
How to Get the Most Out Of Your
Embedded Hardware While
Keeping Development Time to a
Minimum

A Comparison of Two architectures and
Two IDEs for Atmel AVR 8-bit
Microcontrollers

NICLAS ARNDT

KTH ROYAL INSTITUTE OF TECHNOLOGY

I N F O R M A T I O N A N D C O M M U N I C A T I O N T E C H N O L O G Y

How to Get the Most out of Your Embedded Hardware

while Keeping Development Time to a Minimum

A Comparison of Two Architectures and Two IDEs

for Atmel AVR 8-bit Microcontrollers

Niclas Arndt
Bachelor Thesis, Information Technology

II

Abstract

This thesis aims to answer a number of basic questions about microcontroller development:

• What’s the potential for writing more efficient program code and is it worth the effort? How could it be done?

Could the presumed trade-off between code space and development time be overcome?

• Which microcontroller hardware architecture should you choose?

• Which IDE (development ecosystem) should you choose?

This is an investigation of the above, using separate sets of incremental code changes (improvements) to a simple serial

port communication test program. Two generations of Atmel 8-bit AVR microcontrollers (ATmega and ATxmega) and two

conceptually different IDEs (BASCOM-AVR and Atmel Studio 6.1) are chosen for the comparison.

The benefits of producing smaller and/or faster code is the ability to use smaller (cheaper) devices and reduce power

consumption. A number of techniques for manual program optimization are used and presented, showing that it’s the

developer skills and the IDE driver library concept and quality that mainly affect code quality and development time, rather

than high code quality and low development time being mutually exclusive.

The investigation shows that the complexity costs incurred by using memory-wise bigger and more powerful devices with

more features and peripheral module instances are surprisingly big. This is mostly seen in the IV table space (many and

advanced peripherals), ISR prologue and epilogue (memory size above 64k words), and program code size (configuration

and initialization of peripherals).

The 8-bit AVR limitation of having only three memory pointers is found to have consequences for the programming model,

making it important to avoid keeping several concurrent memory pointers, so that the compiler doesn’t have to move

register data around. This means that the ATxmega probably can’t reap the full benefit of its uniform peripheral module

memory layout and the ensuing struct-based addressing model.

The test results show that a mixed addressing model should be used for 8-bit AVR ATxmega, in which “static” (absolute)

addressing is better at one (serial port) instance, at three or more the “structs and pointers” addressing is preferable, and at

two it’s a draw. This fact is not dependent on the three pointer limitation, but is likely to be strengthened by it.

As a mixed addressing model is necessary for efficient programming, it is clear that the driver library must reflect this,

either via alternative implementations or by specifying “interfaces” that the (custom) driver must implement if abstraction

to higher-level application code is desired. A GUI-based tool for driver code generation based on developer input is

therefore suggested.

The translation from peripheral instance number to base address so far used by BASCOM-AVR for ATxmega is expensive,

which resulted in a suggestion for a HW-based look-up table that would generally reduce both code size and clock cycle

count and possibly enable a common accessing model for ATmega, ATxmega, and ARM.

In the IDE evaluation, both alternatives were very appreciated. BASCOM-AVR is found to be a fine productivity-

enhancement tool due to its large number of built-in commands for the most commonly used peripherals. Atmel Studio 6.1

suffers greatly in this area from its ill-favored ASF driver library. For developers familiar with the AVRs, the powerful avr-

gcc optimizing compiler and integrated debugger still make it worthwhile adapting application note code and datasheet

information, at a significant development time penalty compared to BASCOM-AVR.

Regarding ATmega vs. ATxmega, it was decided that both have its place, due to differences in feature sets and number of

peripheral instances. ATxmega seems more competitively priced compared to ATmega, but incurs a complexity cost in

terms of code size and clock cycles. When it’s a draw, ATmega should be chosen.

III

Table of contents

1 Introduction ... 1

1.1 Outline ... 1

1.2 General background .. 2

1.3 Commercial background ... 3

1.4 Problem description .. 3

1.5 Purpose and goal ... 5

1.6 Delimitations ... 5

1.7 Terminology ... 6

1.8 References ... 6

1.9 Other considerations ... 7

2 Method .. 8

2.1 Method description ... 8

2.2 Test equipment and setup .. 8

3 The Atmel AVR 8-bit microcontrollers .. 11

3.1 Introduction ... 11

3.2 Architecture details ... 12

3.3 HW design and programming considerations ... 15

3.4 (Other) differences between ATmega and ATxmega .. 16

4 Presentation of the IDEs .. 19

4.1 BASCOM-AVR .. 19

4.2 Atmel Studio 6 ... 21

5 BASCOM-AVR analysis ... 25

5.1 Serial communication analysis test log ... 25

5.2 BASCOM-AVR summary #1.. 32

5.3 Why is the ATxmega code so much bigger? .. 34

5.4 Generalization ... 40

6 Atmel Studio 6.1 2562 using ASF3.13.1 code analysis .. 42

6.1 Optimization primer .. 42

6.2 ATmega324A analysis .. 42

6.3 ATxmega128A1 analysis .. 50

6.4 Scaling ATmega 324A, ATmega1284, and ATxmega128A1 ... 63

6.5 Protocol-bound ISR scaling (AS3j & AS3k) ... 73

IV

6.6 ATmega324A structs and pointers two-port USART ISR placed in IV 75

7 Compilation and discussion of the test results ... 76

7.1 Static vs. dynamic addressing (BASCOM-AVR) or S&P (AVR-GCC C) 76

7.2 Hardware-related complexity costs .. 78

7.3 Software-related costs .. 80

7.4 Programmer skills .. 83

7.5 ATmega or ATxmega or both? ... 84

7.6 IDE comparison.. 86

7.7 Suggestions for future work .. 88

8 Summary ... 89

8.1 IDE choice .. 89

8.2 HW selection ... 89

8.3 The programming test results and the conclusions I draw from them 90

8.4 On efficient programming ... 90

9 References ... 93

10 Appendix A .. 102

A.1 Response from the IDE companies ... 102

A.2 Additional sources ... 104

A.3 How to disassemble .. 107

A.4 Atmel application notes on efficient programming .. 108

A.5 IDE-specific additional information ... 112

A.6 BASCOM incremental code pieces .. 117

A.7 Atmel studio 6.1 and ASF screen dumps ... 128

A.8 Atmel Studio #ports scaling ... 132

A.9 ATmega324A structs and pointers two-port USART ISR placed in IV 139

1

1 Introduction

1.1 Outline

This is a long thesis that covers a wide area. The reader might want to choose the parts of most

interest and here I briefly describe the contents and provide reading advice.

If you want to digest this work as quickly as possible, it is recommended that you browse chapter 1,

read section 3.4.1 and then read chapters 7 and 8. Chapters 3, 5, and 6 can in this case be consulted

for details about particular tests and their results.

• Chapter 1 is the introduction.

• Chapter 2 describes the method and the test setup. It briefly explains and illustrates how the

tests were performed. An experienced microcontroller programmer could probably skip this

part.

• Chapter 3 presents the AVR 8-bit microcontroller architecture, differences between ATmega

and ATxmega, and programming-related properties relevant to this thesis. It is very detailed

with regards to register design, I/O and peripheral device registers, internal memories, and

Atmel’s advice on efficient programming. The alternative peripheral module register layout

that is very important to this paper is explained in 3.4.1. I recommend every reader to read

this last piece, but if you are seriously interested in efficient AVR programming you must get

a solid understanding of this entire chapter.

• Chapter 4 is an overview of the two IDEs, describing their most important features and

qualities. If you are mostly interested in their consequences you can find this in chapter 7.

• Chapters 5 and 6 each contain one separate IDE-specific analysis and discussion of the

findings. Written as log books that document my progress, they are very detailed and include

personal remarks indicating my reactions to the results. These chapters provide the empirical

groundwork that also explains or “proves” my findings. You can read it as a whole or read the

parts that lead up to the results you found interesting in chapter 7.

• Chapter 7 compiles and discusses the results, which leads up to a number of conclusions. All

aspects considered relevant are treated here. A must-read for this paper.

• Chapter 8 is a summary of the conclusions. This is where the different lines of investigation

end in IDE choice, HW selection, results from the programming tests, and conclusions on

efficient programming.

• Chapter 9 holds the table of references.

• Various additional information, sources, and incremental pieces of code have been put in

appendix A.

• The source code and disassemblies reside in the external appendix B due to their size. Please

contact the author for a copy.

2

1.2 General background

For many years, I have been doing microcontroller (a.k.a. embedded systems) prototyping as a

hobby. I have now reached the level at which I consider turning my hobby into a business and one of

many questions is which platform I should choose in terms of

• hardware (HW) architecture and

• Integrated Development Environment (IDE).

I also want to get a deeper understanding of (microcontroller) programming; a feeling for how much

computer programs can be improved in terms of performance and compiled code size and how

further studies in this area could be designed:

• Should I use a generic programming style or are there differences in IDE and HW architecture

that motivate different approaches?

• How good are the predefined software (SW) libraries and IDE commands with respect to

compiled code size, performance, and development time?

• Should I use high-level language only or combine it with inline assembly or custom assembly

functions?

On a similar note, as the great yearly increase in computer HW performance that we had grown

accustomed to seems to have been slowed down, I believe that there is reason to rekindle our

interest in SW performance:

Figure 1: The general computer HW performance trend (relative performance vs. year)

This illustrative graph is representative of a number of real charts in “The Future of Computing

Performance: Game Over or Next Level?” (1) 1. In many of the most important HW metrics, the

increase in performance has slowed down:

• Integer and floating-point performance

• Power dissipation and clock frequency

1
 Free download at http://www.nap.edu/catalog.php?record_id=12980

0

1

2

3

4

5

6

7

8

9

1
9

8
5

1
9

8
6

1
9

8
7

1
9

8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

The computer HW performance trend break

3

So, what ways are there to further increase performance?

"The claimed benefits of high-level languages are now widely accepted. In fact, as computers got faster, modern

programming languages added more and more abstractions. For example, modern languages - such as Java, C#, Ruby,

Python, F#, PHP, and Javascript - provide such features as automatic memory management, object orientation, static typing,

dynamic typing, and referential transparency, all of which ease the programming task. They do that often at a performance

cost, but companies chose these languages to improve the correctness and functionality of their software, which they valued

more than performance mainly because the progress of Moore’s law hid the costs of abstraction." (1)
1
 p107

"Future growth in computing performance will have to come from software parallelism that can exploit hardware

parallelism. Programs will need to be expressed by dividing work into multiple computations that execute on separate

processors and that communicate infrequently or, better yet, not at all." (1)
1
 p105

I too see parallelism as a very important area in software development, but I also see great potential

in more efficient programming. 8-bit microcontrollers are simple and enable high-level development

from which the machine code consequences can be analyzed directly. I’m hoping that such an

analysis will give insights that are also applicable to PC- and server-class programming.

1.3 Commercial background

I am currently developing a series of (uninterruptible) power supply products. They have quite

modest requirements in terms of performance and program memory size, but I still want to make an

informed platform decision and lay a solid code foundation for what will be common functionality:

• I believe that writing good code once is cheaper in the long run.

• If the code size reduction is substantial, it will enable me to use smaller (and cheaper)

devices.

• According to Johnny Burlin at IAR Systems (one of the world-leading compiler makers for

embedded processors) (2), the best way to reduce power consumption is to speed-optimize

the code so that the microcontroller gets the job done as quickly as possible and then goes

into sleep mode. In this paper I won’t go into power efficiency, but it is relevant for battery-

powered devices.

1.4 Problem description

My previous designs are based on Atmel’s AVR 8-bit microcontrollers, more specifically the ATmega

architecture (3) 2, with the BASCOM-AVR IDE (4) 3. Its syntax is close to Visual Basic 6, here called VB.

I have now started to use the more powerful ATxmega series (5) 4 and I am considering a switch to

Atmel’s IDE, Atmel Studio 6 (6) 5. The main reason for this would be the optimizing compiler,

integrated debugger, and being able to use the industry-standard C or C++ that are more easily

portable to other HW. It also has support for Atmel’s ARM-based products and a claimed easy

transition from ATxmega to ARM due to the common Atmel Software Foundation (ASF) (7) 6 driver

library.

2
 http://www.atmel.com/products/microcontrollers/avr/megaavr.aspx

3
 http://www.mcselec.com/

4
 http://www.atmel.com/products/microcontrollers/avr/avr_xmega.aspx

5
 http://www.atmel.se/microsite/atmel_studio6/

6
 http://www.atmel.com/tools/avrsoftwareframework.aspx?tab=overview

4

I decided that a simple feature comparison wouldn’t answer all my questions. Instead, I will

implement the same basic test program (a serial port communication routine) for each of the

HW/IDE combinations below, with a number of incremental code modifications in order to find the

optimum programming style in each situation.

I will try to see how much I can improve the generic high-level code (mostly in terms of compiled

code size, but in some cases also clock cycle count and RAM usage) and then how much further I can

reduce it by replacing parts with inline assembly. As a last step, I will see how much can be saved by

swapping the protocol-unbound design for a protocol-bound implementation.

BASCOM AVR VB-only

BASCOM AVR VB + inline assembly

BASCOM AVR VB + inline assembly, protocol-bound implementation

Atmel Studio C-only

Atmel Studio C + inline assembly

Atmel Studio C + inline assembly, protocol-bound implementation
Table 1: Test overview, for ATmega and ATxmega respectively

Below are the main questions that will guide my work. As the investigation is open-ended and the

further direction of the analysis is decided during its execution, the summary and conclusions will be

shaped by the actual findings, not necessarily following this structure.

Software-related:

• How much can you improve your code? Is it worth the time and effort?

o High-level language only

o With inline assembly (or custom assembly functions)

• How do the two IDEs (BASCOM-AVR 2.0.7.6 and Atmel Studio 6.1) compare?

o Ease of use

o Productivity-enhancement tools (software libraries / built-in commands)

o Efficiency / optimization of compiled code

o Simulation and debugging possibilities

o SW stability

o Code reusability and portability to other device types or brands

o Coverage

� HW architectures (including easy transition between different HW)

� SW longevity (have the version changes been smooth?)

o User forum usefulness

• What are the differences between developing in BASCOM VB and AVR GCC C code (using

their respective IDE)?

Hardware-related:

• Should you strive to migrate to the newer and more feature-rich ATxmega?

o Features

o Complexity

o Maturity

o New programming model and its effect on code size and clock cycle count

5

1.5 Purpose and goal

This thesis has the following purpose:

• Evaluate two microcontroller IDEs and two HW architectures for a decision about the

platform for my future commercial products.

• Investigate the area of efficient microcontroller programming:

o Learn how big is the potential for writing smaller or faster computer programs.

o Could the presumed code space / development time trade-off be overcome?

o Understand to what extent the programming style should be adapted to IDE and

HW, how to balance the development time savings to the cost of the abstractions

added by generic libraries / commands, and how much inline assembly should be

used.

o Get an initial picture of how further studies in this area could be designed.

In other words: To search for a way to get the most out of my embedded hardware while keeping

development time to a minimum.

1.6 Delimitations

The thesis title is chosen for two reasons: it captures the essence of the thesis and it is believed to

catch the reader’s interest. It is however too big a topic to be properly addressed by a bachelor

thesis. In this respect, this work aims to give a fundamental understanding of what drives

(microcontroller) program size and runtime.

It seems that many companies replace their old architecture with 32-bit ARM. Maybe this is what I

too will choose in the end. However, I decided that a comparison between BASCOM-AVR on 8-bit

Atmel AVR ATmega and IDE ABC on brand XYZ 32-bit ARM wouldn’t be meaningful, as so many things

would be different that not many generalizations could be made. By choosing AVR ATxmega and

Atmel Studio IDE as the alternatives, real comparisons are possible.

Development time and execution time might be difficult to actually measure. For this reason,

development time might have to be a subjective "feeling" of the effort required and execution time

might have to be measured by counting microcontroller clock cycles for the instructions in a

disassembly of the compiled code. I chose to focus on compiled program size.

With the invention of smart phones, surf pads, and so on, it could be argued that many embedded

systems are now so complex and versatile that developing them requires an operating system, high-

level languages, generic drivers, and lots of abstraction. I don’t oppose to this view on a part of the

embedded market, but my designs (like many other microcontroller systems) are fairly simple one-

task devices, so I will only consider such designs in this thesis.

6

1.7 Terminology

I use “IDE” (Integrated Development Environment) in the sense of development ecosystem - not only

the GUI or front end.

Some of the terms I use in this thesis are partly my own:

• “Static” or “absolute” addressing: The address (typically to a peripheral IO register) is

hardcoded. This should not be confused with the C language attribute “static”.

• “Dynamic” addressing: I came to use this expression when analyzing the BASCOM-AVR

ATxmega code that translates a port number 0-7 to the corresponding peripheral module

base address. This address is then (inside the built-in commands) used in a call to a “structs

and pointers” driver routine.

• “Structs and pointers” (S&P): This refers to the new way of addressing peripherals that Atmel

introduced with the ATxmega uniform register layout. For each type of peripheral, a struct

with all the registers is defined. Its fields implicitly denote an offset or a displacement from

the start of the struct (= the base address). The driver is written so that it only exists in one

generic version. In the driver function call you include a pointer to the peripheral module’s

(register group’s) base address. The base address is typically placed in the Z pointer and the

sub-registers are accessed via LD (load) or LDD (load with displacement) instructions (and

ST/STD for storing). The difference between “dynamic” and S&P is that the former takes a

port number and the latter an address.

I use the terms “UART” and “USART” in the same sense. (USART = Universal Synchronous and

Asynchronous serial Receiver and Transmitter, while UART is only asynchronous.)

After the tests I renamed them, so that there would be a clear structure. This means that in some

places (e.g. code comments, paths names, and examples) the old name are still used, but I decided

that it doesn’t cause any significant confusion.

There are two ways of numbering the “cells” in an array; row-major and column-major. The usual

definition can be found here: (8) 7 When you think of an array like this:

the row-major representation in memory is

and the column-major is

This is a fixed part of the language you are developing in, but in a row-major language like C,

you can achieve column-major behavior by swapping row and column in your declaration:

When I use the term “column-major”, this is what I actually mean.

1.8 References

In this thesis I am using Zotero, Vancouver citation style. For the reader’s convenience, I generally

both provide the reference and a footnote with a URL (web hyperlink) to the document so that it

isn’t necessary to jump back and forth when reading.

7
 http://en.wikipedia.org/wiki/Row-major_order

0 1 2 3

A B C D

0 1 2 3 A B C D

0 A 1 B 2 C 3 D

0 A

1 B

2 C

3 D

7

1.9 Other considerations

1.9.1 IDE company participation and previous connections

Both MCS Electronics (4) 8 (the company behind the BASCOM-AVR IDE) and Atmel (9) 9 were invited

to participate and/or comment on this thesis. I leave it to the reader to decide whether I am biased.

The owner of MCS, Mark Alberts, made two comments that can be found in appendix A.1. Prior to

this thesis, I already had a friendly professional relationship with Mark Alberts, having shared library

code with an application note for an SD memory card driver and moderating its user forum thread at

MCS’ web site.

Atmel sponsored “my” team in a robot project course last spring and very generously gave all

members an ARM development board and debugger afterwards. However, we had severe difficulties

with the initial delivery and nearly had to abandon Atmel. We were afterwards asked to provide

feedback on the software and shared a strong opinion on the usefulness of their driver library.

At the start of my thesis work, Atmel declined my request for a contact for this thesis (appendix A.1).

In February 2014 when my work was almost complete, I contacted Atmel again with an invitation to

read and comment on my work, but I did not receive a reply.

1.9.2 Environmental aspects / sustainable development

On a large scale, even small improvements in clock cycle count should amount to a significant

difference in total power consumption.

1.9.3 Gender, ethnic, or religious aspects

Not applicable. The areas of programming types and HW / IDE selection are orthogonal to questions

of discrimination based on gender, ethnic belonging, and religious beliefs.

8
 http://www.mcselec.com/

9
 http://www.atmel.com/

8

2 Method
What’s the best way to compare two IDEs or HW architectures? I fear that a feature table with

summation of weighted scores wouldn’t capture the real qualities that in my experience become

clear only after a period of actual use.

Considering that I also want to compare programming styles, I decided that the center of this thesis

should be the incremental code changes on each platform. By focusing on a specific test program and

going as deep into this topic as possible, I believe that I will implicitly also get a reasonably good

picture of the IDEs’ ease of use, qualities, and (part of) the two HW architectures.

I decided that the best place to start is the main program loop, which in this application is quite

strongly tied to the (serial port) communication with the PC. It controls the program flow, is relatively

application-dependent, well delimited, and also involves a specific hardware module (i.e. driver

development).

The BASCOM-AVR part is completed before the start of the Atmel Studio 6 part.

2.1 Method description

The method used in this thesis is a fairly controlled (dual) set of iterative and incremental

experiments. The area (main loop with serial port communication routines) is fixed, but the direction

for the incremental changes is determined during the actual testing. When- or wherever I find

something of interest, I investigate its cause and consequences, directly influencing the direction of

the rest of the testing. The two analysis chapters are separate logs of what I do and find.

This work could be seen as an initial scientific investigation, with a complete set of source code and

incremental analyses so that others could repeat and question the actual findings. Perhaps the

results could be used as a starting point when formulating a series of tests of all ATmega and

ATxmega peripherals or a bigger programming model analysis, but that’s for others to consider.

2.2 Test equipment and setup

The PC application sends a serial port sequence of binary bytes, starting with 254 followed by

message type byte, the actual data byte(s), and terminated by 255. The AVR responds to this with a

message of the same kind. The PC will always wait for the response before sending the next message.

The AVR will only initiate a conversation to send an error message (which is not part of this work).

The test application implements two messages:

• The PC sends [254, 243, 255] and receives [254, 242, 1, 2, 3, 255]

• The PC sends [254, !=243, …, 255] and receives [254, 251, 255]

The AVR code should be written for an ATmega324A and an ATxmega128A1 with conditional

compilation. The first high-level-only versions are based on a circular buffer that gets its data from

the RX interrupt routine for USART. The main program loop calls a sub-routine that polls this buffer

and extracts any received data and puts it into a separate array. When the entire message is

received, the appropriate response is sent. At the end, a protocol-bound implementation is

developed. It might have to be based on inline assembly.

9

2.2.1 Test beds

I used the following microcontroller types:

• ATmegaXX4 (164/A/P/PA, 324/A/P/PA, 644/A/P/PA, and 1284/P)

o This family supports JTAG debugging.

• ATxmegaA1(U) (64A1/A1U and 128A1/A1U), where “U” indicates that it is a later (bug-fixed)

revision that includes a USB module. This USB module is not covered by this thesis.

o This family supports JTAG and PDI debugging.

Within each type, the main difference lies in the size of the various memories, where the number

states the program memory size (324 == 32 kB and 128 == 128 kB program flash EEPROM).

Figure 2: ATmega324A-based board, with two USARTs

Figure 3: ATxmega128A1-based board, with eight USARTs, of which two are used in the tests

10

2.2.1.1 PC application

The PC application is developed in MS Visual Studio 2010 C#.Net, using the SerialPort class. Just

getting this to work with static COM port number assignment is very simple. However, nowadays

people mostly use USB<->serial bridges. They tend to acquire a new port number each time you plug

them in to a different port. For this reason, I added the FTDI .dll and wrapper class for USB bridge

identification and found a nice generic COM port listing class on the internet. With them the

application automatically connects to the right COM port number.

Figure 4: The two supported messages with response

(Enter the message in the upper textbox, click ”Test” and the response is shown in the lower one.)

2.2.1.2 How to disassemble

Please see appendix A.3 for information about how to disassemble.

11

3 The Atmel AVR 8-bit microcontrollers

3.1 Introduction

The AVR microcontroller is an 8-bit modified Harvard load/store RISC architecture with a 2-stage 1-

wide pipeline, which means:

• RISC, Reduced Instruction Set Computing: By using instructions that each does a very small

and specialized task, the clock speed can be increased. This boils down to higher over-all

performance. The other (and older) philosophy is CISC, Complex ISC, which has instructions

that often do very intricate (series of) operations requiring several clock cycles. RISC also

often uses the “load/store architecture” that only operates on memory using specific

instructions, rather than as part of the aforementioned complex instructions. (10) 10

• Harvard architecture: It uses separate buses for program and data memory. (11) 11

• Modified: It is possible to access the program memory area as read-only data memory (11)

(and also update the program memory using a so called boot-loader program).

• 8-bit: It uses data registers 8 data bits wide (but the program memory uses 16 bit or

sometimes 2*16 bit wide instructions).

• 2-stage pipeline: The first stage fetches the next instruction and the second stage executes

the current instruction. (12) 12

• 1-wide: It does one operation at a time. (12)

• Microcontroller: A processor with most of the peripherals and memories on the chip.

• AVR: Believed to stand for “Alf-Egil and Vegard’s RISC” processor.

AVR originates in the 1992 graduation thesis written by the two Norwegian students Alf-Egil Bogen

and Vegard Wollan. In 1997 the AT90S1200 was launched as a microcontroller product by Atmel

Corporation. It was one of the first in the industry to use internal flash program memory. (13) 13

The AT90S series evolved into two product lines with self-explanatory names, ATtiny and ATmega,

which a few years later were accompanied by the ATxmega, a major revision or even redesign. They

all use the same instruction set (although each model might not support every instruction). A 32-bit

AVR was launched in 2006 (14) 14 and starting in 2008, Atmel is now licensing much of the 32-bit

ARM-based microcontrollers and microprocessors. (15) 15 This thesis only treats the AVR 8-bit

Atmega and ATxmega, henceforth referred to as AVR, ATmega, or ATxmega.

The “AVR and AVR32 - Quick Reference Guide” (16) 16 is slightly outdated (especially as it doesn’t

contain Atmel’s ARM offering), but it still provides a good overview of the AVR products. I could also

point to “Microprocessor (MPU) or Microcontroller (MCU)?” (17),17 which is a marketing

presentation that gives a good background to what was considered important in 2013.

10

 http://en.wikipedia.org/w/index.php?title=Reduced_instruction_set_computing&oldid=594087688
11

 http://en.wikipedia.org/w/index.php?title=Harvard_architecture&oldid=585324105
12

 http://www.atmel.se/Images/Atmel-8331-8-and-16-bit-AVR-Microcontroller-XMEGA-AU_Manual.pdf
13

 http://www.youtube.com/watch?v=HrydNwAxbcY
14

 http://en.wikipedia.org/w/index.php?title=AVR32&oldid=587706001
15

 http://en.wikipedia.org/w/index.php?title=AT91SAM&oldid=584613739
16

 http://www.atmel.se/Images/doc4064.pdf
17

 http://www.atmel.se/Images/MCU_vs_MPU_Article.pdf

12

3.2 Architecture details

3.2.1 Registers

AVR has 32 general-purpose eight-bit working registers. The last six can be used as three pairs of 16-

bit registers, called X, Y, and Z, e.g. when addressing memory locations. All of these can do pre- or

post-incementation, while Y and Z also support positive 6-bit displacement, which is practical when

accessing arrays, SW stack, or sub-registers that control a peripheral. Z can be used to read or write

flash program and special device settings. The register with the higher number is the most significant.

16 bits equates to a 64 k bytes data memory or a 64 k words program memory addressable space.

(AVR program memory is made up of 16-bit instruction words, so 128 kB of program memory can be

addressed with 16 bits.) When accessing a location above this, you must use an additional register

for the >16 bits:

• RAMPX, RAMPY, or RAMPZ: for the X, Y, or Z register pairs >64k byte (kB) data memory.

• RAMPD: when the instruction includes a 16-bit constant to access >64kB data memory.

• EIND: to do jumps or calls to >64k word program memory.

The SP (Stack Pointer) is a special register pair that resets to the highest internal SRAM address and

automatically updates when you execute PUSH or POP instructions. It is also the place where the

return address for the CALL instructions is stored.

The R0+R1 register pair is also the destination for the MULxx multiplication instructions.

The SREG (Status REGister) contains bit-wise results from or input to arithmetic and logic operations

and the global interrupt on/off setting.

Some instructions only operate on the top half of the registers (R16-R31), typically the “immediate”

ones taking a constant, and yet some others only work with R16-R23.

The 16-bit ADIW and SBIW instructions add or subtract a constant to/from the register pairs

R24+R25, X, Y, and Z. As you will typically want to reserve X, Y, and Z for stack operations and use as

memory pointers, R24+R25 is left for other 16-bit purposes, for example a counter.

This sub-section is largely based on (12) 18 and (18) 19.

I present the conventions for register use and calling in appendix A.5.

18

 http://www.atmel.se/Images/Atmel-8331-8-and-16-bit-AVR-Microcontroller-XMEGA-AU_Manual.pdf
19

 http://en.wikipedia.org/w/index.php?title=Atmel_AVR_instruction_set&oldid=571841646

13

3.2.2 ATmega324 data memory

32 Registers 0x0000 - 0x001F

64 I/O Registers 0x0020 - 0x005F

160 Ext I/I Reg. 0x0060 - 0x00FF

Internal SRAM

1024/2048/4096/16384 x 8)

0x0100 -

0x04FF/0x08FF/0x10FF/040FF

Table 2: Data Memory Map for ATmega164A/324A/644A/1284 et al

(The table above is based on ATmega164A/PA/324A/PA/644A/PA/1284/P Complete (19) 20, p21)

The data memory is actually a collection of different types of memory that often have two different

addressing modes:

• The 32 general-purpose working registers. Apart from their register number (by which they

are directly accessible by most instructions), they are also mapped into the data memory

space at 0x0000 – 0x001F, accessible via instructions LD/LDS/LDD and ST/STS/STD.

• The 64 lowest I/O registers. They can be accessed with the “short” instructions IN and OUT

on I/O address space 0x00 – 0x3F. They are also mapped into the data memory space at

0x0020 – 0x005F, in which area they can be accessed by instructions LD/LDS/LDD and

ST/STS/STD. This is the reason why these particular I/O registers are referred to with the

double notation 0x00 (0x0020).

The lower 32 of these 64 I/O registers can also be bit-accessed on I/O address space 0x00 –

0x1F using instructions SBI (Set Bit in I/O register) or CBI (Clear Bit in I/O register) and the

“mini-branch instructions” SBIS (Skip if Bit in I/O Register is Set) or SBIC (Skip if Bit in I/O

Register is Cleared).

In the ATmega324’s family, these 32 addresses are most importantly home to the physical

ports A – D, which makes it possible to do bit manipulations on all the ports. The device also

has three GPIO (General-purpose I/O) registers that are particularly useful for status flags or

global variables. GPIOR0 is in I/O address space at 0x1E, while GPIOR1 and GPIOR2 are

outside of the bit-operable area.

• The 160 extended I/O registers only reside in the data memory space at addresses 0x0060 –

0x00FF, accessible by instructions LD/LDS/LDD and ST/STS/STD.

• The internal SRAM starts at data memory space address 0x0100 and ends at a device-specific

address that is also the end of the data memory. It can only be used with LD/LDS/LDD and

ST/STS/STD instructions.

