-WORLD & 2
Dynamic
PREMIER

For Rabbit Semiconductor Microprocessors
Integrated C Development System

User’'s Manual

019-0071 » 020813 - R
SE and Premier Editions

This manual (or an even more up-to-date revision) is available for free
download at the Z-World website: www.zworld.com

Table of Contents

1 Instaling DynamicC...........ccccoooeruunecne. 1 Branching.......cooovenninnsiniinens 32
1.1 ReqQUIFEMENtS.......oo.ovverrveeereerreererenneens 1 4.19 Function Chaining.............ccccoeenennn. 34
1.2 ASSUMPLONS ...covvorereeeeeereseeeseeeeneens 1 4.20 Global Initialization.............ccc.oeeeene. 35

. . 421 Libraries....cooeeeeevveeceeeeiree e 36

2 Introduction to Dynamic C................... 3 £.22 HEBOEIS cororooeeeeeeeeeeeeeereeee 37

2.1 TheNature of Dynamic Cc.cceen. 3 4.23MOQUIES ... 37
SPEEd ... 3 ThEKEY ..o 37

2.2 Dynamic C Enhancements and TheHeaderccovveeeeeeeeeeee, 38
Differences.........ccccoconniciccnniciccen 4 The Bodycoceeeeerereieeecre e 38

2.3 Dynamic C Differences Between Rabbit Function Description Headers.........40
and Z180.......ccoeveeiecieieceeee e 6 4.24 SUPPOIt FilES.......oveeeeeeeeereeeeeeeins 40

3 Quick Tutorialccccovvevvverririeeeeeireis 7 5 Multitasking with Dynamic C............. 43

31 RUI'? DEM Ol.(_: 7 51 Cooperative Multitaski (9o [43
SULCIIS C o/elLy¢ R eeees 9 5.2 A Real-Time Problem.......ccccccoenuun.... 45
Watch E?<pr ON.eiieeree e 9 Solving the Real-Time Problem
Breakpoint........cccoovvvvreverecrineeenns 9 with aState Machin€ ..o, 45
Editing the Program............c.cccoeunnenne 9 5.3 COStAEMENtS...veeeeeeeeeeeeeeeeeeeeeeeeeenes 46

3.2 RUNDEMO2.C.....cccovvveereeeeceenn 10 Solving the Real-Time Problem
Watching Variables Dynamically10 with Costatements...................... 46

3.3 RUNDEMOS3.C.....cccovvveereeeeceene, 10 Costatement SyntaX...........cceeereeeenne a7
Cooperative Multitasking................ 10 Control Statements..........oovvevvevenn.. 48

3.4 Summary of Features..........ccccceverenneee. 12 5.4 Advanced Costatement Topics........... 48

4 LanNQUABQE...........cooeeeeeereereeereeeeeeeessseon 13 The CODBLA STUCIUIE. ..o 48
41 C Language Elements 13 CoDataFields.......cccoovrvvvrenerinnnnne, 49
4'2 Punctuation and Tokeng """"""""""" 14 Pointer to CoData Structure............ 50

.2 Punctuation and Tokens.............c....... Functions for Use With Named

LRSI DY v W 15
Data Tvpe Limits 15 Costatements.......ccccceveeveeeeveeennee. 50

44 Names YPELIMILS. s 16 Firsttime Functions...........cccccuveue... 51

A =T Shared Global Varisbles. ... 51
4.5 MBECIOS..ccciieiicieeei e 17)
- 5.5 CofunCLioNS......coovveveeeceeririeciee e 52
ReSLCtioNS......ccovevviee e 19 Syntax 50
4.6 NUMDErS.......coeeetiiiree e 19 Lo e
X Calling Restrictions...........ccocvvveuee. 53
4.7 Strings and Character Data................. 20
- ; CoData Structure.........cccceveeeeveeenee. 53
String Concatenation............cceeeueen. 20 o .
Firsttime Functions...........cccccuveene... 53
Character Constants.........cccceeeeeennee. 21 .
Types of Cofunctions.........cccceeeeeee 54

4.8 StatEMENtS....cccveee e 21 .

. Types of Cofunction Calls............... 55

4.9 Declarations.......cccoeeeeeeeeeiereieeeenineens 22)

410 Functions 2 Specia Code Blocks.........cccceveeeee. 56

4.11 Furct es ... 22 Solving the Real-Time Problem

4' 12 Tvpe I;/)Zflnmons """"""""""""""""" 23 with Cofunctions..........cccceeueeunenne 57

4' 13 Aypr e D aIaT' % """""""""""" o5 5.6 Patterns of Cooperative Multitasking.57

' ggreg YPES cvvvvrrrrrssssssee 5.7 Timing Considerations.............cc.co.v.... 58
F N - 25 : -
Structure o5 Walt.for Accuracy L_| mits S _.....59
UCTUTE .. 5.8 Overview of Preemptive Multitasking59
UNION e 26 .
: 5.9 Slice Statements........ccceeveeveveeeeeneennne. 59
COMPOSILES......coveveeereeeer e 26 Syntax 59

4.14 Storage ClasseS.....ovvvvvvvevereereesenenns 26 Usace ... o 60

£.15 POINEETS ..ovoeveeeees e 27 R:t% e ot

4.16 Pointers to Functions, Indirect Calls..28 BSCHONS. s

) Slice Data Structureccccveuee.. 61
4.17 Argument Passing........cccccevevveenennnnns 29 Slice Internals 61
4.18 Program FIOWccccevvvevvreeciereene, 30 0 _ T T Ty
5.10 SUMMAETY ...ceeeveeieieeeeseee e 63
[0 T0] o= 30
Continue and BreaK...........coeeeveennee. 31
Dynamic C User’s Manual iii

6 TheVirtual Driver.....eeeenenn. 65

6.1 Default Operation.........cccccveeveeiereenene 65
6.2 Caling _GLOBAL_INIT() ..ccccvvreunneen 65
6.3 Global Timer Variables..........cc.c...... 66
6.4 Watchdog Timers.......c.ccceeveveerireeene 67
Hardware Watchdogcccceeeee 67
Virtual Watchdogs.........ccoeeeerieenne 67

6.5 Preemptive Multitasking Drivers....... 67
7 The Slave Port Driver ..., 69
7.1 Slave Port Driver Protocal 69
OVEINVIBW ..ot 69
Registers on the Slave..........cc......... 69
Polling and Interrupts........cccoeueeen. 71
Communication Channels............... 71

7.2 FUNCLIONS....cooierieeieeeeeeseeeieas 71
7.3 EXaMPIES.....ocovrvrerieecee e 74
Status Handlerccoevvevvecnnnne 74

Seria Port Handlerccoeevvennee 75

Byte Stream Handlerc.ccou.... 85

8 RUN-TIMEEITOrS.....cccoovvvrcen. a1
8.1 Run-Time Error Handling.................. i
Error Code Ranges.........ccccceeevenee i

Fatal Error Codes........ccccoeeenerennene 92

8.2 User-Defined Error Handler 93
Replacing the Default Handler 93

8.3 Run-Time Error Loggingcccceve.. 9
Error Log Buffer.......ccccceeieiiennns 9
Initialization and Defaults............... 95
Configuration Macros............cccce... 95

Error Logging Functions................ 96
Examples of Error Log Use............ 96

9 Memory Management...........cccccoveuenne 97
9.1 Memory Map......ccooreenenenieiienieeee 97
Memory Mapping Contral.............. 98

9.2 Extended Memory Functions............. 98
Code Placement in Memory 98

10 TheFlash File Systemccccoevonneenee. 99
10.1 General Usage......cccvvvveeveveerecnenenne 99
Maximum File Size........ccccoeennee. 100

Using SRAM ..o, 100

Wear Leveling......cocceovvveevevnenne 100
Low-Level Implementation.......... 100
Multitasking and the File System. 100

10.2 Application Requirements............... 101
FS1 Requirements.......cccoeeveevnene. 101

FS1 and Use of the First Flash 101

FS2 Requirements.........ccceeveevnnene. 102

FS2 Configuration Macros........... 103

FS2 and Use of the First Flash 104

10.3 FUNCLIONS.....coeeereeireecee e 105
FSLAPI oo 105

FS2 AP oo 106

10.4 Setting up and Partitioning the File

SV [o 107
Initial Formatting.........ccccevverveuenne. 107
Logical Extents (LX) ..cccccevvereenenne. 108
Logical Sector Size.........ccevvvenee. 109

10.5 File 1dentifiers......ccccovvvvccrrenrenenns 110

File Numbers........ccccoevveiinennne. 110

File Names........cccoocvvrenreeciiinennnns 110

10.6 Skeleton Program Using FS1.......... 112

10.7 Skeleton Program Using FS2.......... 113

11 Using Assembly Language................ 115

11.1 Mixing Assembly and C.................. 115

Embedded Assembly Syntax........ 115

Embedded C Syntaxccceuee.e. 116

Setting Breakpointsin Assembly . 116

11.2 Assembler and Preprocessor 117

ComMMENS.......cooceeieeierenee e 117

Defining Constants.........cccccceueee. 117

Multiline Macros........ccoceveeeieenne 118

LabelS .o 119

Special Symbols........ccocveiiiienen. 119

C Variablesccooveneienncicn 119

11.3 Stand-Alone Assembly Code.......... 120

Stand-Alone Assembly Codein

Extended Memory..........cccc...... 121
Example of Stand-Alone Assembly

COode....ciieiriieee e 121

11.4 Embedded Assembly Code.............. 122

The Stack Frame..........cccccceveenneee 122

Embedded Assembly Example..... 124

Local Variable Access.........cc...... 126

11.5 C Caling Assembly.......cccccooereeenene 127

Passing Parameters.........cccccoueuee. 127

Location of Return Results........... 127

11.6 Assembly Calling C.........cccoevuveennene 129

11.7 Interrupt Routinesin Assembly....... 130

Steps Followed by an ISR 130

Modifying Interrupt Vectors......... 131

11.8 Common Problems...........ccccceeeeneeee 136

12 KeyWOrds.........cccovevmvvereieeeiseiesieens 137

abandon ... 137

ADOM ..o 137

AN i 138

AWaAYS ON .o 138

F= 101V 0110 [138

BOM. e 139

BULO .. 139

bbram.......cooovee 139

Preak ..o 139

C ettt 140

CASE ..veerererrere e 140

Char .. 140

CONSL....ocvviiiiiin 141

Dynamic C User’s Manual

COSEALE.eevrreeireree e 142 H#GLOBAL_INIT .o 160
debug.....coeveeeee e 142 25 o] R 161
default. ..o 143 HUNCChaIN ... 161
o [0 TSP 143 #if
ElSE . 143 #elif
ENUM e 144 #else
EXEOIN e 144 HeNdif ..o 161
fIrSttime ..o 145 HITAES oo 162
FlOBL ..o 145 HTNAEf ..o 162
O e 145 #interleave
0 0] [T 146 #nointerleave.........ccocveevveenene 162
SRS 146 HKILL oo 162
? MIT_ON .o 147 #makechain e 162
! | U 147 #memmap 162
! NEEITUPL .. 147 HOTECOMPIIE.cvveeeeeeeeoeeersseesress 163
e 148 HUNAES ... 163
0Nttt 148 BUSE c...ovvoeeeeeeereee s nssesnsnnnes 163
MAIN. ..o 149 Husaix
NOEDUG ...c..eevereeerieriere e 149 HNOUSEIX oo 163
NOFSE..cieiee et 149 HWENS o 164
MOUSEIX oo 149 V= | 164
NULL et 149 L1 e 4 ST 164
protected........cooeeevnieeieneneeee 150
£ (01 DU 150 13 Operalors........ccovievervevereiieseseesnn, 165
(070) SRR 151 13.1 Arithmetic Operators..........cccceveeene 166
SEgChaI N 151 F e 166
Shared........cocceverreeeierineeeeeiee 151 T USRS 166
SNOM ... 152 et 167
SIZE et 152 L 167
SIZEOF .. 152 o e 168
TP, 152 e 168
SEALIC et 153 00 ettt 168
SEPUCE ... 153 13.2 Assignment Operators..........ccceeenee. 169
SWILCH . 154 T ettt e e e 169
typedef.......coooiiie 154 o e 169
UNTON...eiieieie et 155 e s 169
UNSIGNEd ... 155 e et 169
USEIX et eeeseeenee e eesre e resseesne s 155 T e e 169
WaIFOr .o 155 Q0= e e 169
waitfordone STt 169
(WE) e 156 SDT e 169
WhIl€...oiiieeeee 156 ettt 170
DI I - TSRS 157 AT e 170
XIMBIM ..ttt 157 ettt ettt 170
LG 11110 RS 157 13.3 Bitwise Operatorsccoceveereeereenns 170
VIl oo 158 S ittt 170
12.1 Compiler Directives.......ccceceveerernene 159 S s 170
HASM o 159 & et 170
HCIBSS....ceeceire e 159 D ettt 171
#debug e 171
#NOdEDUQ.cve e 159 ettt et 171
HAEFINE. ..o 160 13.4 Relational Operators........ceeeverereens 171
HeNdasmcccceeevneeiennneens 160 ST 171

Dynamic C User’s Manual v

S TSRS 171

D e 172

D TSRS 172

13.5 Equality Operators.........ceovververeenens 172
S e 172

Lo s 172

13.6 Logical Operators.........ccecvreererreenens 173
& it 173

[e 173
e 173

13.7 Postfix EXpressions..........ccocvvvveene 173
() e 173
R 173

(dOL) e 174

S 174

13.8 Reference/Dereference Operators... 174
& et 174
LT 175

13.9 Conditional Operators.........cccceceenene 175
L s 175

13.10 Other Operators.........ccceeeeereeceenns 176
(877 012) TR 176

SIZEOF .. 176

) ettt re e ne e 177

14 Graphical User Interface..................... 179
725 o) oo 179
14.2 MENUS....coeeiiieieieeieiee e e 180
File Menu.......ccoooooeniiinince e 180

Edit MenU......ccocooeiiieiceee 182
Compile Menu........cccoeeeeenennnnnns 185
RUNMENU.....ocoiiiieeee 186
Inspect Menu.........cccoeeeeveenieeeenne. 189
OptionsMenU.........ccoceveereenereennee 192

Editor ..o 192
Compiler......ccooeeeeeninene 193
Debuggercoovveeveererereneniene 197

Display ...ccceeerereniieireeeeiee 198
Communications...........cccceueuee. 199

Define Target Configuration 201

Other Menu Choices................. 202
Window Menuccccceeeeenencennnn 202

Help Menu......ocoooeiiieniinceee 205

15 Command Line Interface................... 209
15.1 Default StatesS.....ccovvverrerrereeeeen 209
15.2 USer INPUL.....oceeeeeeeeee e 209
15.3 Saving Output to aFile.................... 209
15.4 Command Line Switches................ 210
Switches Without Parameters....... 210
Switches Requiring a Parameter... 219

15.5 EXaMPIES....covveereeieeereeeeere s 226
Example 1....cccoeoveecviriesece 226
Example 2.....ccccevveecreee e 226
Example 3.....ccoevveecrre e 226

16 Project Files.......ccccoovvveivereececcee. 227

16.1 Project File Names........ccccceoeveeeenneee 227
Active Projectocooovveiencecenns 227
16.2 Updating a Project File.................... 228
16.3 Menu Selections.........cccceeeevereneene. 228
16.4 Command Line Usage.........ccccceuee. 229
17 Hintsand TipS....ccccoeveoveveeieiseieeienne 231
A i [T 1= o Tox YA 231
Nodebug Keywordcccceueeee. 231
Static Variables.........cccovvverercnnnen. 232
17.2 Run-time Storage of Data................ 232
User BIOCK ..o, 233
Flash File Systemcccccevvveneee. 233
WriteFlash2 ..o 233
Battery Backed RAM 233
17.3 Root Memory Reduction Tips......... 234
Increasing Root Code Space......... 234
Increasing Root Data Space.......... 236
18 UCIOSH oo 239
18.1 Changesto HC/OSH Iccevveeicnee 239
Ticks per Secondcccoeeeeveeennene 239
Task Creation........ccocceeeeieneeeeennns 240
ReSHCLioNS.....ccoveeeireeceecee 241
18.2 Tasking Aware Interrupt Service

Routines (TA-ISR)cccooeieieeiienne 241
Interrupt Priority Levels............... 241
Possible ISR Scenarios................. 242
General Layout of aTA-ISR......... 243
18.3 Library Reentrancy.........c.cccoevueeennene 247

18.4 How to Get apuC/OS-11 Application
RUNNING.......coiiiiiiee e 248
Default Configuration................... 248
Custom Configuration.................. 249
Examples......ccoovvineneieicnee 250
18.5 Compatibility with TCP/IP 253
Socket LOCKScovveerienierecieneee 253
18.6 Debugging TipS....cccoevereereereererieanens 254
Macros and Global Variables............. 257
Compiler-Defined Macros.................. 257
Global Variables.........ccocooiinennnenen. 259
EXCeption TYPES.....ccevereeereneniere s 260
Rabbit 2000/3000 Internal registers... 260
Map File Generationcccocvvvunnee, 261
Grammarcooevveeneesee e 261
Utility Programs..........cccccovenenneenenns 263
Font and Bitmap Converter Utility..... 263
Library File Encryption Utility........... 263
Rabbit Field Utilitycccoevrecnenne. 264
INOEX ... 271

Dynamic C User’s Manual

1. Installing Dynamic C

Insert theinstallation disk or CD in the appropriate disk drive on your PC. The installation should
begin automatically. If it doesn’t, issue the Windows “Run...” command and type the following
command.

<«di sk>:\ SETUP

The installation program will begin and guide you through the installation process.

1.1 Requirements

Your IBM-compatible PC should have at least one free COM port and be running one of the fol-
lowing.

e Windows 95

e Windows 98

e Windows 2000
* Windows Me
* WindowsNT

1.2 Assumptions

It is assumed that the reader has a working knowledge of:
* thebasics of operating a software program and editing files under Windows on a PC.
* programming in a high-level language.
* assembly language and architecture for controllers.

For afull treatment of C, refer to one or both of the following texts:
* The C Programming Language by Kernighan and Ritchie (published by Prentice-Hall).
* C: A Reference Manual by Harbison and Steel (published by Prentice-Hall).

Chapter 1: Installing Dynamic C 1

Dynamic C User’s Manual

2. Introduction to Dynamic C

Dynamic C is an integrated development system for writing embedded software. It is designed for
use with Z-World controllers and other controllers based on the Rabbit microprocessor. The Rab-
bit 2000 and the Rabbit 3000 are high-performance 8-bit microprocessors that can handle C lan-
guage applications of approximately 50,000 C+ statementsor 1 MB.

2.1 The Nature of Dynamic C
Dynamic C integrates the following devel opment functions:
* Editing
e Compiling
e Linking
e Loading
* Debugging

into one program. In fact, compiling, linking and loading are one function. Dynamic C has an
easy-to-use built-in text editor. Programs can be executed and debugged interactively at the
source-code or machine-code level. Pull-down menus and keyboard shortcuts for most commands
make Dynamic C easy to use.

Dynamic C also supports assembly language programming. It is not necessary to leave C or the
development system to write assembly language code. C and assembly language may be mixed
together.

Debugging under Dynamic C includes the ability to use pr i nt f commands, watch expressions,
breakpoints and other advanced debugging features. Watch expressions can be used to compute C
expressions involving the target’s program variables or functions. Watch expressions can be evalu-
ated while stopped at a breakpoint or while the target is running its program.

Dynamic C provides extensions to the C language (such as shared and protected variables, cos-
tatements and cofunctions) that support real-world embedded system development. Dynamic C
supports cooperative and preemptive multi-tasking.

Dynamic C comes with many function libraries, all in source code. These libraries support real -
time programming, machine level 1/O, and provide standard string and math functions.

2.1.1 Speed

Dynamic C compiles directly to memory. Functions and libraries are compiled and linked and
downloaded on-the-fly. On afast PC, Dynamic C might load 30,000 bytes of code in 5 seconds at
abaud rate of 115,200 bps.

Chapter 2: Introduction to Dynamic C 3

2.2 Dynamic C Enhancements and Differences

Dynamic C differsfrom atraditional C programming system running on a PC or under UNIX. The
reason? To be better help customers write the most reliable embedded control software possible. It
is not possible to use standard C in an embedded environment without making adaptations. Stan-
dard C makes many assumptions that do not apply to embedded systems. For example, standard C
implicitly assumes that an operating system is present and that a program starts with a clean dlate,
whereas embedded systems may have battery-backed memory and may retain data through power
cycles. Z-World has extended the C language in a number of areas.

2.2.1 Dynamic C Enhancements
Many enhancements have been added to Dynamic C. Some of these are listed below.

* Function chaining, a concept unique to Dynamic C, allows special segments of code to be
embedded within one or more functions. When a named function chain executes, al the seg-
ments belonging to that chain execute. Function chains allow software to perform initializa-
tion, data recovery, or other kinds of tasks on request.

* Costatements allow concurrent parallel processes to be simulated in a single program.
» Cofunctions allow cooperative processes to be simulated in a single program.
» Slice statements allow preemptive processesin a single program.

* Theinterrupt keyword in Dynamic C alows the programmer to write interrupt service routines
inC.

* Dynamic C supports embedded assembly code and stand-alone assembly code.

» Dynamic C has shared and protected keywords that help protect data shared between different
contexts or stored in battery-backed memory.

* Dynamic C has aset of features that allow the programmer to make fullest use of extended
memory. Dynamic C supportsthe 1 MB address space of the microprocessor. The address space
is segmented by a memory management unit (MMU). Normally, Dynamic C takes care of
memory management, but there are instances where the programmer will want to take control
of it. Dynamic C has keywords and directivesto help put code and datain the proper place. The
keyword r oot selects root memory (addresses within the 64 KB physical address space). The
keyword x me mselects extended memory, which means anywhere in the 1024 KB or 1 MB
code space. r oot and x memare semantically meaningful in function prototypes and more effi-
cient code is generated when they are used. Their use must match between the prototype and
the function definition. The directive #menmap alows further control. See “Memory Manage-
ment” on page 97, for further details on memory.

4 Dynamic C User’s Manual

2.2.2 Dynamic C Differences
The main differencesin Dynamic C are summarized here and discussed in detail in chapters “Lan-
guage” on page 13 and “Keywords’ on page 137.

If avariableisexplicitly initialized in adeclaration (e.g.,i nt x = 0;), itisstoredin Flash
Memory (EEPROM) and cannot be changed by an assignment statement. Starting with
Dynamic C 7.x such declaration will generate awarning that may be suppressed using the
const keyword: const int x = 0; Toinitialize static variablesin Static RAM (SRAM)
use#GLOBAL | NI T sections. Note that other C compilers will automatically initialize all
static variables to zero that are not explicitly initialized before entering the main function.
Dynamic C programs do not do this because in an embedded system you may wish to preserve
the datain battery-backed RAM on reset

The default storage classisst at i ¢, not aut 0. Thisavoids numerous bugs encountered in
embedded systems due to the use of auto variables. Starting with Dynamic C 7.%, the default
class can changed to aut o by the compiler directive#cl ass aut o.

The numerous include files found in typical C programs are not used because Dynamic C has a
library system that automatically provides function prototypes and similar header information
to the compiler before the user’s program is compiled. Thisis done viathe#use directive.
Thisisan important topic for users who are writing their own libraries. Those users should refer
to the M odul es section of the language chapter. It isimportant to note that the#use directiveis
areplacement for the #i ncl ude directive, and the #i ncl ude directiveis not supported.

When declaring pointers to functions, arguments should not be used in the declaration. Argu-
ments may be used when calling functionsindirectly via pointer, but the compiler will not
check the argument list in the call for correctness.

Bit fields are not supported.
Separate compilation of different parts of the program is not supported or needed.

There are minor differencesinvolving ext er n and r egi st er keywords.

Chapter 2: Introduction to Dynamic C

2.3 Dynamic C Differences Between Rabbit and Z180

A major difference in the way Dynamic C interacts with a Rabbit-based board compared to aZ180
or 386EX board isthat Dynamic C expects no BIOS kernel to be present on the target when it
startsup. Dynamic C stores the BIOS kernel as a C source file. Dynamic C compiles and loads it
to the Rabbit target when it starts. Thisis accomplished using the Rabbit CPU’s bootstrap mode
and a specia programming cable provided in al Rabbit product development kits. This method
has numerous advantages.

* A socketed flash is no longer needed. BIOS updates can be made without a flash-EPROM
burner since Dynamic C can communicate with atarget that has a blank flash EPROM. Blank
flash EPROM can be surface-mounted onto boards, reducing manufacturing costs for both Z-
World and other board developers. BIOS updates can then be made available on the Web.

e Advanced users can see and modify the BIOS kernel directly.

* Board Developers can design Dynamic C compatible boards around the Rabbit CPU by simply
following afew simple design guidelines and using a“skeleton” BIOS provided by Z-World.

* A major new feature introduced in Dynamic C 7.x is the ability to program and debug over the
Internet or local Ethernet. Thisrequires the use of a RabbitLink board, available alone or asan
option with Rabbit-based development kits.

6 Dynamic C User’s Manual

3. Quick Tutorial

Sample programs are provided in the Dynamic C Sanpl es folder similar to the one shown
below.

Open

Laoak jr: I £ Samples

‘Cofunc; (L Serial

Costate (1 5lice Pong.c

Frt 3 Syaclock B Seeparam.c
| ntruipks 3 Topip

Lost [Timerb

Rtclock [vdriver

Flogame: | [Oeen |
Filez of type: ISnurce Files [*.c;7 lib] j Cancel |

The subfolders contain sample programs that illustrate the use of the various Dynamic C librar-
ies. The subfolder named Cofunc, for example, contains sample programs illustrating the use of
COFUNC. LI B. The sample program Pong. ¢ demonstrates output to the STDIO window.
Each sample program has comments that describe its purpose and function.

3.1 Run DEMO1.C

This sample program will be used to illustrate some of the functions of Dynamic C. Open the file

Sanpl es/ DEMOL. C. The program will appear in awindow, as shown in Figure 1 below (minus
some comments). Use the mouse to place the cursor on the function name pr i nt f in the program

and press <Ctrl-H>. This brings up a documentation box for the function pr i nt f . You can do this
with all functionsin the Dynamic C libraries, including libraries you write yourself.

Chapter 3: Quick Tutorial 7

C prograns begin with main
mai n() { /

i J/ Initialize a counter
i = 0;

_ 4 Start an endl ess | oop
while (1) {

- <« Increnent counter

for (j=0; j<20000; j++); <&————— pejay by counting to 20,000

printf("i = %l\n", i); -
Print out counter

<\

End of the endl ess | oop

} // end of while

} // end of mmin

Figure 1. Sample Program DEMO1.C

To run the program DEMOL. C, open it with the File menu, compile it using the Compile menu,
and then run it by selecting Run in the Run menu. The value of the counter should be printed
repeatedly to the STDIO window if everything went well. If this doesn’t work, review the follow-
ing points:

* Thetarget should be ready, indicated by the message “BIOS successfully compiled...” If you
did not receive this message or you get a communication error, recompile the BIOS by typing
<Ctrl-Y> or select Recompile BIOS from the Compile menu.

* A message reports “ No Rabbit Processor Detected” in cases where the wall transformer is not
connected or not plugged in.

* The programming cable must be connected to the controller. (The colored wire on the program-
ming cableis closest to pin 1 on the programming header on the controller). The other end of
the programming cable must be connected to the PC serial port. The COM port specified in the
Dynamic C Options menu must be the same as the one the programming cable is connected to.

* To check if you have the correct serial port, select Compile, then Compile BIOS, or press
<Ctrl-Y>. If the “BIOS successfully compiled ...” message does not display, try a different
serial port using the Dynamic C Options menu until you find the serial port you are plugged
into. Don’t change anything in this menu except the COM number. The baud rate should be
115,200 bps and the stop bits should be 1.

8 Dynamic C User’s Manual

3.1.1 Single Stepping

Compile DEMOL. C by clicking the Compile button on the task bar. The program will compile and
the screen will come up with a highlighted character (green) at the first executable statement of the
program. Use the F8 key to single step. Each time the F8 key is pressed, the cursor will advance
one statement. When you get to the statement: f or (j =0, j < ... ,itbecomesimpractical to
single step further because you would have to press F8 thousands of times. We will use this state-
ment to illustrate watch expressions.

3.1.2 Watch Expression

Press <Ctrl-W> or choose Add/Del Watch Expression in the Inspect menu. A box will come up.
Typethe lower case letter j and click on Add to top, then Close. Now continue single stepping by
pressing F8. Each time you step, the watch expression (j) will be evaluated and printed in the
watch window. Note how the value of j advances when the statement j ++ is executed.

3.1.3 Breakpoint
Move the cursor to the start of the statement:
for (j=0; j<20000; j++);
To set abreakpoint on this statement, press F2 or select Breakpoint from the Run menu. A red
highlight appears on the first character of the statement. To get the program running at full speed,

press F9 or select Run on the Run menu. The program will advance until it hits the breakpoint.
The breakpoint will start flashing both red and green colors.

To remove the breakpoint, press F2 or select Toggle Breakpoint on the Run menu. To continue
program execution, press F9 or select Run from the Run menu. Now the counter should be print-
ing out regularly in the STDIO window.

You can set breakpoints while the program is running by positioning the cursor to a statement and
using the F2 key. If the execution thread hits the breakpoint, a breakpoint will take place. You can
toggl e the breakpoint with the F2 key and continue execution with the F9 key.

3.1.4 Editing the Program

Click on the Edit box on the task bar. Thiswill put Dynamic C into edit mode so that you can
change the program. Use the Save as choice on the File menu to save the file with a new name so
as not to change the demo program. Save the fileas MYTEST. C. Now change the number 20000
inthef or (.. statement to 10000. Then use the F9 key to recompile and run the program. The
counter displays twice as quickly as before because you reduced the value in the delay loop.

Chapter 3: Quick Tutorial 9

3.2 Run DEMO2.C

Go back to edit mode and load the program DEMO2. C using the File menu Open command. This
program is the same as the first program, except that a variable k has been added along with a
statement to increment k by the value of i each time around the endless loop. The statement

runwat ch();

has been added as well. Thisis a debugging statement to view variables while the program is run-
ning. Use the F9 key to compile and run DEMX2. C.

3.2.1 Watching Variables Dynamically

Press <Ctrl-W> to open the watch window and add the watch expression k to the top of the list of
watch expressions. Now press <Ctrl-U>. Each time you press <Ctrl-U>, you will see the current
valueof k.

As an experiment, add another expression to the watch window:
k*5
Then press <Ctrl-U> several times to observe the watch expressionsk and k* 5.

3.3 Run DEMOQO3.C

The exampl e below, sample program DEMO3. C, uses costatements. A costatement is away to
perform a sequence of operations that involve pauses or waits for some external event to take
place.

3.3.1 Cooperative Multitasking

Cooperative multitasking is away to perform several different tasks at virtually the sasmetime. An
example would be to step a machine through a sequence of tasks and at the same time carry on a
dialog with the operator via a keyboard interface. Each separate task voluntarily surrenders its
compute time when it does not need to perform any more immediate activity. |n preemptive multi-
tasking control is forcibly removed from the task via an interrupt.

Dynamic C has language extensions to support both types of multitasking. For cooperative multi-
tasking the language extensions are costatements and cofunctions. Preemptive multitasking is
accomplished with slicing or by using the uC/OS-11 real-time kernel that comes with Dynamic C
Premier.

Advantages of Cooper ative Multitasking

Unlike preemptive multitasking, in cooperative multitasking variables can be shared between dif-
ferent tasks without taking elaborate precautions. Cooperative multitasking also takes advantage
of the natural delays that occur in most tasks to more efficiently use the available processor time.

The DEMO3. C sample program has two independent tasks. The first task prints out a message to
STDIO once per second. The second task watches to seeif the keyboard has been pressed and
prints out which key was entered.

10 Dynamic C User’s Manual

mai n() {

i nt secs; / | seconds counter
secs = 0; /[initialize counter
(1) while (1) { /' endlessloop

[First task will print the seconds elapsed.
(2) costate {

secs+t; /| increment counter
(3) wai tfor(Del ayMs(1000)); /| wait one second
printf("% seconds\n", secs); // printelapsedseconds
(4) 1}
/I Second task will check if any keys have been pressed.
costate {
(5) if ('kbhit()) abort; /I key been pressed?
printf(" key pressed = %\n", getchar());
}
(6) } /' end of whileloop
} /| end of main

The numbersin the left margin are reference indicators and not part of the code. Load and run the
program. The elapsed time is printed to the STDIO window once per second. Push several keys
and note how they are reported.

The elapsed time message is printed by the costatement starting at the line marked (2). Costate-
ments need to be executed regularly, often at least every 25 ms. To accomplish this, the costate-
ments are enclosed in awhi | e loop. Thewhi | e loop starts at (1) and ends at (6). The statement
at (3) waitsfor atime delay, in this case 1000 ms (one second). The costatement executes each
pass through the whi | e loop. When awai t f or condition is encountered the first time, the cur-
rent value of MS_TI MER is saved and then on each subsequent pass the saved value is compared
to the current value. If awai t f or condition is not encountered, then ajump is made to the end of
the costatement (4), and on the next pass of the loop, when the execution thread reaches the begin-
ning of the costatement, execution passes directly tothewai t f or statement. Once 1000 ms has
passed, the statement after thewai t f or isexecuted. A costatement can wait for along period of
time, but not use alot of execution time. Each costatement is a little program with its own state-
ment pointer that advances in response to conditions. On each pass through the whi | e loop as
few as one statement in the costatement executes, starting at the current position of the costate-
ment’s statement pointer. Consult Chapter 5 "M ultitasking with Dynamic C" for more details.

The second costatement in the program checks to see if akey has been pressed and, if one has,
prints out that key. Theabort statementisillustrated at (5). If theabort statementisexe-
cuted, theinternal statement pointer is set back to the first statement in the costatement, and a
jump is made to the closing brace of the costatement.

Toillustrate the use of snooping, use the watch window to observe secs whilethe programis
running. Add thevariablesecs to thelist of watch expressions, then press <Ctrl-U> repeatedly
to observe assecs increases.

Chapter 3: Quick Tutorial 11

3.4 Summary of Features

This chapter provided a quick look at the intuitive interface of Dynamic C and some of the power-
ful options available for embedded systems programming.

Development Functions

When you load a program it appearsin an edit window. You compile by clicking Compile on the
task bar or from the Compile menu. The program is compiled into machine language and down-
loaded to the target over the serial port. The execution proceeds to the first statement of main,
where it pauses, waiting to run. Press the F9 key or select Run on the Run menu. If want to com-
pile and run the program with one keystroke, use F9, the run command; if the program is not
already compiled, the run command compilesit.

Single Stepping

Thisis done with the F8 key. The F7 key can also be used for single stepping. If the F7 key is
used, then descent into subroutines will take place. With the F8 key the subroutine is executed at
full speed when the statement that callsit is stepped over.

Setting Breakpoints

The F2 key is used to toggle a breakpoint at the cursor position if the program has already been
compiled. You can set a breakpoint if the program is paused at a breakpoint. You can also set a

breakpoint in a program that is running at full speed. Thiswill cause the program to break if the
execution thread hits your breakpoint.

Watch Expressions

A watch expression isa C expression that is evaluated on command in the watch window. An
expression is basicaly any type of C formulathat can include operators, variables and function
calls, but not statements that require multiple linessuch asf or or swi t ch. You can have alist of
watch expressions in the watch window. If you are single stepping, then they are all evaluated on
each step. You can also command the watch expression to be evaluated by using the <Ctrl-U>
command. When awatch expression is evaluated at a breakpoint, it is evaluated as if the statement
was at the beginning of the function where you are single stepping. If your program is running you
can also evaluate watch expressions with a <Ctrl-U> if your program hasar unwat ch() com-
mand that is frequently executed. In this case, only expressionsinvolving global variables can be
evaluated, and the expression is evaluated asif it were in a separate function with no local vari-
ables.

Costatements

A costatement is a Dynamic C extension that allows cooperative multitasking to be programmed
by the user. Keywords, likeabor t andwai t f or, are available to control multitasking operation
from within costatements.

12 Dynamic C User’s Manual

4. Language

Dynamic C is based on the C language. The programmer is expected to know programming meth-
odologies and the basic principles of the C language. Dynamic C hasits own set of libraries,
which include user-callable functions. Please see the Dynamic C Function Reference Manual for
detailed descriptions of these API functions. Dynamic C libraries are in source code, allowing the
creation of customized libraries.

Before starting on your application, read through the rest of this chapter to review C-language fea-
tures and understand the differences between standard C and Dynamic C.

4.1 C Language Elements

A Dynamic C program is a set of files consisting of onefilewith a. ¢ extension and the requested
library files. Each file is a stream of characters that compose statements in the C language. The
language has grammar and syntax, that is, rules for making statements. Syntactic elements—often
called tokens—form the basic elements of the C language. Some of these el ements are listed in the
table below.

Table 4-1. C Language Elements

punctuation Symbols used to mark beginnings and endings
names Words used to name data and functions
numbers Literal numeric values

strings Literal character values enclosed in quotes
directives Words that start with # and control compilation
keywords Words used as instructions to Dynamic C
operators Symbols used to perform arithmetic operations

Chapter 4: Language 13

4.2 Punctuation and Tokens

Punctuation marks serve as boundariesin C programs. The table below lists the punctuation marks
and tokens.
Table 4-2. Punctuation Marks and Tokens

Symbol Description

Terminates a statement |abel.

Terminates a simple statement or ado loop. C requires
these!

Separatesitemsin alist, such as an argument list,
declaration list, initidization list, or expression list.

Encloses argument or parameter lists. Function calls
always require parentheses. Macros with parameters
also require parentheses. Also used for arithmetic and
logical sub expressions.

()

Begins and ends a compound statement, a function
{1} body, a structure or union body, or encloses a function
chain segment.

Indicates that therest of thelineisacomment and is not

I compiled

[* ... */ |Comments are nested between the/ * and */ tokens.

14 Dynamic C User’s Manual

4.3 Data

Data (variables and constants) have type, size, structure, and storage class. Basic, or primitive,
data types are shown below.
Table 4-3. Dynamic C Basic Data Types

Type Description

char 8-hit unsigned integer. Range: 0 to 255 (OxFF)

i nt 16-bit signed integer. Range: -32,768 to +32,767

unsi gned i nt 16-bit unsigned integer. Range: 0to +65,535

| on 32-bit signed integer. Range: -2,147,483,648 to

9 +2,147,483,647

unsi gned | ong 32-bit unsigned integer. Range0to 22 - 1
32-bit |IEEE floating-point value. The sign bitis 1 for
negative values. The exponent has 8 bits, giving exponents

£ from -127 to +128. The mantissa has 24 bits. Only the 23

oat least significant bits are stored; the high bit is 1 implicitly.

(Rabbit controllers do not have floating-point hardware.)
Range: 1.18 x 1038 to 3.40 x 10%8
Defines alist of named integer constants. The integer

enum constants are signed and in the range: -32,768 to +32,767.

This keyword is available starting with Dynamic C version
7.20.

4.3.1 Data Type Limits

The symbolic names for the hardcoded limits of the datatypes aredefinedinl i mi t s. h and are

shown here.
#define CHAR BI T 8
#def i ne UCHAR_MAX 255
#define CHAR_ M N 0
#defi ne CHAR_MAX 255
#define MB_LEN MAX 1
#define SHRT_M N - 32768
#def i ne SHRT_MAX 32767
#def i ne USHRT_MAX 65535
#define INT_MN - 32767
#def i ne | NT_MAX 32767
#def i ne U NT_MAX 65535

#define LONG M N -2147483647
#defi ne LONG_MAX 2147483647
#define ULONG MAX 4294967295

Chapter 4: Language

15

4.4 Names

Names identify variables, certain constants, arrays, structures, unions, functions, and abstract data
types. Names must begin with aletter or an underscore (_), and thereafter must be letters, digits,
or an underscore. Names may not contain any other symbols, especialy operators. Names are dis-
tinct up to 32 characters, but may be longer. Prior to Dynamic C version 6.19, names were distinct
up to 16 characters, but could be longer. Names may not be the same as any keyword. Names are
case-sensitive.

Examples
my_function /1 ok
_bl ock /] ok
t est 32 /1 ok
j unper - /'l not ok, usesaminus sign
3270t ype /' not ok, beginswith digit
Cl eanup_t he_dat a_now /| These hames are

Cl eanup_t he_data_| at er [/ not distinct!

References to structure and union elements require compound names. The simple namesin acom-
pound name are joined with the dot operator (period).

cursor.loc.x = 10; /| set structure element to 10

Usethe#def i ne directive to create names for constants. These can be viewed as symbolic con-
stants. See Section 4.5, “Macros.”

#defi ne READ 10
#defi ne WRITE 20
#defi ne ABS 0
#defi ne REL 1
#defi ne READ_ABS READ + ABS
#defi ne READ_REL READ + REL

Theterm READ_ABS isthe sameas 10 + 0 or 10, and READ REL isthesameas 10+ 1 or 11.
Note that Dynamic C does not allow anything to be assigned to a constant expression.

READ_ABS = 27; /' produces compiler error

16 Dynamic C User’s Manual

4.5 Macros

Macros may be defined in Dynamic C by using #def i ne. A macro is a name replacement fea-
ture. Dynamic C has atext preprocessor that expands macros before the program text is compiled.
The programmer assigns a name, up to 31 characters, to afragment of text. Dynamic C then
replaces the macro name with the text fragment wherever the name appears in the program. In this
example,

#defi ne OFFSET 12

#defi ne SCALE 72

int i, X;

i = x * SCALE + OFFSET;

thevariablei getsthevaluex * 72 + 12. Macroscan have parameters such asin the follow-
ing example.

#define word(a, b) (a<<8 | h)

char c;

int i, j;

i =word(j, ¢); [l sameasi = (] <<8]|c)

The compiler removes the surrounding white space (comments, tabs and spaces) and collapses
each sequence of white space in the macro definition into one space. It placesa\ beforeany " or
\ to preserve their original meaning within the definition.

Dynamic C implements the # and ## macro operators.

The # operator forces the compiler to interpret the parameter immediately following it asastring
literal. For example, if amacro is defined

#def i ne report (val ue, fnt)\
printf(#value "=" #fnt "\n", value)

then the macroin
report(string, %);

will expand to
printf("string" "=" "%" "\n", string);

and because C always concatenates adjacent strings, the final result of expansion will be
printf("string=%s\n", string);

The ## operator concatenates the preceding character sequence with the following character
sequence, deleting any white space in between. For example, given the macro

#define set(x,y,z) x ## z ## _ ## y()
the macroin

set(AASC, FN, 6);
will expand to

AASC6_FN() ;

For parameters immediately adjacent to the ## operator, the corresponding argument is not
expanded before substitution, but appears as it does in the macro call.

Chapter 4: Language 17

Generally speaking, Dynamic C expands macro calls recursively until they can expand no more.
Another way of stating thisis that macro definitions can be nested.

The exceptionsto thisrule are

1. Argumentsto the # and ## operators are not expanded.

2. To prevent infinite recursion, a macro does not expand within its own expansion.

The following complex example illustrates this.

#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne

printf(

The code

ui nt

Z,

A B

B C

ui nt unsi gned i nt

M x) M ## x
MMX,y,z) X =y ## z

string somnet hing
wite(value, fnmt)\
#value "=" #fm "\n",

M(M (A AB);
wite(string, 9%);

will expand first to

unsi gned int z;
MM (A A B);
printf("string

then to

n n O/G" (1] \ nn ,

/| simple expansion
/1 MM doesnot expand recursively
string);

/1 #value - "string" #fn - "9%"

unsi gned int z;
A = AB;

printf("string

then to

/] from A = A ## B

unsi gned int z;
B = AB;

printf("string=%\n", sonmething);

and finally to

unsi gned int z;
C = AB;

printf("string = %\ n", sonething);

=" "os" "\n",
[l string -

somet hi ng);
something

/Il A - B
/| concatenation

/Il B - C

18

Dynamic C User’s Manual

4.5.1 Restrictions

The number of argumentsin amacro call must match the number of parameters in the macro defi-
nition. An empty parameter list is allowed, but the macro call must have an empty argument list.
Macros are restricted to 32 parameters and 126 nested calls. A macro or parameter name must
conform to the same requirements as any other C name. The C language does not perform macro
replacement inside string literals or character constants, comments, or within a#def i ne direc-
tive.

A macro definition remains in effect unless removed by an #undef directive. If an attempt is
made to redefine a macro without using #undef , awarning will appear and the original defini-
tion will remain in effect.

4.6 Numbers

Numbers are constant values and are formed from digits, possibly a decimal point, and possibly
thelettersU, L, X, or A—F, or their lower case equivalents. A decima point or the presence of
the letter E or F indicates that a number isreal (has afloating-point representation).

Integers have several forms of representation. The normal decimal form is the most common.
10 -327 1000 O

Aninteger islong (32-bit) if its magnitude exceeds the 16-bit range (-32768 to +32767) or if it has
the letter L appended.

oL -32L 45000 32767L

Aninteger isunsigned if it hasthe letter U appended. Itisl ong if it also has L appended or if its
magnitude exceeds the 16-bit range.

ou 4294967294V 32767U 1700UL

Aninteger is hexadecimal if preceded by 0x.
OX7TE OxEOO00 OxFFFFFFFA

It may contain digits and the lettersa—f or A—F.

Aninteger isoctal if begins with zero and contains only the digits 0—-7.
0177 020000 000000630

A rea number can be expressed in avariety of ways.

4.5 means 4.5
4f means 4.0
0. 3125 means 0. 3125

456e- 31 means 456 x 10731
0.3141592el1 means 3. 141592

Chapter 4: Language 19

4.7 Strings and Character Data
A string isagroup of characters enclosed in double quotes ("").
"Press any key when ready..."

Stringsin C have aterminating null byte appended by the compiler. Although C does not have a
string data type, it does have character arrays that serve the purpose. C does not have string opera-
tors, such as concatenate, but library functionsst r cat () andstrncat () areavailable.

Strings are multibyte objects, and as such they are always referenced by their starting address, and
usualy by achar * variable. More precisely, arrays are always passed by address. Passing a
pointer to a string is the same as passing the string. Refer to Section 4.15 for more information on
pointers.

The following example illustrates typical use of strings.
const char* select = "Select option\n";
char start[32];

strcpy(start, "Press any key when ready...\n");
printf(select); /| pass pointer to string

printf(start); /'l passstring

4.7.1 String Concatenation

Two or more string literals are concatenated when placed next to each other. For example:
"Rabbits" "like carrots."

becomes
"Rabbits |ike carrots.”

during compilation.

If the strings are on multiple lines, the macro continuation character must be used. For example:

"Rabbi t s"\
"don't like line dancing."

becomes
"Rabbits don’t like line dancing."
during compilation.

20 Dynamic C User’s Manual

4.7.2 Character Constants
Character constants have a slightly different meaning. They are not strings. A character constant is
enclosed in singlequotes (* ') and is arepresentation of an 8-bit integer value.

"a' "\n' "\ x1B'
Any character can be represented by an alternate form, whether in a character constant or in a
string. Thus, nonprinting characters and characters that cannot be typed may be used.

A character can be written using its numeric value preceded by a backslash.

\ x41 /'l the hex value 41
\ 101 /' theoctal value 101, aleading zero is optional
\ BL0000001 /| the binary value 10000001

There are also several “specia” forms preceded by a backslash.

\a bdl \'b backspace

\f formfeed \'n newline

\'r carriagereturn \'t tab

\'v vertical tab \ 0 null character

\\ backdash \ ¢ theactual character c

\' single quote \'” double quote
Examples

"He said \"Hello.\"" /I embedded double quotes

const char j ="'2Z; [| character constant

const char* MSG = "Put your disk in the A drive.\n";
/| embedded new line at end

printf(MG); /1 print MSG

char* default = ""; [empty string: asingle Nul | byte

4.8 Statements

Except for comments, everything in a C program is a statement. Almost all statements end with a
semicolon. A C program is treated as a stream of characters where line boundaries are (generally)
not meaningful. Any C statement may be written on as many lines as needed. Comments (the
/*...*/ kind) may occur almost anywhere, even in the middle of a statement, aslong as they
begin with / * and end with */ .

A statement can be many things. A declaration of variables is a statement. An assignment isa
statement. A whi | e or f or loop isastatement. A compound statement is a group of statements
enclosed in braces{ and}.

Chapter 4: Language 21

4.9 Declarations

A variable must be declared before it can be used. That means the variable must have a name and
atype, and perhaps its storage class could be specified. If an array is declared, its size must be
given. Root data arrays are limited to atotal of 32,767 elements.

static int thing, array[12]; /| staticinteger variable &

[staticinteger array
auto float matrix[3][3]; /| autofloat array with 2 dimensions
char *nessage="Press any key..."” // initialized pointer to char array

If an aggregatetype (st r uct or uni on) isbeing declared, itsinternal structure hasto be
described as shown below.

struct { /| description of structure
char fl ags;
struct { /| anested structure here
int x;
int vy;
} loc;
} cursor;
int a;
a = cursor.|loc. x; /'] use of structure element here

4.10 Functions

The basic unit of a C application program is a function. Most functions accept parameters—or
arguments—and return results, but there are exceptions. All C functions have areturn type that
specifieswhat kind of result, if any, it returns. A function with avoi d return type returns no
result. If afunction is declared without specifying areturn type, the compiler assumesthat it isto
returnani nt (integer) value.

A function may call another function, including itself (arecursive call). The mai n functionis
called automatically after the program compiles or when the controller powers up. The beginning
of the mai n function isthe entry point to the entire program.

22 Dynamic C User’s Manual

4.11 Prototypes

A function may be declared with a prototype. Thisis so that:
1. Functionsthat have not been compiled may be called.

2. Recursive functions may be written.

3. The compiler may perform type-checking on the parameters to make sure that calls to the func-
tion receive arguments of the expected type.

A function prototype describes how to call the function and is nearly identical to the function’sini-
tial code.

[* Thisisafunction prototype.* /
long tick _count (char clock id);

[* Thisisthe function’s definition.* /
long tick _count (char clock_id){

}

It is not necessary to provide parameter names in a prototype, but the parameter typeis required,
and all parameters must be included. (If the function accepts a variable number of arguments, as
pri ntf does, useaneéellipsis.)

[* This prototypeis as good as the one above. */
long tick _count (char);

[* Thisisaprototype that usesellipsis. */
int startup (device id, ...);

4.12 Type Definitions

Both types and variables may be defined. One virtue of high-level languages such as C and Pascal
isthat abstract data types can be defined. Once defined, the data types can be used as easily as
simpledatatypeslikei nt, char,andf | oat. Consider thisexample.

t ypedef int M LES; /| abasictypenamed M LES
t ypedef struct ({ [astructure type...
float re; ...
float im ...
} COWPLEX; /] ..named COMPLEX
M LES di st ance; /| declarevariable of type M LES
COWLEX z, *zp; /'] declare variable of & pointer to type COVPLEX .

Chapter 4: Language 23

Uset ypedef to create ameaningful name for aclass of data. Consider this example.

t ypedef unsigned int node;
voi d Nodel nit(node); /| typenameisinformative
voi d Nodel nit(unsigned int); /' not very informative

This example shows many of the basic C constructs.

/ * Put descriptive information in your program code using this form of comment,
which can be inserted anywhere and can span lines. The double slash comment
(shown below) may be placed at the end of aline* /

#define SIZE 12 /I A symbolic constant defined.
int g, h; /| Declare global integers.
fl oat sunmSquare(int, int); /' Prototypes for
void init(); [/ functions below.
mai n() { /I Program starts here.
float x; /] x islocal tonai n.
init(); /| Cadll avoid function.
X = sunBquare(g, h); /'l x gets sunSquar e value.
printf(“x = %", Xx); [l printf isastandard function.
}
void init(){ /I Void functions do things but
g = 10; /1 they return no value.
h = S| ZE; /' Here, it uses the symbalic
} /1 constant defined above.
float sunmSquare(int a, int b){ [/ Integer arguments.
float tenp; /| Local variables.
tenp = a*a + b*b; [[Arithmetic statement.
return(tenmp); /| Returnvalue.
}

[* and hereisthe end of the program */

The program above calculates the sum of squares of two numbers, g and h, which areinitialized
to 10 and 12, respectively. The main function callsthei ni t function to give valuesto the global
variablesg and h. Then it usesthe sunSquar e function to perform the calculation and assign
the result of the calculation to the variable x.. It prints the result using the library function

pri nt f, which includes aformatting string as the first argument.

Noticethat al functionshave{ and} enclosing their contents, and all variables are declared
before use. The functionsi ni t () and sunSquar e() were defined before use, but there are
alternatives to this. The “Prototypes’ section explained this.

24

Dynamic C User’s Manual

4.13 Aggregate Data Types

Simple data types can be grouped into more complex aggregate forms.

4.13.1 Array
A data type, whether it is simple or complex, can be replicated in an array. The declaration

int iten10]; /1 An array of 10 integers.

represents a contiguous group of 10 integers. Array elements are referenced by their subscript.
j =itenin]; /'l Thenthelementofi t em
Array subscripts count up from 0. Thus, i t en{ 7] aboveisthe eighth item in the array. Notice

the[and] enclosing both array dimensions and array subscripts. Arrays can be “nested.” Thefol-
lowing doubly dimensioned array, or “array of arrays.”

int matrix[7][3];

isreferenced in asimilar way.

scale = matrix[i][j];
The first dimension of an array does not have to be specified aslong as an initialization list is
specified.

int x{1[2] ={ {1, 2}, {3, 4}, {5 6} };
char string[] = "abcdefg";

4.13.2 Structure

Variables may be grouped together in structures (st r uct in C) or in arrays. Structures may be
nested.

struct {
char fl ags;
struct {
int Xx;
int vy;
} loc;
} cursor;

Structures can be nested. Structure members—the variables within a structure—are referenced
using the dot operator.

j = cursor.loc.x

The size of astructure is the sum of the sizes of its components.

