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Abstract  
The public health response to a bioterrorist attack or other large-scale health emergency may 
include mass prophylaxis using multiple Points of Dispensing (PODs) to deliver 
countermeasures rapidly to affected populations.  Although computer models exist to determine 
"optimal" staffing levels at PODs under certain steady-state conditions, no quantitative studies 
address the requirements of the POD workforce management systems needed to enable efficient, 
population-wide coverage in the face of a dynamic and uncertain operational environment. 
 
Our goal was to investigate quantitatively the impact of dynamic and uncertain patient arrival 
patterns on workforce requirements and on overall POD effectiveness and efficiency over the 
duration of a mass prophylaxis campaign. 
 
To investigate the dynamic behavior of POD systems, many extensive simulation experiments 
were conducted using a Monte Carlo simulation model, called the Dynamic POD Simulator (D-
PODS). Using this simulation environment, we designed POD station layouts, capacities, 
staffing patterns, patient types, and work flows and then observed the consequences of operating 
PODs based on these plans under various patient arrival scenarios. The D-PODS user interface is 
an Excel worksheet and the model is implemented in Visual Basic. 
 
Using several illustrative POD experiments, we demonstrate that uncertain patient arrival 
patterns require higher staffing levels than might be expected if a stationary environment is 
assumed.  These experiments further show that PODs may develop severe bottlenecks unless 
staffing levels vary over time to meet changing patient arrival patterns.  Because of the 
unpredictability of the operating environment, efficient POD networks require command and 
control systems capable of dynamically adjusting intra- and inter-POD staffing levels to meet 
demand.  Furthermore, we show that fewer large PODs require a smaller total staff than many 
small PODs require to serve the same number of patients.   
 
We conclude that modeling environments that capture the effects of fundamental uncertainties in 
public health disasters are essential for the realistic evaluation of response mechanisms and 
policies.  D-PODS quantifies POD operational efficiency under more realistic conditions than 
have been modeled previously. Our experiments demonstrate the critical role of variation and 
uncertainty in POD arrival patterns in establishing effective POD staffing plans. These 
experiments also highlight the need for command and control systems to be created to manage 
emergency response successfully. 
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I. Introduction 
When a bioterrorist attack or other large-scale public health emergency occurs, planned health 
system response procedures are put into operation.2 One possible response is the opening of 
dispensing clinics at which a portion of or the entire population of a given geographical region 
will receive medications or vaccinations within a very short period of time, perhaps within 48 
hours of the time that officials decide to conduct the mass prophylaxis campaign.3 These clinics 
are called Points-of-Dispensing, or simply PODs, and cities such as New York have plans to 
activate hundreds of PODs for some emergencies. The efficiency and effectiveness of the POD 
system depends crucially on many factors.4 
 
Public health planners must determine how many PODs to deploy and where to locate them. 
Planners must also carefully design each individual POD. In many POD layouts, the tasks 
associated with dispensing medication (collecting patient information, prescribing a dosage or 
medication, packaging drugs, etc.) are divided among several service stations. Patients move 
from station to station in one of a few possible paths, depending on their specific conditions and 
circumstances. The effectiveness of this type of POD plan depends on the accuracy of 
assumptions made about the lengths of time required to process different patient types (families 
of different sizes, elderly people, disabled individuals, etc.), the percentages of various patient 
types that follow each possible route through the POD, and the pattern of arrivals throughout the 
duration of POD operations. Staffing levels for each service station over time will be determined 
based on these assumptions. When establishing these staffing levels, planners must recognize 
that their assumptions may not be correct. Real events are usually very difficult to predict with 
accuracy. 
 
Our goal, in general, was to explore the consequences of POD staffing policies. To do this, we 
created a flexible simulation environment called the Dynamic POD Simulator (D-PODS) that 
enabled us to understand the dynamics of patient flow within a POD in a probabilistic way. This, 
in turn, allowed us to consider many potential outcomes from a mass prophylaxis campaign. In 
the following sections we will describe other existing POD models and the simulation model that 
we implemented before proceeding to discuss a number of questions related to POD staffing 
policies.  
 
First, we show that staffing levels must vary over time to meet changing patient arrival patterns. 
Second, we show that, faced with uncertainty in arrival patterns, patient waiting times quickly 
become unreasonable unless staffing levels are either extremely flexible or significantly larger 
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than might be expected. Third, we demonstrate that the total number of staff needed to run a 
network of PODs depends critically on the number of PODs in the system. Specifically, we show 
that to serve the same number of patients, fewer larger PODs require a smaller total staff than 
many smaller PODs. Finally, we show that for a prophylaxis campaign to be successful, a POD 
network requires a system capable of dynamically managing its operations. To mitigate the 
effects of uncertainty, planners must create a command and control environment in which 
demand for services at each POD can be assessed and responded to frequently. It also means that 
staff may have to be moved between PODs or patients transported to PODs with “lighter” 
demand (or both) at various points in time for a mass prophylaxis campaign to be completed 
effectively. While we will primarily discuss how D-PODS can be used to set POD staffing 
policy, the observations we make can also be applied to the allocation of other resources, such as 
medical supplies and equipment. 
  

II. Current Research 
A number of research groups have developed approaches for designing and evaluating the 
performance of alternative POD systems. Three of the most detailed systems have been 
developed at Weill Cornell Medical College, Georgia Institute of Technology, and the University 
of Maryland. These research efforts provided us with insights into the design and implementation 
of D-PODS. 
 
At the Weill Cornell Medical College, Hupert et al. developed BERM (Bioterrorism and 
Epidemic Outbreak Response Model, available at http://www.simfluenza.org), a tool that is 
widely used to calculate POD staffing levels.5  BERM’s output is based on the assumption that 
patients arrive at the POD according to a stationary Poisson process. Using a Jackson queuing 
network model and an optimization model, BERM calculates the minimum staffing levels 
needed at each station to achieve a desired level of performance. Although these results are 
beneficial to planners, it is highly unlikely that patients will arrival at PODs in a stationary 
manner. In D-PODS we allow users the option of setting non-stationary patient arrival rates.  
 
Eva Lee et al., at the Georgia Institute of Technology, developed RealOpt, which is a tool that 
can be used to evaluate staffing levels and develop a customized layout for a POD.6  The tool 
uses a heuristic-algorithmic design and works in real-time as a decision support system during an 
actual dispensing campaign. RealOpt aids in strategic and operational planning before, during, 
and after an emergency mass-dispensing event, but primarily focuses on the ability to 
reconfigure staffing levels during operations. The assumption that a POD can be easily 
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redesigned and staff reallocated at any given moment may be unrealistic. In theory, 
reconfiguration of a POD may increase its efficiency. However, if staff members are to be 
moved among POD stations, they must be trained in advance for the many different jobs they 
might be expected to perform; otherwise the potential gain in efficiency could be lost in training 
workers in new tasks during the emergency. 
 
At the University of Maryland, Aaby and others have used the results of a small time study and a 
simulation model implemented in Arena to develop the Clinic Planning Model Generator 
(CPMG), a queuing model-based capacity-planning tool which estimates POD performance 
based on user-specified inputs.7  Aaby et al. used the results of the time study to validate their 
simulation model, and then evaluated different clinic designs and operational policies using this 
model. The model allows patients to arrive either individually or in batches (as if people came by 
buses or children came with school classes), and Aaby et al. studied the effect of changing the 
distribution of the inter-arrival times of these buses. CPMG also allows for the creation of 
stations capable of serving an entire batch of patients at the same time, and the researchers 
considered a variety of batch sizes. CPMC was created to quickly provide accurate suggestions 
on appropriate staffing levels and to analyze the performance of the clinic based on those 
suggestions. One powerful aspect of CPMG is its ability to create a customized clinic layout. 
However, like the original BERM, the model assumes stationary arrival rates when it calculates 
the staff required for each station, patient throughput, patient time spent in the system, and the 
effect of changing the number of stations. Thus, while CPMG is helpful in evaluating different 
clinic designs and suggesting layout and operational guidelines, its output is potentially 
unreliable because stationary patient arrival rates are unlikely in a real emergency. 
 