In ATmega1284, 32/100 of the peripheral registers can be accessed via IN/OUT, plus the digital IO pin

registers. For more information, please see the datasheet, pp 554-557 (19)

20

 http://www.atmel.se/Images/Atmel-8272-8-bit-AVR-microcontroller-ATmega164A_PA-324A_PA-644A_PA-

1284_P_datasheet.pdf

14

3.2.3 ATxmegaAU data memory

Start/End

Address Data Memory

0x000000 I/O Memory

(Up to 4 kB)

0x001000 EEPROM

(Up to 4 kB)

0x002000

Internal SRAM

0xFFFFFF

External

Memory

(0 to 16 MB)

Table 3: ATxmegaAU data memory map

(The table above is based on Atmel AVR XMEGA AU Manual rev F (12) 21, p23)

Currently, there are five ATxmega series, A through E, with certain differences in functionality and

intended area of use. The A series is divided into one or a few “sub”-series, e.g. A1, A3, and A4, each

implementing a subset of the full A series functionality, peripheral modules, and ports (and thereby

pin count). Finally, e.g. A1 exists in two memory sizes, 64kB and 128kB. The “U” states that it has

built-in HW support for USB.

In the ATxmega, the 32 working registers are not mapped into the data memory space. Instead, it

starts with (up to 4 kB of) I/O memory with only one address numbering. The first 64 locations can be

accessed with the IN and OUT instructions and the first 32 of these can be bit-manipulated:

• At 0x0000 – 0x000F there are 16 GPIO registers that should typically be used for global

variables and flags.

• At 0x0010 – 0x001F there are four sets of virtual ports. Each port can be mapped to one of

the 11 physical ports A – R (whichever are available in the specific device). A port set consists

of the sub-registers DIR (direction), OUT, IN, and INTFLAGS (interrupt settings), so they can

be used for easy interaction bit- or byte-wise with the outside world. (Not for communicating

with the built-in peripherals.)

After the 32 bit-operable registers, there are 32 more IN/OUT-operable registers for CPU, CLK,

SLEEP, and OSCillator. In ATxmegaA1U, 4 out of the 61 peripheral register groups can be

accessed via IN/OUT, excluding the digital IO pin registers. 4 out of the 11 IO ports can be

mapped to virtual ports that are covered by IN/OUT.

Then follow the rest of the I/O registers that are accessible by instructions LD/LDS/LDD and

ST/STS/STD.

21

 http://www.atmel.se/Images/Atmel-8331-8-and-16-bit-AVR-Microcontroller-XMEGA-AU_Manual.pdf

15

In ATxmega, the on-chip EEPROM can be accessed either in its own EEPROM address space or

mapped into the data memory space starting at 0x1000 and ending no later than 0x1FFFF (depending

on device-specific EEPROM size). In the data memory space, the EEPROM is only accessible by

instructions LD/LDS/LDD and ST/STS/STD.

At 0x2000 the internal SRAM (of device-specific size) starts, immediately followed by (optional)

external SRAM, both only accessible by instructions LD/LDS/LDD and ST/STS/STD.

3.3 HW design and programming considerations

Due to the AVR design based on the load/store architecture with 32 general-purpose working

registers, a great fraction of the instructions require only one clock cycle. In internet user forums I

remember seeing claims that the effective average CPI (Clock cycles Per Instruction) is about 1.5, but

I haven’t been able to find the source. However, the clock cycle counts in this thesis’ analyses roughly

confirm a CPI of this magnitude.

Another distinguishing feature of the AVR is its non-banked memory, which means that the entire

data memory space is linear and continuous (even though the RAMPx and EIND registers can be seen

as a way to achieve 64k banks). This makes memory pointer displacement easy and efficient.

These two things have programming, compilation, and performance consequences that I will soon

delve into. I have found one Atmel document that looks to architectural choices and two that

describe how they affect the optimum programming style:

• “The AVR Microcontroller and C Compiler Co-Design” (20) 22

• “AVR035: Efficient C Coding for 8-bit AVR microcontrollers” (21) 23

• “AVR4027: Tips and Tricks to Optimize Your C Code for 8-bit AVR Microcontrollers” (22) 24 25

Here I will summarize the first of these documents. The last two partly contain programming

conventions that I am actually treating in a separate section, but I include them in appendix A.4 as

the C code recommendations so heavily depend on the underlying hardware.

Please also see the “AVR Instruction Set“ (23) 26 document.

3.3.1 The AVR Microcontroller and C Compiler Co-Design

“The AVR microcontroller was developed with the C language in mind in order to make it possible to

construct a code efficient C compiler for AVR.” This was done in cooperation with compiler company

IAR Systems 27:

• By not using paged memory, the memory pointers can reach 64 displacement locations

instead of just 16.

• The orginal two 16-bit pointers were too few to support both SW stack and efficiently

copying from one memory location to another, so a third one, X, was added.

22

 http://www.atmel.com/dyn/resources/prod_documents/COMPILER.pdf
23

 http://www.atmel.se/Images/doc1497.pdf
24

 www.atmel.se/Images/doc8453.pdf
25

 www.atmel.se/Images/AVR4027.zip
26

 http://www.atmel.com/Images/doc0856.pdf
27

 http://www.iar.com

16

• It was decided that the AVR would benefit from both indirect addressing (separately loading

the address into e.g. XL and XH and then loading the content of this location into a working

register) and direct addressing (one instruction loads the content of a specified memory

location into a working register). Direct addressing results in fewer instruction words for 1-

byte variables, while indirect addressing is more efficient when loading a 4-byte long integer.

• Atmel also decided to propagate both carry and zero flags in certain instructions so that 16-

or 32-bit operations would be easier.

• Due to space constraints, there is no ADDI (16-bit constant addition without carry) but

instead a SUBI (16-bit constant subtraction without carry) and an SBCI (16-bit constant

subtraction with carry). Addition is accomplished as a subtraction by a negation of the actual

value.

• They also made room for a non-destructive CPI (ComParison with Immediate) and non-

destructive CPC (Compare with Carry). (20)

3.4 (Other) differences between ATmega and ATxmega

So far I have mostly discussed (some of) the common properties of the AVR family: CPU, working

register, instruction set, and data memory space (well…). This is because I expect that they will have

the greatest effect on the optimum programming style (for my test application). Please see the

device and family datasheets for more information:

“ATmega164A/PA/324A/PA/644A/PA/1284/P Complete” (19) 28

“Atmel AVR XMEGA AU Manual” (12) 29

“ATxmega64A1U/128A1U Complete” (24) 30

(And the Atmel documentation web site is a good place to find e.g. application notes. (25) 31)

There are also (great) differences between ATmega and ATxmega. In short: from a feature

perspective, ATxmega is vastly superior to the ATmega with the following additions:

• DMA controller

• Event system

• AES and DES crypto engine

• High-speed DAC and ADC with higher resolution

• Lower power consumption

• 1.6V operation

• 32MHz maximum clock frequency (compared to 16 or 20MHz for ATmega)

• More advanced clock system and sleep modes

• More advanced physical ports

• Virtual port mapping of physical ports to the bit-operable I/O address area

28

 http://www.atmel.se/Images/Atmel-8272-8-bit-AVR-microcontroller-ATmega164A_PA-324A_PA-644A_PA-

1284_P_datasheet.pdf
29

 http://www.atmel.se/Images/Atmel-8331-8-and-16-bit-AVR-Microcontroller-XMEGA-AU_Manual.pdf
30

 http://www.atmel.com/Images/Atmel-8385-8-and-16-bit-AVR-Microcontroller-ATxmega64A1U-

ATxmega128A1U_datasheet.pdf
31

 http://atmel.no/webdoc/atmel.docs/atmel.docs.3.application.note.html

17

• More GPIO registers in the bit-operable I/O address area

• Multilevel interrupt controller

• EBI, External Bus Interface, for external SRAM or SDRAM

• Often “more of everything” compared to ATmega peripherals

The above and more information can be found in these documents:

“AVR XMEGA” (26) 32

“Introducing a New Breed of Microcontrollers for 8/16-bit Applications” (27) 33

“AVR1005: Getting started with XMEGA” (28) 34

There’s also a new (alternative) addressing scheme with uniform placement of peripheral registers,

so that one common driver can be used with module base pointer and sub-register displacement.

This is such an important change, that it gets its own sub-section:

3.4.1 Alternative struct-based addressing mode

As the ATmega series grew with more families and the families were extended with additional

devices, the I/O register layout(s) became more and more cluttered. This meant that static

addressing was more or less necessary, which meant that sometimes the same code had to exist in as

many copies as the used number of each peripheral type. It also required more work from Atmel to

write and maintain the datasheets. Something had to be done.

Atmel’s solution to this was to create a limited number of series (named A – E) for their new

ATxmega AVR. All devices within a series share a common set of properties and features and thus

part of the datasheets could be maintained as one per series. The device-specific data remains in one

datasheet per device type, which is why ATmega has one datasheet and ATxmega two.

Atmel also took the opportunity to bring order to the I/O register layout. Central to ATxmega is the

“module”. I have failed to find an exact definition, but (29) 35 seems to call every separate function of

the device a module. I pragmatic view is that whatever needs to be controlled resides in an adjoined

set of registers that together constitute a module, exactly defined by a module type. Some functions

exist in more than one instance and each one is internally exactly like the other modules of the same

type. The instances are often(?) (always?) placed at an equal distance from the previous one. This

means that you can access a particular I/O register by:

1. Finding the base address of the first instance

2. Adding (a multiple of) the inter-module offset to find the base address of the instance

3. Based on the module type definition (struct), find the memory pointer displacement

32

 http://www.atmel.com/Images/doc7925.pdf
33

 http://www.atmel.com/Images/doc7926.pdf
34

 http://www.atmel.com/Images/doc8169.pdf
35

 Available from: http://www.atmel.com/Images/doc8075.pd

18

Figure 5: Module types, instances, registers, and bits

(The figure above is based on “AVR1000: Getting Started Writing C-code for XMEGA” (29) , p2)

19

4 Presentation of the IDEs

4.1 BASCOM-AVR

BASCOM-AVR is an IDE developed by a small Dutch company called MCS Electronics. It is designed for

procedural programming in a Basic dialect similar to Visual Basic 6, henceforth referred to as VB. You

can also use inline assembly intermixed with your high-level code or you can define your own

assembly subroutines and functions. (A Basic subroutine is the same as a C void function.)

Figure 6: BASCOM-AVR developer view with a configuration code example

The concept of built-in commands is fundamental. They are hand-written assembly routines with the

necessary auxiliary code for handling parameters and return values. There are commands both for

configuration (like in the above screen dump) and subs/functions. The complete program is a

stichwork of these hand-optimized commands and the non-optimized VB application code that

“uses” and inter-connects them.

The company focused on functionality and ease of use, rather than ultimate performance (appendix

A.1.1), which means that it doesn’t have an optimizing compiler. There is support for most common

microcontroller peripheral types out of the box. In the following screen dumps from the online help

(30) 36 you get a glimpse of extended UART configuration command options, some code samples, and

additional information. There’s currently around 220 entries in the language reference, which gives a

rough estimate of the number of built-in commands.

BASCOM-AVR has a simulator but no debugger. It outputs files that can easily be used for debugging

with Visual Studio 6.

I end this very short presentation with a reference to the “Products” web page for BASCOM-AVR.

Please look here for more details: (31) 37

36

 http://avrhelp.mcselec.com/index.html
37

 http://www.mcselec.com/index.php?option=com_content&task=view&id=14&Itemid=41

20

Figure 7: BASCOM-AVR UART help file examples

21

4.1.1 User forum

The BASCOM-AVR user forum is located at the company’s web site www.mcselec.com. (32) 38 It is

active and a good place to get in touch with both employees and independent developers. Apart

from posting in the forum, users can also share working code and publish application notes that

typically present a complete design or a major piece of code.

4.1.2 Price

There is a free version (usually lagging some releases) that supports almost all features up to 4 kB of

compiled code. The full commercial version costs €89 at the company’s web site.

4.2 Atmel Studio 6

Atmel Studio 6.x is the company’s second release based on Microsoft Visual Studio. It has support

not only for all 8-bit AVRs, but also for AVR32 and Atmel’s ARM devices. At its heart is AVR-GCC (Gnu

Compiler Collection), which has a powerful optimizing compiler. I won’t go into AVR-GCC, but you

can find detailed information about it here: (33) 39 (34) 40

Two other useful documents are:

The GCC (GNU Compiler Collection) manual on optimization options (35) 41

The AVR-Libc manual (36) 42

Figure 8: Atmel Studio 6.1 developer view

In Atmel Studio you can develop in Assembly, C, and C++. For detailed information, please see the

Atmel Studio 6 web site: (6) 43

38

 http://www.mcselec.com/index2.php?option=com_forum&Itemid=59
39

 http://gcc.gnu.org/wiki/avr-gcc
40

 http://www.avrfreaks.net/wiki/index.php/Documentation:AVR_GCC/AVR_GCC_Tool_Collection
41

 http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#Optimize-Options
42

 http://www.nongnu.org/avr-libc/user-manual/

22

You can simulate your program in either high-level or disassembly mode and you can also attach a

debugger to your development board / custom PCB and verify real program behavior:

Figure 9: Atmel Studio 6.1 debugging

ASF (Atmel Software Foundation, formerly AVR SF) is a repository for standardized drivers and

example projects that demonstrate some Atmel Evaluation kit feature.

Figure 10: ASF Wizard in Atmel Studio 6.1

43

 http://www.atmel.se/microsite/atmel_studio6/

23

Figure 11: ASF online documentation example (quickstart guide)

24

For more information, please see the following two documents:

“AVR4029: Atmel Software Framework - Getting Started” (37) 44

“AVR4030: AVR Software Framework - Reference Manual” (38) 45

4.2.1 History: AVR Studio 4 & 5, WinAVR, and Eclipse

Please see appendix A.5.3 for information about Atmel Studio 6’s history that might shed some light

on its current state.

4.2.2 User forum

Atmel’s main user forum for their AVR offering is www.avrfreaks.net. (39) 46 It is active and a mix of

independent developers and a number of more or less official employees. Users can also create

“projects” that typically contain a working application or a driver.

4.2.3 Price

AVR Studio 4 & 5 and Atmel Studio 6 are free for registered users.

4.2.4 (Inline) assembly documentation

I’m just including these documents here for future reference:

• “AVR Assembler User Guide” (40) 47

• “Atmel AT1886: Mixing Assembly and C with AVRGCC” (41) 48 49

• “AVR000: Register and Bit-Name Definitions for the 8-bit AVR Microcontroller” (42) 50

• “AVR001: Conditional Assembly and portability macros” (43) 51

44

 http://www.atmel.com/Images/Atmel-8431-8-and32-bit-Microcontrollers-AVR4029-Atmel-Software-

Framework-User-Guide_Application-Note.pdf
45

 http://www.atmel.com/Images/doc8432.pdf
46

 http://www.avrfreaks.net/
47

 www.atmel.com/images/doc1022.pdf
48

 http://www.atmel.se/Images/doc42055.pdf
49

 http://www.atmel.se/Images/AT1886.zip
50

 http://www.atmel.com/Images/doc0931.pdf
51

http://www.atmel.com/Images/doc2550.pdf

25

5 BASCOM-AVR analysis
I started with a previously developed piece of BASCOM-AVR VB code used for serial communication

between a PC monitoring application and an AVR microcontroller. I first did most of the development

on the ATmega and then added the ATxmega with conditional compilation.

5.1 Serial communication analysis test log

5.1.1 VB high-level code implementations

Please note: The original disassemblies were made on versions with "Config Com1 = 15625..." and

without "Config Portd.0" = "Input and Config Portd.1 = Output". The comments are on ATmega324A.

In this section, all code sizes are in bytes.

Step

Atmega

324A

ATxmega

128A1 Action Comment

BA1a 1006 1720

Local variable Uartsendbyte in Sendpollport

sub and Senderror sub.

Printbin command used for each USART

sending

BA1b 956 1670

Global variable Uartsendbyte.

Printbin command used for each USART

sending

Simply by using a global variable instead of a

local one, we save 50 bytes of compiled code

(5%). See disassembly

BA2_324_dis_.dump_b.txt, ReceiveSerial sub,

for the operations concerning creating three

local variables on the frame and pointers to

them on the software stack. (And, at the end

of the sub, the frame and software stack

pointers must be restored.)

BA1c 938 1670

Changed

Config Com1 = 15625 , Synchrone = 0 ,

Parity = None , Stopbits = 1 , Databits = 8 ,

Clockpol = 0

to

Config Com1 = Dummy , Synchrone = 0 ,

Parity = None , Stopbits = 1 , Databits = 8 ,

Clockpol = 0.

Global variable Uartsendbyte.

Assumingly this change removes the duplicate

mentioned further down in BA2.

BA2 896 1596

Created gosub Prbin for Printbin command.

Global variable Uartsendbyte.

Moving the Printbin commands used for each

byte to a gosub with a common Printbin

command saves us another 42 bytes.

Figure 12: BASCOM-AVR iterations 1-2

Before we continue, let's take a look at the BA2 ATmega 324A disassembly:

• The actual program starts at 0x7C (after the interrupt vector). By default, an initialization

phase is run:

• It sets the stack pointer to the end of RAM.

• Register Y (pair R28 & R29) is used as the software stack pointer.

• Pair R4 & R5 is used as the frame pointer.

• Register MCUSR (reset flags) is cleared except for WDRF (watchdog refresh).

• Watchdog is disabled.

• The entire internal SRAM is cleared (zeroed). This means that all global variables are

automatically initialized to 0, so my current sub Initialization is unnecessary.

This initialization can be omitted by using $NOINIT at the beginning of the .bas file.

26

Then follow the setup of USART0, clearing of special register R6, and enabling of RX0 interrupt. For

some reason the USART0 setup is done twice. According to the datasheet (p180) (19) 52, this

shouldn't be necessary. (This turned out to be a programmer mistake, partly due to incomplete

documentation. See comment on BA1c above.)

Apart from the clearing of the global variables in sub Initialization, I was surprised to see that the

compiler clears R24 for each and every variable. The same can be seen at the beginning of the

Receiveserial sub. A similar case is 0x17C & 0x17E vs. 0x182 & 0x184.

Another peculiarity is that the compiler doesn't check if the jump destination is another jump (e.g. in

nested if statements). See the main program loop and the Receiveserial sub.

The routines at 0x30A to 0x30E and 0x31C to 0x324 are not used. They are probably part of

frequently used code that's included in one standardized package for simplicity. I’ll come back to

them at the end of the BASCOM-AVR analysis and subtract their size from the final comparison.

It is worth noticing that turning optimization on produces no code size difference in the BA2 code. It's

still 896 bytes. I didn't disassemble to see if there are code changes.

Let’s try using array-based sending instead of byte-wise sending:

Step

Atmega

324A

ATXmega

128A1 Action Comment

BA3 880 1580

Changed from global Uartsendbyte to global

Serialoutdata(20) array and Serialoutcount.

Subs Sendpollport and Senderror fill this

array, update the counter, and finally make

one call to Prbin.

Now the Prbin gosub contains the following

command:

Printbin #1 , Serialoutdata(1) ,

Serialoutcount

At first I couldn't get this to work, neither

using Serialoutcount nor a fixed value (6). I

often got the correct response, but

sometimes several bytes with the value 0. The

correct syntax according to documentation is

with “; Serialcount”, but that would

sometimes send additional bytes.

As the saving with this version would be only

6 bytes (a total of 890) with a 20 + 1 byte

increase in RAM, I didn't look closer into this

until later:

By changing to “, Serialoutcount” it seems to

work properly and the size becomes 880.

Figure 13: BASCOM-AVR iteration 3

As mentioned in the comment, I didn’t continue building on this branch as the RAM increase

surpasses the program code saving.

52

 http://www.atmel.se/Images/Atmel-8272-8-bit-AVR-microcontroller-ATmega164A_PA-324A_PA-644A_PA-

1284_P_datasheet.pdf

27

I next investigated different uses of global and local variables and (byref) parameters:

Step

Atmega

324A

ATXmega

128A1 Action Comment

BA4a 878

BA2 is used as the basis for BA4.

Comment out the initialization of global

variables to 0.

BA4b 862

In sub Receiveserial, omit local Serialwaiting

and use "If Ischarwaiting(#1) = 1 Then".

(10 bytes saved by "If Ischarwaiting(#1) = 1

Then". 6 bytes saved by removing local byte

Serialwaiting.)

BA4c 868

In sub Receiveserial, break out

"Serialdata(receivecounter) = Serialbyte"

and place it in new sub with byref

parameter.

BA4d 836

Convert sub Receiveserial's local Serialbyte

to global Serialbyte and remove the byref

parameter.

BA4e 836 Convert sub Insertserialdata to a gosub.

No change as a parameterless sub is in fact a

gosub.

BA4f 792 1492

Convert sub Receiveserial's local Continue

to global Continue. This is the final BA4 version.

BA4g 830

Added a local Test byte to sub Receiveserial.

This variable isn't used.

We just saw that a local byte requires 6 bytes

of program code, so the "fixed cost" of using

the first local byte is 830 - 792 - 6 = 32 bytes.

As we'll see from the disassembly of BA5, 22

of these saved bytes come from the two

sections that make room on the frame for

local variables, of which 10 refer to unused

code.

Figure 14: BASCOM-AVR iteration 4

We now have a figure for the cost of using local variables, both in terms of an offset and a variable

“fee” for each one. If you want to optimize your BASCOM-AVR development, you should only use

parameters and locals when there is a good reason to do so. This is quite contrary to the general

“rule” of using no global variables at all unless absolutely necessary. I’ll return to this later in this

section.

To proceed, we need to look at improving the structure of the program itself:

Step

Atmega

324A

ATXmega

128A1 Action Comment

BA5a 754

Changed all subs to gosubs.

Revised the main loop and gosub

Receiveserial.

No longer keep the program looping inside

gosub Receiveserial after start token until

end token.

BA5b 748 1444

Removed global Continue.

Removed global Receivedata.

Renamed global Serialdataready to

Serialdatastatus (value 1).

Removed global Serialcommandfound. Its

meaning incorporated in Serialdatastatus

(value 2).

Figure 15: BASCOM-AVR iteration 5

At this point, I assumed that BA5b 748 is the furthest I could improve this code without resorting to

even more exotic programming. (It turned out I was very wrong.)

So far I had "only" replaced a while loop with a goto and used global variable aliasing to mimic local

28

variable use at global variable cost. As we saw earlier, the assembly implementation of nested if

clauses end with jumps to the outer if clause's ending jump and so on. This doesn't lead to an

increase in compiled code, but you lose a few clock cycles. This should be taken care of by the

compiler, but it is possible to replace the if-else-end if and Select case-case-case else-end select with

gotos to labels, but I won't do it in VB code for fear of cluttering up the code completely.

Let's sum up:

The interrupt vector takes 124 bytes compiled code. For simplicity's sake, let's say that the default

initialization (except USART setup) takes another 58 bytes. In other words, the application-specific

code starts at 0xB6 (182 dec). The initial (worst) design required 1006 bytes, netting at 824 bytes

application code. BA5b 748 has a net application size of 566 bytes. This is a reduction of (824 - 566) /

824 = 31%.

Now I'll see how much more I can improve this on the assembler level.

5.1.2 Looking for inline assembly improvements to standard BASCOM-AVR funtionality

5.1.2.1 Receiveserial gosub

As mentioned before, nested if clauses result in jump to jump to destination rather than jump to

destination. Three jumps could be modified so they go directly to destination, but this is hardly worth

the conversion into inline assembler. The only real reason to do this would be if it would enable us to

realize a potential saving in Insertserialdata gosub.

5.1.2.2 Insertserialdata gosub

Change to non-autoincrementing (AC 90). This enables removal of the next operation.
0000019C AD 90 ld r10, X+ R10 = global Receivecounter, X post-increment

Remove this: 000001A2 B1 E0 ldi r27, 0x01 ; 1 ...

So long as the entire array SERIALDATA resides within the same RAM address LSB (Least Significant

Byte), this RAM address MSB operation is unnecessary.
000001A6 BB 1D adc r27, r11 ...

Total potential saving: two 1-word operations = 4 bytes. Is it possible to realize this by using inline

assembler? Yes, if we can be sure that R24, X, R10, and R11 can be used freely without pushing and

popping them on the stack.

The Bascom register convention 53 doesn't mention any of these, so we should be safe. (Please see

appendix A.5.1):

Just looking at the compiled code, it seems like Bascom is generally only using / tying up the "other

registers" inside Bascom commands.

53

 Look up ”Mixing ASM and BASIC” at http://avrhelp.mcselec.com/index.html

29

Two examples from the BA2 disassembly's Receiveserial:
 144: 81 e0 ldi r24, 0x01 ; 1 Local Serialbyte on frame

 146: 0e 94 93 01 call 0x326 ; 0x326 ...

??14a: 81 e0 ldi r24, 0x01 ; 1 Local Serialwaiting on frame

 14c: 0e 94 93 01 call 0x326 ; 0x326 ...

??150: 81 e0 ldi r24, 0x01 ; 1 Local Continue on frame

 152: 0e 94 93 01 call 0x326 ; 0x326 ...

 17c: aa 81 ldd r26, Y+2 ; 0x02 X points to local Serialwaiting

 17e: bb 81 ldd r27, Y+3 ; 0x03 ...

 180: 8c 93 st X, r24 Local Serialwaiting = R24 (return from ISCHARWAITING)

??182: aa 81 ldd r26, Y+2 ; 0x02 X points (again) to local Serialwaiting

??184: bb 81 ldd r27, Y+3 ; 0x03 ...

 186: 0c 91 ld r16, X R16 = local Serialwaiting

Similarly, R10 and R11 are only used in the Insertserialdata gosub, so it would seem safe, but how

can we know that this is true?

Please see appendix A.5.1 for user forum postings on this topic. Apparently, BASCOM-AVR could be

seen as a stitch-work of handwritten assembly code blocks (i.e. the commands) interconnected with

compiled VB statements. As far as you stay away from the reserved registers, you don’t have to take

any other precautions when writing inline assembly. It’s only in interrupt routines that you must

remember to save SREG and any used registers to stack. The downside is that the interconnections

are completely non-optimized (e.g. the repeated assignment of the same value to the same register

and the jumps to jumps). It shall be interesting to compare the BASCOM-AVR compiled code to the

one generated by Atmel Studio.

”Mixing ASM and BASIC” in the online help: (30) 54 contains instructions on how you write inline

assembly and creates custom subroutines and functions. You can copy from the assembly versions of

the built-in commands in the LIB installation folder.

5.1.2.3 Assembly improvements to the USART send routines

The ATmega324A datasheet code example uses sbis to check if the USART data register is ready to be

written to.

USART_Transmit:

sbis UCSRnA,UDREn

rjmp USART_Transmit

However, as sbis can only operate on the lowest 0x1F (32) registers, this is actually a typo. In other

words, the BASCOM code is optimal:

USART_Transmit:

lds r0, 0xC0 ; UCSR0A

sbrs r0, 5

rjmp .-8 ; USART_Transmit:

If we want to keep the current USART send functionality, there are no possible improvements to the

BASCOM commands. If we are prepared to alter the functionality, we could write the entire USART

send code as custom inline assembly. This will be done in versions BA7 and BA8, but first another

high-level language improvement:

54

 http://avrhelp.mcselec.com/index.html

30

5.1.3 Sendpollport and Senderror gosubs, Prbin command

I thought that the Printbin command doesn't support an absolute parameter value, as this isn't

mentioned in the documentation. (Only variable-based parameters are covered.) However, as I

thought that Sendpollport, Senderror, and Prbin would be great candidates for custom assembly, I on

a whim decided to try using Printbin with an absolute value. Judging by the disassembly, it looks like

this works, which brings us to BA6:

Step

Atmega

324A

ATXmega

128A1 Action Comment

BA6a 730 1444

Remove Prbin gosub.

Change Sendpollport and Senderror like

this:

Sendpollport:

 Printbin #1 , 254

 Printbin #1 , 242

 Uartsendbyte = 1

 Printbin #1 , Uartsendbyte

 Uartsendbyte = 2

 Printbin #1 , Uartsendbyte

 Uartsendbyte = 3

 Printbin #1 , Uartsendbyte

 Printbin #1 , 255

Return

Senderror:

 Printbin #1 , 254

 Printbin #1 , 251

 Printbin #1 , 255

Return

(Net use 730 - 182 = 548). Saving: (824 - 548) /

824 = 33.5%.

Step

Atmega

324A

ATXmega

128A1 Action Comment

BA6b 724 1444

Bring Prbin back in:

Sendpollport:

 Printbin #1 , 254

 Printbin #1 , 242

 Uartsendbyte = 1

 Gosub Prbin

 Uartsendbyte = 2

 Gosub Prbin

 Uartsendbyte = 3

 Gosub Prbin

 Printbin #1 , 255

Return

Senderror:

 Printbin #1 , 254

 Printbin #1 , 251

 Printbin #1 , 255

Return

Prbin:

Printbin #1 , Uartsendbyte

Return

(Net use 724 - 182 = 542). Saving: (824 - 542) /

824 = 34.2%.

Figure 16: BASCOM-AVR iteration 6

Note that the ATxmega code remains 1444 while the ATmega code shrinks from 748 to 724. It seems

that the implementations differ.

31

5.1.4 Custom USART inline assembly send functionality

Step

Atmega

324A

ATXmega

128A1 Action Comment

BA7 688 1364

Send data one byte at a time, either from a

global byte variable or from r24.

In the odd event that array data should be

sent, it should use additional inline

assembly like so:

LOADADR Serialdata0, X ' Load start

address of Serialdata0 array into register

pair X

ld r24, X+ ' Load the value of this

address into r24 and post-increment X

rcall Senduart0b ' Send the byte in r24

Figure 17: BASCOM-AVR iteration 7

For some reason, we save 36 bytes on ATmega324A but 80 bytes on ATmega128A1. Could this be

because the use of hardcoded registers in the custom assembly code avoids using lots of address

calculations necessary for the new ATxmega addressing scheme?

5.1.5 Custom USART inline assembly receive functionality

Serial communication is driven from the PC, in the form of request-response. For this reason, there

should never be more than one message in the serial buffer at any one time. This means that the

serial buffer doesn't have to be circular and that there is no need for copying out the message to a

separate array.

BASCOM-AVR’s circular buffer error handling in the interrupt routine only sets r6 bit 2 on error, after

which it silently discards the overflowing byte and leaves the interrupt routine. This doesn't seem to

be documented, so it's only after disassembly and additional r6.2 handling in the main loop that

"buffer full" error could be handled.

Step

Atmega

324A

ATXmega

128A1 Action Comment

BA8a 484 1080

Use status flag Serialbuffer0status to

indicate "message being processed". In case

a new message comes in while this is set,

the interrupt routine calls Senderror and

then resets.

BA8b 464

No error handling. (Just to compare the

sizes.) 100% stable, but error handling is nice. ;-)

Figure 18: BASCOM-AVR iteration 8

32

5.2 BASCOM-AVR summary #1

Step

ATmega

324A

ATxmega

128A1

v2.0.7.6

ATxmega

128A1

v2.0.7.7 Action Comment

BA1a 1006 1720 1676 Worst VB-only implementation

BA6b 724 1448 1410

Best VB-only implementation with the use

of global variable aliasing to mimic local

variable, goto-based loop, and

undocumented Ischarwaiting syntax.

(Net use 724 - 182 = 542). Saving:

(824 - 542) / 824 = 34.2%.

BA7 688 1364 1330

BA6b with custom inline assembly send

routine.

(Net use 688 - 182 = 506). Saving:

(824 - 506) / 824 = 38.6%

BA8a 484 1080 1030

BA7 with custom protocol-bound inline

assembly receive routine, including error

handling.