Chapter 4: Language 25

4.13.3 Union
A union overlays simple or complex data. That is, all the union members have the same address.
The size of the union isthe size of the largest member.

uni on {
int ival;
| ong jval;
float xval;
Pou

Unions can be nested. Union members—the variables within a union—are referenced, like struc-
ture elements, using the dot operator.

j = u.ival

4.13.4 Composites

Composites of structures, arrays, unions, and primitive data may be formed. This example shows
an array of structures that have arrays as structure elements.

t ypedef struct {

int *x;

int c[32]; /| array in structure
} node;
node |ist[12]; /| array of structures

Refer to an element of array ¢ (above) as shown here.

z = list[n].c[mM;

list[0].c[22] = OxFF37;

4.14 Storage Classes

Variable storage can beaut o or st at i ¢. The default storage classisst at i ¢, but can be
changed by using #cl ass aut 0. The default storage class can be superseded by the use of the
keyword aut o or st at i ¢ inavariable declaration.

These terms apply to local variables, that is, variables defined within afunction. If avariable does
not belong to afunction, it is called agloba variable—avail able anywhere in the program—~but
thereis no keyword in C to represent this fact. Global variables alwayshave st at i ¢ storage

Theterm st at i ¢ meansthe data occupies a permanent fixed location for the life of the program.
Theterm aut o refersto variables that are placed on the system stack for thelife of afunction call.

26 Dynamic C User’s Manual

4.15 Pointers

A pointer is avariable that holds the 16-bit logical address of another variable, a structure, or a
function. Dynamic C does not currently support long pointers. The indirection operator (*) is used
to declare avariable as a pointer. The address operator (&) is used to set the pointer to the address
of avariable.

int *ptr_to_i;

int i;

ptr to i = &; /| set pointer equal to the address of i
i = 10: /| assignavauetoi

j = *ptr_to_i; /'] thissets | equal tothevauein i

In this example, thevariablept r _t o_i isapointer to an integer. The statementj =
*ptr_to_i; referencesthe value of the integer by the use of the asterisk. Using correct pointer
terminology, the statement dereferencesthe pointer ptr _to_i . Then*ptr_to_i andi have
identical values.

Notethatptr _to_i andi donot havethe samevaluesbecauseptr _to_i isapointerandi is
ani nt . Note also that * has two meanings (not counting its use as a multiplier in others contexts)
inavariabledeclaration suchasi nt *ptr_t o_i; the* meansthat the variable will be a
pointer type, and in an executable statementj = *ptr _to_i; means“thevalue stored at the
address containedinptr _to_i "

Pointers may point to other pointers.

int *ptr_to_i;
int **ptr_to_ptr_to_i;
int i,j;
ptr_to_i = &i; /| Set pointer equal to the address of i
ptr to ptr _to i = &ptr_to_i; [/ Setapointerto the pointer
/| tothe addressof i
i = 10; /| Assignavaueto i
j = **ptr_to_ptr_to_i; /1 Thissets j equal tothevauein i .

Itispossibleto do pointer arithmetic, but thisis slightly different from ordinary integer arithmetic.
Here are some examples.

float f[10], *p, *Q; [an array and some ptrs

p = &f; /1 point p toarray element O
q = pt5; /1 point g toarray element5
q++; /1 point g toarray element 6
p=p +q; /1 illegal!

Becausethef | oat isa4-byte storage element, the statement q = p+5 setsthe actual value of g
top+20. The statement q++ adds 4 to the actual value of . If f were an array of 1-byte charac-
ters, the statement q++ adds1toq.

Chapter 4: Language 27

Beware of using uninitialized pointers. Uninitialized pointers can reference ANY location in
memory. Storing data using an uninitialized pointer can overwrite code or cause a crash.

A common mistake isto declare and use a pointer to char , thinking there is a string. But an unini-
tialized pointer is al thereis.

char* string;

strepy(string, "hello"): /1 Invalid!
printf(string); /1 Invalid!

Pointer checking is arun-time option in Dynamic C. Use the compiler options command in the
Options menu. Pointer checking will catch attempts to dereference a pointer to un allocated mem-
ory. However, if an uninitialized pointer happens to contain the address of a memory location that
the compiler has already allocated, pointer checking will not catch thislogic error. Because pointer
checking is arun-time option, pointer checking adds instructions to code when pointer checking is
used.

4.16 Pointers to Functions, Indirect Calls

Pointers to functions may be declared. When afunction is called using a pointer to it, instead of
directly, we call thisan indirect call.

The syntax for declaring a pointer to a function is different than for ordinary pointers, and
Dynamic C syntax for thisis slightly different than the standard C syntax. Standard syntax for a
pointer to afunction is:

returntype (*nane)([argunment list]);

for example:
int (*funcl)(int a, int b);
void (*func2) (char*);

Dynamic C doesn’t recognize the argument list in function pointer declarations. The correct
Dynamic syntax for the above examples would be:

int (*funcl)();
void (*func2)();

28 Dynamic C User’s Manual

You can pass arguments to functions that are called indirectly by pointers, but the compiler will
not check them for correctness. The following program shows some examples of using function

pointers.

typedef int (*fnptr)(); [/ -createpointertofunction that returnsan integer

mai n() {

int x,vy;

int (*fncl)(); [/
fnptr fp2; /1
fncl = intfunc; /1
fp2 = intfunc; I
X = (*fncl) (1, 2); [/
y = (*fp2)(3,4); 1

printf("%\n", x);
printf("%\n", y);

}

int intfunc(int x, int y){
return x+y;

}

4.17 Argument Passing

declarevar f nc1 asapointer to an int function.

declarevar f p2 as pointer to an int function
initializef nc1l topointtoi nt func()
initilize f p2 to point to the same function.

cal i ntfunc() via fncl
cal intfunc() via fp2

In C, function arguments are generally passed by value. That is, arguments passed to a C function
are generally copies—on the program stack—of the variables or expressions specified by the
caller. Changes made to these copies do not affect the original values in the calling program.

In Dynamic C and most other C compilers, however, arrays are always passed by address. This
policy includes strings (which are character arrays).

Dynamic C passes st r uct s by value—on the stack. Passing alarge st r uct takesalongtime
and can easily cause a program to run out of memory. Pass pointersto large st r uct s if such

problems occur.

For a function to modify the original vaue of a parameter, pass the address of, or a pointer to, the
parameter and then design the function to accept the address of the item.

Chapter 4: Language

29

4.18 Program Flow

Three terms describe the flow of execution of a C program: sequencing, branching and looping.
Sequencing is simply the execution of one statement after another. Looping is the repetition of a
group of statements. Branching is the choice of groups of statements. Program flow is altered by
calling afunction, that is transferring control to the function. Control is passed back to the calling
function when the called function returns.

4.18.1 Loops
A whi | e loop tests a condition at the start of the loop. Aslong as expression is true (non-zero),
the loop body (some statement(s)) will execute. If expressionisinitially false (zero), the loop body

will not execute. The curly braces are necessary if there is more than one statement in the loop
body.

whi | e(expression){
sone st at enent (s)
}

A do loop tests a condition at the end of the loop. Aslong as expression istrue (non-zero) the loop
body (some statement(s)) will execute. A do loop executes at least once before its test. Unlike
other contrals, the do loop requires a semicolon at the end.

do{
sone statenents
}whil e(expression);

Thef or loop is more complex: it sets an initial condition (expl), evaluates a terminating condi-
tion (exp2), and provides a stepping expression (exp3) that is evaluated at the end of each iteration.
Each of the three expressionsis optional.

for(expl ; exp2 ; exp3){
sone statenents
}

If the end condition isinitially false, af or loop body will not execute at all. A typical use of the
f or loopisto count n times.

sum = O;

for(i =0; i <n; i++){
sum = sum + array[i];

}

Thisloop initially setsi to 0, continuesaslong asi islessthann (stopswheni equalsn), and
incrementsi at each pass.

Another use for thef or loop istheinfinite loop, which is useful in control systems.

for(;;){sone statenent(s)}

30 Dynamic C User’s Manual

Here, thereisnoinitial condition, no end condition, and no stepping expression. The loop body
(some statement(s)) continues to execute endlessly. An endless loop can also be achieved with a
whi | e loop. This method is dlightly less efficient than thef or loop.

while(l) { sone statenent(s) }

4.18.2 Continue and Break
Two keywords are available to help in the construction of loops: cont i nue and br eak.

Thecont i nue statement causes the program control to skip unconditionally to the next pass of
the loop. In the example below, if bad istrue, more statements will not execute; control will pass
back to the top of thewhi | e loop.

get _char();

while(! EOF){
sone statenents
if(bad) continue;
nore statenents

The br eak statement causes the program control to jump unconditionally out of aloop. In the
example below, if cond_RED istrue, more statements will not be executed and control will pass
to the next statement after the ending curly brace of thef or loop

for(i=0;i<n;i++){
sone statenents

if(cond RED) break;
nore statenents

}

The br eak keyword also appliesto theswi t ch/ case statement described in the next section.
The br eak statement jumps out of the innermost control structure (loop or switch statement)
only.

Chapter 4: Language 31

There will be timeswhen br eak isinsufficient. The program will need to either jump out more
than one level of nesting or there will be a choice of destinations when jumping out. Useagot o
statement in such cases. For example,

whi | e(sone statenents){
for(i=0;i<n;i++){
sone statenents
if(cond_RED) goto yyy;
sone statenents
if(code_ BLUE) goto zzz;
nore statenents
}
}
yyy:
handl e cond_RED
z227:
handl e code_BLUE

4.18.3 Branching

The got o statement isthe simplest form of a branching statement. Coupled with a statement
label, it simply transfers program control to the labeled statement.

sone statenents
abc:

ot her statenents

got o abc;

nore statenents
got o def;

def :
nore statenents

The colon at the end of the labelsis required. In general, the use of the got o statement is discour-
aged in structured programming.

The next simplest form of branching isthei f statement. The simple form of thei f statement
tests a condition and executes a statement or compound statement if the condition expressionis
true (non-zero). The program will ignorethei f body when the condition is false (zero).

i f(expression){
sone st at enent (s)

}

32 Dynamic C User’s Manual

A more complex form of thei f statement tests the condition and executes certain statements if
the expression istrue, and executes another group of statements when the expression isfalse.

i f(expression){

sonme st at enent (s) [l if true
}el sef
some st at enent (S) [if false

}

The fullest form of thei f statements produces a succession of tests.

i f(expry){
sone statenents
telse if(expro){
sone statenents
telse if(expriz){
sone statenents
}el se{
sone statenents
}

The program evaluates the first expression (expr4). If that proves false, it tries the second expres-
sion (expr,), and continues testing until it finds a true expression, an el se clause, or the end of
theif statement. An el se clauseisoptional. Without an el se clause,ani f/ el se i f sate
ment that finds no true condition will execute none of the controlled statements.

Theswi t ch statement, the most complex branching statement, allows the programmer to phrase
a“multiple choice” branch differently.

switch(expression){
case constq :
stat enment s,
br eak:
case const, :
statenment s,
br eak:
case constg :
st at ement s3
br eak:
def aul t :
st at ement SpepauLT

}

First the swi t ch expression is evaluated. It must have an integer value. If one of theconst y
values matchesthe swi t ch expression, the sequence of statementsidentified by the const y

Chapter 4: Language 33

expression is executed. If there is no match, the sequence of statementsidentified by the

def aul t label isexecuted. (Thedef aul t part isoptional.) Unlessthe br eak keywordis
included at the end of the case's statements, the program will “fall through” and execute the state-
ments for any number of other cases. The br eak keyword causes the program to exit the

Swi t ch/ case statement.

Thecolons (:) after br eak, case and def aul t arerequired.

4.19 Function Chaining

Function chaining allows special segments of code to be distributed in one or more functions.
When a named function chain executes, all the segments belonging to that chain execute. Function
chains allow the software to perform initialization, data recovery, and other kinds of tasks on
request. There are two directives, #makechai n and #f uncchai n, and one keyword, seg-
chai n that create and control function chains:

#makechai n chai n_nane
Creates afunction chain. When a program executes the named function chain, all of the func-
tions or chain segments belonging to that chain execute. (No particular order of execution can
be guaranteed.)

#f uncchai n chai n_nane nane
Adds afunction, or another function chain, to afunction chain.

segchai n chain_nane { statenents }

Defines a program segment (enclosed in curly braces) and attaches it to the named function
chain.

Function chain segments defined with segchai n must appear in afunction directly after data
declarations and before executabl e statements, as shown below.
my_function(){
[* datadeclarations */

segchai n chai n_x{
[* some statements which execute under chai n_x */

}

segchai n chai n_y{
[* some statements which execute under chai n_y */
}

[* function body which executeswhen ny_functi on iscaled */

A program will call afunction chain asit would an ordinary void function that has no parameters.
The following example shows how to call afunction chain that isnamed r ecover.

#makechai n recover

recover();

34 Dynamic C User’s Manual

4.20 Global Initialization

Various hardware devicesin a system need to beinitialized not only by setting variables and con-
trol registers, but often by complex initialization procedures. Dynamic C provides a specific func-
tionchain, GLOBAL_I NI T, for this purpose.

Your program can initialize variables and take initialization action with global initiaization. This
isdone by adding segmentsto the GLOBAL | NI T function chain, as shown in the example
below.

l ong my_func(char j);

mai n() {
my_ func(100);
}
| ong ny _func(char j){
int i;
| ong array|[256];
/1 The GLOBAL_I| NI T section is automatically run once when the program starts up
#GLOBAL_I NI T{
for(i =0; i < 100; i++){
array[i] = i*i;
}
}
return array[j]; /I only this code runs when the function is called
}

The special directive #GLOBAL_| NI T{ } tellsthe compiler to add the code in the block
enclosed in bracestothe _GLOBAL _|I NI T function chain. The _GLOBAL_| NI T function chain
is always called when your program starts up, so there is nothing special to do to invokeit. It may
be called at anytime in an application program, but do this with caution. When it is called, all cos-
tatements and cofunctions will beinitialized. See“Calling _GLOBAL_INIT()” on page 65 for
more information.

Any number of #GLOBAL _| NI T sections may be used in your code. The order in which the
#GLOBAL_| NI T sections are called is indeterminate since it depends on the order in which they
were compiled.

Chapter 4: Language 35

4.21 Libraries

Dynamic C includes many libraries—files of useful functionsin source code form. They are
located in the L1 B subdirectory where Dynamic C was installed. The default library file extension
is. LI B. Dynamic C uses functions and data from library files and compiles them with an applica-
tion program that is then downloaded to a controller or savedto a. bi n file.

An application program (the default file extension is. ¢) consists of a source code file that con-
tainsamain function (called mai n) and usually other user-defined functions. Any additional
source files are considered to be libraries (though they may havea. ¢ extension if desired) and are
treated as such. The minimum application program is one source file, containing only

mai n(){

}
Libraries (both user defined and Z-World defined) are “linked” with the application through the
#use directive. The#use directive identifies a file from which functions and data may be
extracted. Filesidentified by #use directives are nestable, as shown below. The#use directiveis
areplacement for the #i ncl ude directive, which is not supported in Dynamic C. Any library
that isto be used in a Dynamic C program must be listed in thefileLIl B. DI R, or another *. DI R
file specified by the user. (Starting with version Dynamic C 7.05, adifferent * . DI Rfile may be
specified by the user in the Compiler Options dialog to facilitate working on multiple projects.)

Application X.LIB Y.LIB
huse x.1ib~—] #use y.1ib 44— 11
main () { function | |77
b function
#use z.1ib function ZLIB
#use z.lib T

‘= o

Figure 2. Nesting Files in Dynamic C

Most libraries needed by Dynamic C programs are#use’dinthefilel i b\ defaul t. h.

The“Modules’ section later in this chapter explains how Dynamic C knows which functions and
global variablesin alibrary to use.

36 Dynamic C User’s Manual

4.22 Headers

The following table describes two kinds of headers used in Dynamic C libraries.

Table 4-4. Dynamic C Library Headers

Header Name Description

Module headers Makes functions and global variablesin the library known

to Dynamic C.
Function Description Describe functions. Function headers form the basis for
headers function lookup help.

You may also notice some “Library Description” headers at the top of library files. These have no
special meaning to Dynamic C, they are simply comment blocks.

4.23 Modules

To write a custom source library, modules must be understood because they provide Dynamic C
with the ability to know which functions and global variablesin alibrary to use. It isimportant to
note that the #us e directive isareplacement for the#i ncl ude directive, and the#i ncl ude
directive is not supported.

A library file contains a group of modules. A module has three parts. the key, the header, and a
body of code (functions and data).

A modulein alibrary has a structure like this one.

/*** Begi nHeader funcl, var2, */
prototype for funcl
decl aration for var2
[*** EndHeader */
definition of funcl and
possi bly other functions and data

4.23.1 The Key
The line (a specially-formatted comment)

[*** Begi nHeader [nane;, nane,,] */

begins the header of a module and contains the module key. The key isalist of names (of func-
tions and data). The key tells the compiler what functions and data in the module are available for
reference. It isimportant to format this comment properly. Otherwise, Dynamic C cannot identify
the module correctly.

If there are many names after Begi nHeader , thelist of names can continue on subsequent lines.
All names must be separated by commas. A key can have no namesin it and it’s associated header
will still be parsed by the precompiler and compiler.

Chapter 4: Language 37

4.23.2 The Header

Every line between the comments containing Begi nHeader and EndHeader belongsto the
header of the module. When an application #uses alibrary, Dynamic C compiles every header,
and just the headers, in the library. The purpose of a header is to make certain names defined in a
module known to the application. With proper function prototypes and variable declarations, a
module header ensures proper type checking throughout the application program. Prototypes, vari-
ables, structures, typedefs and macros declared in a header section will always be parsed by the
compiler if thelibrary is used, and will have global scope. It is even permissible to put function
bodies in header sections, but thisis not recommended. Variables declared in a header section will
be allocated memory space unless the declaration is preceded with ext ern .

4.23.3 The Body

Every line of code after the EndHeader comment belongs to the body of the module until (1)
end-of-file or (2) the Begi nHeader comment of another module. Dynamic C compiles the
entire body of amodule if any of the namesin the key are referenced (used) anywhere in the appli-
cation. For thisreason, it is not wise to put many functions in one module regardless of whether
they are actually going to be used by the program.

To minimize waste, it is recommended that a module header contain only prototypesand ext er n
declarations. (Prototypes and ext er n declarations do not generate any code by themselves.)
Define code and data only in the body of amodule. That way, the compiler will generate code or
alocate data only if the moduleis used by the application program. Programmers who create their
own libraries must write modules following the guideline in this section. Remember that the
library must beincluded in LI B. DI R (or a user defined replacement for LI B. DI R) and a#use
directive for the library must be placed somewhere in the code.

It should be noted that there is no way to define file scope variables other than having afile consist
of asingle module (which would mean that all data and functions in the file would be compiled
whenever afunction specified in the header is compiled).

38 Dynamic C User’s Manual

Example

[*** Begi nHeader ticks */
extern unsi gned |ong ticks;
[*** EndHeader */
unsi gned | ong ticks;
[*** Begi nHeader Get Ticks */
unsi gned | ong Get Ticks();
[*** EndHeader */
unsi gned | ong Get Ticks(){

}

[*** Begi nHeader |nc_Ticks */
void Inc_Ticks(int i);
[*** EndHeader */
#asm
I nc_Ti cks::
or a
i pset 1
i pres
r et
#endasm

There are three modules defined in this code. Thefirst oneisresponsible for thevariablet i cks,
the second and third modules define functions Get _Ti cks() and | nc_Ti cks that access the
variable. Although | nc_Ti cks isan assembly language routine, it has a function prototypein
the module header, allowing the compiler to check calstoit.

If the application program calls| nc_Ti cks or Get _Ti cks() (or both), the module bodies

corresponding to the called routines will be compiled. The compilation of these routines further
triggers compilation of the module body correspondingtot i cks because the functions use the
variablet i cks.

Chapter 4: Language 39

4.23.4 Function Description Headers
Each user-callable function in a Z-World library has a descriptive header preceding the function to
describe the function. Function headers are extracted by Dynamic C to provide on-line help mes-

sages.
The header is a specially formatted comment, such as the following example.

/* START FUNCTIO\I DESCRI PTI O\l kkkkkhkkhkhhkkhkkhkhkkhkhkkkkhkhkkhkk*k

W | Oport <l O LI B>
SYNTAX: void WI Oport(int portaddr, int val ue);
DESCRI PTI ON:

Wites data to the specified I/O port.
PARAMETERL: portaddr - register address of the port.
PARAMETER2: value - data to be witten to the port.

RETURN VALUE: None
KEY WORDS: parallel port

SEE ALSO Rdl Opor't
END DESCRI PTI O\l ***********************************/

If thisformat is followed, user-created library functions will show up in the Function
L ookup/Insert facility. Note that these sections are scanned in only when Dynamic C starts.

4.24 Support Files

Dynamic C has severa support filesthat are necessary in building an application. These files are
listed below.

Table 4-5. Dynamic C Support Files

File Name Purpose of File

DCW CFG Contains configuration data for the target controller.

Contains prototypes, basic type definitions, #def i ne, and default modes

DC. HH for Dynamic C. Thisfile can be modified by the programmer.

Contains a set of #use directives for each control product that Z-World

DEFAULT. H ships. Thisfile can be modified.

Contains pathnames for all libraries that are to be known to Dynamic C.
The programmer can add to, or remove libraries from thislist. The factory
default isfor thisfile to contain al the libraries on the Dynamic C distribu-
tion disk. Any library that isto be used in a Dynamic C program must be
listedinthefile LI B. DI R, or another * . DI R file specified by the user.
(Starting with version Dynamic C 7.05, adifferent * . DI Rfile may be
specified by the user in the Compiler Options dialog to facilitate working
on multiple projects.)

LI B. DIR

These files hold the default compilation environment that is shipped from
the factory. DEFAULT. DCP may be modified, but not PROJECT. DCP.
See Chapter 16 for details on project files.

PRQJECT. DCP
DEFAULT. DCP

40 Dynamic C User’s Manual

Chapter 4: Language

41

42

Dynamic C User’s Manual

5. Multitasking with Dynamic C

A taskisan ordered list of operations to perform. In a multitasking environment, more than one
task (each representing a sequence of operations) can appear to executein parallel. Inredlity, a
single processor can only execute one instruction at atime. If an application has multiple tasks to
perform, multitasking software can usually take advantage of natural delaysin each task to
increase the overal performance of the system. Each task can do some of its work while the other
tasks are waiting for an event, or for something to do. In this way, the tasks execute almost in par-
alel.

There are two types of multitasking available for developing applications in Dynamic C: preemp-
tive and cooperative. In a cooperative multitasking environment, each well-behaved task voluntar-
ily gives up control when it is waiting, allowing other tasks to execute. Dynamic C has language
extensions, costatements and cofunctions, to support cooperative multitasking. Preemptive multi-
tasking is supported by the dlice statement, which allows a computation to be divided into small
dlices of afew milliseconds each, and by the uC/OS-11 real-time kernel.

5.1 Cooperative Multitasking

In the absence of a preemptive multitasking kernel or operating system, a programmer given a
real-time programming problem that involves running separate tasks on different time scales will
often come up with a solution that can be described as a big loop driving state machines.

\

Top of loop

v

State machine

¢

State machine

¢

State machine
|

Figure 1. Big Loop

Chapter 5: Multitasking with Dynamic C 43

This means that the program consists of alarge, endless loop—a big loop. Within the loop, tasks
are accomplished by small fragments of aprogram that cycle through a series of states. The stateis
typically encoded as numerical valuesin C variables.

State machines can become quite complicated, involving alarge number of state variablesand a
large number of states. The advantage of the state machine isthat it avoids busy waiting, whichis
waiting in aloop until acondition is satisfied. In this way, one big loop can service alarge number
of state machines, each performing its own task, and no one is busy waiting.

The cooperative multitasking language extensions added to Dynamic C use the big loop and state
machine concept, but C code is used to implement the state machine rather than C variables. The
state of atask is remembered by a statement pointer that records the place where execution of the
block of statements has been paused to wait for an event.

To multitask using Dynamic C language extensions, most application programs will have some
flavor of this simple structure:

mai n() {
int i;
while(1) { /1 endlessloop for multitasking framework
costate { /] task1
. /' body of costatement
}
costate { /] task?2
/| body of costatement
}
}
}

44 Dynamic C User’s Manual

5.2 A Real-Time Problem

The following sequence of eventsis common in real-time programming.
Start:

Wait for a pushbutton to be pressed.

Turn on the first device.

Wait 60 seconds.

Turn on the second device.

Wait 60 seconds.

Turn off both devices.

Go back to the start.

N o s~ wDd R

The most rudimentary way to perform this function isto idle (“busy wait”) in atight loop at each

of the steps where waiting is specified. But most of the computer time will used waiting for the

task, leaving no execution time for other tasks.

5.2.1 Solving the Real-Time Problem with a State Machine
Hereis what a state machine solution might look like.

tasklstate = 1; /] initialization:
whi |l e(1){
switch(tasklstate){
case 1:
i f(buttonpushed()){
t asklst at e=2; t ur nondevi cel();
timerl = tine; [timeincremented every second
}
br eak;
case 2:
if((time-tinmerl) >= 60L){
t asklst at e=3; t ur nondevi ce2();
timer2=tine;
}
br eak;
case 3:
if((time-tinmer2) >= 60L){
t asklst at e=1; t ur nof f devi cel() ;
t ur nof f devi ce2() ;
}
br eak;

}

[* other tasks or state machines */

Chapter 5: Multitasking with Dynamic C

45

If there are other tasks to be run, this control problem can be solved better by creating aloop that
processes a number of tasks. Now each task can relinquish control when it is waiting, thereby
allowing other tasks to proceed. Each task then doesits work in the idle time of the other tasks.

5.3 Costatements

Costatements are Dynamic C extensions to the C language which simplify implementation of state
machines. Costatements are cooperative because their execution can be voluntarily suspended and
later resumed. The body of a costatement is an ordered list of operationsto perform -- atask. Each
costatement hasits own statement pointer to keep track of which item on thelist will be performed
when the costatement is given a chance to run. As part of the startup initialization, the pointer is
set to point to the first statement of the costatement.

The statement pointer is effectively a state variable for the costatement or cofunction. It specifies
the statement where execution is to begin when the program execution thread hits the start of the
costatement.

All costatements in the program, except those that use pointers as their names, are initialized when
thefunction chain _GLOBAL_| NI T iscalled. GLOBAL_I NI T iscalled automatically by pr e-

mai n before mai n iscaled. Caling _GLOBAL_| NI T from an application program will cause
reinitialization of anything that wasinitialized in the call made by pr emai n.

5.3.1 Solving the Real-Time Problem with Costatements
The Dynamic C costatement provides an easier way to control the tasks. It isrelatively easy to add
atask that checks for the use of an emergency stop button and then behaves accordingly.

whi | e(1) {
costate{ ... } /] task 1
cost at e{ /] task 2

wai t for(buttonpushed());
t ur nondevi cel();

wai tfor(Del aySec(60L));
t ur nondevi ce2();

wai tfor(Del aySec(60L));
t ur nof f devi cel();

t ur nof f devi ce2() ;

}
costate{ ... } /] taskn
}

The solution is elegant and simple. Note that the second costatement looks much like the original
description of the problem. All the branching, nesting and variables within the task are hidden in
the implementation of the costatement and itswai t f or statements.

46 Dynamic C User’s Manual

5.3.2 Costatement Syntax

costate [nanme [state]] { [statenment | yield; | abort; |
wai tfor(expression);] . . .}

The keyword cost at e identifies the statements enclosed in the curly braces that follow as a cos-
tatement.

name can be one of the following:

* A valid C name not previously used. Thisresultsin the creation of a structure of type
CoDat a of the same name.

* Thename of alocal or global CoDat a structure that has already been defined
* A pointer to an existing structure of type CoDat a

Costatements can be named or unnamed. If name is absent the compiler creates an * unnamed”
structure of type CoDat a for the costatement.

st at e can be one of the following:
* always_on

The costatement is always active. This means the costatement will execute every timeit is
encountered in the execution thread, unlessit is made inactive by CoPause() . It may be
made active again by CoResune() .

* init_on

The costatement isinitially active and will automatically execute thefirst timeitis
encountered in the execution thread. The costatement becomes inactive after it completes
(or aborts). The costatement can be made inactive by CoPause() .

If st at e isabsent, anamed costatement isinitialized in apaused i ni t _on condition. This
means that the costatement will not execute until CoBegi n() or CoResune() isexecuted. It
will then execute once and become inactive again.

Unnamed costatements are al ways_on. You cannot specify i ni t _on without specifying
nanme.

Chapter 5: Multitasking with Dynamic C 47

5.3.3 Control Statements

wai t f or (expression);
The keyword wai t f or indicates aspecial wai t f or statement and not a function call. The
expression is computed each timewai t f or isexecuted. If true (non-zero), execution pro-
ceeds to the next statement, otherwise ajump is made to the closing brace of the costatement or
cofunction, with the statement pointer continuing to point to thewai t f or statement. Any
valid C function that returns avalue can be used in awai t f or statement.

yield
Theyi el d statement makes an unconditiona exit from a costatement or a cofunction. Execu-

tion continues at the statement following yi el d the next time the costatement or cofunctionis
encountered.

abort

Theabort statement causes the costatement or cofunction to terminate execution. If acos-
tatement isal ways_on, the next time the program reachesit, it will restart from the top. If
the costatement isnot al ways_on, it becomes inactive and will not execute again until
turned on by some other software.

A costatement can have as many C statements, including abort ,yi el d,andwai t f or state-
ments, as needed. Costatements can be nested.

5.4 Advanced Costatement Topics

Each costatement has a structure of type CoDat a. This structure contains state and timing infor-
mation. It aso contains the address inside the costatement that will execute the next time the pro-
gram thread reaches the costatement. A value of zero in the address |ocation indicates the
beginning of the costatement.

5.4.1 The CoData Structure
typedef struct {
char CSSt at e;
unsigned int |astl ocADDR;
char | astl| ocCBR;

char ChkSum

char firsttine;

uni on{
unsi gned | ong ul;
struct {

unsigned int ul;
unsigned int u2;
} us;
} content;
char ChkSun?;
} CobDat a;

48 Dynamic C User’s Manual

5.4.2 CoData Fields

CSState

The CSSt at e field contains two flags, STOPPED and | NI T. The possible flag values and their
meaning are in the table bel ow.

Table 5-6. Flags that specify the run status of a costatement

STOPPED INIT State of Costatement
Done, or has been initialized to run, but set to
yes yes o
inactive. Set by CoReset () .
yes no Paused, waiting to resume. Set by CoPause() .
no yes Initialized to run. Set by CoBegi n() .
Running. CoResune() will return the flagsto
no no)
this state.

The functioni sCoDone() returnstrue (1) if both the STOPPED and | NI T flags are set.
The functioni sCoRunni ng() returnstrue (1) if the STOPPED flag is not set.

The CSSt at e field appliesonly if the costatement has aname The CSSt at e flag hasno
meaning for unnamed costatements or cofunctions.

Last Location

Thetwofields| ast | ocADDRand | ast | oc CBR represent the 24-bit address of the location at
which to resume execution of the costatement. If | ast | oc ADDR is zero (asit iswhen initial-
ized), the costatement executes from the beginning, subject to the CSSt at e flag. If | ast -

| oc ADDR is honzero, the costatement resumes at the 24-bit address represented by

| ast| ocADDRand | ast | ocCBR.

These fields are zeroed whenever one of the following is true:
* theCoDat a structureisinitialized by acall to_ GLOBAL_| NI T, CoBegi n or CoReset
* the costatement is executed to completion
* the costatement is aborted.

Check Sum

The Chk Sum field is a one-byte check sum of the address. (It is the exclusive-or result of the
bytesinl ast | ocADDR and| ast | ocCBR.) If Chk Sumis not consistent with the address, the
program will generate arun-time error and reset. The check sum is maintained automatically. It is
initializedby GLOBAL | NI T, CoBegi n and CoReset .

First Time

Thefirsttimefiddisaflagthatisused by awai t f or, orwai t f or done statement. It is
set to 1 before the statement is evaluated thefirst time. Thisaidsin calculating elapsed time for the
functions Del ayMs, Del aySec, Del ayTi cks, I nterval Ti ck, I nt erval Ms, and

I nt erval Sec.

Chapter 5: Multitasking with Dynamic C 49

Content
Thecont ent field (aunion) is used by the costatement or cofunction delay routinesto store a
delay count.

Check Sum 2
The ChkSun?® field is currently unused.

5.4.3 Pointer to CoData Structure
To obtain a pointer to a named costatement’s CoData structure, do the following:

CoDat a cost 1; /| alocate memory for aCoDat a struct
CoDat a *pcost 1;

pcost1l = &cost1; /' get pointer to the CoDat a struct

CoBegi n (pcostl); /'] initialize CoDat a struct

costate pcostl { /| pcost 1 isthe costatement name and also a

/1 pointer to its CoDat a structure.
}

5.4.4 Functions for Use With Named Costatements
For detailed function descriptions, please see the Dynamic C Function Reference Manual or select
Function Lookup/Insert from Dynamic C's Help menu (keyboard shortcut is <Ctrl-H>).

All of these functions arein COSTATE. LI B. Each one takes a pointer to a CoDat a struct asits
only parameter.

i sCoDone

i nt i sCobDone(CoDat a* p);

Thisfunction returnstrue if the costatement pointed to by p has completed.

I sCoRunni ng

i nt i sCoRunni ng(CoDat a* p);

Thisfunction returnstrueif the costatement pointed to by p will run if given a continua
tion call.

CoBegi n
voi d CoBegi n(CoDat a* p);

This function initializes a costatement’s CoDat a structure so that the costatement will
be executed next timeit is encountered.

50 Dynamic C User’s Manual

CoPause

voi d CoPause(CoDat a* p);

Thisfunction will change CoDat a so that the associated costatement is paused. When
acostatement is called in this state it does an implicit yield until it isreleased by acall
from CoResume or CoBegi n.

CoReset

voi d CoReset (CoDat a* p);

Thisfunction initializes a costatement’s CoData structure so that the costatement will
not be executed the next time it is encountered (unless the costatement is declared
al ways_on.)

CoResune

voi d CoResune(CoDat a* p);

Thisfunction unpauses a paused costatement. The costatement will resumethe next time
itiscalled.

5.4.5 Firsttime Functions
In afunction definition, the keyword f i r st t i me causes the function to have an implicit first
parameter: a pointer to the CoData structure of the costatement that callsit.

Thefollowingfirstti me functionsare defined in COSTATE. LI B. For more information see
the Dynamic C Function Reference Manual. These functions should be called insideawai t f or
statement because they do not yield while waiting for the desired time to elapse, but instead return
0 to indicate that the desired time has not yet elapsed.

Del ayMs I nterval Ms
Del aySec I nt erval Sec
Del ayTi cks I nterval Ti ck

User-defined f i r st t i me functions are allowed.

5.4.6 Shared Global Variables

Thevariables SEC Tl MER, MS_TI MERand Tl CK_TI MER are shared, making them atomic
when being updated. They are defined and initialized in VDRI VER. LI B. They are updated by the
periodic interrupt and areused by f i r st t i me functions. They should not be modified by an
application program. Costatements and cofunctions depend on these timer variables being valid
foruseinwai t f or statementsthat call functions that read them. E.g. the following statement
will access SEC_TI MER.

wai t f or (Del aySec(3));

Chapter 5: Multitasking with Dynamic C 51

5.5 Cofunctions

Cofunctions, like costatements, are used to implement cooperative multitasking. But, unlike cos-
tatements, they have aform similar to functions in that arguments can be passed to them and a
value can be returned (but not a structure).

The default storage class for a cofunction’svariablesis| nst ance. Ani nst ance variable
behaveslikeast at i ¢ variable, i.e,, its value persists between function calls. Each instance of an
Indexed Cofunction hasits own set of instance variables. The compiler directive#cl ass does
not change the default storage class for a cofunction’s variables.

All cofunctionsin the program are initialized when the function chain _ GLOBAL _| NI T iscalled.
Thiscal ismade by pr emai n.

5.5.1 Syntax

A cofunction definition is similar to the definition of a C function.
cofunc| scofunc type [nane][[din]]([type argl, ..., type argN])
{ [statenent | yield; | abort; | waitfor(expression);] ... }

cof unc, scofunc

The keywords cof unc or scof unc (asingle-user cofunction) identify the statements
enclosed in curly braces that follow as a cofunction.

type
Whichever keyword (cof unc or scof unc) isusedisfollowed by the data type returned
(voi d,i nt, etc.).

namne

A name can be any valid C name not previously used. Thisresultsin the creation of a structure
of type CoDat a of the same name.

dim
The cofunction nanme may be followed by a dimension if an indexed cofunction is being
defined.

cofunction argunents (argl, . . ., argN)
As with other Dynamic C functions, cofunction arguments are passed by value.

cof uncti on body

A cofunction can have as many C statements, including abort ,yi el d,wai t f or, and
wai t f or done statements, as needed. Cofunctions can contain calls to other cofunctions.

52 Dynamic C User’s Manual

5.5.2 Calling Restrictions
You cannot assign a cofunction to afunction pointer then call it viathe pointer.

Cofunctions are called using awai t f or done statement. Cofunctions and thewai t f or done
statement may return an argument value as in the following example.

nt j,k,x,y, z;
wai t f ordone x = Cof uncl;
wai t f ordone{ y=Cofunc2(...); z=Cofunc3(...); }

i
j
k

The keyword wai t f or done (can be abbreviated to the keyword wf d) must be inside a costate-
ment or cofunction. Since a cofunction must be called from inside awf d statement, ultimately a
wf d statement must be inside a costatement.

If only one cofunction isbeing called by wf d the curly braces are not needed.

Thewf d statement executes cofunctionsand f i r st t i me functions. When al the cofunctions
andfirsttime functionslisted inthewf d statement are complete (or one of them aborts), exe-
cution proceeds to the statement following wf d. Otherwise ajump is made to the ending brace of
the costatement or cofunction where the wf d statement appears and when the execution thread
comes around again control is given back to wf d.

In the example above, x, y and z must be set by r et ur n statements inside the called cofunc-
tions. Executing a return statement in a cofunction has the same effect as executing the end brace.

In the example above, the variable k is a status variable that is set according to the following
scheme. If no abort has taken place in any cofunction, k issetto 1, 2, ..., nto indicate which
cofunction inside the braces finished executing last. If an abort takes place, k issetto -1, -2, ..., -n
to indicate which cofunction caused the abort.

5.5.2.1 Using the IX Register
Functions called from within a cofunction may use the IX register if they restore it before the
cofunction is exited, which includes an exit viaan incompletewai t f or done statement.

In the case of an application that uses the #useix directive, the IX register will be corrupted when
any stack-variable using function is called from within a cofunction, or if a stack-variable using
function contains a call to a cofunction.

5.5.3 CoData Structure
The CoData structure discussed in Section 5.4.1 applies to cofunctions; each cofunction has an
associated CoData structure.

5.5.4 Firsttime Functions

Thefirstti me functionsdiscussed in “Firsttime Functions’ on page 51 can also be used inside
cofunctions. They should be called inside awai t f or statement. If you call these functions from
inside awf d statement, no compiler error is generated, but, since these delay functions do not
yield while waiting for the desired time to elapse, but instead return 0 to indicate that the desired
time has not yet elapsed, the wf d statement will consider areturn value to be completion of the
firstti me functionand control will passto the statement following the wf d.

Chapter 5: Multitasking with Dynamic C 53

5.5.5 Types of Cofunctions
There are three types of cofunctions: simple, indexed and single-user. Which one to use depends
on the problem that is being solved. A single-user, indexed cofunction is not valid.

5.5.5.1 Simple Cofunction
A simple cofunction has only oneinstance and is similar to aregular function with a costate taking
up most of the function’s body.

5.5.5.2 Indexed Cofunction
Anindexed cofunction allows the body of a cofunction to be called more than once with different
parameters and local variables. The parameters and the local variable that are not declared static
have a special lifetime that begins at afirst time call of a cofunction instance and ends when the
last curly brace of the cofunction is reached or when an abort orr et ur n isencountered.

The indexed cofunction call is a cross between an array access and anormal function call, where
the array access selects the specific instance to be run.

Typicaly thistype of cofunction isused in a situation where N identical units need to be con-
trolled by the same algorithm. For example, a program to control the door latches in abuilding
could use indexed cofunctions. The same cofunction code would read the key pad at each door,
compare the passcode to the approved list, and operate the door latch. If there are 25 doorsin the
building, then the indexed cofunction would use an index ranging from 0 to 24 to keep track of
which door is currently being tested. An indexed cofunction has an index similar to an array index.

wai t fordone{ | Cofunc[n](...); ICofunc2[m(...); }

The value between the square brackets must be positive and less than the maximum number of
instances for that cofunction. There is no runtime checking on the instance selected, so, like
arrays, the programmer is responsible for keeping this value in the proper range.

5.5.5.2.1 Indexed Cofunction Restrictions
Costatements are not supported inside indexed cofunctions. Single user cofunctions can not be
indexed.

5.5.5.3 Single User Cofunction
Since cofunctions are executing in parallel, the same cofunction normally cannot be called at the
same time from two places in the same big loop. For example, the following statement containing
two simple cofunctions will generally cause afata error.

wai t f ordone{ cof unc_naneA(); cofunc_nanmeA();}

Thisis because the same cofunction is being called from the second location after it has already
started, but not completed, execution for the call from the first location. The cofunction is a state
machine and it has an internal statement pointer that cannot point to two statements at the same
time.

54 Dynamic C User’s Manual

Single-user cofunctions can be used instead. They can be called simultaneously because the sec-
ond and additional callers are made to wait until the first call completes. The following statement,
which contains two single-user cofunctions, is okay.

wai t f ordone(scofunc_nanmeA(); scofunc_nanmeA();}

loopinit()
This function should be called in the beginning of a program that uses single-user cofunctions. It
initializes internal data structuresthat are used by | oophead() .

loophead()
This function should be called within the "big loop" in your program. It is necessary for proper
single-user cofunction abandonment handling.

Example
/| echoes characters
mai n() {
int c;
ser Xopen(19200) ;
| oopinit();
while (1) {

| oophead() ;
wd ¢ = cof _serAgetc();
wfd cof _serAputc(c);

}

ser Acl ose() ;

5.5.6 Types of Cofunction Calls
A wf d statement makes one of three types of callsto a cofunction.

5.5.6.1 First Time Call
A first time call happens when awf d statement calls a cofunction for the first timein that state-
ment. After the first time, only the original wWf d statement can give this cofunction instance con-
tinuation calls until either the instance is complete or until the instance is given ancther first time
call from adifferent statement.

5.5.6.2 Continuation Call
A continuation call iswhen a cofunction that has previously yielded is given another chance to run
by the enclosing wf d statement. These statements can only call the cofunction if it was the last
statement to give the cofunction afirst time call or a continuation call.

5.5.6.3 Terminal Call
A terminal call ends with a cofunction returning to itswf d statement without yielding to another
cofunction. This can happen when it reaches the end of the cofunction and does an implicit return,
when the cofunction does an explicit return, or when the cofunction aborts.

Chapter 5: Multitasking with Dynamic C 55

5.5.6.4 Lifetime of a Cofunction Instance
This stretches from afirst time call until its terminal call or until its next first time call.

5.5.7 Special Code Blocks
The following special code blocks can appear inside a cofunction.

everytime { statements }
Thismust be the first statement in the cofunction. It will be executed every time program exe-
cution passes to the cofunction no matter where the statement pointer is pointing. After the
everyti me statements are executed, control will pass to the statement pointed to by the
cofunction’s statement pointer.

abandon { statements }

This keyword appliesto single-user cofunctions only and must be the first statement in the
body of the cofunction. The statements inside the curly braces will be executed if the single-
user cofunction isforcibly abandoned. A call tol oophead() (definedin COFUNC. LI B) is
necessary for abandon statements to execute.

Example
SAMPLES/ COFUNC/ COFABAND.C illustrates the use of abandon.

scof unc SCof Test (int i){
abandon {
printf("Cof Test was abandoned\n");

}
whi | e(i>0) {
printf("Cof Test(%d)\n",i);
yi el d;
}
}
mai n() {
int Xx;
for (x=0; x<=10; x++) {
| oophead() ;
i f(x<5) {
costate {
wfd SCof Test (1); /1 first caler
}
}
costate {
wf d SCof Test (2); /' second caller
}
}
}

In this example two tasksin mai n are requesting accessto SCof Test . Thefirst request is hon-
ored and the second request is held. When | oophead notices that thefirst caller is not being
called each time around the loop, it cancel sthe request, calls the abandonment code and allowsthe
second caller in.

56 Dynamic C User’s Manual

5.5.8 Solving the Real-Time Problem with Cofunctions

for(;;){

cost at e{ /] task 1
wfd emer gencystop();
for (i=0; i<MAX DEVICES; i ++)

wf d turnoffdevice(i);
}

cost at e{ [l task?2
wfd x = buttonpushed();
wfd turnondevi ce(x);
wai tfor(Del aySec(60L));
wfd turnoffdevice(x);

}

costate{ ... } /] taskn
}

Cofunctions, with their ability to receive arguments and return values, provide more flexibility and
specificity than our previous solutions. Using cofunctions, new machines can be added with only
trivial code changes. Making but t onpushed() acofunction allows more specificity because
the value returned can indicate a particular button in an array of buttons. Then that value can be
passed as an argument to the cofunctionst ur nondevi ce andt ur nof f devi ce.

5.6 Patterns of Cooperative Multitasking

Sometimes atask may be something that has a beginning and an end. For example, a cofunction to
transmit a string of charactersviathe seria port begins when the cofunction isfirst called, and
continues during successive calls as control cycles around the big loop. The end occurs after the
last character has been sent and thewai t f or done condition is satisified. Thistype of acal toa
cofunctions might look like this:

wai t f ordone{ SendSerial ("string of characters"); }
[next statement |

The next statement will execute after the last character is sent.

Chapter 5: Multitasking with Dynamic C 57

Some tasks may not have an end. They are endless |oops. For example, atask to control a servo
loop may run continuously to regulate the temperature in an oven. If there are a anumber of tasks
that need to run continuously, then they can be called using asinglewai t f or done statement as
shown below.

costate {
wai t f ordone { Task1(); Task2(); Task3(); Task4(); }
[tocomehereisaneror]

}

Each task will receive some execution time and, assuming none of the tasks is completed, they
will continue to be called. If one of the cofunctions should abort, then thewai t f or done state-
ment will abort, and corrective action can be taken.

5.7 Timing Considerations

In most instances, costatements and cofunctions are grouped as periodically executed tasks. They
can be part of areal-time task, which executes every n milliseconds as shown below using costate-
ments.

lentel' every n milliseconds

costate{ ... }
costate{ ... }
costate{ ... }

costate{ ... }

| exit

Figure 2. Costatement as Part of Real-Time Task

If all goeswell, the first costatement will be executed at the periodic rate. The second costatement
will, however, be delayed by the first costatement. The third will be delayed by the second, and so
on. The frequency of the routine and the time it takes to execute comprise the granularity of the
routine.

If the routine executes every 25 milliseconds and the entire group of costatements executesin 5 to
10 milliseconds, then the granularity is 30 to 35 milliseconds. Therefore, the delay between the
occurrence of awai t f or event and the statement following thewai t f or can be as much asthe
granularity, 30 to 35 ms. The routine may also be interrupted by higher priority tasks or interrupt
routines, increasing the variation in delay.

The consequences of such variationsin the time between steps depends on the program’s objec-
tive. Suppose that the typical delay between an event and the controller’s response to the event is

58 Dynamic C User’s Manual

25 ms, but under unusual circumstances the delay may reach 50 ms. An occasional sow response
may have no consequences whatsoever. If adelay is added between the steps of a process where
the time scale is measured in seconds, then the result may be avery dight reduction in throughput.

If thereis a delay between sensing a defective product on a moving belt and activating the reject
solenoid that pushes the object into the reject bin, the delay could be serious. If acritical delay
cannot exceed 40 ms, then a system will sometimes fail if its worst-case delay is 50 ms.

5.7.1 waitfor Accuracy Limits

If anidleloop isused to implement adelay, the processor continues to execute statements almost
immediately (within nanoseconds) after the delay has expired. In other words, idle loops give pre-
cise delays. Such precision cannot be achieved withwai t f or delays.

A particular application may not need very precise delay timing. Suppose the application requires
a 60-second delay with only 100 ms of delay accuracy; that is, an actual delay of 60.1 secondsis
considered acceptable. Then, if the processor guarantees to check the delay every 50 ms, the delay
would be at most 60.05 seconds, and the accuracy requirement is satisfied.

5.8 Overview of Preemptive Multitasking

In a preemptive multitasking environment, tasks do not voluntarily relinquish control. Tasks are
scheduled to run by priority level and/or by being given a certain amount of time.

There are two ways to accomplish preemptive multitasking using Dynamic C. Thefirst way is
HC/OS-1, areal-time, preemptive kernel that runs on the Rabbit microprocessor and is fully sup-
ported by Dynamic C. For more information see Chapter 18, “uC/OS-11.” The other way isto use
sl i ce statements.

5.9 Slice Statements

Thesl i ce statement, based on the costatement language construct, allows the programmer to
run ablock of code for a specific amount of time.

5.9.1 Syntax

slice ([context_buffer,] context_buffer_size, tine_slice)
[nane] {[statenent|yi el d;|abort;|waitfor(expression);]}

context buffer_size

Thisvalue must evaluate to a constant integer. The value specifies the number of bytes for the
buffer cont ext _buf f er. It needsto be large enough for worst-case stack usage by the
user program and interrupt routines.

tinme_slice
The amount of timeinticks for the diceto run. Onetick = 1/1024 second.

Chapter 5: Multitasking with Dynamic C 59

nane

When defining anamed sl i ce statement, you supply a context buffer as the first argument.
When you define an unnamed sl i ce statement, this structure is allocated by the compiler.

[statement | yield; | abort; | waitfor(expression);]
The body of asl i ce statement may contain:
* Regular C statements
* yield statementsto make an unconditional exit.
* abort statementsto make an execution jump to the very end of the statement.

* wai tfor statementsto suspend progress of the dice statement pending some condition
indicated by the expression.

5.9.2 Usage

Thesl i ce statement can run both cooperatively and preemptively al in the same framework. A
dlice statements, like costatements and cofunctions, can suspend its execution with an abor t ,

yi el d,orwaitfor aswith costatements and cofunctions, or with an implicityi el d deter-
mined by thet i me_sl i ce parameter that was passed to it.

A routine called from the periodic interrupt forms the basis for scheduling slice statements. It
counts down the ticks and changesthe sl i ce statement’s context.

5.9.3 Restrictions

Sinceasl i ce statement hasits own stack, local auto variables and parameters cannot be
accessed while in the context of asl i ce statement. Any functions called from the slice statement
function normally.

Only onesl i ce statement can be active at any time, which eliminates the possibility of nesting
sl i ce statementsor using asl i ce statement inside afunction that is either directly or indi-
rectly called fromasl i ce statement. The only methods supported for leaving asl i ce state-
ment are completely executing the last statement inthe sl i ce, or executing an abort ,yi el d
orwai t f or statement.

Ther et urn, conti nue, br eak, and got o statements are not supported.
Slice statements cannot be used with uC/OS-I1 or DCRTCP. LI B.

60 Dynamic C User’s Manual

5.9.4 Slice Data Structure

Internally, the sl i ce statement uses two structures to operate. When defining anamed sl i ce
statement, you supply a context buffer asthe first argument. When you define an unnamed sl i ce
statement, this structure is allocated by the compiler. Internally, the context buffer is represented
by the Sl i ceBuf f er structure below.

struct SliceData {
int tine_out;
voi d* ny_sp;
voi d* cal |l er _sp;
CoDat a codat a;
}
struct SliceBuffer {
SliceData slice_data;
char stack[]; /I fillsrest of the slice buffer

b

5.9.5 Slice Internals

When asl i ce statement is given control, it saves the current context and switches to a context
associated with the sl i ce statement. After that, the driving force behind the sl i ce statement is
the timer interrupt. Each time the timer interrupt is called, it checksto seeif asl i ce statementis
active. If asl i ce statement is active, the timer interrupt decrementsthet i me_out fieldinthe
slice’sSli ceDat a. When thefield is decremented to zero, the timer interrupt saves the

sl i ce statement’s context into the Sl i ceBuf f er and restores the previous context. Once the
timer interrupt completes, the flow of control is passed to the statement directly following the

sl i ce statement. A similar set of events takes place whenthe sl i ce statement does an explicit
yi el d/abort /wai t f or.