Despite their drawbacks, all of the tools discussed above have proven to be useful in planning 
and operating mock prophylaxis exercises. They have provided POD planners with the means to 
calculate required resources and to determine results of certain staffing level decisions. While all 
these tools help us to gain insight into the POD operations, they do not sufficiently represent the 
incredible degree of uncertainty that would be present in an emergency situation. The model we 
next describe was created to assess the effects of this uncertainty. 
 

III. Methods 
We developed a simulation model of a POD that we used to experiment with a variety of staffing 
policies and patient arrival scenarios. In particular, we considered scenarios of a POD responding 
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to a large-scale airborne anthrax attack. Below we describe the model and its assumptions, the 
simulation parameters used, and, most importantly, the policy-related questions that we explored. 
 

Model Description 
In our POD model, there is a set of stations at which incoming patients are served. Patients of 
various types (single adult, family, limited mobility, etc.) arrive to the POD according to 
nonhomogeneous Poisson processes. They move from station to station according to transition 
probabilities. The number of staff at each station may vary over the course of simulated time 
horizon. At each station, patients wait in a queue until a staff member is free, at which point the 
patient receives service. Once the patient has received service, he immediately joins the queue 
for the next station or departs from the POD; we assume that patient travel time within a POD is 
negligible. The entire POD can hold only a limited number of patients, so if more people arrive 
than can fit in the POD, we assume that they form a queue outside. We assume that no patients 
abandon their queues, either inside or outside of the POD, no matter how long they have waited. 
We further assume that once a patient enters the POD, a patient will receive service. 
 
Patient service times at each station within the POD are distributed according to triangular 
probability distributions specific to the station. Hupert et al. used an exponential distribution for 
modeling service times.4 However, exponential distributions have large tails, which could allow 
extremely large service times, when, in practice, an upper bound on the service time is more 
realistic. In the anthrax dispensing exercise performed by Lee et al., triangular probability 
distributions were observed to represent service times accurately.6 Another assumption of the 
model is that each server processes one patient at a time. Batching of patient arrivals is left for a 
later study. Furthermore, D-PODS does not yet account for a staff learning curve or fatigue. The 
staffing levels include only the core staff (servers at each station), and calculations for support 
staff have not yet been implemented. 
 
We implemented the model described using a highly flexible, user-friendly tool, called the 
Cornell Dynamic POD Simulator (D-PODS). For more information regarding the tool, see 
Appendix B. 
 

Model Parameters 
To illustrate how the simulation model can be used to assess the effectiveness of POD system 
policies, we have chosen parameters to reflect a network that is set up to respond to an airborne 
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anthrax attack. Studies have shown that antibiotic dispensing to prevent symptomatic 
inhalational anthrax is most effective if administered within 3 days of exposure.9-13  Since it will 
take some time for the attack to be detected and a decision made to begin a prophylaxis 
campaign, the CDC goal, as stated in the Cities Readiness Initiative, is for antibiotics to be 
dispensed to the entire affected population within 48 hours of the decision to do so.15  Thus, we 
set the duration of the prophylaxis campaign to 48 hours.  
 
We used a standard POD layout, consisting of 4 stations: Greeting, Triage, Medical Evaluation, 
and Drug Dispensing. The layout diagram and routing probabilities are shown in Figure 1.  

Figure 1. POD patient flow diagram. 

 
For simplicity, we assume that the POD is large enough to accommodate all arriving patients, 
although D-PODS does permit users to limit the POD’s capacity. We assume that the POD 
closes only for two hours each day, during which restocking and cleaning occur. During the 22 
hours when patients are arriving, the POD is expected to serve 11,000 patients, or about 500 
people per hour if on average people arrive at a constant rate throughout the day. To further 
simplify our discussion, we assume that all arriving patients are of the same “type,” which means 
that the service time distributions are the same for all patients. These service times and other 
parameters are summarized in Table 1. 

Duration of Campaign 2 days 
Hours of operation per day 22 Hours 
Probability that a patient at the Greeting station will 0.05  (n/a) 
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require Medical Evaluation 
Probability that a patient at the Triage station will require 
Medical Evaluation 0.05  (n/a) 
Probability that a patient will be sent to a Health Center 
after Medical Evaluation  0.05  (n/a) 
Service time distribution for Greeting/Entry station Triangular(0.25,0.50,1)  minutes 
Service time distribution for Triage station Triangular (1,2,3) minutes 
Service time distribution for Medical Evaluation station Triangular(2.5, 5, 10) minutes 
Service time distribution for Drug Dispensing station Triangular (0.5, 1, 2) minutes 
Number of arrival types 1  type 

Service time increase factor 0%  (n/a) 

Table 1. Simulation parameters. 
 

Experimental Design 
Our experiments were designed to answer four essential questions regarding POD effectiveness 
under highly uncertain conditions:  
 

1. How important is having staffing match a (non-stationary) arrival rate pattern? 
2. What happens to POD performance when staffing level adjustments are made after some 

delay in response to observed arrival patterns?   
3. How are optimal staffing levels affected by the number of PODs in a POD network? 
4. What are the consequences of using a command and control system to monitor and 

control the POD network? 
 
In answering these questions, we simulated a number of different arrival scenarios and staffing 
plans. For the first question, we compared what happens when staffing levels are constant 
throughout the day versus when they change frequently in response to various patient arrival 
patterns. In response to the second question, we considered more complex staffing strategies in 
which we adjust staffing periodically throughout the day in response to observed patient arrivals. 
For the third question, we ran simulations of large and small PODs and calculated the number of 
staff required given the number of operating clinics. The simulation results obtained in response 
to the first three questions also provide sufficient evidence to allow us to answer the fourth 
question. 
 
Note that in each of the figures shown, we display only 10 simulation repetitions. We did this to 
provide clear, easily-readable figures, since our purpose here is to show general principles rather 
than to determine strict numerical results. While larger numbers of replications give D-PODS 
results greater statistical significance, the conclusions remain unaltered. 
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IV. Results and Discussion 
 

1. How important is having staffing match a (non-stationary) arrival 
rate pattern?   
As mentioned earlier, POD planning tools most often are based on the assumption that patient 
arrivals occur at a constant rate during all POD operating hours. However, in the event of an 
actual emergency, patient arrival rates will likely vary throughout the day. If people go to work 
during the emergency, then we might expect to see peaks in patient arrival rates at the beginning 
and end of the work day. We might also see spikes in arrivals due to changes in the availability 
of public transit, public health department publicity encouraging people to arrive at different 
times, or at the beginning of the school day, if children are brought to the PODs via their schools. 
Peaks and valleys in the arrival process may also arise randomly throughout the day. Thus, we 
want to show that POD staffing policies should be designed so that PODs will be able to respond 
to arrival rates that vary throughout a prophylaxis campaign. 
 
To accomplish this objective we will examine what happens when staffing levels remain 
constant throughout each day, versus what happens when staffing is adjusted for actual patient 
arrival patterns. We demonstrate that, if we can predict patient demand correctly, then patients 
will spend far less time in the POD, staff will neither be under- nor over-utilized, and queue 
lengths at all of the POD stations will be far more reasonable than when staffing levels are held 
constant throughout each day. To show this, we considered three potential daily patient arrival 
patterns; Figure 2 shows the expected hourly arrival rates for each pattern. For each arrival 
pattern, we used D-PODS to compare POD operations with constant staffing levels versus 
dynamic staffing levels that were allowed to change every two hours throughout the day. For the 
dynamic staffing plans, we determined staffing levels during each two hour period by calculating 
the number of staff needed to limit average patient waiting times at each station to five minutes 
or less. The constant staffing levels were estimated by calculating the number of staff required to 
limit average patient waiting times at each station to five minutes or less, assuming that the 
hourly patient arrival rate is constant throughout the day. In both cases, the total expected 
number of daily arrivals was 11,000, as mentioned in Table 1. 
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Figure 2: Expected Patient Arrival Scenarios. 
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In Figure 3, we see that the average patient waiting time vastly decreases when the staffing plan 
is adjusted to correspond to the dynamic patient arrival pattern. In all three scenarios, the average 
patient time spent in the POD was only about five minutes for the dynamic staffing plans, while 
the average time for the constant staffing plans ranged from 50 minutes to almost 90 minutes. It 
must also be noted that the dynamic staffing plans required 10% to 14% more staff-hours than 
the constant staffing plan. In general, given a total daily throughput and a limit on the maximum 
patient waiting time at each station, if patients arrive at a constant rate during each day then 
staffing requirements will be lower than those needed when patient arrival patterns vary over 
time. 
 