(Net use 484 - 182 = 302). Saving:

(824 - 302) / 824 = 63.3%

Or: (542 - 302) / 542 = 44,3%

compared to best VB-only version

BA6b.

Figure 19: BASCOM-AVR iteration summary #1

For ATmega324A, I was able to reduce the actual program code (excluding interrupt vector and

default initialization) by 34% just by improving the VB code. As mentioned, I am using a few tricks

that might be frowned upon, but even without these there’s significant room for improvement

without resorting to inline assembly.

On top of this, another 44% reduction in code size was possible by replacing BASCOM commands and

“ordinary” VB serial handling routines by custom inline assembly send and procotol-bound receive

routines. Let’s look at the pros and cons:

Pros:

• A whopping reduction in size (a total of 63%). I didn’t count the decrease in clock cycles, but

since the size reduction doesn’t come from removing loop unrolling or other techniques that

favor speed over size, it is most likely that it also has a significant impact on processing time.

• Full error handling.

Cons:

• It (especially the receive handling) is now application-specific and protocol-bound. The

tokens for message start (254) and end (255) are central to the receive interrupt routine.

• It took several hours (somewhere between 8 and 16) to implement.

Much of the assembly development time was general platform and architecture learning, that only

has to be done once.

Please note that the serial handling is probably a special case. Judging by the disassembly of the

BASCOM-AVR commands, they are well written with respect to the fact that they are general-

purpose. This big reduction was only possible by making this functionality very strongly tied to this

protocol. It is not very likely that I could repeat this in (many) other parts of the functionality.

It is also worth noticing that we can use almost the same code for ATmega324A and ATxmega128A1.

Apart from the need to change register names, the only real difference is in clock setup and interrupt

33

enabling. That said, I am surprised to see that the ATxmega uses so much more program code than

the ATmega:

Architecture Interrupt vector Total code excl IV

BA1a BA6b BA7 BA8a

ATmega324A 124 882 600 564 360

ATxmega128A1 v2.0.7.6 ~512 1208 936 852 568

Difference, ATx bigger by ~388 B 326 B 336 B 288 B 208 B

Difference, ATx bigger by

37.0% 56.0% 51.0% 57.8%

ATxmega128A1 v2.0.7.7 ~512 1164 898 818 518

Difference, ATx bigger by ~388 B 282 B 298 B 254 B 158 B

Difference, ATx bigger by 32.0% 50.0% 45.0% 43.9%

Figure 20: BASCOM-AVR code size differences

(The v2.0.7.7 data will be explained later.)

I hadn’t expected that the ATxmega would require so much more code to do exactly the same thing.

It’s not that I had reason to believe otherwise, I just think that not very many people have looked

upon it like this. Atmel Sweden's tech support Marcus Woxulv said (very generally) that “developers

demand bigger program flash”(44). This could be one reason. Even with all exotic code maneuvers,

the smallest ATxmega is still bigger than the biggest ATmega implementation.

At this point, I had only tested and disassembled the ATmega324A code. Part of the ATxmega128A1

code consists of default initialization, which should rather be seen as part of the “offset” than the

dynamic code. The question was if the actual ATxmega program code is also bigger than the ATmega

counterpart and if so: Why?

I disassembled the ATxmega version BA6b and looked at the reasons for this difference. I knew

beforehand that ATxmega’s larger register space requires a greater fraction of LDS/STS operations. I

also knew that ATxmega’s new device addressing scheme with an individual offset into identical

register structures makes it possible to use the same code block (together with the offset) to service

more than one hardware device. I assumed that the address calculations and operations are code-

intensive, but I had to disassemble and see.

34

5.3 Why is the ATxmega code so much bigger?

5.3.1 Initialization

The ATmega BA6b disassembly shows that the initialization takes 50 words.

The BASCOM ATxmega initialization takes 78 plus a call to shared code for USART register start

calculation and register writing at 19 words = 97 words. Part of this is a few extra words for the more

complex ATxmega system clock, but much of it refers to dynamic addressing:

Please see appendix A.6.1 for the ATxmega BASCOM-AVR v2.0.7.6 compiled code for USART setup.

Total code size for one port: 32 words.

• Initialization 13 words (one set per serial port)

• USART setup 11 words (one set if serial ports are used)

• USART address calculation 8 words (one set if serial ports are used, shared with USART

writing routine as shown in the next section)

This is surprising. It’s a lot of operations just to write to five registers. In appendix A.6.2 you can see

how it scales. That code must be added if you want to set up a second serial port identical to the first

one. It adds 8 words, so the total cost is 13 + 8 + 11 + 8 = 40 words. If you want to set the second port

differently, the additional cost is up to 13 (instead of 8) words.

Let’s write our own USART setup with exactly the same functionality (appendix A.6.3). The total code

size is 13 words, one set per serial port.

How does it scale (appendix A.6.4)? The total cost for setting up two serial ports: 7 * 2 + 9 = 25

words.

We end up with the following list:

• Dynamic addressing one port: 32 words (of which 24 are setup-specific)

• Dynamic addressing two identical ports: 32 + 8 = 40 words

• Dynamic addressing two different ports: 32 + 13 = 45 words

• Static addressing one port: 13 words

• Static addressing two identical ports: 7 * 2 + 9 = 25 words

• Static addressing two different ports: 13 * 2 = 26 words

This is even more surprising. Dynamic addressing starts off worse and scales the same or slightly

worse than static addressing. Remember that this is just the code size. The performance loss is

significant, as will be seen in a while.

Let’s continue with the USART sending on one port. Appendix A.6.5 contains the ATmega original

disassembly; Total words: 26.

Appendix A.6.6 holds the ATxmega original disassembly; Total words: 46.

Both the ATmega and the ATxmega codes only operate on two physical registers (UCSR0A & UDR0 /

USARTE1_STATUS & USARTE1_DATA). The main reason why the ATxmega code is bigger is because it

uses dynamic addressing. When using only one serial port, this causes roughly a doubling of the code

size.

35

Here I must mention that I chose to analyze USART sending for its simplicity. At this point, I didn’t

consider the fact that when sending (multiple bytes of) serial port data, most of the processing time

will be spent busy-waiting for the previous byte to leave the output buffer, which means that the

clock cycle count reduction will result in a very tiny runtime improvement. However, reading data

from the instance’s circular buffer (using commands “Ischarwaiting(#1)” and “Inputbin #1 ,

Serialbyte”) will not involve busy-waiting, so it is most likely that the (assumed) decrease in that code

size would show a similar significant runtime decrease, although I didn’t have time to analyze that.

Generally speaking, so long as the application doesn’t have to busy-wait for a HW peripheral, the

code size reduction should be accompanied by a runtime improvement by migrating from dynamic to

static addressing. In that sense, the figures should still be a good illustration of the behavior in

situations where the clock cycle count reduction actually leads to a performance increase.

Clarification 1: Clock cycle count and busy-waiting (above)

Let’s scale to two serial ports sending one constant and one variable through two different ports. The

one-port code is the actual BASCOM-compiled one, but in order to make it more fair, I have made

small adjustments. Please see appendix A.6.7 for the modified ATmega code for two serial ports. Its

total size is 47 words.

5.3.2 Modified ATxmega for two serial ports

BASCOM-AVR is slightly less efficient than the code below, as can be seen in the BA6b disassembly

(appendix B). I moved the ST -Y,R23 operation that puts R23 on the stack from address 1B3 to label

__USART_b1, so that it will only be included once. This was done in order to make it fairer for the

ATxmega, i.e. so that no part of the difference between static and dynamic addressing could be

explained by inefficient implementation. (This is only relevant for static addressing and hence only

occurs for ATxmega in the version of BASCOM-AVR I was analyzing.)

Please see appendix A.6.8 for the code that requires 55 words. Each new serial port adds 10 words.

All of these 10 are “variable”, in the sense that they “cost” this much for each “use”.

5.3.3 Modified ATmega for three serial ports

This code can be found in appendix A.6.9, amounting to 27 + 9 + 3 * 10 = 66 words. Each new serial

port adds 9 + 10 = 19 words. Of these, 10 are “variable” with actual “use” in the VB code.

So, with my sample code, at three serial ports the two addressing modes are just about the same

code size. (ATmega at 66 and ATxmega at 65.) Based on the above code modifications, the following

table and graph emerge:

Code size, words (1 word = 2 bytes):

serial ports 0 1 2 3 4 5 6 7 8

Dynamic addressing 28 46 55 65 75 85 95 105 115

Static addressing 12 26 47 66 85 104 123 142 161

Actual/Modified M A M M M M M M M

Table 4: Code size extrapolation (Actual = data from real disassembly, Modified = data from original disassembly re-

written for more ports and (where specified) minimal code size. See 5.3.2.)

36

Figure 21: Serial port scaling

Just looking at these, it seems like the dynamic addressing “wins” after 3 serial ports. By using

dynamic addressing, we reduce the code size at eight serial ports by (161 - 115) / 161 = 28.6%.

However, it’s not just the program code size that we’re interested in. We also want to see the

performance consequences. Let’s do a small cycle count on a part of both of the modified two-port

samples (but please note Clarification 1):

Printbin #1, 254 - dynamic addressing, best case:

1+1+3+2+1+1+2+1+1+1+2+1+1+4+2+1+2+2+1+2+2+4=38 cycles.

Printbin #1, 254 - static addressing, 1st port used, best case:

1+1+3+1+1+2+2+2+4=17 cycles. (Dynamic addressing requires 38 / 17 = 124% more clock cycles.)

Printbin #1, 254 - static addressing, 8th port used:

1+1+3+1+2+1+2+1+2+1+2+1+2+1+2+1+2+2+2+2+4=36 cycles.

With static addressing and 8 ports, the average clock cycle count would be (17 + 36) / 2 = 26.5.

(Dynamic addressing requires 38 / 26.5 = 36% more clock cycles.)

With static addressing and 3 ports, the average clock cycle count would be (17 + 23) / 2 = 20.

(Dynamic addressing requires 38 / 20 = 90% more clock cycles.)

In this example, dynamic addressing leads to a remarkable increase in the number of clock cycles for

exactly the same functionality. This is largely “variable” with actual “use” (meaning the number of

times the VB commands are used in the program). It turns out that some of this is due to the

BASCOM-AVR implementation. Please see 5.3.4 for an improved version.

The above is for sending either a single byte or a byte-sized constant. To enable byte array sending,

an additional gosub with a few statements would be necessary, equal for ATmega and ATxmega, so it

doesn’t change the comparison in absolute numbers.

28

46
55

65
75

85
95

105
115

12

26

47

66

85

104

123

142

161

0

20

40

60

80

100

120

140

160

180

0 1 2 3 4 5 6 7 8

Dynamic addressing

Static addressing

37

I should point out that several of the instructions used for the sample code have a better

implementation in the ATxmega than in the ATmega. (Appendix A.4.3.)

5.3.4 Improved ATxmega dynamic addressing for two serial ports

The BASCOM-AVR implementation in 5.3.2 is not optimal: The Printbin command (at label --USART_a

and onwards) first loads (and autoincrements) the X pointer and then calls the send routine at label -

-USART_b, that calls label --USART_c for module instance address calculation before sending. This is

repeated for each array byte, which seems quite unnecessary as the entire array is sent through the

same instance.

So, I decided to rewrite the 5.3.5 disassembly (using “MS Word assembly”) in order to see if I could

reduce its size and / or clock cycle count (appendix A.6.10): Total words: 46. This is 9 words less than

the BASCOM-AVR implementation. Each new port adds 10 words. Please note the extra requirement

placed on the compiler by the __Prbin_gosub.

We have achieved 2-port dynamic addressing at the same program size as static addressing (or

slightly worse if you play safe with the compiler requirement mentioned above). Furthermore, the

serial port base address is only calculated once per transfer.

Printbin #1, 254 improved addressing:

1+1+3 +1+1 +1+1 +1+1+2+1+1+ 2+ 3+2+1+1+1 +2+2+4 = 33.

This is 5 clock cycles less than the BASCOM-AVR implementation but 33 - 26.5 = 6.5 more than the 8-

port average for static addressing. (Again, please note Clarification 1.)

5.3.5 Investigating hardware-based port address lookup

I thought about adding hardware support for address lookup. In the above solution, the last six of the

appendix A.6.10 instructions in italic (or perhaps optionally even the two first) could be replaced by

one new instruction as described in the summary chapter.

Assuming that it could (like LDD) be constructed so that it requires only 1 instruction word, the 2-port

USART sending routine above could be reduced to 41 words. Compared to the static addressing

version that takes 47 bytes, it’s quite ok. Given that each peripheral module has its “italic” address

calculation code that could hereby be removed, we would be looking at a total code size reduction of

(5 or 7) * (the number of different peripherals we’re using) words.

However, assuming that the new instruction “block” should use a maximum of 2 clock cycles (LD to

r24 and the new read instruction), the above example would at most amount to 1+1+3 +1+1 +1+1

+2+ 2+ 3+2+1+1+1 +2+2+4 = 29 clock cycles. This is only a (33-29)/33 = 12% reduction compared to

code-based calculation, but at least we’re getting close to the 8-port static addressing average 26.5.

Perhaps other peripherals require more than two register operations per “run”. In that case, the

fraction of “overhead” generated by address calculation would be slightly less. Nevertheless, it’s

clear that dynamic address calculation significantly increases the number of clock cycles compared to

static addressing, even with hypothetic tailor-made hardware support. When sending one byte

constant using only one serial port, dynamic hardware-based address lookup requires 29/17 = 70%

more clock cycles than static addressing. The 5.3.7-improved dynamic code-based address

calculation requires 33/17 = 94% more.

38

While the improvement might be too small to justify a hardware address lookup table, it has one

other advantage: It would enable a uniform programming style for both ATmega and ATxmega (and

AVR32 and ARM?).

5.3.6 Improvements from 2.0.7.6 to 2.0.7.7

I posted a question in the BASCOM-AVR forum about the possibility to use the interrupt vector

program code area for regular code. (45) 55 As a result of this, version 2.0.7.7 includes an

unsupported setting ($reduceivr) that places the regular program code just after the last used

interrupt’s address rather than after the end of the entire interrupt vector. This saves 724 - 684 = 40

bytes on the current ATmega324A code for BA6b and 1410 - 1278 = 132 bytes on ATxmega128A1.

While this is a nice feature, I haven’t included this saving in my program size measures simply

because that would hide part of the ATxmega inefficiency in the actual program code.

When I was finalizing the work with BASCOM-AVR, I e-mailed Mark Alberts, the owner of MCS

Electronics that produces BASCOM-AVR, pointing out that the ATxmega compiled code was much

larger than the ATmega compiled code of exactly the same BASCOM-AVR program. The ATxmega

USART initialization in version 2.0.7.7 is now using exactly the same code as I sent him (appendix

A.6.11).

In addition to this code size reduction, he discovered some other possible improvements in other

parts of the code. This is the reason why version 2.0.7.7 compiles to smaller size than 2.0.7.6.

5.3.7 How big is the initialization code?

Please see appendix A.6.12 for the ATmega324A initialization (50 words) and A.6.13 for

ATxmega128A1 (75 words).

In other words, for the BA6b code, I had expected the ATxmega size to be close to 512 - 124 + 724 +

(75 – 50) * 2 = 1162 bytes. The 2.0.7.6 version compiles to 1448 and 2.0.7.7 compiles to 1410 bytes.

As mentioned before, 2.0.7.6 is using address calculation for USART initialization and sending, while

2.0.7.7 is using static addressing for initialization and address calculation for sending.

5.3.8 Other compiled code that’s unused by the test application

Apart from the device-specific initialization and the actually utilized program code, BASCOM-AVR

also adds pieces of code that I suppose is generic, “frequently used” code and therefore always

includes it. This section was compiled with v2.0.7.7.

Common to both architectures (and identically implemented):

• Delay

• Set error bit in R6

• Clear error bit in R6

The size of this is 9 words (18 bytes).

After looking at the ATxmega disassembly, I realized that I had missed the fact that devices with

more than 64 kB program memory require additional MSB bit(s) for addressing. This doesn’t affect

55

 http://www.mcselec.com/index2.php?option=com_forum&Itemid=59&page=viewtopic&t=11718

39

the ATmega 324, but it does affect the ATxmega128A1. For this reason, I also compiled the BA6a

version for ATmega1284.

For these two, we have a common piece of code (identically implemented):

• RAMPZ register addressing

Its size is 15 words (30 bytes).

Then there’s a chunk of 45 words (90 bytes) of code that operates on a BASCOM-AVR internal

_XMEGAREG 32 bytes RAM area that I don’t know what it’s for:

• Clear the entire area

• Double a 5-byte number at the start of this area

I have googled and searched the BASCOM forum but found no clue.

• Both ATmega and ATxmega: 9 words (appendix A.6.14.1).

• Only ATmega1284 and ATxmega128A1: 15 words (appendix A.6.14.2).

• Only ATxmega128A1: 45 words (appendix A.6.14.3).

5.3.8.1 Summing up the unused code section

In order to make the comparison fair, I must compensate for the RAMPZ difference in the summary

table. After some consideration, I decided that the ATxmega-specific 32-byte data area handling

should be included as it’s an actual difference compared to the BASCOM-AVR implementation of the

ATmega architecture, but it’s not established that it’s really required by the ATxmega architecture

itself. This is getting messy…

For some reason, the ATmega1284 compilation requires 770 = 132 + 638 bytes in total (compared to

724 = 124 + 630) for ATmega324. Part of the difference is a slightly bigger interrupt vector table and

8 more bytes of compiled program code inside used routines that I haven’t analyzed further. (After

the Atmel Studio 6 analysis, I think that these 8 bytes are ISR RAMPZ stack operations.) The

comparisons between ATmega and ATxmega are still done on ATmega324 (to avoid having to

recalculate all the data). As you can see in the table below, it doesn’t make much of a difference:

Architecture IV table Total code excl IV, bytes

BA1a BA6b
BA6b+RAMPZ BA6b+RAMPZ-

_XMEGAREG
BA7 BA8a

ATmega324A 124 882 600 630 630 564 360

ATmega1284 132 638 638

ATxmega128A1 v2.0.7.6 ~512 1208 936 852 568

Difference, ATx bigger by ~388 B 326 B 336 B 288 B 208 B

Difference, ATx bigger by

37.0% 56.0% 51.0% 57.8%

ATxmega128A1 v2.0.7.7 ~512 1164 898 898 808 818 518

Difference, ATx bigger by ~388 B 282 B 298 B 238 B 178 B 254 B 158 B

Difference, ATx bigger by 32.0% 50.0% 42.5% 28.3% 45.0% 43.9%

Figure 22: BASCOM-AVR total code size comparison

40

Even when compensating for RAMPZ and excluding the 32-byte BASCOM-AVR ATxmega data area,

the ATxmega still compiles to about 28% bigger for exactly the same functionality. I suspected that

the difference is caused mostly by the following:

• Bigger initialization code due to ATxmega having a more complex architecture

• Dynamic address calculation being more “expensive” than static addressing

• The ATxmega’s bigger register address space leads to a higher fraction of LDS/STS rather than

IN/OUT operations.

The question is: how much of the difference does each of the above cause? As we saw in the

previous subsection, the ATmega initialization is 50 words and the ATxmega is 75 words. A quick look

at the datasheets tells us that the lowest ATmega324 USART register is placed at 0xCE (206) and the

ATxmegaA1 at 0x8A0 (2208). So, no IN/OUT instructions are used, which means that the entire

remainder of 178 - (75-50)*2 = 128 bytes are due to the difference between static and dynamic

addressing.

In other words, after compensating for initialization, RAMPZ, the zero effect of IN/OUT vs LDS/STS,

and unused generic code, an additional 128/630 = 20% of code is the consequence of the different

programming styles.

(Adjustment: After the Atmel Studio ISR analyses, we know that the static ATxmega128A1 ISR is 10

words bigger than the ATmega3241’s, due to the use of RAMPD and RAMPZ. The S&P ISR is 14 words

bigger as it also requires RAMPX for ATxmega128A1. This doesn’t have a significant effect - the 20%

above becomes 17%.)

5.4 Generalization

To what extent is this result generally valid? Or, is this just an unfortunate coincident in the

otherwise successful use of dynamic addressing?

I can hardly see how you can get around the performance issue but dynamic addressing should scale

size-wise comparably better when you are working with a (larger) series of sub-register operations

than our two (status and data) registers.

I think that it is safe to say that whole-hearted conformance to a specific ideal or concept runs the

risk of losing focus of what is really important, in this case both code size and performance. Here I

would use a mix of static and dynamic addressing, probably leaving it up to the programmer to

decide which scheme the compiler should use. However, it is expensive to develop and support

multiple ways to do the same thing. Unless the users demand efficient code, it is just an additional

cost for the IDE developer.

41

5.4.1 What’s the problem with bigger code and lower performance?

Why do I spend so much time and effort on the addressing topic? Firstly it’s because I set out to

evaluate the two architectures, so a 2:1 performance difference is too big to overlook. On the other

hand, it’s probably still not noticeable in any of my designs. I guess this fact is true for many (most?)

other designs as well.

However, I strongly believe in making informed decisions. This is the difference between dabbling

and being a professional. By properly understanding the basics, you become a better programmer.

Disregarding work ethics, If for example you are using the current version (2.0.7.7) of BASCOM-AVR

on ATmega644 running at 20MHz with 64kB program code and you want to change it to an ATxmega,

you will need to buy the next bigger program flash size and clock it significantly faster if you want it

to act the same.

The ATxmega is a more powerful and complex design. This means that initialization needs more code

(with this sample code roughly 50% more) and that a greater fraction of the instructions must use

the “bigger” LDS and STS instructions instead of IN and OUT. On the other hand, some instructions

require fewer clock cycles in ATxmega than in ATmega, so the ATxmega could actually run general

application code roughly as fast at the same clock frequency. The additional RAMPD/X/Y/Z and EIND

registers on ATxmega128A1 incur an additional cost, but probably (almost) only for ISRs.

The big BASCOM-AVR difference comes from the choice between static addressing and dynamic

address calculation.

42

6 Atmel Studio 6.1 2562 using ASF3.13.1 code analysis

6.1 Optimization primer

There are five pre-defined optimization levels:

Figure 23: AVR-GCC optimization levels

The GCC online docs has a manual page on optimization. (35) 56 There are many options (flags), but

basically -O1 does optimizations that don’t “take a great deal of compilation time”, -O2 does “nearly

all supported optimizations that do not involve a space-speed tradeoff”. -O3 is roughly -O2 with

speed optimization (that might increase code size) and -Os is the parts of -O2 that “do not typically

increase code size”. It “also performs further optimizations designed to reduce code size”.

6.2 ATmega324A analysis

6.2.1 Getting the base serial port routines in place

Figure 24: ASF wizard for ATmega324A (showing the available modules)

56

 http://gcc.gnu.org/onlinedocs/gcc-4.8.2/gcc/Optimize-Options.html#Optimize-Options

43

I begun by creating a new project, C/C++, User-Boards, User Board template - megaAVR

ATmega324A. The User Board template includes the Interrupt management driver and CPU specific

features. AS1 started as an empty project that compiled to 156 bytes program code (text) (-O1). It

contains a 124 byte interrupt vector, proceeds with clearing R1 and SREG, sets SP via Y, calls

board_init(), clears R24 and R25 (W), disables global int, and does eternal loop.

Then I added the "System Clock Control (service)" using ASF Wizard and made the following

additions:

In board_init(): call sysclk_init();

In conf_clock.h: change to

#define SYSCLK_SOURCE SYSCLK_SRC_XOC16MHZ

#define CONFIG_SYSCLK_PSDIV SYSCLK_PSDIV_1

AS1 now compiled to (bytes text):

362 text, ? bss (-O0)

192 text, ? bss (-O1)

190 text, ? bss (-O2)

190 text, ? bss (-O3)

190 text, ? bss (-Os)

It also shuts down the peripherals (PRR0 and PRR1, Power Reduction Registers to 0xFF): "Since all

non-essential peripheral clocks are initially disabled, it is the responsibility of the peripheral driver to

re-enable any clocks that are needed for normal operation." (46) 57

Then it reads SREG, writes 0x80 and then 0x00 to CLKPR (CLocK PRescaler register) to set prescaler to

1, and restores SREG.

This is about as far as I can go when developing my ATmega test program using Atmel Studio 6.1 and

ASF 3.13.1. It has interrupt handling code but no USART driver. (It does have IOPORT, ADC, delay, and

calendar functionality.) I therefore looked at application note AVR306 (47) 58 59 that has USART code

samples for AT90S8515 and ATmega128, both polled and interrupt-based with circular buffer.

ATmega128's USART is almost identical to ATmega324. For ATmega324, register UCSRnC.7 must also

be set (or cleared).

The application note is fairly valid, even though it was released in 2002 for what I suspect is the IAR

Systems compiler. I had to update the SEI instruction call and the interrupt handler syntax, which was

quite simple.

The basic serial port routines without base-2 requirement and without overflow protection:

315 text, 18 bss (-O1). Please note that this isn’t functionally equivalent to the BASCOM-AVR built-in

interrupt handler that discards overflowing USART characters with an R6.2 error flag.

The basic serial port routines with base-2 requirement and without overflow protection:

298 text, 18 bss (-O1). This is the version closest to the application note code.

57

 http://asf.atmel.com/docs/3.13.1/mega/html/group__sysclk__group.html
58

 http://www.atmel.se/Images/doc1451.pdf
59

 http://www.atmel.com/images/avr306.zip

44

Before proceeding, I did some rearranging and cleaning up of the application note code. The

appendix AS1a code and disassembly don't re-initialize the global variables to zero:

290 text, 17 bss (-O1)

6.2.2 Early impressions of Atmel Studio 6.1 and ASF 3.13.1

At this point, I would like to summarize my early impressions of Atmel Studio 6.1 and ASF3.13.1: For

ATmega it seems that the core drivers (and ADC) are available in ASF, while the majority of the

peripheral drivers aren’t included. This is in line with my expectations. I guess Atmel had to prioritize

and decided to make a minimal ATmega ASF implementation (although this assumption is placed in a

different light in the ATxmega analysis later on). The available ATmega ASF parts are a good start and

there’s a very big user base that publishes code samples and asks or replies to user forum questions.

During my research for and writing of the chapter on AVR HW, I found a very satisfying number of

Atmel datasheets, application notes, and marketing material that helped me write the serial

communication routines in a few hours (and later the ASF documentation).

However, I also came across a bit too many dead ASF documentation links to not mention it here.

Please see appendix A.7.1 for a number of screen dumps documenting various ASF issues. Atmel

Studio 6.1 was stable when developing and using ASF but on rare occasions it hang when debugging.

To be fair, much documentation exists and ranges from ok to very good (appendix A.7.2).

There’s also another thing that (at least as a beginner) annoys me about the Atmel driver library: it’s

very difficult to get an overview of which header and code files your project really consists of and is

using, as they form a very big tree of includes within includes within includes... I used this IDE for

about a week in a robot project course half a year ago and then ended up utilizing the ASF library as a

copy&paste sample code repository, into very few custom header and code files. I realize that I have

started doing this with the ATmega test program as well. I fear that this might be a common way of

doing things in the GCC (Gnu Compiler Collection) “world”, but I will keep this in mind when writing

the ATxmega test program.

Except for these issues, my overall impression of developing and debugging in Atmel Studio 6.1 is

good. It takes a long time to install and start up the program but it’s intuitive and very agreeable. I’m

not partial to ASF though, as we will soon discover.

6.2.3 The first version of the test program

With the USART routines in place, I proceeded by translating the rest of the BASCOM-AVR BA6b test

program. (This was the best VB-only version.) Please note that there are two functional differences:

The BASCOM-AVR circular buffer used in the serial port receiver interrupt handler doesn’t have to be

dividable by 2 and it does overflow signaling by setting the R6.2 error bit.

When building the test program I noticed that -O2 and -O3 do performance optimization by inlining

the transmit function:

void USART0_Transmit(unsigned char data)
{
 while (!(UCSR0A & (1<<UDRE0))); /* Wait for empty transmit buffer */
 UDR0 = data; /* Start transmission */

}

45

This compiles to a great many almost identical copies of this:

 while (!(UCSR0A & (1<<UDRE0))); /* Wait for empty transmit buffer */

000000BB 80.91.c0.00 LDS R24,0x00C0 Load direct from data space

000000BD 85.ff SBRS R24,5 Skip if bit in register set

000000BE fc.cf RJMP PC-0x0003 Relative jump

 UDR0 = data; /* Start transmission */

000000BF 82.e0 LDI R24,0x02 Load immediate

000000C0 80.93.c6.00 STS 0x00C6,R24 Store direct to data space

The thing is that there is little point in speed optimizing the wait for sequential asynchronous serial

port transmission. (Please see Clarification 1.) My application uses a 6 MHz system clock and a 15 625

baud rate in asynchronous mode. This equates to 6000 000 / 15625 = 384 system clock cycles per

serial port bit or a minimum of 384 * 9 = 3456 system ticks per received byte with my settings. An

RJUMP (with RET) to a dedicated assembly routine only costs an additional 2 + 5 = 7 clock cycles.

There will still be plenty of turns in the while loop waiting for the previous byte transmission to be

completed, so the performance gain when sending multiple bytes is actually never bigger than these

seven clock cycles. (Two cycles to RJUMP to the dedicated routine the first time, then it’s waiting

until it can send the next byte so the RET and next RJMP don’t matter, and finally it takes five cycles

to do the last RET.)

However, the program code has grown substantially:

-O0 890, 37

-O1 514, 37

-O2 556, 37

-O3 544, 37

-Os 490, 37

Of course the compiler doesn’t know this and it’s a clear sign that you can’t rely on the compiler to

produce optimal code for you.

After changing the declaration of the transmit function to “__attribute__ ((noinline)) void

USART0_Transmit(unsigned char data)” I get the following compilation results:

-O0 890, 37

-O1 514, 37

-O2 476, 37

-O3 470, 37

-Os 490, 37

-O2 has shrunk with 556 – 476 = 80 bytes (14%). I include the new -O3 compilation in the appendix.

Turning my attention to the two smallest compiler results -O1 and -Os (and the previous -O3), I

notice some differences: -O1 contains one more instance of “SerialData[abc] = def;” and “while

(DataInReceiveBuffer())” than the C code has. -Os has the same number of these two statements as

the C code. -O3 has the same number of the first but one more of the second. I suppose that there

are good reasons for this, but the question is how to properly predict the outcome.

It seems to me that professional use of IDEs based on the AVR GCC toolchain requires quite a bit of

knowledge about GCC optimization. Perhaps even then you need to look at disassemblies (or

compiler-generated assembly files) of your compiled code and give the compiler explicit instructions

46

as you move along. How big is the step between this and simply converting (select parts of) your

disassembly to hand-optimized inline assembly (which is what you (in some situations) must do in

BASCOM-AVR if you want efficient code)?

(In certain cases you must give the compiler explicit instructions, as for example writing to a register

and then reading it back will result in the compiler optimizing the read away. It doesn't "know" that

the register value could have changed.)

6.2.4 Making the USART receiver interrupt handler protocol-bound

As there’s no counterpart to the BASCOM-AVR USART send commands, I’m already using a custom

one in my C program. For this reason, I go straight to the program version with protocol-bound

USART receiver interrupt handler corresponding to BASCOM-AVR BA8a at the total size of 484 bytes.

It can be found in the appendix, called AS1c. I also include the disassembly of -Os.