Chapter 5: Multitasking with Dynamic C 61

5.9.5.1 Example 1

Two sl i ce statements and a costatement will appear to run in paralel. Each block will run inde-
pendently, but the sl i ce statement blocks will suspend their operation after 20 ticks for
slice_aand40ticksfor sl i ce_b. Costate awill not release control until it either explicitly
yields, aborts, or completes. In contrast, sl i ce_a will run for at most 20 ticks, thensl i ce_b
will begin running. Costate awill get its next opportunity to run about 60 ticks after it relinquishes
control.

main () {
int X, y, z;

for (;:) |
costate a {
}
slice(500, 20) { /1 slice_a
}
slice(500, 40) { /Il slice b
\

}

5.9.5.2 Example 2

This code guarantees that the first dice startson TI CK_TI MER evenly divisible by 80 and the
second startson TI CK_TI MER evenly divisible by 105.

mai n() {
for(;;) {
costate {
slice(500,20) { /1 slice_a
wai t for (I nterval Ti ck(80));
}
slice(500,50) { Il slice b
wai tfor(lnterval Ti ck(105);
}
}
}
}

62 Dynamic C User’s Manual

5.9.5.3 Example 3
This approach is more complicated, but will allow you to spend the idle time doing a low-priority
background task.

mai n() {
int tinme_|left;
| ong start_timne;
for(;;) {
start _time = TI CK Tl MER;
slice(500,20) { /1 slice_a
wai tfor(lnterval Ti ck(80));

}
slice(500,50) { [l slice b

wai t for (I nterval Ti ck(105));

}
time_left = 75-(TICK TI MER-start _tine);
if(time_left>0) {

slice(500,75-(TICK TIMER-start tinme)) { // slice c

}

5.10 Summary

Although multitasking may actually decrease processor throughput slightly, it is an important con-
cept. A controller is often connected to more than one external device. A multitasking approach
makes it possible to write a program controlling multiple devices without having to think about all
the devices at the same time. In other words, multitasking is an easier way to think about the sys-
tem.

Chapter 5: Multitasking with Dynamic C 63

64

Dynamic C User’s Manual

6. The Virtual Driver

Virtual Driver is the name given to some initialization services and a group of services performed
by a periodic interrupt. These services are:

Initialization Services

e Cal _GLOBAL_I NI T()
e [nitialize the global timer variables
e Start the Virtual Driver periodic interrupt

Periodic Interrupt Services
* Decrement software (virtual) watchdog timers
* Hitting the hardware watchdog timer
* Increment the global timer variables
* DriveuC/OS-II preemptive multitasking
* Drive dice statement preemptive multitasking

6.1 Default Operation

The user should be aware that by default the Virtual Driver starts and runsin a Dynamic C pro-
gram without the user doing anything. This happens because before mai n() iscalled, afunction
caled pr emai n() iscaled by the Rabbit kernel (BIOS) that actually callsnmai n() . Before
premai n() calsmai n(), it calsafunctionnamed Vdl nit () that performstheinitializa-
tion services, including starting the periodic interrupt. If the user were to disable the Virtual Driver
by commenting out thecall toVdl ni t () inpr enmai n() , then none of the services performed
by the periodic interrupt would be available. Unless the Virtual Driver isincompatible with some
very tight timing requirements of a program and none of the services performed by the Virtua
Driver are needed, it is recommended that the user not disable it.

6.2 Calling _GLOBAL_INIT()

Vdl nit () cals_GLOBAL_I NI T() whichrunsall #GLOBAL_I NI T sectionsin a program.
_GLOBAL_I NI T() asoinitiaizesall of the CoData structures needed by costatements and
cofunctions. If VdI ni t () isnot called, users could still use costatements and cofunctions if the
call tovdl ni t () wasreplaced by acal to_ GLOBAL | NI T(), but the Del aySec() and
Del ayMs () functions often used with costatements and cofunctionsinwai t f or statements
would not work because those functions depend on timer variables which are maintained by the
periodic interrupt.

Chapter 6: The Virtual Driver 65

6.3 Global Timer Variables

SEC TI MER, MS_TI MERand TI CK_TI MER are global variables defined as shar ed
unsi gned | ong. These variables should never be changed by an application program. Among
other things, the TCP/IP stack depends on the validity of the timer variables.

Oninitialization, SEC_TI MER is synchronized with the real-time clock. The date and time can be
accessed more quickly by reading SEC_TI MER than by reading the real-time clock.

The periodic interrupt updates SEC_ Tl MER every second, MS_TI MER every millisecond, and

Tl CK_TI MER 1024 times per second (the frequency of the periodic interrupt). These variables
areused by the Del ay Sec, Del ayMs and Del ayTi cks functions, but are aso convenient for
application programs to use for timing purposes. The following sample shows the use of

MS_TI MER to measure the execution time in microseconds of a Dynamic C integer add. The
work isdoneinanodebug function so that debugging does not affect timing. For more informa-
tion on the nodebug keyword, please see “nodebug” on page 149.

#define N 10000
main(){ timeit(); }
nodebug tinmeit(){
unsi gned |long int TO;
float T2, T1;
int x,y;
int i;
TO = MS_TI MER;
for(i=0;i<Ni++) { }
/1 T1 givesempty loop time
T1=(MS_TI MER- TO) ;
TO = MS_TI MER;
for(i=0;i<N;i++){ x+y;}
/| T2 givestest code execution time
T2=(M5_TI MER- TO) ;

/| subtract empty loop time and convert to time for single pass
T2=(T2-T1)/ (float)N;

/1 multiply by 1000 to convert ms. to us.
printf("time to execute test code = % us\n", T2*1000. 0) ;

66 Dynamic C User’s Manual

6.4 Watchdog Timers

Watchdog timers limit the amount of time your system will be in an unknown state.

6.4.1 Hardware Watchdog
The Rabbit CPU has one built-in hardware watchdog timer (WDT). The Virtual Driver hits this
watchdog periodically. The following code fragment could be used to disable this WDT:

#asm
I d a, 0x51
ioi Id (WTTR), a
I d a, 0x54
ioi Id (WTTR), a
#endasm
However, it is recommended that the watchdog not be disabled. This prevents the target from
entering an endless loop in software due to coding errors or hardware problems. If the Virtual
Driver is not used, the user code should periodically call hi t wd() .

When debugging a program, if the program is stopped at a breakpoint because the breakpoint was
explicitly set, or because the user is single stepping, then the debug kernd hits the hardware
watchdog periodically.

6.4.2 Virtual Watchdogs

There are 10 virtual WDTs available; they are maintained by the Virtual Driver. Virtual watch-
dogs, like the hardware watchdog, limit the amount of time a system isin an unknown state. They
also narrow down the problem areato assist in debugging.

Thefunction VdGet Fr eeW count) allocates and initializes a virtual watchdog. The return
value of thisfunction isthe ID of the virtua watchdog. If an attempt is made to allocate more than
10 virtual WDTSs, afatal error occurs. In debug mode, this fatal error will cause the program to
return with error code 250. The default run-time error behavior isto reset the board.

The ID returned by VdGet Fr eeWis used as the argument when calling VdHi t Wi(| D) or
VdRel easeWd(| D) to hit or deallocate a virtual watchdog

The Virtual Driver counts down watchdogs every 62.5 ms. If avirtual watchdog reaches 0, thisis
fatal error code 247. Once avirtual watchdog is active, it should be reset periodically with acall
to VdHi t Wi(| D) to prevent this. If count =2 for a particular WDT, then VdHi t WI(| D) will
need to be called within 62.5 msfor that WDT. If count = 255, VdHi t WI(| D) will need to be
called within 15.94 seconds.

The Virtual Driver does not count down any virtual WDTs if the user is debugging with Dynamic
C and stopped at a breakpaint.

6.5 Preemptive Multitasking Drivers

A simple scheduler for Dynamic C's preemptive glice statement is serviced by the Virtual Driver.
The scheduling for uC/OS-11 a more traditional full-featured real-time kernel, is also done by the
Virtual Driver.

These two scheduling methods are mutually exclusive—slicing and uC/OS-I1 must not be
used in the same program.

Chapter 6: The Virtual Driver 67

68

Dynamic C User’s Manual

7. The Slave Port Driver

The Rabbit 2000 and the Rabbit 3000 have hardware for a slave port, allowing a master controller
to read and write certain internal registers on the Rabbit. The library, S| aveport .| i b, imple-
ments a compl ete master/slave protocol for the Rabbit slave port. Sample libraries,

Master _serial.libandSp_stream | i b provideseria port and stream-based communi-
cation handlers using the slave port protocol.

7.1 Slave Port Driver Protocol

Given the variety of embedded system implementations, the protocol for the dave port driver was
designed to make the software for the master controller as simple as possible. Each interaction
between the master and the dave isinitiated by the master. The master has compl ete control over
when data transfers occur and can expect single, immediate responses from the slave.

7.1.1 Overview

1. Master writesto the command register after setting the address register and, optionally, the data
register. These registers are internal to the slave.

2. Slave reads the registers that were written by the master.

3. Slave writes to command response register after optionally setting the data register. This also
causes the SLAVEATTN line on the Rabbit slave to be pulled low.

4. Master reads response and dataregisters.
5. Master writes to the slave port status register to clear interrupt line from the slave.

7.1.2 Registers on the Slave
From the point of view of the master, the slave isan I/O device with four register addresses.

Table 7-7. The slave registers that are accessible by the master

Internal Address of
Rl Address of Rl F’rom Register Use
Name . Master’s
Register .
Perspective
SPDOR 0x20 0 Command and response regi ster
SPD1R 0x21 1 Address register
SPD2R 0x22 2 Optional dataregister
SPSR 0x23 3 Slave port status register. In this protocol the only bit
used is for checking the command response register.
Bit 3is set if the slave has written to SPDOR. It is
cleared when the master writes to SPSR, which also
deassertsthe SLAVEATTN line.

Chapter 7: The Slave Port Driver 69

Accessing the same address (0, 1 or 2) uses two different registers, depending on whether the
access was aread or awrite. In other words, when writing to address 0, the master accesses a dif-
ferent location than when the it reads address 0.

Table 7-8. What happens when the master accesses a slave register

Register .
Address Read Write
0 Gets command response from | Sends command to slave, triggers
dave dlave response
1 Not used Sets channel addressto send
command to
2 Getsreturned datafrom slave | Sets data byte to send to slave
Gets dave port status (see Clears slave response bit (see
3
below) below)

The status port is a bit field showing which slave port registers have been updated. For the pur-
poses of this protocol. Only bit 3 needsto be examined. After sending a command, the master can
check bit 3, which is set when the slave writes to the response register. At this point the response
and returned data are valid and should be read before sending a new command. Performing a
dummy write to the status register will clear this bit, so that it can be set by the next response.

Pin assignments for both the Rabbit 2000 and the Rabbit 3000 acting as a slave are as follows:

Table 7-9. Pin assignments for the Rabbit acting as a slave

Pin Function

PE7 /SCS chip select (active low to read/write slave port)

PB2 ISWR slave write (assert for write cycle)

PB3 /SRD daveread (assert for read cycle)

PB4 SAO low address bit for slave port registers

PB5 SA1 high address hit for dlave registers

PR /SLVATTN a_sserted by o ave when it responds to a command. cleared
by master write to status register

PAO-PAY slave port data bus

For more details and read/write signal timing see the Rabbit 2000 Microprocessor User’s Manual
or the Rabbit 3000 Microprocessor User’s Manual.

70 Dynamic C User’s Manual

7.1.3 Polling and Interrupts

Both the slave and the master can use interrupt or polling for the slave. The parameter passed to
SPi ni t () determineswhich oneis used. Ininterrupt mode, the developer can indicate whether
the handler functions for the channels are interruptible or non-interruptible.

7.1.4 Communication Channels

The Rabbit slave has 256 configurable channels available for communication. The developer must
provide a handler function for each channel that is used. Some basic handlers are available in the
library SI ave_Port . | i b. These handlers will be discussed later in this chapter.

When the slave port driver isinitialized, a callback table of handler functionsis set up. Handler
functions are added to the callback table by SPset Handl er () .

7.2 Functions
Sl ave_port. | i b providesthefollowing functions:

SPi ni t
int SPinit (int node);

DESCRIPTION

Thisfunctioninitializesthe dlave port driver. It setsup the callback tablesfor the different
channdls. Thedave port driver can berunin either pollingmodewhereSPt i ck () must
be called periodically, or ininterrupt mode where an ISR istriggered every time the mas-
ter sends acommand. There aretwo version of interrupt mode. In thefirst, interrupts are
reenabled while the handler function is executing. In the other, the handler function will
execute at the same interrupt priority asthe driver ISR.

PARAMETERS

node 0: For palling
1: For interrupt driven (interruptible handler functions)
2: For interrupt driven (non-interruptible handler functions)

RETURN VALUE

1: Success
0: Failure

LIBRARY
SLAVE_PORT. LI B

Chapter 7: The Slave Port Driver 71

SPset Handl er

i nt SPset Handl er (char address, int (*handler)(), void
*handl er _par ans) ;

DESCRIPTION

Thisfunction sets up a handler function to processincoming commands from the master
for a particular slave port address.

PARAMETERS
addr ess The8-bit slave port address of the channel that correspondsto
the handler function.
handl er Pointer to the handler function. Thisfunction must have apar-

ticular form, which is described by the function description
for MyHandl er () shown below. Setting this parameter to
NULL unloads the current handler.

handl er _par ans Pointer that will be saved and passed to the handler function
each timeit is called. This alows the handler function to be
parameterized for multiple cases.

RETURN VALUE

1: Success, the handler was set.
O: Failure.

LIBRARY
SLAVE_PORT. LI B

72 Dynamic C User’s Manual

My Handl er

int MyHandl er (char command, char data_in, void *paranms);

DESCRIPTION

Thisfunction is adevel oper-supplied function and can have any valid Dynamic C name.
Its purposeisto handleincoming commands from amaster to one of the 256 channelson
the dave port. A handler function must be supplied for every channel that is being used

on the dave port.
PARAMETERS
command Thisisthe received command byte.
data_in The optional data byte
par ans The optional parameters pointer.

RETURN VALUE

This function must return an integer. The low byte must contains the response code and
the high byte contains the returned data, if thereis any.

LIBRARY
Thisis a devel oper-supplied function.

Chapter 7: The Slave Port Driver

73

SPti ck

void SPtick (void);

DESCRIPTION
This function must be called periodically when the slave port is used in polling mode.

LIBRARY
SLAVE_PORT. LI B

SPcl ose

voi d SPcl ose(void);

DESCRIPTION
This function disables the slave port driver and unloads the ISR if one was used.

LIBRARY
SLAVE_PORT. LI B

7.3 Examples
The rest of the chapter describes some useful handlers.

7.3.1 Status Handler
SPst at usHandl er (), availablein Sl ave_port. | i b,isanexample of asimple handler to
report the status of the slave. To set up the function as a handler on slave port address 12, do the
following:

SPset Handl er (12, SPstatusHandl er, &status_char);

Sending any command to this handler will cause it to respond with a1 in the response register and
the current value of st at us__char inthe datareturn register.

74 Dynamic C User’s Manual

7.3.2 Serial Port Handler

Sl ave_port. | i b contains handlersfor all four serial ports on the dave.

Mast er _seri al . | i b containscode for amaster using the slave's seria port handler. This
library illustrates the general case of implementing the master side of the master/slave protocol.

7.3.2.1 Commands to the Slave

Table 7-10. Commands that the master can send to the slave

Command Command Description

Transmit byte. Byte value isin data register. Slave responds with 1 if the

! byte was processed or O if it was not.

5 Receive byte. Slave respondswith 2 if has put anew received byte into the
data return register or O if there were no bytes to receive.
Combined transmit/receive—a combination of the transmit and receive

3 commands. The response will also be alogical OR of the two command
responses.

4 Set baud factor, byte 1 (LSB). The actual baud rate is the baud factor
multiplied by 300.

5 Set baud factor, byte 2 (MSB). The actual baud rate is the baud factor

multiplied by 300.

6 Set port configuration bits

7 Open port
8 Close port

Get errors. Slave respondswith 1 if the port isopen and can return an error
9 bitfield. The error bits are the same asfor the function serAgetErrors() and
are put in the datareturn register by the slave.

Returns count of free bytes in the seria port write buffer. The two
10,11 | commands return the LSB and the MSB of the count respectively. The
L SB(10) should be read first to latch the count.

Returns count of free bytes in the seria port read buffer. The two
12,13 | commands return the LSB and the M SB of the count respectively. The
L SB(12) should be read first to latch the count.

Returns count of bytes currently in the serial port write buffer. The two
14,15 | commands return the LSB and the MSB of the count respectively. The
L SB(14) should be read first to latch the count.

Returns count of bytes currently in the serial port write buffer. The two
16,17 | commands return the LSB and the M SB of the count respectively. The
L SB(16) should be read first to latch the count.

Chapter 7: The Slave Port Driver

7.3.2.2 Slave Side of Protocol
To set up the serial port handler to connect serial port A to channel 5, do the following:

SPset Handl er (5, SPserAhandl er, NULL);

7.3.2.3 Master Side of Protocol

Thefollowing functionsarein Mast er _seri al . | i b. They arefor amaster using aserial port
handler on adave.

cof MSget c
i nt cof MSgetc(char address);
DESCRIPTION
Yieldsto other tasks until abyte isreceived from the serial port on the dave.

PARAMETERS

addr ess Slave channd address of the serial handler.

RETURN VALUE

Value of the received character on success.
- 1: Failure.

LIBRARY
MASTER_SERI AL. LI B

cof _MSputc

voi d cof _MSputc(char address, char ch);

DESCRIPTION
Sends a character to the serial port. Yields until character is sent.

PARAMETERS
addr ess Slave channd address of serial handler.
ch Character to send.

RETURN VALUE

0: Success, character was sent.
- 1: Failure, character was not sent.

LIBRARY
MASTER_SERI AL. LI B

76 Dynamic C User’s Manual

cof _MsSread

i nt cof MSread(char address, char *buffer, int | ength, unsigned

| ong tinmeout);

DESCRIPTION

Reads bytes from the seria port on the slave into the provided buffer. Waits until at |east
one character has been read. Returns after buffer isfull, ort i meout has expired be-
tween reading bytes. Yields to other tasks while waiting for data.

PARAMETERS
addr ess Slave channel address of serial handler.
buf fer Buffer to store received bytes.
| ength Size of buffer.
ti meout Timeto wait between bytes before giving up on receiving anymore.

RETURN VALUE

>0: Bytesread.
- 1: Failure.

LIBRARY
MASTER_SERI AL. LI B

cof MSwrite

int cof _MSwrite(char address, char *data, int |ength);

DESCRIPTION

Transmits an array of bytes from the serial port on the slave. Yieldsto other tasks while
waiting for write buffer to clear.

PARAMETERS
addr ess Slave channel address of serial handler.
dat a Array to be transmitted.
| ength Size of array.

RETURN VALUE
Number of bytes actually written or - 1 if error.

LIBRARY
MASTER_SERI AL. LI B

Chapter 7: The Slave Port Driver

7

i nt Mscl ose(char address);

DESCRIPTION
Closes a serial port on the dave.

PARAMETERS
addr ess Slave channel address of seria handler.

RETURN VALUE
0: Success.
- 1: Failure.

LIBRARY
MASTER_SERI AL. LI B

int MSgetc(char address);

DESCRIPTION
Receives a character from the serial port.

PARAMETERS

addr ess Slave channel address of seria handler.

RETURN VALUE

Vaue of received character.
- 1: No character available.

LIBRARY
MASTER_SERI AL. LI B

78 Dynamic C User’s Manual

MSget Err or

i nt MSget Error(char address);

DESCRIPTION

Getshitfield with any current error from the specified serial port on thedave. Error codes
are:

SER_PARI TY_ERROR 0x01
SER_OVERRUN_ERROR 0x02

PARAMETERS

addr ess Slave channel address of seria handler.

RETURN VALUE

Number of bytesfree: Success.
- 1: Failure.

LIBRARY
MASTER_SERI AL. LI B

MSi ni t
int MSinit(int io_bank);
DESCRIPTION

Sets up the connection to the dave.

PARAMETERS

i o_bank The 1O bank and chip select pin number for the lave device.
Thisisanumber from 0 to 7 inclusive.

RETURN VALUE
1: Success.

LIBRARY
MASTER_SERI AL. LI B

Chapter 7: The Slave Port Driver

79

MSopen

i nt MSopen(char address, unsigned | ong baud);

DESCRIPTION
Opens a seria port on the slave, given that thereis a serial handler at the specified ad-
dress on the slave.
PARAMETERS
addr ess Slave channel address of seria handler.
baud Baud rate for the seria port on the dave.

RETURN VALUE

1: Baud rate used matches the argument.
0: Different baud rate is being used.
- 1: Slave port comm error occurred.

LIBRARY
MASTER_SERI AL. LI B

MSput ¢
i nt MSputc(char address, char ch);

DESCRIPTION
Transmits a single character through the serial port.

PARAMETERS
addr ess Slave channel address of seria handler.
ch Character to send.

RETURN VALUE

1: Character sent.
0: Transmit buffer isfull or locked.

LIBRARY
MASTER_SERI AL. LI B

80 Dynamic C User’s Manual

MSr dFr ee

int MSrdFree(char address);

DESCRIPTION

Gets the number of bytes available in the specified serial port read buffer on the slave.
PARAMETERS

addr ess Slave channel address of seria handler.

RETURN VALUE

Number of bytesfree: Success.
- 1: Failure.

LIBRARY
MASTER_SERI AL. LI B

MSsendComuand

i nt MSsendCommand(char address, char conmand, char data, char
*data_returned, unsigned |long timeout);

DESCRIPTION

Sends a single command to the slave and gets aresponse. This function also servesasa
genera example of how to implement the master side of the dave protocol.

PARAMETERS
addr ess Slave channel address to send command to.
conmand Command to be sent to the slave (see Section 7.3.2.1).
dat a Data byte to be sent to the dave.

data_returned Address of variable to place data returned by the dave.

ti meout Timeto wait before giving up on dave response.

RETURN VALUE

>0: Response code.
- 1: Timeout occured before response.
- 2: Nothing at that address (response = 0xff).

LIBRARY
MASTER_SERI AL. LI B

Chapter 7: The Slave Port Driver

81

MSr ead

int MSread(char address, char *buffer, int size, unsigned | ong
timeout);

DESCRIPTION
Receives bytes from the serial port on the dave.

PARAMETERS
addr ess Slave channel address of serial handler.
buf fer Array to put received datainto.
Size Size of array (max bytes to be read).
ti meout Time to wait between characters before giving up on receiving any

more.

RETURN VALUE
The number of bytes read into the buffer (behaveslikeser Xr ead()).

LIBRARY

MASTER_SERI AL. LI B

MSwr Fr ee
i nt MSwr Free(char address)
DESCRIPTION

Gets the number of bytes available in the specified seria port write buffer on the dave.
PARAMETERS
addr ess Slave channel address of seria handler.

RETURN VALUE

Number of bytesfree: Success.
- 1: Failure.

LIBRARY
MASTER_SERI AL. LI B

82 Dynamic C User’s Manual

Mowrite
int MSwite(char address, char *data, int |length);

DESCRIPTION
Sends an array of bytes out the serial port on the slave (behaveslikeser Xwri t e()).

PARAMETERS
addr ess Slave channel address of serial handler.
dat a Array of bytesto send.
I ength Size of array.

RETURN VALUE
Number of bytes actually sent.

LIBRARY
MASTER_SERI AL. LI B

Chapter 7: The Slave Port Driver

83

7.3.2.4 Sample Program for Master

This sample program, / Sanpl es/ Sl avePor t / mast er _deno. c, treatsthe davelike a

seria port.

#use "master_serial.lib"
#defi ne SP_CHANNEL 0x42

char* const test _str = "Hello There";

mai n() {
char buffer[100];
int read_| ength;

MSi nit (0);
/1 comment thisline out if talking to a stream handler

printf("open returned: Ox%\n", MSopen(SP_CHANNEL, 9600));

whi | e(1)
{

costate

{

wf d{cof MSwrite(SP_CHANNEL, test str,
wf d{cof MSwrite(SP_CHANNEL, test str,

}

costate

{

strlien(test _str));}
strlien(test _str));}

wfd{ read | ength = cof Msread(SP_CHANNEL, buffer, 99, 10); }

if(read_length > 0)

{
buffer[read | ength] = 0; //null
printf("Read: %s\n", buffer);

t er m nat or

}
else if(read length < 0)
{
printf("Got read error: %\ n", read | ength);
}
printf("wfree = %\ n", MSw Free(SP_CHANNEL));
}
}
}
84

Dynamic C User’s Manual

7.3.3 Byte Stream Handler

Thelibrary, SP_STREAM LI B, implements a byte stream over the slave port. If the master isa
Rabbit, the functionsin MASTER_SERI AL. LI B can be used to access the stream as though it
came from a serial port on the slave.

7.3.3.1 Slave Side of Stream Channel
To set up the function SPShandl er () asthe byte stream handler, do the following:

SPset Handl er (10, SPShandl er, streamptr);
This sets up the stream to use channel 10 on the dlave.

A sample program in Section 7.3.3.2 shows how to set up and initialize the circular buffers. An
internal data structure, SPSt r eam keeps track of the buffers and a pointer to it is passed to
SPset Handl er () and some of the auxiliary functions that supports the byte stream handler.
Thisis also shown in the sample program.

7.3.3.1.1 Functions
These are the auxiliary functions that support the stream handler function, SPShandl er () .

cbuf _init
void cbuf _init(char *circularBuffer, int dataSize);

DESCRIPTION
Thisfunction initializes acircular buffer.

PARAMETERS
circul arBuffer The circular buffer to initidize.
dat aSi ze Size availableto data. The size must be 9 bytes more than the
number of bytes needed for data. Thisisfor internal book-
keeping.
LIBRARY
RS232. LI B

Chapter 7: The Slave Port Driver 85

cof SPSread

int cof SPSread(SPStream *stream void *data, int |ength,
unsi gned | ong tnmout);

DESCRIPTION

Reads| engt h bytesfrom the dave port input buffer or until t mrout millisecondstran-
spires between bytes after the first byte isread. It will yield to other tasks while waiting
for data. Thisfunction is non-reentrant.

PARAMETERS
stream Pointer to the stream state structure.
dat a Structure to read from slave port buffer.
| ength Number of bytesto read.
t nout Maximum wait in milliseconds for any byte from previous one.

RETURN VALUE
The number of bytes read from the buffer.

LIBRARY
SP_STREAM LI B

cof SPSwrite

int cof _SPSwrite(SPStream *stream void *data, int |ength);

DESCRIPTION
Transmits | engt h bytesto slave port output buffer. This function is non-reentrant.

PARAMETERS
stream Pointer to the stream state structure.
dat a Structure to write to dlave port buffer.
| ength Number of bytesto write.

RETURN VALUE
The number of bytes successfully written to dave port.

LIBRARY
SP_STREAM LI B

86 Dynamic C User’s Manual

SPSi ni t
void SPSinit(void);

DESCRIPTION
Initializes the circular buffers used by the stream handler.

LIBRARY
SP_STREAM LI B

SPSr ead

i nt SPSread(SPStream *stream void *data, int |ength, unsigned

| ong tnout);

DESCRIPTION

Reads| engt h bytesfrom the slave port input buffer or until t rout millisecondstran-
spires between bytes. If no datais available when thisfunctioniscalled, it will returnim-
mediately. Thisfunction will call SPt i ck() if thedave portisin polling mode.

This function is non-reentrant.

PARAMETERS
stream Pointer to the stream state structure.
dat a Buffer to read received datainto.
| ength Maximum number of bytes to read.
t mout Time to wait between received bytes before returning.

RETURN VALUE
Number of bytes read into the data buffer

LIBRARY
SP_STREAM LI B

Chapter 7: The Slave Port Driver

87

SPSwrite

int SPSwrite(SPSream *stream void *dat a,

DESCRIPTION

| engt h)

Thisfunction transmitslength bytesto slave port output buffer. If the dave portisin poll-
ing mode, thisfunctionwill call SPt i ck() whilewaiting for the output buffer to empty.

This function is non-reentrant.

PARAMETERS
stream Pointer to the stream state structure.
dat a Bytesto write to stream.
| ength Size of write buffer.

RETURN VALUE
Number of bytes written into the data buffer.

LIBRARY
SP_STREAM LI B

SPSwr Fr ee

i nt SPSwr Free();

DESCRIPTION

Returns number of free bytesin the stream write buffer.

RETURN VALUE
Space available in the stream write buffer.

LIBRARY
SP_STREAM LI B

88

Dynamic C User’s Manual

i nt SPSrdFree();
DESCRIPTION
Returns the number of free bytesin the stream read buffer.

RETURN VALUE
Space available in the stream read buffer.

LIBRARY
SP_STREAM LI B

int SPSwr Used();
DESCRIPTION
Returns the number of bytes currently in the stream write buffer.

RETURN VALUE
Number of bytes currently in the stream write buffer.

LIBRARY
SP_STREAM LI B

int SPSrdUsed();
DESCRIPTION
Returns the number of bytes currently in the stream read buffer.

RETURN VALUE
Number of bytes currently in the stream read buffer.

LIBRARY
SP_STREAM LI B

Chapter 7: The Slave Port Driver 89

7.3.3.2 Byte Stream Sample Program

Thisprogram, / Sanpl es/ Sl avePort/ Sl ave_Denp. c, runson adave and implements a
byte stream over the slave port.

#cl ass auto

#use "slave_port.lib"
#use "sp_streamlib"

#def i ne STREAM BUFFER_SI ZE 31
mai n()

{
char buffer[10];

int bytes_read,;
SPStream stream
/' Circular buffers need 9 bytes for bookkeeping.

char stream.i nbuf [STREAM BUFFER_SI ZE + 9];
char stream out buf [STREAM BUFFER SI ZE + 9];

SPStream *stream ptr;

/| setup buffers

cbuf _init(stream.inbuf, STREAM BUFFER Sl ZE);
stream i nbuf = stream.i nbuf;

cbuf init(stream outbuf, STREAM BUFFER_SI ZE) ;
stream out buf = stream out buf;

stream ptr = &stream

SPinit(1);

SPset Handl er (0x42, SPShandl er, stream ptr);
whi | e(1)

{
bytes _read = SPSread(streamptr, buffer, 10, 10);

i f(bytes_read)
{

}

SPSwrite(streamptr, buffer, bytes read);

920 Dynamic C User’s Manual

8. Run-Time Errors

Compiled code generated by Dynamic C calls an exception handling routine for run-time errors.
The exception handler supplied with Dynamic C printsinternally defined error messagesto a Win-
dows message box when run-time errors are detected during a debugging session. When software
runs stand-alone (disconnected from Dynamic C), such a run-time error will cause awatchdog
timeout and reset. Starting with Dynamic C 7.05, run-time error logging is available for Rabbit-
based target systems with battery-backed RAM.

8.1 Run-Time Error Handling

When arun-time error occurs, acal ismadeto except i on() . Therun-time error typeis passed
toexcepti on(), which then pushes various parameters on the stack, and calls the installed
error handler. The default error handler places information on the stack, disables interrupts, and
enters an endlessloop by calling the _xexi t function in the BIOS. Dynamic C notices this and
halts execution, reporting a run-time error to the user.

8.1.1 Error Code Ranges

The table below shows the range of error codes used by Dynamic C and the range available for a
custom error handler to use. Please see section 8.2 on page 93 for more information on replacing
the default error handler with a custom one.

Table 8-11. Dynamic C Error Types Ranges

Error Type Meaning
0-127 Reserved for user-defined error codes.
128-255 Reserved for use by Dynamic C.

Chapter 8: Run-TimeErrors 91

8.1.2 Fatal Error Codes
Thistableliststhe fatal errors generated by Dynamic C.

Table 8-12. Dynamic C Fatal Errors

Error Type Meaning
127 - 227 not used
228 Pointer store out of bounds
229 Array index out of bounds
230- 233 not used
234 Domain error (for example, acos(2))
235 Range error (for example, t an(pi / 2))
236 Floating point overflow
237 Long divide by zero
238 Long modulus, modulus zero
239 not used
240 Integer divide by zero
241 Unexpected interrupt
242 not used
243 Codata structure corrupted
244 Virtual watchdog timeout
245 XMEM dlocation failed (xalloc call)
246 Stack allocation failed
247 Stack deallocation failed
248 not used
249 Xmem allocation initialization failed
250 No virtual watchdog timers available
251 No valid MAC address for board
252 Invalid cofunction instance
253 Socket passed as auto variable while running pC/OS-11
254
not used
255

92

Dynamic C User’s Manual

8.2 User-Defined Error Handler

Dynamic C allows replacement of the default error handler with a custom error handler. Thisis
needed to add run-time error handling that would require treatment not supported by the default
handler.

A custom error handler can also be used to change how existing run-time errors are handled. For
example, the floating-point math librariesincluded with Dynamic C are written to allow for execu-
tion to continue after adomain or range error, but the default error handler halts with arun-time
error if that state occurs. If continued execution is desired (the function in question would return a
value of INF or whatever value is appropriate), then asimple error handler could be written to pass
execution back to the program when a domain or range error occurs, and pass any other run-time
errors to Dynamic C.

8.2.1 Replacing the Default Handler
To tell the BIOS to use a custom error handler, cal this function:

voi d defineErrorHandl er(void *errfcn)
This function sets the BIOS function pointer for run-time errors to the one passed to it.

When arun-time error occurs, except i on() pushesonto the stack the information detailed in
the table below.

Table 8-13. Stack setijp for run-time errors

Address Data at address
SP+0 Return address for error handler
SP+2 Error code

SP+4 Additional data (user-defined)

XPCwhenexception() wascalled (upper

SP+6 byte)

SP+8 Addresswhere excepti on() wascaled from

Thenexcepti on() calstheinstaled error handler. If the error handler passes the run-time
error to Dynamic C (i.e. itisafatal error and the system needs to be halted or reset), then registers
must be loaded appropriately before calling the _xexi t function.

Dynamic C expects the following values to be loaded:

Table 8-14. Register contents loaded by error handler before passing the error to Dynamic C

Register Expected Value
H XPCwhenexception() wascalled
L Run-time error code
HL’ Addresswhere except i on() wascaled from

Chapter 8: Run-TimeErrors 93

8.3 Run-Time Error Logging
Starting with Dynamic C 7.05, error logging is available as a BIOS enhancement for storing run-

time exception history. It can be useful diagnosing problems in deployed Rabbit targets. To sup-
port error logging, the target must have battery-backed RAM.

8.3.1 Error Log Buffer
A circular buffer in extended RAM will be filled with the following information for each run-time
error that occurs:

* Thevalueof SEC_TI MER at the time of the error. This variable contains the number of
seconds since 00:00:00 on January 1st 1980 if the real-time clock has been set correctly.
Thisvariable is updated by the periodic timer which is enabled by default. Z-World setsthe
real-time clock in the factory. When the BIOS starts on boards with batteries, it initializes
SEC_TI MERto the value in the real-time clock.

* The address where the exception was called from. This can be traced to a particular func-
tion using the MAP file generated when a Dynamic C program is compiled.

* The exception type. Please see Table 8-12 on page 92 for alist of exception types.

e Thevalueof al registers. Thisincludes alternate registers, SP and XPC. Thisisa global
option that is enabled by default.

* An 8 byte message. Thisisaglobal option that is disabled by default. The default error
handler does nothing with this.

* A user-definable length of stack dump. Thisisaglobal option that is enabled by default.

* A one byte checksum of the entry.

8.3.1.1 Error Log Buffer Size

The size of the error log buffer is determined by the number of entries, the size of an entry, and the
header information at the beginning of the buffer. The number of entriesis determined by the
macro ERRLOG_NUM _ENTRI ES (default is 78). The size of each entry is dependent on the set-
tings of the global options for stack dump, register dump and error message. The default size of
the buffer is about 4K in extended RAM.

94 Dynamic C User’s Manual

8.3.2 Initialization and Defaults
Aninitialization of the error log occurs when the BIOS is compiled, when cloning takes place or
when the BIOS is loaded via the Rabbit Field Utility (RFU). By default, error logging is enabled

with messages turned off, stack and register dumps turned on, and an error log buffer big enough
for 78 entries.

The error log buffer contains header information as well as an entry for each run-time error. A
debug start-up will zero out this header structure, but the run-time error entries can till be exam-

ined from Dynamic C using the static information in flash. The header is at the start of the error

log buffer and contains:

A status byte

The number of errors since deployment

The index of the last error

The number of hardware resets since deployment
The number of watchdog time-outs since deployment
The number of software resets since deployment

A checksum byte.

“Deployment” is defined as the first power up without the programming cable attached. Repro-
gramming the board through the programming cable, RFU, or RabbitLink and starting the pro-
gram again without the programming cable attached is a new deployment.

8.3.3 Configuration Macros
These macros are defined at the top of Bi os/ Rabbi t Bi os. c.

ENABLE_ERROR_LOGGING
Default: 0. Disables error logging. Changing thisto one in the BIOS enables error logging.

ERRLOG_USE_REG_DUMP
Default: 1. Include aregister dump in log entries. Changing thisto zero in the BIOS excludes
the register dump in log entries.

ERRLOG_STACKDUMP_SIZE
Default: 16. Include a stack dump of size ERRLOG_STACKDUMP_SI ZE in log entries.
Changing thisto zero in the BIOS excludes the stack dump in log entries.

ERRLOG_NUM_ENTRIES
Default: 78. Thisisthe number of entries allowed in the log buffer.

ERRLOG_USE_MESSAGE
Default: 0. Exclude error messages from log entries. Changing thisto one in the BIOS
includes error messages in log entries The default error handler makes no use of this feature.

Chapter 8: Run-TimeErrors

95

8.3.4 Error Logging Functions
The run-time error logging API consists of the following functions:

errlogGetHeader I nfo Reads error log header and formats output.

errlogGetNthEntry Loadser r LogEnt r y structure with the Nth entry
from the error log buffer. er r LogEnt r y isapre-alo-
cated global structure.

errlogGetM essage Returns a NUL L-terminated string containing the 8 byte
error messageinerr LogEnt ry.

errlogFormatEntry Returns a NUL L -terminated string containing basic
informationinerr LogEnt ry.

errlogFormatRegDump Returns a NUL L -terminated string containing the regis-
terdumpinerrLogEntry.

errlogFormatStack Dump Returns a NUL L -terminated string containing the stack
dumpinerrLogEntry.

errlogReadHeader Reads error log header into the structureer r | og-
I nfo.

ResetErrorL og Resets the exception and restart type counts in the error
log buffer header.

8.3.5 Examples of Error Log Use
To try error logging, follow the instructions at the top of the sample programs:

sanmpl es\ Err or Handl i ng\ Generate_runtime_errors.c
and
sanmpl es\ ErrorHandl i ng\ Di spl ay_errorlog.c

96 Dynamic C User’s Manual

9. Memory Management

Processor instructions can specify 16-bit addresses, giving alogical address space of 64K (65,536

bytes). Dynamic C supports a 1M physical address space (20-bit addresses).
An on-chip memory management unit (MMU) translates 16-bit addresses to 20-bit memory

addresses. Four MMU registers (SEGSIZE, STACKSEG, DATASEG and XPC) divide and main-
tain the logical sections and map each section onto physical memory.

9.1 Memory Map
A typical Dynamic C memory mapping of logical and physical address spaceis shown in the fig-

ure below.
RAM
FFFF
D000 Xmem Code
Internal Interrupt T
EO000
Vectors Stack ‘
CF00 D00
C600
External Interrupt l
Vectors
CEOO0
l Root Data
Watch Data 20000
CA00 6000
Xmem Code
Watch Code
I “ Root Code
C600
. Root Code
Bios I
0000 00000,

Logical Address Space

Physical Address Space

Figure 3. Dynamic C Memory Mapping

Chapter 9: Memory M anagement

97

Figure 3 illustrates how the logical address space is divided and where code resides in physical
memory. Both the static RAM and the flash memory are 128K in the diagram. Physical memory
starts at address 0x00000 and flash memory is usually mapped to the same address. SRAM typi-
cally begins at address 0x80000.

If BIOS code runs from flash memory, the BIOS code starts in the root code section at address
0x00000 and fills upward. The rest of the root code will continue to fill upward immediately fol-
lowing the BIOS code. If the BIOS code runs from SRAM, the root code section, along with root
data and stack sections, will start at address 0x80000.

9.1.1 Memory Mapping Control

The advanced user of Dynamic C can control how Dynamic C allocates and maps memory. For
details on memory mapping, refer to the Rabbit 2000 Microprocessor User’'s Manual or the Rabbit
3000 Microprocessor User’s Manual.

9.2 Extended Memory Functions

A program can use many pages of extended memory. Under normal execution, code in extended
memory maps to the logical address region EOOOH to FFFFH.

Extended memory addresses are 20-bit physical addresses (the lower 20 bits of along integer).
Pointers, on the other hand, are 16-bit machine addresses. They are not interchangeable. However,
there are library functions to convert address formats.

To access xmem data, use function calls to exchange data between xmem and root memory. Use
the Dynamic C functionsr oot 2xnemn() , xmen2r oot () and xmen2xmen() to move blocks
of data between logical memory and physical memory.

9.2.1 Code Placement in Memory

Coderunsjust as quickly in extended memory asit does in root memory, but callsto and returns
from the functions in extended memory take a few extra machine cycles. Code placement in mem-
ory can be changed by the keywords xmemand r oot , depending on the type of code:

Pure Assembly Routines

Pure assembly functions may be placed in root memory or extended memory. Prior to Dynamic C
v 7.10 pure assembly routines had to be in root memory.

C Functions

C functions may be placed in root memory or extended memory. Accessto variablesin C state-
ments is not affected by the placement of the function. Dynamic C will automatically place C
functions in extended memory as root memory fills. Short, frequently used functions may be
declared with ther oot keyword to force Dynamic C to load them in root memory.

Inline Assembly in C Functions

Inline assembly code may be written in any C function, regardless of whether it is compiled to
extended memory or root memory.

All static variables, even those local to extended memory functions, are placed in root memory.
Keep thisin mind if the functions have many variables or large arrays. Root memory can fill up
quickly.

98 Dynamic C User’s Manual

10. The Flash File System

Dynamic C 7.0 introduced a simple file system that can be used with a second flash memory or in
SRAM. Dynamic C 7.05 introduced an improved file system with more features:

* The ability to overwrite parts of afile.

* The simultaneous use of multiple device types.

* The ability to partition devices.

» Efficient support for byte-writable devices.

* Better performance tuning.

* High degree of backwards compatibility with its predecessor.

Thisfile system, known as the filesystem mk 11 or simply as FS2, uses the same APl asthe first
file system, with some additional functions. Initialization is performed slightly differently, and the
data format is not compatible. Z-World recommends that FS2 be used for all new applications.
Thefirst file system, which we will refer to as FS1, will be maintained but enhancementswill only
be implemented for FS2.

The Dynamic C file system supports atotal of 255 files. Unlike FSL, it is not possible to reserve a
range of file numbers for system use with FS2. Equivalent functionality is available via partition-
ing of devices.

The low-level flash memory access functions should not be used in the same area of the flash
where the flash file system exists.

10.1 General Usage

The recommended use of aflash file system isfor infrequently changing data or data rates that
have writes on the order of tens of minutes instead of seconds. Rapidly writing data to the flash
could result in using up its write cycles too quickly. For example, consider a 256K flash with 64
blocks of 4K each. Using aflash with a maximum recommendation of 10,000 write cycles means
alimit of 640,000 writesto the file system. If you are performing one write to the flash per second,
in alittle over aweek you will use up its recommended lifetime.

Increase the useful lifetime and performance of the flash by buffering data before writing it to the
flash. Accumulating 1000 single byte writes into one can extend the life of the flash by an average
of 750 times. FS2 does not currently perform any in-memory buffering. If you write asingle byte
to afile, that byte will cause write activity on the device. This ensures that data is written to non-
volatile storage as soon as possible. Buffering may be implemented within the application if possi-
ble loss of dataistolerable.

NOTE: The use of USE_2NDFLASH_CODE is not compatible with the flash
file system.

Chapter 10: The Flash File System 99

10.1.1 Maximum File Size

The maximum file size for an individual file depends on the total file system size and the number
of files present. Each file requires at least two sectors: at |east one for data and always one for
metadata (for information used internally). There also needs to be two free sectorsto allow for
moving data around. It is not recommended to use the flash file system to store alarge number of
small files. It is much more efficient to have afew large ones.

10.1.2 Using SRAM

The flash file system can be used with battery-backed SRAM. Internally, RAM istreated like a
flash device, except that there is no write-cycle limitation, and access is much faster. Thefile sys-
tem will work without the battery backup, but would, of course, lose al data when the power went
off.

Currently, the maximum size file system supported in RAM is about 200k. This limitation holds
true even on boards with a512k RAM chip. The limitation involves the placement of BIOS con-
trol blocks in the upper part of the lower 256k portion of RAM.

To obtain more RAM memory, xal | oc() may beused. If xal | oc() iscaledfirst thinginthe
program, the same memory addresses will always be returned. This can be used to store non-vola-
tile datais so desired (if the RAM is battery-backed), however, it is not possible to manage this
area using the file system.

When using FS1, since only one devicetypeisallowed at atime, the entire file system would have
to bein SRAM. Thisisrecommended for debugging purposes only. Using FS2 increases flexibil-
ity, with its capacity to use multiple device types simultaneously. Since RAM isusually a scarce
resource, it can be used together with flash memory devices to obtain the best balance of speed,
performance and capacity.

10.1.3 Wear Leveling

The current code has a rudimentary form of wear leveling. When you write into an existing block
it selects afree block with the least number of writes. The file system routines copy the old block
into the new block adding in the users new data. This has the effect of evening the wear if thereis
areasonable turnover in the flash files.

10.1.4 Low-Level Implementation

For information on the low-level implementation of the flash file system, refer to the beginning of
the library files FS2. LI Band FS_DEV. LI Bif using FS2, or library file FI LESYSTEM LI B,
if using FS1.

10.1.5 Multitasking and the File System

Neither FS1 nor FS2 are re-entrant. If using preemptive multitasking, ensure that only one thread
performs calls to the file system, or implement locking around each call.

100 Dynamic C User’s Manual

10.2 Application Requirements
The application requirements for FS1 and FS2 are dlightly different. This section covers both sets
of requirements, including:

e which library to use

e which driversto use

* defaults and descriptions for configuration macros

* detailed instructions for using the first flash

10.2.1 FS1 Requirements
To use the file system, a macro that determines which low-level driver isloaded must be defined
in the application program.

#define FS_FLASH /] use2ndflashfor file system

#define FS_RAM /1 use SRAM (supported for debug purposes)

The file system library must be compiled with the application.
#use “FI LESYSTEM LI B”

10.2.2 FS1 and Use of the First Flash
To use FS1 in the first flash, alow-level driver must be used:

#define FS_FLASH_SI NGLE

Because this particular low-level driver must share the first flash with the program code, the file
system must be carefully placed such that the two do not collide. Also, it should be noted that any
time the first flash is written to during runtime, interrupts will be shut off for the duration of the
write. This could have serious implications for real-time systems.

To reserve space in the first flash, such that Dynamic C will not clobber the file system, aminor
BIOS modification is necessary. The macro XMEM_RESERVE_SI ZE inthe BIOS is currently set
to 0x0000. Increasing this value will reserve that much space between the end of xmem code that
Dynamic Cis building, and the System ID block at the end of memory. Unfortunately, the file sys-
tem needsto start onaFS_BLOCK Sl ZE boundary, which is normally 4096 bytes. Therefore,
dlightly more space than is needed should be allocated, to allow for the System ID block and that
the end of xmem space might not lie on a 4096 byte boundary.

Chapter 10: The Flash File System 101

After this space has been alocated, the beginning of the file system can be found. The end of
where Dynamic C will touch the flash is stored in the macro END_OF XMEMORY, and the file
system may start at the next 4096 byte boundary after that point. The following code computes
what to passtofs_format ().

/1 whereto start the file system
long fs_start;

/| start at the end of xmem
fs start = END _OF XMEMORY;

/1 divide out the blocksize, to meet requirementsfor f s_f or mat

fs start = fs_start / FS_BLOCK Sl ZE;
if((fs_start * FS BLOCK SIZE) != END_OF XMEMORY)
{

/1 rounding error: move up 1 block so end of xmem is not clobbered
fs start ++;

}
fs format(fs_start, NUM BLOCKS, O0);

After this point, the file system should act normally.

If the 4096 byte block sizeistoo large, given the limited room in the first flash, that can be over-
written with the macro:

#def i ne FS_BLOCK_SI ZE 512
See the sample program, 1st f | ash. c, for an example of using the first flash with FS1.

10.2.3 FS2 Requirements
The file system library must be compiled with the application:

#use “FS2.LIB"

For the simplest applications, thisis all that is necessary for configuration. For more complex
applications, there are several other macro definitions that may be used before the inclusion of
FS2. LI B. These are:

#define FS_MAX _DEVICES 3
#define FS_MAX_LX 4
#define FS_MAX_ FI LES 10

These specify certain static array sizesthat alow control over the amount of root data space taken
by FS2. If you are using only one flash device (and possibly battery-backed RAM), and are not
using partitions, then thereisno need to set FS_MAX_DEVI CES or FS_MAX_LX.

For more information on partitioning, please see section 10.4, “ Setting up and Partitioning the File
System,” on page 107.

102 Dynamic C User’s Manual

10.2.4 FS2 Configuration Macros

FS_MAX_DEVI CES

Thismacro definesthe maximum physical media. If it isnot defined in the program code,
FS_MAX_DEVI CES will default to 1, 2, or 3, depending on the values of
FS2_USE_PROGRAM FLASH, XMEM RESERVE_SI ZE and

FS2_RAM RESERVE.

FS MAX LX
This macro defines the maximum logical extents. You must increase thisvalue by 1 for

each new partition your application creates. It thisis not defined in the program code it
will default to FS_MAX_DEVI CES.

For adescription of logical extents please see section 10.4.2, “Logical Extents (LX),” on
page 108.

FS_MAX_FI LES

Thismacro isused to specify the maximum number of filesthat are allowed to coexistin
the entirefile system. Most applicationswill have afixed number of files defined, so this
parameter can be set to that number to avoid wasting root data memory. The default is 6
files. The maximum vaue for this parameter is 255.

FS2_RAM RESERVE

ThisBIOS-defined macro determinesthe amount of space used for FS2in RAM. If some
battery-backed RAM isto be used by FS2, then this macro must be modified to specify
the amount of RAM to reserve. The memory isreserved near thetop of RAM. Note that
this RAM will be reserved whether or not the application actually uses FS2.

Prior to Dynamic C 7.06 this macro was defined as the number of bytesto reserve and
had to be a multiple of 4096. It is now defined as the number of blocksto reserve, with
each block being 4096 bytes.

FS2_USE_PROGRAM FLASH

Thenumber of kilobytesreserved inthefirst flash for use by FS2. Thedefaultiszero. The
actual amount of flash used by FS2 is determined by the minimum of this macro and
XMEM RESERVE_SI ZE.

Thefirst flash may be used in FSlas well. See section 10.2.2 for details.

XMVEM _RESERVE_SI ZE

This BIOS-defined macro is the number of bytes (which must be a multiple of 4096)
reserved in the first flash for use by FS2 and possibly other customer-defined purposes.
Thisisdefined inthe BIOS as0x0000. Memory set asidewith XMEM_RESERVE_S| ZE
will NOT be available for xmem code.

Chapter 10: The Flash File System 103

10.2.5 FS2 and Use of the First Flash
To use the first flash in FS2, follow these steps:

1. Define XMEM_RESERVE_SI ZE (currently set to 0x0000 in the BIOS) to the number of
bytesto alocate in the first flash for the file system.

2. Define FS2_USE_PROGRAM_FLASH to the number of KB (1024 bytes) to alocate in the
first flash for the file system. Do thisin the application code before#use "f s2. 1i b".

3. Obtain the LX number of thefirst flash: Call f s_get ot her _I x() when there are two
flash memories, call f s_get fl ash_| x() when thereisonly one.

4. If desired, create additional logical extents by calling the FS2 functionf s_set up() to
further partition the device. This function can also change the logical sector sizes of an
extent. Please see the function description for f s_set up() inthe Dynamic C Function
Reference Manual for more information.

10.2.5.1 Example Code Using First Flash in FS2
If the target board has two flash memories, the following code will cause the file system to use the
first flash:

FSLXnum f | ashl; /'l logical extent number
File f; /| struct for file information

flashl = fs_get _other | x();
if (flashl) {
fs set _Ix(flashl, flashl);
fcreate(&, 10);

}

To obtain the logical extent number for aoneflashboard, fs_get fl ash_| x() must be
caledinstead of f s_get _ot her _| x() .

104 Dynamic C User’s Manual

10.3 Functions

For backwards compatibility FS2 uses the same function names as FS1. Some functions have
enhanced semantics when using FS2. For examplef wri t e()) will alow writing over existing
parts of the file rather than just appending.

10.3.1 FS1 API

These functions are the file system API for FS1. They aredefined in FI LESYSTEM LI B. For a
complete description of these functions please see the Dynamic C Function Reference Manual.

Table 10-15. FS1 API

Command

Description

fs_ init (FS1)

Initialize the internal data structures for the file system.

fs format (FS1)

Initialize the flash memory and the internal data structures.

fs reserve_bl ocks
(FS1)

Reserves blocks for privileged files.

fsck (FS1)

Verifies dataintegrity of files.

fcreate (FS1)

Creates afile and open it for writing.

fcreate_unused
(FS1)

Creates afile with an unused file number.

fopen_rd (FS1)

Opens afile for reading.

fopen_wr (FS1)

Opens afile for writing (also opensit for reading.)

fshift

Removes specified number of bytes from file.

fwite (FS1)

Writes to the end of afile.

fread (FS1)

Reads from the current file pointer.

fseek (FS1)

Moves the read pointer.

ftell (FS1) Returns the current offset of the file pointer.
fclose Closesafile.
fdel ete (FS1) Deletes afile.

10.3.1.1 FS1 API Details

Thefunctionsfs_init andfs_fornat aresimilar, inthat they both start the file system. Use
fs_format () toeraseall blocksin thefile system. Thisfunction’sthird parameter, wear -

| evel , should be 1 for anew flash memory; otherwise it should be O to use the current wear lev-
eing.

Usefs_init() topreserveblocksthat arein use and to do an integrity check of them. In case
of loss of power, fs_init () will delete any blocksthat may be partially written and will substi-
tute the last known good block for that file. This means that any changes to the file that occurred
between the last write and the power outage would be | ost.