The averages shown in Figure 3 cannot fully describe the dynamics of POD operations, of 
course. Consider Figures 4 and 5, which show the actual queue lengths that arose in the 
simulation replications for the Greeting and Triage stations, for Scenario A. The top graph in 
each figure shows the results from using the constant staffing plan; notice the different scales 
between the two graphs. The queue at the Greeting station becomes unstable for every peak of 
the arrival process, growing larger than 1200 people for every simulation replication. There are 
only 5 servers at the Greeting station, so one could easily imagine the frustration of arriving 
patients upon seeing such a huge, slow-moving line. In the real world, it is possible that many 
individuals would give up and go home before receiving treatment, which could be disastrous in 
an anthrax attack had occurred.  
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Figure 4: The length of the queue at the Greeting Station for Scenario A for Constant Staffing (top) and 

Dynamic Staffing (bottom). The small blue dots show the queue lengths from the 10 simulation replications for 

every five minute interval; the yellow-green circles show the 95th percentile queue length for each five minute 

interval. 
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Under the dynamic staffing plan, which varies corresponding to patient arrival patterns, the 
Greeting station queue almost always remains smaller than 10 or 20 people, which is clearly a 
much more desirable situation. However, notice in Figure 5 that the queue at the Triage station is 
often smaller under the constant staffing plan than the dynamic staffing plan. This happens 
because the bottleneck at the Greeting station under the constant staffing plan slows the flow of 
patients to a trickle at the Triage station; thus, the Triage staff are never overwhelmed. Under the 
dynamic staffing plan, however, queues and delays are balanced between the stations. One 
possible option for a POD with a bottleneck such as the one that occurs here under the constant 
staffing plan would be to move staff from the Triage station to help out at the Greeting station. 
Of course, if there are simply not enough staff in the entire POD, moving staff will have the 
effect of shifting the bottleneck from Greeting to Triage. Only when the system has excess 
capacity can dynamic shifting of staff have a long-term positive impact on patient waiting times.  
 
The results from Scenarios B and C are similar; using a dynamic staffing plan prevents large 
queues at the Greeting station, and a bottleneck occurs at the Greeting station under the constant 
staffing plan, which limits the queue length at the Triage station. However, the Greeting station 
queue lengths under the constant staffing scenario are shorter in Scenario B than in Scenario A, 
and they are shorter still in Scenario C. This is not surprising since the patient arrival rates in 
Scenarios B and C are less variable over time than the rates in Scenario A. In short, when patient 
arrival rates are closer to being constant, using a constant staffing plan does not increase waiting 
times as significantly. 
 
These results show that staffing PODs based on actual time-varying patient arrival patterns is 
extremely important. However, staffing in this manner requires that planners estimate expected 
patient arrival patterns exactly, and such perfect prediction is highly unlikely. It is similarly 
unlikely that staff will be able to arrive or leave the POD instantaneously when patient arrival 
rates change. Thus, in the next section we consider what happens when staffing changes are 
made periodically throughout the day when there are delays in staffing adjustments and 
predictions of patient arrivals are inaccurate. 
 

2. What happens to POD performance when staffing level adjustments 
are made after some delay in response to observed arrival patterns? 

We now consider staffing policies in which a number of staff are on-call, but they are brought in 
or sent home throughout the day, according to patient demands. Staffing levels, then, are 
determined by forecasted demand levels calculated dynamically throughout the day. We will 
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suppose that staffing levels may change as often as every two hours. We will consider the several 
staffing plans.  
 
In Plan 1, we suppose that we are able to perfectly forecast expected patient arrival rates 
throughout each day and we can change staffing levels at each station every two hours. Then, as 
in the dynamic staffing plan from the previous question, we use a queuing formula from 
Buzacott16 to conservatively estimate workforce requirements at each station to ensure that the 
average patient waiting time at each station will not likely exceed five minutes. In Plan 2, we 
suppose that one half hour before each staffing change, we could observe the true average patient 
arrival rate to the POD at that time. We assume that patients will, on average, continue to arrive 
at this rate for the next worker interval. We use the same queuing formula mentioned above to 
determine the staffing levels that would be required to limit the average patient waiting time to 
five minutes at each station. Plan 3 is similar to Plan 2, except that arrival rates must be observed 
and staffing decisions made 60 minutes before each worker interval. This means that we assume 
that, during the worker interval, patients will arrive at the average rate that is seen one hour 
before the worker interval begins. In Plan 4, we suppose that the planner is able to correctly 
forecast the total number of arrivals for the next two hours, and she sets staffing levels to limit 
expected patient waiting times to five minutes at each station, assuming that the expected patient 
arrival rate is constant for the next two hours. For a more detailed explanation on how these 
staffing plans are constructed, see Appendix A. 
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Figure 6. Expected Arrival Rate Patterns that are increasing (I) or decreasing (D). 

 
For simple patient arrival patterns like those shown in Figure 6, it is easy to predict the results of 
using a staffing policy in which the future patient arrivals are forecasted solely based on the 
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current patient arrival rate, like Plans 2 and 3. Let us assume that staffing levels are set correctly 
for the first hour of the day. If patients arrive according to pattern (I), then the planned staffing 
levels will always be too low. The longer it takes to adjust staffing levels, the longer the queues 
and patient waiting times will become at the POD. If patients arrive according to pattern (D), 
then the planned staffing levels will always be too high, and the longer it takes to adjust staffing 
levels, the more under-utilized the staff will become. This consequence may sound insignificant 
compared to huge queues and excessive patient waiting times, but if you only have a limited 
number of total available staff-hours, this type of policy could mean that the POD will be under-
taffed when demand is high. 

ethod like those in Plans 2 and 3, 
ecreases waiting times on average by almost 30 percent. 

 

Figure 7. Average Patient Time In POD for Arrival Scenario A. 
 

s
 
We now consider patient arrival Scenario A described in the previous section. In Figure 7 we see 
the average patient waiting times for each of the plans. As we might have expected, Plan 3 gives 
the longest patient waiting times, but notice that these are still significantly better than the wait 
times observed for the constant staffing plan discussed in the previous section (see Figure 3). 
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Figure 7 may seem to imply that Plans 1 and 4 are almost equally good. This would be excellent 
news, since the staffing levels used in Plan 4 are far less closely tuned to patient arrivals than the 
staffing levels used in Plan 1. However, Figures 8 and 9 show the dynamics of these two 
simulations, and we see that the queues at both the Greeting and Triage grow to significant 
lengths under Staffing Plan 4. At the Greeting Station, the queue grew longer than 100 people in 
many of the replications under Plan 4, but under Plan 1 the queue seldom crept above 30. At the 
Triage Station we see that the queue became very unstable and grew longer than 200 in one or 
two replications under Plan 4, but generally remained stable under Plan 1. 
 
We show these results only for patient arrival Scenario A, which is the most “extreme” of the 
three patient arrival patterns considered. As might be expected, the performance of Plans 2, 3, 
and 4 is better under the more “moderate” patient arrival patterns, Scenarios B and C. In fact, 
notice that all four plans would be identical if patient arrival rates were constant. If patient arrival 
rates changed exactly when staffing shifts changed and stayed constant during each worker 
interval, then Plans 1 and 4 would provide identical staffing levels. In general, Plans 1 and 4 will 
be similar, but Plan 1 will provide slightly better POD performance and Plan 4 will provide 
slightly higher staff utilization and lower total staff-hours. This occurs because Plan 1 always 
staffs for the maximum expected patient arrival rate during each worker interval while Plan 4 
staffs for the average expected patient arrival rate during each worker interval. 
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Figure 8: Queue Lengths at the Greeting Station for Plans 1 and 4 With Patient Arrival Scenario A. 
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Figure 9: Queue Lengths at the Triage Station for Plans 1 and 4 With Patient Arrival Scenario A. 