-O0: 742 text, 18 bss

-O1: 418 text, 18 bss

-O2: 414 text, 18 bss

-O3: 412 text, 18 bss

-Os: 412 text, 18 bss

This version isn’t restricted to a 2n buffer size, so they are (almost) functionally equivalent. (A 16-byte

buffer is used for comparison to the restricted versions, while the BASCOM-AVR has a 20-byte buffer.

This only affects the SRAM use.)

Let’s do a rough backward comparison:

6.2.4.1 BASCOM-AVR

50 bytes of initialization:

• Set SP to RAMEND

• Set Y to SW stack start

• Set Z to frame start

• Store frame start in R4+R5

• Watchdog reset

• Clear any reset flag except watchdog

• Watchdog disable

• Clear entire SRAM

• USART settings

• Clear R6 (error flags)

• Enable global interrupts

18 bytes of unused code (delay and R6.2 error bit handling).

A total of 68 bytes.

47

6.2.4.2 Atmel Studio AVR GCC

50 bytes of initialization:

• Clear R1

• Clear SREG

• Set Y to RAMEND

• Clear SRAM global area

• Disable peripheral clocks

• Temp save SREG

• Disable global interrupts

• Set system clock prescaler = 1

• Restore SREG

• USART settings

• Enable global interrupts

Apart from the fact that the initializations are slightly different, we see that Atmel Studio produces

smaller code:

• BASCOM-AVR: 484 - 124 - 50 - 18 = 292 bytes.

• Atmel Studio AVR-GCC -Os: 412 - 124 - 50 = 238 bytes, about 18.5% smaller.

Please bear in mind that this comparison is a bit rough as they don’t do exactly the same things. Both

contestants could be further improved, e.g. by reducing the interrupt jump table.

6.2.5 Trying I/O registers for the two global variables

How much can be gained by using I/O registers accessible by IN/OUT?

-O0 790 text, 16 bss

-O1 404 text, 16 bss

-O2 400 text, 16 bss

-O3 398 text, 16 bss

-Os 398 text, 16 bss

Additionally changing ReceiveCounter from GPIOR2 to R3 results in a 2-byte -Os reduction.

On the ATmega324A the following IN/OUT-accessible I/O registers could possibly be used for global

variables:

0x28 (0x48) OCR0B Timer/Counter0 Output Compare Register B

0x27 (0x47) OCR0A Timer/Counter0 Output Compare Register A

0x26 (0x46) TCNT0 Timer/Counter0 (8 Bit)

0x2B (0x4B) GPIOR2 General Purpose I/O Register 2

0x2A (0x4A) GPIOR1 General Purpose I/O Register 1

0x21 (0x41) EEARL EEPROM Address Register Low Byte

0x20 (0x40) EEDR EEPROM Data Register

0x1E (0x3E) GPIOR0 General Purpose I/O Register 0 (bit-operable)

As we can see, the possibility to reduce program code size and execution time by using I/O registers

for global variables is quite limited on this microcontroller. For this reason, I continue the analysis by

using SRAM for global variables. AS1d is not included in appendix B, but its version-specific code can

be seen in AS1e.

48

6.2.6 Custom initialization

I noticed two unwanted compilation results caused by using the library function “sysclk_init()”:

• It did a few RCALLs as the underlying code comes from several places (unnecessary extra

size).

• It wrote to the non-existent PRR1 register when unnecessarily shutting down all peripherals

so I had to re-enable USART0 with an additional statement.

Also, I like to have a clear picture of exactly what is done, which is very difficult when library

functions make nested calls. For these reasons, I simply copied and altered the library code and

declared the “Initialization” function “inline”. Now the custom initialization sequence disables

interrupts, enables power only to USART0, sets prescaler to 1, does the USART initialization, clears

SREG, and enables interrupts. (This is in addition to the default initialization code inserted by the

compiler.)

Oddly enough, -O0 wouldn’t compile and gave me the error message shown in appendix A.7.3. I had

to remove the “inline” directive for the “Initialization” function for it to work. The other compilation

levels have the “inline” directive.

When testing this program version (on -Os), I noticed that my SW reset (by goto *0x0000;) wasn’t

working properly. Sometimes the PC received a truncated error message. It turned out that removing

the unnecessary library initialization code and avoiding the RCALLs sped up the entire initialization

process so much that often it didn’t have time to finish sending all of the error message. When

bugsearching I also noticed, on very few occasions, that this did in fact also happen when using the

library sysclk_init() function. I could use the watchdog timer to wait for a certain period, but I would

still have to enter a(n eternal) loop while waiting for it to trigger, so I chose to just copy the generic

delay code “do { barrier(); } while (--counter);”. 20 passes seem to be enough, while 17 is

too few. This makes the code sensitive to errors in case of future changes, but as an actual

production program based on this code would have more global variables that need clearing by the

default initialization (which takes longer), it should be less of a problem.

At this point -Os without the time-out loop makes 386 and with it 394 bytes. This is in comparison to

version C at 412 bytes (without time-out loop).

Compiled size:

-O0 608 text, 18 bss (but only after I removed “inline”)

-O1 400 text, 18 bss

-O2 396 text, 18 bss

-O3 394 text, 18 bss

-Os 394 text, 18 bss

49

Looking at the initialization code, I notice that the USART register writes are done via STS

instructions.

 UBRR0H = 0x00;

00000075 10.92.c5.00 STS 0x00C5,R1 Store direct to data space

 UBRR0L = 0x17;

00000077 87.e1 LDI R24,0x17 Load immediate

00000078 80.93.c4.00 STS 0x00C4,R24 Store direct to data space

 UCSR0B = (1<<RXCIE0)|(1<<RXEN0)|(1<<TXEN0);

0000007A 88.e9 LDI R24,0x98 Load immediate

0000007B 80.93.c1.00 STS 0x00C1,R24 Store direct to data space

 UCSR0C = (1<<UCSZ01)|(1<<UCSZ00);

0000007D 86.e0 LDI R24,0x06 Load immediate

0000007E 80.93.c2.00 STS 0x00C2,R24 Store direct to data space

Using ST with displacement with the Z pointer could be more efficient. Should this be done via inline

assembly or using a struct? In the ATmega324 both USARTs have the same relative register

placement, so first I try the struct, partly based on “AVR1000: Getting Started Writing C-code for

XMEGA” (29) 60:

/* Type definition for the USART struct */
typedef struct USART_struct {
 uint8_t UCSRA;
 uint8_t UCSRB;
 uint8_t UCSRC;
 uint8_t Reserved;
 uint8_t UBRRL;
 uint8_t UBRRH;
 uint8_t UDR;
}USART_t;

USART_t *USART_inst = (USART_t *)&(UCSR0A);
(USART_inst)->UCSRB = (1<<RXCIE0)|(1<<RXEN0)|(1<<TXEN0);
(USART_inst)->UCSRC = (1<<UCSZ01)|(1<<UCSZ00);
(USART_inst)->UBRRL = 0x17;
(USART_inst)->UBRRH = 0x00;

No difference using -Os. It produces exactly the same machine code. I then try to be even more

specific:

uint8_t *reg = (uint8_t *)&(UCSR0A);
*(reg + 1) = (1<<RXCIE0)|(1<<RXEN0)|(1<<TXEN0); // UCSR0B
*(reg + 2) = (1<<UCSZ01)|(1<<UCSZ00); // UCSR0C
*(reg + 4) = 0x17; // UBRR0L
*(reg + 5) = 0x00; // UBRR0H

No difference using -Os. It produces exactly the same machine code. Am I doing something wrong or

is the potential improvement too small for the compiler to use the Z pointer? I try inline assembly as

a last resort:

60

 http://www.atmel.com/Images/doc8075.pdf

50

ASM(
 "ldi r30, 0xC1 \n\t"
 "clr r31 \n\t"
 "ldi r24, 0x98 \n\t"
 "st Z+, r24 \n\t"
 "ldi r24, 0x06 \n\t"
 "st Z, r24 \n\t"
 "ldi r24, 0x17 \n\t"
 "std Z+2, r24 \n\t"
 "clr r24 \n\t"
 "std Z+3, r24 \n\t"
);

This results in an -Os reduction by a mere 2 bytes (= 1 instruction). I could shorten it slightly more by

omitting the “clr r24” and instead doing “std Z+3, r1”, but this is hardly worth the effort. Apparently I

am overdoing this. A simple calculation tells me that the Z pointer and static addressing generate the

same code size when writing to three registers. I don’t think I can manage to reduce the ATmega

code size any more than this. After some consideration, I revert to static addressing as I like this

notation better than defining a struct and using C pointers. Version AS1e is in the appendix.

I mentioned this in an AVRfreaks thread and it seems that when testing on his own, user clawson

received the following result with both -Os and -O3: (48) 61

Struct-based: Does STD (store at Z+displacement) and uses 18 bytes, 13 cycles.

Absolute: Does STS (store at harcoded address) and uses 22 bytes, 11 cycles.

It seems that he too wasn’t able to make it use ST+ (store at Z with post-increment). I suppose the

compiler doesn’t have a heuristic for identifying this.

6.3 ATxmega128A1 analysis

6.3.1 Getting the base serial port routines in place

AS2 started as an empty project that compiled to 544 bytes program code (text) (-O1). It contains a

500 byte interrupt vector, proceeds with clearing R1 and SREG, sets SP via Y, clears EIND and

RAMPD/X/Y/Z, and the (at this point nonexisting) global variables, calls board_init(), clears R24 and

R25 (W), disables global int, and does eternal loop.

Then I added the "System Clock Control (service)" (49) 62 using ASF Wizard (the interrupt handling is

already part of the custom board template) and made the following additions:

In board_init(): call sysclk_init();

In conf_clock.h: change to

#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_XOSC

#define CONFIG_XOSC_RANGE XOSC_RANGE_2TO9

61

http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=140145&postdays=0&postorder=asc

&sid=e3717428757c8e0fcac437a5ae45306b
62

 http://asf.atmel.com/docs/3.13.1/xmegaa/html/group__sysclk__group.html

51

The actual program at this point consists of:

/* Initialize clock systems and turn off all peripherals */
sysclk_init();

/* Turn on power to USARTE0 */
PR_PRPE = (1 << PR_TWI_bp)|(1 << PR_USART1_bp)|(1 << PR_SPI_bp)|(1 << PR_HIRES_bp)|(1
<< PR_TC1_bp)|(1 << PR_TC0_bp);

/* Enable all interrupt levels */
irq_initialize_vectors();

AS2 now compiled to:

1002 text , 0 bss (-O0)

638 text, 0 bss (-O1)

636 text, 0 bss (-O2)

636 text, 0 bss (-O3)

636 text, 0 bss (-Os)

It turns off power to all peripherals, waits for XOSC to become ready, enables XOSC source, saves

SREG, disables interrupts, disables the previous clock source, and restores SREG. (Finally it turns on

power to USARTE0 and enables all interrupt levels (low, medium, and high).)

6.3.2 Trying out ASF - will it eliminate or reduce the need to read the datasheets?

It’s now time to include the ASF USART library driver. This is my first real attempt at fully using the

ASF documentation and code. I noticed that once you have added the documentation modules to

your project, the links to the documentation can’t be reached from the ASF Wizard. Before I realized

that they can now be found in the top-right window nambed “ASF Explorer”, I removed the modules

from the project, clicked on the links, and then re-added the modules to use the documentation.

Being somewhat annoyed by this, I decided to reference the XMEGA A Documentation (12) 63 so that

I will find it easily the next time. Then I read “AVR4029: Atmel Software Framework - Getting Started”

(37) 64 and realized my mistake…

The two available modules are:

USART - Serial interface (service) (50) 65 (51) 66

USART - Universal Synchronous/Asynchronous Receiver/Transmitter (driver) (52) 67

According to the ASF Wizard, the first one is a generic abstraction layer (wrapper) that’s using the

second one (which is included in the first module):

Service function “usart_serial_init(USART_SERIAL, &usart_options)” calls

“sysclk_enable_module(SYSCLK_PORT_E,PR_USART0_bm)” and then

“usart_init_rs232(usart, &usart_rs232_options)”.

63

 http://asf.atmel.com/docs/3.13.1/xmegaa/html/index.html
64

 http://www.atmel.com/Images/Atmel-8431-8-and32-bit-Microcontrollers-AVR4029-Atmel-Software-

Framework-User-Guide_Application-Note.pdf
65

 http://asf.atmel.com/docs/3.13.1/xmegaa/html/serial_quickstart.html
66

 http://asf.atmel.com/docs/3.13.1/xmegaa/html/serial_use_case_1.html
67

 http://asf.atmel.com/docs/3.13.1/xmegaa/html/xmega_usart_quickstart.html

52

Driver function “usart_init_rs232(USART_SERIAL, &USART_SERIAL_OPTIONS)” calls

“sysclk_enable_peripheral_clock(usart)”, does the USART settings, and enables receiver and

transmitter.

Please note that “sysclk_enable_peripheral_clock(usart)” calls

“sysclk_enable_module(SYSCLK_PORT_E, SYSCLK_USART0)”. In other words, the wrapper turns on

the USART clock twice. On the other hand, the ASF quick start document for the driver instructs you

to call the sysclk_enable_module function before calling the usart_init_rs232 function, to the same

effect. Maybe the optimizer discovers this and removes the superfluous one, but it demonstrates a

problem with abstraction; it can hide the real world a bit too well.

I suppose that the reason for the first layer of abstraction (the driver) is to make it possible to write

microcontroller programs without knowing the hardware details. Similarly, the second layer of

abstraction (the service) is probably created to give the programmer one common API regardless of

which type of microcontroller (AVR 8-bit ATxmega, AVR32, or ARM) you are working with. The

question is whether these two abstractions really make it unnecessary to study the datasheets (as I

would like) or if it just adds one (two?) entire additional terminology for the programmer to master. I

will return to this topic.

While writing this, I notice that the ASF documentation pages referenced above have hung my

Firefox browser.

Also, when googling (now using IE) for the correct syntax (not included in the ASF documentation) for

what I figured out should be “sysclk_enable_peripheral_clock (&USARTE0)”, my third hit was an

AVRFreaks user forum thread from December 2011 where two different people summarize their ASF

experience:

"I think I have saved no time at all using this Atmel framework. It has been a complete pain. Totally frustrated with it." (User

name TrevorWhite)

"The ASF could be documented better... But if you spend some time with it looking over the source it becomes clearer. As far

as the TCs go, lately I find myself writing my own code rather than using the TC driver in the ASF." (User name GTKNarwhal)

Both quotes found at (53) 68.

Appendix A.7.4 shows that the ASF project counter shows the sum of all releases’ counts (most of

which are in all essence the same code). It would behoove Atmel to correct this miscalculation.

Anyway, with the help from the ASF quick start guide I have presumably successfully configured and

initialized my serial port. I have added the following statements to the Initialization function:

/* Initialize USARTE0 */

static usart_serial_options_t usart_options = {

 .baudrate = USART_SERIAL_BAUDRATE,

 .charlength = USART_SERIAL_CHAR_LENGTH,

 .paritytype = USART_SERIAL_PARITY,

 .stopbits = USART_SERIAL_STOP_BIT

};

usart_serial_init(USART_SERIAL, &usart_options);

68

 http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=115038&start=0

53

AS2 now compiles to:

3176 text , 10 data, 0 bss (-O0)

2186 text, 10 data, 0 bss (-O1)

2258 text, 10 data, 0 bss (-O2)

2434 text, 10 data, 0 bss (-O3)

1874 text, 10 data, 0 bss (-Os)

The service contains four more documented functions, to send and receive one or several characters.

As my test program does non-interrupt-based sending, I add this to the main loop in order to send

one character:

uint8_t received_byte = 0;

usart_serial_putchar(USART_SERIAL, received_byte);

This brings us to:

3862 text , 10 data, 0 bss (-O0)

2200 text, 10 data, 0 bss (-O1)

2272 text, 10 data, 0 bss (-O2)

2448 text, 10 data, 0 bss (-O3)

1898 1908 text, 10 data, 0 bss (-Os)

These numbers are so ridiculously big that I think I must have made a mistake. (No ISR nor

application code yet.) I therefore include the code in the appendix (AS2a) and create a fresh project.

Then I add the three ASF modules mentioned above, update conf_clock.h, and paste the AS2a code

into the new main file. Nope. Still the same size. Something is definitely wrong here.

I come to think of the fact that I haven’t told the compiler about the crystal properties (and the PLL

settings of conf_clock.h mentions BOARD_XOSC_HZ), so I look for it in the System Clock Control ASF

documentation (54) 69 but it only mentions that it needs to be defined in conf_board.h. After

googling, I found some demo board code (55) 70 that I change and add:

#define BOARD_XOSC_HZ 8000000UL

#define BOARD_XOSC_TYPE XOSC_TYPE_XTAL

#define BOARD_XOSC_STARTUP_US 2000

(The demo board documentation actually says “#define BOARD_XOSC_HZ 8000000”, which I think

will result in a data type error, but I am not sure.)

It now compiles to:

3906 text , 10 data, 0 bss (-O0)

2218 text, 10 data, 0 bss (-O1)

2296 text, 10 data, 0 bss (-O2)

2472 text, 10 data, 0 bss (-O3)

1922 text, 10 data, 0 bss (-Os)

69

 http://asf.atmel.com/docs/3.13.1/xmegaa/html/group__clk__group.html
70

http://194.19.124.62/docs/latest/xmega.drivers.des.unit_tests.xmega_a1_xplained/html/group__atxmega128

a1__xpld__config.html

54

This is surprising. I have only included initialization of the serial port and a dummy transmit

statement. No receiver interrupt handler (can’t find one in the ASF library) and no real program code.

I think that maybe this immense size is due to the generic, cross-platform service so I change calls

from

usart_serial_init(USART_SERIAL, &usart_options);

usart_serial_putchar(USART_SERIAL, received_byte);

to the direct driver calls:

sysclk_enable_module(SYSCLK_PORT_E, PR_USART0_bm);

usart_putchar(USART_SERIAL, received_byte);

usart_init_rs232(USART_SERIAL, &USART_SERIAL_OPTIONS);

This brings a slight reduction in size:

3600 text , 10 data, 0 bss (-O0)

2136 text, 10 data, 0 bss (-O1)

2214 text, 10 data, 0 bss (-O2)

2390 text, 10 data, 0 bss (-O3)

1840 text, 10 data, 0 bss (-Os)

Finally, I remove the USART service from the project to see if it gets compiled in even though I wasn’t

calling it, but the code size is the same. The good news is that the cross-platform code-size overhead

is only 1922-1840 = 82 bytes for whatever gets compiled in additionally with the service, so making a

custom driver ARM-compatible shouldn’t be so “expensive”. The bad news is that it’s the ATxmega-

specific driver that’s the culprit. This means that there’s very little point in using the ASF USART code

for anything but a copy&paste source of sample code bits into a custom driver.

Just to verify that I haven’t made a mistake, I create a New Example Project based on “USART

Example - STK600 - ATxmega128A1”. It is a simple polling program that returns the incoming serial

data, based on the “driver” code. -Os compilation yields 2102 text, 30 data. Apparently my AS2a

implementation isn’t an anomaly in the ASF world.

I continue to look for an example project with interrupt-based receiver. This is a slow and irritating

process. I give up after looking at a handful of projects and google for “atmel asf xmega usart

interrupt”. I find application note AVR1522 (56) 71 72, which is a demo for the XMEGA-A1 Xplained

board. It has both polled and interrupt-based receiver, so hopefully it can be used. After asking for

ASF support for serial port interrupt-based receiver at www.avrfreaks.net, I now know that there is

only an ASF general-purpose FIFO queue:

“No. There is a FIFO service in the ASF that you can use, but you will have to write the ISR(s) to make this happen. ASF

examples, at least as far as the USARTs are concerned, are very simple.” (User name GTKNarwhal) (57)
73

The PMIC (Programmable Multi-level Interrupt Controller) Quick Start guide (58) 74 has an ISR

skeleton code sample, so it’s possible to copy it and add the necessary content, but calling generic

ASF FIFO buffer code from within an interrupt service routine seems like a very bad idea.

71

 http://www.atmel.com/Images/doc8408.pdf
72

 http://www.atmel.com/Images/AVR1522.zip
73

 http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=139232

55

It’s time to answer the question in this section’s header; does ASF eliminate or reduce the need to

read the datasheets? Unfortunately, the answer is no, at least for the USART and clock management.

I fear that there are clock and other settings that I have missed. At least I am very uncertain if the

ones I have defined are the correct ones, with the correct value, and all the necessary ones. The

Quick Start guide for System clock Management has a note that says “For user boards, BOARD_XOSC_HZ

should be defined in the board conf_board.h configuration file as the frequency of the crystal attached to XOSC.” (59)
75

and that’s it. This and two other defines are mentioned in the “XMEGA-A1 Xplained Board

Configuration” (55) 76 that I found by googling as mentioned above.

While trying to look at the ASF USART modules’ Quick Start and API Documentation it hangs my

Firefox browser again. And… now it crashed.

There’s another problem with the USART documentation: It fails to mention that the USART

transmitter pin must be set to output (and the receiver to input, which is the startup default). The

closest I come is the text “port_driver_group for peripheral io port control.” listed under dependencies in the

driver’s API Documentation (60) 77. It’s not included in the Quick Start code samples for either of the

two modules, so that code actually won’t work. It could be that the person(s) who wrote the USART

Quick Start guides had all pin settings in a board_conf.h file and therefore forgot to include them in

the guide, but that would mostly serve as an illustration to the problem of having too many includes.

The ATxmega AU manual’s USART section is clear, though. It tells me what I need to know.

6.3.3 Checking how big the minimum ASF library would be for my real application

Before I proceed with my 100% custom driver based on Atmel application note AVR1522, I decide

that I want to see how big the ASF library code would be for my actual application. It is using the

following peripherals:

• Timer/counter for HW PWM

• USART for serial ports

• Analog to Digital conversion for voltage and current measuring

• Digital to Analog conversion for linear DC control

• External interrupts for events

• TWI (I2C) for communication with peripherals

• SPI for communication with peripherals

• RTC (Real-Time Clock)

• General-purpose I/O for sensing and controlling the board

• Watchdog timer

74

 http://asf.atmel.com/docs/3.13.1/xmegaa/html/xmega_pmic_quickstart.html
75

 http://asf.atmel.com/docs/3.13.1/xmegaa/html/sysclk_quickstart.html
76

http://194.19.124.62/docs/latest/xmega.drivers.des.unit_tests.xmega_a1_xplained/html/group__atxmega128

a1__xpld__config.html
77

 http://asf.atmel.com/docs/3.13.1/xmegaa/html/group__usart__group.html

56

Based on AS2a, I add the relevant ASF modules, which means that the project now incorporates the

following:

Figure 25: Selected ASF ATxmega128A1 modules

It leads to this:

14522 text , 10 data, 104 bss (-O0)

8762 text, 10 data, 104 bss (-O1)

8830 text, 10 data, 104 bss (-O2)

9954 text, 10 data, 104 bss (-O3)

8334 text, 10 data, 104 bss (-Os)

I try to reduce the code size slightly by setting the TWI module to “master”, but it complains about a

missing file, so I have to put it back to “both”. I also deliberately choose the driver version instead of

the service whenever possible in order to make this test as “good” as possible for ASF. Similarly, as I

haven’t included code that initializes the new modules this is the smallest it could ever become.

All this code does (well, it’s not tested and I know that the transmitter pin needs setting to output, so

I would need to add some things) is to initialize the system clock and one USART and send one byte

through a serial port. A sneak peak at my subsequent test results tells me that a minimum hand-

written C implementation takes -Os 822 bytes, of which the interrupt vector table is 500 bytes and

the default initialization and clock management account for 122 bytes. I just got hit with about 8kB of

ASF library code, most of which would not be used by the application. With hand-written C code,

each individual module should require some 200 bytes, very roughly speaking.

57

A short note here: I posted the question “Does anybody know if I should do something else so that

the compiler removes unused code from the ASF library?“ in the user forum at www.avrfreaks.net

(61) 78 and received two replies:

“Look at the .map file to find out where the bloat is but be warned that ASF is not designed for efficiency but ease of use and

to present a generic interface across architectures. This results in sub-optimal code.” (user name clawson, later refered to as

Cliff)

“This is quite a common question. Basically, ASF is as Cliff says, meant to be a generic interface and have the same

abstraction across multiple architectures. It will therefore to assertions, check data validity, transform parameters etc on a

level that is not necessary at a single device level.

You are probably also seeing the module interconnectivity of asf, e.g. that modules are depending on functionality of other

modules (e.g. usart would need the sysclk and sysclk need powermgmt....), which also lead to inclusion of all the generic

code for these modules.

The positive thing (guess positive can be discussed), is that a full-fledged application does not increase the code size as

much, as some of the code paths are already present in an already included module. So yes, using only USART may seem

very big, but adding CHIPID and GPIO to this will be a small increase. (guess this is more true for SAM than for xMega, but I

am most familiar with ASF on SAM and the idea should be similar).” (user name meolsen, Atmel employee according to the

user profile)

First of all: these replies seem to come from people who generally know what they are talking about

(as is most often my experience from these user forums).

Second: judging by my simple USART service vs. driver code size test, only 82 of the 1922 bytes come

from the “generic interface”. This is equal to (slightly more than) 82 / (1922 – 622) = 6,3%. (Later

during the ATxmega analysis, we’ll see that the interrupt vector and (slimmed) clock configuration

take 622 bytes. In other words, there’s reason to question the assumption that much of the ASF

excess baggage comes from cross-platform transformation code. At least for the USART modules this

doesn’t seem to be the case. Most of it is caused by the fact that the ASF modules aren’t written in

such a way that unused code gets eliminated by the compiler. I have only looked at the compiled

code sizes (i.e. not analyzed the .map file as clawson suggested) and I have only looked closer at the

USART module. However, by the increase in total code size just by including ASF modules

documented above, I think it is reasonable to believe that this ailment is common to all or much of

the ASF code.

Third: I do agree that some of the library code would be used by the real application, but in my

experience not even remotely close to this size. E.g. my application will use two serial ports for

sending binary data, each having an ISR (Interrupt Service Routine) that either places the incoming

data in a generic circular buffer or in a protocol-bound vector. The application will not change clock

frequencies and the serial port configuration will not change. No matter how much my application

grows, it will never use more of this ASF library code. The same is true for the other HW modules and

peripherals. They are all used for one specific purpose, generally hardwired to another HW

component.

Fourth: in my opinion, the beauty of microcontroller development is the fact that you are coding

directly against the actual hardware. What I want is a tool that makes this as easy as possible, so that

I wouldn’t have to consult the datasheets and application notes so much. If I could make a wish, it

78

 http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&p=1126226#1126226

58

would be for a GUI tool that generates HW-specific driver code for you, based on input from the

developer. In fact, BASCOM-AVR is doing this with built-in commands and their parameters that

(behind the scene) lay out hand-written assembly based on these parameters.

With this I end my investigation of ASF. Perhaps my serial port-based test program (decided before I

had looked at what ASF offers) was an unfortunate choice for ASF. For example, the ASF ADC module

quick start guide is informative and (by a quick look) seems user-friendly and efficient to use. Also,

the “System Clock Control (service)” did only result in a little dead code, even though it isn’t

sufficiently documented. Still, as this test shows, generally speaking ASF comes at a code size cost

that I am not willing to pay. Maybe this is part of the reason why Atmel doesn’t have much ASF

support for ATmega. Many of these microcontrollers are very usable in 8kB program size (or even

less), but there wouldn’t be much place for the user’s own code after ASF moved in.

Due to the excess ASF code, I can only use it as a copy&paste source, probably after looking for

application notes describing the module on which I am developing. This will have the good side-

effect of letting me create my entirely own inclusion tree, giving me a complete overview of what’s

actually being done. But, there is no productivity enhancement in sight. It should also be mentioned

that ASF can be used as a copy&paste source in two ways, both of which are better done in a

separate project; you can use the ASF Wizard to include modules into your temp project so that you

can drill down and copy the code and headers to your real project. Alternatively, you can look for an

ASF Example Project that might (or might not) contain valuable sample code. In this case you end up

with a number of unwanted projects that fill up your work folder:

Figure 26: Sample project residue

59

6.3.4 Using application note AVR1522 USART driver

I start a new project named AS3 and copy the test program application code from the ATmega AS1b

(which is the version using the generic circular buffer based on application note “AVR306 Using the

AVR UART in C” (47) 79 80).

For the ATxmega USART, I look in two application notes: “AVR1522 XMEGA-A1 Xplained Training -

XMEGA USART” (56) 81 82, which is largely a copy of “AVR1307 Using the XMEGA USART” (62) 83 84.

The main advantage of the first one is that it is using AVR GCC syntax while the second has IAR

Systems syntax, but the zip file belonging to AVR1307 has a valuable tool: an Excel sheet baud rate

calculator. The formulas can be found on p282 in the AU manual (63) 85. The test board has an 8 MHz

crystal (and as before we use 15 625 baud and asynchronous normal mode). There are several USART

settings that result in the above and I’m using BSCALE = 0, BSEL = 31, and CLKX2 = 0.

Oddly enough, the AVR1522 polling example isn’t using the usart_driver library functions for

configuration, while its interrupt example does. The original code in AVR1307 is consistently using

the library code it is there to present. Anyway, after replacing much of the polling configuration code

with the AVR1522 interrupt configuration code, a clear design idea can be seen. This sample code

also takes care of the pin settings, that the ASF module library failed to do. Unfortunately, both

application note sample program are omitting the system clock settings, so at first nothing works.

I include the ASF module System Clock Control (service) and modify conf_clock.h so that it contains

the following definitions:

#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_XOSC
#define CONFIG_SYSCLK_PSADIV SYSCLK_PSADIV_1
#define CONFIG_SYSCLK_PSBCDIV SYSCLK_PSBCDIV_1_1
#define BOARD_XOSC_HZ 8000000UL
#define BOARD_XOSC_TYPE XOSC_TYPE_XTAL
#define BOARD_XOSC_STARTUP_US 2000 // What should this value be?
#define CONFIG_XOSC_RANGE XOSC_RANGE_2TO9

In my initialization function I start with

sysclk_init();

sysclk_enable_module(SYSCLK_PORT_E, PR_USART0_bm);.

Now it’s working and compiles to:

2114 text , 0 data, 47 bss (-O0)

1156 text, 0 data, 47 bss (-O1)

1144 text, 0 data, 47 bss (-O2)

1130 text, 0 data, 47 bss (-O3)

1136 text, 0 data, 47 bss (-Os)

79

 http://www.atmel.se/Images/doc1451.pdf
80

 http://www.atmel.com/images/avr306.zip
81

 http://www.atmel.com/Images/doc8408.pdf
82

 http://www.atmel.com/Images/AVR1522.zip
83

 http://www.atmel.com/Images/AVR1522.zip
84

 http://www.atmel.com/Images/AVR1307.zip
85

 http://www.atmel.com/Images/Atmel-8331-8-and-16-bit-AVR-Microcontroller-XMEGA-AU_Manual.pdf

60

Compare the AS3a version to the worst BASCOM-AVR high-level-only implementation (BA1a) at 1720

and best (BA6a) at 1444 bytes text.

I wonder why Atmel didn’t include the application note code in ASF, as AVR1307 was released in

February 2008.

Anyway, the next step is to see what happens if I copy all used code from the USART library files into

the main file. AS3b is included in the appendix.