Chapter 10: The Flash File System 105

10.3.2 FS2 API

The API for FS2 is defined in FS2. LI B. For more information please see the Dynamic C

Function Reference Manual.

Table 10-16. FS2 API

Command

Description

fs_setup (FS2)

Alterstheinitial default configuration.

fs init (FS2)

Initialize the internal data structures for the file system.

fs_format (FS2)

Initialize flash and the internal data structures.

| x_format

Formats a specified logical extent (LX).

fs_set_Ix (FS2)

Sets the default LX numbers for file creation.

fs get _Ix (FS2)

Returns the current LX number for file creation.

fcreate (FS2)

Creates afile and open it for writing.

fcreate_unused (FS2)

Creates afile with an unused file number.

fopen_rd (FS2)

Opens afilefor reading.

fopen_wr (FS2)

Opens afile for writing (and reading).

fshift

Removes specified number of bytes from file.

fwite (FS2)

Writesto afile starting at “ current position.”

fread (FS2)

Reads from the current file pointer.

fseek (FS2)

Moves the read/write pointer.

ftell (FS2)

Returns the current offset of the file pointer.

fs_sync (FS2)

Flushes any buffers retained in RAM to the underlying
hardware device.

fflush (FS2)

Flushes buffers retained in RAM and associated with the
specified file to the underlying hardware device.

fs_get_flash_|Ix (FS2)

Returns the LX number of the preferred flash device (the
2nd flash if available).

fs _get | x_size (FS2)

Returns the number of bytes of the specified LX.

fs_get_other | x (FS2)

Returns LX # of the non-preferred flash (usually the first
flash).

fs_get_ramlx (FS2)

Return the LX number of the RAM file system device.

fcl ose

Closes afile.

fdelete (FS2)

Deletes afile.

106

Dynamic C User’s Manual

10.3.2.1 FS2 API Details

Thefunctionsfs_init andfs_format areusedinasdightly different manner than in FS1.
fs_init() doesnotuseitstwo parameters(r eser vebl ocks and nunbl ocks) sinceit
computes appropriate valuesinternally. f s_f or mat () should only be called after
fs_init(),if necessary. Thisfunction'sfirst parameter, r eser vebl ocks, must be 0; any-
thing else returns an error. Thisis one of the few cases of incompatibility between FS1 and FS2.
The third parameter, wear | evel , should be 1 for anew flash memory; otherwise it should be 0
to use the current wear leveling.

Thef sck() functionisnot availableandisnot needed in FS2; f s_i ni t () awayscompletdy
checksfor internal consistency.

Refer to\ Sanpl es\ Fi | eSyst eml FS2DEMOL. Cfor more details.

10.3.2.2 FS2 API Error Codes
When an API function returns an error, it may aso return an error code in the global variable
er r no. The error codes are defined in the library file ERRNO. LI B.

10.4 Setting up and Partitioning the File System

FS2 can be more complex to initialize than FS1. Thisis because multiple device types can be used
in the same application. For example, if the target board contains both battery-backed SRAM and
a second flash chip, then both types of storage may be used for their respective advantages. The
SRAM might be used for a small application configuration file that changes frequently, and the
flash used for alarge log file.

FS2 automatically detects the second flash device (if any) and will also use any SRAM set aside
for thefile system (if FS2_RAM_RESERVE is sat).

10.4.1 Initial Formatting

Thefilesystem must be formatted when it isfirst used. The only exception is when aflash memory
deviceis known to be completely erased, which is the normal condition on receipt from the fac-
tory. If the device contains random data, then formatting is required to avoid the possibility of
some sectors being permanently locked out of use.

Formatting is also required if any of the logical extent parameters are changed, such as changing
the logical sector size or re-partitioning. This would normally happen only during application
development.

Chapter 10: The Flash File System 107

The question for application developersis how to code the application so that it formats the file-
system only thefirst timeit isrun. There are severa approaches that may be taken:

* A specia program that is loaded and run once in the factory, before the applicationis
loaded. The specia program prepares the filesystem and formats it. The application never
formats; it expects the filesystem to be in a proper state.

* The application can perform some sort of consistency check. If it determines an inconsis-
tency, it callsformat. The consistency check could include testing for afile that should
exist, or by checking some sort of "signature” that would be unlikely to occur by chance.

* Have the application prompt the end-user, if some form of interaction is possible.
e A combination of one or more of the above.

* Rely on aflash device being erased. Thiswould be OK for a production run, but not suit-
ableif battery-backed SRAM was being used for part of the filesystem.

10.4.2 Logical Extents (LX)

In FS2, the presence of both “devices’ causesan initial default configuration of two logical extents
to be set up. An LX isanalogousto disk partitions used in other operating systems. It represents a
contiguous area of the device set aside for file system operations. An LX contains sectorsthat are
all the same size, and all contiguously addressable within the one device. Thus a flash device with
three different sector sizes would necessitate at |east three logical extents, and more if the same-
sized sectors were not adjacent.

FS1 does not allow mixing of devices; it supports only one LX as defined in this document.

Files stored by the file system are comprised of two parts: one part contains the actual application
data, and the other is afixed size area used to contain data controlled by the file system in order to
track the file status. This second area, called metadata, is analogous to a “directory entry” of other
operating systems. The metadata consumes one sector per file.

The dataand metadata for afile are usually stored in the same L X, however they may be separated
for performance reasons. Since the metadata needs to be updated for each write operation, it is
often advantageous to store the metadata in battery-backed SRAM with the bulk of the dataon a
flash device.

10.4.2.1 Specifying Logical Extents
When afileis created, the logical extent(s) to use for thefile are defined. This association remains
until thefileis deleted. The default LX for both data and metadatais the flash device (LX #1) if it
exists; otherwisethe RAM LX. If both flash and RAM are available, LX #1 is the flash device and
LX #2 isthe RAM.

When creating afile, the associated logical extents for the data and the metadata can be changed
from the default by callingf s_set | x() . Thisfunctionstakes two parameters, one to specify
the LX for the metadata and the other to specify the LX for the data. Thereafter, all created files
are associated with the specified LXsuntil anew call tof s_set _| x() ismade. Typicaly, there
will beacalltofs_set | x() beforeeachfileiscreated, in order to ensure that the new file
gets created with the desired associations. The file creation function, f cr eat e() , may be used
to specify the LX for the metadata by providing avalid LX number in the high byte of the func-

108 Dynamic C User’s Manual

tion’'s second parameter. Thiswill override any LX number set for the metadatain
fs set |x().

10.4.2.1.1 Further Partitioning

FS2 allowstheinitial default logical extents to be divided further. This must be done before call-
ingfs_init().Thefunctionto create sub-partitionsiscalledf s_set up() . Thisfunction
takes an existing L X number, divides that LX according to the given parameters, and returns a
newly created LX number. The original partition still exists, but is smaller because of the division.
For example, in a system with LX#1 as aflash device of 256K and LX#2 as 4K of RAM, aninitial
caltofs_set up() might be madeto partition L X#1 into two equal sized extents of 128K each.
LX#1 would then be 128K (the first half of the flash) and LX#3 would be 128K (the other half).
LX#2 is untouched.

Having partitioned once, f s_set up() may be called again to perform further subdivision. This
may be done on any of the original or new extents. Each call tof s_set up() in partitioning
mode increases the total number of logical extents. You will need to make surethat FS_ MAX_LX
is defined to a high enough value that the LX array size is not exceeded.

While developing an application, you might need to adjust partitioning parameters. If any parame-
ter is changed, FS2 will probably not recognize data written using the previous parameters. This
problem is common to most operating systems. The “solution” isto save any desired files to out-
side the file system before changing its organization; then after the change, force aformat of the
file system.

Note that in particular, files written by FS1 are not readable by FS2 since the two file systems are
incompatible at the device levd.

10.4.3 Logical Sector Size

fs_setup() canaso be used to specify non-default logical sector (LS) sizes and other parame-
ters. FS1 uses fixed logical sectors (i.e. “blocks’) of 4096 bytes. FS2 allows any L S size between
64 and 8192 bytes, providing the LS sizeis an exact power of 2. Each L X, including sub-parti-
tions, can have adifferent LS size. This allows some performance optimization. Small L Ss are bet-
ter for aRAM LX, since it minimizes wasted space without incurring a performance penalty.
Larger LSs are better for bulk data such aslogs. If the flash physical sector size (i.e. the actual
hardware sector size) islarge, it is better to use a correspondingly large LS size. Thisis especially
the case for byte-writable devices. Large L Ss should also be used for large LXs. This minimizes
the amount of time needed to initialize the file system and access large files. As arule of thumb,
there should be no more than 1024 LSsin any LX. Theideal LS size for RAM (whichisthe
default) is 128 bytes. 256 or 512 can also be reasonable values for some applications that have a
lot of spare RAM.

Sector-writable flash devices require: LS size = PS size. Byte-writable devices, however, may use
any alowable logical sector size, regardless of the physical sector size.

Sample program Sanpl es\ Fi | eSyst eml FS2DEMO illustratesuse of f s_set up() . This
sample also allows you to experiment with various file system settings to obtain the best perfor-
mance.

FS2 has been designed to be extensible in order to work with future flash and other non-volatile
storage devices. Writing and installing custom low-level device driversis beyond the scope of this
document, however see FS2. LI Band FS_DEV. LI B for hints.

Chapter 10: The Flash File System 109

10.5 File Identifiers

There are two ways to identify a particular file in the file system: file numbers and file names.

10.5.1 File Numbers

The file number uniquely identifies a file within alogical extent. File numbers must be unique
within the entire file system. FS2 accepts file numbers in word format rather than the byte format
of FS1:

t ypedef word Fil eNunber

The low-order byte specifies the file number and the high-order byte specifies the LX number of
the metadata (1 through number of LXs). If the high-order byte is zero, then a suitable “ default”
LX will be located by the file system. The default LX will default to 1, but will be settable viaa
#def i ne, for file creation. For existing files, a high-order byte of zero will cause the file system
to search for the L X that contains the file. Thiswill require no or minimal changes to existing cus-
tomer code.

Only the metadata L X may be specified in the file number. Thisis called a“fully-qualified” file
number (FQFN). The LX number always applies to the file metadata. The data can reside on a dif-
ferent LX, however thisis always determined by FS2 once the file has been created.

10.5.2 File Names

There are several functionsin ZSERVER. LI B that can be used to associate a descriptive name
with afile. The file must exist in the flash file system before using the auxiliary functions listed in
the following table. These functions were originaly intended for use withan HTTP or FTP server,
so some of them take a parameter called ser ver mask. To use these functions for file naming
purposes only, this parameter should be SERVER _USER.

For a detailed description of these functions please refer to the Dynamic C's TCP/IP User’s Man-
ual, or use<Ct r | - H>in Dynamic C to use the Library Lookup feature.

Table 10-17. Flash File System Auxiliary Functions

Command Description

Associate a name with the flash file system file number. The return
sspec_addfsfile valueisan index into an array of structures associated with the
named files.

Read afile represented by the return value of

sspec_readfile sspec_addf sfi | e into abuffer.

sspec_getl ength Get the length (number of bytes) of thefile.

Get the file system file number (1- 255). Cast return value to

sspec_getfilel oc 1 LENUVBER,

Find the index into the array of structures associated with named

sspec_findname files of the file that has the specified name.

Get file type. For flash file system files this value will be

sspec_getfiletype gopec FsriLE.

110 Dynamic C User’s Manual

Table 10-17. Flash File System Auxiliary Functions

Command

Description

sspec_findnextfile

Find the next named file in the flash file system, at or following the

specified index, and return the index of thefile.

Sspec_renove

Remove the file name association.

sspec_save

Savesto the flash file system the array of structures that reference
the named files in the flash file system.

sspec_restore

Restores the array of structures that reference the named filesin th
flash file system.

e

Chapter 10: The Flash File System

111

10.6 Skeleton Program Using FS1

The following program uses many of the file system commands. It writes several stringsinto a
file, reads the file back and prints the contents to the STDIO window. The macro RESERVE
should be 0 when thefile system isin SRAM. When the file system is in flash memory you can
adjust where it starts by defining RESERVE to be 0 or a multiple of the block size.

#defi ne FS_FLASH
#use "Fl LESYSTEM LI B"

#defi ne FORMAT

#def i ne RESERVE OL
#def i ne BLOCKS 64
#defi ne TESTFI LE 1

mai n()
{
File file;
static char buffer[256];

#i f def FORMAT

fs_format (RESERVE, BLOCKS, 1) ;

if(fcreate(&file, TESTFILE)) ({
printf("error creating TESTFILE\n");
return -1;

}

#el se

fs_init(RESERVE, BLOCKS) ;

i f(fopen_w (& il e, TESTFILE) ({
printf("error opening TESTFILE\n");
return -1;

}

#endi f

fwite(&ile,"hello", 6);

fwite(&file,"12345", 6);

fwite(&file,"67890", 6);

whil e(fread(&fil e, buffer, 6)>0) {
printf("%\n", buffer);

}
fclose(&file);

}

After running this program at least once, comment out “#def i ne FORMAT.” You will seethat it
runsin asimilar fashion, but now thefileis appended using f open_wr () instead of being
erased by fs_f or mat () and then recreated withf cr eat e() .

For a more robust program, more error checking should be included.

112 Dynamic C User’s Manual

10.7 Skeleton Program Using FS2

The following program uses some of the FS2 API. It writes several stringsinto afile, readsthefile
back and prints the contents to the STDIO window.

#use "FS2. LI B"
#define TESTFILE 1

mai n()

{

}

File file;
static char buffer[256];

fs init(0, 0);

if (!fcreate(&ile, TESTFILE) && fopen_w (&fil e, TESTFI LE))
{

printf("error opening TESTFILE %\ n", errno);

return -1;

}

fseek(&ile, 0, SEEK END);
fwite(&file,"hello", 6);
fwite(&file,"12345", 6);
fwite(&file,"67890", 6);
fseek(&ile, 0, SEEK SET);

whil e(fread(&fil e, buffer, 6)>0) {
printf("%\n", buffer);
}

fclose(&file);

For a more robust program, more error checking should be included. See the sample programsin
the \SAMPLES\ FI LESYSTEMfolder for more complex examples which include error checking,
formatting, partitioning and other new features.

FS2 returns more information in the case of errorsthan FS1. The library ERRNO. LI B contains a
list of al possible error codes returnable by the FS2 API. These error codes mostly conform to
POSIX standards. If the return value of an FS2 API indicates an error, then the errno variable may
be examined to determine a more specific reason for the failure. The possible errno codes returned
from each function are documented with the function.

Chapter 10: The Flash File System 113

114

Dynamic C User’s Manual

11. Using Assembly L anguage

This chapter gives the rules for mixing assembly language with Dynamic C code. A reference
guide to the Rabbit Instruction Set is available from the Help menu of Dynamic C and is also doc-
umented in the Rabbit 2000/3000 Microprocessor Instruction Reference Manual.

11.1 Mixing Assembly and C

Dynamic C permits assembly language statements to be embedded in C functions and/or entire
functions to be written in assembly language. C statements may also be embedded in assembly
code. C-language variables may be accessed by the assembly code.

11.1.1 Embedded Assembly Syntax

Use the#asmand #endasmdirectives to place assembly code in Dynamic C programs. For
example, the following function will add two 64-bit numbers together. The same program could be
writtenin C, but it would be many times slower because C does not provide an add-with-carry
operation (adc).

voi d ei ghtadd(char *chl, char *ch2){

#asm
I d hl , (sp+ch2) ; get source pointer
ex de, hl ; saveinregister DE
| d hl , (sp+chl) ; get destination pointer
| d b, 8 ; number of bytes
Xor a ; Clear carry
| oop:
I d a, (de) ; ch2 source byte
adc a, (hl) ; addchl byte
| d (hl), a ; storeresult to chl address
inc hi ; increment chl pointer
inc de ; increment ch2 pointer
dj nz | oop ; do 8 bytes
; chl now pointsto 64 bit result

#endasm

}

The keywords debug and nodebug can be placed on the same line as#asm Assembly code
blocks are nodebug by default. This saves space and unnecessary calls to the debugger kernel.

All blocks of assembly code within a C function are assembled in nodebug mode. The only excep-
tion to thisiswhen ablock of assembly code is explicitly marked with debug. Any blocks
marked debug will be assembled in debug mode even if the enclosing C function is marked
nodebug.

Chapter 11: Using Assembly L anguage 115

11.1.2 Embedded C Syntax
A C statement may be placed within assembly code by placing a“c” in column 1. Note that which-
ever registers are used in the embedded C statement will be changed.

#asm

I ni t Val ues: :

c start _tinme = O;

c counter = 256;
ret

#endasm

11.1.3 Setting Breakpoints in Assembly

Starting with Dynamic C version 7.20, there are two ways to enable breakpoint support in a block
of assembly code.

One way isto explicitly mark the assembly block asdebug (the default conditionisnodebug).
This causes the insertion of “rst 0x28" instructions between each assembly instruction. These rst
0x28 instructions may cause jump relative (i.e., j r) instructionsto go out of range, but this prob-
lem can be solved by changing the relative jump (j r) to an absolute jump (j p).

The other way to enable breakpoint support in ablock of assembly codeisto add a C statement

before the desired assembly instruction. Note that the assembly code must be contained in a debug
C function in order to enable C code debugging. Below is an example.

debug dummyfunction() {
#asm
function::

| abel :
c ; /1 addline of C code to permit a breakpoint before jJump relative
jr nc, |abel

ret
#endasm

}

NOTE: Single stepping through assembly code is always allowed if the assembly
window is open.

116 Dynamic C User’s Manual

11.2 Assembler and Preprocessor

The assembler parses most C language constant expressions. A C language constant expression is one
whose value is known at compile time. All operators except the following are supported:

Table 11-18. Operators Not Supported By The Assembler

Oper at or Synbol |Oper at or Descri ption
?: conditional
[] array index
dot
-> pointsto
* dereference

11.2.1 Comments
C-style comments are allowed in embedded assembly code. The assembler will ignore comments
beginning with

; — text from the semicolon to the end of lineisignored.

/| — text from the double forward slashes to the end of line isignored.
/* ... *| — text between slash-asterisk and asterisk-dash isignored.

11.2.2 Defining Constants
Constants may be created and defined in assembly code with the assembly language keyword db
(define byte). db should be followed immediately by numerical values and strings separated by
commas. For example, each of the following lines al define the string "ABC."

db 'A, 'B, 'C

db " ABC'

db 0x41, 0x42, 0x43

The numerical values and charactersin strings are used to initialize sequential byte locations.
If separate |& D space is enabled, assembly constants should either be put in their own assembly
block with the const keyword or be donein C.

#asm const
myr oot const ant s: :
db 0x40, 0x41, 0x42
#endasm

or

const char nyrootconstants[] = {‘\x40", ‘\x41, ‘\x42'}

Chapter 11: Using Assembly L anguage 117

If separate |& D space is enabled, db places bytesin the base segment of the data space when itis
used withconst . If theconst keyword is absent, i.e.,

#asm
myr oot const ant s: :
db 0x40, O0x41, 0x42
#endasm

the bytes are placed somewhere in the instruction space. If separate 1& D space is disabled (the
default condition), the bytes are placed in the base segment (aka, root segment) interspersed with
code.

The assembly language keyword dw defines 16-bit words, least significant byte first. The keyword
dw should be followed immediately by numerical values:

dw 0x0123, OxFFFF, xyz

This example defines three constants. The first two constants are literals, and the third constant is
the address of variablexyz.

The numerical valuesinitialize sequential word locations, starting at the current code address.

11.2.3 Multiline Macros

The Dynamic C preprocessor has a special feature to allow multiline macrosin assembly code.
The preprocessor expands macros before the assembler parses any text. Putting a$\ at the end of
alineinsertsanew linein the text. Thisonly works in assembly code. Labels and comments are
not allowed in multiline macros.

#defi ne SAVEFLAG $\

I d a,b 3%\

push af $\

pop bc
#asm

ld b, 0x32

SAVEFLAG
#endasm

118 Dynamic C User’s Manual

11.2.4 Labels

A label is aname followed by one or two colons. A label followed by asingle colonislocal,
whereas one followed by two colonsis global. A local 1abel is not visible to the code out of the
current embedded assembly segment (i.e., code before the #as mor after the #endasmdirective).

Unlessit isfollowed immediately by the assembly language keyword equ, the label identifies the
current code segment address. If the [abel isfollowed by equ, the label “equates’ to the value of
the expression after the keyword equ.

Because C preprocessor macros are expanded in embedded assembly code, Z-World recommends
that preprocessor macros be used instead of equ whenever possible.

11.2.5 Special Symbols
Thistable lists special symbolsthat can be used in an assembly language expression.

Table 11-19. Special Assembly-Language Symbols

Symbol Description

Indicates the amount of stack space (in bytes) used for stack-

@sP based variables. This does not include arguments.

Evaluates the offset from the frame reference point to the
@RETVAL stack space reserved for thest r uct function returns. See
Section 11.4.1.1 on page 123 for more information.

Determines the next reference address of avariable plus it

@-ENGTH size.

11.2.6 C Variables

C variable names may be used in assembly language. What a variable name represents (the value
associated with the name) depends on the variable. For aglobal or static local variable, the name
represents the address of the variable in root memory. For an aut o variable or formal argument,
the variable name represents its own offset from the frame reference point.

The name of a structure element represents the offset of the element from the beginning of the
structure. In the following structure, for example,

struct s {
int x;
int y;
int z;
}s

the embedded assembly expression s+x evaluatesto 0, s+y evaluatesto 2, and s+z evaluates to
4, regardless of where structure s may be.

The following list of processor register names are reserved and may not be used as C variable
namesinassembly: A,B,C,D, E,F H, L, AF, HL, DE, BC, IX, lY, SP, PC, XPC, IPIIR and EIR.
Both upper and lower case instances are reserved.

Chapter 11: Using Assembly L anguage 119

In nested structures, offsets can be composite, as shown here.

struct s {
int Xx; [l s+x=0
struct af /[l s+a=2
i nt b; /] a+b=0s+a+b=2
int c; /|l a+c=2s+a+c=4
}s
}s

11.3 Stand-Alone Assembly Code

A stand-alone assembly function is one that is defined outside the context of a C language func-
tion. Before Dynamic C version 7.25, stand-al one assembly functions were always placed in root
memory.

A stand-alone assembly function has no aut o variables and no formal parameters. It can, how-
ever, have arguments passed to it by the calling function. When a program calls afunction from C,
it putsthefirst argument into aprimary register. If the first argument has one or two bytes (i nt ,
unsigned int, char, pointer),theprimary registerisHL (with register H containing
the most significant byte). If the first argument has four bytes (I ong, unsi gned | ong,

f | oat), the primary register is BC:DE (with register B containing the most significant byte).
Assembly-language code can use the first argument very efficiently. Only the first argument is put
into the primary register, while all arguments—including the first, pushed last—are pushed on the
stack.

C function values return in the primary register, if they have four or fewer bytes, either in HL or
BC.DE.

Assembly language allows assumptions to be made about arguments passed on the stack, and auto
variables can be defined by reserving locations on the stack for them. However, the offsets of such
implicit arguments and variables must be kept track of. If afunction expects arguments or needs to
use stack-based variables, Z-World recommends using the embedded assembly techniques
described in the next section.

120 Dynamic C User’s Manual

11.3.1 Stand-Alone Assembly Code in Extended Memory

Starting with Dynamic C 7.25, stand-alone assembly functions may be placed in extended memory
by adding the xmemkeyword as a qualifier to #asm as shown below. Care needs be taken to
make sure that branch instructions do not jump beyond the current xmem window. To help prevent
such bad jumps, the compiler limits xmem assembly blocks to 4096 bytes. Code that branches to
other assembly blocks in xmem should alwaysusel jporl cal | .

#asm xmem
mai n: :

lcall fcn_in_ xmem
I ret

#endasm

#asm xmem

fecn_ in_xnmem:

I ret

#endasm

11.3.2 Example of Stand-Alone Assembly Code
The stand-alone assembly function f oo() can be called from a Dynamic C function.

int foo (int); /1 A function prototype can be declared for stand-alone
/1 assembly functions, which will cause the compiler
/'] to perform the appropriate type-checking.
mai n() {
int i,j;
i =1;
j=foo(i);
}
#asm
foo::

Id hl,2 /1 Thereturn value expected by nai n() isput
ret /1 inHL just beforef oo() returns
#endasm

The entire program can be written in assembly.
#asm
mai n: :

ret
#endasm

Chapter 11: Using Assembly L anguage 121

11.4 Embedded Assembly Code

When embedded in a C function, assembly code can access arguments and local variables (either
aut o or st at i ¢) by name. Furthermore, the assembly code does not heed to manipulate the
stack because the functions pr ol og and epi | og aready do so.

11.4.1 The Stack Frame

The purpose and structure of a stack frame should be understood before writing embedded assem-
bly code. A stack frame is a run-time structure on the stack that provides the storage for al aut o
variables, function arguments and the return address for a particular function. If the IX register is
used for aframe reference pointer, the previous value of | X isalso kept in the stack frame. The fol-
lowing figure shows the general appearance of a stack frame.

Stack Frame

<«———8SP

= Last Auto Variable -

o

Optional — °

| 0 -

— First Auto Variable -

< Frame Reference
Point

Optional — IX Register —

Return Address

First Parameter
— (pushed last) -
: L o _
Optional .

| o .
— Last Parameter - (stack grows down)
(pushed first)

Lower Addresses

; | Structure Return
Optional B Space _ Higher Addresses

Figure 4. General Appearance of Assembly Code Stack Frame

The return address is always necessary. The presence of auto variables depends on the function
definition. The presence of arguments and structure return space depends on the function call.
(The stack pointer may actually point lower than the indicated mark temporarily because of tem-
porary information pushed on the stack.)

The shaded areain the stack frame is the stack storage alocated for aut o variables. The assem-
bler symbol @5P represents the size of this area.

122 Dynamic C User’s Manual

11.4.1.1 The Frame Reference Point

The frame reference point is alocation in the stack frame that immediately follows the function’s
return address. The I X register may be used as a pointer to thislocation by putting the keyword
usei x before the function, or the request can be specified globally by the compiler directive
#usei x. Thedefaultis#nousei x. If the I X register is used as aframe reference pointer, its pre-
vious valueis pushed on the stack after the function’s return address. The frame reference point
moves to encompass the saved | X value.

Chapter 11: Using Assembly L anguage 123

11.4.2 Embedded Assembly Example

The purpose of the following sample program, asmil. c, isto show the different waysto access
stack-based variables from assembly code.

void func(char ch, int i, long |g);

mai n() {
char ch;
int i;
long |g;
ch = 0x11;

i = 0x2233;
Il g = 0x44556677L;

func(ch,i,lqg);

}
void func(char ch, int i, long Ig){
auto int x;
auto int z;
X = 0x8888;
z = 0x9999;
#asm
/1 @SP+i givesthe offset of i from the stack frame on entry.
/1 Onthe Z180, thisishow HL isloaded with the valueini .
/1 (Theassembler combinesi and @SP into one constant.)
Id hl , @BP+i
add hl,sp
I d hi, (hl)
/| Onthe Rabbit, this code does the same:
I d hl, (sp+@BP+i)
/1 Thisworksif f unc() isusex, however, if the I X register
has been changed by the user code, this code will fail.
I d hl, (i x+i)
/1 This method worksin either case because the assembler
/| adjusts the constant @SP, so changing the function to
/1 nouseix with the keyword nousei x, or the compiler
/[directive#nousei x will not break the code. But, if SP has
/1 been changed by user code, (e.g. a push) it won't work.
I d hl, (sp+@P+l g+2)
I d b, h
| d c, L
Id hl, (sp+@P+l g)
ex de, hl
#endasm
}

124

Dynamic C User’s Manual

11.4.2.1 The Disassembled Code Window

A program may be debugged at the assembly level by clicking the Assemb radio button on
Dynamic C'stoolbar to open the Disassembled Code window. Single stepping and breakpoints are
supported in this window. When the Disassembled Code window is open, single stepping occurs
instruction by instruction rather than statement by statement. The figure below shows the Regis-
ters, Stack and Disassembled Code windows for the example code, asnil. c, just before the func-
tion call.

d Dynamic C Dist. ¥ .05P

File Edt Comple Bun Ilnspect Optionz “Window Help

] 28)%2| | mm| S¢S

Edit |Cumpilt:| Assamhl Regs | £

15c8 22F1cl 1d (z1iFl) ,hl 13 ﬂ

150 B e 2oh ;
15ea 117766 14 de, 6677 € p3Fs: 0011]
15cd 015544 14 be, 4455 6 p3FT7. 3333
1540 EDS3IEDC1 1d (C1ED) ,de 153 paro: 6677
1544 ED43EFCL 14 (C1EF) ,be 13 parp: 4455
15d8 EF rat 28h 5 p3FD: 1600
1549 EDSEEDC1 1d de, (C1ED) 13 parF: 0OSEF
15dd ED4EEFC1 1d be, [C1EF) 13 papi: z1ip2
15e1 5 push be 10 pap3: opaa

15ei D5 push de 10
1523 ZAF1Cl 1d hl, (C1F1) 11
156 ES push hl 10
1527 ZAF3C1 1d hl, (C1F3) 11
15ea 2600 1d h, 00 .

isec 55 puch bl 10
| 15ed cDFC1S eall fune 12 T -
15f0 00 nap 2 Pr@15ed -J
15f1 2708 add =p, 08 4 = wpe bD
15f3 EF rst 28h 8 11 AF' 0000
1314 DY XX 2 'Bc 4455 BC' 0000
15f5 210000 1d hl,0000 B pE 6677 DE' 0000
15f8 CD3d1l6 call rspixfin 12 HL, 0011 ®HL' DIFD
13tk 5 ret 8 1z o0oo00 Iy 15EC
15fe DO 2XX 2 {5ED SF D3FS
15fd 21FCFF 1d hl,FFFc 3
1600 CDiAle call sspixfin 12
1e03 EF rst 28h
1604 218888 1d hl,888%8 B
1607 D40z 1d [sp+2),hl 11
_

Figure 5. Registers, Stack and Disassembled Code Windows

Chapter 11: Using Assembly L anguage 125

11.4.2.2 Instruction Cycle Time

The Disassembled Code window shows the memory address on the far left, followed by the code
bytes for the instruction at the address, followed by the mnemonics for the instruction. The last
column shows the number of cycles for the instruction, assuming no wait states. The total cycle
time for a block of instructionswill be shown at the lowest row in the block in the cycle-time col-
umn, if that block is selected and highlighted with the mouse. The total assumes one execution per
instruction, so the user must take looping and branching into consideration when evaluating exe-
cution times.

11.4.3 Local Variable Access

Accessing static local variablesis simple because the symbol evaluates to the address directly. The
following code shows, for example, how to load static variabley into HL.

Id hl,(y) ; load hl with contentsof y

11.4.3.1 Using the IX Register

Access to stack-based local variablesisfairly inefficient. The efficiency improvesif IX isused as
aframe pointer. The arguments will have slightly different offsets because of the additional two
bytes for the saved I X register value.

Now, access to stack variablesis easier. Consider, for example, how to load ch into register A.

Id a,(ix+ch) ; a < ch

The IX+offset load instruction takes 9 clock cycles and opcode is three bytes. If the program needs
to load afour-byte variable such as| g, the IX+offset instructions are as follows.

[d hl, (ix+l g+2) ; loadLSBof | g

ld b, h ; longs are normally stored in BC:DE
Id c, L

Id hl, (ix+lg) ; load MSB of | g

ex de, hl

Thistakes atotal of 24 cycles.

The offset from IX isasigned 8-bit integer. To use | X+offset, the variable must be within +127 or
—128 bytes of the frame reference point. The @P method is the only method for accessing vari-
ables out of this range. The @P symbol may be used even if I1X isthe frame reference pointer.

126 Dynamic C User’s Manual

11.4.3.2 Functions in Extended Memory

If the xmemkeyword is present, Dynamic C compiles the function to extended memory. Otherwise,
Dynamic C determines where to compile the function. Functions compiled to extended memory have a 3-
byte return address instead of a 2-byte return address.

Because the compiler maintains the offsets automatically, thereis no need to worry about the
change of offsets. The @BP approach discussed previously as a means of accessing stack-based
variables works whether a function is compiled to extended memory or not, as long as the C-lan-
guage names of local variables and arguments are used.

A function compiled to extended memory can use IX as aframe reference pointer aswell. This
adds an additional two bytes to argument offsets because of the saved I X value. Again, the I X +off-
set approach discussed previously can be used because the compiler maintains the offsets automat-
ically.

11.5 C Calling Assembly

Dynamic C does not assume that registers are preserved in function calls. In other words, the func-
tion being called need not save and restore registers.

11.5.1 Passing Parameters

When a program calls afunction from C, it puts the first argument into HL (if it has one or two
bytes) with register H containing the most significant byte. If the first argument has four bytes, it
goesin BC:DE (with register B containing the most significant byte). Only the first argument is
put into the primary register, while all arguments—including the first, pushed last—are pushed on
the stack.

11.5.2 Location of Return Results

If a C-callable assembly function is expected to return aresult (of primitive type), the function
must pass the result in the “primary register.” If theresultisani nt, unsi gned i nt, char,
or apointer, return the result in HL (register H contains the most significant byte). If theresultisa
| ong, unsigned | ong, orfl oat, returntheresultin BCDE (register B contains the most
significant byte). A C function containing embedded assembly code may, of course, useaC

r et ur n statement to return avalue. A stand-alone assembly routine, however, must load the pri-
mary register with the return value before ther et instruction.

Chapter 11: Using Assembly L anguage 127

11.5.2.1 Returning a Structure

In contrast, if afunction returns a structure (of any size), the calling function reserves space on the
stack for the return value before pushing the last argument (if any). Dynamic C functions contain-
ing embedded assembly code may use aC r et ur n statement to return avalue. A stand-alone
assembly routine, however, must store the return value in the structure return space on the stack
before returning.

Inline assembly code may access the stack area reserved for structure return values by the symbol
@RETVAL, which is an offset from the frame reference point.

The following code shows how to clear field f 1 of a structure (as areturned value) of type
struct s.

t ypedef struct ss {

int fO; [/ firstfied
char f1; /| second field
}oxyz;

Xyz ny_struct;
my_struct = func();

xyz. .f.unc(){

#asm
Xor a ; Clear register A.
Id hl, @P+@RETVAL+ss+f 1 ; hl < theoffset from SPto the
: flfield of the returned structure.
add hl, sp ; hl now pointsto f1.
Id (hl), a ; load a(now 0) to f1.
#endasm
}

It iscrucial that @P be added to @GRETVAL because @GRETVAL is an offset from the frame refer-
ence point, not from the current SP.

128 Dynamic C User’s Manual

11.6 Assembly Calling C

A program may call a C function from assembly code. To make this happen, set up part of the
stack frame prior to the call and “unwind” the stack after the call. The procedure to set up the stack

frame is described here.

1

o g~ w

7.

Save al registersthat the calling function wants to preserve. A called C function may change
the value of any register. (Pushing registers values on the stack is a good way to save their val-
ues.)

If the functionreturnisast r uct , reserve space on the stack for the returned structure. Most
functions do not return structures.

Compute and push the last argument, if any.

Compute and push the second to last argument, if any.

Continue to push arguments, if there are more.

Compute and push the first argument, if any. Also load the first argument into the primary reg-
ister (HL fori nt, unsi gned int, char,andpointers, or BCDE for| ong,
unsi gned | ong, andf | oat)if itisof aprimitive type.

| ssue the call instruction.

The caller must unwind the stack after the function returns.

1.

2.
3.
4,

Recover the stack storage allocated to arguments. With no more than 6 bytes of arguments, the
program may pop data (2 bytes at time) from the stack. Otherwise, it is more efficient to com-
pute a new SP instead. The following code demonstrates how to unwind arguments totaling
36 bytes of stack storage.

; Notethat HL is changed by this code!
Useex de, hl tosave HL if HL hasthe return value

;. ex de, hl ; save HL (if required)
Id hl, 36 ; want to pop 36 bytes
add hl, sp ; compute new SP value
Id sp,hl ; put value back to SP

;. ex de, hl ; restore HL (if required)

If the function returnsast r uct , unload the returned structure.
Restore registers previously saved. Pop them off if they were stored on the stack.
If the function return was not ast r uct , obtain the returned value from HL or BCDE.

Chapter 11: Using Assembly L anguage 129

11.7 Interrupt Routines in Assembly

Interrupt Service Routines (ISRs) may be written in Dynamic C (declared with the keyword

i nt errupt). But since an assembly routine may be more efficient than the equivalent C func-
tion, assembly is more suitable for an ISR. Even if the execution time of an ISR is not critical, the
latency of one ISR may affect the latency of other ISRs.

Either stand-alone assembly code or embedded assembly code may be used for ISRs. The benefit
of embedding assembly code in a C-language ISR is that there is no need to worry about saving
and restoring registers or reenabling interrupts. The drawback is that the C interrupt function does
save al registers, which takes some amount of time. A stand-alone assembly routine needs to save
and restore only the registers it uses.

11.7.1 Steps Followed by an ISR

The CPU loads the I P register with the priority of the interrupt before the ISR is called. This effec-
tively turns off interrupts that are of the same or lower priority. Generally, the ISR performs the
following actions:

1. Saveall registersthat will be used, i.e. push them on the stack. Interrupt routines writtenin C
save all registers automatically. Stand-al one assembly routines must push the registers explic-
itly.

2. Determine the cause of the interrupt. Some devices map multiple causes to the same interrupt
vector. An interrupt handler must determine what actually caused the interrupt.

3. Remove the cause of the interrupt.

4. If aninterrupt has more than one possible cause, check for all the causes and remove all the
causes at the same time.

5. When finished, restore registers saved on the stack. Naturally, this code must match the code
that saved the registers. Interrupt routines written in C perform this automatically. Stand-alone
assembly routines must pop the registers explicitly.

6. Restoretheinterrupt priority level so that other interrupts can get the attention of the CPU.
ISRswrittenin C restore the interrupt priority level automatically when the function returns.
However, stand-alone assembly | SRs must restore the interrupt priority level explicitly by call-
ingi pres.

Theinterrupt priority level must be restored immediately before the return instructionsr et or
reti.If theinterrupts are enabled earlier, the system can stack up the interrupts. This may or
may not be acceptable because there is the potential to overflow the stack.

N

Return. There are three types of interrupt returns: ret, reti,andretn.

130 Dynamic C User’s Manual

11.7.2 Modifying Interrupt Vectors

Prior to Dynamic C 7.30, interrupt vector code could be modified directly. By reading the internal
and external interrupt registers, 1R and EIR, the location of the vector could be calculated and
then written to because it was located in RAM. This method will not work if separate 1&D spaceis
enabled because the vectors must be located in flash. To accommodate separate 1& D space, the
way interrupt vectors are set up and modified has changed dightly. Please see the Rabbit 3000
Designer’s Handbook for detailed information about how the interrupt vectors are set up. This sec-
tion will discuss how to modify the interrupt vectors after they have been set up.

For backwards compatibility, “modifiable” vector relays are provided in RAM. In C, they can be
accessed through the SetVectIntern and SetVectExtern functions. In assembly, they are accessed
through | NTVEC BASE + <vector offset> or XI NTVEC BASE + <vector offset>. The values for
<vector offset> are definedin sysi o. | i b, and arelisted here for convenience.

Table 11-20. Internal Interrupts and their offset from | NTVEC_BASE

PERI ODI C_OFS SERA OFS
RST10_OFS SERB_OFS
RST18_COFS SERC_OFS
RST20_OFS SERD_OFS
RST28_COFS SERE_OFS
RST38_COFS SERF_OFS
SLAVE_COFS QUAD_OFS

TI MERA_OFS | NPUTCAP_OFS
TI MERB_OFS

Table 11-21. External Interrupts and their offset from XI NTVEC_BASE

EXTO_OFS
EXT1_OFS

Chapter 11: Using Assembly L anguage 131

The following example from RS232. LI Billustrates the new |& D space compatible way of mod-
ifying interrupt vectors.

The following code fragment to set up the interrupt service routine for the periodic interrupt from
Dynamic C 7.25 is not compatible with separate |& D space:
#asm xmem
; *** Old method ***

Id a,iir ; get the offset of interrupt table
Id h,a
Id I, 0x00
Idiy,hl
Id (iy), 0c3h ; jpinstruction entry
inc iy
Id hl,periodic_isr . set serviceroutine
Id (iy), hl
#endasm

The following code fragment shows an |& D space compatible method for setting up the ISR for
the periodic interrupt in Dynamic C 7.30:

#asm xnmem

;*** New method ***
Id a, 0Oxc3 ; jp instruction entry
Id hl, periodic_isr ; Set serviceroutine
I d (I NTVEC BASE+PERI ODI C_ OFS), a ; writetotheinterrupt table
| d (I NTVEC BASE+PERI ODI C_OFS+1), hl
#endasm

When separate 1& D spaceis enabled, | NTVEC _BASE pointsto a proxy interrupt vector tablein
RAM that is modifiable. The code above assumes that the actual interrupt vector table pointed to
by the lIR is set up to point to the proxy vector. When separate |& D space is disabled,

| NTVEC_BASE and the IR point to the same location. The code above is an example only, the
default configration for the periodic interrupt is not modifiable.

132 Dynamic C User’s Manual

The following example from RS232. LI Billustrates the new |& D space compatible way of mod-

ifying interrupt vectors.

The following function ser Acl ose() from Dynamic C 7.25, is not compatible with separate

& D space:

#asm xnem

ser Acl ose: :
Id a,iir ; hl=spai sr_start, de={iir,0xe0}
Id h,a
Id I, 0xcO
Id a, Oxc9 ; ret infirst byte
i pset 1
Id (hl), a
| d a, 0x00 ; disableinterrupts for port

I d (SACRShadow), a
ioi Id (SACR), a

i pres
I ret

#endasm

Thisversion of ser Acl ose() in Dynamic C 7.30 is compatible with separate |&D space:

#asm xmem

ser Acl ose: :
|d a, 0xc9
i pset
Id (I NTVEC BASE + SERA OFS), a ; ret infirstbyteof spai sr_start
Id a, 0x00 ; disableinterrupts for port

| d (SACRShadow), a

ioi Id (SACR), a

i pres
I ret

#endasm

Chapter 11: Using Assembly L anguage 133

If separate |& D space is enabled, using the modifiable interrupt vector proxy in RAM adds about
80 clock cycles of overhead to the execution time of the ISR. To avoid that, the preferred way to
set up interrupt vectorsis to use the new keyword, i nt er r upt _vect or, to set up the vector
location at compile time.

When compiling with separate 1& D space, modify applicationsthat use Set Vect I nt ern(),
Set Vect Ext er n2000() or Set Vect Ext er n3000() tousei nt errupt _vect or
instead.

Thefollowing code, from/ Sanpl es/ TI MERB/ TI MER_B. C, illustrates the change that should
be made.

voi d nain()

{

#if _ SEPARATE_| NST_DATA _

interrupt _vector tinmerb_intvec tinerb_isr;
#el se

Set Vect I ntern(0x0B, tinmerb_isr); /1 setuplISR
#endi f

}

Ifi nterrupt vector isused multipletimesfor the same interrupt vector, the last one
encountered by the compiler will override all previous ones.

i nterrupt _vect or issyntactic sugar for using the origin directives and assembly code. For
example, theline:

interrupt_vector tinerb_intvec tinmerb_isr;

isequivalent to:
#rcodorg timerb_intvec apply

#asm
jp tinmerb_isr
#endasm

#rcodorg rootcode resune

134 Dynamic C User’s Manual

The following table lists the defined interrupt vector names that may be used with
i nt errupt _keywor d, aswell astheir corresponding ISRs.

Table 12. Interrupt Vector and ISR Names

Interrupt Vector Name

ISR Name

Default Condition

periodi c_i ntvec

periodic_isr

Fast and nonmodifiable

rst10_intvec

User defined name

User defined

rst18_intvec

rst20_intvec

rst28_intvec

These interrupt vectors and their 1SRs should never be altered
by the user because they are reserved for the debug kernel.

rst38_intvec

User defined name

User defined

sl ave_intvec sl ave_i sr Fast and nonmodifiable
timera_intvec User defined name User defined
timerb_intvec User defined name User defined

sera_intvec?

DevVat eSeri al | SR

Fast and nonmodifiable

i nput cap_i ntvec

User defined name

guad_i ntvec

gd_isr

ext O_i ntvec

User defined name

extl intvec

User defined name

spa_i sr User defined
serb_intvec spb_i sr
serc_intvec spc_i sr
serd_i ntvec spd_i sr
sere_intvec spe_i sr
serf _intvec spf _isr User defined

a. Please note that this ISR shares the same interrupt vector as DeviVat eSer i al | SR. Using
spa_i sr precludes Dynamic C from communicating with the target.

Chapter 11: Using Assembly L anguage

135

11.8 Common Problems

Unbalanced stack. Ensure the stack is “baanced” when aroutine returns. In other words, the SP
must be same on exit as it was on entry. From the caller’s point of view, the SP register must be
identical before and after the call instruction.

Using the @P approach after pushing temporary information on the stack. The @P
approach for inline assembly code assumes that SP points to the low boundary of the stack frame.
This might not be the case if the routine pushes temporary information onto the stack. The space
taken by temporary information on the stack must be compensated for.

The following code illustrates the concept.

SP still points to the low boundary of the call frame
push hi ; saveHL

SP now two bytes below the stack framel!

|d hl, @P+x+2 ; Add 2 to compensate for altered SP
add hl, sp ; compute as normal

Id a, (hl) ; get the content

pop hl ; restore HL

SP again points to the low boundary of the call frame

Registersnot preserved. In Dynamic C, the caller is responsible for saving and restoring all reg-
isters. An assembly routine that calls a C function must assume that all registers will be changed.

Unpreserved registersin interrupt routines cause unpredictable and unrepeatable problems. In con-
trast to normal functions, interrupt functions are responsible for saving and restoring all registers
themselves.

136 Dynamic C User’s Manual

12. Keywords

A keyword isareserved word in C that represents a basic C construct. It cannot be used for any
other purpose. There are many keywords, and they are summarized in the following pages.

abandon

Used in single-user cofunctions, abandon{} must bethefirst statement in the body of the co-
function. The statements inside the curly braces will be executed only if the cofunctionisforc-
ibly abandoned and if acall tol oophead() ismadein mai n() before calling the single-
user cofunction. See Sanpl es\ Cof unc\ Cof aband. c for an example of abandonment
handling.

abort

Jumps out of a costatement.

for(;;){

costate {

if(condition) abort;

Chapter 12: Keywords 137

align

Used in assembly blocks, the al i gn keyword outputs a padding of nops so that the next instruc-
tion to be compiled is placed at the boundary based on VAL UE.

#asm
al i gn <VALUE>
#endasm
VALUE can have any (positive) integer expression or the specia operandseven and odd. The

operand even aligns the instruction on an even address, and odd on an odd address. |nteger
expressions align on multiples of the value of the expression.

Some exampl es:

align odd ; Thisaignson the next odd address

align 2 ; Aligns on a 16-bit (2-byte) boundary

align 4 ; Aligns on a 32-bit (4-byte) boundary

al i gn 100h ; Alignsthe code to the next addressthat is evenly divisible by 0x100

al i gn sizeof (int)+4 ; Complex expression, involving si zeof and integer constant

Note that integer expressions are treated the same way as operand expressions for other asm oper-
ators, so variable labels are resolved to their addresses, not their values.

al ways_on

The costatement is always active. (Unnamed costatements are always on.)

anynmem

Allows the compiler to determine in which part of memory afunction will be placed.

anynem i nt func(){

}

#menmmap anynem
#asm anynmem

#endasm

138 Dynamic C User’s Manual

asm

Usein Dynamic C code to insert one assembly language instruction. If more than one assembly
instruction is desired use the compiler directive #asminstead.

int func() {
int x,vy, z;

asmld hl, 0x3333

aut o
A functions’'slocal variableislocated on the system stack and exists aslong asthe function call
does.

int func(){
auto float x;

bbr am

Identifiesavariableto be placed into asecond dataareareserved for battery-backed RAM. Gen-
eraly, the battery-backed RAM is attached to CS1 due to the low-power requirements. In the
case of areset or power failure, the value of abbr amvariableis preserved, but not atomically
likewith pr ot ect ed variables. No software check is possible to ensure that the RAM is bat-
tery-backed. This requirement must be enforced by the user.

If interested, please see the Rabbit 3000 Microprocessor Designer’ s Handbook for information
on how the second data areais reserved.

br eak

Jumps out of aloop, i f, or case statement.

whi | e(expression){

if(condition) break;

}
switch(expression){
case 3:
br eak;

Chapter 12: Keywords

139

Use in assembly block to insert one Dynamic C instruction.

#asm

I ni t Val ues: :

c start_time = 0;

¢ counter = 256;
| d hl , Oxao0;
ret

#endasm

Identifies the next casein aswi t ch statement.

swi t ch(
case

case

case

expression){
const:

const:

const:

|

Declares avariable or array element as an unsigned 8-bit character.

char c,
int i;

X, *string = "hello";

c = (char)i; /| type casting operator

Dynamic C User’s Manual

const

This keyword declares that a value will be stored in flash, thus making it unavailable for mod-
ification. const isatype quaifier and may be used with any static or global type specifier
(char,int,struct,etc.). Theconst qualifier appears before the type unlessit is modify-
ing a pointer. When modifying a pointer, the const keyword appears after the **’.

In each of thefollowing examples, if const was missing the compiler would generate atrivia
warning. Warningsfor const can be turned off by changing the compiler options to report se-
rious warnings only. Note that const is not currently permitted with return types, automatic
locals or parameters and does not change the default storage class for cofunctions.

Example 1:

/1 ptr_to_x isaconstant pointer to an integer
int Xx;
int * const cptr_to_x = &x;

Example 2:
/1 cptr_to_i isaconstant pointer to aconstant integer
const int i = 3;
const int * const cptr_to_ i = & ;
Example 3:

/| ax isaconstant 2 dimensional integer array
const int ax[2][2] = {{2,3}, {1,2}};

Example 4:

struct rec {
int a;
char b[10];
}s
[/ zed isaconstant struct
const struct rec zed = {5, “abc”};

Example 5:
/] cptr isaconstant pointer to an integer
typedef int * ptr_to_int;
const ptr_to_int cptr = & ;
/| thisdeclaration is equivalent to the previous one
int * const cptr = & ;

Chapter 12: Keywords

141

Skip to the next iteration of aloop.

whi | e(expression){
if(nothing to do) continue;

|

Indicates the beginning of a costatement.

costate [nane [state]] {

}

Name can be absent. If nameispresent, st at e canbeal ways_onori nit_on. Ifstate
is absent, the costatement isinitialy off.

Indicates a function isto be compiled in debug mode. Thisis the default case for Dynamic C
functions with the exception of pure assembly language functions.

Library functions compiled in debug mode can be single stepped into, and breakpoints can be
set in them.

debug int func(){
}

#asm debug

#endasm

142 Dynamic C User’s Manual

Identifies the default case in a switch statement. The default case is optional. It executes only
when the switch expression does not match any other case.

switch(expression){
case const 1:

case const 2:

def aul t:

|

Indicates the beginning of ado loop. A do loopstests at the end and executes at least once.
do

whi | e(expression);
The statement must have a semicolon at the end.

Indicatesafase branchof ani f statement

i f(expression)

st at enent /1 executeswhen expr essi on istrue
el se

st at enent /1 executeswhen expr essi on isfase

Chapter 12: Keywords 143

enum

Defines alist of named integer constants:

enum f oo {

whi t e, [/ defaultisO for thefirst item
bl ack, [/ will bel
br own, {1 will be2
spotted = -2, /1 will be-2
stri ped, /1 will be-3

b
Anenumcan bedeclaredinlocal or global scope. Thetagf oo isoptional; but it allowsfurther
declarations:

enum foo rabbits;

Thiskeyword is available starting with Dynamic C version 7.20. To see a colorful sample, run
/ sanmpl es/ enum c.

extern

Indicates that a variable is defined in the BIOS, later in alibrary file, or in another library file.
Its main use is in module headers.

[*** Begi nHeader ..., var */
extern int var;

[*** EndHeader */
int var;

144 Dynamic C User’s Manual

firsttine

firsttimeinfront of afunction body declares the function to have an implicit * CoDat a
parameter asthefirst parameter. This parameter should not be specified in the call or the proto-
type, but only in the function body parameter list. The compiler generates the code to automat-
ically passthe pointer to the CoDat a structure associated with the costatement from which the
callismade. A firsti me function can only be called from inside of a costatement, cofunc-
tion, or dice statement. The Del ayTi ck function from COSTATE. LI B below isan example
of af i rstti me function.

firsttime nodebug int Del ayTi cks(CobData *pfb, unsigned int
ticks){
if(ticks==0) return 1;
if(pfb->firsttinme){
fb->firstti ne=0;
[* savecurrent ticker */
f b->cont ent. ul =(unsi gned | ong) Tl CK_TI MER;

}
else if (TICK TIMER - pfb->content.ul >= ticks)
return 1;
return O;
}
fl oat

Declares variables, function return values, or arrays, as 32-bit IEEE floating point.

int func(){
float x, vy, *p;
float Pl = 3.14159265;

}

float func(float par){

}

f or

Indicatesthe beginning of af or loop. A f or loop hasaninitializing expression, alimiting ex-
pression, and a stepping expression. Each expression can be empty.

for(;;) { /1 anendlessloop
}
for(i =0; i <n; i++) { /1 counting loop
}

Chapter 12: Keywords 145

got o

Causes a program to go to alabeled section of code.

if(condition) goto RED;

RED:

Usegot o tojump forward or backward in aprogram. Never usegot o to jump into aloop body
or aswi t ch case. Theresults are unpredictable. However, it is possible to jump out of aloop
body or swi t ch case.

i f
Indicates the beginning of ani f statement.

if(tank _full) shut_off_water();

i f(expression){
statenents

}else if(expression){
statenents

}else if(expression){
statenents

}else if(expression){
statenents

}el sef
statenents
}

If one of the expressionsistrue (they are evaluated in order), the statements controlled by that
expression are executed.