Patients Waiting in Queue at Triage Station (Plan 4)

0.00

50.00

100.00

150.00

200.00

250.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

Time (Hours)

Pa
tie

nt
s

Patients Waiting in Queue at Triage Station (Plan 1)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

Time (Hours)

Pa
tie

nt
s

 
It is also important to consider staffing plans that assume that patient arrival rates will remain 
approximately constant over short time intervals. Plans 2 and 3 are both of this type, and in 
Figure 7 they appear to be acceptable, since 20 or 35 minutes is not an unreasonable amount of 
time to require patients to wait for service. The more detailed picture seen in Figure 10 is 
significantly bleaker. In Figure 10 we see the queue lengths at three of the POD stations using 
Plan 3 for the scenario with the lowest variation, namely Scenario C. We do not show results for 
Scenario B, since they are simply intermediate compared to the results from Scenarios A and C, 
so to limit repetition we omit the plots from the Scenario B simulations here. 
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Figure 10: Queue Lengths at the POD Stations Under Patient Arrival Scenario C and Staffing Plan 3. 
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There are two very interesting features of the plots in Figure 10. First, notice that the queues 
grow to be quite large at all three stations. So, despite using only 50 fewer staff hours than 
staffing Plan 1, queues build up at not just one, but at all three of the stations that most patients 
must visit. The significant one hour delay in adjusting for staffing, and the assumption that 
patient arrivals will not change over the next hours, result in staffing levels that do not 
adequately accommodate the actual patient arrivals. Thus, we observe fast-growing queues, 
followed by quick drops in queue length after the staffing levels have finally been adjusted. At 
some points the stations appear to be stable; for instance, the first peak in the daily arrival pattern 
did not negatively affect the Drug Dispensing station thanks to the bottleneck that occurred at the 
Greeting Station. However, we can clearly see that, if a staffing plan similar to Plan 3 were 
implemented at a POD with a highly variable patient arrival pattern, queues would inevitably 
become unstable throughout the POD. Implementing staffing Plan 2 similarly results in large 
queues throughout the POD, although they are less severe than the queues shown in Figure 10 
for Plan 3. 
 
Note also the extremely large variance in the simulation replications. Because of uncertainty in 
the timing of patient arrivals and the length of service times, the queue lengths vary by hundreds 
of people at the Triage and Greeting stations. The consequence of this uncertainty is that even 
more staff must be employed than we might have predicted in order to keep patient waiting times 
low with a high degree of certainty. Alternatively, if the number of staff cannot be increased, 
then queue lengths may grow extremely large. 
 
Thus, it is clear that the quality of planning forecasts used in setting a staffing plan could have a 
tremendous impact on patient waiting times and queue lengths. Of course, staffing policy is not 
solely affected by one’s ability to predict arrival patterns or bring staff in quickly; the overall 
design of the POD network affects the number of staff that will be necessary to run it. We 
explore this issue in the next section. 
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3. How are optimal staffing levels affected by the number of PODs in a 
POD network? 
We investigated the staffing consequences of having many small PODs, as opposed to fewer 
large PODs. Opening a large number of small-scale PODs may seem desirable; this might allow 
PODs to be placed in locations that are more easily accessible to patients Also, the organization 
of each individual POD might be simpler. However, we will show that, if staff-hours are limited, 
then opening many small-scale PODs could have very negative consequences for patient waiting 
times and queue lengths. 
 
We will consider a simple example. Suppose that there are 10 small PODs, to which an average 
of 500 patients arrive each hour. We will compare this network to one large POD which sees an 
average arrival rate of 5,000 patients per hour. Both systems will experience the same total 
expected daily patient demand. For each system, we calculated the staffing levels necessary to 
limit average patient waiting times to five minutes at each station within the PODs.  
 
We find that each of the small PODs uses 984 staff-hours to provide an average patient waiting 
time of 6.72 minutes; this gives a total of 9,840 staff-hours to operate the POD network. The 
large POD, on the other hand, requires only 8,664 staff-hours to provide an average patient 
waiting time of 6.28 minutes. Thus, we see that almost 15 percent more staff-hours are required 
to operate a system of small PODs, which provides slightly worse service to patients. These 
staff-hour calculations do not even account for the additional overhead that would likely be 
required to operate a POD network that is more widely-distributed over many locations. 
 
There are, of course, many factors that affect capacity decisions for PODs, but it is a fact that 
increasing the number of PODs also increases the number of staff-hours required to provide a 
desired level of service to the same number of patients. Clearly, then, if the number of staff-
hours is limited, having a single, huge POD would provide the best service for patients. In large 
emergencies, such an arrangement would likely be infeasible. However, such a network could be 
approximated by employing an effective command and control system. If this system were well-
run and infrastructure put in place that could move staff or patients between PODs, the command 
and control system would create a virtual single, large POD, where staffing levels and demands 
for service across the entire network could be monitored continuously and adjustments made as 
required. As we have demonstrated, the number of staff required to meet patient needs in a 
timely manner will be reduced substantially if such a virtual system can be created. 
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4. What are the consequences of using a command and control 
system to monitor and control the POD network? 
In the previous section we emphasized the benefits of having a command and control system in 
place to manage a network of PODs effectively and efficiently. Such a system would allow 
managers to dynamically assess staffing levels at all PODs and respond to observed patient 
demand by transporting staff or patients throughout the network. That is, if patient demand is 
especially high at one POD, more staff could be moved from a less-busy POD to help, or patients 
could be bused to other PODs with lower waiting times. Of course, if we can predict patient 
arrival rates with great accuracy and staff accordingly, then the value of such measures would be 
reduced. However, there is so much uncertainty regarding where and when spikes in patient 
demand will arise that a command and control system should be considered essential to the 
successful execution of a mass prophylaxis campaign.  
 
We have described experimental results that show that patient waiting times and queue lengths 
are minimized in an environment in which POD staffing levels are appropriately calculated to 
match average patient arrival rates. These results strongly suggest that a responsive and robust 
POD system can exist only if mechanisms are in place that can allocate resources or patients 
throughout a campaign. If such a command and control environment is not created, one of two 
outcomes will occur. Either significantly larger staffs will have to be employed or patients will 
have to wait for very long times to be served. Neither of these two outcomes is desirable. We 
also note that these observations are not limited to the setting of staff levels. Greater amounts of 
other resources such as medical supplies, equipment, and space will all be needed if scarce 
resources are allocated ineffectively. Thus, creating a command and control system that balances 
loads throughout the POD network by moving patients or personnel among PODs is essential for 
managing system operations effectively.  
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V. Conclusions 
We have introduced a new POD simulation tool called D-PODS and used it to demonstrate that 
non-stationary and uncertain patient arrival patterns have a significant impact on POD staffing; 
that flexible staffing policies can greatly improve patient waiting times and queue lengths; that 
POD networks require fewer staff-hours when fewer large PODs are used, rather than many 
small PODs; and that a command and control system is essential for managing a POD network 
effectively. The best way to limit patient waiting times while using the fewest possible staff 
would be use a single huge POD and accurately predict average patient arrival rates over time. 
However, neither of these would likely be possible in a real emergency. Therefore, a command 
and control system should be used to approximate these aims, which it does by continuously 
monitoring all patient demand and staffing levels throughout the POD network and calculating 
when and where patients or staff should be moved within single PODs or between PODs within 
the network. Finally, it should be noted one last time that, while we have primarily discussed 
how D-PODS can be used to explore POD staffing policy, the observations we make can also be 
applied to the allocation of other resources, such as medical supplies and equipment. 
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Appendix A. User’s Manual 

1. Introduction 
The Dynamic Point of Dispensing Simulator (D-PODS) is a tool designed to help local public 
health officials evaluate the impact of policy on the operations of a single Point of Dispensing 
(POD) during a mass prophylaxis campaign. D-PODS is a Monte-Carlo simulation model that 
accepts user inputs describing a POD’s layout, patient arrival patterns, and staffing plan, and 
then outputs a probabilistic assessment of system performance over time. The goal of this user 
manual is to explain the features and limitations of D-PODS as well as to offer advice on using 
D-PODS to successfully model POD systems. 
 