1944 text , 0 data, 41 bss (-O0)

1118 text, 0 data, 41 bss (-O1)

1060 text, 0 data, 41 bss (-O2)

1054 text, 0 data, 41 bss (-O3)

1064 text, 0 data, 41 bss (-Os)

Much of the reduction from 1136 to 1064 bytes is caused by exclusion of some struct fields relating

to transmitter interrupt buffer and fewer function calls.

6.3.5 Adjusting the ATmega static addressing code for ATxmega

I was quite happy with the ATmega code with circular receiver buffer based on AVR306. What if I

insert the ATxmega-specific code into it and clean up the ATxmega initialization?

The result can be seen in AS3c in the appendix. This contains three types of changes:

• The S&Ps are replaced by static addressing.

• The USART initialization has been cleaned up. -Os becomes 1014 text, 37 bss.

• The USARTE0 power-on call was replaced with a register write without preserving the

interrupt flags.

We are now at:

1648 text , 0 data, 37 bss (-O0)

1010 text, 0 data, 37 bss (-O1)

976 text, 0 data, 37 bss (-O2)

970 text, 0 data, 37 bss (-O3)

990 text, 0 data, 37 bss (-Os)

I then dissected sysclk_init() and (by reading the ATxmega AU manual) extracted the things really

needed at initialization. This reduced -Os to about 964-968 text. (I didn’t record this state.) Then I

included soft reset by jumping to the reset vector address. (Unlike the ATmega, the ATxmega can be

software-reset by writing to a register. For cross-platform compatibility, I stay with the ATmega

approach at least for now.) I also disable interrupts before sending the error message, no longer set

the receiver pin to input as it’s the startup default, and clear SREG at the end of initialization. These

changes landed me at -Os 974 text. I noticed that the loop that disables all peripheral clocks do

repetitive STS calls instead of using ST Z+. I would like to understand how to instruct the compiler to

do it from C, but for now I settle with inline assembly. This seems to be the smallest implementation

of one serial port on ATxmega.

61

Note that -Os (optimize for size) produces bigger code than -O2 and -O3:

1332 text , 0 data, 37 bss (-O0)

980 text, 0 data, 37 bss (-O1)

950 text, 0 data, 37 bss (-O2)

944 text, 0 data, 37 bss (-O3)

964 text, 0 data, 37 bss (-Os)

AS3d is included in appendix B, both C and disassembly. This will be my baseline when I go in a few

different directions:

6.3.5.1 Only clock config with transmit and ISR-based circular buffer receiver

I strip all the application code so only the following remains (including clock and USART

configuration):

• ISR-based circular buffer receiver

• Function to check if there is data in the circular buffer

• Function to read a byte from the circular buffer

• Function for transmission

• Simple check for data and transmission of read byte

This is just to get a definite figure of how big the generic one-port USART driver really needs to be:

1094 text , 0 data, 18 bss (-O0)

816 text, 0 data, 18 bss (-O1)

806 text, 0 data, 18 bss (-O2)

806 text, 0 data, 18 bss (-O3)

822 text, 0 data, 18 bss (-Os)

6.3.5.2 Only clock config

AS3e is included in the appendix, with the USART code commented out. It only does clock

management:

708 text , 0 data, 0 bss (-O0)

618 text, 0 data, 0 bss (-O1)

622 text, 0 data, 0 bss (-O2)

622 text, 0 data, 0 bss (-O3)

622 text, 0 data, 0 bss (-Os)

For the sake of simplicity, let’s say that the USART functionality requires 200 bytes, and that the

interrupt vector table and system clock configuration “offset” is 622 bytes.

6.3.6 Adding one more serial port

6.3.6.1 Simple two-dimensional array and if statement for port selection

I noticed that I had made a slight mistake with the variable SerialByte. By changing it from global to

local -Os becomes 960 text, 36 bss.

The first dual-port version compiles to -Os 1268 text, 0 data, 72 bss. The second serial port adds 304

text, 36 bss, while the first cost 338 text, 36 bss. I notice that the function call to ReceiveSerial starts

62

with PUSHing eleven registers. When inlining USART_Receive and DataInReceiveBuffer, -Os becomes

1190 text, 0 data, 72 bss.

By using a two-dimensional array for SerialData, much of the high-level code complexity can be

avoided. However, indexing requires a few calculations. When I looked at the disassembly I realized

that I had made a mistake; I had put the column before the row, which means that the two-

dimensional array was in fact column-major addressed. I switched order so that I got row-major

addressing, which surprisingly resulted in -Os 1204 text, 0 data, 72 bss:

Column-major: Row-major:

1852 text , 0 data, 72 bss (-O0) 1884 text , 0 data, 72 bss (-O0)

1192 text, 0 data, 72 bss (-O1) 1216 text, 0 data, 72 bss (-O1)

1192 text, 0 data, 72 bss (-O2) 1210 text, 0 data, 72 bss (-O2)

1218 text, 0 data, 72 bss (-O3) 1220 text, 0 data, 72 bss (-O3)

1190 text, 0 data, 72 bss (-Os) 1204 text, 0 data, 72 bss (-Os)

Version AS3f is included in appendix B, with disassemblies before and after inlining, with row-major

and column-major array addressing. I would have liked to analyze this, but I must press on.

The question is: is this better or worse than placing the global variables in structs and sending

pointers for parameters?

6.3.7 Structs and pointers

I retrace my steps to the AVR1522 application note and its S&P-based design.

AS3g compiles to:

1980 text , 0 data, 80 bss (-O0) (without inlining of USART_RXComplete)

1248 text, 0 data, 80 bss (-O1)

1246 text, 0 data, 80 bss (-O2)

1316 text, 0 data, 80 bss (-O3)

1218 text, 0 data, 80 bss (-Os)

Without inlining of USART_RXComplete -Os compiles to 1250 text. This is because the register

PUSHing and POPing when entering and exiting the ISR is more expensive than the code itself.

I tried to place the contents of USART_RXComplete in each ISR, but this didn’t affect the total size

(compared to inlined USART_RXComplete). While this might seem obvious, I wanted to make extra

sure that it isn’t possible to reduce it further. I also tried to move the vector and fields of struct

USART_Buffer_t into struct USART_data_t. This didn’t make any difference either (so a multilevel

struct hierarchy doesn’t seem to incur a penalty).

The BASCOM-AVR scaling tests only covered the bare sending routines (not receiver ISR and

application code), but the results are similar. The general-purpose ISR circular receiver buffer for two

serial ports requires slightly less program memory for static addressing with two-dimensional array

than the “structs and pointer”-based version. For some reason this column-major array

implementation is yet a bit more efficient from a code-size point of view.

BASCOM-AVR has commands and configuration options that automatically generate and use the

circular buffer. This hides the ISR buffer from the developer, which from a high-level perspective

makes it less obvious that you spend some program code, SRAM, and clock cycles on moving the

63

received bytes from the circular buffer to the actual work area. I don’t know how common it is to

develop a protocol-bound serial port ISR routine and vector, but my protocol benefits from it.

It’s now time to see how the S&P approach scales. Version AS3h is a fully developed test program for

1-3 ATxmega ports and 1-2 ATmega ports. It’s included in the appendix, with -Os disassemblies of

both types.

6.4 Scaling ATmega 324A, ATmega1284, and ATxmega128A1

I have omitted optimization level -O0 as it isn’t a usable alternative.

6.4.1 Structs and pointers (AS3h)

6.4.1.1 ATmega324A total size

Atmega324A, interrupt vector table 126 bytes

Ports 1

2

 Opt Text Data BSS

Delta

Text Data BSS

-O1 574 0 40

134

708 0 80

-O2 642 0 40

66

708 0 80

-O3 786 0 40

160

946 0 80

-Os 550 0 40

130

680 0 80

Atmega324A, interrupt vector table excluded

-O1 448

582

 -O2 516

582

 -O3 660

820

 -Os 424

554

Note the surprising -O2 and-O3 deltas when going from 1-2 ports.

6.4.1.2 ATmega1284 total size

Atmega1284, interrupt vector table 140 bytes

Ports 1

2

 Opt Text Data BSS

Delta

Text Data BSS

-O1 604 0 40

142

746 0 80

-O2 678 0 40

68

746 0 80

-O3 822 0 40

162

984 0 80

-Os 580 0 40

138

718 0 80

Atmega1284, interrupt vector table excluded

-O1 464

606

 -O2 538

606

 -O3 682

844

 -Os 440

578

64

6.4.1.3 ATxmega128A1 total size

Atxmega 128A1, interrupt vector table 500 bytes

 Ports 1

2

3

 Opt Text Data BSS

Delta

Text Data BSS

Delta

Text Data BSS

-O1 1060 0 40

188

1248 0 80

174

1422 0 120

-O2 1078 0 40

168

1246 0 80

168

1414 0 120

-O3 1054 0 40

262

1316 0 80

266

1582 0 120

-Os 1050 0 40

168

1218 0 80

168

1386 0 120

Atxmega 128A1, interrupt vector table excluded

 -O1 560

748

922

 -O2 578

746

914

 -O3 554

816

1082

 -Os 550

718

886

Figure 27: Structs and pointer scaling

This is surprising. I had expected an offset caused by the differently sized IVs (Interrupt Vector

tables), but even without it there is a significant difference between ATmega and ATxmega:

• 2 serial ports: ATxmega128A1 is 718-554=164 bytes bigger than ATmega324A

• 1 serial port: ATxmega128A1 is 550-424=126 bytes bigger than ATmega324A

• Fictive 0 serial ports: ATxmega128A1 is 126-(164-126)=88 bytes bigger than ATmega324A

As we see in the tables on the previous page, the various optimization levels don’t scale uniformly,

but for -Os let’s roughly say that an additional port (including both application code and driver)

requires 164-126=38 more bytes for ATxmega128A1 than for ATmega324A. As the high-level

application code is identical, we could at least assume that it’s the driver itself that is more

“expensive”. It we subtract 38 from 126 we get a fictive 0-port difference of 88 bytes. Just looking at

the high-level code, it’s not possible to see where the 38 bytes come from. I can only find this:

• ATxmega needs to set TX pin as output, while ATmega does this automatically when enabling

the USART.

• The ATxmega USART config writes to one more register than the ATmega counterpart (which

is partly specific to my settings).

0

200

400

600

800

1000

1200

1400

1600

1 2 3

P
ro

g
ra

m
 c

o
d

e
 s

iz
e

,
b

y
te

s

#Serial ports

Structs and pointers -Os, incl IV

ATxmega128A1

ATmega1284

ATmega324A

0

100

200

300

400

500

600

700

800

900

1000

1 2 3

P
ro

g
ra

m
 c

o
d

e
 s

iz
e

,
b

y
te

s

#Serial ports

Structs and pointers -Os, excl IV

ATxmega128A1

ATmega1284

ATmega324A

65

Could it be that the compiler is including support for the EIND and RAMP/D/X/Y/Z registers? I added

support for the 128kB ATmega:

• 2 serial ports: ATxmega128A1 is 718-578=140 bytes bigger than ATmega1284

• 1 serial port: ATxmega128A1 is 550-440=110 bytes bigger than ATmega1284

• Fictive 0 serial ports: ATxmega128A1 is 110-(140-110)=80 bytes bigger than ATmega1284

Slightly different results, but

The -Os deltas are:

• ATmega324A: 130 bytes

• ATmega1284: 138 bytes

• ATxmega128A1: 168 bytes

I will have to look at the disassemblies to see what is going on.

An 88- or 80-byte initial offset is more credible, as the ATxmega clock, peripheral module power, and

interrupt level configuration is much more extensive than ATmega’s.

6.4.2 Statics

The test results are listed in appendix A.8. Generally speaking, the “statics, row-major” and “statics,

column-major” graphs are very similar to the S&P graphs above.

6.4.3 Code size comparative graphs

From an ATmega code size perspective, static addressing is clearly better when using only one serial

port. At two ports it’s a tie. Column-major array addressing is consistently better than row-major

(which is the C “default”). With three or more ports, S&P become increasingly better. A small note:

row-major addressing might be better in the long run, as successive reads from one port’s “working

area” can use post-increment, which is more efficient than adding to the pointer or using

displacement. This is why I choose to concentrate on row-major.

The ATxmega128A1 graph indicates something quite unexpected: the lines don’t seem to be

crossing. At least up to and including three ports, static addressing is better. Please bear in mind that

after initialization, the only real high-level differences are the register addresses to exactly the same

kind and number of registers. I had expected the ATxmega128A1 to scale very similarly to the

ATmega1284. There is a fluctuation in the deltas, which indicates that the compiler, while adhering

to its rules, might produce results that seem a bit random. This is pure speculation in an effort to

make sense of the test results. We’ll soon see.

66

Figure 28: Scaling #ports

6.4.4 Code size and clock cycle count ISR, Interrupt Service Routine

6.4.4.1 Statics row-major

Please see appendix A.8.3.1 for the test result data. The clock cycle count on the static row-major ISR

routine shows two reasons for the difference in code size (and clock cycles):

• Devices with >64kB program memory must use the RAMPX/Y/Z registers for the >16bit part

of the address. This doesn’t apply for ATmega324A but for the other two.

• Devices with support for EBI (External Bus Interface) can address more than 64kB of data

memory. So long as the application only uses internal SRAM, it is far from reaching this limit.

Of the microcontrollers in this test, this is only relevant for the ATxmega128A1. Its internal

SRAM starts at 0x2000 (8kB) and ends at 16kB (0x4000).

I did a quick search for a way to tell the compiler that only internal data memory is used, but I only

found one web page that expressly deals with it: (64) 86

“Unfortunately the only way to do this is to use the "naked" function attribute on your ISRs, but then you'll have to take care

of doing the ISR prologue and epilogue yourself.

86

 http://avr.2057.n7.nabble.com/How-can-I-turn-off-gt-64K-ram-support-for-ATxmega128a1-target-

td10341.html

500

520

540

560

580

600

620

640

660

680

700

1 2

P
ro

g
ra

m
 c

o
d

e
 s

iz
e

,
b

y
te

s

#Serial ports

ATmega324A -Os, incl IV

Structs

Statics, row-m

Statics, col-m

500

550

600

650

700

750

800

1 2

P
ro

g
ra

m
 c

o
d

e
 s

iz
e

,
b

y
te

s

#Serial ports

ATmega1284 -Os, incl IV

Structs

Statics, row-m

Statics, col-m

950

1000

1050

1100

1150

1200

1250

1300

1350

1400

1 2 3

P
ro

g
ra

m
 c

o
d

e
 s

iz
e

,
b

y
te

s

#Serial ports

ATxmega128A1 -Os, incl IV

Structs

Statics, row-m

Statics, col-m

67

If you compile using a different architecture (that doesn't have > 64K RAM), then you'll have to deal with including the

correct IO header file, and possible other issues.”(User name Weddington, Eric)

“It seems the gcc does what I want if I use the atxmega128a3 target with the atxmega128a1 IO header file. The XMEGA

manual doesn't say if the RAMP* registers are cleared by reset, so to be sure I clear the RAMP* registers in init2, before first

RAM access.” (User name Rothe, Michael, who asked the original question)

I suppose that the compiler keeps track of the RAMPD value and thereby knows that it never changes

from zero, so that the actual application code isn’t bothered by this. It probably generates a set of

default ISR entry and exit operations. If this is the case, only the ISRs will suffer from the 5-word

RAMPD waste.

I first thought that there’s a bug in the ATmega1284 ISR entry. It PUSHes RAMPZ but doesn’t clear it

afterwards like the ATxmega128A1 code. After looking at the ATmega1284 datasheet, it seems that

the RAMPZ register is only relevant for the ELPM/SPM program memory instructions.

Another thing is also clearly seen: A number of instructions have different implementations in

ATmega and ATxmega. Mostly this seems to be to ATxmega’s advantage and in the PUSH-frequent

ISRs this means that although it is six instruction words larger, it takes only one more clock cycle. If it

were possible to instruct the compiler to disable EBI support (so that RAMPD would only be cleared

in the default initialization), the ATxmega128A1 ISR could actually be five clock cycles (9%) faster

than the ATmega1284. (It could of course be done with inline assembly.) As it currently is, the

ATxmega128A1 incurs a “complexity cost” of 18% over the program memory-wise equally-sized

ATmega1284 microcontroller.

6.4.4.2 Structs and pointers

Please see appendix A.8.3.2 for the test result data. The S&P approach additionally uses the X pointer

(including RAMPX), which adds five instructions and six clock cycles to ATxmega128A1. This is only

part of the difference, however. Let’s look at the disassemblies:

68

6.4.4.3 Structs and pointers function code for inlining into ISR

inline void USART_RXComplete(UsartData_t * usart_data)
{
 uint8_t tempRxHead = \
 (usart_data->RxHead + 1) & USART_RX_BUFFER_MASK; // Advance buffer head
 usart_data->RxHead = tempRxHead; // Store new index
 usart_data->RxBuffer[tempRxHead] = \
 usart_data->Usart->DATA; // Store received data in buffer
}

This becomes the following ATmega324A assembly (with the corresponding figures for

ATxmega128A1):

W C Description

LDI R26,0x4E 1 1 X points to RxHead

LDI R27,0x01 1 1 X points to RxHead

LD R30,X 1 1/2 Low(Z) = RxHead

SUBI R30,0xFF 1 1 Low(Z) = RxHead + 1

ANDI R30,0x0F 1 1 Low(Z) = (RxHead + 1) & bitmask

ST X,R30 1 1 RxHead = Low(Z)

LDI R31,0x00 1 1 High(Z) = 0 (Z now contains buffer index)

LDS R26,0x013C 2 2/3 X points to USART reg

LDS R27,0x013D 2 2/3 X points to USART reg

ADIW R26,0x06 1/0 2/0 X points to USART reg -> DATA/UDR

LD R24,X 1 1/2 R24 = received character

SUBI R30,0xC4 1 1 Add buffer base address to Z pointer

SBCI R31,0xFE 1 1 Add buffer base address to Z pointer

STD Z+2,R24 1 2 Store received character in buffer + 2

ATmega total 16 18

ATxmega total 15 20

Please note that the ADIW instruction isn’t necessary for ATxmega, as its struct starts with the DATA

register. In ATmega324/1284, the data register UDR is the sixth in its struct. Also, I fail to see why the

compiler didn’t include the displacement in the preceding SUBI&SBCI, as the ATxmega would have

saved one clock cycle by it.

69

6.4.4.4 Statics row-major ISR code

uint8_t data = UDR1; // Read the received data
uint8_t tmphead = \
 (USART_RxHead1 + 1) & USART_RX_BUFFER_MASK; // Calculate buffer index
USART_RxHead1 = tmphead; // Store new index
USART_RxBuf1[tmphead] = data; // Store received data in buffer

This becomes the following ATmega324A assembly (with the corresponding figures for

ATxmega128A1):

W C

 LDS R24,0x00CE 2 2/3 R24 = received character

LDS R30,0x0101 2 2/3 Low(Z) = RxHead

SUBI R30,0xFF 1 1 Low(Z) = RxHead + 1

ANDI R30,0x0F 1 1 Low(Z) = (RxHead + 1) & bitmask

STS 0x0101,R30 2 2 RxHead = Low(Z)

LDI R31,0x00 1 1 High(Z) = 0 (Z now contains buffer index)

SUBI R30,0xC8 1 1 Add buffer base address to Z pointer

SBCI R31,0xFE 1 1 Add buffer base address to Z pointer

STD Z+0,R24 1 2/1 Store received character in buffer

ATmega total 12 13

ATxmega total 12 14

It is clear that the additional operations required by pointing into the struct come at a cost:

ISR actual code ATmega324A ATmega1284 ATxmega128A1

 Instr W Instr C Instr W Instr C Instr W Instr C

Statics, row-major 12 13 12 13 12 14

Structs and pointers 16 18 16 18 15 20

Worse % 33.3% 38.5% 33.3% 38.5% 25.0% 42.9%

The above table only contains the actual application code. On average, it’s 29% more program code

and 41% more clock cycles.

Just to get the complete picture, here are the figures for the entire ISRs:

Complete ISR ATmega324A ATmega1284 ATxmega128A1

 Instr W Instr C Instr W Instr C Instr W Instr C

Statics, row-major 29 46 33 53 39 54

Structs and pointers 37 59 41 66 51 72

Worse % 27.6% 28.3% 24.2% 24.5% 30.8% 33.3%

Including the ISR entry and exit code yields a slightly better result. It should be said that the ISR:s

contain all code in each one, as the other option (additional function call) resulted in more stack

operations plus (R)CALL&RET than was saved by code reuse. In non-ISR code, function calls might

work better than here.

70

A rearrangement of the figures for complete ISR also clearly shows the complexity cost, as we change

from smaller and simpler to larger and more complex:

ATmega324A ATmega1284 ATxmega128A1

Structs and pointers, W 37 41 51

Statics row-major, W 29 33 39

Structs and pointers, C 59 66 72

Statics row-major, C 46 53 54

Figure 29: Complexity cost

6.4.5 Code size and clock cycle count, transmitting

6.4.5.1 Statics row-major

Please see appendix A.8.4.1 for the test result data. The reason why the ATmegas have fewer clock

cycle counts is more efficient LDS instructions and a quicker RET due to 16-bit PC. The code in italic is

hand-written for a quick comparison.

6.4.5.2 Structs and pointers

Please see appendix A.8.4.2 for the test result data. This is the situation in which S&P is at its best,

when recieving base address pointer and data it’s as small and fast as one-port static

implementation, for any number of ports.

This is also illustrated by the following two graphs:

0

10

20

30

40

50

60

#
W

o
rd

s

Microcontroller

Complexity cost, instruction words

Structs and

pointers, W

Statics row-major,

W

0

10

20

30

40

50

60

70

80

#
C

lo
ck

 c
y

cl
e

s

Microcontroller

Complexity cost, clock cycles

Structs and

pointers, C

Statics row-major,

C

71

Figure 30: Transmit scaling

This very good result is maintained so long as your application can supply a base address pointer. As

we saw in the BASCOM-AVR ATxmega implementation, it can also be useful to be able to pass a

simple integer port number. This is what the current statics version wants for input, but the S&P

approach requires a conversion. This could be done in several ways:

• As a switch statement that assigns the corresponding base address pointer (to the USART

directly or to a struct variable with such a pointer).

• As a calculation (which is the BASCOM-AVR approach).

• As a lookup in a vector that holds the base address for each index.

• (As a hardware lookup table reached from a new assembly instruction as discussed in the

summary.)

The first three add a one-time bit of code and a number of clock cycles, both adding an offset to the

S&P numbers.

6.4.6 Why is the transmitting code so much neater than the ISR code?

Let’s modify the USART_Transmit function so that instead of taking the data byte and a pointer to

the USART it takes a pointer to the SerialPort struct that now also contains a field with the data byte:

Original version:

__attribute__ ((noinline)) void USART_Transmit(uint8_t data, USART_ATmega324_t *
usart) {
 while (!(usart->UCSRA & (1<<UDRE0))); // Wait for empty transmit buffer
 usart->UDR = data; // Start transmission
}

Structs and pointers

 ATmega324A

 Instr Instr W Instr C Comment

MOVW R30,R22 1 1

 LDD R25,Z+0 1 1

 SBRS R25,5 1 2 1st try

RJMP PC-0x0003 1 2

 STD Z+6,R24 2 2

 RET 1 4 16-bit PC

7 12

0

5

10

15

20

25

30

1 port 2 ports 3 ports

#
In

st
ru

ct
io

n
 w

o
rd

s

#Ports

ATxmega128A1 transmit

instruction words

Statics

S&P

0

5

10

15

20

25

1 port 2 ports 3 ports

#
C

lo
ck

 c
y

cl
e

s

#Ports

ATxmega128A1 transmit clock

cycles

S&P one impl

Statics port 0

Statics port 1

Statics port 2

72

Modified version:

__attribute__ ((noinline)) void USART_Transmit(UsartData_t * SerialPort) {
 while (!(SerialPort->Usart->UCSRA & (1<<UDRE0))); // Wait for empty tx buffer
 SerialPort->Usart->UDR = SerialPort->Data; // Start transmission
}

Structs and pointers

 ATmega324A

 Instr Instr W Instr C Comment Description

MOVW R26,R24 1 1

X points to the struct SerialPort that starts with *Usart

LD R30,X+ 1 1

Z points to the USART status register

LD R31,X 1 1

Z points to the USART status register

LDD R18,Z+0 1 1

R18 = content of the status register

SBRS R18,5 1 2 1st try Check if data register is ready to receive

RJMP PC-0x0002 1 2

If not, repeat

MOVW R26,R24 1 1

X points to struct SerialPort

ADIW R26,0x14 1 2

Adjust so X points to SerialPort->Data

LD R24,X 1 1

R24 = SerialPort->Data

STD Z+6,R24 2 2

Write R24 to USART data register

RET 1 4 16-bit PC

12 18

These very similar high-level functions become slightly different in assembly: 71.4% more code and

50% more clock cycles. The reason is that two pointers (X and Z) are now necessary.

The conclusion I draw from this is that with an object-inspired data model (S&P with encapsulated

data) you run the risk of hidden complexity that makes the application bigger and slower. In my

particular application I could probably avoid conversion from serial port #0-7 to a HW module base

register pointer (as shown in the S&P code), but we have seen that if such a software-based

conversion must be used, S&P will only become an option at higher module instance counts.

Please note that the differentiator isn’t really the number of instances of a specific HW module but

actually in how many different ways your application uses it. If your external peripheral driver

operates on all instances in one go, S&P will never have a chance to scale into competitiveness. The

serial ports, on the other hand, are used independently so S&P is an option.

6.4.7 How to choose between legacy static addressing and structs and pointers?

This is as far as I can go in my analysis of the “legacy” use of static addressing vs. the alternative use

of S&P. There are several considerations I can immediately think of:

• Is the object-oriented data model (S&P) better when applications grow in size?

• Is S&P better at explaining the data model, due to its data grouping? Or is this rather a

question of coming up with informative variable names and writing good documentation?

• Is static addressing better at showing what the program really does?

• At a certain point, it becomes inefficient to pass more parameters to a function (not to

mention receiving the return value(s)). It depends on how many registers you can use

without putting the parameters on the SW stack, so it also depends on how “big” your

parameters are.

I thought about the possibility of combining the two models, so I changed the S&P ISR to be as similar

to the statics version as possible:

73

ISR(USARTE0_RXC_vect)
{
 uint8_t data = SerialPort0.Usart->DATA; // Read the received data
 uint8_t tmphead = \
 (SerialPort0.RxHead + 1) & USART_RX_BUFFER_MASK; // Calculate buffer index
 SerialPort0.RxHead = tmphead; // Store new index
 SerialPort0.RxBuffer[tmphead] = data; // Store received data in buffer
}

Unfortunately it -Os compiles to the same size as the original S&P version, so it’s apparent that this

could only be achieved by hardcoding the memory addresses for the instance fields. This would make

the application very difficult to maintain.

Another way to use a hybrid data model might be to do HW module register operations with structs

but otherwise use static addressing. However, I don’t know if this would be possible and better and I

don’t have time to investigate it.

6.5 Protocol-bound ISR scaling (AS3j & AS3k)

As previously discussed, I chose row-major array addressing as it is more efficiently read (and

written) with post-incrementing pointer, even though column-major consistently resulted in slightly

smaller code.

The test results (appendix A.8.5) show that the optimization levels scale differently. I have mostly

used -Os for comparisons, so I’ll continue doing so. Please note that with -Os S&P is slightly better

than statics, but with -O3 the situation is reversed.

Figure 31: ISR scaling, incl IV

0

200

400

600

800

1000

1200

1S statics row-m, 18 BSS 1M S&P, 20 BSS 1M statics row-m, 18 BSS 2M S&P, 40 BSS 2M statics row-m, 36 BSS

T
e

x
t,

 b
y

te
s

#ports, single- or multi-port code, statics or structs and pointers

Protocol-bound ISR, incl IV -Os

ATmega324A

ATmega1284

ATxmega128A1

74

Figure 32: ISR scaling, excl IV

This test consists of one generic version that supports one to several ports and one version that only

works with one port. This is to get a feeling for the cost of using a generic design. A very rough

number is the average of (1M statics – 1S statics) / 1S statics for tests w/o IV but with initialization:

14.6%.

One thing stands out when looking at the protocol-bound ISR: The prologue (26 instructions) and

epilogue (22 instructions) are big. What’s more: the ISR code in appendix A.8.6 is included once per

instance. With inline assembly, it should be possible to save some 90 bytes for ATxmega128A1. (Less

for the other two, but still a significant reduction.) The “-mcall-prologues switch” can be used to

generate one common set of this code. (65) 87

Alternatively, it would be nice to be able to place it in the unused parts of the IV. An AVR Freaks user

forum thread describes in detail two ways to do it: either provide a custom .vectors section or use

the -nostartfiles flag and write all IV and default initialization yourself. (66) 88 Similar (and other)

information can be found here: (67) 89 (68) 90 This post explains why it isn’t (?) a standard feature; it’s

safer to let all the unused interrupts jump to an eternal loop. (69) 91

87

http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=97382&start=all&postdays=0&posto

rder=asc
88

 http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&p=1131093#1131093
89

 blog.schicks.net/wp-content/uploads/2009/09/bootloader_faq.pdf
90

 http://gcc.gnu.org/onlinedocs/gcc/Link-Options.html
91

 http://sourceware.org/ml/binutils/2013-02/msg00180.html

0

100

200

300

400

500

600

700

1S statics

row-m,

18 BSS

1M S&P,

20 BSS

1M

statics

row-m,

18 BSS

2M S&P,

40 BSS

2M

statics

row-m,

36 BSS

T
e

x
t,

 b
y

te
s

#ports, single- or multi-port code, statics or structs and pointers

Protocol-bound ISR, excl IV -Os

ATmega324A

ATmega1284

ATxmega128A1

0

100

200

300

400

500

600

700

1S statics

row-m,

18 BSS

1M S&P,

20 BSS

1M

statics

row-m,

18 BSS

2M S&P,

40 BSS

2M

statics

row-m,

36 BSS

T
e

x
t,

 b
y

te
s

#ports, single- or multi-port code, statics or structs and pointers

Protocol-bound ISR, excl IV -O3

ATmega324A

ATmega1284

ATxmega128A1

75

6.6 ATmega324A structs and pointers two-port USART ISR placed in IV

I was curious of how difficult and time-consuming it would be to place the USART ISR inside the ISR,

so I had to test it. I made some minor changes to the interrupt handler C code and -Os compiled it to

get the disassembly. (Appendix A.9.1.)

My real application uses two more interrupts, INT2 and PCINT2.18, so I had to reserve vectors 0x06

and 0x0C for them. There are three main differences compared to the default ISR prologue and

epilogue generated by C code:

• It has one common epilogue and most of the prologue is also shared.

• As it doesn’t call a function, the ISR only needs to PUSH&POP the used registers.

• It only cares about the RAMPD/X/Y/Z and EIND registers that are relevant. This makes no

difference for the ATmega324A, some for ATmega1284, and some more for the

ATxmega128A1 as shown earlier.

Reusing part of the disassembly code, I end up with the below myvects.S file. It took me some four to

eight hours to complete this, most of which is research time. If I were to do it again, it might take me

two hours. It uses global C variables, a global #define value, and hooks up to INT2 and PCINT2 ISR

handlers written in C code. (Appendix A.9.2.)