Ani f statement canhavezeroor moreel sei f parts. Theel se isoptiona and executesonly
when noneof thei f or el se if expressionsare true (non-zero).

146 Dynamic C User’s Manual

init_on

The costatement isinitially on and will automatically execute the first timeit is encountered in
the execution thread. The costatement becomes inactive after it completes (or aborts).

i nt

Declaresvariables, function return values, or array elementsto be 16-bit integers. If nothing else
isspecified, i nt implies a 16-bit signed integer.

int i, j, *k; /| 16-bit signed
unsi gned int x; /1 16-bit unsigned
long int z; /1 32-bit signed
unsigned long int w, /1 32-bit unsigned
int funct (int arg){
}

I nterrupt

Indicates that afunction is an interrupt service routine. All registers, including aternates, are
saved when an interrupt function is called and restored when the interrupt function returns.
Writing ISRs in C is not recommended when timing is critical.

interrupt isr (){

}

An interrupt service routine returns no value and takes no arguments.

Chapter 12: Keywords 147

I nterrupt _vector

Sets up an interrupt vector at compile time. Thiskeyword is available starting with Dynamic C
version 7.30. It isintended for use with separate 1& D space.

i nterrupt_vector <INT_VECTOR NAME> <| SR_NAME>
/'] Set up an Interrupt Service Routine for Timer B

#asm
timerb_isr::
; | SR code
ret

#endasm

mai n() {
/1 Variables
/1 SetuplISR
interrupt_vector tinerb_intvec tinmerb_isr; // Compiletimesetup
/1 Code

}

i nt errupt _vect or overridesrun time setup. For run time setup, you would replace the
i nterrupt _vect or statement above with:
#rcodorg <I NT_VEC NAME> apply

#asm
| NTVEC RELAY_SETUP(tinmerb_intvec + Tl MERB_OFS)

#endasm
#rcodorg rootcode resune

Thisresultsin aslower interrupt (80 clock cycles are added), but ainterrupt vector can be mod-

ified at run time. Interrupt vectorsthat are set up using i nt er r upt _vect or arefast, but
can’'t be modified at run time since they are set at compile time.

| ong

Declaresvariables, function return values, or array elementsto be 32-bit integers. If nothing else
is specified, | ong impliesasigned integer.

long i, j, *k; /'l 32-bit signed
unsi gned long int w /1 32-bit unsigned

long funct (long arg){

}

148 Dynamic C User’s Manual

Identifiesthemai n function. All programs start at the beginning of themai n function. (mai n
isactualy not akeyword, but is afunction name.)

Indicates a function is not compiled in debug mode. Thisisthe default for assembly blocks.

nodebug int func(){

}

#asm nodebug
#endasm
See dso debug and directives#debug #nodebug.

Indicates that a function does not use the RST instruction for breakpoints.

norst void func(){

|

Indicates a function does not use the I X register as a stack frame reference pointer. Thisis the
default case.

nousei x void func(){

|

The null pointer. (Thisisactually amacro, not akeyword.) Sameas(void *) 0.

Chapter 12: Keywords 149

pr ot ect ed

An important feature of Dynamic C isthe ability to declare variables as protected. Such avari-
ableis protected against loss in case of a power failure or other system reset because the com-
piler generates code that creates a backup copy of a protected variable before the variable is

modified. If the system resetswhilethe protected variableisbeing modified, the variable’'sval-
ue can berestored when the system restarts. Battery-backed RAM isrequired for this operation.

A system that shares data among different tasks or among interrupt routines can find its shared
datacorrupted if aninterrupt occursin the middle of awriteto amultibyte variable (such astype
i nt orfl oat). The variable might be only partially written at its next use.

Declaring amultibyte variable shared means that changes to the variable are atomic, i.e., inter-
rupts are disabled while the variable is being changed.

Declaring avariable to be “protected” guards against system failure. This means that a copy of
thevariableismade beforeitismodified. If atransient effect such as power failure occurswhen
the variable is being changed, the system will restore the variable from the copy.

mai n() { :
protected int statel, state2, state3;

_sysi sSof t Reset 0); /| restore any protected variables

Thecdl to_sysl sSof t Reset checksto seeif the previous board reset was due to the com-
piler restarting the program (i.e. a“soft” reset). If so, then it initializes the protected variable
flagsand callssysReset Chai n() , afunction chain that can be used to initialize any protect-
ed variables or do other initialization. If the reset was due to a power failure or watchdog time-
out, then any protected variables that were being written when the reset occurred are restored.

return

Explicit return from afunction. For functions that return values, thiswill return the function re-
sult.

void func (){
i f(expression) return;

}

float func (int x){
float tenp;

return (temp * 10 + 1);

150 Dynamic C User’s Manual

r oot

Indicates a function isto be placed in root memory. This keyword is semantically meaningful
in function prototypes and produces more efficient code when used. Its use must be consi stent
between the prototype and the function definition.

root int func(){

}

#memmap root
#asm r oot

#endasm
segchain
Identifies a function chain segment (within a function).
int func (int arg){
int vec[10];

éééchai n _GLOBAL_I NI T{
for(i =0; i<10; i++){ vec[i] = 0; }
}

}

This example adds a segment to the function chain _GLOBAL_|I NI T. Using segchai n is
equivalent to usingthe #GLOBAL_| NI T directive. When this function chain executes, thisand
perhaps other segments elsewhere execute. The effect in thisexampleisto (re)initializevec.

shar ed
Indicatesthat changesto amulti-byte variable (such asaf | oat) areatomic. Interrupts are dis-
abled when the variable is being changed. Local variables cannot be shared.

shared float x, vy, z;
shared int j;

mai n() {
}
If i isashared variable, expressions of theformi ++ (ori = i + 1) constitute two atomic

referencesto variablei , aread and awrite. Be careful becausei ++ isnot an atomic operation.

Chapter 12: Keywords 151

Declares that avariable or array is short integer (16 bits). If nothing else is specified, short im-
plies a 16-bit signed integer.

short i, j, *k; /' 16-bit, signed
unsi gned short int w /'l 16-bit, unsigned
short funct (short arg){

|

Declares afunction to be optimized for size (as opposed to speed).

size int func (){

|

A built-infunction that returnsthe sizein bytesof avariable, array, structure, union, or of adata
type. Starting with Dynamic C 7.05, si zeof () can be used inside of assembly blocks.

int list[] ={ 10, 99, 33, 2, -7, 63, 217 };

X = sizeof (Iist); /1 xwill be assigned 14

Declares afunction to be optimized for speed (as opposed to size).
speed int func (){

}

152 Dynamic C User’s Manual

static

Declaresalocal variable to have a permanent fixed location in memory, as opposed to aut o,
where the variable exists on the system stack. Global variables are by definitionst ati c. Lo-
cal variablesare st at i ¢ by default, unlike standard C.

int func (){
int i /1 static by default
static float x; /'l explicitly static
}
struct

This keyword introduces a structure declaration, which defines atype.
struct {
int x;
int vy;

int z;
} thingl; /' definesthevariablet hi ngl to be astruct

struct speed{

int x;

int vy;

int z;
b /| declares astruct type named speed
struct speed thing2; /' definesthevariablet hi ng2 to be of type
speed

Structure declarations can be nested.

struct {
struct speed sl ow,

struct speed sl ower;
} tortoise; /| definesthevariablet or t oi se to be anested struct

struct rabbit {
struct speed fast;

struct speed faster;
b /' declares anested struct type named r abbi t

struct rabbit chips; /' definesthe variable chi ps to be of typer abbi t

Chapter 12: Keywords 153

swi tch

Indicates the start of aswi t ch statement.
switch(expression){
case const1:
break;
case const 2:
br eak;
case const 3:
br eak
def aul t

}

Theswi t ch statement may contain any number of cases. The constants of the case statements
arecompared withexpr essi on. If thereisamatch, the statementsfor that case execute. The
def aul t case, if itispresent, executesif none of the constants of the case statements match
expr essi on.

If the statementsfor acase donotincludeabr eak, r et ur n,cont i nue, or some means of
exiting the swi t ch statement, the cases following the selected case will also execute, regard-
less of whether their constants match the swi t ch expression.

t ypedef

This keyword provides away to create new names for existing data types.

t ypedef struct {

int x;

int vy;
} xyz; /| defines astruct type...
xXyz thing; /1 ...and athing of type xyz
t ypedef uint node; /1 meaningful type name

node master, slavel, slaveZ2;

154 Dynamic C User’s Manual

uni on

Identifiesavariablethat can contain objects of different typesand sizesat different times. Items
inauni on have the same address. The size of auni on isthat of itslargest member.

uni on {
int x;
float vy;
} abc; /1 overlaysafloat and ani nt

unsi gned

Declares avariable or array to be unsigned. If nothing elseis specified in a declaration,
unsi gned means 16-bit unsigned integer.

unsigned i, j, *k; /1 16-bit, unsigned
unsi gned int x; /1 16-bit, unsigned
unsi gned | ong w; /1 32-bit, unsigned
unsi gned funct (unsigned arg){

}

Valuesin a16-bit unsigned integer range from 0 to 65,535 instead of —32768 to +32767. Values
in an unsigned long integer range from 0 to 232 — 1.

usei x

Indicates that afunction uses the I X register as a stack frame pointer.

usei x void func(){

}

Seedsonousei x and directives #usei x #nousei X.

wai t f or

Used in a costatement, this keyword identifies a point of suspension pending the outcome of a
condition, completion of an event, or some other delay.

for(;;){
costate {
waitfor (input(l) == HGH);
}
\

Chapter 12: Keywords

155

wai t f or done
(wf d)

Thewai t f or done keyword can be abbreviated aswf d. Itispart of Dynamic C’'scooperative
multitasking constructs. Used inside a costatement or a cofunction, it executes cofunctions and
firsttime functions. When al the cofunctionsandf i r stti ne functionsinthewf d state-
ment are complete, or one of them aborts, execution proceeds to the statement following wf d.

Otherwise ajump is made to the ending brace of the costatement or cofunction where the wf d

statement appears; when the execution thread comes around again, control is given back to the
wf d statement.

The wf d statements below are from Sanpl es\ cof unc\ cofterm c

x=wfd I ogin(); /1 wf d with one cofunction
wid { /1 wf d with several cofunctions
clrscr();

putat (5,5, "nanme:");
put at (5, 6, "password: ") ;
echoon();

}

As shown, wf d may return an argument.

whi | e

Identifies the beginning of a whi | e loop. A whi | e loop tests at the beginning and may ex-
ecute zero or more times.

whi | e(expression){

}

156 Dynamic C User’s Manual

xdat a

Declares ablock of datain extended flash memory.

xdata name { value_1, ... value_n };

The 20-bit physical address of the block is assigned to nane by the compiler as an unsigned
long variable. The amount of memory allocated depends on the datatype. Each char isalo-
cated one byte, and each i nt isallocated two bytes. If an integer fitsinto one byte, it is still
allocated two bytes. Each f | oat and | ong cause four bytes to be alocated.

Thevaluelist may include constant expressionsof typei nt ,f | oat ,unsi gned i nt,l ong,
unsi gned | ong, char, and (quoted) strings. For example:

xdat a nanel

{"\x46","\x47"',"\x48" ,"\x49" ,"\ x4A" , "\ x20',"'\x20'};
xdata name2 {"R ,"a','b'",'b","i","t"};

xdata name3 {" Rules! "};

xdata nanme4 {1.0,2.0,(float) 3, 40e-01, 5e00, . 6el};

The data can be viewed directly in the dump window by doing a physical memory dump using
the 20-bit address of the xdata block. See Sanpl es\ Xmem xdat a. ¢ for more information.

Xmem

Indicates that afunction isto be placed in extended memory. This keyword is semantically
meaningful in function prototypes. Its use must be consistent between the prototype and the
function definition.

xmem i nt func(){

}

#memmap xnmem

xstring
Declares atable of stringsin extended memory. The strings are allocated in flash memory at
compile time which means they can not be rewritten directly.

The table entries are 20-bit physical addresses. The nane of the table represents the 20-bit
physical address of the table; this address is assigned to namne by the compiler.

xstring name { “string_1", . . . “string_n" };

Chapter 12: Keywords 157

Used in acostatement, thiskeyword causesthe costatement to pause temporarily, allowing other

costatements to execute. Theyi el d statement does not alter program logic, but merely post-
ponesit.

for(;;){
costate {
yi el d;
}
}

158 Dynamic C User’s Manual

12.1 Compiler Directives

Compiler directives are specia keywords prefixed with the symbol #. They tell the compiler how
to proceed. Only one directive per lineis allowed, but a directive may span more than onelineif a
backslash (\) is placed at the end of the ling(s).

#asm

Syntax: #asmopt i ons
Begins a block of assembly code. The available options are:
» debug: Enables debug code during assembly.

» nodebug: Disables debug code during assembly. Thisisthe default condition. It
is dill possible to single step through assembly code as long as the assembly win-
dow is open.

» xmem Placesablock of codein extended memory, overriding any previous mem-
ory directives. Theblock islimited to 4KB. If the#as mblock isunmarked, it will
be compiled to roat.

#cl ass

Syntax: #cl ass opt i ons

Controlsthe storage class for local variables. The available options are:
» aut o: Placelocal variables on the stack.
e stati c: Placeloca variablesin permanent, fixed storage.

The default storage classisst at i c.

#debug
#nodebug

Enables or disables debug code compilation. #debug is the default condition. These direc-
tives override the debug and nodebug keywords used on function declarations or assembly
blocks. #nodebug prevents RST 28h instructions from being inserted between C statements
and assembly instructions.

Chapter 12: Keywords 159

#defi ne

Syntax: #def i ne name t ext or#defi ne nane (paraneters...) text

Defines amacro with or without parameters according to ANSI standard. A macro without pa-
rameters may be considered a symbolic constant. Supportsthe # and ## macro operators. Mac-
ros can have up to 32 parameters and can be nested to 126 levels.

#endasm

Ends a block of assembly code.

#f at al

Syntax: #fatal “...”

Instructs the compiler to act asif afatal error. The string in quotesfollowing the directiveisthe
message to be printed

#GLOBAL_INI'T

Syntax: #GLOBAL_I NI T{ vari abl es }

#GLOBAL_| NI T sections are blocks of code that are run once beforenai n() iscalled. They
should appear in functions after variable declarations and before the first executable code. If a
local static variable must beinitialized once only before the program runs, it should be donein
a#GLOBAL_| NI T section, but other inititialization may also be done. For example:

/1 Thisfunction outputs and returns the number of timesiit has been called.
int foo(){

char count;

#GLOBAL_|I NI T{

/1 initialize count

count = 1;

/1 make port A output

W Por t | (SPCR, SPCRShadow, 0x84) ;
}

/[output count
W Por t | (PADR, NULL, count) ;

/| increment and return count
return ++count;

160 Dynamic C User’s Manual

Syntax: #error "..."

Instructs the compiler to act asif an error was issued. The string in quotes following the direc-
tive is the message to be printed

Syntax: #f uncchai n chai nnanme nane

Adds afunction, or another function chain, to afunction chain.

Syntax: #i f const ant _expr essi on
#el i f constant _expression
#el se
#endi f

These directives control conditional compilation. Combined, they form a multiple-choicei f .
When the condition of one of the choicesis met, the Dynamic C code selected by the choiceis
compiled. Code belonging to the other choicesisignored.

mai n() {
#i f BOARD_TYPE ==
#define product "Ferrari"
#elif BOARD_TYPE ==
#define product "Mserati"

#elif BOARD_TYPE ==
#define product "Lanborghini"

#el se
#define product " Chevy"

#endi f

}

The#el i f and#el se directivesare optional. Any code between an#el se and an#endi f
iscompiled if al valuesfor const ant _expr essi on arefalse.

Chapter 12: Keywords 161

Syntax: #i f def name

This directive enables code compilation if name has been defined with a#def i ne directive.
This directive must have a matching #endi f .

Syntax: #i f ndef nane

This directive enables code compilation if name has not been defined with a#def i ne direc-
tive. This directive must have amatching #endi f .

Controls whether Dynamic C will intersperse library functions with the program’s functions
during compilation. #noi nt er | eave forces the user-written functions to be compiled first.

Syntax: #KI LL nane

To redefine a symbol found in the BIOS of a controller, first KI LL the prior nane.

Syntax: #makechai n chai nnanme

Creates afunction chain. When a program executes the function chain named in this directive,
all of the functions or segments belonging to the function chain execute.

Syntax: #menmap opt i ons
Controls the default memory areafor functions. The following options are available.

» anyrmem NNNN: When code comes within NNNN bytes of the end of root code
space, start putting it in xmem. Default memory usage is #nenmap anymem
0x2000.

 r oot : All functions not declared as x memgo to root memory.

» xrmem All C functions not declared asr oot go to extended memory. Assembly
blocks not marked as x memgo to root memory.

162 Dynamic C User’s Manual

#preconmpil e

Allowslibrary functions in acomma separated list to be compiled immediately after the BIOS.

The#pr econpi | e directiveis useful for decreasing the download time when devel oping
your program. Precompiled functionswill be compiled and downloaded with the BIOS, instead
of each time you compile and download your program. The following limitations exist:

 Precompile functions must be defined nodebug.

» Any functionsto be precompiled must bein alibrary, and that library must be in-
cluded either inthe BIOSusing a #use, or recursively included by those librar-
ies.

* Interna BIOS functions will precompile, but will not result in any improvement.

* Librariesthat require the user to define parameters before being used can only be
precompiled if those parameters are defined before the #pr econpi | e state-
ment. An example of thisisincluded inpreconpi l e. li b.

* Function chains and functions using segment chains cannot be precompiled.

» Precompiled functions will be placed in extended memory, unless specifically
marked r oot .

* All dependencies must be resolved (Macros, variables, other functions, etc.) be-
foreafunction can be precompiled. Thismay require precompiling other functions
first.

Seepreconpi | e. |'i b for more information and examples.
#undef

Syntax: #undef i denti fi er

Removes (undefines) a defined macro.

#use

Syntax: #use pat hnane

Activatesalibrary namedin| i b. di r so modulesin the library can be linked with the appli-
cation program. This directive immediately readsin all the headersin the library unless they
have already been read.

Chapter 12: Keywords

163

#usei x
#nousel X

Controlswhether functionsusethe I X register asastack framereference pointer or the SP (stack
pointer) register. #nousei x isthe default.

Note that the I X register is corrupted when any stack-variable using function is called from
within acofunction, or if a stack-variable using function contains a call to a cofunction.

#war ns

3

Syntax: #war ns “..’

Instructs the compiler to act asif a serious warning was issued. The string in quotes following
the directive is the message to be printed.

#war nt

Syntax: #war nt “..."

Instructs the compiler to act asif atrivial warning was issued. The string in quotes following
the directive is the message to be printed.

#xi nmpor t

Syntax: #xi nport “fil ename” synbol

This compiler directive placesthelength of f i | enane (stored asal ong) and its binary con-
tents at the next available placein xmem flash. f i | enane is assumed to be either relative to
the Dynamic C installation directory or afully qualified path. synbol isacompiler generated
macro that gives the physical address where the length and contents were stored.

The sample program xi npor t . ¢ illustrates the use of this compiler directive.

164 Dynamic C User’s Manual

13. Operators

An operator isasymbol such as +, —, or & that expresses some kind of operation on data. Most
operators are binary—they have two operands.

a + 10 /' two operands with binary operator "add"
Some operators are unary—they have a single operand,
- amount /| single operand with unary “minus’

although, like the minus sign, some unary operators can also be used for binary operations.

There are many kinds of operators with operator pr ecedence. Precedence governs which oper-
ations are performed before other operations, when there is a choice.

For example, given the expression
a=»>b+c* 10;

will the + or the* be performed first? Since* has higher precedence than +, it will be performed
first. The expression isequivalent to

a=>b+ (c * 10);
Parentheses can be used to force any order of evaluation. The expression
a=(b+c¢c) * 10;

uses parentheses to circumvent the normal order of evaluation.

Associativity governs the execution order of operators of equal precedence. Again, parentheses
can circumvent the normal associativity of operators. For example,

a=>b+c + d; /1 (b+c) performed first

a=»b+ (c +d; /I now c+d isperformed first
int *a(); /[function returning ptr to int
int (*a)(); [[ptr to function returning int

Unary operators and assignment operators associate from right to left. Most other operators associ-
ate from left to right.

Certain operators, namely *, &, (), [], -> and. (dot), can be used on the left side of an
assignment to construct what is called an Ivalue. For example,

float x;
(char) & = 0x17; /'l low byteof x getsvalue

Chapter 13: Operators 165

When the data types for an operation are mixed, the resulting type is the more precise.

float x, y, z;
int i, j, k;
char c;
5 .

X; /1l sameas(float)i / X
J c

; /1l sameas k + (int)c

+ ==

i
k

By placing atype namein parenthesesin front of avariable, the program will perform type casting
or type conversion. In the example above, theterm (f | oat) i meansthe“thevalueof i con-
verted to floating point.”

The operators are summarized in the following pages.

13.1 Arithmetic Operators

+
Unary plus, or binary addition. (Standard C does not have unary plus.) Unary plus does not really
do anything.

b + 10.5; /] binary addition
+y; /1 just for emphasis!

a
z

Unary minus, or binary subtraction.

b - 10.5; /| binary subtraction
-y /1 z getsthenegative of y

a
z

166 Dynamic C User’s Manual

*

Indirection, or multiplication. As aunary operator, it indicates indirection. When used in a declara-

tion, * indicates that the following item is a pointer. When used as an indirection operator in an
expression, * provides the value at the address specified by a pointer.

int *p; /'l p isapointer to an integer
const int j = 45;
p = & ; /1l p now pointsto j .
k = *p; /1 k getsthevauetowhich
/1 p points, namely 45.
*p = 25; /'l Theinteger to which p points gets 25.

/'l Sameasj = 25,since p pointsto j .

Beware of using uninitialized pointers.Also, theindirection operator can be
used in complex ways.

int *list[10] /| array of 10 pointersto integers
int (*list)[10] /' pointer to array of 10 integers

float** vy; /| pointertoapointertoa f | oat
z = **ry; [l z getsthevaueof y

t ypedef char **stp;

stp nmy_stuff; [l nmy_stuff istyped char**

Asabinary operator, the * indicates multiplication.

a=>b* c /1 a getstheproductof b and c
/
Divideis abinary operator. Integer division truncates; floating-point division does not.
const int i =18, const j =7, k; float x;
k =i [j; [l resultis2;
x = (float)i [/ j; /1 resultis2.591...

Chapter 13: Operators

167

++

Pre- or post-increment is a unary operator designed primarily for convenience. If the ++ precedes
an operand, the operand is incremented before use. If the ++ operator follows an operand, the
operand is incremented after use.

int i, a[l2?];

i = 0;

g = al[i++]; /1 q gets a[0], then i becomes 1
r = af[i++]; /1 r gets a[1], then i becomes 2
S = ++i; /1 1 becomes 3, then s = i

i ++; /1 i becomes 4

If the ++ operator is used with a pointer, the value of the pointer increments by the size of the
object (in bytes) to which it points. With operands other than pointers, the value increments by 1.

Pre- or post-decrement. If the —— precedes an operand, the operand is decremented before use. If
the —— operator follows an operand, the operand is decremented after use.

int j, a[l2?];

j =12,

qg=al—j]; /1 | becomes 11, then g gets a[11]

r = al—jl; /1 | becomes 10, then r gets a[10]

S = j—; // s = 10, then j becomes 9

/1l | becomes 8

—

If the — operator is used with a pointer, the value of the pointer decrements by the size of the
object (in bytes) to which it points. With operands other than pointers, the value decrements by 1.

%

Modulus. Thisis abinary operator. The result is the remainder of the |left-hand operand divided by
the right-hand operand.

const int i = 183;
j =i %10; /1 j getsi nmod 10 or 3
const int k = -11;
i =k %7, /1 j gets k mod 7 or -4

168 Dynamic C User’s Manual

13.2 Assignment Operators

Assignment. This binary operator causes the value of the right operand to be assigned to the left
operand. Assignments can be “ cascaded” as shown in this example.

a=10* b + c; /'l a getstheresult of the calculation
a=»>b=0; /1l b gets 0 and a gets O

Addition assignment.
a += 5; // Add 5 to a. Sameas a = a + 5

Subtraction assignment.
a -= b; /] Subtract 5 from a. Sameas a = a - 5

Multiplication assignment.
a *= b; /1l Multiply a by5. Sameasa = a * 5

Division assignment.
a /= 5; /] Divide a by 5. Sameas a = a / 5

Modulo assignment.
a % b5; // a nmbd 5. Sameas a = a %5

L eft shift assignment.
a <<= b5; /] Shift a left5bits. Sameas a = a << 5

Right shift assignment.
a >>= b5; /] Shift a right 5bits. Sameas a = a >> 5

Chapter 13: Operators 169

Bitwise AND assignment.
a &= b; // AND a with b. Sameas a = a & b

Bitwise XOR assignment.
a = b; /] XOR a with b. Sameas a = a " b

Bitwise OR assignment.
a | = b; // OR a with b. Sameasa =a | b

13.3 Bitwise Operators

Shift left. Thisis abinary operator. The result isthe value of the |eft operand shifted by the num-
ber of bits specified by the right operand.

int i = OxFOOF;
o= << 4 /1 j gets 0XxOOFO

The most significant bits of the operand are lost; the vacated bits become zero.

Shift right. Thisis a binary operator. The result isthe value of the |eft operand shifted by the num-
ber of bits specified by the right operand:

int i = OxFOOF;

o= o> 4 /1 j gets OXFFOO
The least significant bits of the operand are lost; the vacated bits become zero for unsigned vari-
ables and are sign-extended for signed variables.

Address operator, or bitwise AND. As a unary operator, this provides the address of avariable;

int Xx;
z = &x; /'l z getstheaddressof X
Asabinary operator, this performs the bitwise AND of two integer (char,i nt,or| ong) vaues.
int i = OxFFFO;
int j = OXOFFF;
z =i &j; /'l z gets OXOFFO

170 Dynamic C User’s Manual

Bitwise exclusive OR. A binary operator, this performs the bitwise XOR of two integer (8-bit, 16-
bit or 32-hit) values.

int i = OxFFFO;
int j = OxOFFF;
z =i "Nj; /'l z gets OxFOOF

Bitwiseinclusive OR. A binary operator, this performs the bitwise OR of two integer (8-bit, 16-bit
or 32-bit) values.

int i = OxFFOO;
int j = OxOFFO;
z =i | j; /'l z gets OXFFFO

Bitwise complement. Thisisaunary operator. Bitsinachar,i nt, or| ong vaue areinverted:

int swtches;
swi t ches = OxFFFO;
j = ~switches; /'l j becomes OxO00F

13.4 Relational Operators

Lessthan. Thisbinary (relational) operator yields a Boolean value. Theresult is 1 if the left oper-
and is less than the right operand, and 0 otherwise.

if(i <j){

body /] executesif i <]
}

K = a < b; /1 truewhen a < b

Lessthan or equal. This binary (relational) operator yields a boolean vaue. Theresultis 1 if the
left operand isless than or equal to the right operand, and O otherwise.

HEC T <=)

body /] executesif i <= j
}

K = a <= b; // truewhen a <= b

Chapter 13: Operators 171

>
Greater than. This binary (relational) operator yields a Boolean vaue. Theresult is 1 if the left
operand is greater than the right operand, and 0 otherwise.

if(i >j){
body /] executesif i > |j

K = a > b; /] truewhen a > b
>=

Greater than or equal. This binary (relational) operator yields a Boolean value. Theresult is 1 if

the left operand is greater than or equal to the right operand, and O otherwise.

ifC T >=j){
body /1 executesif i >= |j

}
K = a >= b; [l truewhen a >= b

13.5 Equality Operators

Equal. Thisbinary (relational) operator yields a Boolean value. Theresult is 1 if the left operand
equals the right operand, and 0 otherwise.

HEC T ==){

body /1 executesif i
}

K = a == b;

1
—

1
(e

/] truewhen a

Note that the == operator is not the same as the assignment operator (=). A common mistake isto
write
ifCi =7){
body
}

Here, i getsthevaueof j ,andthei f conditionistruewheni isnon-zero, not wheni equalsj .

| =
Not equal. Thisbinary (relational) operator yields a Boolean value. Theresult is 1 if the left oper-
and is not equal to the right operand, and O otherwise.

e =g)d

body /1 executesif i 1= j

/] truewhen a !'= b

172 Dynamic C User’s Manual

13.6 Logical Operators

Logical AND. Thisisabinary operator that performs the Boolean AND of two values. If either
operand is O, the result is 0 (FALSE). Otherwise, the result is 1 (TRUE).

Logical OR. Thisisabinary operator that performs the Boolean OR of two values. If either oper-
and is non-zero, theresult is 1 (TRUE). Otherwise, the result is O (FALSE).

Logical NOT. Thisisaunary operator. Observe that C does not provide a Boolean datatype. In C,
logical falseisequivalent to 0. Logical trueis equivalent to non-zero. The NOT operator resultis1
if the operand is 0. The result is O otherwise.

test = get _input(...);
if('test){

}

13.7 Postfix Expressions

Grouping. Expressions enclosed in parentheses are performed first. Parentheses also enclose func-
tion arguments. In the expression

a=(b+c) * 10
thetermb + c isevaluated first.

Array subscripts or dimension. All array subscripts count from O.

int a[12]; /| array dimensionis 12
j =a[i]; /| referencestheith element

Chapter 13: Operators 173

The dot operator joins structure (or union) names and subnames in a reference to a structure (or
union) element.

struct {
int Xx;
int y;

} coord;

m = coord. X;

Right arrow. Used with pointers to structures and unions, instead of the dot operator.
typedef struct{

int Xx;
int y;
} coord;
coord *p; /| pisapointer to structure
m = p->X; /| reference to structure element

13.8 Reference/Dereference Operators

Address operator, or bitwise AND. As a unary operator, this provides the address of a variable:
int x;
z = &X; [l z getstheaddressof X

Asabinary operator, this performs the bitwise AND of two integer (char, i nt,orl ong) val-
ues.

int i = OxFFFO;
int j = OxXOFFF;
z =i &j; /1l z gets OXxOFFO

174 Dynamic C User’s Manual

*

Indirection, or multiplication. As aunary operator, it indicates indirection. When used in a declara-
tion, * indicates that the following item is a pointer. When used as an indirection operator in an
expression, * provides the value at the address specified by a pointer.

int *p; /'l p isapointer to an integer
int j = 45;
p = & ; /1l p now pointsto j .
k = *p; /1 k getsthevauetowhich
/'l p points, namely 45.
*p = 25; /'l Theinteger towhich p
/] pointsgets 25. Sameas j = 25,

/'l since p pointsto j .

Beware of using uninitialized pointers.Also, theindirection operator can be
used in complex ways.

int *list[10] /1 array of 10 ptrstoint

int (*list)[10] /1 ptrtoarray of 10 ints
float** v, /'l ptrtoaptrtoa fl oat

z = **ry; [l z getsthevaueof y

t ypedef char **stp;

stp ny_stuff; [l nmy_stuff istyped char**

Asabinary operator, the* indicates multiplication.
a=>b?* c; /1 a getstheproductof b and c

13.9 Conditional Operators

Conditional operators are athree-part operation unique to the C language. The operation has three
operands and the two operator symbols? and : .

? .
If the first operand evaluates true (non-zero), then the result of the operation isthe second operand.
Otherwise, the result is the third operand.
int i, j, k;
i = i <k ?j : k;
The ? : operator isfor convenience. The above statement is equivalent to the following.
if()] <k)
=]
el se
i = k;
If the second and third operands are of different type, the result of this operation is returned at the
higher precision.

Chapter 13: Operators 175

13.10 Other Operators

(type)
Thecast operator converts one data type to another. A floating-point valueis truncated when
converted to integer. The bit patterns of character and integer data are not changed with the cast
operator, although high-order bits will be lost if the receiving value is not large enough to hold the
converted value.

unsigned i; float x = 10.5; char c;

i = (unsigned)x; /1 i gets 10;

c = *(char*) &x; /'l ¢ getsthelow byteof x
typedef ... typeA;

typedef ... typeB;

typeA itemtl;

typeB iteng;

iten2 = (typeB)itent; /1 forces i tenl tobetreatedasa
typeB

si zeof

Thesi zeof operator isaunary operator that returnsthe size (in bytes) of avariable, structure,
array, or union. It operates at compiletime asif it were abuilt-in function, taking an object or a
type as a parameter.

t ypedef struct{
int Xx;
char vy;
float z;
} record;
record array[100];
int a, b, c, d;
char cc[] = "Fourscore and seven";
char *list[] = { "ABC', "DEFG', "H " };
#define array_size sizeof(record)*100 // numberof bytesin array

a = sizeof(record); 17
b = array_si ze; /1 700
c = sizeof(cc); /1 20
d = sizeof (list); /] 6

Why issi zeof (1 i st) equa to6?1 i st isanarray of 3 pointers (to char) and pointers have
two bytes.

Why issi zeof (cc) equa to 20 and not 19? C strings have aterminating null byte appended by
the compiler.

176 Dynamic C User’s Manual

Comma operator. This operator, unique to the C language, is a convenience. It takes two operands:
the left operand—typically an expression—is evaluated, producing some effect, and then dis-
carded. The right-hand expression is then evaluated and becomes the result of the operation.

This example shows somewhat complex initialization and stepping in af or statement.

i+,]

for(i=0,j=strlen(s)-1; i<j;

}

Because of the comma operator, the initialization has two parts: (1) seti to 0 and (2) get the
length of string s. The stepping expression also has two parts: increment i and decrement j .

The comma operator exists to allow multiple expressionsinloop or i f conditions.
The table bel ow shows the operator precedence, from highest to lowest. All operators grouped
together have equal precedence.

Table 13-1. Operator Precedence

Operators Associativity Function
O 1 -= left to right member
o~ 4+ -- :
(type) * & sizeof right to left unary
* % left to right multiplicative
+ - left to right additive
<< >> left to right bitwise
< <= > >= left to right relational
= I= left to right equality
& left to right bitwise
n left to right bitwise
| left to right bitwise
&& left to right logical
| left to right logical
? right to left conditional
;:* :»:: &0:/@ A:: _ right to left assignment
, (comma) left to right series

Chapter 13: Operators

177

178 Dynamic C User’s Manual

14. Graphical User Interface

Dynamic C can be used to edit source files, compile and run programs, and choose options for
these activities using pull-down menus or keyboard shortcuts. There are two modes: edit mode and
run mode, which is also known as debug mode. Various debugging windows can be viewed in run
mode. Programs can compile directly to atarget controller for debugging in RAM or flash. Pro-
grams can aso be compiled to a. bi n file, with or without a controller connected to the PC.

To debug a program, a controller must be connected to the PC, either directly via a programming
cable or indirectly viaan Ethernet connection and a RabbitLink board. Multiple instances of
Dynamic C can be run simultaneously. This means multiple debugging sessions are possible over
different serial ports. Thisis useful for debugging boards that are communicating among them-
selves.

14.1 Editing

Once afile has been created or has been opened for editing, the fileis displayed in atext window.
It is possible to open or create more than one file and one file can have several windows. Dynamic
C supports normal Windows text editing operations.

Use the mouse (or other pointing device) to position the text cursor, select text, or extend atext
selection. Scroll bars may be used to position text in awindow. Dynamic C will, however, work
perfectly well without a mouse, athough it may be a bit tedious.

It isalso possible to scroll up or down through the text using the arrow keys or the PageUp and
PageDown keys or the Home and End keys. Theleft and right arrow keys alow scrolling left and
right.

14.1.0.1 Arrow Keys
Use the up, down, left and right arrow keys to move the cursor in the corresponding direction.

The Ctrl key works in conjunction with the arrow keys this way.

Ctrl-Left Move to previous word
Ctrl-Right Move to next word
Ctrl-Up Scroll up one line (text moves down)
Ctrl-Down Scroll down oneline

14.1.0.2 Home

Moves the cursor backward in the text to the start of theline.
Home Move to beginning of line
Ctrl-Home Move to beginning of file
Shift-Home Select to beginning of line

Shift-Ctrl-Home Select to beginning of file

Chapter 14: Graphical User Interface 179

14.1.0.3 End
Moves the cursor forward in the text.

End Moveto end of line
Ctrl-End Move to end of file
Shift-End Select to end of line

Shift-Ctrl-End Select to end of file

Sections of the program text can be cut and pasted or new text may be typed in directly. New text
isinserted at the present cursor position or replaces the current text selection.

The Replace command in the EDIT menu is used to perform search and replace operations either
forwards or backwards.

14.2 Menus

b Dynamic C M=l E3
File Edit Compile RBun |nspect Options Window Help

Dynamic C has eight command menus, as well as the standard Windows system menus. An avail-
able command can be executed from a menu by clicking the menu and then clicking the command,
or by (1) pressing the Alt key to activate the menu bar, (2) using the left and right arrow keysto
select amenu, (3) and using the up or down arrow keys to select a command, and (4) pressing
Enter. It isusually more convenient to type keyboard shortcuts (such as <Ctrl-H> for HELP) once
they are known. Pressing the Esc key will make any visible menu disappear. A menu can be acti-
vated by holding the Alt key down while pressing the underlined letter of the menu name. For
example, press <Alt-F> to activate the FILE menu.

14.2.1 File Menu

Click the menu title or press <Alt-F> to select the FILE menu. Prior to Dynamic C 8.x, thereisa
10,000 line limit on the size of asingle sourcefile. If your source codeisthat big, split up some of
itinto libraries.

,".5'.3‘1 factory - Dynamic C ¢ 10D5E

JREW Edit Compile Bun Inzpect Options
Mew
Open...
Save [Etrl+5
Save bz
Cloze

Project

Prirt Prexigw. ..
Frirt. ..
Print Setup...

E xit Ale+F4

180 Dynamic C User’s Manual

New
Creates a new, blank, untitled program in a new window.

Open
Presents a dialog in which to specify the name of afile to open. Unlessthere is a problem,
Dynamic C will present the contents of the file in atext window. The program can then be
edited or compiled.

To select afile, typein the desired file name, or select one from the list. The file's directory
may also be specified.

Save
The Save command updates an open file to reflect the latest changes. If the file has not been
saved before (that is. the fileis anew untitled file), the Save As dialog will appear.

Use the Save command often while editing to protect against 1oss during power failures or
system crashes.

Save As
Allows anew name to be entered for afile and saves the file under the new name.

Close
Closes the active window. The active window may also be closed by pressing <Ctrl-F4> or by
double-clicking on its system menu. If there is an attempt to close afile before it has been
saved, Dynamic C will present adialog similar to one of these two dialogs.

Thefileis saved when Yes (or type“y”) isclicked. If thefileisuntitled, there will be a prompt
for afile namein the Save As dialog. Any changesto the document will be discarded if No is
clicked or “n” istyped. Cancel resultsin areturn to Dynamic C, with no action taken.

Project
Allows a project file to be opened, saved, saved as a different name and closed. See Chapter
16 for more information.

Print Preview
Shows approximately what printed text will look like. Dynamic C switchesto preview mode
when this command is selected, and allows the programmer to navigate through images of the
printed pages.

Print
Text can be printed from any Dynamic C window. There is no restriction to printing source
code. For example, the contents of the assembly window or the watch window can be printed.
Dynamic C displays the a standard print dialog box when the Print command is selected.

As many copies of the text as needed may be printed. If more than one copy is requested, the
pages may be collated or uncollated.

If the Print to File option is selected, Dynamic C creates afile (it will ask for a pathname) in
the format suitable to send to the specified printer. (If the selected printer is a PostScript
printer, the file will contain PostScript.)

To choose a printer, click the Setup button in the Print dialog, or choose the Print Setup..
command from the FILE menu.

Chapter 14: Graphical User Interface 181

Print Setup
Allows chaice of which printers to use and to set them up to print text.

There is a choice between using the computer system’s default printer or selecting a specific
printer. Depending on the printer selected, it may be possible to specify paper orientation (por-
trait or tall, vs. landscape or wide), and paper size. Most printers have these options. A specific
printer may or may not have more than one paper source.

The Options button allows the print options dialog to be displayed for a specific printer. The
Network button allows printers to be added or removed from the list of printers.

Exit
To exit Dynamic C. When thisis done, Windows will either return to the Windows Program
Manager or to another application. The keyboard shortcut is <Alt-F4>.

14.2.2 Edit Menu
Click the menu title or press <Alt-E> to select the EDIT menu.

b Dynamic C

Eile Compile Bun |Inspect Option
| et Undo Alt+Bksp

P == |

Redo Shift+Alt+Bksp

Cut Ctrl+X

Copy Ctrl+C
Paste Ctrl+¥
Replace... Fb
Find Next F3
Goto._. Ctrl+G

Erevious Error. EtrixE
MNext Error; irisk

Edit Mode =4

Undo
This option undoes recent changesin the active edit window. The command may be repeated
several times to undo multiple changes. The amount of editing that may be undone will vary
with the type of operations performed, but should suffice for afew large cut and paste opera-
tions or many lines of typing. Dynamic C discards all undo information for an edit window
when thefileis saved. The keyboard shortcut is <Alt-Backspace>.

Redo
Redoes modifications recently undone. This command only worksimmediately after one or
more Undo operations. The keyboard shortcut is <Alt-Shift-Backspace>.

182 Dynamic C User’s Manual

Cut
Removes selected text from a source file. A copy of the text is saved on the clipboard. The
contents of the clipboard may be pasted virtually anywhere, repeatedly, in the same or other
source files, or even in word processing or graphics program documents. The keyboard short-
cut is<Ctrl-X>.

Copy
Makes a copy of selected text in afile or in one of the debugging windows. The copy of the
text is saved on the “clipboard.” The contents of the clipboard may be pasted virtually any-
where. The keyboard shortcut is <Ctrl-C>.

Paste
Pastes text on the clipboard as aresult of a copy or cut (in Dynamic C or some other Windows
application). The paste command places the text at the current insertion point. Note that noth-
ing can be pasted in a debugging window. It is possible to paste the same text repeatedly until
something elseis copied or cut. The keyboard shortcut is <Ctrl-V>.

Find
Finds specified text. Enter the text to be found in the Find box. The Find command (and the
Find Next command) will find occurrences of the entered text. If Case sensitive is clicked,
the search will find occurrences that match exactly. Otherwise, the search will find matches
having upper- and lower-case letters. For example, “switch,” “Switch,” and “ SWITCH” would
all match. If Reverse is clicked the search will proceed toward the beginning of thefile, rather
than toward the end of the file. Use the From cursor checkbox to choose whether to search
the entirefile or to begin at the cursor location. The keyboard shortcut is <Ctrl F>.

Replace
Replaces specified text. Type the text to be found in the Find text box (there is a pulldown list
of previously entered strings). Then type the text to substitute in the Change to text box. If
Case sensitive is selected, the search will find an occurrence that matches exactly. Other-
wise, the search will find a match having upper- and lower-case |etters. For example, “reg7”
“REG7” and “Reg7” al match.

If Reverse isclicked, the search will occur in reverse, that is, the search will proceed toward

the beginning of thefile, rather than toward the end of the file. The entire file may be searched
from the current cursor location by clicking the From cursor box, or the search may begin at
the current cursor location.

The Selection only box alows the substitution to be performed only within the currently
selected text. Use thisin conjunction with the Change All button. This box is disabled if no
text is selected.

Normally, Dynamic C will find the search text, then prompts for whether to make the change.
Thisis an important safeguard, particularly if the Change All buttonis clicked. If No prompt
is clicked, Dynamic C will make the change (or changes) without prompting.

The keyboard shortcut for Replace is <F6>.

Chapter 14: Graphical User Interface 183

Find Next
Once search text has been specified with the Find or Replace commands, the Find Next com-
mand (F3 for short) will find the next occurrence of the same text, searching forward or in
reverse, case sensitive or not, as specified with the previous Find or Replace command. If the
previous command was Replace, the operation will be areplace.

Goto
Positions the insertion point at the start of the specified line.

Type the line number (or approximate line number) to go to. That line, and linesin the vicin-
ity, will be displayed in the source window.

Previous Error
L ocates the previous compilation error in the source code. Any errors will be displayed in a
list in the message window after a program is compiled. Dynamic C selects the previous error
in the list and positions the offending line of code in the text window when the Previous
Error command (<Ctrl-P> for short) is made. Use the keyboard shortcuts to locate errors
quickly.

Next Error
L ocates the next compilation error in the source code. Any errorswill be displayedin alistin
the message window after a program is compiled. Dynamic C selects the next error in the list
and positions the offending line of code in the source window when the Next Error command
(<Ctrl-N> for short) is made. Use the keyboard shortcuts to locate errors quickly.

Edit Mode
Switches Dynamic C back to edit mode from run mode (also called debug mode). After a pro-
gram has been compiled or executed, Dynamic C will not allow any modification to the pro-
gram unless the Edit Mode is selected. The keyboard shortcut is F4.

184 Dynamic C User’s Manual

14.2.3 Compile Menu
Click the menu title or press <Alt-C> to select the COMPILE menu.

.
[l Fun Inspect Options: Window Help

| Compile ta T arget F& l [P (PO e
Compile to bin file [ze attached target
I Rezet Target/Compile BIOS Clrl+ Compile with defined target configuration

I Include debug code/BST 28 instuctions [nclude BIOS |

Compile to Target
Compiles aprogram and loads it in the target controller’'s memory. The keyboard shortcut is
F5.

Dynamic C determines whether to compile to RAM or flash based on the current compiler
options (set with the Options menu). Any compilation errors are listed in the automatically
activated message window. Hit <F1> to obtain a more descriptive message for any error mes-
sage that is high-lighted in this window.

Compile to .bin file
Compilesaprogram and writestheimageto a. bi n file. The. bi n file can then be used with
adevice programmer to program multiple chips; or the Rabbit Field Utility can load the. bi n
filesto thetarget. In most cases, the Include BIOS option is checked. This causesthe BIOS, as
well as the user program, to beincluded in the. bi n file. If you are creating specia program
such as acold loader that starts at address 0x0000, then this option should be unchecked.

When compilingtoa. bi n file, choose Use attached target to use the parameters of the con-
troller connected to your system. (Some versions of Dynamic C do not support this menu
option.) If there is no connected contraller, or if thereis but you want to use a different config-
uration, choose Compile with defined target configuration. To define atarget configuration,
access the Configure Targetless Compilation dialog box. It has been relocated to Options |
Define target configuration and the Compile | Compile to a .bin file menu selection now
compiles with those parameters upon acceptance of a confirmation prompt.

Reset Target/Compile BIOS
This option rel oads the BIOS to RAM or flash, depending on the BIOS memory setting cho-
senin Options | Compiler dialog box. The default option is flash.

The following box will appear upon successful compilation and loading of BIOS code.

BIOS Successfully Compiled
Ready to Compile User Programs

Chapter 14: Graphical User Interface 185

Include Debug Code/RST 28 Instructions
If thisis checked, debug code will be included in the program even if #nodebug precedes
the main function in the program. Debug code consists mainly of RST 28h instructions
inserted after every C statement. At an RST 28h instruction, program execution is trans-
ferred to the debug kernel where communication between Dynamic C and the target is tended
to before returning to the user program. There are certain loop optimizations that are not gen-
erated when code is compiled as debug. This option aso controls the definition of acompiler-
defined macro symbol, DEBUG_RST. If the menu item is checked then DEBUG_RST is set to
1, otherwiseitisO.

If the option is not checked, the compiler marks all code asnodebug and debugging is not
possible. The only reason to check this option if debugging is finished and the program is
ready to be deployed is to allow some current (or planned) diagnostic capability of the Rabbit
Field Utility (RFU) to work in a deployed system. This option effects both code compiled to

. bi n filesand code compiled to the target . In order to run the program after compiling to the
target with this option, disconnect the target from the programming port and reset the target
CPU.

14.2.4 Run Menu
Click the menu title or press <Alt-R> to select the RUN menu.

lnspect Optionz Window H
Bun F9

| Stop [tz
Fun wi Mo Polling Alt+F9
Trace into F¥
Step over Fa
Source Trace into Al+FT
Source Step over Al+FE
T oggle Breakpaint Fz2

Toggle Hard Breakpoint Al+F2
Clear &ll Breakpaints Chrl+4,

Toggle [nterrupt Flag Chrl+l
v Faoll Target Chrl+0

Rezet Program Chrl+F2
Cloze Senal Port

Run
Starts program execution from the current breakpoint. Registers are restored, including inter-
rupt status, before execution begins. The keyboard shortcut is F9.

Run w/ No Polling
This command isidentical to the Run command, with an important exception. When running
in polling mode (F9), the development PC polls or interrupts the target system every 100 msto
obtain or send information about target breakpoints, watch lines, keyboard-entered target
input, and target output from pri nt f statements. Polling creates interrupt overhead in the

186 Dynamic C User’s Manual

target, which can be undesirable in programs with tight loops. The Run w/ No Polling com-
mand allows the program to run without polling and its overhead. (Any pri nt f callsinthe
program will cause execution to pause until polling is resumed. Running without polling also
prevents debugging until polling is resumed.) The keyboard shortcut for this command is
<Alt-F9>.

Stop
The Stop command places a hard breakpoint at the point of current program execution. Usu-
ally, the compiler cannot stop within ROM code or in nodebug code. On the other hand, the
target can be stopped at the RST 028h instruction if RST 028h assembly code is inserted as
inline assembly code in nodebug code. However, the debugger will never be able to find and
place the execution cursor in nodebug code. The keyboard shortcut is <Ctrl-Z>.

Reset Program
Resets program to itsinitial state. The execution cursor is positioned at the start of the main
function, prior to any global initialization and variable initialization. (Memory locations not
covered by normal program initialization may not be reset.) The keyboard shortcut is
<Ctrl-F2>.

Theinitial state includes only the execution point (program counter), memory map registers,
and the stack pointer. The Reset Program command will not reload the program if the previ-
ous execution overwrites the code segment. That is, if your code is corrupted, the reset will not
be enough; you will have to reload the program to the target.

Trace into
Executes one C statement (or one assembly language instruction if the assembly window is
displayed) with descent into functions. Execution will not descend into functions stored in
ROM because Dynamic C cannot insert the required breakpointsin the machine code. If
nodebug isin effect, execution continues until code compiled without the nodebug key-
word is encountered. The keyboard shortcut isF7.

Step over
Executes one C statement (or one assembly language instruction if the assembly window is
displayed) without descending into functions. The keyboard shortcut is F8.

Source Trace into
Executes one C statement with descent into functions when the assembly window is open.
Execution will not descend into functions stored in ROM because Dynamic C cannot insert
the required breakpoints in the machine code. If nodebug isin effect, execution continues
until code compiled without the nodebug keyword is encountered. The keyboard shortcut is
<Alt-F7>.

Source Step over
Executes one C statement without descending into functions when the assembly window is
open. The keyboard shortcut is <Alt-F8>.

Toggle Breakpoint
Toggles aregular (“soft”) breakpoint at the location of the execution cursor. Soft breakpoints
do not affect the interrupt state at the time the breakpoint is encountered, whereas hard break-
points do. The keyboard shortcut is F2.

Chapter 14: Graphical User Interface 187

Toggle Hard Breakpoint
Toggles a hard breakpoint at the location of the execution cursor. A hard breakpoint differs
from a soft breakpoint in that interrupts are disabled when the hard breakpoint is reached. The
keyboard shortcut is <Alt-F2>.

Clear All Breakpoints
Self explanatory. The keyboard shortcut is <Ctrl-A>.

Toggle Interrupt Flag
Toggles interrupt state. The keyboard shortcut is <Ctrl-1>.

Toggle Polling (Prior to DC 7.30)
Toggles polling mode. When this option is chosen, polling will be toggled until the next
debugger operation. If the program is currently running and Dynamic C is polling the target,
you may choose Toggle Polling to stop Dynamic C from polling the target. However, as soon
as the program stops executing, or Dynamic C sets a breakpoint, or awatch expression is
added, etc., Dynamic C will reenable polling.

When running in polling mode (F9), the development PC polls or interrupts the target system
every 100 msto obtain or send information regarding target breakpoints, watch lines, key-
board-entered target input, and target output from pr i nt f statements. Starting with Dynamic
C 7.10, the polling is done every 3 seconds instead of every 100 ms.

Polling creates interrupt overhead in the target, which can be undesirable in programs with
tight loops. This command is useful to switch modes while a program is running. The key-
board shortcut is <Ctrl-O>.

Poll Target (Starting with DC 7.30)
This menu option used to be named Toggle Polling (see above). A check mark indicates that
Dynamic C will poll the target. The absence of a check mark indicates that Dynamic C will
not poll the target. This differsfrom Toggle Polling in that Dynamic C will not restart polling
without the user explicitly requesting it. The keyboard shortcut is <Ctrl-O>.

Reset Target
Tellsthe target system to perform a software reset including system initializations. Resetting a
target always brings Dynamic C back to edit mode. The keyboard shortcut is <Ctrl-Y>.

Close Serial Port
Disconnects the programming serial port between PC and target so that the target serial port is
accessible to other applications.

188 Dynamic C User’s Manual

14.2.5 Inspect Menu
Click the menu title or press <Alt-1> to select the INSPECT menu.

n Options Window Help
EE Add/Del Watch Expression Ctrl+'W
Clear Watch Window

Update Watch Window Ctrl+U

Disassemble at Cursor Ctrl+F10
Disassemble at Address Alt+F10
Dump at Address

The INSPECT menu provides commands to manipulate watch expressions, view disassembled
code, and produce hexadecimal memory dumps. The INSPECT menu commands and their func-
tions are described here.