D-PODS is implemented in Visual Basic and its user interface is an Excel workbook. A large 
number of user inputs are required to run the simulation. These are entered by the user in a 
sequence of four worksheets. Once the simulation is run, a number of output statistics and plots 
are automatically generated by D-PODS. This guide will explain how to get started with D-
PODS and then how to enter information on the user input sheets. The guide will further identify 
potential pitfalls and assumptions implicit in the model that may cause surprising results. Finally, 
the guide will discuss how the simulation outputs can be analyzed and interpreted, and how D-
PODS can be used to explore policy decisions. 
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2. Glossary of Important Terms 
1. Arrival Rate – the hourly rate at which patients arrive to the POD (this can vary 

throughout each day). 
2. Arrival Types – different groups of patients who may require different service times 

based on their special needs. These might include a single person, a family, an elderly 
person, a non-English speaker, etc.  

3. Maximum Average Waiting Time – the maximum patient waiting time in minutes, 
assuming that patients arrive at the expected rate. This is an input that is used by the D-
PODS staffing calculator to estimate reasonable staffing levels.  

4. Queue Length – the total number of people waiting to be served at a given location. 
5. Routing Probability – the probability that a patient will be routed from one station to the 

next station in the layout of the model. The routing probabilities are sometimes called 
“transition rates.”  

6. Service Time Distribution – the probability distribution that governs the length of time 
that will be required to serve a single patient at a work station. These distributions are 
assumed to be triangular and hence are defined by minimum, most likely (mode), and 
maximum values.  

7. Service Time Increase Factor – the percent increase in service time required by different 
arrival type groups. The service times for different arrival types are calculated by drawing 
a random service time from the appropriate service time distribution and then multiplying 
this number by one plus the service time increase factor. For example, if the service time 
increase factor is 100%, the service time doubles for that arrival type. The factor is the 
same for all service stations presently. 

8. Simulation Replication – one repetition of the simulated prophylaxis campaign.  
9. Staff Utilization – the average percentage of staff serving customers. This value is 

weighted by time. 
10. Time Period – the duration of time over which the expected patient arrival rate to the 

POD is constant, also referred to as an “arrival interval.” 
11. Worker Interval – the duration of time for which the number of staff is constant at all 

stations. 
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3. Working with D-PODS 
To use D-PODS to model a particular POD, a larger number of user inputs will be required. 
These data are entered in a series of worksheets. At the beginning of each section below we 
provide a checklist that identifies what you will need to complete the relevant steps of the model. 

3.1 Getting Started 
You will need: 

1. Excel 2003 or later 
2. The files “PoD_DB.mdb” and “PoD_v27.xls” 

 
Make sure that you have both the files “PoD_DB.mdb” and “PoD_v27.xls” stored in the same 
directory folder; otherwise D-PODS will not run. No other files should be placed in the D-PODS 
folder because they may cause errors to arise while running the program. If you ever try to run 
the simulation and get an error that stops the simulation from completing, then go to the 
directory where these folders are stored and delete all files except these two. 
 
To get started, open the Excel file “PoD_v27.xls”. A “Security Warning” message box may 
prompt you to set appropriate security settings; if this happens, select the button to “Enable 
Macros”. Once the file is open, ensure that the following References are selected: 

1. Visual Basic For Applications 
2. Microsoft Excel 11.0 Object Library 
3. Microsoft DAO 3.6 Object Library 
4. Microsoft Forms 2.0 Object Library 
5. OLE Automation 
6. Microsoft Office 11.0 Object Library 
7. Microsoft ActiveX Data Objects 2.8 Library 
8. Microsoft OLE DB Error Library 

To do this, go to Tools  Macros  Visual Basic Editor. From the Visual Basic Editor window, 
go to Tools  References. Look up the above references and mark the corresponding 
checkboxes. Then click “Okay” and return to the Excel – POD_v27 window. 
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3.2 Starting the Model 
The file opens to a cover page. Click the “Begin Model” button in the lower right-hand side of 
the screen, and then the “Case Selection” page will appear, as shown in Figure 1. The purpose of 
this page is to allow you to load the inputs from a previous case or to create a new case.  

Figure 1: Case Selection Screen Shot 

 

If you select the “Create New” radio button, a message box will pop up to ask if you would like 
to continue. If you answer “Yes”, you are taken to the “D-PODS Menu” page. If you answer 
“No”, then the program simply remains on the “Case Selection” page and awaits your next 
decision.  
 
If you select the “Existing Case” radio button, a user form will pop up, showing a list of all cases 
currently in the database.  
 
 
 
 
 
 
 
 
 

Figure 2: Load Case Data Screen Shot 

After selecting the case of interest, you can choose to “Analyze Output Data” or “Edit/Review 
Input Data”. You can also click “Cancel”, which returns the screen to the “Case Selection” page. 
Once you have chosen your case, you can click on either button. Both buttons will load the 
inputs and simulation outputs of the case that you chose. The only difference is that clicking 
“Edit/Review Input Data” will bring you to the “D-PODS Menu” page, while clicking “Analyze 
Output Data” button will bring you directly to the “Output Tables” page. 
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3.3 D-PODS Menu 
You will need: 

1. To fill out the information in steps 5 and 6. This will be discussed in greater detail in 
section 3.8. 

 
The “Main Menu” shows all of the different choices you have when you are working with D-
PODS and suggests the best order in which to perform each task. To complete steps 1 through 4, 
you must click on their respective buttons and fill in the information on the worksheet that 
appears. Steps 5 through 7 are concerned with the details of saving inputs and running the 
simulation. Step 8 takes you to various sheets that display the simulation output. 

Figure 3: D-PODS Menu Screen Shot 
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The buttons at the bottom of the menu allow you to work with the database file or to restart the 
program. If you click the “Existing Case” button, you will be prompted with the same user form 
as on the “Case Selection” page. You can then select a different case to study.  
 
If you click the “Manage Cases” button, you will be prompted by a user form very similar to the 
one shown when “Existing Case” is clicked. The difference is that this button allows you to 
delete cases. This allows you to manage the size of the database and to clean out old data that are 
no longer of interest. 
 

Figure 4: ManageCases Screen Shot 
 

Before a case is deleted from the database, a warning box will appear to ask whether you are sure 
that you want to delete the case. If you select “Yes”, the case is deleted. If you select “No”, 
nothing happens and you will be returned to the “D-PODS Menu” page. 
 
The “Start Over” button will bring you back to the cover page and will allow you to start the 
program from scratch.  
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3.4. Step 1: Constructing the Model 
You will need to know: 

1. How many days you would like to simulate 
2. How many hours the POD will operate each day (not including overtime) 
3. How many workstations will be in the POD and the names of these stations 
4. The station transition probabilities. That is, given the current location of a patient, the 

probability that he will next move to each other station 
5. The total capacity of the POD 

 
When you click the “Model” button on the D-PODS menu, the “Construct the Model” worksheet 
will appear, which is illustrated in Figure 5. 

Figure 5: Step 1 Screen Shot 

 
To complete this input step, complete Steps A, B, and C in order. In Step A, you first specify the 
duration of the simulation in days. You may want to begin by considering only one or two days, 
rather than the entire duration of the planned prophylaxis campaign, because the simulation run 
time is proportional to the number days simulated; doubling the number of days approximately 
doubles the simulation run time. Also, it is important to note that D-PODS assumes that all days 
are identical. That is, the POD is required to have the same operating plan and patient arrival 
pattern for each day. Beyond random variation, the only reason why two days might have 
significantly different performances is if patient arrivals from one day cannot be served by the 
end of the day and must be helped during the following work day. We discuss this further below. 
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The “hours of operation per day” is the period of time during which patients are allowed to arrive 
and enter the POD. In Figure 5, this value is set to 22. That means that any patients who arrive to 
the POD between the 22nd and 24th hour of the day will be turned away without service. 
However, any patients who have already entered the POD will be served as long as staff is 
available, even if this means that the POD remains open for longer than 22 hours. It is possible 
that not all of these patients will be served by the time patients begin arriving again for the next 
day; in this case, the newly arrived patients simply queue behind the waiting patients. On the last 
day of the simulation, however, the simulation will stop at the correct time, even if some patients 
have not been served.  
 
In Step B you describe the layout of the POD by declaring how many workstations will be in use 
and their names. D-PODS assumes that each station has one queue where patients wait for 
service. There can be 0 or more staff working at each station, and the person at the front of the 
queue will be served by the next available staff person at that station. When the patient has 
finished receiving service, he immediately enters service at the next station or the queue for that 
station, if no server is currently available. Travel time between stations is assumed to be 
insignificant. 
 