It compiles to:

498 text, 0 data, 40 bss (-O1)

474 text, 0 data, 40 bss (-O2)

430 text, 0 data, 40 bss (-O3)

464 text, 0 data, 40 bss (-Os)

The same implementation in C code compiles to:

704 text, 0 data, 40 bss (-O1)

680 text, 0 data, 40 bss (-O2)

654 text, 0 data, 40 bss (-O3)

668 text, 0 data, 40 bss (-Os)

This is roughly 200 bytes more. The default IV ends with instruction word 0x3D (124 used bytes),

which means that my ISR fits into the default IV plus five words. The RJUMPs past the interrupt

vectors take four instructions, so let’s say that the (two first of the) “main differences” listed above

result in a 75 byte code size reduction. (You should be able to achieve something like this with the

naked attribute and assembly placed outside of the IV.) It would have been more on the

ATxmega128A1 due to the RAMPD/X/Y/Z and EIND registers. (I would disable interrupts when inside

the bootloader and with only internal RAM there’s not much need for >64k support in the ISR.)

Is it worth it? Well, once you have learned how to do it, it is pretty quick. I would recommend

keeping the C code and doing future changes to the high-level code, with disassembly and manual

modifications to the assembly code. It is of course more time-consuming to maintain than high-level

code, but not very much for an experienced developer. Nevertheless, placing code in the IV space is

something you normally only do when you’ve run out of program memory or when you need to

squeeze in as much as possible in a bootloader. (Later I moved the ISR out of the IV and instead

placed a number of short custom math (and other) routines there. They are easy to move if you need

to start using an additional interrupt vector. The maintenance cost is practically zero.)

76

7 Compilation and discussion of the test results

7.1 Static vs. dynamic addressing (BASCOM-AVR) or S&P (AVR-GCC C)

The BASCOM-AVR implementation of the ATmega USART send commands is static, while the

ATxmega design does base address calculation based on port number. We saw that the two

approaches are almost identical in size at three ports, although the address calculation makes it

much slower. At eight ports, dynamic addressing takes 36% more clock cycles compared to the static

addressing average. At three ports it’s 90% more and at one port it’s 124% more clock cycles.

At one port, dynamic-addressed sending uses (46 - 26) / 26 = 76.9% more program code than static.

At eight ports it saves (161 - 115) / 161 = 28.6%.

Much of the extra cost comes from the address calculation. In the AVR-GCC comparisons the pure

S&P-based code is equal in size to static-addressed at two ports. At only one port they are equally

fast, but S&P scales better (=flat), so from a performance perspective it is always a good choice.

Please note that this test result requires that the base address is always known, i.e. an object-

oriented way of always referring to (a struct variable with a pointer to) the USART base address. It

also requires that only one variable is using pointers at each moment. With multiple simultaneous

pointers the calculation and operations come at an additional cost.

If your program uses some kind of device numbering, e.g. port #0-7, and needs to translate this to

either a (pointer to a) peripheral module base address or a (pointer to a) struct variable, you have a

few alternatives that all add program code (mostly once) and clock cycles (for each call):

• As a switch statement or an “if elseif else” block that assigns the corresponding (base)

address pointer. (The compiler might generate a lookup table.)

• As a calculation (which is the BASCOM-AVR approach).

• As a lookup in a vector that holds the base address for each index.

7.1.1 Suggestion for HW-based translation

To bring this down, I would like to suggest HW-based translation; a dedicated 256 lines * 16-bit wide

SRAM or register lookup table that you call with a device type code and an instance number using a

new set of assembly (machine) instructions:

rlut 0x12 Places the content of LUT address 0x12 in Z.

It uses hardcoded device type and instance number.

rluu 0x3 Places the content of LUT address 0x3[r24 content] in Z.

It uses hardcoded device type. It requires that the instance number is already in r24.

rluv Places the content of LUT address 0x[r25 content][r24 content] in Z.

It requires that the device type and instance number are already in r25 and r24.

wlut 0x07 Writes the value in Z to LUT address 0x07.

It uses hardcoded device type and instance number.

wluu 0x0 Writes the value in Z to LUT address 0x0[r24 content].

It uses hardcoded device type. It requires that the instance number is already in r24.

wluv Writes the value in Z to LUT address 0x[r25 content][r24 content].

It requires that the device type and instance number are already in r25 and r24.
Figure 33: Proposed instructions for look-up table operations

77

I realize that it’s highly unlikely that Atmel would actually implement this, but I still think there is

evidence that HW-based translation from instance number to base address is worth investigating

further. Even though I have only analyzed the serial ports, I think that the results are generally valid.

What I want to achieve is a uniform programming style, based only on the S&P approach, but

without the penalties we have seen (especially in the BASCOM-AVR ATxmega implementation). It

would make less of a difference in a pure struct variable design (where the base address is a pointer

field), but the need to translate should be common enough.

Example: A call to a device driver:

Place the instance number in r24 unless it’s already there (as a regular first byte parameter)

rcall your_function

Inside the function:

If necessary, place r31:r30 on the stack. (It would be done anyway, here or before the rcall.)

rluu (hardcoded device type)

Proceed with the driver code.

This would actually result in more than a reduction in the translation itself. Today, the AVR-GCC

function call contains a pointer variable to the device instance base address, e.g. in r25:r24. Before

the call, these two registers must be be written to (possibly after being saved on the stack). rluu only

needs one register. Inside the function, movw r31:r30, r25:r24 is done. rluu eliminates the need for

this. This is a minimum save of one instruction for each function that operates on a base address

pointer and at least one instruction for each time this type of function is called, probably more with

the stack operations.

The struct variable that today has a 2-byte pointer field for the base address would only need one

byte for the instance number, a save of 1 byte of regular SRAM for each instance. This information

might already be in a struct field, in which case 2 bytes would be saved.

This concept is not limited to drivers, but all types of struct variables or “objects”. rluv or rluu could

be used for iteration on objects of the same type, without an overlying vector or linked list that holds

their base address. In this sense, the LUT would implicitly take the place of the data structure itself. It

would certainly be a lot more efficient (and quicker) to increment one or two bytes for the LUT

addressing than do vector indexing or linked list positioning with LDS from SRAM into r25 and r24.

It has another kind of potential advantage: it only requires that the peripheral register layout is

internally uniform (for the registers that are used by the driver), not that the register groups are

placed at an equal distance from each other. Compared to switch/if_elseif_else or vector-based

translation, it wouldn’t make a difference, but it would compared to calculation-based translation. I

haven’t analyzed this, but I think that it is worth looking at. It might make it possible to use generic

S&P drivers also for ATmega. At least this is the case for the ATmegaXX4 USARTs.

There is of course a cost in terms of the dedicated LUT SRAM/registers and logic, and you have to

make at least one initial write to it, which takes a minimum of three instructions. Alternatively, this

functionality could be silicon-based, with only read operations. It would limit the functionality to

peripheral IO registers, but at no initialization cost. As a third option, it could be an SRAM/register

area that initializes to the silicon-based values but can be over-written.

78

Of course it requires some further analysis, but it would be interesting to test. Maybe I’ll try it on a

soft-core logic device.

Please see the XMEGA Custom Logic (XCL) for quite a different type of special functionality. (70) 92

7.1.2 More simultaneous pointers with displacement

I have only touched on this subject, but we have seen that S&P performs best when it only needs as

many simultaneous pointers as it can access without moving register content around. As Y is often

used as a SW stack pointer, only Z remains with displacement functionality. X can be used, but

requires addition or subtraction (ADIW, SUBI, SBCI) for each new address (unless post-increment or

pre-decrement can be used).

It’s clear that the struct variable-based programming model often wants more than 2-3 pointers. I

suppose that there are HW or instruction set size limitations, but it would be very interesting to see

how much could be gained by additional full-featured pointers. This need is also stated clearly in

“AVR-GCC-Codeoptimierung” (71) 93 and implicitly in “The AVR Microcontroller and C Compiler Co-

Design” (20).

In comparison, ARM has full pointer support on 13 general-purpose registers. (72) 94 This should

enable quite different possibilities for the struct- or object-based programming model. The fact that

AVR 8-bit microcontrollers only have three memory pointers is probably its greatest weakness. If

ever Atmel releases an ATxmega2, it should definitely incorporate more pointers.

7.2 Hardware-related complexity costs

Experienced designers and developers are generally aware that there are hardware complexity cost

factors, although I believe that their actual impact in terms of code size and clock cycles is less well-

known. As we’ve seen from the disassemblies they can make a significant contribution, especially in

certain cases.

7.2.1 Program memory sizes

If your application uses “many” interrupts, a lot of ATxmega instruction words will do RAMP stack

operations (unless you tell the AVR GCC compiler to generate one common set of interrupt prologue

and epilogue that does a lot of stack operations or use “ISR(vector_name, ISR_NAKED)” to prevent it

from generating prologue and epilogue). BASCOM-AVR has a corresponding “nosave” attribute. The

ISR disassemblies showed us that this effect can be quite big (37.8% more code with S&P and 34.5%

with statics):

Structs and pointers ISR Statics ISR

ATxmega128A1 51W, 72C ATxmega128A1 39W, 54C

ATmega1284 41W, 68C ATmega1284 33W, 53C

ATmega324A 37W, 61C ATmega324A 29W, 46C

92

 http://www.atmel.se/Images/Atmel-42083-XMEGA-E-Using-the-XCL-Module_Application-Note_AT01084.pdf
93

 http://www.mikrocontroller.net/articles/AVR-GCC-Codeoptimierung
94

 http://www.eng.auburn.edu/~nelson/courses/elec5260_6260/ARM_AssyLang.pdf

79

However, I don’t think that the typical application (except for the ISRs) suffers that much from this as

I assume that the compiler only changes these registers when it has to.

A short summary:

• RAMPD together with constant K: necessary for addressing data memory above 64kB. This is

(only?) relevant when using ATxmega EBI (External Bus Interface) with external RAM.

• RAMPX/Y/Z together with X/Y/Z pointer: used for indirect addressing of the data memory

above 64kB. RAMPZ:Z is also used when reading and writing program memory above 64k

words (128kB), typically by bootloader code.

• EIND together with Z pointer: used for certain jumps and calls on devices with more than 64k

words (128kB) program memory. 128kB devices with bootloader space outside of the regular

memory called “application section” and “application table section” need this, e.g.

ATxmega128A1.

ATxmega64A1 has all of these except EIND while ATxmega128A1 has all.

ATmega1284 has RAMPZ for ELPM and SPM program memory operations, but the other ATmegaXX4

don’t have any.

7.2.2 Feature-fulness and architecture

7.2.2.1 IV, Interrupt vector

More peripheral types and instances means a bigger IV:

• ATmega324A: 124B

• ATmega1284: 140B

• ATxmega128A1: 500B

I have shown various ways of using all or the end of the IV space for custom code, but this is

something you typically don’t do unless you have exceeded the program memory size. The simple

two-port S&P ISR code without error handling for ATmega324A saved roughly 200 bytes, of which

about 75 came from avoiding duplication of ISR prologue and epilogue.

As a result of a forum question by me, BASCOM-AVR 2.0.7.7 and later has an unsupported switch,

$reduceivr, that truncates the unused end of the IV. This means that your application code will start

inside the IV area, giving you some extra space.

7.2.2.2 Configuration code

More configuration options means more configuration code:

• ATmegaxx4: system clock setup is mainly done via flash fuse bits. With an external crystal,

iIt’s only the prescaler that needs to be set with two two-word instructions. Power reduction

is one two-word instruction for all ATmegaXX4 devices except ATmega1284 that (might)

write to two registers.

• ATxmega128A1: A system clock setup sequence that takes about 26 instruction words for

external crystal and six power reduction registers that require at least eleven one-word

instructions to write to. ATxmega also requires that you set the USART transmitter pin to

80

output, while ATmega does this automatically. (This shouldn’t make an actual difference in a

real application, as you typically initialize each port in one go.)

7.2.3 Instruction set and CPU register file

I don’t have time to go into these areas, but I should at least mention the fact that that differences in

memory layout (e.g. banked or non-banked), instruction set, and the number and type of CPU

registers have an impact. E.g. RISC programs have been found to be 30% bigger than CISC. (73)

It’s also worth noticing that “Our study suggests that at performance levels in the range of [ARM Cortex] A8 and

higher, RISC/CISC is irrelevant for performance, power, and energy.” (74)

7.2.4 Is HW complexity costs a reason to use soft-core logic devices instead?

Is there a complexity-related boundary for general-purpose microcontrollers? I won’t try to answer

this question here, but rather just put it up for discussion.

7.3 Software-related costs

7.3.1 Optimizing or non-optimizing compiler

7.3.1.1 AVR GCC

The AVR GCC (Gnu Compiler Collection) toolchain is the heart of Atmel Studio 6. It has a powerful

optimizing compiler with four usable optimization levels. As we’ve seen, you can’t be sure to get the

smallest code with the -Os level (size-optimization) nor the fastest one with -O3 (speed-

optimization). If you are seriously interested in optimizing your code, you are adviced to disassemble

and look at what it actually does, typically doing iterative modifications to your high-level code.

Nevertheless, I am very happy with its performance. Sometimes you can get a big improvement by

using hand-written assembly (e.g. ISR), but on other occasions the two seem to be on a par with each

other. Especially in very complex situations, I believe that the optimizing compiler wins so long as you

write code that is easy to compile well. This is easier said than done in a complex situation.

7.3.1.2 BASCOM-AVR

BASCOM-AVR is a non-optimizing compiler that generates a stitch-work of pre-defined (hand-

optimized) assembly code (i.e. built-in commands) and interconnecting pieces of compiled VB. It

places all local variables and call parameters on a SW frame stack. This can save RAM compared to

using global or static local variables and in some environments enables reentrancy and recursion.

(General information about the use of stacks can be found here: (75) 95)

An optimizing compiler keeps as many variables as possible in the working registers, which can

eliminate or reduce the need to work with the frame stack, with the advantage of smaller and faster

code.

BASCOM-AVR’s advantage is that it is completely predictable. You can look at the assembly library

code and probably also modify it (or at least reuse it). It’s also a trade-off against IDE and command

development time. They put great effort into making it easy for the developer to implement the

most common functionality, quickly.

95

 http://www.ece.cmu.edu/~koopman/stack_computers/sec1_4.html

81

7.3.1.3 Comparison

BASCOM-AVR’s ATxmega sole design principle of doing address calculation makes it impossible for a

comparison of compiler efficiency. (After writing this, BASCOM’s owner Mark Alberts has read and

commented on my thesis. He will include a developer option for ATxmega, which should put it back

in the game.)

Luckily, BASCOM-AVR’s ATmega implementation is static, so it’s quite ok for such a benchmark:

ATmega324A All code Excl. 124 B IV

Excl. 124 B IV and

unused B-A code

Excl. 124 B IV,

unused B-A code,

and init

Compiler BA6b BA7 BA8a BA6b BA7 BA8a BA6b BA7 BA8a BA6b BA7 BA8a

BASCOM-AVR 724 688 484 600 564 360 582 546 342 532 496 292

AVR GCC -O3 470 470 412 346 346 288 346 346 288 296 296 238

AVR GCC -Os 490 490 412 366 366 288 366 366 288 316 316 238

B-A bigger by 51% 43% 17% 69% 58% 25% 63% 53% 19% 74% 62% 23%

The BASCOM-AVR version was developed first and then translated into C. BA6b and BA7 has the

same C counterpart as the latter’s send routine is already “custom-like” in BA6b.

• BA6b: VB high-level only version

• BA7: Custom inline assembly send routine

• BA8a: Custom inline assembly send routine and protocol-bound ISR

Please note that:

• There are slight differences in the ISR functionality, although both use a circular RX buffer.

• The BASCOM-AVR BA6b version has a more multi-purpose send functionality.

In other words, you must take the above figures with a grain of salt. Nevertheless, I draw two

conclusions from this:

• BASCOM-AVR’s design with command stiching generates some 70% bigger code in this test,

when the IV is excluded.

• It is possible (and wise?) to reduce the difference by using inline assembly in select places.

7.3.2 Generic software library or built-in commands

The test results above (mostly BA6b and its C counterpart) come from using BASCOM-AVR built-in

commands and Atmel application note code. For BASCOM-AVR it means a certain overhead when

entering and exiting the commands, but it is still much more efficient than writing VB-only

implementations of the commands. In other words: BASCOM-AVR benefits greatly from its

commands.

82

When it comes to Atmel library code there are two choices:

• Application notes that present the design, its background and considerations, and give you a

simple demo program with the driver code. I found these to be informative, to the point, and

easy to use together with the datasheets.

• ASF, Atmel Software Foundation, is a repository for drivers and demo projects. I found this to

be buggy, tedious, fragmented and bloated beyond comprehension. In the end, I have come

to use the ASF Wizard to include ASF modules just to get convenient access to the driver

header files. This also enables me to look at the ASF code and in some cases copy from it.

Generally, I prefer reading application notes and datasheets.

This means that I opt out of the claimed easy transition to ARM - it’s not worth the ASF

penalty. If and when that day comes, I will write custom drivers for ARM.

What I would like from Atmel in this area is a driver code generator with a simple GUI.

7.3.2.1 (Lack of) exclusion of unused code

BASCOM-AVR suffers a little from unused code, but the cases I have come across are mostly basic

supporting functionality that you are likely to need at some later point in your actual application. Due

to its use of built-in commands, it avoids the problem of massive inclusion of unused driver code.

This means that compared to ASF, BASCOM-AVR in many cases actually produces a lot less code.

ASF, on the other hand, is like getting fleas: You don’t just get one. You get all their aunts and cousins

too. A simple ATxmega clock setup, USART driver/service configuration, and dummy sending of one

byte (without the ISR) lands you at about 1900 bytes. We saw that a minimum hand-written C

implementation takes -Os 822 bytes, of which the interrupt vector table is 500 bytes and the default

initialization and clock management account for 122 bytes. Just including all the driver modules my

real application needs would leave me with -Os 8334 or -O3 9954 bytes. This is just silly. I wonder if

this is part of the reason why Atmel has so limited ASF support for ATmega; It simply wouldn’t work -

the program memory would already be filled with dead code from AZF, the Atmel Zombie

Foundation.

The good news is that going from USART HW-oriented driver to cross-platform service only sets you

back 82 bytes on top of the driver’s 1840 bytes. It doesn’t seem to be very expensive to add an

abstraction layer to your custom driver code, although this is really only an assumption.

83

7.3.2.2 General-purpose driver that does something similar to what you need

The BASCOM-AVR send routines support three different types of transfer:

• Sending a constant

• Sending a 1-byte variable

• Sending an n-byte string variable

The Atmel application note code is a simple “send one character” routine – just what I wanted. To

send a string you must add custom application code, which makes the BASCOM-AVR approach less

expensive in comparison.

7.3.3 High-level code vs. assembly

Due to the lack of optimization in BASCOM-AVR, I would say that it benefits more from inline

assembly and custom assembly subroutines and functions. While the built-in commands greatly

reduce development time, sometimes a custom implementation is prefereable. One example is the

protocol-bound ISR handler. A 44% reduction in code size was achieved by replacing the generic

command-based ISR and VB application code with protocol-bound inline assembly.

With AVR GCC’s optimizing compiler you can manage with high-level code in most situations. Inline

assembly or assembly functions are necessary when you want to make sure that operations are

carried out in a certain order and proximity. We also saw that assembly makes it possible to use all of

the IV, with a minimal increase in maintenance “cost” (which you’d normally only do for a

bootloader).

I found that using Assembly doesn't take much time, if you start with high-level code and modify the

disassembly. Much of the time spent is on initial learning, a one-time cost.

7.4 Programmer skills

The incremental improvements to the BASCOM-AVR ATmega324A test code showed that I could

reduce the VB-only code (excl. IV) from 882 to 600 bytes (32%). I found a bug (in the routine for

copying data from the circular buffer to the work vector) and understood some consequences of

various programming styles and ways to encase commands. The most striking was how expensive it

is to use locals and call parameters in a stack-only compiler philosophy. If you want to minimize your

BASCOM-AVR code, you should use global variables with gosub-specific alisases. If you do, an

absolute requirement is that you make 100% sure that your alias-globals really only have local

scopes. You must also be certain that your code doesn’t have to be reentrant, e.g. from an ISR, which

is the only real multi-process situation you can have with AVRs.

It is obvious that really knowing what you are doing can have a great impact on code size. Being

willing to question and circumvent conventions helps.

84

7.5 ATmega or ATxmega or both?

7.5.1 Hardware aspects

So, how do you choose between ATmega and ATxmega? For my application needs, ATxmegaA1U has

four main advantages: HW encryption engine (for my bootloader), USB interface, DAC, and a lower

price for more or similar functionality. It has a higher maximum clock frequency, DMA, event system,

bootloader in addition to the 64 or 128kB program memory, can use external RAM, and possibly has

lower power consumption (and more), although I currently don’t need this.

On 2014-02-05, www.farnell.se lists the following prices for similarly sized or featured AVRs:

• ATMEGA324A-AU: SEK 41.92

• ATMEGA1284-AU: SEK 58.46

• ATMEGA128A-AU: SEK 92.21

• ATMEGA1280-16AU: SEK 145.32

• ATMEGA1281-16AU: SEK 123.39

• ATXMEGA64A1-AU: SEK 75.17

• ATXMEGA128A1U-AU: SEK 51.12

We have seen that the additional and improved functionality has a cost in terms of:

• Bigger IV, interrupt vector table.

• More configuration code and possibly more transaction-related code (although this is an

assumption).

• More memory-related additional operations needed (RAMPD/X/Y/Z and EIND). Especially for

ISRs with individual prologue and epilogue, this makes a code size difference.

• A greater fraction of registers outside of the IO memory area. This couldn’t be seen in my

test programs as the ATmegaXX4 USARTs are outside of the IN/OUT instruction area.

o In ATmega1284, 32 of the 100 peripheral registers can be accessed via IN/OUT, plus

the digital IO pin registers.

o In ATxmegaA1U, 4 of the 61 peripheral register groups can be accessed via IN/OUT,

excluding the digital IO pin registers. 4 of the 11 IO ports can be mapped to virtual

ports that are covered by IN/OUT.

ATxmega has a more efficient implementation of some instructions, which means that they take

fewer clock cycles. The opposite case also exists.

All in all, ATxmegaA1U is slower at the same clock frequency and requires more code to do “the

same thing”, but its boot section is in addition to the specified program memory. It’s cheaper

than its ATmega counterparts and can be clocked at a 60% higher frequency. A1(U) has more

internal peripheral types and instances, which means that you might need less external

peripheral circuitry. It has 16 General-Purpose IO registers that can be used for global variables

with single-instruction bit operations, whereas ATmegaXX4 has only three, of which one is bit-

operable.

85

With the ATxmega product offering ranging from 8kB to 384kB and 32 to 100 pins, I think it’s

clear that Atmel is slowly phasing out the ATmega line. It must be very expensive to maintain so

many different devices.

The complexity costs can be seen in the following graphs:

Figure 34: ISR scaling demonstrating complexity costs

7.5.2 IDE aspects on architecture choice

7.5.2.1 Atmel Studio 6

One of my main concerns about Atmel Studio 6 was ASF’s weak support for ATmega. I was also

wondering if using library drivers with the new ATxmega struct-based addressing would introduce a

programming style that isn’t compatible to ATmega, in effect forcing me to use two different

programming models for the same functionality. This didn’t sound very desirable.

However, with ASF being what it is, I am left with custom code based on application notes,

datasheets, occasional ASF copy&paste, and user forum posts and projects. It takes more time, but it

means that I could develop my own programming model. Based on my investigation results, it would

be a mixed model.

My different test program versions have shown me that the S&P approach is size-wise on a par with

static addressing at two ports if you use a pure S&P design with only one pointer. If you need more

pointers or have to translate a port number to a base, the balance point shifts up. I suspect that

break-even is case-specific but the general principle should hold. For single-instance drivers it

generally seems better to use static addressing.

7.5.2.2 BASCOM-AVR

With BASCOM-AVR you really have one common IDE for ATmega and ATxmega. The commands are

generally the same or similar and it is easy to develop for more than one device in the same ‘project’.

Its users don’t have to worry about which AVR architecture to choose.

The downside is the current ATxmega address calculation design that is very big and slow. I would

like the possibility to choose addressing mode in the configuration command (which will be possible

in a later version due to the results in this thesis).

0

200

400

600

800

1000

1200

1S statics

row-m,

18 BSS

1M S&P,

20 BSS

1M

statics

row-m,

18 BSS

2M S&P,

40 BSS

2M

statics

row-m,

36 BSS

T
e

x
t,

 b
y

te
s

#ports, single- or multi-port code, statics or structs and pointers

Protocol-bound ISR, incl IV -Os

ATmega324A

ATmega1284

ATxmega128A1

0

100

200

300

400

500

600

700

1S statics

row-m,

18 BSS

1M S&P,

20 BSS

1M

statics

row-m,

18 BSS

2M S&P,

40 BSS

2M

statics

row-m,

36 BSS
T

e
x

t,
 b

y
te

s
#ports, single- or multi-port code, statics or structs and pointers

Protocol-bound ISR, excl IV -Os

ATmega324A

ATmega1284

ATxmega128A1

86

7.5.3 HW (and SW) maturity

One very important factor when deciding on a microcontroller (architecture) is whether the teething

problems are over and it has gained a large user base. At least certain ATxmega devices have had

serious problems. (76) 96 I have 10 pieces of ATxmega128A1 that I can’t use because single-ended

ADC seems to have been broken in all HW revisions until the silent replacement by the A1U series. I

don’t know what the status is right now, but my general impression is that the ATmega series is

safer. This said, I have reported to Atmel that the ATmegaXX4 datasheet was very unclear about the

fact that only ATmega1284 has timer3. This cost me a PCB redesign...

This is an important topic. HW that doesn’t work as specified or is announced a long time before it’s

generally available, SW that aggravates the user base by simply not working properly, and faulty

documentation is a risky business. At some point, customers might decide to look for another

manufacturer that goes the extra mile to ensure that its customers don’t get nasty surprises. This is

even more important on the ARM market where it’s so much easier to change suppliers.

However, launching two IDEs, a software library, ATxmega, and ARM in such a short period is a

gargantuan task, so maybe they have managed quite well under the circumstances. I can only hope

that their offering is stabilizing now.

7.6 IDE comparison

Both ASF and the BASCOM-AVR documentation could be improved, especially the first. The Atmel

application notes I have used have been relevant and informative.

7.6.1 Atmel Studio 6 with ASF

Atmel Studio 6 is the company’s second IDE based on MS Visual Studio. The predecessor, AVR Studio

5, had a very short life and does not seem to have had many admirers. (77) 97 (78) 98 I only used their

proprietary AVR Studio 4 for programming the .hex files from BASCOM-AVR, so my first encounter

with the actual IDE was last spring, on AS 6 for the Cortex M4 ARM. At that point we suffered from

frequent crashes when debugging and had strong opinions on ASF.

Half a year later I am doing this AVR thesis tests on a later version and I am very happy with the

studio itself, even though it takes a long time to start up. Once it’s up and running it’s responsive and

intuitive. The integration with ASF works well, except for the weird fact that it has hung my Firefox

browser on several occasions. This shouldn’t be a problem as I would almost only use ASF for

convenient inclusion of the proper header files. I have a very good impression of the application

notes that I have come across. I also like both the ATmega single datasheet and the ATxmega dual

datasheets, even though I have found and heard of several errors. (76) 99

I haven’t investigated what I would need to do to enable multi-device development in an Atmel

Studio 6 project, but I assume that I would have to take care of all file inclusions. I guess that this

would break the ASF integration, but all this is speculation.

96

 http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=103269
97

 http://www.kanda.com/blog/microcontrollers/avr-microcontrollers/avrstudio-explored/
98

 http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=103949
99

 http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=103269

87

So long as you use custom drivers, Atmel Studio 6 with AVR GCC produces very efficient code. The

toolchain has very many features that I have only just started to learn and master. All in all, it’s a

powerful developer tool that I like very much, so long as I can avoid ASF.

I would like for Atmel to develop a simple GUI tool for driver code generation. After all, this is what

BASCOM-AVR does when it converts its commands to device-specific assembly blocks.

7.6.2 BASCOM-AVR

The BASCOM-AVR users haven’t had to suffer major IDE changes with all the unavoidable initial

problems. While I would say that Atmel Studio 6 is an excellent development environment with an

auxiliary code base (application notes and ASF) that you can copy from, BASCOM-AVR is rather a

productivity-enhancement tool (plenty of standardized built-in commands) with a development

environment. If you want to minimize development time, BASCOM-AVR is a very good choice.

The fact that the company behind BASCOM-AVR is fairly small means that you can get in direct

contact with the IDE developers and decision makers. I am the initiator of two pieces of BASCOM-

AVR functionality and two implementation changes:

• The dword (unsigned 32-bit int) data type was necessary for the SD card and FAT16/32

library I wrote a few years ago, so they agreed to implement it. (79) 100 (80) 101

• The unsupported $reduceivr switch that makes your application code start directly after the

last used interrupt vector, was implemented after a forum post by me early in the thesis

work. (45) 102

• The change in v2.0.7.7 to static configuration of the USARTs is the direct result of my e-mail

correspondence with BASCOM-AVR’s owner.

• In the feedback on the nearly completed thesis from BASCOM-AVR’s owner, Mark Alberts

says that he will make it possible for the developer to choose static or dynamic addressing

for ATxmega.

Being able to access and influence the development team is invaluable. I can’t sufficiently stress the

importance of this.

Multi-device development is easy with BASCOM-AVR. You just need to change a pre-compiler

definition and uncomment the inclusion of your device and that’s it.

I would like a BASCOM-AVR optimizer, pointer support, and debugging. (It has a built-in simulator

and produces output files that can be debugged in Atmel Studio 6.)

7.6.3 User forums

Both IDE alternatives have very active, helpful, and competent user forums. They are a valuable

source of code samples and information, lots of information.

100

 http://www.mcselec.com/index.php?option=com_content&task=view&id=291&Itemid=57
101

 http://www.mcselec.com/index2.php?option=com_forum&Itemid=59&page=viewforum&f=18
102

 http://www.mcselec.com/index2.php?option=com_forum&Itemid=59&page=viewtopic&t=11718

88

7.7 Suggestions for future work

• Do a paper-based analysis of the suggested HW-based peripheral instance base address look-

up table. If it still seems like a good idea, implement it on a softcore microcontroller and test

run it on a few real-world programs.

• Analyze the difference between using separate shared global arrays and vars compared to

global struct variables or even extend it to a comparison between procedural and object-

oriented programming

• We have clearly seen the complexity costs that more advanced devices with more instances

incur. Analyze the trade-offs of this kind, on paper and on a real softcore microcontroller.

• Analyze the trade-off between writing code that is portable from e.g. an 8-bit microcontroller

to ARM, using both pre-existing driver library (not ASF…) and handwritten code based on

application notes and datasheets. How much does portability “cost” with clever driver design

and what are the trade-offs?

89

8 Summary

8.1 IDE choice

The BASCOM-AVR IDE is found to be a fine productivity-enhancement tool for quick development

(due to its well-documented built-in commands supporting most common peripherals) but its lack of

an optimizing compiler makes its compiled test code size about 70% bigger than Atmel Studio 6’s. For

ATxmega, it currently goes all-in for the dynamic addressing model with calculation of base address

from instance number, which makes it produce very inefficient code for this architecture for the

most common use cases. After reading my thesis, the company will make it possible for the

developer to choose ATmega-type static or dynamic addressing for ATxmega, effectively putting it

back in the race. I also want to emphasize the value of being able to get in contact with “the right”,

people at the company, which I know is easy at BASCOM-AVR’s support forum or by e-mail.