Add/Del Watch Expression
This command provokes Dynamic C to display the following dialog.

Watch Expressions
I” Add to top |

Wellfran tep

Help

el

Cloze

This dialog works in conjunction with the Watch window. The text box at the top is the current
expression. An expression may have been typed here or it was selected in the source code.
This expression may be evaluated immediately by clicking the Evaluate button or it can be
added to the expression list by clicking the Add to top button. Expressionsin thislist are eval-
uated, and the results are displayed in the Watch window, every time the Watch window is
updated. Items are deleted from the expression list by clicking the Del from top button.

Chapter 14: Graphical User Interface 189

An example of the results displayed in the Watch window appears below.

Watch M=)
PCE1a12

dy int L2243 (BxCC13)

®x1 int 1 (8x88081)

xh int 6285 (Bx183D)

L: 23 C:4

dy int L2243 (Bx=CC13)

®x1 int 1 (8x088081)

Eh int 62085 (Bx183D)

A 1V

Clear Watch Window
Removes entries from the Watch dialog and removes report text from the Watch window.
There is no keyboard shortcut.

Update Watch Window
Forces expressions in the Watch Expression list to be evaluated and displayed in the Watch
window only when the function r unwat ch() iscalled from the application program. r un-
wat ch() monitorsfor watch update requests and should be called periodically if watch
expressions are used. Normally the Watch window is updated every time the execution cursor
is changed, that iswhen asingle step, a breakpoint, or a stop occurs in the program. The key-
board shortcut is <Ctrl-U>.

Disassemble at Cursor
L oads, disassembles and displays the code at the current editor cursor. This command does not
work in user application code declared asnodebug. Also, this command does not stop the
execution on the target. The keyboard shortcut is <Ctrl-F10>.

Disassemble at Address
L oads, disassembles and displays the code at the specified address. This command produces a
dialog box that asks for the address at which disassembling should begin. Addresses may be
entered in two formats: a4-digit hexadecimal number that specifies any location in the root
space, or a 2-digit page number followed by a colon followed by a4-digit logical address,
from 00 to FF. The keyboard shortcut is <Alt-F10>.

Dump at Address
Allows blocks of raw valuesin any memory location (except the BIOS 0-2000H) to be looked
at. Values can be displayed on the screen or written to afile. If separate |& D spaceis enabled,
you can choose which logical spaceto examine.

190 Dynamic C User’s Manual

Dump at Address Ed |

Hex Address I j

[~ Dump ko File HBytes [Dec.] I
File | =

Separate | & D
£ Code
€ [Uata

' Logical Address
i~ Physical Address
™ Save Entire Flash ta File

k. Cancel

When writing to afile, the option Dump to File requires afile pathname and the number of
bytes to dump. The option Save Entire Flash to File requires afile pathname. If you are run-
ningin RAM, then it will be RAM that is saved to afile, not Flash, because this option simply
starts dumping physical memory at address 0.

When displaying to the screen, the Memory Dump window is opened. A typical screen display
appears below.

[] Bamvnry [idmg

The Memory Dump window may be scrolled. Scrolling causes the contents of other memory
addresses to appear in the window. Hotkeys ArrowUp, ArrowDown, PageUp, PageDown are
active in the Memory Dump window. The window aways displays 128 bytes and their ASCI|
equivalent. Valuesin the Dump window are updated only when Dynamic C stops, or comes to
a breakpoint.

Chapter 14: Graphical User Interface 191

14.2.6 Options Menu
Click the menu title or press <Alt-O> to select the OPTIONS menu.

(R[0Tl "afindow Help
Editar...

Compiler...

Debuagger...

Dizplay...
Communications...

Drefine target configuration

v Show Tool Bar

S ave envirohment

14.2.6.1 Editor
The Editor command gets Dynamic C to display the following dialog.

E ditor Options |

Tab Stopz IE

¥ auto-lndent
¥ Femove Trailing Whitespace

] 4 Help | Eancell

Use this dialog box to change the behavior of the Dynamic C editor. By default, tab stops are set

every three characters, but may be set to any value greater than zero. Auto-Indent causes the edi-
tor to indent new lines to match the indentation of previous lines. Remove Trailing Whitespace

causes the editor to remove extra space or tab characters from the end of aline.

192 Dynamic C User’s Manual

14.2.6.2 Compiler
The Compiler command gets Dynamic C to display the following dialog, which allows compiler
operations to be changed.

Compiler Options E

— Bun-Time Checking ———— — Twpe Checking
¥ i o ¥ Prototype
et % Demotion
¥ Fuainters
¥ Painter
— BIOS Memaory Setting — Warning Beports ——
& Code and BIOS in Flash Lo
" Code and BIOS in FaM = Seriousz Oy
" Code and BIOS in Flash, Bun in Bk " None

— Uzer Defined BIOS File —— — Optimize For
[Use i~ Size
I J {* Speed
— Uszer Defined Lib Directam File —— — Max Shown

[Use Errars: IT
I J Wi arnings: I‘I 1]

— watch Expressions

% Allow any expressions in watch expressions

" Flestiict watch expressions [May save oot code space]

— Separate | & D Space
[T Enable separate instruction and data space

Defines | k. Help Cancel

Run-Time Checking
These options, if checked, can allow afata error at run-time. They also increase the amount of

code and cause slower execution, but they can be valuable debugging tools.

* Array Indices—Check array bounds. This feature adds code for every array reference.

* Pointers—Check for invalid pointer assignments. A pointer assignment isinvalid if
the code attempts to write to alocation marked as not writable. Locations marked not
writable include the entire root code segment. This feature adds code for every pointer
reference.

Chapter 14: Graphical User Interface 193

BIOS Memory Setting
A single, default BIOS sourcefile that is defined in the system registry when installing
Dynamic Cisused for both compiling to RAM and compiling to flash. Dynamic C defines a
preprocessor macro, FLASH , RAM_ or FAST_RAM depending on which of the fol-
lowing optionsis selected. This macro is used to determine the relevant sections of code to
compile for the corresponding memory type.

* Code and BIOS in Flash—If you select this option, the compiler will load the BIOSto
flash when cold-booting, and will compile the user program to flash where it will nor-
mally reside.

* Code and BIOS in RAM—If you select this option, the compiler will load the BIOSto
RAM on cold-booting and compile the user program to RAM. This option is useful if
you want to use breakpoints while you are debugging your application, but you don’t
want interrupts disabled while the debugger writes a breakpoint to flash (this can take
10 msto 20 ms or more, depending on the flash type used). Note that when you single
step through code, the debugger iswriting breakpoints at the next point in code you
will step to. It is also possible to have atarget that only has RAM for use as aslave pro-
cessor, but this requires more than checking this option because hardware changes are
necessary that in turn require a special BIOS and coldloader.

* Code and BIOS in Flash, Run in RAM—If you select this option, the compiler will
load the BIOS to flash when cold-booting, compile the user program to flash, and then
the BIOS will copy the flash image to the fast RAM attached to CS2. This option sup-
ports a CPU running at a high clock speed (anything above 29 MHz).

Thisisthe same as the command line compiler - nf r option.

User Defined BIOS File
Use this option to change from the default BIOS to a user-specified file. Enter or select thefile
using the browse button/text box undernesth this option. The check box labeled use must be
selected or €lse the default file BIOS defined in the system registry will be used. Note that a
single BIOS file can be made for compiling both to RAM and flash by using the preprocessor
macros _FLASH_or _RAM . These two macros are defined by the compiler based on the
currently selected radio button in the BIOS Memory Setting group box.

User Defined Lib Directory File
The Library Lookup information retrieved with <Ctrl-H> is parsed from the libraries found in
thel i b. di r file, whichis part of the Dynamic C ingtallation. Checking the Use box for
User Defined Libraries File, allows the parsing of a user-defined replacement for | i b. di r
when Dynamic C starts. Library filesmust belistedinl i b. di r (or itsreplacement) to be
available to a program.

If the function description headers are formatted correctly (See “ Function Description Head-
ers’ on page 40.), the functionsin the libraries listed in the user-defined replacement for

i b.dir will beavailable with <Ctrl-H> just like the user-callable functions that come with
Dynamic C.

Thisis the same as the command line compiler - | f option.

194 Dynamic C User’s Manual

Watch Expressions
Allow any expressions in watch expressions. This option causes any compilation of a user
program to pull in all the utility functions used for expression evaluation.

Restricting watch expressions (may save root code space) Choosing this option means
only utility code already used in the application program will be compiled.

Separate 1&D Space
When checked, this option enables separate instruction and data space, doubling the amount of
root code and root data space available.

Please note that if you are compiling to a 128K RAM, thereisonly about 12K available for
user code when separate 1& D space is enabled.

Type Checking
This menu item allows the following choices:

* Prototypes—Performs strict type checking of arguments of function calls against the
function prototype. The number of arguments passed must match the number of param-
etersin the prototype. In addition, the types of arguments must match those defined in
the prototype. Z-World recommends prototype checking because it identifies likely
run-time problems. To use this feature fully, all functions should have prototypes
(including functionsimplemented in assembly).

* Demotion—Detects demotion. A demation automatically convertsthe value of alarger
or more complex type to the value of a smaller or less complex type. The increasing
order of complexity of scalar typesis:

char

unsi gned i nt

i nt

unsi gned | ong
| ong

fl oat

A demotion deserves awarning because information may be lost in the conversion. For
example, when al ong variable whose valueis 0x10000 is converted to ani nt value,
the resulting value is 0. The high-order 16 bits are lost. An explicit type casting can
eliminate demotion warnings. All demotion warnings are considered non-serious as far
as warning reports are concerned.

* Pointer—Generateswarningsif pointersto different types are intermixed without type
casting. While type casting has no effect in straightforward pointer assignments of dif-
ferent types, type casting does affect pointer arithmetic and pointer dereferences. All
pointer warnings are considered non-serious as far as warning reports are concerned.

Warning Reports
Thistells the compiler whether to report al warnings, no warnings or serious warningsonly. It
isadvisableto let the compiler report all warnings because each warning is a potential run-
time bug. Demations (such as converting al ong toani nt) are considered non-serious with
regard to warning reports.

Chapter 14: Graphical User Interface 195

Optimize For

Allows for optimization of the program for size or speed. When the compiler knows more than
one sequence of instructions that perform the same action, it selects either the smallest or the
fastest sequence, depending on the programmer’s choice for optimization.

The difference made by this option is less obvious in the user application (where most codeis
not marked nodebug). The speed gain by optimizing for speed is most obvious for functions
that are marked nodebug and have no auto local (stack-based) variables.

Max Shown

Thislimits the number of error and warning messages displayed after compilation.

Defines

The Defines button brings up a dialog box with awindow for entering (or modifying) alist of
definesthat are global to any source file programs that are compiled and run. The macros that
are defined here are seen by the BIOS during its compilation.

The syntax expected is a semi-colon separated list of defined constants with optional values
given with an equa sign. Thisisthe same as the command line compiler -d option, except that
the CLC expects a single defined expression to follow each -d:

dccl _cnmp nysourcefile.c -d DEF1 -d MAXN=10 -d DEF2

while the GUI window expects a semi-colon separated list
DEF1; MAXN=10; DEF2

The end result isthe same as if every file compiled and run were prepended with:

#defi ne DEF1
#defi ne MAXN 10
#def i ne DEF2

196

Dynamic C User’s Manual

14.2.6.3 Debugger
Choosing the Debugger menu item from the Options dialog box displays the following:

Debugger Options Ed

V¥ &uto Open STOIO "Window
[Log 5TDOUT

Log file: IDE.EILIT

[T Append Log

¥ Enable breakpoints

M breakpaints: |32 =

¢ Enable watch expressions

M ax watch expressions: IB :I

[V Enable instruction level single stepping

k. | Help | Ear‘u:ell

The optionsin the Debugger dialog box may be helpful when debugging programs. In particular,
they allow printf statements and other STDIO output to be logged to afile. (Starting with
Dynamic C version 7.25, the macro STDI O_DEBUG_SERI AL may be defined to redirect STDIO
output to a designated serial port—A, B, C or D. For more information, please see the sample pro-
gram Sanpl es/ STDI O_SERI AL. C))

Check the box labeled Log STDOUT to send a copy of all standard output to the named log file.
For afile that already exists, check Append Log unless you want to overwrite instead. Dynamic C
automatically opens the STDIO window when a program first attemptsto print to it if a check
appearsin the checkbox labeled Auto Open STDIO Window.

The last three checkboxes allow the user to control the size and capabilities of the debug kernel.
The debug kernel has grown significantly in size, so if there are tight code space requirements
parts of the debug kernel can be disabled to save room. The three checkboxes are:

Enable Breakpoints
If thisbox is checked, the debug kernel will be able to toggle breakpoints on and off and will
be able to stop at set breakpoints. Using the scroll bar to the right of Max breakpoints, one
may enter up to the maximum amount of breakpoints the debug kernel will support. The
debug kernel uses asmall amount of root ram for each breakpoint, so reducing the number of
breakpoints will dightly reduce the amount of root ram used.

If this box is unchecked, the debug kernel will be compiled without breakpoint support and the
user will receive an error message if they attempt to add a breakpoint.

Chapter 14: Graphical User Interface 197

Enable Watch Expressions
If thisis checked, watch expressions will be enabled. Using the scroll bar to the right of

Max watch expressions, enter up to the maximum amount of watch expressions the debug
kernel will support. The debug kernel uses a small amount of root ram for evaluating each
watch expression, so reducing the amount of watches will dightly reduce the amount of root
ram used.

With it unchecked, the debug kernel will be compiled without watch expressions support and
the user will receive an error message if they attempt to add a watch expression.

Enable Instruction Level Single Stepping
If thisis checked when the assembly window is open, single stepping will be by instruction
rather than by C statement. Unchecking this box will disable instruction level single stepping
on thetarget and, if the assembly window is open, the debug kernel will step by C statement.

14.2.6.4 Display
The Display command gets Dynamic C to display the following dialog.

Display Options Ed

Wdindow Attribute

Err Editor
Diebug Editor

Background Colo
Foreground Color

Mezzage Selection Bg
W atich Selection Fg
Stdio =]

LChange Help | Cloze |

Use the Display Options dialog box to change the appearance of Dynamic C windows. First
choose the window from the window list. Then select an attribute from the attribute list and click
the change button. Another dialog box will appear to make the changes. Note that Dynamic C
allows only fixed-pitch fonts and solid colors (if a dithered color is selected, Dynamic C will use
the closest solid color).

The Editor window attributes affect all text windows, except two special cases. After an attempt is
made to compile a program, Dynamic C will either display alist of errorsin the message window
(compilation failed), or Dynamic C will switch to run mode (compilation succeeded). In the case
of afailed compile, the editor will take on the Error Editor attributes. In the case of a successful
compile, the editor will take on the Debug Editor attributes.

198 Dynamic C User’s Manual

14.2.6.5 Communications
The Options | Communications menu item displays the following dialog box. Useit to tell
Dynamic C how to communicate with the target controller.

Communications Options

— TCP/IF Options

™ Usze TCP/P Connection Discawer |

Hetwark Sddress I

[Eantrallen Hame I
[Eatitral Part |4244

— Serial Options

% ze Seral Connectiori ¥ Enable Processzor Verification
YWerify the processar.

Part IEEIh-H: TI [Ty dizabling if wou can't get the
FC to find the target]

Drebu

Eaudgll:iate |1152DD "I [T Usze USE ta Sernal Corverter

b ax O lnad
E::d E?:zm |4EDEDU 'I [Dizable Baud Megatiation

Stop Bits |1 vI

k. Help | Cancel |

TCP/IP Options
In order to program and debug a controller across a TCP/IP connection, the Network Address
field must have the IP address of either the Z-World RabbitLink board that is attached to the
controller, or the IP address of a controller that has its own Ethernet interface.

To accept control commands from Dynamic C, the Control Port field must be set to the port
used by the ethernet-enabled controller. The Controller Name isfor informational purposes
only. The Discover button makes Dynamic C broadcast a query to any RabbitLinks attached
to the network. Any RabbitLinks that respond to the broadcast can be selected and their infor-
mation will be placed in the appropriate fields.

Chapter 14: Graphical User Interface 199

Serial Options
The following options are available when the Use Serial Connection radio button is selected.

Port - Thisisthe COM port of the PC that is connected to the target. It defaultsto COM1.

Debug Baud Rate - This defaultsto 115200 bps. It isthe baud rate used for target communi-
cations after the program has been downloaded.

Max Download Baud Rate - When baud negotiation is enabled, the compiler will start out at
the selected baud rate and work downwards until it reaches one both the compiler and target
can handle. Prior to Dynamic C 7.26, this value was accessible in the registry instead of the
GUI.

Stop Bits - The number of stop bits used by the serial drivers. Defaultsto 1.

Enable Processor Verification - Processor detection is enabled by default. The connectionis
normally checked with atest using the Data Set Ready (DSR) line of the PC serial connection.
If the DSR lineis not used as expected, afalse error message will be generated in response to
the connection check.

To bypass the connection check, uncheck the Enable Processor Verification checkbox. This
allows custom designed systems to not connect the STATUS pin to the programming port.
Also disabling the connection check allows non-standard PC ports or USB converters which
might not implement the DSR line to work.

Use USB to Serial Converter - Check this checkbox if a USB to seria converter cableis
being used. Dynamic C will then attempt to compensate for abnormalitiesin USB converter
drivers. This mode makes the communications more USB/RS232 converter friendly by allow-
ing higher download baud rates and introducing short delays at key pointsin the loading pro-
cess. Checking this box may also help non-standard PC ports to work properly with

Dynamic C.

Disable Baud Negotiation - Since Dynamic C version 7.25, the compiler negotiates a baud
rate for program download. (This helps with USB or anyone who happens to have a high-
speed seria port.) This default behavior may be disabled by checking the Disable Baud
Negotiation checkbox. When baud negotiation is disabled, the program will download at
115k baud or 56k baud only. When enabled, it will download at speeds up to 460k baud, as
specified by Max Download Baud Rate.

200 Dynamic C User’s Manual

14.2.6.6 Define Target Configuration
The Define target configuration menu option displays the following dialog box:

Configure Targetless Compilation

 Use Target Information File
" Epecify Board Parametars
& Select Board Type

Board ID: 0:0400
| 22MHz RCM2300, 128K SRAM, 256k Flash |

CPU:
|Habbit 2000

Kl

B aze Frequency [MMHz]

{11.0532 =]
Fak [KEptes]
[126 =]

Primary Flazh [FBytes]
|58

Save az RTI | o Ok X Cancel

There are three options available in this dialog box for choosing the board parameters that will be
used in the compile. Select Board Type isthe default choice and activates the Board ID pull-
down menu, alist of all known board configurations. Specify Board Parameters, when checked,
brings up adialog box to enter data for a new board configuration. The name specified in the dia-
log box for the new board configuration will be automatically included in the Board 1D pull-down
menu. Use Target Information File, when checked, will prompt for a Remote Target Information
(RTI) file. Any target configuration canbesaved asa. rti fileby clicking the Save as RTI but-
ton at the bottom of the dialog box.

The baud rate, set in the Base Frequency (MHz) pulldown menu, only applies to debugging. The
fastest baud rate for downloading is negotiated between the PC and the target.

Kl

Chapter 14: Graphical User Interface 201

14.2.6.7 Other Menu Choices

Show Tool Bar
The Show Tool Bar command toggles the display of the tool bar. Dynamic C remembers the
toolbar setting on exit.

Save Environment
The Save Environment command gets Dynamic C to update the registry and DCW CFGini-
tidization files immediately with the current options settings. Dynamic C always updates
these files on exit. Saving them while working provides an extra measure of security against
Windows crashes.

14.2.7 Window Menu
Click the menu title or press <Alt-W> to select the Window menu.

: Help

Cy Cascade
— Tile Horizontally
Tile ¥ertically

Arrange icons

Message

Yatch

Stdio

Assembly F10
Registers

Stack

Information

v 1 CADCRABBIT\SAMPLES\PONG.C

Thefirst group of itemsis a set of standard Windows commands that allow the application win-
dowsto be arranged in an orderly way.

The second group of items presents the various Dynamic C debugging windows. Click on one of
these to activate or deactivate the particular window. It is possible to scroll these windows to view
larger portions of data, or copy information from these windows and paste the information as text
anywhere. The contents of these windows can be printed.

Thethird group isalist of current windows, including source code windows. Click on one of these
items to bring that window to the front.

Message
Click the Message command to activate or deactivate the Message window. A compilation
with errors also activates the message window because the message window displays compila-
tion errors.

202 Dynamic C User’s Manual

Watch
The Watch menu option activates or deactivates the watch window. The Add/Del Items com-
mand on the INSPECT menu will do this too. The watch window displays the results when-
ever Dynamic C evaluates watch expressions.

Stdio
Click the Stdio command to activate or deactivate the Stdio window. The Stdio window dis-
plays output from callsto pri nt f . If the program calspri nt f , Dynamic C will activate
the Stdio window automatically, unless another request was made by the programmer. (See the
Debugger Options under the OPTIONS menu.)

Assembly
Click the Assembly command to activate or deactivate the Assembly window. The Assembly
window displays machine code generated by the compiler in assembly language format.

The Disassemble at Cursor or Disassemble at Address commands also activate the
Assembly window.

Disassembled Code M=l E1

1a15 325AC2 1d {C25A) ,a 18

-

4 4 i
The Assembly window shows the memory address on the far left, followed by the code bytes
for the instruction at the address, followed by the mnemonics for the instruction. The last col-
umn shows the number of cycles for the instruction, assuming no wait states. The total cycle
time for a block of instructions will be shown at the lowest row in the block in the cycle-time
column, if that block is selected and highlighted with the mouse. The total assumes one execu-
tion per instruction, so the user must take looping and branching into consideration when eval-
uating execution times.

Use the mouse to select several lines in the Assembly window, and the total cycle time for the
instructions that were selected will be displayed to the lower right of the selection. If the total
includes an asterisk, that means an instruction such asl di r orr et nz with an indetermi-
nate cycle time was selected.

Chapter 14: Graphical User Interface 203

Registers

Click the Registers command to activate or deactivate the Register window. The Register
window displays the processor register set, including the status register. Letter codes indicate
the bits of the status register (F register). The window also shows the source-code line and col-
umn at which the snapshot of the register was taken. It is possible to scroll back to see the pro-
gression of successive register snapshots. Registers may be changed when program execution
is stopped by clicking the right mouse button over the name or value of the register to be
changed. Registers PC, XPC, and SP may not be edited as this can adversely effect program
flow and debugging.

ERegisters S [=] B3

EB19 5P DFF3

Stack

Click the Stack command to activate or deactivate the Stack window. The Stack window dis-
plays the top 8 bytes of the run-time stack. It also shows the line and column at which the
stack “snapshot” was taken. It is possible to scroll back to see the progression of successive
stack snapshots.

[Top of Stack M=l E3

F

204

Dynamic C User’s Manual

Information
Click the Information menu option to activate the Information window.

Information |

Baze Top Size

Footcode: 0000 1AEE 1AEF Total code zize: 10972 bytes
#MEM code: 06000 0OBFF4 OOFF4 Total data size: 2244 bytes
“Whatch code: CCOD CDFE 01FF Lines compiled: 12225
Stack: DOO0 DFFF 1000 Compile time; 2 seconds
Root data: C33C CBFF aca Compile speed: 350453 linez/minute

Total bytes zent: 0
Re-zend bytez: 0
Board ID: 00300

The Information window displays how the memory is partitioned and how well the compila
tion went.

14.2.8 Help Menu
Click the menu title or press <Alt-H> to select the HELP menu. The choices are given below:

Online Documentation
Opens a browser page and displays afile with links to other manuals. When installing

Dynamic C from CD, this menu item points to the hard disk; after a Web upgrade of Dynamic
C, thismenu item optionally points to the Web.

Keywords
Opens a browser page and displays an HTML file of Dynamic C keywords, with links to their

descriptionsin this manual.

Operators
Opens a browser page and displays an HTML file of Dynamic C operators, with links to their

descriptionsin this manual.

HTML Function Reference
Opens a browser page and displays an HTML file that has two links, one to Dynamic C func-

tions listed al phabetically, the other to the functions listed by functional group. Each function
listed islinked to its description in the Dynamic C Function Reference Manual.

Chapter 14: Graphical User Interface 205

Function Lookup/Insert

Displays descriptions for library functions. The function is chosen in the Library Lookup dia-
log box by clicking on its name and then clicking OK.

Library Lookup |

Types Mamesz

stremp in EADYME 7 25NLIBNVSTRIMG.LIB

stcat in EADYMC 7.255LIBNS TRIMG.LIE ﬂ
gtrchr in E:ADYHC 7250 IBVS TRIMG.LIE

stremp in EADYMNE 7 254LIBNSTRIMG.LIB

strempi in EADYNE 7. 255LIBNS TRING.LIE

strepy in EADYMC 7 28MLIBAVSTRING.LIE

strespn in EADYNC 7 255LIBNS TRING.LIE -~
gtrler in E:ADYMC 7 255IBNSTRIMG.LIE ;I

] Help | Cancel |

Thisdialog box is also displayed when the keyboard shortcut <Ctrl-H> is used anywhere in the
source cade. If aDynamic C function is selected at thetime <Ct r | - H> is pressed, then the
dialog box is skipped and the Function L ookup/Insert screen displays the function description.

Biowea] O | Concal| il | P | & Viem Only
. ~ L T Y |
Funclion Desciphon:
mtromp ZATRIRG.LIB> |
AVHTAY: int stecrp(char *atel, chae *scel)
DESCRIPTION: Pecform= unsign=d charmcter by character compari=on of two
nall terminated skrings.
FAFAMETER] : FPolnter ta steing 1.
PAEAMETEES : Poinker Ea =Efing 2.
RETURN WALUE: <« 0 if =trl i= l=== than =stcl
char in strl is leas than correaponding char in acel
atyr]l ia sbkocter thas bBut otheewisse ildentcical Ea stel
=0 if =kel ax egqual to gkrd
ztrl im identical to atcl
> 0 1f strl i= greaster than strd
char in abrd dis greater than corresponding char in ated
sty 18 skorter than But stheewise ildencical Ea sEel
KEYWOHRDS: atcing, compmrcs
b
4] | v

206 Dynamic C User’s Manual

Although this may be sufficient for most purposes, the Insert Call button can be clicked to
invoke a“function assistant.” Thisis only useful if the Function Lookup/Insert dialog box was
displayed in response to selecting a function in source code. Otherwise the function assistant
will only restate the function description information.

prowse| [0K] Concal| Heo | Pt | € View Onky
= = & o Cal
Funclion Desciphors
stromp ZSTRIRG.LIE> |
AVHTAY: int stecrp(char *atel, chae *scel)
DESCRIPTION: Pecform= unsign=d charmcter by character compari=on of two

nall terminated skrings.

FPARAMETER] 3 FPolnter ta steing 1.
PAEAMETEES : Poinker Ea =Efing 2.

RETURN WALUE: <« 0 if =trl i= l=== than =stcl

4] LI
! Herre n [escriphor:
= | =EE] |
Porameter 8 : Il_lﬂ ___' Tupe

[. £ |¢.-h:|.|.' 4 |
Poimkter bo stcing 1. =
b
4] | N

The function assistant will place a call to the function displayed at the insertion point in the

source code. The function call will be prototypical if OK isclicked; the call needsto be edited
for it to make sense in the context of the code.

Each parameter can be specified, one-by-one, to the function assistant. The function assistant
will return the name and data type of the parameter. When parameter expressions are specified
in this dialog, the function assistant will use those expressions when placing the function call.

If the text cursor is placed on avalid C function call (and one that is known to the function
assistant), the function assistant will analyze the function call, and will copy the actua param-
eters to the function lookup dialog. Compare the function parametersin the Expr. in Call box
in the dialog with the expected function call arguments.

Consider, for example, the following code.

X = strcpy(comment, " Lower tray needs paper.");

If the text cursor is placed on st r cpy and the Function Lookup/Insert command isissued,
the function assistant will show the comment as parameter 1 and “Lower tray needs paper.” as

parameter 2. The arguments can then be compared with the expected parameters, and the argu-
ments in the dialog can then be modified.

Chapter 14: Graphical User Interface 207

Instruction Set Reference
Invokes an on-line help system and displays the alphabetical list of instructions for the Rabbit
2000 microprocessor and the Rabbit 3000 microprocessor.

Keystrokes
Invokes an on-line help system and displays the keystrokes page. Although a mouse or other
pointing device may be convenient, Dynamic C a so supports operation entirely from the key-
board.

Contents
Invokes an on-line help system and displays the contents page. From here view explanations
of various features of Dynamic C.

Tech Support Bulletin Board
Opens a browser window to a Z-World/Rabbit Semiconductor forum for products based on the
Rabbit 2000 and the Rabbit 3000.

Tip of the Day
Brings up awindow displaying some useful information about Dynamic C. Thereis an option
to scroll to another screen of Dynamic C information and an option to disable the feature. This
is the same window that is displayed when Dynamic C initializes.

About
The About command displays the Dynamic C version number and the copyright notice.

208 Dynamic C User’s Manual

15. Command Line Interface

The Dynamic C command line compiler (dccl _cnp. exe) performs the same compilation and
program execution asits GUI counterpart (dcr abxx. exe), but isinvoked as a console applica-
tion from a DOS window. It is called with a single source file program pathname as the first
parameter, followed by optional case-insensitive switches that alter the default conditions under
which the program is run. The results of the compilation and execution, al errors, warnings and
program output, are directed to the console window and are optionally written or appended to a
text file.

15.1 Default States

With versions of Dynamic C prior to 7.10, the default states of Dynamic C environment variables
areused eachtimedccl _cnp iscaled. If asequence of callsiswritten into a batch file, varia-
tions from the defaults must be repeated for each call. For instance, if a change is made to the
seria parameters

dccl _cnp nyProgramc -s 2:115200:1:0

the next call will revert to the default settings of 1:115200:1:0 unless the switch is used with that
next call aswell.

Starting with Dynamic C v 7.10, the command line compiler uses the values of the environment
variables that arein the project fileindicated by the -pf switch, or if the -pf switch is not used, the
values are taken from def aul t . dcp. For more information, please see Chapter 16, “Project
Files’ on page 227.

15.2 User Input
Applications requiring user input must be called with the -i option:
dccl _cnp nyProgramc -i nyProgram nputs.txt

where ny Pr ogr am nput s. t xt isatext file containing the inputs as separate lines, in the
order inwhich my Pr ogr am ¢ expectsthem.

15.3 Saving Output to a File
The output consists of al program printf’s aswell as all error and warning messages.
Output to afile can be accomplished with the -0 option
dccl _cnp nyProgramc -i nyProgram nputs.txt -o myQutputs.txt
whereny Qut put s. t xt isoverwrittenif it existsor is created if it does not exist.
If the-oa option isused, myQut put s. t xt isappended if it existsor is created if it does not.

Chapter 15: Command Line Interface 209

15.4 Command Line Switches

Each switch must be separated from the others on the command line with at |east one space or tab.
Extra spaces or tabs are ignored. The parameter(s) required by some switches must be added as
separate text immediately following the switch. Any of the parameters requiring a pathname,
including the source file pathname, can have imbedded spaces by enclosing the pathnamein

quotes.

15.4.1 Switches Without Parameters

-b

Description:

Default:
GUI Equivalent:

Compileto . bi n file using attached target. The resulting fileis created or
overwritten with the same pathname as the sourcefile, but witha. bi n
extension. This switch is available only in Dynamic C v 7.05 and 7.06.

Compilation is written only to the target and not to afile.

Sdlect the Compile | Compile to .bin file | Use attached target menu
option.

-bf- (Available starting with Dynamic C v 7.10)

Description:
Factory Default:
GUI Equivalent:

Undo user-defined BIOS file specification.
None.

Uncheck the Options | Compiler | User defined BIOS file | Use dialog
box option.

-h

Description: Print program header information. This switch is available only in
Dynamic C v 7.05 and 7.06.

Default: No header information will be printed.

GUI Equivalent: None.

Example: dccl _cnmp sanpl es\denpl.c -h -0 nyoutputs.txt
Header text preceding output of program:
kkhkkkhkhhkkkkhkhhkkhkhkhhhkhkhkhhhkhkhkhhhkhkhkhhkhkhkhhhkhkhkhhhkhkhkhhhkkkkhkkkk,k,k*x*%
4/5/01 2:47:16 PM
dccl_cmp.exe, Version 7.05P - English
samples\demol.c
Options: -h -0 myoutputs.txt
Program outputs:

Note: Version information refersto dcwd. exe with the same compiler
core.
210 Dynamic C User’s Manual

-h+ (Available starting with Dynamic C v 7.10)

Description: Print program header information.
Factory Default: No header information will be printed.
GUI Equivalent: None.

Example: dccl _cnp sanpl es\denpl.c -h -0 nyoutputs.txt
Header text preceding output of program:

khkkhkkhkkhkkhkhkkhkhhkhkhkhhhhhhhhhkhhhhhhhhhhkhhhhhhdhhdhhhhhdddhxhxdx%x

4/5/01 2:47:16 PM

dccl_cmp.exe, Version 7.10P - English
samples\demol.c

Options: -h+ -0 myoutputs.txt
Program outputs:

Note: Version information refersto dcwd. exe with the same compiler
core.

-h- (Available starting with Dynamic C v 7.10)

Description: Disable printing of program header information.
Factory Default: No header information will be printed.
GUI Equivalent: None.

-id+ (Available starting with Dynamic C v 7.30)

Description: Enable separate instruction and data space.
Factory Default: Separate 1&D spaceis disabled.
GUI Equivalent: Check Separate I&D Space inthe Options | Compiler dialog box.

-id- (Available starting with Dynamic C v 7.30)

Description: Disable separate instruction and data space.
Factory Default: Separate 1&D spaceis disabled.
GUI Equivalent: Uncheck Separate 1&D Space in the Options | Compiler dialog box.

Chapter 15: Command Line Interface 211

-If- (Available starting with Dynamic C v 7.10)

Description:
Factory Default:
GUI Equivalent:

-mf

Description:
Default:

GUI Equivalent:

-mfr

Description:

Default:

GUI Equivalent:

-mr

Description:
Default:

GUI Equivalent:

Undo Library Directory file specification.
No Library Directory file is specified.

Uncheck the Options | Compiler | User Defined Libraries File | Use
menu dial og box option.

Memory BIOS setting: Flash.
Memory BIOS setting: Flash.

Select the Options | Compiler | Code and BIOS in Flash menu dialog box
option.

The BIOS and code are compiled to flash, and then the BIOS copies the
flash image to RAM to run the code.

Memory BIOS setting: Flash

Uncheck the Options | Compiler | Code and BIOS in Flash, Run in RAM
menu dial og box option.

Memory BIOS setting: RAM.
Memory BIOS setting: Flash.

Sdlect the Options | Compiler | Code and BIOS in RAM menu dialog box
option.

-n (Available starting with Dynamic C v 7.25)

Description: Null compile for errors and warnings without running the program. The
program will be downloaded to the target.
Default: Programis run.
GUI Equivalent: Select Run | Run menu option.
212 Dynamic C User’s Manual

-rb

Description: Do not include BIOS when compiling to afile. This option isignored if not
compiling to afile. This switch is available only in Dynamic C v 7.05 and
7.06.

Default: BIOSisincluded if Compile to .bin file is selected.

GUI Equivalent: Uncheck the Compile | Compile to .bin file | Include BIOS menu option.

-rb+ (Available starting with Dynamic C v 7.10)

Description: Include BIOS when compiling to afile.
Default: BIOSisincluded if Compile to .bin file is selected.

GUI Equivalent: Check the Compile | Compile to .bin file | Include BIOS menu option.

-rb- (Available starting with Dynamic C v 7.10)

Description: Do not include BIOS when compiling to afile.
Default: BIOSisincluded if Compile to .bin file is selected.

GUI Equivalent: Uncheck the Compile | Compile to .bin file | Include BIOS menu option.

-rd
Description: Do not include debug (RST 28) code when compiling to afile. This option
isignored if not compiling to afile. This switch isavailable only in
Dynamic Cv 7.05 and 7.06.
Default: RST 28isincluded if Compileto fileis selected.

GUI Equivalent: Uncheck the Compile | Compile to .bin file | Include debug code/RST 28
instructions menu option.

-rd+ (Available starting with Dynamic C v 7.10)

Description: Include debug code when compiling to afile.
Default: RST 28 instructions are included

GUI Equivalent: Check the Compile | Compile to .bin file | Include debug code/RST 28
instructions menu option.

Chapter 15: Command Line Interface 213

-rd- (Available starting with Dynamic C v 7.10)

Description: Do not include debug code when compiling to afile. This option isignored
if not compiling to afile.

Default: RST 28 instructions are included.

GUI Equivalent: Uncheck the Compile | Compile to .bin file | Include debug code/RST 28
instructions menu option.

-rf- (Available starting with Dynamic C v 7.10)

Description: Undo RTI file specification.
Default: None.

GUI Equivalent: Select the Compile | Compile to Target menu option.

-ri
Description: Disable runtime checking of array indices.
This switch isavailable only in Dynamic C v 7.05 and 7.06.
Default: Runtime checking of array indicesis performed.

GUI Equivalent: Uncheck the Options | Compiler | Array Indices menu option.

-ri+ (Available starting with Dynamic C v 7.10)

Description: Enable runtime checking of array indices.
Default: Runtime checking of array indicesis performed.

GUI Equivalent: Check the Options | Compiler | Array Indices menu option.

-ri- (Available starting with Dynamic C v 7.10)

Description: Disable runtime checking of array indices.
Default: Runtime checking of array indicesis performed.

GUI Equivalent: Uncheck the Options | Compiler | Array Indices menu option.

_rp
Description: Disable runtime checking of pointers.
This switch isavailable only in Dynamic C v 7.05 and 7.06.
Default: Runtime checking of pointersis performed.

GUI Equivalent: Uncheck the Options | Compiler | Pointers menu option.

214 Dynamic C User’s Manual

-rp+ (Available starting with Dynamic C v 7.10)

Description: Enable runtime checking of pointers.
Default: Runtime checking of pointersis performed.

GUI Equivalent: Uncheck the Options | Compiler | Pointers menu option.

-rp- (Available starting with Dynamic C v 7.10)

Description: Disable runtime checking of pointers.
Default: Runtime checking of pointersis performed.

GUI Equivalent: Uncheck the Options | Compiler | Pointers menu option.

-rw
Description: Restrict watch expressions—may save root code space.
This switch isavailable only in Dynamic C v 7.05 and 7.06.
Default: Allow any expressions in watch expressions.

GUI Equivalent: Select the Options | Compiler | Restrict watch expressions menu dialog
box option.

-rw+ (Available starting with Dynamic C v 7.10)

Description: Restrict watch expressions—may save root code space.
Default: Allow any expressions in watch expressions.

GUI Equivalent: Select the Options | Compiler | Restrict watch expressions menu dialog
box option.

-rw- (Available starting with Dynamic C v 7.10)

Description: Don't restrict watch expressions.
Default: Allow any expressions in watch expressions.

GUI Equivalent: Select Options | Compiler | Allow any expressions ... menu dialog box

option.
_Sp
Description: Optimize code generation for speed.
Default: Optimize for speed.

GUI Equivalent: Select the Options | Compiler | Speed menu dia og box option.

Chapter 15: Command Line Interface 215

-SZ

Description: Optimize code generation for size.
Default: Optimize for speed.

GUI Equivalent: Select the Options | Compiler | Size menu dialog box option.

-td
Description: Disable type demotion checking. This switch isavailable only in
Dynamic C v 7.05 and 7.06.
Default: Type demotion checking is performed.

GUI Equivalent: Uncheck the Options | Compiler | Demotion menu dialog box option.

-td+ (Available starting with Dynamic C v 7.10)

Description: Enable type demation checking.
Default: Type demotion checking is performed.

GUI Equivalent: Check the Options | Compiler | Demotion menu dialog box option.

-td- (Available starting with Dynamic C v 7.10)

Description: Disable type demotion checking.
Default: Type demotion checking is performed.

GUI Equivalent: Uncheck the Options | Compiler | Demotion menu dialog box option.

_tp
Description: Disable type checking of pointers.
This switch isavailable only in Dynamic C v 7.05 and 7.06.
Default: Type checking of pointersis performed.

GUI Equivalent: Uncheck the Options | Compiler | Pointer menu dialog box option.

-tp+ (Available starting with Dynamic C v 7.10)

Description: Enable type checking of pointers.
Default: Type checking of pointersis performed.

GUI Equivalent: Check the Options | Compiler | Pointer menu dialog box option.

216 Dynamic C User’s Manual

-tp- (Available starting with Dynamic C v 7.10)

Description: Disable type checking of pointers.
Default: Type checking of pointersis performed.

GUI Equivalent: Uncheck the Options | Compiler | Pointer menu dialog box option.

-tt
Description: Disable type checking of prototypes.
This switch isavailable only in Dynamic C v 7.05 and 7.06.
Default: Type checking of prototypesis performed.

GUI Equivalent: Uncheck the Options | Compiler | Prototype menu dialog box option.

-tt+ (Available starting with Dynamic C v 7.10)

Description: Enable type checking of prototypes.
Default: Type checking of prototypesis performed.

GUI Equivalent: Check the Options | Compiler | Prototype menu dialog box option.

-tt- (Available starting with Dynamic C v 7.10)

Description: Disable type checking of prototypes.
Default: Type checking of prototypesis performed.

GUI Equivalent: Uncheck the Options | Compiler | Prototype menu dialog box option.

-Vp+ (Available starting with Dynamic C v 7.20)

Description: Verify the processor by enabling a DSR check. This should be disabled if a
check of the DSR line isincompatible on your system for any reason.

Default: Processor verification is enabled.

GUI Equivalent: Check the Options | Communications | Enable DSR verification box.

-vVp- (Available starting with Dynamic C v 7.20)

Description: Assume avalid processor is connected.
Default: Processor verification is enabled.

GUI Equivalent: Uncheck the Options | Communications | Enable DSR verification box.

Chapter 15: Command Line Interface 217

-wa

Description: Report all warnings.
Default: All warnings reported.

GUI Equivalent: Select the Options | Compiler | All menu dialog box option.

-wn
Description: Report no warnings.
Default: All warnings reported.

GUI Equivalent: Select the Options | Compiler | None menu dialog box option.

-WS
Description: Report only serious warnings.
Default: All warnings reported.

GUI Equivalent: Select the Options | Compiler | Serious menu dialog box option.

218 Dynamic C User’s Manual

15.4.2 Switches Requiring a Parameter

-bf BIOSFilePathname

Description: Compileusing aBlIOSfile found in Bl OSFi | ePat hnane.

Default: \ Bi os\ Rabbi t Bi 0s. c

GUI Equivalent: Select the Options | Compiler | User Defined BIOS File | Use | ... menu
dialog box option.

Example: dccl _cnmp nyProgramc -bf MyPath\MyBIGCS.lib

-d MacroDefinition

Description: Define macros and optionally equate to values.

The following rules apply and are shown here with examples and equiva-
lent #def i ne form:

Separate macros with semicolons.

dccl _cnp nyProgram c -d DEF1; DEF2
#defi ne DEF1
#def i ne DEF2

A defined macro may be equated to text by separating the defined macro
from the text with an equal sign (=).
dccl _cnp nyProgram c -d DEF1=20; DEF2

#defi ne DEF1 20
#def i ne DEF2

Macro definitions enclosed in quotation marks will be interpreted asasin-
gle command line parameter.
dccl _cnp nyProgramc -d “DEFl=text w th spaces; DEF2”

#define DEF1 text with spaces
#def i ne DEF2

A backslash proceeding a character will be kept except for semicolon, quote
and backslash, which keep only the character following the backslash. An
escaped semicolon will not be interpreted as a macro separator and an
escaped quote will not be interpreted as the quote defining the end of a
command line parameter of text.

dccl _cnp nyProgram c -d DEFl=statenent)\;; ESCQUOTE=\\\"

#defi ne DEF1l st atenent;

#defi ne ESCQUOTE \”

dccl _cnp nyProg.c -d “FSTR = \"Tenp = %. 2F DEGREES C\n\""
#define FSTR “Tenp = %. 2f degrees Cn”

Default: None.

GUI Equivalent: Select the Options | Compiler menu option, then select the Defines button.

Chapter 15: Command Line Interface 219

-d- MacroToUndefine (Available starting with Dynamic C v 7.10)

Description: Undefines amacro that might have been defined in the project file. If a
macro is defined in the project file read by the command line compiler and
the same macro name is redefined on the command line, the command line
definition will generate awarning. A macro previously defined must be
undefined with the -d- switch before redefining it. Undefining a macro that
has not been defined has no consequence and so is always safe although
possibly unnecessary. In the example, all compilation settings are taken
from the project file specified except that now the macro MAXCHARS was
first undefined before being redefined.

Default: None.
GUI Equivalent: None.

Example: dccl _cnmp nyProgram c -pf nyproject -d- MAXCHARS -d
MAXCHARS=512

-eto EthernetResponseTimeout (Available starting with Dynamic C v 7.10)

Description: Time in milliseconds Dynamic C waits for a response from the target on
any retry while trying to establish ethernet communication.

Default: 8000 milliseconds.
GUI Equivalent: None.

Example: dccl _cnmp nmyProgramc -eto 6000

-i InputsFilePathname

Description: Execute a program that requires user input by supplying the input in atext
file. Each input required should be entered into the text file exactly asit
would be when entered into the Stdio Window indcwd. exe. Extrainput
isignored and missing input causesdccl _cnp to wait for keyboard input
a the command line.

Default: None.
GUI Equivalent: Using - i islike entering inputsinto the Stdio Window indcwd. exe.

Example dccl _cnmp nmyProgramc -i Myl nputs. txt

220 Dynamic C User’s Manual

-If LibrariesFilePathname

Description:

Default:

GUI Equivalent:

Example

Compile using afile found in LibrariesFilePathname which lists al libraries

to be made available to your programs.

Lib.dir.

Select Options | Compiler | User Defined Libraries File | Use | ... from

the menu dialog box.

dccl _cnmp nyProgramc -1f MyPat h\ M/Li bs. t xt

-ne maxNumberOfErrors

Description:
Default:

GUI Equivalent:

Example:

Change the maximum number of errors reported.
A maximum of 10 errors are reported.

Enter the maximum errors reported in the Options | Compiler | Errors
menu dial og box option.

Allows up to 25 errors to be reported:
dccl _cnp nmyProgram c -ne 25

-nw maxNumberOfWarnings

Description:
Default:

GUI Equivalent:

Example:

Change the maximum number of warnings reported.
A maximum of 10 warnings are reported.

Enter the maximum warnings reported in the Options | Compiler |
Warnings menu dialog box option.

Allows up to 50 warnings to be reported:
dccl _cnp nmyProgram c -nw 50

-0 OutputFilePathname

Description:

Default:

GUI Equivalent:

Example

Write header information (if specified with - h) and al program errors,

warnings and outputs to atext file. If the text file does not exist it will be

created, otherwise it will be overwritten.

None.

Select Options | Debugger | Log STDOUT | Log file menu dialog box

option.

dccl _cnmp nmyProgramc -o MyQut put. txt
dccl _cnmp nyProgramc -o MyQutput.txt -h
dccl _cnmp nmyProgramc -h -o MyQut put .t xt

Chapter 15: Command Line Interface

221

-oa OutputFilePathname

Description:

Default:
GUI Equivalent:

Example

Append header information (if specified with - h) and all program errors,
warnings and outputs to atext file. If the text file does not exist it will be
created, otherwise it will be appended.

None.

Sdlect the Options | Debugger | Log STDOUT | Log file, Append Log
menu dialog box option.

dccl _cnp nmyProgramc -oa MyQut put.txt

-pf projectFilePathname (Available starting with Dynamic C v 7.10)

Description:

Default:
GUI Equivalent:

Example

Specify a project file to read before the command line switches are read.
The environment settings are taken from the project file specified with -pf,
ordef aul t. dcp if no other project fileis specified. Any switches on the
command line, regardless of their position relative to the -pf switch, will
override the settings from the project file.

Theproject filedef aul t . dcp.
Select the File | Project | Open... menu dialog box option.

dccl _cnmp nyProgramc -ne 25 -pf myProject.dcp
dccl _cnp nyProgramc -ne 25 -pf myProj ect

Note: The project file extension, . dcp, may be omitted.

-pw TCPPassPhrase

Description: Enter the passphrase required for your TCP/IP connection. If no passphrase
isrequired this option need not be used.
Default: No passphrase.
GUI Equivalent: Enter the passphrase required at the dialog prompt when compiling over a
TCP/IP connection
Example: dccl _cnmp nyProgramc -pw “My passphrase”
222 Dynamic C User’s Manual

-ret Retries (Available starting with Dynamic C v 7.10)

Description:

Default:
GUI Equivalent:

Example:

The number of times Dynamic C attempts to establish communication if the
given timeout period expires.

3
None.

dccl _cnmp nyProgramc -ret 5

-rf RTIFilePathname

Description:

Default:

GUI Equivalent:

Example:

Compileto a.bin file using targetless compilation parameters found in RTI-
FilePathname. The resulting compiled file will have the same pathname as
the source (. ¢) file being compiled, but with a. bi n extension.

None.

For Dynamic C v 7.05 and 7.06, select the Compile | Compile to .bin file |
Define target information | Use Target Information File menu option.
For Dynamic C v 7.10 and later, select the Options | Define target
configuration | Use Target Information File menu option

dccl _cnmp nyProgramc -rf MyTCparaneters.rti

dccl _cmp nyProgramc -rf “My Long Pat hnanme\ MyTCpa-
rameters.rti”

Chapter 15: Command Line Interface 223

-rti BoardID:CpulD:CrystalSpeed:RAMSize:FlashSize

Description:

Default:
GUI Equivalent:

Example:

Compiletoa. bi n file using parameters defined in a colon separated for-
mat of BoardlD:Cpul D:Crystal Speed:RAM Size:FlashSize. The resulting
compiled file will have the same pathname as the source (. ¢) file being
compiled, but witha. bi n extension.

BoardID: Hex integer

Cpul D: Decimal integer

Crystal Speed: Decimal floating point, in MHz
RAMSize: Decimal, in KBytes

FlashSize: Decimal, in KBytes.

None.

For Dynamic C v 7.05 and 7.06, select the Compile | Compile to .bin file |
Define target information | Specify Board Parameters menu option.

For Dynamic C v 7.10 and later, select the Options | Define target
configuration | Specify Board Parameters menu option.

dccl _cnp nyProgramc -rti
0x0101: 2000: 29. 4912: 128: 256

-s Port:Baud:Stopbits:BackgroundTx

Description:

Default:
GUI Equivalent:

Example:

Use serial transmission with parameters defined in a colon separated format
of Port:Baud: Stopbits:BackgroundTx.
Port: 1,2, 3,4,5,6,7,8

Baud: 110, 150, 300, 600, 1200, 2400, 4800, 9600, 12800, 14400,
19200, 28800, 38400, 57600, 115200, 128000, 230400, 256000

Stophits: 1, 2
BackgroundTx: 0: None, 1: Sync, 2: Full Speed

Include al serial parametersin the prescribed format even if only oneis
being changed.

Starting with Dynamic C v 7.10, the last parameter isignored and therefore
may be dropped from the command line without consequence.

1:115200:1:0
Select the Options | Communications Serial dialog box options.

Changing port from default of 1 to 2:
dccl _cnp nyProgramc -s 2:115200:1:0

224

Dynamic C User’s Manual

-sto SerialResponseTimeout (Available starting with Dynamic C v 7.10)

Description:

Default:
GUI Equivalent:

Example:

Time in milliseconds Dynamic C waits for a response from the target on
any retry while trying to establish serial communication.

300 ms.
None.

dccl _cnp nyProgramc -sto 400

-t NetAddress:TcpName:TcpPort

Description:

Default:
GUI Equivalent:

Example:

Use TCP with parameters defined in a contiguous colon separated format of
NetAddress: TcpName: TcpPort. Include all parameters even if only oneis
being changed.

netAddress: n.n.n.n

tcpName: Text name of TCP port

tcpPort: decimal number of TCP port
None.

Sdlect the Options | Communications | Use TCP/IP Connection dialog
box options.

dccl _cnmp nyProgramc -t 10. 10. 6. 138: TCPNane: 4244

Chapter 15: Command Line Interface 225

15.5 Examples

The following examples illustrate using multiple command line switches at the sametime. If the
switches on the command line are contradictory, such as- nr and - nf , the last switch (read | eft to
right) will be used.

15.5.1 Example 1
In this example, al current settings of def aul t . dcp are used for the compile.

dccl _cnp sanples\tinmerb\tinmerb.c

15.5.2 Example 2
In this example, al settings of mypr oj ect . dcp areused, exceptti ner _b. c iscompiled to
ti mer _b. bi ninstead of to the target and warnings or errors are written to myouput s. t xt .
dccl _cnp sanples\timerb\timer_b.c -o nyoutputs.txt -b -pf
mypr oj ect

15.5.3 Example 3
These examples will compile and run myPr ogr am ¢ with the current settingsin
def aul t . dcp but using different defines, displaying up to 50 warnings and capture all output to
one file with a header for each run.
dccl _cnp nyProgramc -d MAXCOUNT=99 -nw 50 -h -o myQutput.txt
dccl _cnmp nmyProgram c -d MAXCOUNT=15 -nw 50 -h -oa nyQut put.txt

dccl _cmp nyProgramc -d MAXCOUNT=15 -d DEF1 -nw 50 -h -oa
my Qut put . t xt

The first run could have used the - oa option if my Qut put . t xt were known to not initially
exist. myProgram c presumably uses a constant MAXCOUNT and contains one or more com-
piler directives that react to whether or not DEF1 is defined.