To complete Step B, first enter a whole number for the “number of stations” and then  click the 
“Station Names” button. This generates the “Station Names Table.” Be careful, however, 
because clicking this button also clears current entries from the table, and the “Undo” function in 
Excel will not let you get the information back. If you want to save the information, copy it to 
another location before clicking the button. You can type the names of each station. It is 
important to enter the station names in the correct order, because it is not possible for patients to 
travel from higher-numbered stations to lower-numbered stations. So, if you name the first 
station “Greeting” and the second station “Triage,” then it will be possible (but not required) for 
patients to move from Greeting to Triage, but it is not possible to go from Triage to Greeting. 
Note that this makes it impossible for patients to visit any station in the POD more than once. So, 
the first station listed in the “Station Names Table” should correspond to the immediate station 
that patients encounter upon entering the PoD. The last station in the POD is a “dummy” station 
called Exit, which indicates where patients leave the POD after receiving treatment.  
 
After completing the “Station Names Table”, you can click on the “Transition Rates” button; this 
will generate the “Transition Rates Table”, which allows you to input patient routing 
probabilities through the POD. So, for example, the entry in row 3, column 4 of the table gives 
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the probability that a patient at station 3 will move to station 4 after she has finished receiving 
service at station 3. Since all patients must move to a new station after service, the probabilities 
in each row must sum to one. If the values to not add up to one, a warning box will appear when 
you try to move to a new worksheet. Notice that some cells in the “Transition Rates Table” are 
grayed out; this enforces the condition described above, making it impossible to move from a 
higher-numbered station to a lower-numbered one. It also makes it impossible for a patient to 
remain at the same station.  
 
In Step C, you can enter the POD capacity, which sets the maximum number of patients allowed 
in the POD at any point in time. The capacity may depend on the size of the building or it may be 
set low to limit the risk of transmitting disease. When the number of patients in the building 
exceeds the POD capacity, patients form a line outside of the POD and wait until another patient 
leaves the building before entering the queue for the first patient inside the POD. Since these 
patients may be turned away without being counted at the end of the day and they are not 
included in statistics describing the average time in the POD, some of the output statistics may 
be misrepresentative if the queue outside the POD grows large. In the experiments described in 
the main paper, the POD capacity was set to be almost five times larger than the expected 
number of daily patient arrivals, so that all patients who arrived to the POD immediately entered 
the queue for the first station. 
 
Once Steps A – C are complete, you can proceed to “Step 2: Input Arrival Information.” There 
are two ways to do this. One option is to return to the “D-PODS Menu” page by clicking the 
“Return” button in Step D and then clicking the “Arrivals” button on the menu page. The other 
option is to simply click the “Generate Arrivals” button on the left side of the screen. The font on 
the button of the “Construct the Model” step is grayed out to help you remember where you 
currently are in the process.  

 

3.5. Step 2: Input Arrival Rate Information 
Step 2 allows you to enter information describing patient arrivals throughout each day. Figure 6 
shows the “Input Arrival Rate Information” worksheet.  
 
In Step A, you first state how many patient arrival intervals you want to use to describe the daily 
patient arrival pattern. You will be able to set a new expected patient arrival rate for each arrival 
interval, but during each interval the expected patient arrival rate remains constant. The number 
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of arrival rate intervals per day, can be anywhere between 1 and 96. Choosing 96 as the value 
means that each arrival interval will be 15 minutes long, because there are 24 hours in each day.  

 
Figure 6: Step 2 Screen Shot 

 
In Step B, you can input the start time, which is the time the POD opens each day. If you want to 
simulate a POD scenario in which patients begin arriving before the POD opens, you can set the 
staffing levels at the beginning of the day to 0 at each station in Step 4: Establish Staffing Levels. 
If you want to simulate a POD that opens before patients begin coming, enter “0” for the patient 
arrival rates at the beginning of the day in Step E.  
 
Step C allows you to enter the number of patient arrival types. Your basic arrival type may be 
single, mobile, English-speaking adults, but other useful arrival types may include disabled 
individuals, school children, non-English speakers, or any other groups of special interest who 
require service times different from the average. In Step 3, it will be possible to define different 
service rates for the different patient arrival types.  
 
Step D requires that you click the “Chart” button to generate the patient arrival rates table. Then, 
in Step E you can define the arrival intervals and the patient arrival rates during each time 
interval. The first light blue column requires the duration of each arrival interval in hours; these 
durations do not all need to be the same, but each one must be rounded to the nearest 0.25 hour 
and the values must sum to 24 hours. The next two columns show the start and end time of the 
interval. The subsequent columns allow you to enter the expected patient arrival rates during 
each interval. Any blank spots in the chart will be treated as 0’s. Patients arrive to the POD 
according to a nonhomogeneous Poisson process, which means that the interarrival times 
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between subsequent patients are distributed according to a Poisson distribution. The mean of the 
Poisson process at each point in time is calculated based on the expected values that you enter in 
this chart.  
 
Note that the arrival rates can only be entered for a single day, because we assume that the 
arrival pattern on the subsequent days is identical. As mentioned earlier, if the expected arrival 
pattern varies by day, then a simulation must be run for each individual day.  
 
After you have completed the table, you may proceed to Step 3: Service Time Parameters. To do 
this, either click “Return” to go back to the “D-PODS Menu” page and then click the “Service” 
button, or simply use the “Set Service Parameters” button on the left side panel.  

 

3.6. Step 3: Service Time Parameters 
Step 3 allows you to input parameters that govern how long it takes to serve each patient type at 
each station. Figure 7 below shows a screen shot of the Step 3 worksheet. 

Figure 7: Step 3 Screen Shot 

 

The service time at a given station for some patient is a random number drawn from that 
station’s service time distribution, which is assumed to be triangular. D-PODS further assumes 
that each patient is processed individually and that the service times for each station and arrival 
type remain constant throughout the simulation; there is no accounting for increases or decreases 
in speed due to worker fatigue or learning curve.  
 
In Step A, you must click the “Chart” button to generate the two charts on the right side of the 
screen. The structure of this chart is based on the stations you defined in Step 1 and on the 
number of arrival types you entered in Step 2. Default charts may be displayed before you click 
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this button, but it is important that you click the “Chart” button to ensure that the tables display 
the correct numbers of arrival types and stations. 
 
Step B requires that you fill in the Service Time Increase Factor table. Choose one of your arrival 
types to be the base arrival type; enter “0” or “0%” for this arrival type’s service time increase 
factor. The service time increase factors for the other arrival types describe how the processing 
time of the other arrival types compare to your base arrival type. For example, if Arrival Type 1 
is your base arrival type, with a service time increase factor of 0 and the service time increase 
factor for Arrival Type 2 is 20%, then the service times for Type 2 patients will be 20% longer 
than the service times for Type 1 patients, on average. If Type 2 patients have the same service 
time distributions as Type 1 patients, then you should set the Type 2 service time increase factor 
to 0%. If Type 2 patients are processed 20% faster than Type 1 patients, then for the Type 2 
service time increase factor you should enter “-20%”. All numbers in this table must be between 
-100 and 100. Note, however, that D-PODS does not currently allow you to define an arrival 
type that is served faster than Type 1 at some stations and slower than Type 1 at other stations; 
the service time increase factor is applied to all of the stations. 
 
To complete Step C, you must fill out the far right table. Enter the parameters that describe the 
triangular service time distributions at each station for Arrival Type 1. The minimum and 
maximum times are strict limits on the service times, and the most likely time is the peak of the 
triangular distribution, which means it is the mode of the service times. Note that the minimum 
time must be less than or equal to the most likely time, and the most likely time must be less than 
or equal to the maximum time. If all three values are the same, then the service time will be 
constant at that station. 
 
After completing both tables, you may proceed to Step 3: Service Time Parameters. To do this, 
either click “Return” to go back to the “D-PODS Menu” page and then click the “Staffing” 
button, or simply use the “Establish Staffing Levels” button on the left side panel.  
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3.7. Step 4: Staffing Requirements 
The fourth input step is setting the staffing plan at each station throughout each day. Figure 8 
shows a screenshot of the Staffing Requirements sheet.  