The Atmel Studio 6.1 IDE itself also wins my approval, being an enjoyable programming environment,

having a graphic debugger and a powerful optimizing compiler (avr-gcc). Very disappointingly, the

driver library Atmel Software Foundation (ASF) inserts huge amounts of unused (“dead”) code, which

together with annoying bugs, incomplete documentation, and weak support for ATmega makes it

unusable for the author’s purposes. It doesn’t make it less necessary to read datasheets and

application notes, so there is no productivity enhancement. With no real upgrade/downgrade path

between ATmega and ATxmega and no desire to use it for ATxmega anyway, there is also no

portability to (Atmel) ARM gained, which after all must have been Atmel’s intent in the first place.

In the end I choose Atmel Studio 6 for my future 8-bit class applications, using datasheets and (the

very good) application notes for custom drivers for a platform I by now am quite familiar with. For

future ARM development I will have to look for either a competitively priced multi-brand IDE with a

good driver library or one from another manufacturer who makes a good one themselves.

8.2 HW selection

ATxmega is a more powerful architecture, competitively priced compared to similarly sized ATmega

devices, and by now hopefully free from its teething problems. The additional and more powerful

peripherals together with its support for external RAM come at a considerable complexity cost in

terms of code size and total clock cycle count. I decide to consider both types for my designs (based

on the application’s need for features and pin count), but choose ATmega when it’s a tie, rather than

switching completely to ATxmega.

90

8.3 The programming test results and the conclusions I draw from them

I was surprised to see how big the complexity costs associated with bigger and more powerful

devices are. This is mostly seen in the IV table space (many and advanced peripherals), ISR prologue

and epilogue (memory size above 64k words), and program code size (configuration and initialization

of peripherals).

The programming investigations show that the legacy static (absolute) peripheral addressing model is

better at one “instance of use” of the peripheral type than the S&P model introduced by the new

uniform memory layout in ATxmega. At two ports it’s a draw and above that S&P is preferable.

For efficient programming, you should therefore use a mixed addressing model and the driver library

concept should support it. To enable abstraction for higher-layer application code, the driver library

should specify an “interface” that the (custom) driver must implement. A default implementation (or

alternative ones) is welcome, but most importantly the driver library should contain a GUI-based tool

in which the developer enters device brand, type, model, parameters, and optimization type. The

output should be C and assembly code with an identification string that could be used to retrieve the

same GUI settings for another brand or type. In fact, BASCOM-AVR’s configuration and use of its

built-in commands do a similar thing behind the scene.

This paper also suggests a new type of HW-based look-up table from peripheral module type and

instance to its base address. It should be a 256-line 16-bit wide RAM memory area initializing to the

peripheral map but be possible to overwrite with pointers to generic application-specific data

structures (global “objects”). It comes with new machine instructions for reading and writing. It

would save both program code and clock cycles, effectively making S&P as good as static addressing

for all numbers of instances. It would also enable a uniform programming style, making S&P possible

also for ATmega and be a differentiator among competing ARM manufacturers.

8.4 On efficient programming

There is clearly a big potential in developing skills and methods for more efficient programming.

Exactly how big wasn’t really possible to ascertain, due to BASCOM-AVR not using an optimizing

compiler and ASF being so poor.

• The BASCOM-AVR test program could be reduced by 34% using only high-level language code

and another 44% by replacing the generic receiver with handwritten protocol-bound

assembly.

• The BASCOM-AVR test program was about 70% bigger than the compiled code from the avr-

gcc toolchain.

• For the incomplete ASF serial port test program there was a 6:1 ((1840-622)/(822-622))

difference in compiled code size when comparing ASF to the slightly improved application

note code.

All 8-bit AVRs suffer from the fact that they only have three memory pointers, which at a certain

point forces the compiler to do expensive register data movements. This has a direct effect on the

programming model I recommend for AVR: avoid occupying several concurrent memory pointers, if

possible by keeping variables in registers or else (when there is no available memory pointer) by

using standalone global variables. It thereby also affects the informed choice of using a data model

with separate global arrays and variables or one with struct-based “objects”.

91

I (later) saw that when the code grows beyond the very simplest of test programs, the quickly

increasing complexity (also witnessed in the simple thesis tests) makes it very difficult to foresee the

consequences, e.g. when choosing between using separate varables and two-dimensional arrays for

global data or grouping it in object-like struct variables. This is a fundamental design choice, but I

believe that people today generally make it based on concept preference rather than performance

facts. After seeing the complexity I find it easier to “forgive” such a decision, but I still think that it is

highly relevant to analyze this on an academic level. With the slower HW performance increase we

now have and the diminishing return on parallelism, this should be an area of big commercial

interest, perhaps not by the companies selling server or desktop HW or operating systems but by the

immense user base.

How could you make the study and gradual build-up of systematic knowledge of such a complex area

into an academic discipline? Well, I am rather surprised that we (as it seems) have not yet made a

serious attempt (at least in recent years), given the importance of computers in today’s society. I

think that it requires a large number of very small test implementations of great many isolated areas,

e.g. between procedural programming’s data structures and the object-oriented counterparts,

scaling up in data size or comparing different processor architectures, or different high-level

languages on their respective compilers. Perhaps a linguistic approach with grammars could be used

to structure the test cases and organize the results in this multitude of valid and invalid

combinations. There needs to be a system (approach / set of rules / calculus) for calculating the cost

of a certain “construct”, e.g. a method or a set of data structures. One end goal should probably be

to integrate it into the IDE, but most importantly it should be common knowledge at the design

stage. However, this is all very early thinking.

Generally, you shouldn’t need to adapt your core programming style to the IDE when using an IDE

equipped with an optimizing compiler, but as BASCOM-AVR doesn’t have one, you should in this case

avoid local variables and parameters in subroutines and functions. Whether you should use the

alternative struct-based addressing model for ATxmega depends on the use case. For few instances

the legacy static (absolute) addressing is smaller and at least as fast.

How much inline assembly should you use? In retrospect, I find this question badly put. The fact that

we are brought up writing practically only high-level code has made us fear assembly for no good

reason. As I learned how to use it, I found it enjoyable and the natural choice in those situations

when you want full control (e.g. configuration or timing-related situations) or do data manipulations

that are easier to formulate on the instruction level (e.g. math routines). It is also necessary to

understand assembly when analyzing how the high-level code gets compiled to machine code

(represented by assembly). A practical approach is to write high-level code, compile and then modify

this code for your purposes, and use it as inline assembly or assembly functions. Quick and efficient.

I think it is safe to say that I have got as much as possible out of the AVR HW using avr-gcc. I have

continuously monitored and adapted to the disassembled code, replaced part of the C code with

hand-written assembly, filled up the empty IV table space with custom assembly code, and shown

the effect of the two different peripheral module addressing models.

Have I found a way to keep development time to a minimum, while also producing highly efficient

code? Well, not out of the box with these two IDEs. With BASCOM-AVR you get development speed.

Atmel Studio 6 and avr-gcc are tools for writing highly optimized code, using the techniques I have

92

demonstrated, with application note sample code. There is a learning curve for this, but with some

training you should be able to do it quite quickly, gradually reusing more of your own code base. It’s

an investment, like any other. A good driver library would of course mean a better starting point.

I can find no support for the notion that highly optimized code must mean low development speed

and vice versa, nor the prejudice that writing efficient code is wasteful (“HW is cheap – developers

expensive”). Instead, this thesis shows that the dedicated programmer can improve his or her

‘baseline’. By gaining a better understanding of the HW and IDE ecosystem, it should indeed be

possible to write better code about as fast as the uneducated developer writes worse code.

Is writing efficient code worth the effort? There are many different types of answers to that:

• For many simple one-task microcontroller applications, performance and code size (including

energy efficiency) are not the primary concern.

• At the other end of the embedded SW spectrum – e.g. smartphones – all of the above are of

great importance.

• In between, there are many applications that are battery-powered and hence benefit from

energy-efficient fast code. (This thesis has mostly focused on code size, but in all relevance,

the techniques are the same for clock cycle count reduction.)

• In large volumes, the cost saving of using smaller (=cheaper) devices is substantial.

• In PC- and server-class computing, performance and energy-efficiency can be very important.

Although the differences in HW and IDEs are too great for directly applying the thesis results,

I believe that they give insights that to a great extent are valid for other types of computers.

I have shown that once you master a few reasonably simple techniques, it really isn’t that much of an

effort. In the end it’s up to you: Do you want to be a master?

93

9 References
Most of my references are datasheets and software documentation produced by Atmel Corporation

and MCS Electronics or Wikipedia, without a reference to any specific individual. Hence, only some of

the sources have a named author.

1. Fuller SH. Future of Computing Performance : Game Over or Next Level? National Academies

Press; 2011.

2. Burlin J. Telephone interview IAR Systems AB. 2014.

3. megaAVR Microcontrollers [Internet]. [cited 2014 Feb 13]. Available from:

http://www.atmel.com/products/microcontrollers/avr/megaavr.aspx

4. Home - MCS Electronics [Internet]. [cited 2014 Feb 13]. Available from:

http://www.mcselec.com/

5. AVR XMEGA Microcontrollers [Internet]. [cited 2014 Feb 13]. Available from:

http://www.atmel.com/products/microcontrollers/avr/avr_xmega.aspx

6. Atmel® Studio 6 - Supporting Two Architectures: AVR and ARM, with One Integrated Studio -

Overview [Internet]. [cited 2014 Feb 12]. Available from:

http://www.atmel.se/microsite/atmel_studio6/

7. Atmel Software Framework [Internet]. [cited 2014 Feb 13]. Available from:

http://www.atmel.com/tools/avrsoftwareframework.aspx?tab=overview

8. Row-major order - Wikipedia, the free encyclopedia [Internet]. [cited 2014 Feb 14]. Available

from: http://en.wikipedia.org/wiki/Row-major_order

9. Atmel Corporation. Atmel Corporation - Microcontrollers, 32-bit, and touch solutions [Internet].

[cited 2014 Jun 3]. Available from: http://www.atmel.com/

10. Reduced instruction set computing [Internet]. Wikipedia, the free encyclopedia. 2014 [cited 2014

Feb 13]. Available from:

http://en.wikipedia.org/w/index.php?title=Reduced_instruction_set_computing&oldid=5940876

88

11. Harvard architecture [Internet]. Wikipedia, the free encyclopedia. 2013 [cited 2013 Dec 28].

Available from:

http://en.wikipedia.org/w/index.php?title=Harvard_architecture&oldid=585324105

12. Atmel AVR XMEGA AU Manual [Internet]. 2013 [cited 2013 Dec 28]. Available from:

http://www.atmel.se/Images/Atmel-8331-8-and-16-bit-AVR-Microcontroller-XMEGA-

AU_Manual.pdf

13. The Story of AVR - YouTube [Internet]. 2008 [cited 2013 Dec 28]. Available from:

http://www.youtube.com/watch?v=HrydNwAxbcY

14. AVR32 [Internet]. Wikipedia, the free encyclopedia. 2013 [cited 2013 Dec 28]. Available from:

http://en.wikipedia.org/w/index.php?title=AVR32&oldid=587706001

94

15. AT91SAM [Internet]. Wikipedia, the free encyclopedia. 2013 [cited 2013 Dec 28]. Available from:

http://en.wikipedia.org/w/index.php?title=AT91SAM&oldid=584613739

16. AVR and AVR32 - Quick Reference Guide [Internet]. 2009 [cited 2013 Dec 28]. Available from:

http://www.atmel.se/Images/doc4064.pdf

17. Gaillard F, Eieland A. Microprocessor or Microcontroller [Internet]. 2013 [cited 2013 Dec 28].

Available from: http://www.atmel.se/Images/MCU_vs_MPU_Article.pdf

18. Atmel AVR instruction set [Internet]. Wikipedia, the free encyclopedia. 2013 [cited 2013 Dec 28].

Available from:

http://en.wikipedia.org/w/index.php?title=Atmel_AVR_instruction_set&oldid=571841646

19. ATmega164A/PA/324A/PA/644A/PA/1284/P Complete [Internet]. 2012 [cited 2013 Dec 28].

Available from: http://www.atmel.se/Images/Atmel-8272-8-bit-AVR-microcontroller-

ATmega164A_PA-324A_PA-644A_PA-1284_P_datasheet.pdf

20. Myklebust G. The AVR Microcontroller and C Compiler Co-Design [Internet]. 1996 [cited 2013

Dec 28]. Available from: http://www.atmel.com/dyn/resources/prod_documents/COMPILER.pdf

21. AVR035: Efficient C Coding for 8-bit AVR microcontrollers [Internet]. 2004 [cited 2013 Dec 28].

Available from: http://www.atmel.se/Images/doc1497.pdf

22. Atmel AVR4027: Tips and Tricks to Optimize Your C Code for 8-bit AVR Microcontrollers

[Internet]. 2011 [cited 2013 Dec 29]. Available from: http://www.atmel.se/Images/doc8453.pdf

23. AVR Instruction Set [Internet]. 2012 [cited 2013 Dec 29]. Available from:

http://www.atmel.se/Images/doc0856.pdf

24. ATxmega64A1U/128A1U Complete [Internet]. 2012 [cited 2013 Dec 30]. Available from:

http://www.atmel.com/Images/Atmel-8385-8-and-16-bit-AVR-Microcontroller-ATxmega64A1U-

ATxmega128A1U_datasheet.pdf

25. Application Notes - - Atmel Documentation Overview [Internet]. ???? [cited 2013 Dec 28].

Available from: http://atmel.no/webdoc/atmel.docs/atmel.docs.3.application.note.html

26. AVR XMEGA [Internet]. 2008 [cited 2013 Dec 30]. Available from:

http://www.atmel.com/Images/doc7925.pdf

27. Introducing a New Breed of Microcontrollers for 8/16-bit Applications [Internet]. 2008 [cited

2013 Dec 30]. Available from: http://www.atmel.com/Images/doc7926.pdf

28. AVR1005: Getting started with XMEGA [Internet]. 2009 [cited 2013 Dec 30]. Available from:

http://www.atmel.com/Images/doc8169.pdf

29. AVR1000: Getting Started Writing C-code for XMEGA [Internet]. 2008 [cited 2013 Dec 30].

Available from: http://www.atmel.com/Images/doc8075.pdf

30. BASCOM-AVR online help [Internet]. [cited 2014 Feb 12]. Available from:

http://avrhelp.mcselec.com/index.html

31. BASCOM-AVR - MCS Electronics [Internet]. [cited 2014 Feb 12]. Available from:

http://www.mcselec.com/index.php?option=com_content&task=view&id=14&Itemid=41

95

32. Forum - MCS Electronics [Internet]. [cited 2014 Feb 12]. Available from:

http://www.mcselec.com/index2.php?option=com_forum&Itemid=59

33. avr-gcc - GCC Wiki [Internet]. [cited 2014 Feb 12]. Available from: http://gcc.gnu.org/wiki/avr-gcc

34. Documentation:AVR GCC/AVR GCC Tool Collection - AVRFreaks Wiki [Internet]. [cited 2014 Feb

12]. Available from:

http://www.avrfreaks.net/wiki/index.php/Documentation:AVR_GCC/AVR_GCC_Tool_Collection

35. Optimize Options - Using the GNU Compiler Collection (GCC) [Internet]. 2014 [cited 2014 Jan 23].

Available from: http://gcc.gnu.org/onlinedocs/gcc-4.8.2/gcc/Optimize-Options.html#Optimize-

Options

36. AVR Libc [Internet]. [cited 2014 Feb 12]. Available from: http://www.nongnu.org/avr-libc/user-

manual/

37. Atmel AVR4029: Atmel Software Framework - Getting Started [Internet]. 2013 [cited 2013 Dec

30]. Available from: http://www.atmel.com/Images/Atmel-8431-8-and32-bit-Microcontrollers-

AVR4029-Atmel-Software-Framework-User-Guide_Application-Note.pdf

38. Atmel AVR4030: AVR Software Framework - Reference Manual [Internet]. 2012 [cited 2013 Dec

30]. Available from: http://www.atmel.com/Images/doc8432.pdf

39. AVR Freaks [Internet]. [cited 2014 Feb 12]. Available from: http://www.avrfreaks.net/

40. AVR Assembler User Guide [Internet]. Pre-W2k [cited 2013 Dec 29]. Available from:

http://www.atmel.com/images/doc1022.pdf

41. Atmel AT1886: Mixing Assembly and C with AVRGCC [Internet]. 2012 [cited 2013 Dec 28].

Available from: http://www.atmel.se/Images/doc42055.pdf

42. AVR000: Register and Bit-Name Definitions for the 8-bit AVR Microcontroller [Internet]. 2009

[cited 2013 Dec 30]. Available from: http://www.atmel.com/Images/doc0931.pdf

43. AVR001: Conditional Assembly and portability macros [Internet]. 2008 [cited 2013 Dec 30].

Available from: http://www.atmel.com/Images/doc2550.pdf

44. Woxulv M. Telephone conversation Atmel Sweden. 2013.

45. Inline assembler: Possible to specify code placement? [Internet]. [cited 2014 Feb 7]. Available

from:

http://www.mcselec.com/index2.php?option=com_forum&Itemid=59&page=viewtopic&t=1171

8&highlight=reduceivr

46. ASF ATmega System Clock Management Documentation [Internet]. [cited 2014 Jan 23]. Available

from: http://asf.atmel.com/docs/3.13.1/mega/html/group__sysclk__group.html

47. AVR306: Using the AVR UART in C on tinyAVR and megaAVR devices [Internet]. 2002 [cited 2013

Dec 28]. Available from: http://www.atmel.se/Images/doc1451.pdf

48. View topic - HW lookup table for address pointers - good or bad idea? :: AVR Freaks [Internet].

[cited 2014 Feb 12]. Available from:

96

http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=140145&postdays=0&

postorder=asc&sid=e3717428757c8e0fcac437a5ae45306b

49. ASF ATxmega System Clock Management Documentation [Internet]. [cited 2014 Jan 23].

Available from: http://asf.atmel.com/docs/3.13.1/xmegaa/html/group__sysclk__group.html

50. ASF Source Code Documentation - Quick start guide for Serial Interface service [Internet]. [cited

2014 Feb 13]. Available from:

http://asf.atmel.com/docs/3.13.1/xmegaa/html/serial_quickstart.html

51. ASF Source Code Documentation - Advanced use case - Send a packet of serial data [Internet].

[cited 2014 Feb 13]. Available from:

http://asf.atmel.com/docs/3.13.1/xmegaa/html/serial_use_case_1.html

52. ASF Source Code Documentation - Quick start guide for USART module [Internet]. [cited 2014

Feb 13]. Available from:

http://asf.atmel.com/docs/3.13.1/xmegaa/html/xmega_usart_quickstart.html

53. White T, GTKNarwhal. AVR Freaks :: View topic - tc.h in the xmega atmel framework [Internet].

XMEGA forum - tc.h in the xmega atmel framework. 2011 [cited 2014 Jan 6]. Available from:

http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=115038&start=0

54. ASF Source Code Documentation - Clock Management [Internet]. [cited 2014 Feb 13]. Available

from: http://asf.atmel.com/docs/3.13.1/xmegaa/html/group__clk__group.html

55. ASF Source Code Documentation - XMEGA-A1 Xplained Board Configuration [Internet]. [cited

2014 Feb 13]. Available from:

http://194.19.124.62/docs/latest/xmega.drivers.des.unit_tests.xmega_a1_xplained/html/group

__atxmega128a1__xpld__config.html

56. AVR1522: XMEGA-A1 Xplained Training - XMEGA USART [Internet]. 2011 [cited 2014 Jan 6].

Available from: http://www.atmel.com/Images/doc8408.pdf

57. View topic - AS 6.1 ASF ATxmega support for multiple UART and ISR :: AVR Freaks [Internet].

[cited 2014 Feb 13]. Available from:

http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=139232

58. ASF Source Code Documentation - Quick start guide for PMIC driver [Internet]. [cited 2014 Feb

13]. Available from:

http://asf.atmel.com/docs/3.13.1/xmegaa/html/xmega_pmic_quickstart.html

59. ASF Source Code Documentation - Quick Start Guide for the System Clock Management service

(XMEGA) [Internet]. [cited 2014 Feb 13]. Available from:

http://asf.atmel.com/docs/3.13.1/xmegaa/html/sysclk_quickstart.html

60. ASF Source Code Documentation - USART module (USART) [Internet]. [cited 2014 Feb 13].

Available from: http://asf.atmel.com/docs/3.13.1/xmegaa/html/group__usart__group.html

61. View topic - AS 6.1 ASF ATxmega USART library compiled code size :: AVR Freaks [Internet]. [cited

2014 Feb 13]. Available from:

http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&p=1126226#1126226

97

62. AVR1307: Using the XMEGA USART [Internet]. 2008 [cited 2013 Dec 30]. Available from:

http://www.atmel.com/Images/doc8049.pdf

63. Atmel-8331-8-and-16-bit-AVR-Microcontroller-XMEGA-AU_Manual.pdf [Internet]. 2013 [cited

2014 Jan 6]. Available from: http://www.atmel.com/Images/Atmel-8331-8-and-16-bit-AVR-

Microcontroller-XMEGA-AU_Manual.pdf

64. AVR - gcc - How can I turn off >64K ram support for ATxmega128a1 target? [Internet]. 2009

[cited 2014 Jan 22]. Available from: http://avr.2057.n7.nabble.com/How-can-I-turn-off-gt-64K-

ram-support-for-ATxmega128a1-target-td10341.html

65. View topic - [TUT][C]Optimization and the importance of volatile in GCC :: AVR Freaks [Internet].

[cited 2014 Jan 27]. Available from:

http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=97382&start=all&post

days=0&postorder=asc

66. View topic - AVR-GCC. How to remove Interrupt table? :: AVR Freaks [Internet]. [cited 2014 Jan

27]. Available from:

http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&p=1131093#1131093

67. Schick B. AVR Bootloader FAQ [Internet]. 2009. Available from: blog.schicks.net/wp-

content/uploads/2009/09/bootloader_faq.pdf

68. Link Options - Using the GNU Compiler Collection (GCC) [Internet]. [cited 2014 Jan 27]. Available

from: http://gcc.gnu.org/onlinedocs/gcc/Link-Options.html

69. Georg-Johann Lay - Re: [avr-gcc-list] [Patch, avr] Shrink interrupt vector table down to la

[Internet]. [cited 2014 Jan 27]. Available from: http://sourceware.org/ml/binutils/2013-

02/msg00180.html

70. Atmel-42083-XMEGA-E-Using-the-XCL-Module_Application-Note_AT01084.pdf [Internet]. [cited

2014 Feb 5]. Available from: http://www.atmel.se/Images/Atmel-42083-XMEGA-E-Using-the-

XCL-Module_Application-Note_AT01084.pdf

71. AVR-GCC-Codeoptimierung - Mikrocontroller.net [Internet]. [cited 2014 Feb 14]. Available from:

http://www.mikrocontroller.net/articles/AVR-GCC-Codeoptimierung

72. Knaggs P, Welsh S. ARM_AssyLang.pdf [Internet]. 2004 [cited 2014 Feb 14]. Available from:

http://www.eng.auburn.edu/~nelson/courses/elec5260_6260/ARM_AssyLang.pdf

73. Jamil T. RISC versus CISC. IEEE Potentials. 1995 Aug;14(3):13–6.

74. Blem E, Menon J, Sankaralingam K. Power struggles: Revisiting the RISC vs. CISC debate on

contemporary ARM and x86 architectures. 2013 IEEE 19th International Symposium on High

Performance Computer Architecture (HPCA2013). 2013. p. 1–12.

75. Koopman P. Stack Computers: 1.4 WHY ARE STACKS USED IN COMPUTERS? [Internet]. [cited

2014 Feb 5]. Available from: http://www.ece.cmu.edu/~koopman/stack_computers/sec1_4.html

76. AVR Freaks :: View topic - Why AVRFreaks members do not like XMEGA [Internet]. [cited 2014

Feb 7]. Available from:

http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=103269

98

77. Which AVRStudio Version is best? AVRStudio 6 versus AVRStudio 4 [Internet]. 2013 [cited 2014

Feb 7]. Available from: http://www.kanda.com/blog/microcontrollers/avr-

microcontrollers/avrstudio-explored/

78. AVR Freaks :: View topic - AVR Studio 5 Released - Get Your BETA Here! [Internet]. [cited 2014

Feb 7]. Available from:

http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=103949

79. Arndt N. AN #186 - KokkeKat FAT-free SD card library - MCS Electronics [Internet]. [cited 2014

Feb 7]. Available from:

http://www.mcselec.com/index.php?option=com_content&task=view&id=291&Itemid=57

80. Arndt N. KokkeKat FAT-free SD card lib forum [Internet]. [cited 2014 Feb 7]. Available from:

http://www.mcselec.com/index2.php?option=com_forum&Itemid=59&page=viewforum&f=18

81. Barrett SF, Pack DJ. Microcontrollers fundamentals for engineers and scientists. [San Rafael,

Calif.]: Morgan & Claypool Publishers; 2006.

82. Barrett SF, Pack DJ. Atmel AVR microcontroller primer: Programming and interfacing, second

edition. Atmel AVR Microcontroller Primer Program Interfacing Second Ed. 2012;39:1–246.

83. Barrett SF. Embedded Systems Design with the Atmel AVR Microcontroller. Part I. San Rafael, CA,

USA: Morgan & Claypool Publishers; 2010. xiii+164 p.

84. Barrett SF. Embedded Systems Design with the Atmel AVR Microcontroller. Part II. San Rafael,

CA, USA: Morgan & Claypool Publishers; 2010. xii+296 p.

85. Salewski F, Kowalewski S. Hardware Platform Design Decisions in Embedded Systems: A

Systematic Teaching Approach. SIGBED Rev. 2007 Jan;4(1):27–35.

86. ATAM: Method for Architecture Evaluation | SEI Digital Library [Internet]. [cited 2014 Feb 9].

Available from: http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=5177

87. Slade M, Jones MH, Scott JB. Choosing the right microcontroller: A comparison of 8-bit Atmel,

Microchip and Freescale MCUs [Internet]. Faculty of Engineering, The University of Waikato;

2011 Nov. Available from: http://researchcommons.waikato.ac.nz/handle/10289/5938

88. Wong W. IDEs of change. Electron Des. 2006;54(9):52–60.

89. Atmel AVR Studio 5 Provides Fully Integrated Development Platform for Embedded

Microcontroller Designs. - Free Online Library [Internet]. [cited 2014 Feb 14]. Available from:

http://www.thefreelibrary.com/Atmel+AVR+Studio+5+Provides+Fully+Integrated+Development

+Platform+for...-a0250183971

90. Silvestre J, Cardoso D, Correia A. AVR Studio 5 | ImaginationOverflow [Internet]. [cited 2014 Feb

14]. Available from: http://imaginationoverflowsw.wordpress.com/tag/avr-studio-5/

91. Engineering Softwares: AVR Studio 5 - Atmel Studio 6 [Internet]. [cited 2014 Feb 14]. Available

from: http://engineering-softwares.blogspot.se/2013/04/avr-studio-5-atmel-studio-6.html

92. Nath N. Atmel Studio 6 – Install Guide, Walk-Through, Review | Nicky goes Nuts and Bolts

[Internet]. [cited 2014 Feb 14]. Available from: http://nishantnath.com/2012/05/05/atmel-

studio-6-install-guide-walk-through-review/

99

93. Tomar A. Atmel: Atmel Studio 6 IDE Overview | element14 [Internet]. [cited 2014 Feb 14].

Available from: http://www.element14.com/community/docs/DOC-46581

94. New Atmel Studio 6 Release with Support for ARM Microcontrollers [Internet]. [cited 2014 Feb

14]. Available from: https://www.futurlec.com/News/Atmel/Studio6.shtml

95. Stroustrup B. Abstraction and the C++ machine model / Embedded Software and Systems.

Springer Berlin / Heidelberg; 2005.

96. Wybolt N. Experiences with C++ and Object-oriented Software Development. SIGSOFT Softw Eng

Notes. 1990 Apr;15(2):31–9.

97. Ada-Europe International Conference on Reliable Software Technologies J, Chatzigeorgiou A,

Blieberger J, Strohmeier A. Evaluating performance and power of object-oriented vs. procedural

programming in embedded processors / Reliable Software Technologies - Ada-Europe 2002.

2002.

98. Titzer BL. Virgil: Objects on the head of a pin. ACM SIGPLAN Not. 2006;41(10):191–207.

99. Program optimization - Wikipedia, the free encyclopedia [Internet]. [cited 2014 Feb 15].

Available from: http://en.wikipedia.org/wiki/Program_optimization

100. C code optimisation | Member Robot Tutorials [Internet]. [cited 2014 Feb 15]. Available from:

http://www.societyofrobots.com/member_tutorials/node/202

101. EventHelix.com Inc. Optimizing C and C++ Code [Internet]. Optimizing C and C++ Code. ????

[cited 2013 Oct 5]. Available from:

http://www.eventhelix.com/realtimemantra/basics/optimizingcandcppcode.htm#.UlAfOVPRVdh

102. Shlomi F. Optimizing Code for Speed [Internet]. 2009 [cited 2013 Oct 5]. Available from:

http://www.shlomifish.org/philosophy/computers/optimizing-code-for-speed/

103. Edwards LARW. Embedded System Design on a Shoestring. Newnes; 2003. 1 p.

104. View topic - Memory barrier: what it does and what it does not do :: AVR Freaks [Internet].

[cited 2014 Jan 27]. Available from:

http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=94571&start=all&post

days=0&postorder=asc

105. Taylor C. Mixing C and Assembly [Internet]. [cited 2014 Feb 17]. Available from:

http://msoe.us/taylor/tutorial/ce2810/candasm

106. Doncaster R. Nerd Ralph: Trimming the fat from avr-gcc code [Internet]. 2013 [cited 2014 Jan

26]. Available from: http://nerdralph.blogspot.ca/2013/12/trimming-fat-from-avr-gcc-code.html

107. Hyde R. Write Great Code Volume 1: Understanding the machine. San Francisco: No Starch

Press; 2004.

108. Hyde R. Write Great Code Volume 2: Thinking low-level, writing high-level. San Francisco No

Starch Press; 2006.

109. Hyde R. The Art of Assembly Language, Second Edition. No Starch Press; 2010.

100

110. Hyde R. The Fallacy of Premature Optimization. Ubiquity [Internet]. 2009 Feb [cited 2014 Feb

9];2009(February). Available from: http://doi.acm.org/10.1145/1513450.1513451

111. Optimizing Code Performance and Size for Stellaris® Microcontrollers [Internet]. [cited 2014

Feb 15]. Available from:

http://www.ti.com/general/docs/lit/getliterature.tsp?literatureNumber=spma014&fileType=pdf

112. Yiu, Frame J, Andrew. (ARM) 32-Bit Microcontroller Code Size Analysis Draft 1.2.4. [Internet].

[cited 2013 Oct 5]. Available from:

www.arm.com/files/pdf/ARM_Microcontroller_Code_Size_(full).pdf

113. Isensee P. C++ Optimization Strategies and Techniques [Internet]. ???? [cited 2013 Oct 5].

Available from: http://www.tantalon.com/pete/cppopt/main.htm

114. Lee ME. Optimization of Computer Programs in C [Internet]. 1999 [cited 2013 Oct 5]. Available

from: http://leto.net/docs/C-optimization.php

115. Hsieh P. Programming Optimization [Internet]. 2007 [cited 2013 Oct 9]. Available from:

http://www.azillionmonkeys.com/qed/optimize.html

116. University of Iowa. Tips for Optimizing C/C++ Code [Internet]. 2007 [cited 2013 Oct 5].

Available from: https://www.cs.uiowa.edu/~cwyman/classes/spring07-

22C251/handouts/optimize.pdf

117. Ghosh K. Writing Efficient C and C Code Optimization [Internet]. 2004 [cited 2013 Oct 5].

Available from: http://www.codeproject.com/Articles/6154/Writing-Efficient-C-and-C-Code-

Optimization

118. Shalom H. Writing Efficient C Code for Embedded Systems [Internet]. 2010 [cited 2013 Oct 5].

Available from: http://www.rt-embedded.com/blog/archives/writing-efficient-c-code-for-

embedded-systems/

119. Chan W. Writing optimized C code for microcontroller applications. Proceedings of Embedded

Systems Conference, 1-4 March 1999. Miller Freeman; 1999. p. 45–57.