226 Dynamic C User’s Manual

16. Project Files

In Dynamic C, aproject is an environment that consists of opened source files, aBIOSfile, avail-
able libraries, and the conditions under which the source files will be compiled. Projects allow dif-
ferent compilation environments to be separately maintained.

Projects are available in Dynamic C starting with version 7.10.

16.1 Project File Names
A project maintains a compilation environment in afile with the extension . dcp.

16.1.1 Factory.dcp

The environment originally shipped from the factory is kept in a project file named

factory. dcp. If Dynamic C cannot find thisfile, it will be recreated automatically in the
Dynamic C exe path. The factory project can be opened at any time and the environment changed
and saved to another project name, but f act or y. dcp will not be changed by Dynamic C.

16.1.2 Default.dcp

This default project fileisoriginally acopy of f act or y. dcp and will be automatically recre-
ated as such in the exe path if it cannot be found when Dynamic C opens. The default project will
automatically become the active project with File | Project... | Close.

The default project is specia in that the command line compiler will use it for default values
unless another project fileis specified with the -pf switch, in which case the settings from the indi-
cated project will be used.

Please see chapter 15, “Command Line Interface” starting on page 209 for more details on using
the command line compiler.

16.1.3 Active Project

Whenever a project is selected, the current project related data is saved to the closing project file,
the new project settings become active, and the (possibly new) BIOS will automatically be recom-
piled prior to compiling a source file in the new environment.

The active project can bef act ory. dcp, def aul t. dcp or any project you create with
File | Project... | Save As... When Dynamic C opens, it retrieves the last used project, or the
default project if being opened for the first time or if the last used project cannot be found.

If aproject is closed with the File | Projects... | Close menu option, the default project,
def aul t . dcp, becomes the active project.

The active project file name, without path or extension, is always shown in the leftmost panel of
the status bar at the bottom of the Dynamic C main window and is prepended to the Dynamic C
version in the title bar except when the active project is the default project.

Chapter 16: Project Files 227

Changes made to the compilation environment of Dynamic C are automatically updated to the
active project, unless the active projectisf act ory. dcp.

16.2 Updating a Project File

Unlessthe active project isf act or y. dcp, changes made to any of the following Dynamic C
menu selections will cause the active project file to be updated immediately:

* the"Options | Compiler..." diaog box

* the"Options | Communication..." dialog box

* the"Options | Define target configuration..." dialog box

* the"Compile | Include debug code/RST 28 instructions" setting
* the"Compile | Compile to .bin file | Include BIOS" setting

Opening or closing files will not immediately update the active project file. The project file state
of the recently used files appearing at the bottom of the File menu selection and any opened files
in edit windows will only by updated when the project closes or when File | Projects... | Save is
selected. The Message, Assembly, Memory Dump, Registers and Stack debug windows are not
edit windows and will not be saved in the project fileif you exit Dynamic C while debugging.

16.3 Menu Selections

The menu selections for project files are available in the File menu. The choices are the familiar
ones. Open..., Save, Save As... and Close.

Choosing File | Project | Open... will bring up adialog box to select an existing project filename
to become the active project. The environment of the previous project is saved to its project file
beforeit isreplaced (unlessthe previous projectisf act or y. dcp). The BIOSwill automatically
be recompiled prior to the compilation of a source file within the new environment, which may
have adifferent library directory file and/or a different BIOSfile.

Choosing File | Project... | Save will save the state of the environment to the active project file,
including the state of the recently used filelist and any files open in edit windows. This selectionis
greyed out if the active project isf act or y. dcp. Thisoption is of limited use since any project
changes will be updated immediately to the file and the state of the recently used filelist and open
edit windows will be updated when the project is closed for any reason.

Choosing File | Project... | Save as... will bring up a dialog box to select a project file name. The
filewill be created or, if it exists, it will be overwritten with the current environment settings. This
environment will also be saved to the active project file before it is closed and its copy (the newly
created or overwritten project file) will become active.

Choosing File | Project... | Close first saves the environment to the active project file (unless the
active projectisf act or y. dcp) and then loads the Dynamic C default project, def aul t . dcp,
asthe active project. Aswith Open..., the BIOS will automatically be recompiled prior to the
compilation of a source file within the new environment. The new environment may have a differ-
ent library directory file and/or a different BIOSfile.

228 Dynamic C User’s Manual

16.4 Command Line Usage

When using the command line compiler, dccl _cnp. exe, aproject fileisaways read. The
default project, def aul t . dcp, isused automatically unlessthe project file switch, -pf, specifies
another project file to use. The project settings are read by the command line compiler first even if
a-pf switch comes after the use of other switches, and then all other switches used in the com-
mand line are read, which may modify any of the settings specified by the project file.

The default behavior given for each switch in the command line documentation is with reference
tothef act ory. dcp settings, so the user must be aware of the default state the command line
compiler will actually use. The settings of def aul t . dcp can be shown by enteringdccl _cnp
alone on the command line. The defaults for any other project file can be shown by following
dccl _cnp by athe project file switch without a source file.

dccl _cnp
shows the current state of all default.dcp settings
dccl _cnp -pf nyProject
shows the current state of al myPr oj ect . dcp settings
dccl _cnp nyProgramc -ne 25 -pf nyProject

reads my Pr oj ect . dcp then compiles and runs my Pr ogr am ¢ but with 25 errors maximum
shown.

The command line compiler, unlike Dynamic C, never updates the project file it uses. Any
changes desired to a project file to be used by the command line compiler can be made within
Dynamic C or changed by hand with an editor.

Making changes by hand should be done with caution, using an editor which does not introduce
carriage returns or line feeds with wordwrap, which may be a problem if the global defines or any
file pathnames are lengthy strings. Be careful when changing by hand not to change any of the
section names in brackets or any of the key phrases up to and including the '='.

If amacro is defined on the command line with the -d switch, any value that may have been
defined within the project file used will be overwritten without warning or error. Undefining a
macro with the -d- switch has no consequence if it was not previously defined.

Chapter 16: Project Files 229

230 Dynamic C User’s Manual

17. Hints and Tips

This chapter offers hints on how to speed up an application and how to store persistent data at run
time.

17.1 Efficiency

There are anumber of methods that can be used to reduce the size of a program, or to increase its
speed. Let’slook at the events that occur when a program enters a function.

* Thefunction saves IX on the stack and makes I X the stack frame reference pointer (if the
programisintheusei x mode).

* The function creates stack space for aut o variables.
* The function sets up stack corruption checksif stack checking is enabled (on).

* The program notifies Dynamic C of the entry to the function so that single stepping modes
can be resolved (if in debug mode).

The last two consume significant execution time and are eliminated when stack checking is dis-
abled or if the debug modeis off.

17.1.1 Nodebug Keyword

When the PC is connected to atarget controller with Dynamic C running, the normal code and
debugging features are enabled. Dynamic C places an RST 28H instruction at the beginning of
each C statement to provide locations for breakpoints. This alows the programmer to single step
through the program or to set breakpoints. (It is possible to single step through assembly code at
any time.) During debugging there is additional overhead for entry and exit bookkeeping, and for
checking array bounds, stack corruption, and pointer stores. These “jumps’ to the debugger con-
sume one byte of code space and al so require execution time for each statement.

At some point, the Dynamic C program will be debugged and can run on the target controller
without the Dynamic C debugger. This saves on overhead when the program is executing. The
nodebug keyword is used in the function declaration to remove the extra debugging instructions
and checks.

nodebug int nyfunc(int x, int z){

}

If programs are executing on the target controller with the debugging instructions present, but
without Dynamic C attached, the function that handles RST 28H instructions will be replaced by a
simpler et instruction. Thetarget controller will work, but its performance will not be as good as
when thenodebug keyword is used.

If the nodebug option isused for the mai n function, the program will begin to execute as soon
asit finishes compiling (as long as the program is not compiling to afile).

Chapter 17: Hintsand Tips 231

Usethedirective #nodebug anywhere within the program to enable nodebug for all statements
following the directive. The#debug directive has the opposite effect.

Assembly code blocks are nodebug by default, even when they occur inside C functions that are
marked debug, therefore using the nodebug keyword with the #as mdirective is usually unnec-
essary.

17.1.2 Static Variables

Using st at i ¢ variableswith nodebug functionswill greatly increase the program speed. Stack
checking is disabled by default.

When there are more than 128 bytes of auto variables declared in afunction, the first 128 bytesare
more easily accessed than later declarations because of the limited 8-bit range of I X and SP regis-
ter addressing. This makes performance slower for bytes above 128.

Theshar ed and thepr ot ect ed keywordsin data declarations cause d ower fetches and stores,
except for one-byte items and some two-byte items.

17.2 Run-time Storage of Data

Datathat will never changein aprogram can be put in flash by initializing it in the declarations.
The compiler will put this datain flash. See the description of theconst , xdat a,andxst ri ng
keywords for more information.

If data must be stored at run-time and persist between power cycles, there are several waysto do
this using Dynamic C functions:

* User Block - Recommended method for storing non-file data. Thisiswhere calibration
constants for boards with analog /O are stored in the factory. Space hereislimited to as
small as8K- si zeof (Sysl DBl ock) bytes, or lessif there are calibration constants.

* Flash File System - Thefile system is best for storing data that must be organized into
files, or datathat won't fit in the User block. It is best used on a second flash chip. It is not
possibleto use asecond flash for both extra program code that doesn’t fit into the first flash,
and the file system. The macro USE_2NDFLASH CODE must be uncommented in the
BIOSto allow programs to grow into the second flash; this precludes the use of the file sys-
tem.

* WriteFlash2 - Thisfunction is provided for writing arbitrary amounts of data directly to
arbitrary addresses in the second flash.

* Battery-Backed RAM - Storing data hereis as easy as assigning valuesto global variables
or local static variables. Thefile system can also be configured to use RAM. The important
guestion is, what will you do when your battery runs out?

232 Dynamic C User’s Manual

17.2.1 User Block
The User block is an area near the top of flash reserved for run-time storage of persistent data and
calibration constants. The size of the User block can be read in the global structure member
Sysl| DBl ock. user Bl ockSi ze. Thefunctionsr eadUser Bl ock() andwr it eUser -
Bl ock() are used to accessthe User block. These function take an offset into the block as a
parameter. The highest offset available to the user in the User block will be
Sys| DBl ock. user Bl ockSi ze-1
if there are no calibration constants, or
DAC_CALI B_ADDR- 1
if there are.

See the Rabbit 3000 Designer’s Handbook or the Rabhit 2000 Designer’s Handbook for more
details about the User block.

17.2.2 Flash File System
For a complete discussion of the file system, please see “ The Flash File System” on page 99.

17.2.3 WriteFlash2
See the Dynamic C Function Reference Manual for a complete description.

NOTE: ThereisaW i t eFl ash() function available for writing to the first
flash, but its use is highly discouraged for reasons of forward source and binary
compatibility should flash sector configuration change drastically in a product.
See Technical Notes 216 and 217 for more information on flash compatibility
issues.

17.2.4 Battery Backed RAM

Static variables and global variables will always be located at the same addresses between power
cycles and can only change locations via recompilation. The file system can be configured to use
RAM aso. While there may applications where storing persistent in RAM is acceptable, for exam-
ple adata logger where the data gets retrieved and the battery checked periodically, keep in mind
that a programming error such as an uninitialized pointer could cause RAM data to be corrupted.

xal | oc() will alocate blocks of RAM in extended memory. It will alocate the blocks consis-
tently from the same physical addressif done at the beginning of the program and the program is
not recompiled.

Chapter 17: Hintsand Tips 233

http://www.zworld.com/support/technotes_whitepapers.shtml

17.3 Root Memory Reduction Tips

Customers with programs that are near the limits of root code and/or root data space usage will be
interested in these tips for saving root space. The usage of root code and data by the BIOSin
Dynamic C 7.20 increased from previous versions. A follow-on release will reduce BIOS root
space usage, but probably not to the level of usage in previous versions.

17.3.1 Increasing Root Code Space
Increasing the available amount of root code space may be done in the following ways:

e Use#memmap xmem

Thiswill cause C functions that are not explicitly declared as*“root” to be placed in
xmem. Note that the only reason to locate a C function in root is because it modifies the
XPC register (in embedded assembly code), or it isan ISR. The only performance dif-
ference in running code in xmem isin getting there and returning. It takes atotal of 12
additional machine cycles because of the differences between call/lcall, and ret/Iret.

e |ncrease DATAORG

Root code space can be increased by increasing DATAORGin Rabbi t Bi 0s. ¢ in
increments of 0x1000. Unfortunately, this comes at the expense of root data space, but
there are ways of reducing that too.

* Reduce usage of root constantsand string literals

Shortening literal strings and reusing them will save root space. The compiler, starting
with version 7.20, automatically reuses identical string literals.

These two statements :

printf (“This is aliteral string”);
sprintf (buf, “This is a literal string”);

will share the same literal string space whereas:
sprintf (buf, “this is aliteral string”);
will use its own space since the string is different.

234 Dynamic C User’s Manual

» Usexdatato declarelargetablesof initialized data

If you have large tables of initialized data, consider using the keyword xdat a to
declare them. The disadvantage is that data cannot be accessed directly with pointers.
The function xmen®2r oot () allows xdatato be copied to aroot buffer when needed.

/' Thisusesroot code space
const int root_tbl[8]={300,301, 302, 103, 304, 305, 306, 307};
/I Thisdoes not
xdat a xdata_tabl e {300, 301, 302, 103, 304, 305, 306, 307};
mai n() {
/1 thisonly usestemporary stack space
auto int table[8];

xmen2r oot (tabl e, xdata table, 16);
/1 now the xmem data can be accessed viaa 16 bit pointer into the table
}
Both methods, const and xdat a, create initialized datain flash at compile time, so
the data cannot be rewritten directly.

» Usexstring to declare a table of strings

The keyword xst r i ng declares atable of stringsin extended flash memory. The dis-
advantage is that the strings cannot be accessed directly with pointers, since the table
entries are 20-bit physical addresses. Asillustrated above, the function x men®r oot ()
may be used to store the table in temporary stack space.

/I Thisusesroot code space
const char * nane[] = {“string_1", . . . “string_n"};

/I Thisdoes not
xstring name {“string 1", . . . “string_n"};

Both methods, const and xstri ng, createinitialized datain flash at compile time,
so the data cannot be rewritten directly.

» Turn off selected debugging features

In Dynamic C 7.20 , watch expressions, breakpoints, and single stepping can be selec-
tively disabled in the Options | Debugging dialog to save some root code space.

Chapter 17: Hintsand Tips 235

» Place assembly language code into xmem

Pure assembly language code functions can go into xmem starting with Dynamic C
7.20:

#asm

foo _root::
[some instructions]
ret

#endasm

The same function in xmem:

#asm xnem
foo_xmem :

[sonme instructions]

[ret ; usel ret instead of r et
#endasm

Thecorrect callsarecal | foo_root andl call foo_xnmem If theassembly
function modifies the XPC register with

LD XPC, A

it should not be placed in xmem. If it accesses data on the stack directly, the datawill be
one byte away from where it would be with aroot function becausel cal | pushesthe
value of XPC onto the stack.

17.3.2 Increasing Root Data Space
Increasing the available amount of root data space may be done in the following ways:

e Decrease DATAORG

Root data space can be increased by decreasing DATAORGin Rabbi t Bi 0s. ¢ in
increments of 0x1000. This comes at the expense of root code space.

* Use#class auto

The default storage class of Dynamic C is static. This can be changed to auto using the
directive #cl ass aut o. Thiswill make local variables with no explicit storage class
specified in functions default to auto. If you need the value in alocal function to be
retained between calls, it should be static. The default program stack size is 2048
(0x800) bytesif not using pC/OS-I1. This could be increased to 0x1000 at most. It
already isincreased if the TCP/IP stack is used. The code to changeitisin pr o-

gramlib:
#i f ndef MCOS
#defi ne DEFAULTSTACKSI ZE 0x1000 ; increased from 0x800
#el se
#defi ne DEFAULTSTACKSI ZE 0x200
#endi f

Deeply nested calls with alot of local auto arrays could exceed this limit, but 0x1000
should ordinarily be plenty of space. Using more temporary stack space for variables
frees up static root data space for global and local static variables.

236 Dynamic C User’s Manual

* Usexmem for large RAM buffers

xal | oc() can be used to allocate chunks of RAM in extended memory. The memory
cannot be accessed by a 16 bit pointer, so using it can be more difficult. The functions
xmen2r oot () andr oot 2xmen() areavailable for moving from root to xmem and
xmem to root. Large buffers used by Dynamic C libraries are dready alocated from
RAM in extended memory.

Chapter 17: Hintsand Tips 237

238 Dynamic C User’s Manual

18. PC/OS-II

Not available with SE versions of Dynamic C.

MC/OS-I1 isasimple, clean, efficient, easy-to-use real-time operating system that runs on the Rab-
bit microprocessor and is fully supported by the Dynamic C development environment. uC/OS-I|
is capable of intertask communication and synchronization viathe use of semaphores, mailboxes,
and gqueues. User-definable system hooks are supplied for added system and configuration control
during task creation, task deletion, context switches, and time ticks.

For more information on uC/OS-I1, please refer to Jean J. Labrosse’s book, MicroC/OS-11, The
Real-Time Kernel (ISBN: 0-87930-543-6). The data structures (e.g. Event Control Block) refer-
enced in the Dynamic C uC/OS-I1 function descriptions are fully explained in Labrosse’s book. It
can be purchased at the Z-World store, www.zworld.com/store/home.html, or at http://www.ucos-
ii.com/.

Starting with Dynamic C version 7.21, the Rabbit version of pC/OS-I1 includes the new features
and API changes available in version 2.51 of uC/OS-11. The documentation for these changesis
included with Dynamic C in Sanpl es/ UCos- | | . Thefile Neww251. pdf containsall of the
features added since version 2.00 and Rel v251. pdf contains release notes for version 2.51.

18.1 Changes to uC/OS-lI

To take full advantage of services provided by Dynamic C, minor changes have been made to
HC/OSHI.

18.1.1 Ticks per Second

In most implementations of pC/OS-11, OS_TI CKS_PER_SEC informs the operating system of
therate at which OSTi meTi ck is called; this macro is used as a constant to match the rate of the
periodic interrupt. In uC/OS-11 for the Rabbit, however, changing this macro will change the tick
rate of the operating system set up during OSI ni t . Usually, areal-time operating system has a
tick rate of 10 Hz to 100 Hz, or 10-100 ticks per second. Since the periodic interrupt on the Rabbit
occurs at arate of 2 kHz, it isrecommended that the tick rate be a power of 2 (e.g., 16, 32, or 64).
Keep in mind that the higher the tick rate, the more overhead the system will incur.

In the Rabbit version of pC/OS-11, the number of ticks per second defaultsto 64. The actual num-
ber of ticks per second may be dightly different than the desired ticks per second if
Ti cksPer Sec does not evenly divide 2048.

Changing the default tick rate is done by simply defining OS_TI CKS_PER_SEC to the desired
tick rate before calling OSI ni t () . E.g. to change the tick rate to 32 ticks per second:

#def i ne 0S_TI CKS_PER SEC 32
oslnit();

béétart();

Chapter 18: pC/OS-11 239

http://www.zworld.com/store/home.html
http://www.ucos-ii.com/
http://www.ucos-ii.com/

18.1.2 Task Creation

In apC/OS-11 application, stacks are declared as static arrays, and the address of either the top or
bottom (depending on the CPU) of the stack is passed to OSTaskCr eat e. In a Rabbit-based
system, the Dynamic C development environment provides a superior stack allocation mechanism
that uC/OS-11 incorporates. Rather than declaring stacks as static arrays, the number of stacks of
particular sizes are declared, and when atask is created using either OSTaskCr eat e or
OSTaskCr eat eExt, only the size of the stack is passed, not the memory address. This mecha-
nism allows alarge number of stacks to be defined without using up root RAM.

There arefive macros located in ucos2.1ib that define the number of stacks needed of five different
sizes. In order to have three 256 byte stacks, one 512 byte stack, two 1024 byte stacks, one 2048
byte stack, and no 4096 byte stacks, the following macro definitions would be used:

#defi ne STACK CNT_256 3 /1 number of 256 byte stacks
#defi ne STACK CNT_512 1 /1 number of 512 byte stacks
#defi ne STACK CNT_1K 2 /1 number of 1K stacks
#define STACK CNT_2K 1 /1 number of 2K stacks
#defi ne STACK CNT_4K 0 /1 number of 4K stacks

These macros can be placed into each uC/OS-11 application so that the number of each size stack
can be customized based on the needs of the application. Suppose that an application needs 5
tasks, and each task has a consecutively larger stack. The macros and callsto OSTaskCr eat e
would look asfollows

#defi ne STACK _CNT_256
#defi ne STACK CNT_512
#defi ne STACK CNT_1K
#defi ne STACK CNT_2K
#defi ne STACK CNT_4K

/1 number of 256 byte stacks
/1 number of 512 byte stacks
/1 number of 1K stacks
/1 number of 2K stacks
/'l number of 4K stacks

PR RN

OSTaskCreat e(taskl, NULL, 256, 0);
OSTaskCreat e(task2, NULL, 512, 1);
OSTaskCreat e(task3, NULL, 1024, 2);
OSTaskCreat e(task4, NULL, 2048, 3);
OSTaskCreat e(t ask5, NULL, 4096, 4);

Note that the macro STACK _CNT_256 isset to 2 instead of 1. uC/OS-1l always creates an idle
task which runs when no other tasks are in the ready state. Note also that there are two 512 byte
stacks instead of one. Thisis because the program is given a 512 byte stack. If the application uti-
lizesthe uC/OS-I1 statistics task, then the number of 512 byte stacks would have to be set to 3.
(Statistic task creation can be enabled and disabled viathe macro OS_ TASK _STAT_ENwhichis
locatedinucos?2. | i b). If only 6 stacks were declared, one of the callsto OSTaskCr eat e
would fail.

240 Dynamic C User’s Manual

If an application uses OSTask Cr eat eExt , which enables stack checking and allows an exten-

sion of the Task Control Block, fewer parameters are needed in the Rabbit version of pC/OS-I1.

Using the macros in the example above, the tasks would be created as follows:

OSTaskCr eat eExt (taskl, NULL, 0, 0, 256, NULL, OS_TASK OPT_STK CHK |
OS_TASK_OPT_STK_CLR);

OSTaskCr eat eExt (task2, NULL, 1, 1, 512, NULL, OS TASK OPT_STK CHK |
0S_TASK_OPT_STK CLR) ;

OSTaskCr eat eExt (task3, NULL, 2, 2, 1024, NULL, OS_TASK OPT_STK CHK |
0S_TASK_OPT_STK CLR);

OSTaskCr eat eExt (task4, NULL, 3, 3, 2048, NULL, OS_TASK OPT_STK CHK |
OS_TASK_OPT_STK_CLR);

OSTaskCr eat eExt (task5, NULL, 4, 4, 4096, NULL, OS _TASK OPT_STK CHK |
0S_TASK_OPT_STK CLR) ;

18.1.3 Restrictions

At the time of thiswriting, uC/OS-I1 for Dynamic C is not compatible with the use of dlice state-
ments. Also, see the function description for OSTi neTi ckHook() for important information
about preserving registersif that stub function is replaced by a user-defined function.

Due to Dynamic C's stack allocation scheme, special care should be used when posting messages
to either amailbox or aqueue. A messageis simply avoid pointer, allowing the application to
determine its meaning. Since tasks can have their stacksin different segments, auto pointers
declared on the stack of the task posting the message should not be used since the pointer may be
invalid in another task with a different stack segment.

18.2 Tasking Aware Interrupt Service Routines (TA-ISR)

Special care must be taken when writing an interrupt service routine (1SR) that will be used in con-
junction with uC/OS-11 so that uC/OS-I1 scheduling will be performed at the proper time.

18.2.1 Interrupt Priority Levels

MC/OS-1 for the Rabbit reserves interrupt priority levels 2 and 3 for interrupts outside of the ker-
nel. Since the kernel is unaware of interrupts above priority level 1, interrupt service routines for
interrupts that occur at interrupt priority levels 2 and 3 should not be written to be tasking aware.
Also, apuC/OS-11 application should only disable interrupts by setting the interrupt priority level to
1, and should never raise the interrupt priority level above 1.

Chapter 18: pC/OS-11 241

18.2.2 Possible ISR Scenarios

There are several different scenarios that must be considered when writing an ISR for use with
MC/OS-I1. Depending on the use of the ISR, it may or may not have to be written so that it is task-
ing aware. Consider the scenario in the Figure below. In this situation, the ISR for Interrupt X does
not have to be tasking aware since it does not re-enable interrupts before completion and it does
not post to a semaphore, mailbox, or queue.

Task 1

Interrupt X

Interrupt X ISR
ipres

Task 1

Figure 6. Type 1 ISR

If, however, an ISR needs to signal atask to the ready state, then the ISR must be tasking aware. In
the example in the Figure below, the TA-I SR increments the interrupt nesting counter, does the
work necessary for the ISR, readies a higher priority task, decrements the nesting count, and
returns to the higher priority task.

Task 2

Interrupt X
™ Nesting=1
Interrupt X TA-ISR | Tasx Lisreadied
Nesting =0
ipres

Task 1

Figure 7. Type 2 ISR

242 Dynamic C User’s Manual

It may seem as though the I SR in this Figure does not have to increment and decrement the nesting
count. Thisis, however, very important. If the ISR for Interrupt X is called during an ISR that re-
enabl es interrupts before completion, scheduling should not be performed when Interrupt X com-
pletes; scheduling should instead be deferred until the least nested | SR completes. The next Figure

shows an exampl e of this situation.

Task 2

Interrupt Z

Task 1

Nesting = 1
Do critical code
Interrupt Z TA-ISR ipres
Interrupt X
» Nesting =2
Interrupt X TA-ISR | Task lisreadied
Nesting=1
- ipres
Finish ISR
Nesting = 0
-~

Figure 8. Type 2 ISR Nested Inside Type 3 ISR

As can be seen here, athough the ISR for interrupt Z does not signal any tasks by posting to a
semaphore, mailbox, or queue, it must increment and decrement the interrupt nesting count since it

re-enablesinterrupts (i pr es) prior to finishing al of its work.

18.2.3 General Layout of a TA-ISR

A TA-ISRisjust like astandard | SR except that it does some extra checking and house-keeping.

The following table summarizes when to use a TA-ISR.

Table 18-2. Use of TA-ISR

UC/OS-II Application

Type 1t Type 22

Type 33

TA-ISR Required? No Yes

Yes

1. Type 1—L eavesinterrupts disabled and does not signal task to ready state
2. Type 2—L eaves interrupts disabled and signalstask to ready state
3. Type 3—Reenables interrupts before completion

Chapter 18: pC/OS-11

243

The following Figure shows the logical flow of a TA-ISR.

Save registers used by TA-ISR

¢

Clear interrupt source

¢

Increment nesting count

¢

Do work necessary for interrupt

¢

Reenable interrupts (optional)

¢

Call OSIntExit

'

Decrement Nesting Count

¢

IsNesting==07?

Yes

Is switch pending ?

No

.

Restore Registers used by TA-ISR

Yes

¢

Switch to new task

Return from interrupt

Figure 9. Logical Flow of a TA-ISR

244

Dynamic C User’s Manual

18.2.3.1 Sample Code for a TA-ISR

Fortunately, the Rabbit BIOS and libraries provide all of the necessary flags to make TA-ISRs
work. With the code found in Li st i ng 1, minimal work is needed to make a TA-ISR function
correctly with uC/OS-11. TA-1SRs dlow uC/OS-I1 the ability to have | SRs that communicate with
tasks as well asthe ability to let ISRs nest, thereby reducing interrupt latency.

Just like a standard ISR, the first thing a TA-I1SR doesisto save the registersthat it is going to use
(1). Oncethe registers are saved, the interrupt source is cleared (2) and the nesting counter is
incremented (3). Note that bi os_i nt nest i ng isaglobal interrupt nesting counter provided in
the Dynamic C libraries specifically for tracking the interrupt nesting level. If ani pr es instruc-
tion is executed (4) other interrupts can occur before this ISR is completed, making it necessary
for thisISR to be aTA-ISR. If it is possible for the ISR to execute before uC/OS-I1 has been fully
initialized and started multi-tasking, a check should be made (5) to insure that uC/OS-ll isina
known state, especialy if the TA-ISR signals atask to the ready state (6). After the TA-ISR has
doneits necessary work (which may include making a higher priority task than is currently run-
ning ready to run), OSI nt Exi t must be called (7). This uC/OS-11 function determines the high-
est priority task ready to run, setsit as the currently running task, and sets the global flag

bi os_swpend if acontext switch needs to take place. Interrupts are disabled since a context
switch istreated as a critical section (8). If the TA-ISR decrements the nesting counter and the
count does not go to zero, then the nesting level issaved in bi os_i nt nest i ng (9), theregis-
ters used by the TA-ISR are restored, interrupts are re-enabled (if not already donein (4)), and the
TA-ISR returns (12). However, if decrementing the nesting counter in (9) causes the counter to
become zero, then bi os_swpend must be checked to see if a context switch needs to occur (10).
If a context switch is not pending, then the nesting level is set (9) and the TA-ISR exits (12). If a
context switch is pending, then the remaining context of the previoustask is saved and along call,
which insuresthat the xpc is saved and restored properly, ismadeto bi os_i nt exi t (11).

bi os_i nt exi t isresponsible for switching to the stack of the task that is now ready to run and
executing along call to switch to the new task. The remainder of (11) is executed when a previ-
ously preempted task is allowed to run again.

Listing 1

#asm

taskaware_isr::
push af ; push regs needed by isr (1)
push hl ; Clear interrupt source (2)
| d hl , bi os_i nt nesting ; increase the nesting count (3)
i nc (hl)
; ipres (optional) (4)
; do processing necessary for interrupt
| d a, (OSRunni ng) ; MCOS multitasking yet? (5)
or a
jr z,tai sr_decnesting
; possibly signal task to become ready (6)
call OSI nt Exi t ; setsbios_swpend if higher

; prio ready (7)

Chapter 18: pC/OS-11 245

tai sr_decnesti ng:

push ip (8)
i pset 1
I d hl , bi os_i ntnesting ; nesting counter == 1?
dec (hl) (9)
jr nz,taisr_noswtch
| d a, (bi os_swpend) ; switch pending? (10)
or a
jr z,taisr_nosw tch
push de (11D
push bc
ex af , af”’
push af
exx
push hl
push de
push bc
push iy
lcall bios_intexit
pop iy
pop bc
pop de
pop hl
exx
pop af
ex af , af”’
pop bc
pop de
tai sr_noswitch
pop ip
tai sr_done:
pop hl (12)
pop af
i pres
ret
#endasm

246 Dynamic C User’s Manual

18.3 Library Reentrancy

When writing apC/OS-11 application, it isimportant to know which Dynamic C library functions
are non-reentrant. If afunction is non-reentrant, then only one task may access the function at a

time, and access to the function should be controlled with auC/OS-I1 semaphore. The following is
alist of Dynamic C functions that are non-reentrant.

Library Non-reentrant Functions
MATH. LI B randg, randb, rand
RS232. LI B All
RTCLCOCK. LI B write rtc, tm_wr
STDIO. LI B kbhit, getchar, gets, getswf, selectkey
STRING LI B atof!, atoil, strtok
SYS. LIB cl ockDoubI_er_On, clockDoublerOff, useMainOsc,
useClockDivider, use32kHzOsc
VDRI VER. LI B VdGetFreeWd, VdRel easeWd
XVEM LI B WriteFlash
JRIOLIB digOut, digOn, digOff, jriolnit, analn, anaOut, cof _analn
JRA85. LI B All

1. reentrant but setsthe global _Xxt oxErr flag

The seria port functions (RS232. LI B functions) should be used in arestricted manner with

MC/OS-I1. Two tasks can use the same port as long as both are not reading, or both are not writing;

i.e., onetask can read from serial port X and another task can write to serial port X at the same

time without conflict.

Chapter 18: pC/OS-11

247

18.4 How to Get a HC/OS-1l Application Running

HC/OS-1 isahighly configureable, real-time operating system. It can be customized using as
many or as few of the operating system'’s features as needed. This section outlines:

* Theconfiguration constants used in uC/OS-I1
* How to override the default configuration supplied in UCOS2. LI B
* The necessary stepsto get an application running

It is assumed that the reader has afamiliarity with uC/OS-I1 or has a uC/OS-l1 reference
(MicroC/OS 11, The Real-Time Kernel by Jean J. Labrosse is highly recommended).

18.4.1 Default Configuration

MC/OS-I1 usually relieson theincludefileos_cf g. h to get values for the configuration con-
stants. In the Dynamic C implementation of pC/OS-11, these constants, along with their default
values, areinos_cf g. | i b. A default stack configurationisalso suppliedinos_cfg. | i b.
MC/OS-1 for the Rabbit uses a more intelligent stack allocation scheme than other uC/OS-I|
implementations to take better advantage of unused memory.

The default configuration allows up to 10 normally created application tasks running at 64 ticks
per second. Each task has a 512-byte stack. There are 2 queues specified, and 10 events. An event

isaqueue, mailbox or semaphore. You can define any combination of these three for atotal of 10.
If you want more than 2 queues, however, you must change the default value of OS_ MAX_QS.

Some of the default configuration constants are:

/1 Maximum number of events (semaphores, queues, mailboxes)
#defi ne OS_MAX EVENTS 10

/1 Maximum number of tasks (less stat and idle tasks)
#defi ne OS_MAX TASKS 10

/1 Maximum number of queues in system
#define OS MAX S 2

/1 Maximum number of memory partitions
#defi ne OS_MAX_MEM PART 1

/ / Enable normal task creation
#defi ne OS_TASK CREATE EN 1

|/ Disable extended task creation
#defi neCS_TASK CREATE EXT EN O

/| Disabletask deletion
#define OS_TASK DEL_EN 0

/| Disable statistics task creation
#define OS_TASK STAT EN O

/1 Enable queue usage
#define OS_ Q EN 1

/| Disable memory manager
#define OS_MEM EN O

[/ Enable mailboxes
#define OS_MBOX EN 1

248 Dynamic C User’s Manual

/| Enable semaphores
#define OS_SEM EN 1

/1 number of ticksin one second
#define OS_TI CKS_PER SEC 64

/'l number of 256 byte stacks (idle task stack)
#define STACK CNT_256 1

/1 number of 512-byte stacks (task stacks + initial program stack)

#defi ne STACK CNT_512 OS_MAX_TASKS+1
If aparticular portion of uC/OS-I1 is disabled, the code for that portion will not be compiled, mak-
ing the overall size of the operating system smaller. Take advantage of this feature by customizing
UC/OS-11 based on the needs of each application.

18.4.2 Custom Configuration
In order to customize pC/OS-I1 by enabling and disabling components of the operating system,
simply redefine the configuration constants as necessary for the application.

#defi ne OS_MAX_EVENTS 2
#defi ne OS_MAX_TASKS 20
#define OS_ MAX S 1
#defi ne OS_MAX_MEM PART 15
#defi ne OS_TASK STAT EN 1
#define OS_Q EN 0
#define OS_MEM EN 1
#defi ne OS_MBOX_EN 0
#define OS_TI CKS_PER SEC 64

If a custom stack configuration is needed also, define the necessary macros for the counts of the
different stack sizes needed by the application.

#define STACK CNT_256 1 // idletask stack

#define STACK CNT_512 2 // initial program + stat task stack
#define STACK CNT_1K 10 // task stacks

#define STACK CNT_2K 10 // number of 2K stacks

In the application code, follow the uC/OS-11 and stack configuration constants with a#use
“ucos?2. i b” statement. This ensures that the definitions supplied outside of the library are
used, rather than the defaultsin the library.

This configuration uses 20 tasks, two semaphores, up to 15 memory partitions that the memory
manager will control, and makes use of the statisticstask. Note that the configuration constants for
task creation, task deletion, and semaphores are not defined, as the library defaults will suffice.
Also note that 10 of the application tasks will each have a 1024 byte stack, 10 will each have a
2048 byte stack, and an extra stack is declared for the statistics task.

Chapter 18: pC/OS-11 249

18.4.3 Examples
The following sample programs demonstrate the use of the default configuration supplied in
UCGS2. LI B and a custom configuration which overrides the defaults.

Example 1

In this application, ten tasks are created and one semaphore is created. Each task pends on the
semaphore, gets a random number, posts to the semaphore, displays its random number, and
finally delaysitself for three seconds.

Looking at the code for this short application, there are several things to note. First, since uC/OS-
Il and slice statements are mutually exclusive (both rely on the periodic interrupt for a“heart-
beat”), #use “ucos2.1i b” must beincluded in every pC/OS-11 application (1). In order for
each of the tasks to have access to the random number generator semaphore, it is declared asaglo-
bal variable (2). In most cases, all mailboxes, queues, and semaphores will be declared with global
scope. Next, OGSl ni t () must be called before any other uC/OS-11 function to ensure that the
operating system is properly initialized (3). Before uC/OS-11 can begin running, at least one appli-
cation task must be created. In this application, all tasks are created before the operating system
begins running (4). It is perfectly acceptable for tasks to create other tasks. Next, the semaphore
each task usesis created (5). Onceall of theinitialization isdone, OSSt ar t () iscalled to start
MC/OS-I1 running (6). In the code that each of the tasksrun, it isimportant to note the variable
declarations. The default storage classin Dynamic C is static, so to ensure that the task codeis
reentrant, all are declared auto (7). Each task runs as an infinite loop and once this application is
started, UC/OS-11 will run indefinitely.

250 Dynamic C User’s Manual

/1 1. Explicitly use uC/OS-I library
#use "ucos2.lib"

voi d RandomNunber Task(voi d *pdat a) ;

/1 2. Declare semaphore global so all tasks have access
OS_EVENT* Randontem

voi d nain()

{
int i;
/1 3. Initialize OSinternals
CSlnit();
for(i = 0; i < OS_MAX TASKS; i ++)

/| 4. Create each of the system tasks
OSTaskCr eat e(RandomNunber Task, NULL, 512, i);

/' 5. semaphore to control access to random number generator
RandonSem = OSSenCreate(1);

/1 6. Begin multitasking

CsStart();
}
voi d RandomNunber Task(voi d *pdat a)
{
/1 7. Declare as auto to ensure reentrancy.
auto OS TCB dat a;
auto I NT8U err;
auto I NT16U RNum
OSTaskQuery(OS PRI O SELF, &data);
whi | e(1)
{
/1 Randis not reentrant, so access must be controlled via a semaphore.
OSSenPend(Randonsem 0, &err);
RNum = (int)(rand() * 100);
OSSenPost (Randonen) ;
printf("Task%d' s random #: %\ n", data. OSTCBPri o, RNum ;
/1 Wait 3 secondsin order to view output from each task.
OSTi meDl ySec(3);
}
}

Chapter 18: pC/OS-11 251

Example 2

This application runs exactly the same code as Example 1, except that each of the tasks are created
with 1024 byte stacks. The main difference between the two is the configuration of pC/OS-11.

First, each configuration constant that differs from the library default is defined. The configuration
in this example differs from the default in that it allows only two events (the minimum needed
when using only one semaphore), 20 tasks, no queues, no mailboxes, and the system tick rateis set
to 32 ticks per second (1). Next, since this application uses tasks with 1024 byte stacks, it is neces-
sary to define the configuration constants differently than the library default (2). Notice that one
512 byte stack is declared. Every Dynamic C program starts with an initial stack, and defining
STACK _CNT_512 iscrucia to ensure that the application has a stack to use during initialization
and before multi-tasking begins. Finally ucos2. | i b isexplicitly used (3). This ensures that the
definitionsin (1 and 2) are used rather than the library defaults. Thelast step ininitiadizationisto
set the number of ticks per second via OSSet Ti cksPer Sec (4).

Therest of this application isidentical to example 1 and is explained in the previous section.
/' 1. Define necessary configuration constants for uC/OS-I1

#defi ne OS_MAX EVENTS 2
#defi ne OS_MAX TASKS 20
#define OS_MAX 5 0
#define OS Q EN 0
#defi ne OS_MBOX _EN 0
#define OS_TI CKS_PER SEC 32

/1 2. Define necessary stack configuration constants
#define STACK CNT_512 1 /1 initial program stack
#define STACK CNT_1K OS MAX TASKS // task stacks

/1 3. Thisensures that the above definitions are used
#use "ucos2.lib"
voi d RandomNurber Task(voi d *pdat a);
/| Declare semaphore global so all tasks have access
OS_EVENT* RandontSem
void mai n(){
int i;
/1 Initidize OSinternals
CSlnit();
for(i = 0; i < OS5 MAX TASKS; i++){
/' Create each of the system tasks
OSTaskCr eat e(RandomNunber Task, NULL, 1024, i);

}

/1 semaphore to control access to random number generator
RandonSem = OSSenCreate(1);

/1 4. Set number of system ticks per second
CSSet Ti cksPer Sec(OS_TI CKS_PER_SEC) ;
/1 Begin multi-tasking

Csstart();

252 Dynamic C User’s Manual

voi d RandomNunber Task(voi d *pdat a)
{

/| Declare as auto to ensure reentrancy.
auto OS TCB dat a;
auto I NT8U err;
auto I NT16U RNum

OSTaskQuery(OS_PRI O SELF, &data);
whi | e(1)
{

/1 Randis not reentrant, so access must be controlled via a semaphore.
CSSenPend(RandonSem 0, &err);

RNum = (int)(rand() * 100);

OSSenPost (Randontem ;

printf("Task¥®2d' s random #: %\ n", data. OSTCBPri o, RNum ;

/1 Wait 3 secondsin order to view output from each task.
OSTi meDl ySec(3);

18.5 Compatibility with TCP/IP

The TCP/IP stack is reentrant and may be used with the uC/OS real-time kernel. Theline
#use ucos2.1ib

must appear before the line
#use dcrtcp.lib

A caltoOSl ni t () must be made before callingsock_init ().

18.5.1 Socket Locks

Each socket used in appC/OS-11 application program has an associated socket lock. Each socket
lock uses one semaphore of type OS_EVENT. Therefore, the macro MAX_OS_EVENTS must take
into account each of the socket locks, plus any events that the application program may be using
(semaphores, queues, mailboxes, event flags, or mutexes).

Determining OS_MAX _EVENTS may get alittle tricky, but it isn't too bad if you know what your
program is doing. Since MAX_SOCKET_LOCKS is defined as:

#def i ne MAX_SOCKET _LOCKS (MAX_TCP_SOCKET BUFFERS +
MAX_UDP_SOCKET _BUFFERS)

OS_MAX_EVENTS may be defined as.

#def i ne OS_MAX_EVENTS MAX_TCP_SOCKET BUFFERS +
MAX_UDP_SOCKET _BUFFERS + 2 + z

The constant “2” isincluded for the two global locks used by TCP/IP, and z is the number of
OS_EVENTS (semaphores, queues, mailboxes, event flags, or mutexes) required by the program.

Chapter 18: pC/OS-11 253

If either MAX_TCP_SOCKET_BUFFERS or MAX_UDP_SOCKET_BUFFERS is not defined by
the application program prior to the #use statementsfor ucos. | i b anddcrt cp. | i b default
values will be assigned.

If MAX_TCP_SOCKET_BUFFERS is not defined in the application program, it will be defined as
MAX_SOCKETS. If, however, MAX_ SOCKETS is not defined in the application program,
MAX_TCP_SOCKET BUFFERS will be 4.

If MAX_UDP_SOCKET_BUFFERS is not defined in the application program, it will be defined as
1if USE_DHCP is defined, or 0 otherwise.

For more information regarding TCP/IP, please see the Dynamic C TCP/IP User’s Manual, avail-
able online at zworld.com or rabbitsemi conductor.com.

18.6 Debugging Tips

Dynamic C version 7.20 introduced more control when single stepping through a uC/OS-I1 pro-
gram. Prior to 7.20, single stepping occurred in whichever task was currently running. It was not
possible to limit the single stepping to one task.

Starting with Dynamic C 7.20, single stepping may be limited to the currently running task by
using F8 (Step over). If the task is suspended, single stepping will also be suspended. When the
task is put back in arunning state, single stepping will continue at the statement following the
statement that suspended execution of the task.

Hitting F7 (Trace into) at a statement that suspends execution of the current task will cause the
program to step into the next active task that has debug information. It may be useful to put a
watch on the global variable OSPr i oCur to see which task is currently running.

For example, if the current task is going to call OSSenPend() on asemaphore that isnot in the
signaled state, the task will be suspended and other tasks will run. If F8 is pressed at the statement
that calls OSSenmPend() , the debugger will not single step in the other running tasks that have
debug information; single stepping will continue at the statement following the call to
OSSenPend() . If F7 ispressed at the statement that calls OSSenPend() instead of F8, the
debugger will single step in the next task with debug information that is put into the running state.

254 Dynamic C User’s Manual

http://www.zworld.com/documentation/docs/manuals/TCPIP/UsersManual/index.htm
http://www.rabbitsemiconductor.com/documentation/docs/manuals/TCPIP/UsersManual/index.htm

Dynamic C User’s Manual

Part Number 019-0071 « 020813-R Printed in U.S.A.
©2001 Z-World Inc. = All rightsreserved.

Z-World reserves the right to make changes and
improvements to its products without providing notice.

Notice to Users

Z-WORLD PRODUCTS ARE NOT AUTHORIZED FOR USE AS
CRITICAL COMPONENTS IN LIFE-SUPPORT DEVICES OR SYS
TEMS UNLESS A SPECIFIC WRITTEN AGREEMENT REGARD-
ING SUCH INTENDED USE IS ENTERED INTO BETWEEN THE
CUSTOMER AND Z-WORLD PRIOR TO USE. Life-support devices or
systems are devices or systems intended for surgical implantation into the
body or to sustain life, and whose failure to perform, when properly used
in accordance with instructions for use provided in the labeling and user’s
manual, can be reasonably expected to result in significant injury.

No complex software or hardware system is perfect. Bugs are always
present in a system of any size. In order to prevent danger to life or prop-
erty, it is the responsibility of the system designer to incorporate redun-
dant protective mechanisms appropriate to the risk involved.

Trademarks
Dynamic C® is aregistered trademark of Z-World Inc.

Windows® isa registered trademark of Microsoft Corporation

Z-World, Inc.

2900 Spafford Street
Davis, California 95616-6800
USA

Telephone: (530) 757-3737
Fax: (530) 757-3792
www.zworld.com

http://www.zworld.com

256

Appendix A: Macros and Global

Variables

This appendix contains many macros and global variables that may be of interest. Thisis not an
exhaustive list of the macros and global variablesthat are available.

A.1 Compiler-Defined Macros

The macrosin the following table are defined internally. Where applicable, default values are
given, aswell as directions for changing values.

Table A-3. Macros Defined by the Compiler

Macro Name

Definition and Default

Bl OSBAUD_

This macro was introduced in Dynamic C 7.25. It is the debug
baud rate. The baud rate can be changed in the Options |
Communications menu.

_BOARD_TYPE_

Thisisread from the System ID block or defaulted to 0x100
(the BL1810 JackRabbit board) if no System ID block is
present. This can be used for conditional compilation based on
board type. Board types are listed in boar dtypes.lib.

CPUID

This macro identifies the CPU type, e.g. R3000 is the Rabbit
3000 microprocessor.

CC_VER

Givesthe Dynamic C versionin hex, i.e. version 7.05 is
0x0705.

DC_CRC_PTR

Reserved.

__DATE _

The compiler substitutes this macro with the date that the file
was compiled (either the BIOS or the . ¢ file). The character
string literal is of the form Mhm dd yyyy. The days of the
month are asfollows: "Jan," "Feb," "Mar," "Apr," "May," "Jun,"
"Jul," "Aug," "Sep," "Oct," "Nov," "Dec." Thereisaspace asthe
first character of dd if the value isless than 10.

DEBUG_RST

In the Compile pull-down menu, check “Include Debug
Code/RST 28 Instructions’ to set DEBUG_RST to 1. Debug
code will beincluded even if #nodebug precedesthe main
function in the program.

__FILE _

The compiler substitutes this macro with the current source
code file name as a character string literal.

Dynamic C User’s Manual

257

Table A-3. Macros Defined by the Compiler

Macro Name

Definition and Default

_FAST_RAM_

FLASH

RAM_

These are used for conditional compilation of the BIOSto
distinguish between the three options:

» compiling to flash and running in RAM (available starting

with Dynamic C 7.30)

« compiling to and running in flash

» compiling to and running in RAM
The compile mode choice is made in the Options | Compiler
dialog box. The default is compiling to and running in flash.
Starting with Dynamic C version 7.26, the BIOS defines
FAST_RAM COWPI LE, FLASH COWPI LE and
RAM_COWPI LE. These macros are definedto O or 1 as
opposed to the corresponding compiler-defined macros which
are either defined or not defined. This difference makes
possible statements such as:

#i f FLASH_COMPI LE || FAST_RAM COMPI LE

_FLASH_SI ZE_

RAM SI ZE

These are used to set the MMU registers and code and data
sizes available to the compiler. The values of the macros are
the number of 4K blocks of memory available.

__LINE__

The compiler substitutes this macro with the current source code
line number as a decimal constant.

NO Bl CS

Boolean value. Tells the compiler whether or not to include the
B1OS when compiling to a .bin file. Thisis set in the Compile
menu

SECTOR S| ZE

In all versions prior to Dynamic C 7.02, this macro (near the
top of LI B\ Bl OSLI B\ FLASHWR. LI B) needsto be hard-
coded to the sector size of thefirst flash in bytes.

_TARGETLESS_COMPI LE_

Boolean value. Thisis set in the Compile menu. It defaults
to 0.

TI ME

The compiler substitutes this macro with the time that the file
(BIOSor . ¢) wascompiled. The character string litera isof the
formhh: mm ss.

_USE115KBAUD

Boolean value. Tells BIOS to use 115k baud if valueis 1. This
macro is not available starting with Dynamic C version 7.25. It
was replaced with _BI OSBAUD _. The baud rate can be
changed in the Options | Communications menu.

258

Dynamic C User’s Manual

A.2 Global Variables
These variables may be read by any Dynamic C application program.

dc_timestamp

Thisinternally-defined long is the number of seconds that have passed since 00:00:00 January 1,
1980, Greenwich Mean Time (GMT) adjusted by the current time zone and daylight savings of the
PC on which the program was compiled. The recorded time indicates when the program finished
compiling.

printf("The date and time: % x\n", dc_tinestanp);

OPMODE

Thisisachar. It can have the following values:
e (0x88 = debug mode
e 0x80 = run mode

SEC_TIMER

Thisunsigned long variableisinitialized to the value of the real-time clock (RTC). If the RTC is
set correctly, thisis the number of seconds that have elapsed since the reference date of January 1,
1980. The periodic interrupt updates SEC_TI MER every second. Thisvariableisinitialized by the
Virtual Driver when a program starts.

MS_TIMER

Thisunsigned long variableisinitialized to zero. The periodic interrupt updates M5_ Tl MER every
millisecond. Thisvariableisinitialized by the Virtual Driver when a program starts.

TICK_TIMER

Thisunsigned long variableisinitialized to zero. The periodic interrupt updates TI CK_TI MER
1024 times per second. Thisvariableisinitialized by the Virtual Driver when a program starts.

Dynamic C User’s Manual 259

A.3 Exception Types

These macrosaredefinedinerrors. i b:

#def i ne ERR_BADPO NTER 228
#def i ne ERR_BADARRAYI NDEX 229
#def i ne ERR_DOVAI N 234
#defi ne ERR_RANGE 235
#def i ne ERR_FLOATOVERFLOW 236
#defi ne ERR_LONGDI VBYZERO 237
#def i ne ERR_LONGZEROMODULUS 238
#def i ne ERR_BADPARAMETER 239
#defi ne ERR_|I NTDI VBYZERO 240
#def i ne ERR_UNEXPECTEDI NTRPT 241
#def i ne ERR_CORRUPTEDCODATA 243
#def i ne ERR_VI RTWDOGTI MEQUT 244
#def i ne ERR_BADXALLOC 245
#def i ne ERR_BADSTACKALLOC 246
#def i ne ERR_BADSTACKDEALLQOC 247
#def i ne ERR _BADXALLOCI NI T 249
#def i ne ERR_NOVI RTWDOGAVAI L 250
#defi ne ERR_| NVALI DMACADDR 251
#defi ne ERR_|I NVALI DCOFUNC 252

A.4 Rabbit 2000/3000 Internal registers

Macros are defined for all of the Rabbit’s 1/O registers. A listing of these register macros can be
found in the Rabbit 2000 Microprocessor User’s Manual and the Rabbit 3000 MIcroprocessor
User’s Manual.

A.4.1 Shadow Registers

Shadow registers exist for many of the I/O registers. They are character variables defined in the
BI1OS. The naming convention for shadow registers isto append the word Shadowto the name of
the register. For example, the global control status register, GCSR, has a corresponding shadow
register named GCSRShadow.

The purpose of the shadow registersis to alow the program to reference the last value pro-
grammed to the actual register. Thisis needed because a number of the registers are write only.

260 Dynamic C User’s Manual

Appendix B: Map File Generation

Starting with Dynamic C 7.05, all symbol information is put into asingle file. The map file has

three sections: a memory map section, afunction section, and a globals section.
The map file format is designed to be easy to read, but with parsing in mind for use in program

down-loaders and in other possible future utilities (for example, an independent debugger). Also,

the memory map, as defined by the #or g statements, will be saved into the map file.

Map files are generated in the same directory as the file that is compiled. If compilation is not suc-

cessful, the contents of the map file are not reliable.