Figure 8: Step 4 Screen Shot 

 

Step A allows you to set the maximum number of times during the day that you want to change 
the number of staff at each station. If you plan to keep the same number of staff at each station 
all day long, you may enter a 1 here. The period of time during which staffing levels at each 
station are constant is called a “worker interval.” D-PODS does not allow worker intervals 
shorter than two hours, so the maximum number of worker intervals each day is 12. That is, you 
may not change the number of staff at each station more than 12 times each day. 
 
The second line shows you the start time for  the POD operations, which you entered in Step 2: 
Arrival Rate Information.  
 
Step B involves clicking the “Chart” button to generate a new chart at the bottom of the page. 
However, note that clicking this button will clear the information currently in the table, and this 
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cannot be undone. Be sure to save any important information about your previous work before 
clicking “Chart.” If the number of worker intervals you entered in Step A is the same as the 
number of intervals currently shown in the chart, you do not need to click the “Chart” button. 
 
Step C requires that you enter the duration of each worker interval in the “Hours per Interval” 
column of the table. This column must total 24 hours and each interval must be at least two hours 
long, but the intervals do not have to be of equal lengths. If the intervals do not sum to 24 hours, 
then a message will appear at the bottom of the table. Notice that the next two columns of the 
table display the start and end times of each interval. 
 
To complete Step D you must click the “Arrival” button to display the maximum expected 
hourly patient arrival rate during each interval in the “Maximum Arrival” column. This 
information is taken directly from the patient arrivals table in Step 2: Input Arrival Information. 
Even if you do not plan to use this information in developing your staffing plan, you must click 
the “Arrival” button, or a warning will appear that prevents you from proceeding to the next step. 
 
In Step E, you must fill in the “Max Avg Waiting Time” column of the table. The numbers in 
these columns indicate the maximum expected waiting time for each station that you would like 
to have during each segment of the day. It is not possible to set different maximum expected 
waiting times for different stations. Once you have entered these values, which must be positive 
real numbers, you must click the “Advice” button in Step F. The D-PODS staffing calculator 
then uses a calculation from Buzacott1 to estimate the number of staff required at each station to 
limit the maximum average patient waiting times. These estimates are shown in “Advice” 
columns of the table. Note that D-PODS requires that you complete Steps E and F, even if you 
do not plan to use this information in your staffing plan. 
 
Step G requires you to fill in the “Input” columns of the table with the number of staff at each 
station during each worker interval. One way that you may choose to do this is by using the “Use 
Advice?” button, which copies the values from the “Advice” columns into the “Input” columns. 
If you click the “Use Advice?” button, a warning will pop up to ask if you are sure that you want 
to use the advice. If you click “Yes” to indicate that you really do want to use the advice from 
the D-PODS staffing calculator, any numbers currently in the “Input” columns will be replaced 
by the advice numbers, and it is not possible to undo this choice.  
 
Once all of the “Input” columns are complete, you should return to the “D-PODS Menu” page by 
clicking “Return” or by clicking the “Menu” page on the left side panel. It is also possible to 
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immediately begin running the simulation by clicking the “Run” button on the left side panel, but 
if you do this you will not have a chance to save your inputs or modify the simulation 
parameters. 
  

3.8. Step 5: Simulation Parameters 
To complete Step 5, you must input the simulation parameters on the “D-PODS Menu” page. 
The number of simulation replications is the number of complete prophylaxis campaigns you 
would like to simulate. If, for example, you set your campaign to be 3 days long and you declare 
that you want to run 100 replications, D-PODS will simulate the 3 day campaign 100 times. Note 
that doubling the number of simulation replications will double the total run time. If you are not 
sure how fast D-PODS will run on your computer, start off with only a few simulations so you 
don’t crash Excel. If your computer is fairly new and fast, you should have no trouble doing 10 
to 20 or more runs of D-PODS at one time. The number of simulation replications should be a 
positive integer; if you enter a non-integer number, it will automatically be rounded. 
 
The “Random Seed” also must be entered in Step 5. This number should be a positive integer. It 
is used in the Visual Basic random number generator to determine the random numbers used in 
the simulation. If you use the same random seed with exactly the same set of inputs, you will get 
the same output. However, if you use the same set of inputs but change the random seed, the 
simulation output will be different (although the average values will likely be quite similar). If 
you want to compare different inputs and keep the comparison as “fair” as possible, then it is a 
good idea to use the same random seed for both simulations. This helps eliminate random error 
as a confounding factor in your comparison results. 
 
Step 5 can be completed at any point during the input process, but it is not optional. The 
simulation will not run if either light blue box is empty. 
 

3.9. Step 6: Input Case Name 
In Step 6 you have an opportunity to save the inputs that you have entered and the simulation 
output that will be generated when you run the simulation. In the light blue box that initially 
reads “[ Enter Name ]” click and type the name you would like to use. If you do this, you will be 
able to reopen this case using the Select Existing Case dialog. If you forget to enter a case name 
before running the simulation and you want to save your work, you have two options. One is to 
return to the D-PODS menu, enter a case name in the Step 6 box, and then re-run your 
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simulation. Another option is to save the entire Excel workbook under a new name, but if you do 
this you may not be able to save all of the simulation output. 
 

3.10. Step 7: Run the Simulation 
To execute the simulation, you must click the “Run” button in Step 7. The simulation run time 
depends primarily on the number of simulations runs you have chosen; the number of days in 
your prophylaxis campaign, and the number of patient arrivals. Large simulations may easily 
take up to 5 or 10 minutes to complete. If more than 10 minutes go by, or if you think that the 
run time is too long, you can stop the simulation by hitting the “Esc” key. Then click “End” in 
the error dialog box that pops up. If you do this, you must go to the directory where you have 
saved D-PODS and delete any new files that have been generated; there will likely be one called 
“Simulation_Output.txt”. If you do not delete this file, D-PODS will not run in the future. You 
may then modify your simulation by decreasing one or more of the parameters discussed above 
to speed up the running time. 
 
You will know that the simulation is complete when the mouse pointer changes from an 
hourglass back into an arrow.  
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3.11. Step 8: View the Results 
D-PODS produces a variety of output tables and graphs that you can use to analyze POD 
performance. From the D-PODS menu, click on either the “Output Tables” button or “Output 
Graphs” button to begin viewing the results of your simulation. You can easily move between 
the two using the buttons on the left side panel or by returning to the D-PODS menu at any time.  
 
Clicking the “Output Tables” button will bring you to the “Output Tables” worksheet, as shown 
below in Figure 9.  
 

Figure 9: Output Tables Initial Screen Shot 

 
The tables at the top of the sheet show summary statistics that describe the entire prophylaxis 
campaign. The number of patient arrivals is shown, as is the total patient throughput. Patient 
throughput is the number of patients who were processed during the campaign. If all patients 
who arrived were processed before the end of the campaign, these two numbers will be the same. 
The means and standard deviations are taken across all of the simulation replications.  
 
“Average Throughput” is calculated for each simulation replication by dividing the total 
throughput by the operating hours. The mean and standard deviation of these numbers are then 
reported. “Average Time in POD” is calculated for each simulation replication by taking the 
mean of the patient times in the POD. The numbers reported are calculated from these averages. 
“Average Number in POD” is the average number of patients in the POD at a given point in 
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time. The values reported in the output table are the sample mean and standard deviation of these 
numbers. 
 
“Average Time in System” and “Average Number in System” are similar to the previous two 
statistics, except that they include the patients waiting outside the POD, so these means will 
always be at least as large as the “… in POD” statistics. If there are never patients waiting 
outside the POD, these values will be equal to “Average Time in POD” and “Average Number in 
POD,” respectively.  
 
The statistics are further broken down by workstation and by worker intervals. You can use the 
drop down box beneath the main output table to select either the entire campaign or a particular 
worker interval. For the time period chosen, you can see statistics that describe the queue 
lengths, patient queue times, and staff utilization at each station.  

Figure 10: Output Tables Station Performance Measures Screen Shot 

 
Clicking the “Output Graphs” button on either the left panel from the “Output Tables” page or on 
the “D-PODS Menu” page brings you to the “Output Graphs” page. A screen shot of this page is 
shown below in Figure 11. 
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Figure 11: Output Graphs First Selection Screen Shot 

 

Only one graph can be displayed at a time. The drop down box (expanded in Figure 11) allows 
you to choose the type of data you would display: “Queue Lengths,” “Number of Staff Utilized,” 
or “Arrivals Per Interval.” Once you have made a selection, two new boxes will appear. The first 
allows you to select the location for which you would like to see information. As shown in the 
expanded drop down box in Figure 12, this can be any of the work stations in the POD or 
“Outside of POD.” However, note that if your POD is large enough to accommodate all arriving 
patients, then there will not be any non-zero data for the “Outside of POD” option. 
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Figure 12: Screen Shot of Output Graphs Select a Location  
 
Once you have entered valid options in each of the first two boxes, a plot of the data you have 
selected will be shown, as in Figure 13.  
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Figure 13: Screenshot of Output Graphs after Location Selection and Replication Selection 

 
Next, you may select a specific simulation replication from the drop down box on the right, or 
you may choose to view all replications. The scroll bar below the drop down box also controls 
the simulation replication to be selected. After selecting a specific simulation replication, the 
data for that replication are highlighted with a red line; in Figure 13, replication 2 is shown.  
 
The data shown in these plots are drawn from the Access database. In order to plot the data in 
different ways or view the raw numbers, you must explore the database directly. This is 
discussed in the next section. 
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4. Navigating the Access Database 
When you click the “Run” button to start your simulation, D-PODS immediately saves all input 
data to the database. The input data are stored in the tables titled “CaseList”, “SingleInputs”, 
“ArrivalRates”, “ServiceIncreaseFactor”, and “Staffing”.  
 
The “CaseList” table stores the case name specified on the “D-PODS Menu” page. This table 
also assigns the unique CaseListID to each CaseName, which creates a relationship throughout 
the tables. All data are stored with the CaseListID included as one of the Access fields. This 
makes creating queries relating to a specific case name much easier.  
 
The “SingleInputs” table contains all input values that are not entered through a chart within D-
PODS, such as the number of simulation replications or the number of days in the prophylaxis 
campaign. It also contains the station names and station transition probabilities. The values are 
stored based on the CaseListID, the variable name (varName), and the value the variable holds in 
the program (varValue).  
 
The “ArrivalRates” table contains the chart shown on the right on the “Step 2” page in D-PODS. 
The data are organized in the Access table just as it is in D-PODS. The “ServiceIncreaseFactor” 
table stores the information from the chart on the “Step 3” page in D-PODS that details the 
service time increase factor for each of the arrival types. The “Staffing” table details the 
information held in the chart at the bottom of the “Step 4” page in D-PODS.  
 
While the simulation is running, the output data are stored in a text file called 
“Simulation_Output.txt”, which is transferred to the database at the end of the simulation. These 
data are moved into the Access tables titled “SingleOutputs” and “Outputs”. The 
“SingleOutputs” table is organized exactly like the “SingleInputs” table and contains information 
that is displayed in the tables on the “Output Tables” page in D-PODS, such as the number of 
arrivals for the duration of the planned campaign. The “Outputs” table contains the output data 
that are stored at the end of every simulated five-minute interval. These data include the 
replication number, the shift number, the event time, the size of the queues at each location, the 
number of arrivals to each location within the interval, the average wait time for each location, 
and the number of servers that are busy for each location. These data are organized by 
CaseListID and can easily be queried in order to do further analysis on the output data.  
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5. Designing POD Staffing Policy Experiments 
In this section we explain exactly how to recreate the staffing levels used in our experiments. We 
took advantage of the D-PODS staffing calculator, which provides staffing level estimations are 
based on queuing approximations found in Buzacott.1  Our approximations output staffing levels 
given two inputs: an expected patient arrival pattern and an average patient waiting time for each 
station, W. If the patient arrival rate during the staffing interval is constant in expectation, then 
D-PODS will calculate staffing levels such that the average patient waiting time will approach W 
in the limit as the number of patients served increases to infinity. 

Of course, patient arrival rates may not be constant over an entire staffing interval. In this 
case, the D-PODS staffing calculator conservatively estimates the arrival rate using the 
maximum patient arrival rate during the interval. This has the effect of making the average 
patient waiting time lower than the maximum allowed, W. 
 For staffing plan 1, we used the D-PODS staffing calculator described above to determine 
the workforce requirements for each station over time. For staffing plan 2, we imagined that one 
half hour before each staffing change, we could observe the true average patient arrival rate to 
the POD, L. We then used the same Buzacott queuing formula mentioned above to determine the 
staffing levels that would be required to set the average patient waiting time to five minutes at 
each station, assuming that patients arrived at a constant rate of L patients per hour. We set the 
workforce requirements for the next two hour staffing interval to equal these levels. 
 To better understand staffing plan 2, consider the following example. Suppose that at 
4:00 pm, we can change the number of staff working at each station in the POD; this may 
involve calling in new staff or sending people home, as well as shifting workers between 
stations. However, we need to declare our decisions to the workforce by 3:30, so that current 
workers can prepare to move around or go home and new staff have time to travel to the POD. 
So, just before 3:30, we determine the average current patient arrival rate for the past half hour; 
suppose that on average, we have been seeing 50 patients arrive every five minutes, which is 
equivalent to 600 patients per hour. We then use the Buzacott queuing formula to determine the 
optimal staffing levels for each station in the POD, assuming that patients continue to arrive at an 
average rate of 600 patients per hour. At 6:00 pm we will have a chance to reassign and 
rearrange staff once again, so we will repeat this process just before 5:30 pm. 
 Staffing plan 3 was similar to plan 2, except that we set staffing levels based on the 
patient arrival rates that occurred one hour before each staffing change. So, in the example 
above, if we were set to have a staffing change at 4:00 pm, we would calculate staffing levels 
just before 3:00 pm. So, if an average 55 patients were arriving every five minutes from 2:30 to 
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3:00 pm, we would calculate new staffing levels assuming that patients continue to arrive at an 
average rate of 660 patients per hour (which is equivalent to 55 patients per five minutes). 

In staffing plan 4, we suppose that we could perfectly forecast the patient arrival rates at 
the beginning and the end of the staffing interval. We took the average of these two numbers, 
and set the workforce levels at each station according to the Buzacott formula, assuming that 
patients arrived at a constant rate equal to this average for the entire staffing interval. In the 
example above, this would mean that, before the staffing change must be made at 4:00 pm, we 
could look at our forecasting mechanism and see exactly the average arrival rate from 4:00 pm to 
4:30 pm and the average arrival rate from 5:30 pm to 6:00 pm. We would then average these two 
numbers and use the average to calculate staffing levels using the Buzacott formula.  
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Appendix B. Future Event Lists 
A typical Monte Carlo Simulation uses a single future event list (FEL) to keep track of events 
that are scheduled to occur, such as arrivals and departures from different queues and service 
locations. The events in each FEL include only those which are necessary to complete the next 
step in the simulation. For example, since the next arrival time only depends on the current 
arrival time (based on a distribution of inter-arrival times), the only event stored in the FEL is the 
current arrival; all of the previous arrival times can be deleted from the FEL. The next arrival is 
not scheduled (and placed into the list) until the current arrival is executed (and removed from 
the list). 
 
Future event lists are sorted as new events are scheduled and must be inserted into the list. The 
earliest event is executed, and removed from the top, or head, of the list.  
 
In order to decrease the run time for our model, we chose to organize our simulation in a 
different way. Instead of having a single FEL, we created one FEL for each service station, plus 
one more to deal with arrivals outside of the POD. Thus, if there are n stations, there are n+1 
FELs. The size of the FEL for a given station at some point in time is therefore limited to the 
current number of servers at that station. At each point in time, the number of departures is 
limited by the number of servers. This is because once the station has reached capacity, one 
cannot know the time of the next departure until one person completes service. With n+1 FELs, 
each list remains quite small and can be searched quickly when new items must be inserted. Of 
course, operating multiple FELs in a time sequence requires adding an extra step to determine 
which FEL has the earliest event at its head. Of course, this simply means that the heads of the 
FELs must be compared, which requires little time. The simulation then processes that event. 
The simulation continues to operate as a typical Monte Carlo simulation by performing the tasks 
relating to the event found.  
 
Thus, changing a single FEL to n+1 smaller FELs reduces the time for inserting an event, with a 
slight compromise in additional time for removing an event. 
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