B.1 Grammar

<mapfile>: <memmap section> <function section> <global section>

<memmap section>: <memmapreg>+
<memmapreg>: <register var> = <8-hit const>
<register var>: XPC|SEGSIZE|DATASEG
<function section>: <function descripton>+

<function description>: <identifier> <address> <size>
<address>: <logical address> | <physical address>
<logical address>: <16-hit constant>

<physical address: <8-hit constant>:<16-bit constant>
<size>: <20-bit constant>

<global section>: <global description>+

<global description>: <scoped name> <address>
<scoped name>: <global>| <local static>

<global>: <identifier>

<local static>: <identifier>:<identifier>

Comments are C++ style (// only).

Dynamic C User’s Manual

261

262 Dynamic C User’s Manual

Appendix C: Utility Programs

This appendix documents the utility programs available from Z-World. All of these utilities are
easy to use. The file encryption utility may be obtained by calling our technical support staff at
(530) 757-3737. The other utilities are bundled with Dynamic C.

C.1 Font and Bitmap Converter Utility

The Font and Bitmap Converter converts Windows fonts and monochrome bitmapsto alibrary file
format compatible with Z-World’s Dynamic C applications and graphical displays. Non-Roman
characters may also be converted by applying the monochrome bitmap converter to their bitmaps.

Double-click onthef mbcnvt r. exe fileinthe Dynamic C directory. Select and convert existing
fonts or bitmaps. Complete instructions are available by clicking on the Help button within the
utility.

When complete, the converted fileis displayed in the editing window. Editing may be done, but
probably won’'t be necessary. Save thefileaswhat ever . | i b: the name of your choice.

Add the file to applications with the statement:
#use whatever.lib /1 remember to add thisfilenametol i b. di r
or by cut and pasting fromwhat ever . | i b directly into the application file.

C.2 Library File Encryption Utility

The Library File Encryption Utility allows distribution of sensitive runtime library files.

Encr ypt . exe may be obtained by calling technical support at Z-World. Complete instructions
are available by clicking on the Help button within the utility. Context-sensitive help is accessed
by positioning the cursor over the desired subject and hitting <F1>.

The encrypted library files compile normally, but cannot be read with an editor. The fileswill be
automatically decrypted during Dynamic C compilation, but users of Dynamic C will not be able
to see any of the decrypted contents except for function descriptions for which apublic interfaceis
given. An optional user-defined copyright notice is put at the beginning of an encrypted file.

Dynamic C User’s Manual 263

C.3 Rabbit Field Utility

The Rabbit Field Utility (RFU) will load a .bin file created by Dynamic C to a Rabbit-based con-
troller. It can be used to load a program to a controller without Dynamic C present on the host
computer, and without recompiling the program each time it is loaded to a controller.

The Dynamic C installation created a desktop icon for the RFU. The executablefile, r f u. exe,
can be found in the directory where Dynamic C was installed. Complete instructions are available
by clicking on the Help button within the utility. The Help document details setup information, the
file menu options and BIOS requirements.

A command line version of the RFU is new for DC 7.20. On the command line specify:
cl RFU Sour ceFi | ePat hNane [opti ons]

where Sour ceFi | ePat hNane isthe path name of the. bi n fileto load to the connected tar-
get. The options are as follows:

-s port:baudrate

Description: Select the comm port and baud rate for the serial connection.
Default: COM1 and 115,200 bps

RFU GUI From the Setup | Communications dialog box, choose values from the Baud
Equivalent: Rate and Comm Port drop-down menus.

Example: ¢l RFU myProgram bin -s 2: 115200

-t ipAddress:tcpPort

Description: Select the | P address and port.
Default: Seria Connection

RFU GUI From the Setup | Communications dialog box, click on “Use TCP/IP Con-
Equivalent: nection”, then typein the IP address and port for the controller that is
receiving the. bi n file or use the “ Discover” radio button.

Example: ¢l RFU myProgram bin -t 10.10. 1. 100: 4244

Description: Causes the RFU version number and additiona status information to be dis-
played.
Default: Only error messages are displayed.

RFU GUI Status information is displayed by default and there is no option to turn it
Equivalent: off.

Example: cl RFU myProgram bin -v

264 Dynamic C User’s Manual

-cl Col dLoader Pat hNane

Description:
Default:

RFU GUI
Equivalent:

Example:

Select anew initial loader.
\ bi os\ col dl oad. bi n

From the Setup | Boot Strap L oaders dial og box, type in a pathname or click
on the ellipses radio button to browse for afile.

cl RFU myProgram bin -cl nylnitial Loader.c

-pb Pi | ot Bi osPat hNane

Description:
Default:

RFU GUI
Equivalent:

Example:

Description:

RFU GUI
Equivalent:

Example:

Select anew secondary loader.
\bios\pilot.bin

From the Setup | Boot Strap L oaders dial og box, type in a pathname or click
on the ellipses radio button to browse for afile.

cl RFU nmyProgram bi n -pb nySecondarylLoader. c

Run Ethernet discovery. Don't load the . bi n file. This option isfor infor-
mation gathering and must appear by itself with no other options and no
binary image file name.

From the Setup | Communications dialog box, click on the “Use TCP/IP
Connection” radio button, then on the “ Discover” button.

cl RFU -d

Dynamic C User’s Manual

265

266 Dynamic C User’s Manual

Z-\WORLD SOFTWARE END USER LICENSE
AGREEMENT

IMPORTANT-READ CAREFULLY: BY INSTALLING COPYING OR OTHERWISE USING
THE ENCLOSED Z-WORLD,INC. ("Z-WORLD") DYNAMIC C SOFTWARE, WHICH
INCLUDES COMPUTER SOFTWARE ("SOFTWARE") AND MAY INCLUDE ASSOCIATED
MEDIA, PRINTED MATERIALS, AND "ONLINE" OR ELECTRONIC DOCUMENTATION
("DOCUMENTATION"), YOU (ON BEHALF OF YOURSELF OR AS AN AUTHORIZED
REPRESENTATIVE ON BEHALF OF AN ENTITY) AGREE TOALL THE TERMS OF THIS
END USER LICENSE AGREEMENT ("LICENSE") REGARDING YOUR USE OF THE
SOFTWARE. IF YOU DO NOT AGREEWITH ALL OF THE TERMS OF THIS LICENSE, DO
NOT INSTALL, COPY OR OTHERWISE USE THE SOFTWARE AND IMMEDIATELY CON-
TACT Z-WORLD FOR RETURN OF THE SOFTWARE AND A REFUND OF THE PUR-
CHASE PRICE FOR THE SOFTWARE.

We are sorry about the formality of the language below, which our lawyers tell us we need to
include to protect our legal rights. If You have any questions, write or call Z-World at (530) 757-
4616, 2900 Spafford Street, Davis, California 95616.

1. Definitions. In addition to the definitions stated in the first paragraph of this document, capital-
ized words used in this License shall have the following meanings:

1.1 "Qualified Applications' means an application program developed using the Software and
that links with the development libraries of the Software.

1.1.1"Qualified Applications' is amended to include application programs devel oped using
the Softools WinlIDE program for Rabbit processors available from Softoals, Inc.

1.1.2 The MicroC/OS-II (UC/OS-I1) library and sample code and the Point-to-Point Protocol
(PPP) library are not included in this amendment.

1.1.3 Excluding the exceptions in 1.1.2, library and sample code provided with the Software
may be modified for use with the Softools WinIDE program in Qualified Systems as
defined in 1.2. All other Restrictions specified by this license agreement remain in force.

1.2 "Qualified Systems" means a microprocessor-based computer system which is either (i)
manufactured by, for or under license from Z-WORLD, or (ii) based on the Rabbit 2000
microprocessor or the Rabbit 3000 microprocessor. Qualified Systems may not be (a)
designed or intended to be re-programmable by your customer using the Software, or (b)
competitive with Z-WORLD products, except as otherwise stated in a written agreement
between Z-World and the system manufacturer. Such written agreement may require an
end user to pay run time royatiesto Z-World.

Dynamic C User’s Manual 267

2. License. Z-WORLD grantsto You a nonexclusive, nontransferable license to (i) use and repro-
duce the Software, solely for interna purposes and only for the number of users for which You
have purchased licenses for (the "Users"') and not for redistribution or resale; (ii) use and repro-
duce the Software solely to develop the Qualified Applications; and (iii) use, reproduce and
distribute, the Qualified Applications, in object code only, to end users solely for use on Quali-
fied Systems; provided, however, any agreement entered into between You and such end users
with respect to a Qualified Application is no less protective of Z-Worldsintellectual property
rights than the terms and conditions of this License. (iv) use and distribute with Qualified
Applications and Qualified Systems the program files distributed with Dynamic C named
RFU. EXE, PI LOT. BI N, and COLDLQAD. BI Nin their unaltered forms.

3. Restrictions. Except as otherwise stated, You may not, nor permit anyone el se to, decompile,
reverse engineer, disassemble or otherwise attempt to reconstruct or discover the source code
of the Software, alter, merge, modify, translate, adapt in any way, prepare any derivative work
based upon the Software, rent, lease network, loan, distribute or otherwise transfer the Software
or any copy thereof. You shall not make copies of the copyrighted Software and/or documenta-
tion without the prior written permission of Z-WORLD; provided that, You may make one (1)
hard copy of such documentation for each User and a reasonable number of back-up copies for
Your own archival purposes. You may not use copies of the Software as part of a benchmark or
comparison test against other similar productsin order to produce results strictly for purposes
of comparison. The Software contains copyrighted material, trade secrets and other proprietary
material of Z-WORLD and/or its licensors and You must reproduce, on each copy of the Soft-
ware, all copyright notices and any other proprietary legends that appear on or in the origina
copy of the Software. Except for the limited license granted above, Z-WORLD retains all right,
title and interest in and to all intellectual property rights embodied in the Software, including
but not limited to, patents, copyrights and trade secrets.

4. Export Law Assurances. You agree and certify that neither the Software nor any other techni-
cal datareceived from Z-WORLD, nor the direct product thereof, will be exported outside the
United States or re-exported except as authorized and as permitted by the laws and regulations
of the United States and/or the laws and regulations of the jurisdiction, (if other than the United
States) in which You rightfully obtained the Software. The Software may not be exported to
any of the following countries: Cuba, Iran, Irag, Libya, North Korea, Sudan, or Syria.

5. Government End Users. If You are acquiring the Software on behalf of any unit or agency of
the United States Government, the following provisions apply. The Government agrees. (i) if
the Software is supplied to the Department of Defense ("DOD"), the Software is classified as
"Commercial Computer Software" and the Government is acquiring only "restricted rights" in
the Software and its documentation as that term is defined in Clause 252.227-7013(c)(1) of the
DFARS; and (ii) if the Software is supplied to any unit or agency of the United States Govern-
ment other than DOD, the Government's rightsin the Software and its documentation will be as
defined in Clause 52.227-19(¢)(2) of the FAR or, in the case of NASA, in Clause 18-52.227-
86(d) of the NASA Supplement to the FAR.

268 Dynamic C User’s Manual

6. Disclaimer of Warranty. You expressly acknowledge and agree that the use of the Software
and its documentation is at Your solerisk. THE SOFTWARE, DOCUMENTATION, AND
TECHNICAL SUPPORT ARE PROVIDED ON AN "ASIS' BASISAND WITHOUT WAR-
RANTY OF ANY KIND. Information regarding any third party servicesincluded in this pack-
ageis provided as a convenience only, without any warranty by Z-WORLD, and will be
governed solely by the terms agreed upon between You and the third party providing such ser-
vices. Z-WORLD AND ITS LICENSORS EXPRESSLY DISCLAIM ALL WARRANTIES,
EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING BUT NOT LIMITED
TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICU-
LAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS. Z-WORLD
DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE SOFTWARE
WILL MEET YOUR REQUIREMENTS, OR THAT THE OPERATION OF THE SOFT-
WARE WILL BE UNINTERRUPTED OR ERROR-FREE, OR THAT DEFECTSIN THE
SOFTWARE WILL BE CORRECTED. FURTHERMORE, Z-WORLD DOES NOT WAR-
RANT OR MAKE ANY REPRESENTATIONS REGARDING THE USE OR THE RESULTS
OF THE SOFTWARE IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY
OR OTHERWISE. NO ORAL OR WRITTEN INFORMATION OR ADVICE GIVEN BY Z-
WORLD OR ITSAUTHORIZED REPRESENTATIVES SHALL CREATE A WARRANTY
ORIN ANY WAY INCREASE THE SCOPE OF THISWARRANTY. SOME JURISDIC-
TIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE
ABOVE EXCLUSION MAY NOT APPLY TO YOU.

7. Limitation of Liability. YOU AGREE THAT UNDER NO CIRCUMSTANCES, INCLUD-
ING NEGLIGENCE, SHALL Z-WORLD BE LIABLE FOR ANY INCIDENTAL, SPECIAL
OR CONSEQUENTIAL DAMAGES (INCLUDING DAMAGES FOR LOSS OF BUSINESS
PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION AND THE
LIKE) ARISING OUT OF THE USE AND/OR INABILITY TO USE THE SOFTWARE,
EVEN IF Z-WORLD OR ITSAUTHORIZED REPRESENTATIVE HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. SOME JURISDICTIONS DO NOT ALLOW
THE LIMITATION OR EXCLUSION OF LIABILITY FOR INCIDENTAL OR CONSE-
QUENTIAL DAMAGES SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT
APPLY TOYOU. IN NO EVENT SHALL Z-WORLDS TOTAL LIABILITY TO YOU FOR
ALL DAMAGES, LOSSES, AND CAUSES OF ACTION (WHETHER IN CONTRACT,
TORT, INCLUDING NEGLIGENCE, OR OTHERWISE) EXCEED THE AMOUNT PAID
BY YOU FOR THE SOFTWARE.

8. Termination. ThisLicenseis effective for the duration of the copyright in the Software unless
terminated. You may terminate this License at any time by destroying al copies of the Software
and its documentation. This License will terminate immediately without notice from Z-
WORLD if You fail to comply with any provision of this License. Upon termination, You must
destroy all copies of the Software and its documentation. Except for Section 2 ("License"), all
Sections of this Agreement shall survive any expiration or termination of this License.

Dynamic C User’s Manual 269

9. General Provisions. No delay or failure to take action under this License will constitute a
waiver unless expressly waived in writing, signed by aduly authorized representative of Z-
WORLD, and no single waiver will constitute a continuing or subsequent waiver. This License
may not be assigned, sublicensed or otherwise transferred by You, by operation of law or other-
wise, without Z-WORLD's prior written consent. This License shall be governed by and con-
strued in accordance with the laws of the United States and the State of California, exclusive of
the conflicts of laws principles. The United Nations Convention on Contracts for the Interna-
tional Sale of Goods shall not apply to this License. If for any reason a court of competent
jurisdiction finds any provision of this License, or portion thereof, to be unenforceable, that
provision of the License shall be enforced to the maximum extent permissible so asto affect the
intent of the parties, and the remainder of this License shall continue in full force and effect.
This License constitutes the entire agreement between the parties with respect to the use of the
Software and its documentation, and supersedes al prior or contemporaneous understandings
or agreements, written or oral, regarding such subject matter. There shall be no contract for pur-
chase or sale of the Software except upon the terms and conditions specified herein. Any addi-
tional or different terms or conditions proposed by You or contained in any purchase order are
hereby rejected and shall be of no force and effect unless expressly agreed to in writing by Z-
WORLD. No amendment to or modification of this License will be binding unless in writing
and signed by a duly authorized representative of Z-WORLD.

Copyright 2000 Z-World, Inc. All rights reserved.

270 Dynamic C User’s Manual

Index arrangeiconscceceueueee 202 interrupt status 187, 188

ATAYS woveeeveeeereeer s 25, 26, 29 (S0 A 187, 188
Symbols Charactersccooevveeeennn. 20 buttons, toolbar 202
SUBSCIIPES oo 25
and ## (0perators) 17 arow KEYS .o, 179, 180 C
FBSM e 115,159,232 g e 139
#debug ..., 149,159,232 eare 3 115 136 157 Clanguage ...3,4,5,13,20, 23,
#defineooovvveveneens 16, 17, 160 . ’ ’ 29, 34,117, 120
B oo 161 Dlocksinxmem ... 121 calling assembly 127
delse 161~ Cmbedding Cstatements 116 empedged in assembly116
sdondaam 115, 119, 160 sxgnd-al (o]0 1C T 120 variablesin assembly ... 119
HENGIf ..o, 161 Winaow 125,202,203 cascaded Windows 202
HEITON e 161 ESIGNMENT OETBLOrS ..o 169 Gase i 33, 140, 143
Hatal .o 160 FSOCIAIVILY e 165 char e 23,140, 157
#uncehainooooevoeee... 3 161 OO 119,120,122,139, 231 opypnters
B o e SOMAOCOT VANADIES 122y 20
FTAER o 16 AutoOpen STDIOWindow 197 embedded quotes 21
Hfndef ..o 162 B nonprinting values 21
#include specia valuescccccueune 21
absence of 36 backsash (V) clipboardccccooeevreirinnnn 183
HiNterleave .o 162 character literals 17,21 closing afile ..o, 181
HKILL oo 162 continuation in directives .159 CoData Structure 48
#makechain e, 34 162 basicunit of aC program 22 poi MO0 oo 50
HMEMMAP ..o, 4,162,234 baudrate ... 75,200 cofunctions........c.cccvveennee 52-57
#nodebug149, 159, 186, 232 BCDE 120, 127, 129 abal_ﬂdon e 56
H#nointerleave .o 162 BeginHeader 37,38 caling restrictions 53
HNOUSEIX oo 163 binary operators 165 EVEIYHME .o 56
#undef oo 19 BIOS . 6 firsttimecoocoeveeiccnnn 145
HUSE oo 36, 38, 163 CXEXIt e 91 indexedccoeeeeeiiieeiennenns 54
HUSEIX oo 163 caling premain() 65 SiNgleuserc.ccoeeeriienen. 54
HWANS oo 164 command line compiler ..210, SYNEAX e 52
HWANE oo 164 213,219 cold loaderccooverveniennn 185
HXIMPOTT <. 164 comp?lation_ environments 227 COM PO i 199
@RETVAL oo, 128 compi le OpLioN ..o 258 communication
@SP122, 126, 127, 128, 136 configuration macros .95, 103 SErial oo 199
_GLOBAL_INIT wvevverreenee. 151 _control l_)l ocl_<s s 100 TC_P/IP 199
{ } curly bracesccouwu...... 21 includein .binfile 185 compile ...ccocveireiiee 185
macro definitions 196 BIOS ... 185
A memory location 98, 190 command line............ 209-226
memory Settings 194 EITOMS oo 184
DOt oo pe 137 redefine asymbol in 162 (111511 185
about Dynamic C 208 reserving memory 101 OPLIONS ..o 193
abstract dat_a YPES v 23,24 root memory usage............ 234 SPEEA i 3
adc (add-with-carry) ... 15 yaiable definedin ... 144 SEUS oo 205
address SPACE oo 4,97 board typecccveririninnns 201 targetlesscoceeeevinenine 185
addresses in assembly 19 branching v 32,33 tOfI€ oo 179, 185
aggregate datatypes 25 DK oo 139,154 1OflESh oo 185
AIGN s 138 example e 31 tORAM oo 185
ALT key KEYWOId —.roeeeeereeeerre 31 totarget . 179, 185
See keystrokes [imitationsccccoeevrenennen 32 compiler directives 4,159
AWRYS 0N oo 138 Ut of Q00 oo 31 HASM e 115, 159, 232
ANYMEM oo 138 out of aswitch statement ...31 OPLiONS ..o 159
argument passing ..29,122, 128,y eqnints .. 125, 149, 187, 190, HCIBSS oo 159
12.9 . 231 OPLiONS ..o 159
modifying value R s R 188 #debug ... 149, 159, 232

Dynamic C User’s Manual 271

#AefiNe oo 17, 160 COMPOSILES ..ocvvevvreeeerrrereens 26 editor .o 3
HElif oo 161 keywordcccovvvevienenn. 22 (o]0 1S 192
HESL o 161 (9151 oo [T 25 EEPROM ..o, 5
#endasm 115, 119, 160 offset of element 119 €S e 143
#endif oo 161 pass by valuecccce..... 29 embedded assembly 3,122,127,
2= (o) SR 161 returned by function 128 128
#atal ..o 160 0107 To o R 26 embedded quotes 21
#funcchainc.co..... 34,161 datatypeS.....ccccerivriirieiinnnens 25 EndKey ..o, 179
#GLOBAL_INIT 160 aggregate ..ooveeevverenieneens 25 EndHeaderccccr.ee. 37,38
T 161 Primitiveccovveeeveeeeene 15 enum . 144
Hifdef .o 162 DATAORGcccooun... 234,236 EPROM ... 4
#fndefooeei 162 DATASEG ..o 97 QU e 119
#interleaveccoovveenn. 162 dateandtimeccocevvvrennee 66 errors
HKILL e 162 db e 117 editor ..o 198
#makechain 34,162 DCW.CFGcccoeovvriien 202 error code ranges 1
HMEMMAP ...ooceveririerenens 162 DCWLINI oo, 202 [0CALiNG ..ovveveeeeeieie e 184
OPLiONS ..cveeeeeiriceeeene 162 debug ...cocooeirieiiie 231 run-timeccoceeeeuee 91, 193
#nodebug . 149, 159, 186, 232 dialog boXcccevreriiiennn. 197 ESCkey
#nointerleave 162 disassemble at address 190 to closemenu 180
HNOUSEIX ..oovevieeriiriereins 163 disassembled code 190 examples
#precompileccceeeeene 163 editorccccoveeeiireen, 198 breakccooeeiii 31
#undef ..., 19, 163 keywordccccoevnvinnnnne 142 CONtINUE ..o 31
HUSE .o, 36, 38, 163 memory dump 190 for loop ...ooovveeereiee e 30
FUSBIX e 163 MOAE ..o 231 MOAUIESoevrireiiirieeen 39
AWAMNS ..o 164 prevention ..o 186 of @Aray ..ccovveveeee e 25
AWANL ..o 164 run-time errorscco.e.... 1 UNTON <o 26
EXIMPOIt ..o 164 SEEP OVEr i 187 exitDynamicC ... 182
line continuation 159 switching modes 184 extended memory4, 127, 157
compound traceintoccoceeeeverennene 187 asm blocks ... 121
NAMES ..o 16 update watch expressions 190 externccceceeeeee. 38, 39, 144
statementscccceeeeeenennene 21 watchdog timers 67
concatenation of strings 20 declarationscccoeeeene 22,37 F
configurationccceceeee.e. 201 default ..o 33,143 e
cons_t 141 d_emot|on 195 COMMENAS oo 181
continue 31,142,154 disassemble MO o 180
eXample ... 31 at address 190, 203 i1 S 181
copying text 182, 183 at cursorocoeeeeeneee 190, 203 §ze... 180
(005 | (=R 142 displ ay TR L 99-113
costatementscccce.... 46-51 OPLIONS ...ocverieeieieeeeiene 198 in primary flash ... 101, 104
a_bort_ 137 dO100P .ceeereeeieniereeee 30 iNnRAM ... 100
firsttime ... 145 dot operatpr 16, 25 MUILItasKing —.ooooooeovere.. 100
keywordccoceeninicnnnne 142 downloadingcccceeeveeieenennne 3 FindNext<E3> 184
ST o< oo [N 155 dumpwindowccceeenee. 191 frsttime oo 145
s;_/ntax 47 dw ... B s 118 foat 23145, 157
Vield oo 158 Dynamic Ccccoorvnvencnnnnne 3 vaues ... 19
curly braces{ } ...ccccociriinens 21 dlf_ferenceﬁ 4,534 o 100D wevovrereeseeeeereren 30, 145
cursor EXIT i 182, 202 frame
exe_CL_Jtlo_n 187, 188 mstallatl(_)n 6 reference point 128
positioning 179, 184 support filescccoevverenene 40 reference pointer ... 126,127,
TEXE e 207 dynamic storage adlocation 26 149, 231
L 183 E function ... 22
D PSS | AR 207
Edit menu ..., 182 auto variables 139
data structure edit mode 179, 184, 188 cls 22,122,127,128
272 Dynamic C User’s Manual

calsfromassembly 129 keyword for ISR 147 pasting textcco.e.... 183
chainscccocoevevvnnnns 34,151 P 1= 110 A 130 <CTRL-W>
check parameters 207 toggle stateccoveveeeeennene 188 Add/Del Items 190
createchainsccoee..... 162 (/< oi (o £~ SRR 148 <CTRL-X>
entry and exitcceeeeee 231 ISR e, 130, 234 cutting textceeeeee 183
executiontime 231 IX (index register) 53,126,127, <CTRL-Y>
headersccccevvvvvevvvncennens 40 149, 155, 232 Reset target 185, 188
hElD oo 40 <CTRL-Z>
librariescccoevvevervennnne. 3,37 K 53 (0] o 187
Prototypes................ 23,24, 37 key moduleccoceverinnenn. 37 <F10> .
returns 127,128, 129 keystrokes Assembly window 202
saving registersc....... 136 <AL T-Backspace> <F2>
stack spacecoceveveeeenene 231 undoing changes 182 Toggle Breakpoint 187
transferring control 30 <ALT-C> <F3>
unbalanced stack 136 select Compile menu185 Find Nextcccoceeuenee. 184
function lookup <CTRL-H> <ALT-E> <F5>
206, 207 sdlect Filemenu 180 Compileto Target 185
G <ALT-F10> <Fr>
Disassemble at Address 190 Traceintoccceeenen. 187
Global Initidization 35 <ALT-F2> <F8>
global variables ..o 26 Toggle Hard Breakpaint SIEP OVEX ..o 187
e (< I 30, 146, 184 188 <F9>
<ALT-F4> RUN .o 186
H quitting Dynamic C182 keywords127, 137, 149, 151,
: <ALT-F9> 232
hard breakpoints.................... 188) abort 137
heajer Run W/ NO Pol I I ng 186 TILR s
] <ALT-H> aAlign .o 138
funCtioncoceeeveeveeceee i 40 alwavs on 138
%Iect Help mer]u 205 ay) Ul v
module ..o 37,38, 39 138
<ALT-O> ANYMEM v
A | S Um— 205 : L I 139
hexadecimal integer 19 select Options menu192 auto 139
<ALT_SHI FT_ba:k$me>
HL o 120, 126, 127, 129 _ bbram 139
redOI ng (:t-]ar]g$ 182
Homekeyccoceovvviveinnne 179 break 139
. . <ALT_W>
horizontal tiling 202 _ c 140
%Ia:t WIndOW mer]u “"202 ..
I <CTRL - F10> Ca% 140
. Disassemble at Cursor ..190 char_ 140
icons <CTRL-F2> CONINUEooveeieeeeeeeiene 142
arrangedccoceeeieieenne 202 Reset Program 187 COStAe ..o, 142
|EEE floating point 145 <CTRL-G> debug ..o 142
1SS 143 GOto 184 o = £ 7| S — 143
multichoicecccovniene. 33 <CTRL-H> dO o 143
smple 32 Library Help |OOkUp 206 Bl e, 143
With else oo, 33 <CTRL-I> ENUM ..o 144
information window202, 205 Toggle Interrupt Flag ...188 EXEEIN e, 144
NI ON e, 147 <CTRL-N> firsttime ..o 145
insertion point 183, 184 NExt €ITOr oo 184 float ..ocooveeieeeeee 145
|nSpeCt menu 189, 203 <CTRL-O> L 0] G 145
insta”mion PO” Target 188 gOtO 146
Dyna_mlc C o 6 Toggle polling 188 !f s 146
Instruction Set Reference208 <CTRL-P> INIE_ON oo, 147
i nt 23, 147, 157 prev' OUS &TOl oevveneinn, 184 | nt 147
INEEJEN'S ..o 19 <CTRL-U> iNterruptcoovvviiiine, 147
INtEITUPLS ... 130, 136 Update Watch window .190 interrupt_vector 148
breakpoints ..o 187 <CTRL-V> ONg oo 148
Dynamic C User’s Manual 273

NOAELUY ...vvvveeeeeiriieeeens 149 restrictionsccceeeeeevvennnn, S TR o 0 £ R 149
(00] 6 QR 149 with parameters VAR 0TV 1S =) G 149
NOUSEIX .veveererereeeeennnrnns 149 mainfunction ..22, 36,149,231 NULL ..cccovvrivcirrecieens 149
NULL oo 149 memory
protectedccoceveeeennne 150 address spacecceeveeeenn 97 O
(= (1] o R 150 DATAORG 234,236 gl TS S 19
FOOL oovvvvvvvvvsvsvnssnnsmnnsssnnnnns 151 dUMP e 189 ffsetsin assembly 119,126,
SEgChEIN ..o 151 dump at address 190 127
(S 72115 o [151 dump flashccceceveenenne 191 Lnlinehel D oo 40 208
SOt oo 152 dump to file ...ooeerreeeeeeen. 191 GO atOrS oo 165
SIZE i 152 extended 4,127, 157 # and ## (MACroS) ..o 17
i;eeg Eg mﬁagement 138, 13% arithmetic operators 166
-- deCrement _— .“““.“““168
LS [o 153 random acCessccueennee 4 division (/)() ________________ 167
SEPUCE e 153 read-onlycccocceveeeenennene 4 increment (++) woo........ 168
SWItCh .o 154 root98, 119, 120, 151, 234 indirection (*) .o.oooo.... 167
typedef ... 154 root keywordcccceeeeee. 4 A TTY S IR 166
Szls (_)nn.e.;j Eg mgnnlosry management unit . 4, 97 modglu_s (%) ________________ 168
uwg 155 CI O$ al I Open 180 multl pl I Catl On (*) 167
... |us +166
WaItfor ..o 155 Compileccooerenennienn, 185 Eoi nt(er)s ________________________ 167
waitfordoneccceeeeene 156 Edit o 182 post-decrement (--) ... 168
\)/(vdh;II : gg Ellelep. 33(5) post-increment (++) .. 168
... re_decrement _— s 168
XMEM oo 157 Inspect 189, 203 Ere—i ncrement ((+ 3) ______ 168
x;sg:j NG e Eg (R)Lr;:: ONS oo 122 assi gnmer_1t OpEraors 169
y WI r](j.(.).\.l\./ 202 ajd mgn (+:) 169
L e ANDmgn (&:) 170
Message Window 184, 202 BSSION (2) weeererereeienins 169
language elements ... 13, 16, 20, MELBOAA covvs 108 divide assign (/=) 169
137 m(’;/ldleJS 4, 97 modul O m gn (%:) 169
OPEratorsoovvvereerereeneneas 165 multiply assign (*=) 169
LI BI.DDI R oo 38, 163 debug 184, 186, 231 OR agsi)gn (|:g) (.....) 170
lIDBITES weovorrereeeeeeeses e 3,36 OO oo 184, 188 shift left (<<=) oo 169
INKING roeereeree e eeeeees e 36 PrEVIEW ..o "y 12(15 shift right (>>=) w.oo...... 169
MOAUIESccoeereeireee, 37 r(ij| """"""""""""" é6 3’7 29 subtract assign (-=) 169
real-time programming 3 MOOUIES oo 100 XOR assign (M=) ... 170
writing your own 37 body ... e 37, 38,39 assOCIaAiVItYcceevereeennes 165
Library Help lookup 40, 206, custom libraries 37 binary ... 165
207 eXampleccoceenienine 39 bitwise operators
T3S s R 3 header 37, 38,39, 144 0dress (8) veveerrrrn 170
locating errorscccceeeeuenee. 184 k_ey """""""""""""""""""" 37 bitwise AND (&) 170
long library .oococoeoiiiiiiiiiies 1% bitwise exclusive OR (%) ..
T01T= = G 19 MOUSE oo, 171
keyevgvord 14g ~ Multitasking bitwiseinclusive OR () 171
lookup function 206, 207 cooperat_lve """""""""""" 43 complement (~) 171
([e]0] o< TR 30,31 PrEEMPUVE woovvvvverrvvvrvene 59 POINErS ...oovveiriiricnienns 170
breaking out of 31 N shift left (<<) .oovvvevneee. 170
O .o 143 shift right (>>) 170
FOF e 145 NAMES ..o 16 COMMAL . 177
skipping to next pass 31 #AefiNe ..ocoeeere, 16 conditional operators (?:) 175
Next error <CTRL-N> 184 equality operators 172
M nodebug 115, 149, 187, 190, equal (=) .o 172
Macros 17,118, 119, 160 196, 231, 232 not equal (1=) .oeeeeneee 172
274 Dynamic C User’s Manual

inassemblycccceevienene 117

logical operators 173
logical AND (&&) 173
logical NOT (1) .cvoveeeeee. 173
logical OR (| [) «veverereees 173

operator precedence 177

postfix expressions 173
() parentheses 173
[]aray indices 173
o [o] f (EFOR 174
parentheses ()cceeeee. 173
right arrow (->) 174

precedencec.cooveenen. 165

reference/dereference opera-
TOrS e 174
address (&) .oocoeeeereennenn 174
bitwise AND (&) 174
indirection (*)c.cce.c... 175
multiplication (*) 175

relational operators 171
greater than (>) 172
greater than or equa (>=) ...

172
lessthan (<) ..cccevvevenees 171
lessthan or equal (<=) ..171

SIZEO i, 176

UNAY oo 165

optimize size or speed 196
options

communications 199

COMPIlEr .o 193

debuggerccceererinieenne 197

display ...ccoooveieeieieiee 198

editorccccoveiiieeee 192

MENU .o 192

P

PageDown keyccceeeeeee 179
PageUp Keycccoovrenciennns 179
Partitioningcccceeeeeereenns 107

passing arguments .29, 122, 127,
128, 129

pasting textccceeennieenns 183
periodic interrupt 51, 60, 65,
239, 250, 259
pointer checkingcccceueu.e. 28
PoOINtErsccoeveveeene 20, 27,29
uninitializedccccoceennee. 28
poll targetccoeveeeerieeiens 188
pollingccveeeiereninne 186, 188
ports
Serial e 199
positioning textc........ 184
power failureccccoeeeeneee 150

precompileccceeveevvennnnnns 163
precompilercccevvveveveennn, 37
preserving registers129, 136

Previous error <CTRL-P> ...184
primary register120, 127, 129

primitive datatypes 15
print

choosing aprinter181, 182
Print file ..ccoeveveecieeeees 181
Print previewccceeveveeennes 181

printf 21, 24, 186, 187, 188, 197,
203

program

EXAMPIE oo, 24

FIOW <o 30

OpPtiMIZE e 196

(== S 187

spanning 2 flash 99, 232

PEED v 232
programmable ROM 4
project files 181, 227-229
Promotionc.ccoceevererenncns 166
protected

keywordccoevenienn. 150

variables 3,150, 232
prototypes

checkingccoccevnennnnns 195

function 23, 24,37

inheaderscccccooeviennne 37
punctuationc..cceeeeeeeennn. 14
Q
quitting Dynamic C 182
R
Rabbit restart

protected variables 150
RAM

SEC o 4
read-only memorycceceeeee. 4
real-time

Programmingc..ceeeeeeseenen 3
redoing changes 182
registers

saving and restoring 130

Shadowccovvvveerircrieieee 260

(S 101S 0101 (204

variablescceoveeieennnn, 27

WINdowccoeeeee. 202, 204
reset

Programcccceeeeeeereenenns 187

SOftWareccooeeveeerieennnne 188

target .oooeeeeeeeceee 188
= SR 127, 130

1= 1 130
=1 [130
return 127, 128, 150, 154
return addresscccveeveeene 122
ROM ..o 187
programmableccceeene. 4
root memory
assembly functions 120
file system usage 102
keywordccccvvrennene 4,151
MEMOrY MaPccceevervvereenne 97
static variables 98
variable address 119
RST 28Hcccccvvevennns 187, 231
run
MENU ..o 186
MOdecccvvvvreeerenne. 184, 186
No Pollingccccevereneenenne 186
S
sample programs
basic C constructs 24
save environment 202
saving afilecoceeinnnn. 181
searChtext ...ooeeevevveecieecees 183
segehain ..eeeeeeeeeeee, 34,151
SEGSIZEocvevvevceireeens 97
separate 1& D space117,190,
195
serid
communication 199
OPLIONS ..o 200
shadow registers 260
Sharedooooeveeveevecie s 151
shared variables 3, 150, 232
ShOMt e, 152
show tool barcccoeeeenene 202
single stepping125, 190, 231
with descentcccueeee. 187
without descent 187
SIZE o, 152, 196
SIZEOf i 152
skipping to next loop pass31
Jave portcoevereieieieene 69
dice statementscceeeueeneee. 59
soft breakpoints............. 187,188
software
librariesccccovvveeennee. 36, 37
(15 < 188
source Windowcceeeveens 202

SP (stack pointer) 122, 128, 129,
136, 163

special characters 21

specia symbols

Dynamic C User’s Manual

275

inassemblyccooevvrinen. 119 T warning reportsc.ccoeeeeene 195
speed ..oovvrvirenenn 152, 196, 232 watch expressions
stack29,126,128,129,130, target add or deletecooovvnnnenn. 189
136, 139, 149, 231 COMMUNICALIONSovovvvee. 199 evaluate button 189
checkingo.coee... 231, 232 configuration 201 watch menu option 203
frame....... 122,128,129, 136 targetless compilation 185 watch window 190
frame reference point128 TOP/P o 199 WINGOW oo 202
frame reference pointer ..126, EXLCUSON oiviviniiiinnniinnnss A RTY. (R 156
127, 149, 231 text editingvvvvveenns 182 while cooovvvvvee 21, 30, 156
pointer (SP)122,128,129, textsearch ... 183 \Window menuc.coeeeeen.. 202
136, 163 tiling windowsc.ccocc...... 202 windows
SNAPSNOLS v 204 toggle assembly 125, 202, 203
WINAOW .ooovvvaeeeivnennns 204 breakpoint 187,188 cascadedooo.vvererr 202
STACKSEGoovoeereeerrrionnes 97 interrupt flagoov.e. 188 information 202, 205
state machine POIING oo 183 MESSATE ...voevvereeeeeesrenes 202
EXAMPIE .o, 45 togglepolling ... 183 FEQIStEr ..ovvereeerreeann. 202, 204
SLALEMENLSvooeeeereerereeeeeee 21 00IDAN s 202 StACK e 202, 204
S (T 153 UACEINO o, 187 (S 16 [[o JOU 197, 202, 203
2721V N 4 pe tiled horizontaly 202
variables 5,119, 122 CastiNg .ooovevvniniiens 166 tiled vertically 202
status register (F)oo........ 204 checkingcoooooieeeees 23,195 watch 190, 202, 203
Stdio window ... 197, 202, 203 definitionscccvveeenn. 23,24
STDIO DEBUG_SERIAL .197 typedefcceerenne 23,24,154 X
SIED OVEN oo 187y e = 157
SOP DItS v 199 XIEM oo 127, 157
stop program execution 187 unary operators 165 asmblocks . 121
SIOrage Classwvvvveveveverrrre 22 unbalanced Stack 136 XPC .oovoooooooooeoeoeoooeoo 97,234
AULO oo 26 undoing changes 182 YSHING covveeeeeeeeeeeeeeeeeeeeee 157
defaultooovveeeeeeieeeeee, 5 uninitialized
FEYISIEr v 26, 27 POINEENS ..o 28 Y
SAC oo, 26 UNION oo 22, 26, 155 .
SCPY crevveerereeeeierie e 207 unpr&eerved registers ..129, 136 y|eld 158
SINGS oo 20,157 unSIgNedccoevveeeeeeeenn 155
concatenationcceeeveens 20 unsigned iNtegercu..... 19
functions ..., 20 untitled fileS ..ooeereeeeeean. 181
terminating null byte 20 USB oo, 200
struct keywordcccceeee. 153 USE_2NDFLASH_CODE ... 99,
structure 232
COMPOSItESooeeeeerieeeiene 26 USEIX e 126, 155, 231
keyword 22 Uti|ity Programs
(0151 oo TR 25 Font/ Bitmap Converter ... 263
offset of element 119 Library File Encryption ... 263
passby valuecooc.... 29 Rabbit Field Utility 264
return space 122, 128, 129
returned by function 128 V
019 11o] o [26 .
subscripts variables
BTEY oo o5 BUEO e 139
: global ..o 26
support filesocvveeveienienn, 40 Satic 153
switch ...oceecienee, 33, 143, 154 vertical tlllng """"""""""""" 200
breaking out of 31 7T Y
CASE ..o 154 W
switching to edit mode 184
symbolic constant 160 WaItfOr ..o 155
waitfordonecccceeevenene 156
276 Dynamic C User’s Manual

	�1. Installing Dynamic C
	1.1� Requirements
	1.2� Assumptions

	�2. Introduction to Dynamic C
	2.1� The Nature of Dynamic C
	2.1.1� Speed

	2.2� Dynamic C Enhancements and Differences
	2.3� Dynamic C Differences Between Rabbit and Z180

	�3. Quick Tutorial
	3.1� Run DEMO1.C
	3.1.1� Single Stepping
	3.1.2� Watch Expression
	3.1.3� Breakpoint
	3.1.4� Editing the Program

	3.2� Run DEMO2.C
	3.2.1� Watching Variables Dynamically

	3.3� Run DEMO3.C
	3.3.1� Cooperative Multitasking

	3.4� Summary of Features

	�4. Language
	4.1� C Language Elements
	4.2� Punctuation and Tokens
	4.3� Data
	4.3.1� Data Type Limits

	4.4� Names
	4.5� Macros
	4.5.1� Restrictions

	4.6� Numbers
	4.7� Strings and Character Data
	4.7.1� String Concatenation
	4.7.2� Character Constants

	4.8� Statements
	4.9� Declarations
	4.10� Functions
	4.11� Prototypes
	4.12� Type Definitions
	4.13� Aggregate Data Types
	4.13.1� Array
	4.13.2� Structure
	4.13.3� Union
	4.13.4� Composites

	4.14� Storage Classes
	4.15� Pointers
	4.16� Pointers to Functions, Indirect Calls
	4.17� Argument Passing
	4.18� Program Flow
	4.18.1� Loops
	4.18.2� Continue and Break
	4.18.3� Branching

	4.19� Function Chaining
	4.20� Global Initialization
	4.21� Libraries
	4.22� Headers
	4.23� Modules
	4.23.1� The Key
	4.23.2� The Header
	4.23.3� The Body
	4.23.4� Function Description Headers

	4.24� Support Files

	�5. Multitasking with Dynamic C
	5.1� Cooperative Multitasking
	5.2� A Real-Time Problem
	5.2.1� Solving the Real-Time Problem with�a�State�Machine

	5.3� Costatements
	5.3.1� Solving the Real-Time Problem with�Costatements
	5.3.2� Costatement Syntax
	5.3.3� Control Statements

	5.4� Advanced Costatement Topics
	5.4.1� The CoData Structure
	5.4.2� CoData Fields
	5.4.3� Pointer to CoData Structure
	5.4.4� Functions for Use With Named Costatements
	5.4.5� Firsttime Functions
	5.4.6� Shared Global Variables

	5.5� Cofunctions
	5.5.1� Syntax
	5.5.2� Calling Restrictions
	5.5.3� CoData Structure
	5.5.4� Firsttime Functions
	5.5.5� Types of Cofunctions
	5.5.6� Types of Cofunction Calls
	5.5.7� Special Code Blocks
	5.5.8� Solving the Real-Time Problem with�Cofunctions

	5.6� Patterns of Cooperative Multitasking
	5.7� Timing Considerations
	5.7.1� waitfor Accuracy Limits

	5.8� Overview of Preemptive Multitasking
	5.9� Slice Statements
	5.9.1� Syntax
	5.9.2� Usage
	5.9.3� Restrictions
	5.9.4� Slice Data Structure
	5.9.5� Slice Internals

	5.10� Summary

	�6. The Virtual Driver
	6.1� Default Operation
	6.2� Calling _GLOBAL_INIT()
	6.3� Global Timer Variables
	6.4� Watchdog Timers
	6.4.1� Hardware Watchdog
	6.4.2� Virtual Watchdogs

	6.5� Preemptive Multitasking Drivers

	�7. The Slave Port Driver
	7.1� Slave Port Driver Protocol
	7.1.1� Overview
	7.1.2� Registers on the Slave
	7.1.3� Polling and Interrupts
	7.1.4� Communication Channels

	7.2� Functions
	SPinit
	SPsetHandler
	MyHandler
	SPtick
	SPclose

	7.3� Examples
	7.3.1� Status Handler
	7.3.2� Serial Port Handler
	cof_MSgetc
	cof_MSputc
	cof_MSread
	cof_MSwrite
	MSclose
	MSgetc
	MSgetError
	MSinit
	MSopen
	MSputc
	MSrdFree
	MSsendCommand
	MSread
	MSwrFree
	MSwrite

	7.3.3� Byte Stream Handler
	cbuf_init
	cof_SPSread
	cof_SPSwrite
	SPSinit
	SPSread
	SPSwrite
	SPSwrFree
	SPSrdFree
	SPSwrUsed
	SPSrdUsed

	�8. Run-Time Errors
	8.1� Run-Time Error Handling
	8.1.1� Error Code Ranges
	8.1.2� Fatal Error Codes

	8.2� User-Defined Error Handler
	8.2.1� Replacing the Default Handler

	8.3� Run-Time Error Logging
	8.3.1� Error Log Buffer
	8.3.2� Initialization and Defaults
	8.3.3� Configuration Macros
	8.3.4� Error Logging Functions
	8.3.5� Examples of Error Log Use

	�9. Memory Management
	9.1� Memory Map
	9.1.1� Memory Mapping Control

	9.2� Extended Memory Functions
	9.2.1� Code Placement in Memory

	�10. The Flash File System
	10.1� General Usage
	10.1.1� Maximum File Size
	10.1.2� Using SRAM
	10.1.3� Wear Leveling
	10.1.4� Low-Level Implementation
	10.1.5� Multitasking and the File System

	10.2� Application Requirements
	10.2.1� FS1 Requirements
	10.2.2� FS1 and Use of the First Flash
	10.2.3� FS2 Requirements
	10.2.4� FS2 Configuration Macros
	10.2.5� FS2 and Use of the First Flash

	10.3� Functions
	10.3.1� FS1 API
	10.3.2� FS2 API

	10.4� Setting up and Partitioning the File System
	10.4.1� Initial Formatting
	10.4.2� Logical Extents (LX)
	10.4.3� Logical Sector Size

	10.5� File Identifiers
	10.5.1� File Numbers
	10.5.2� File Names

	10.6� Skeleton Program Using FS1
	10.7� Skeleton Program Using FS2

	�11. Using Assembly Language
	11.1� Mixing Assembly and C
	11.1.1� Embedded Assembly Syntax
	11.1.2� Embedded C Syntax
	11.1.3� Setting Breakpoints in Assembly

	11.2� Assembler and Preprocessor
	11.2.1� Comments
	11.2.2� Defining Constants
	11.2.3� Multiline Macros
	11.2.4� Labels
	11.2.5� Special Symbols
	11.2.6� C Variables

	11.3� Stand-Alone Assembly Code
	11.3.1� Stand-Alone Assembly Code in Extended Memory
	11.3.2� Example of Stand-Alone Assembly Code

	11.4� Embedded Assembly Code
	11.4.1� The Stack Frame
	11.4.2� Embedded Assembly Example
	11.4.3� Local Variable Access

	11.5� C Calling Assembly
	11.5.1� Passing Parameters
	11.5.2� Location of Return Results

	11.6� Assembly Calling C
	11.7� Interrupt Routines in Assembly
	11.7.1� Steps Followed by an ISR
	11.7.2� Modifying Interrupt Vectors

	11.8� Common Problems

	�12. Keywords
	abandon
	abort
	align
	always_on
	anymem
	asm
	auto
	bbram
	break
	c
	case
	char
	const
	continue
	costate
	debug
	default
	do
	else
	enum
	extern
	firsttime
	float
	for
	goto
	if
	init_on
	int
	interrupt
	interrupt_vector
	long
	main
	nodebug
	norst
	nouseix
	NULL
	protected
	return
	root
	segchain
	shared
	short
	size
	sizeof
	speed
	static
	struct
	switch
	typedef
	union
	unsigned
	useix
	waitfor
	waitfordone (wfd)
	while
	xdata
	xmem
	xstring
	yield
	12.1� Compiler Directives
	#asm
	#class
	#debug #nodebug
	#define
	#endasm
	#fatal
	#GLOBAL_INIT
	#error
	#funcchain
	#if #elif #else #endif
	#ifdef
	#ifndef
	#interleave #nointerleave
	#KILL
	#makechain
	#memmap
	#precompile
	#undef
	#use
	#useix #nouseix
	#warns
	#warnt
	#ximport

	�13. Operators
	13.1� Arithmetic Operators
	+
	–
	*
	/
	++
	––
	%

	13.2� Assignment Operators
	=
	+=
	-=
	*=
	/=
	%=
	<<=
	>>=
	&=
	^=
	|=

	13.3� Bitwise Operators
	<<
	>>
	&
	^
	|
	~

	13.4� Relational Operators
	<
	<=
	>
	>=

	13.5� Equality Operators
	==
	!=

	13.6� Logical Operators
	&&
	||
	!

	13.7� Postfix Expressions
	()
	[]
	. (dot)
	->

	13.8� Reference/Dereference Operators
	&
	*

	13.9� Conditional Operators
	? :

	13.10� Other Operators
	(type)
	sizeof
	,

	�14. Graphical User Interface
	14.1� Editing
	14.2� Menus
	14.2.1� File Menu
	New
	Open
	Save
	Save As
	Close
	Project
	Print Preview
	Print
	Print Setup
	Exit

	14.2.2� Edit Menu
	Undo
	Redo
	Cut
	Copy
	Paste
	Find
	Replace
	Find Next
	Goto
	Previous Error
	Next Error
	Edit Mode

	14.2.3� Compile Menu
	Compile to Target
	Compile to .bin file
	Reset Target/Compile BIOS
	Include Debug Code/RST 28�Instructions

	14.2.4� Run Menu
	Run
	Run w/ No Polling
	Stop
	Reset Program
	Trace into
	Step over
	Source Trace into
	Source Step over
	Toggle Breakpoint
	Toggle Hard Breakpoint
	Clear All Breakpoints
	Toggle Interrupt Flag
	Toggle Polling (Prior to DC 7.30)
	Poll Target (Starting with DC 7.30)
	Reset Target
	Close Serial Port

	14.2.5� Inspect Menu
	Add/Del Watch Expression
	Clear Watch Window
	Update Watch Window
	Disassemble at Cursor
	Disassemble at Address
	Dump at Address

	14.2.6� Options Menu
	14.2.6.1� Editor
	14.2.6.2� Compiler
	Run-Time Checking
	BIOS Memory Setting
	User Defined BIOS File
	User Defined Lib Directory File
	Watch Expressions
	Separate I&D Space
	Type Checking
	Warning Reports
	Optimize For
	Max Shown
	Defines

	14.2.6.3� Debugger
	Enable Breakpoints
	Enable Watch Expressions
	Enable Instruction Level Single Stepping

	14.2.6.4� Display
	14.2.6.5� Communications
	TCP/IP Options
	Serial Options

	14.2.6.6� Define Target Configuration
	14.2.6.7� Other Menu Choices
	Show Tool Bar
	Save Environment

	14.2.7� Window Menu
	Message
	Watch
	Stdio
	Assembly
	Registers
	Stack
	Information

	14.2.8� Help Menu
	Online Documentation
	Keywords
	Operators
	HTML Function Reference
	Function Lookup/Insert
	Instruction Set Reference
	Keystrokes
	Contents
	Tech Support Bulletin Board
	Tip of the Day
	About

	�15. Command Line Interface
	15.1� Default States
	15.2� User Input
	15.3� Saving Output to a File
	15.4� Command Line Switches
	15.4.1� Switches Without Parameters
	15.4.2� Switches Requiring a Parameter

	15.5� Examples
	15.5.1� Example 1
	15.5.2� Example 2
	15.5.3� Example 3

	�16. Project Files
	16.1� Project File Names
	16.1.3� Active Project

	16.2� Updating a Project File
	16.3� Menu Selections
	16.4� Command Line Usage

	�17. Hints and Tips
	17.1� Efficiency
	17.1.1� Nodebug Keyword
	17.1.2� Static Variables

	17.2� Run-time Storage of Data
	17.2.1� User Block
	17.2.2� Flash File System
	17.2.3� WriteFlash2
	17.2.4� Battery Backed RAM

	17.3� Root Memory Reduction Tips
	17.3.1� Increasing Root Code Space
	17.3.2� Increasing Root Data Space

	�18. µC/OS-II
	18.1� Changes to µC/OS-II
	18.1.1� Ticks per Second
	18.1.2� Task Creation
	18.1.3� Restrictions

	18.2� Tasking Aware Interrupt Service Routines (TA-ISR)
	18.2.1� Interrupt Priority Levels
	18.2.2� Possible ISR Scenarios
	18.2.3� General Layout of a TA-ISR

	18.3� Library Reentrancy
	18.4� How to Get a µC/OS-II Application Running
	18.4.1� Default Configuration
	18.4.2� Custom Configuration
	18.4.3� Examples

	18.5� Compatibility with TCP/IP
	18.5.1� Socket Locks

	18.6� Debugging Tips

	�Appendix A: Macros and Global Variables
	A.1� Compiler-Defined Macros
	A.2� Global Variables
	A.3� Exception Types
	A.4� Rabbit 2000/3000 Internal registers

	�Appendix B: Map File Generation
	B.1� Grammar

	�Appendix C: Utility Programs
	C.1� Font and Bitmap Converter Utility
	C.2� Library File Encryption Utility
	C.3� Rabbit Field Utility

	Z-WORLD SOFTWARE END USER LICENSE AGREEMENT
	Index