120. Ganssle J. The Firmware Handbook: Embedded Technology. Newnes; 2004. 385 p.

121. Ayache N, Amadio RM, Regis-Gianas Y. Certifying and Reasoning on Cost Annotations in C

Programs. Formal Methods for Industrial Critical Systems 17th International Workshop, FMICS

2012, 27-28 Aug 2012. Springer-Verlag; 2012. p. 32–46.

122. Johnson NE. Code size optimization for embedded processors [Internet]. University of

Cambridge, Computer Laboratory; 2004 Nov p. 159. Report No.: 607. Available from:

www.cl.cam.ac.uk/techreports/UCAM-CL-TR-607.pdf

123. Leupers R. Compiler design issues for embedded processors. IEEE Des Test Comput.

2002;19(4):51–8.

124. Naik M, Palsberg J. Compiling with code-size constraints. Joint Conference on Languages,

Compilers and Tools for Embedded Systems and Software and Compilers for Embedded Systems,

June 19, 2002 - June 21, 2002. Association for Computing Machinery; 2002. p. 120–9.

101

125. Alba C, Carro L, Lima A, Suzim A. Embedded systems design with frontend compilers.

Proceedings of the 1996 International Conference on Computer Design, ICCD’96, October 7,

1996 - October 9, 1996. IEEE; 1996. p. 200–5.

126. De Bus B, De Sutter B, Van Put L, Chanet D, De Bosschere K. Link-time optimization of ARM

binaries. ACM SIGPLAN Not. 2004;39(7):211–20.

127. Zhao M, Childers B, Soffa ML. Predicting the impact of optimizations for embedded systems.

ACM SIGPLAN Not. 2003;38(7):1–11.

128. Yang X. Eliminating the call stack to save RAM. ACM SIGPLAN Not. 2009;44(7):60–9.

129. Lin FX, Wang Z, Likamwa R, Zhong L. Reflex: Using low-power processors in smartphones

without knowing them. 17th International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS 2012, March 3, 2012 - March 7, 2012. Association for

Computing Machinery; 2012. p. 13–24.

130. Brandon J. AVR op codes [Internet]. [cited 2014 Feb 14]. Available from:

http://www.zbasic.net/download/AVR_opcodes.txt

131. AVR034: Mixing C and Assembly Code with IAR Embedded Workbench for 8-bit AVR

microcontrollers [Internet]. 2003 [cited 2013 Dec 29]. Available from:

http://www.atmel.com/Images/doc1234.pdf

132. Forum - MCS Electronics - Register conventions [Internet]. [cited 2014 Feb 13]. Available from:

http://www.mcselec.com/index2.php?option=com_forum&Itemid=59&page=viewtopic&p=6080

5#60805

133. AVR Freaks :: View topic - How to combine C program with external ASM [Internet]. [cited

2014 Jan 30]. Available from:

http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=112779&start=0

134. WinAVR : AVR-GCC for Windows [Internet]. [cited 2014 Feb 12]. Available from:

http://winavr.sourceforge.net/

135. Which AVR Studio and C compiler for AVR 8-bit microcontroller and JTAGICE? [Internet]. [cited

2014 Feb 14]. Available from: http://www.motherboardpoint.com/which-avr-studio-and-c-

compiler-avr-8-bit-microcontroller-and-jtagice-t257051.html

136. Optimizing C/C++ Compilers and Debuggers from IAR Systems - IAR [Internet]. [cited 2014 Feb

15]. Available from: http://www.iar.com/Products/IAR-Embedded-Workbench/

137. CodeVisionAVR. The Lowest Price on the Web. High Performance ANSI C Compiler for Atmel

AVR microcontrollers [Internet]. [cited 2014 Feb 15]. Available from:

http://www.codevision.be/codevisionavr

102

10 Appendix A

A.1 Response from the IDE companies

A.1.1 History and plans for the future

Mark Alberts, the owner of MCS Electronics, tells the history of BASCOM-AVR and his plans for the

future:

“As you can find in the help, I wrote BASCOM-LT for Windows 3.1 as a tool for personal use. This was for the 8051 family.

The 8051 has just a few registers but you can use bank switching. Further it has very limited internal memory. All this

memory needs to be used for the stack and internal variables.

Normally one would create a stack machine in order to support expressions but as the memory was limited and I had no

need for complex expressions I decided to allow only simple assignments. The real power of BASCOM was that I added

support for hardware. Controlling the serial port or LCD was usually done by assembler but now a simple CONFIG would

allow you to use hardware without figuring out protocols.

Since writing the software was a lot of work and hardware was not as cheap as today, i decided to make a commercial

version. I added a help file and simulator and many hobbyists liked the software. In the first year I got many wishes and the

tool grew enormeously. With Windows 95, I rewrote the tool to support arrays and floating point. And many different 8051

processors were supported.

When users asked for an AVR version I had to study the AVR architecture which was very different. But I recognized the

great linear memory and ISP programming with 5V, so this was a step forward compared to the 89c2051. Again I rewrote

the software where I used the old BASCOM-8051 as a basis. That was probably not the smartest thing to do because the

AVR was well suited as stack machine. And the additional work would have paid off. But I was doing all this in my spare

time, and I was giving support to BASCOM-8051 users with new features, helping with their hardware problems, etc. Of

course a lot of improvements were made compared to the 8051. Doubles were added, trig was added and so on.

With more users also came more support and ideas. I had to chose between my job and supporting BASCOM users so I quit

my job to work full time on BASCOM, support, custom projects. All user ideas that were hard to implement I worked out in a

new version where I rewrote almost everything. A number of these features you can find in BASCOM-AVR like the code

explorer, and draw indents, proper indent, unused code marking.

The Xmega was a great new chip but had a lot of impact on support. As you can see from the help there are a lot of CONFIG

commands just for xmega. In my normal code I used pointers to registers but that was not possible for xmega. So I had to

recode that in a way all other code would still work. And all new hardware took a lot of time to implement. But it is great

that these chips have so much hardware inside. With the linear fixed address I got carried away and I did not have a look at

the impact. So it was good you had a look at that. All other compiler things I knew already.

As you probably have found out, is that the asm libs are efficient but depeding on the statement one uses, things can be

done more efficient. Once in a while when I look at some code I find inefficient code which I then change, but some

improvements require big changes. That is why I left that for another product. At some stage it is best to rewrite completely

and not to try to change code. This because any mistake I make will cause problems for users. I can do only limited tests with

hardware.

My goal was never to make the best compiler of the world but the easiest software tool for processors. With many

professional users, I shifted focus to a better tool (like more build in error checking). And the focus for the next IDE is more

about safe and reliable commands. So no poking, pointers, recursion etc.”

(MCS Electronics’ owner Mark Alberts, 2014-02-11)

103

A.1.2 BASCOM-AVR feedback on v0.9

“Hello Niclas

thanks for the update. I have read it with interest.

Here is my comment/opinion.

- bascom can handle recursion. and you can use isr's multiple times and/or at the same time. [This is in response to a

previous error in my thesis.]

- it is great that you researched the dynamic xmega handling in bascom. I never realized the consequence. i will add a static

option so the user can control how it works.

- i knew re-using the value of registers could optimize things. i used that for a new assembler but it is better if the compiler

deals with it.

- i think you focused too much on pieces of code and how you could optimize it. It is also not a real good comparison to

compare different products. You could better have checked the difference between normal mega, xmega and ARM using

studio. Especially because studio supports them all.

- instead of focusing on pieces of code, a real world app would have been a better test IMO. If you write 1000 or 10000 lines

of code, and you need to alter or change it later it will be harder if you write a lot of custom asm.

also, since some chips do not have some instructions, the code will not work, work different or requires modifications when

porting to a new chip or platform. So what I miss in the investigation is what happens if you code some functions in asm and

port it from mega to xmega to ARM compared to using plain high level code. for example 1 line, or 10, or 100.

In any case you made it clear that using a high level language including cpp, has a penalty. But that was clear already.

You put alot of effort in it and i hope your professor likes it. In any case it helped me.

best regards,

Mark”

(MCS Electronics’ owner Mark Alberts, 2014-02-19)

A.1.3 Atmel’s response

“I have received an answer from one of my colleagues at the Trondheim support about this. Unfortunately they have already

filled the quota of students they can help this year. I will try to find an alternative way or some other contact with whom you

can talk, but at this point the forecast is a bit dark.”

(Marcus Woxulv, Atmel Sweden tech support, 2013-06-28, translated from Swedish)

104

A.2 Additional sources

There are two types of sources for this thesis. One is datasheets, application notes, documentation,

user forum posts, and so on, that contain certain specific information. There’s an abundance of

these. They are frequently referenced in the next chapter that presents the AVR microcontroller and

throughout the thesis.

However, a scientific publication is supposed to take off from previous writers’ work. In this area I

haven’t been very successful. Either I have been searching for the wrong terms or there has been

very little interest in these areas. I have spent several days browsing IEEE Explore, ACM Digital

Library, Inspec, Compendex, Referex, and the internet.

A.2.1 AVR ATmega general functionality

There are several books and much material on ATmega functionality. Steven F. Barrett has published

a few (partly overlapping) ones:

• “Microcontrollers Fundamentals for Engineers and Scientists” (81)

• “Atmel AVR Microcontroller Primer: Programming and Interfacing, 2nd edition” (82)

• “Embedded Systems Design with the Atmel AVR Microcontroller Part I” (83)

• “Embedded Systems Design with the Atmel AVR Microcontroller Part II” (84)

A.2.2 Hardware platform evaluation

• “Hardware Platform Design Decisions in Embedded Systems - A Systematic Teaching

Approach” (85) lists a number of important HW attributes when deciding on a (teaching)

platform covering both microcontrollers and soft-core programmable logic devices.

• “ATAM (Architecture Tradeoff Analysis Method): Method for Architecture Evaluation” (86) is

a very thorough methodology that is mostly outside of the scope of this thesis.

• “Choosing the right microcontroller: A comparison of 8-bit Atmel, Microchip and Freescale

MCUs” (87)

A.2.3 IDE evaluation

• “IDEs of change” (88) is an overview of development platforms in 2006.

Except for the above, I found very little in this area. Nothing else in the scientific databases and only

a few mostly uninteresting hits on Google and Bing:

• A press release for AVR Studio 5: (89) 103

• A short blog post on one person’s experience from AVR Studio 5 and AVR32: (90) 104

• Product presentations for AVR Studio 5 and Atmel Studio 6: (91) 105

• An installation walk-through and a tiny “review” of Atmel Studio 6: (92) 106 It is mostly a

change list from the previous version and a conclusion that WinAVR with AVR Studio 4 is

preferred.

103

http://www.thefreelibrary.com/Atmel+AVR+Studio+5+Provides+Fully+Integrated+Development+Platform+for..

.-a0250183971
104

 http://imaginationoverflowsw.wordpress.com/tag/avr-studio-5/
105

 http://engineering-softwares.blogspot.se/2013/04/avr-studio-5-atmel-studio-6.html
106

 http://nishantnath.com/2012/05/05/atmel-studio-6-install-guide-walk-through-review/

105

• A commercial product presentation of Atmel Studio 6 published by an electronic component

vendor: (93) 107

• A press release for Atmel Studio 6 published by another component vendor: (94) 108

Actually, the information I found that most resembles an evaluation are user forum posts with

outbursts from annoyed users. Some are referenced in the analysis.

A.2.4 Analyses of programming models

• “Abstraction and the C++ Machine Model” (95)

• “Experiences with C++ and Object-Oriented Software” (96)

• “Evaluating Performance and Power of Object-Oriented Vs. Procedural Programming in

Embedded Processors” (97) presents a test that showed a significant penalty in code size and

RAM and a modest increase in instructions and clock cycles when using OOP compared to

procedural programming.

• “Virgil: Objects on the Head of a Pin” (98) presents “a lightweight objectoriented language designed

with careful consideration for resource-limited domains.”

A.2.5 Efficient programming and (inline) assembly

This is a big area with lots of material. User forums often contain both answers to specific questions

and more or less well-structured how-tos. I frequently reference this type of sources in my thesis.

• Wikipedia has a good overview on program optimization: (99) 109

• The German web site www.mikrocontroller.net has an in-depth page on AVR-GCC code

optimization: (71) 110 It also points out the consequences of only having 2-3 memory

pointers.

• “C code optimization” at Society of Robots (100) 111 claims (in “08 - H files versus C files”) that

“If you define a method in a .h file then it is normally only compiled once and any references to it end up calling it.

So the difference between .h and .c is small. Even if you define a method in a .h file that is never called then it still

gets compiled. Equally: if you compile a .c file into a library and the rest of the code only accesses one of the

methods in that file then the entire compiled .c file will be added to your program.”

• “Optimizing C and C++ Code” (101)

• “Optimizing Code for Speed” (102) 112

• The book “Embedded System Design on a Shoestring” has a very large section on the GNU

toolchain (for ARM). (103)

• Optimization and volatile (65) 113

• Memory barrier (104) 114

107

 http://www.element14.com/community/docs/DOC-46581
108

 https://www.futurlec.com/News/Atmel/Studio6.shtml
109

 http://en.wikipedia.org/wiki/Program_optimization
110

 http://www.mikrocontroller.net/articles/AVR-GCC-Codeoptimierung
111

 http://www.societyofrobots.com/member_tutorials/node/202
112

 http://www.shlomifish.org/philosophy/computers/optimizing-code-for-speed/
113

http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=97382&start=all&postdays=0&posto

rder=asc
114

http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=94571&start=all&postdays=0&posto

rder=asc

106

• “Mixing C and Assembly Languages” (105) 115

• An approach similar to mine on incremental code reduction and elimination: (106) 116

I also came across three books by Randall Hyde on writing assembly or assembly-friendly high-level

language:

• Write Great Code Volume 1: Understanding the machine (107)

• Write Great Code Volume 2: Thinking low-level, writing high-level (108)

• The Art of Assembly Language, Second Edition (109)

He also makes a strong case against today’s unwillingness to optimize code: (110)

A.2.5.1 Optimization on competing or generic architectures

• “Optimizing Code Performance and Size for Stellaris® Microcontrollers” (111) 117

• “32-Bit Microcontroller Code Size Analysis” (ARM) (112) 118

• “C++ Optimization Strategies and Techniques” (PC) (113) 119

• “Optimization of Computer Programs in C” (UNIX) (114)

• “Programming Optimization” (PC) (115) 120 has lot of information and a number of links to

other sites.

• “Tips for Optimizing C/C++ Code” (116)

• “Writing Efficient C and C Code Optimization” (Windows) (117) 121

• “Writing Efficient C Code for Embedded Systems” (ARM) (118) 122

• “Writing optimized C code for microcontroller applications” (119) 123

• Chapters 18 and 19 of “The Firmware Handbook” (120) deal with optimization.

A.2.5.2 Compiler-related

• “Certifying and Reasoning on Cost Annotations in C Programs” (121) treats labelling of code

costs done by the compiler.

• “Code size optimization for embedded processors” (122)

• “Compiler Design Issues for Embedded Processors” (123)

• “Compiling with Code-Size Constraints” (124)

• “Embedded Systems Design with Frontend Compilers” (125)

• “Link-Time Optimization of ARM Binaries” (126)

• “Predicting the Impact of Optimizations for Embedded Systems” (127)

A.2.5.3 Other approaches

• “Eliminating the Call Stack to Save RAM” (128)

• “Reflex: Using Low-Power Processors in Smartphones without Knowing Them” (129)

115

 http://msoe.us/taylor/tutorial/ce2810/candasm
116

 http://nerdralph.blogspot.ca/2013/12/trimming-fat-from-avr-gcc-code.html
117

 http://www.ti.com/lit/an/spma014/spma014.pdf
118

 www.arm.com/files/pdf/ARM_Microcontroller_Code_Size_(full).pdf
119

 http://www.tantalon.com/pete/cppopt/main.htm
120

 http://www.azillionmonkeys.com/qed/optimize.html
121

 http://www.codeproject.com/Articles/6154/Writing-Efficient-C-and-C-Code-Optimization
122

 http://www.rt-embedded.com/blog/archives/writing-efficient-c-code-for-embedded-systems/
123

 http://www.docshut.com/imwzpt/writing-optimized-c-code-for-microcontroller-applications.html

107

A.3 How to disassemble

If you are using Atmel Studio 6, you select the simulator or the debugger in the Tool tab for your

project. Then you click the “Start Debugging and Break” icon, which opens up the Disassembly tab. It

combines your high-level code and the compiled assembler instructions in the same view.

With BASCOM-AVR, I found it easiest to compile so that it generates a .obj file. Next, start Atmel

Studio 6 and click File/Open/Open Object File For Debugging. This will set up a project for this object

file and you use it like above.

As I started with BASCOM-AVR, I only figured this out at the middle of that analysis. I had first used

two other methods:

2. Use AVR GCC’s avr-objdump.

o Requires a reboot into Linux (or using a virtual machine?).

o avr-objdump -s -m avr5 -D /root/Downloads/BTf2128.hex > /root/BTf2128.dump

3. Open the .hex or .bin files in an advanced hex editor and if necessary convert .hex to the

humanly readable .bin format.

o Convert the machine code manually by converting it (minding that it’s little-endian)

to bit code, looking up the assembly instruction (130) 124 and its details (23) 125. Very

time-consuming…

o I used a commercial version of WinHex.

124

 http://www.zbasic.net/download/AVR_opcodes.txt
125

 http://www.atmel.se/Images/doc0856.pdf

108

A.4 Atmel application notes on efficient programming

A.4.1 Efficient C Coding for 8-bit AVR microcontrollers

This document is based on IAR Systems’ compiler 30 and published in 2004, so some of this

information isn’t valid for the Atmel Studio avr-gcc compiler. (This is the case for at least parameter

passing and function return.)

It shows how the four (SP, X, Y, and Z) 16-bit pointers can be used with indirect addressing and

displacement or pre- or post-decrement. It also has a large section about EEPROM handling.

There are a number of examples of syntactically correct C statements together with their compiled

Assembly code. The “volatile” option (force read or write, i.e. don’t optimize) is mentioned, we are

advised to use as “small” variables as possible, and the ways to declare variables is mentioned:

• Global: Common to the program (i.e. not defined inside a function). Must be loaded from

SRAM into working registers, so their use imposes a performance penalty.

• Local: Declared and only exists inside a function. As far as possible, working registers are

used directly for locals, so no penalty.

• Static local: Function-internal variables that keep their value between the function calls.

Typically stored in SRAM, so performance penalty.

The global variable penalty is demonstrated; a simple assignment requires 10 code bytes and 5 clock

cycles for a global, but only 2 code bytes and 1 clock cycle for a local. A static local is loaded from

SRAM at the function entry but only stored back to SRAM at the function exit, which potentially

decreases the penalty hit.

Global variables should as far as possible be declared as part of a structure, which enables

compilation to indirect access. An example is given, showing that with only one variable the code size

is the same, but each additional global inside a structure saves four code bytes.

Furthermore, it is possible (after allocation in the compiler options setup) to utilize unused I/O

registers for global flags. [As mentioned above, I/O 0x00 – 0x1F is bit-accessible and I/O 0x00 – 0x03F

can use the shorter IN and OUT instructions, my comment.] An example is given, showing:

• Global bit-flag in SRAM: 10 code bytes

• Global bit-flag in working register: 4 code bytes

• Global bit-flag in I/O 0x20 – 0x3F: 6 code bytes

• Global bit-flag in I/O 0x00 – 0x1F: 2 code bytes

Action

Data in

SRAM

Data in I/O

Above 0x1F

Data in

Register File

Data in I/O

Below 0x1F

Set/clear single bit 10 6 4 2

Test single bit 6 4 2 2

Set/clear multiple bits 10 6 4 6

Compare with immediate value 6 4 4 4
Table 5: Code Size (Bytes) for some Common Operations

(The table above is based on “AVR035: Efficient C Coding for 8-bit AVR microcontrollers” (21), p15)

109

”The examples shows using free I/O locations are very efficient for flag variables that operates on

single bits, while using dedicated registers are efficient for frequently accessed variables. Note that

locking registers for global variables limits the compilers ability to optimize the code. For complex

programs it may increase the code size when dedicating registers for global variables.”

The document proceeds with a comparison of bit-mask vs. bit-field for use with flags. Following the

above, using a working register (e.g. a local variable) is most efficient but can only be used with bit-

mask. “Below I/O” is roughly equally efficient and works with both bit-mask and bit-field, as does the

less efficient “above I/O” and SRAM storage.

Global variables are initialized to zero unless a value is specified. For code density reasons, this is

recommended compared to using a separate init routine.

Here I omit the parts about parameter passing and function return as it differs from avr-gcc. The

differences can be seen in (131) and (41). I’ll return to the latter when I present the Atmel Studio IDE

conventions.

The document ends with an IAR Systems-centered summary that’s better quoted in full:

“Eighteen Hints to Reduce Code Size

1. Compile with full size optimization.

2. Use local variables whenever possible.

3. Use the smallest applicable data type. Use unsigned if applicable.

4. If a non-local variable is only referenced within one function, it should be declared static.

5. Collect non-local data in structures whenever natural. This increases the possibility of

indirect addressing without pointer reload.

6. Use pointers with offset or declare structures to access memory mapped I/O.

7. Use for(;;) { } for eternal loops.

8. Use do { } while(expression) if applicable.

9. Use descending loop counters and pre-decrement if applicable.

10. Access I/O memory directly (i.e., do not use pointers).

11. Declare main as C_task if not called from anywhere in the program.

12. Use macros instead of functions for tasks that generates less than 2-3 lines assembly code.

13. Reduce the size of the Interrupt Vector segment (INTVEC) to what is actually needed by the

application. Alternatively, concatenate all the CODE segments into one declaration and it will

be done automatically.

14. Code reuse is intra-modular. Collect several functions in one module (i.e., in one file) to

increase code reuse factor.

15. In some cases, full speed optimization results in lower code size than full size optimization.

Compile on a module by module basis to investigate what gives the best result.

16. Optimize C_startup to not initialize unused segments (i.e., IDATA0 or IDATA1 if all variables

are tiny or small).

17. If possible, avoid calling functions from inside the interrupt routine [as this causes all

registers to be placed on the stack].

18. Use the smallest possible memory model.

110

Five Hints to Reduce RAM Requirements

1. All constants and literals should be placed in Flash by using the Flash keyword.

2. Avoid using global variables if the variables are local in nature. This also saves code space.

Local variables are allocated from the stack dynamically and are removed when the function

goes out of scope.

3. If using large functions with variables with a limited lifetime within the function, the use of

subscopes can be beneficial.

4. Get good estimates of the sizes of the software Stack and return Stack (Linker File).

5. Do not waste space for the IDATA0 and UDATA0 segments unless you are using tiny variables

(Linker File).

Checklist for Debugging Programs

1. Ensure that the CSTACK segment is sufficiently large.

2. Ensure that the RSTACK segment is sufficiently large.

3. Ensure that the external memory interface is enabled if it should be enabled and disabled if it

should be disabled.

4. If a regular function and an interrupt routine are communicating through a global variable,

make sure this variable is declared volatile to ensure that it is reread from RAM each time it

is checked.”

A.4.2 Tips and Tricks to Optimize Your C Code for 8-bit AVR Microcontrollers

This document from 2011 is targeted at avr-gcc and it contains some general information about

compiler (optimization) settings and the tool-chain. It is similar to the IAR Systems document:

• Use as small variables as possible, both for size and execution performance.

• Use locals instead of globals.

• Write loops to count down to zero, with pre-decrement as this sets the SREG Z flag, which

means that a separate comparison isn't needed. This reduces both size and clock cycles.

• Use loop jamming (combining different loops).

• Programs often run out of SRAM before running out of flash. Therefore, store constants in

flash with help from the PROGMEM AVR-Libc macro. Reading from flash is slower than

SRAM, so if necessary, use a temporary (typically local) variable for it where it is needed.

• Global static variables can only be accessed in the file where they are defined. This is a way

to prevent unplanned use. The same applies for static functions.

• Static functions that are only called from one place get optimized automatically as inline

code (unless optimization level O0 is used).

• Static local variables preserve their value between function calls, but are only in scope inside

their function.

• Use macros instead of functions that generate less than 2-3 lines of assembly code.

• Unroll short loops to avoid testing of loop index and branching. This can increase codesize

but reduce the number of clock cycles.

• Always put the most probable outcome first in "if-else" statements.

• "Switch-case" statements are often compiled to a lookup table with indexed jumps, so there

is less of a need to organize the outcomes. This might result in quicker but bigger code.

111

The document ends with an optimization example on a test program compiled with the -s option

enabled. I include it here for plausibility comparison to my code samples:

Test Items Before optimization After optimization Test result

Code size 1444 bytes 630 bytes -56.5%

Data size 25 bytes 0 bytes -100.0%

Execution speed
(1 loop incl 5 ADC samples and 1

USART transmission) 3.88 ms 2.6 ms -33.0%
Table 6: Example application speed and size optimization result

A.4.3 Some clock cycle counts for ATmega and ATxmega

• add 1

• adiw 2

• brcc 1 if false, 2 if true

• breq 1 if false, 2 if true

• brne 1 if false, 2 if true

• call ATmega 16bit PC 4, 22bit PC 5, ATxmega 16bit PC 3, 22bit PC 4

• cp 1

• cpi 1

• dec 1

• inc 1

• ld X 1

• ld X+ ATmega 2, ATxmega 1

• ldd with displacement from SRAM ATxmega 3

• ldi 1

• lds 2

• lsr 1

• pop 2

• push ATmega 2, ATxmega 1

• rcall ATmega 16bit PC 3, 22bit PC 4, ATxmega 16bit PC 2, 22bit PC 3

• ret 16bit PC 4, 22bit PC 5

• rjmp 2

• sbiw 2

• sbrs 1 if false, 2 if true and skipped instruction is 1 word, 3 if true and skipped instruction is 2

words

• sts 2

• st X ATmega 2, ATxmega 1

• st -Y 2

112

A.5 IDE-specific additional information

A.5.1 BASCOM-AVR register conventions

When writing inline assembly for BASCOM-AVR, what must you consider in order to avoid

overwriting register data? The following information can be found in ”Mixing ASM and BASIC” in the

online help: (30) 126

• Y is used as the soft stack pointer.

• R4 and R5 are used to point to the stack frame or the temp data storage

• R6 is used to store some bit variables:

o R6 bit 0 = flag for integer/word conversion

o R6 bit 1 = temp bit space used for swapping bits

o R6 bit 2 = error bit (ERR variable)

o R6 bit 3 = show/noshow flag when using INPUT statement

• R8 and R9 are used as a data pointer for the READ statement.

• All other registers are used depending on the used statements.

One of the good things about the non-optimizing compiler is that the built-in commands are separate

entities. You only have to make sure that you don’t disturb these registers.

I posted the following question in the Bascom user forum: (132) 127

PostPosted: Wed Jul 10, 2013 7:36 pm Post subject: Inline assembler register conventions Reply with quote

Hi,

In the "Mixing ASM and BASIC" help file, I have found this info:

Y is used as the SW stack pointer.

R4 and R5 are used to point to the stack frame or the temp data storage

R6 is used to store some bit variables:

R6 bit 0 = flag for integer/word conversion

R6 bit 1 = temp bit space used for swapping bits

R6 bit 2 = error bit (ERR variable)

R6 bit 3 = show/noshow flag when using INPUT statement

R8 and R9 are used as a data pointer for the READ statement.

All other registers are used depending on the used statements.

If I want to write an inline assembly using for example R24, X, R10, and R11, can I safely assume that these registers will not

have to be pushed and popped on HW stack? At least my disassembly seems to suggest that this is the case in 2.0.7.6, but

what is certain?

Is there a more complete listing of Bascom's conventions?

Can I generally assume that the "other registers" are typically used inside Bascom commands?

Grateful for any input. Thanks in advance.Niclas

Posted: Wed Jul 10, 2013 9:13 pm Post subject: Reply with quote

126

 http://avrhelp.mcselec.com/index.html
127

http://www.mcselec.com/index2.php?option=com_forum&Itemid=59&page=viewtopic&p=60805#6

0805

113

ASM-Code between Bascom statements can use any registers freely without need of saving, beside those mentioned, of

course. It's different in an ISR, there you don't know which instruction was interrupted, so every register used by the ISR

needs to be saved.

MWS”

A.5.2 AVR-GCC register layout, frame layout, and calling convention

The below is taken directly from the AVR-GCC Wiki: (33) 128

“Values that occupy more than one 8-bit register start in an even register.

Fixed Registers

Fixed Registers are registers that won't be allocated by GCC's register allocator. Registers R0 and R1

are fixed and used implicitly while printing out assembler instructions:

• R0: is used as scratch register that need not to be restored after its usage. It must be saved

and restored in interrupt service routine's (ISR) prologue and epilogue. In inline assembler

you can use __tmp_reg__ for the scratch register.

• R1: always contains zero. During an insn the content might be destroyed, e.g. by a MUL

instruction that uses R0/R1 as implicit output register. If an insn destroys R1, the insn must

restore R1 to zero afterwards. This register must be saved in ISR prologues and must then be

set to zero because R1 might contain values other than zero. The ISR epilogue restores the

value. In inline assembler you can use __zero_reg__ for the zero register.

• T: the T flag in the status register (SREG) is used in the same way like the temporary scratch

register R0.

User-defined global registers by means of global register asm and / or -ffixed-n won't be

saved or restored in function pro- and epilogue.

128

 http://gcc.gnu.org/wiki/avr-gcc

114

Call-Used Registers

The call-used or call-clobbered general purpose registers (GPRs) are registers that might be destroyed

(clobbered) by a function call.

• R18–R27, R30, R31: These GPRs are call clobbered. An ordinary function may use them

without restoring the contents. Interrupt service routines (ISRs) must save and restore each

register they use.

• R0, T-Flag: The temporary register and the T-flag in SREG are also call-clobbered, but this

knowledge is not exposed explicitly to the compiler (R0 is a fixed register).

Call-Saved Registers

• R2–R17, R28, R29: The remaining GPRs are call-saved, i.e. a function that uses such a

registers must restore its original content. This applies even if the register is used to pass a

function argument.

• R1: The zero-register is implicity call-saved (implicit because R1 is a fixed register).

Frame Layout

During compilation the compiler may come up with an arbitrary number of pseudo registers which

will be allocated to hard registers during register allocation.

• Pseudos that don't get a hard register will be put into a stack slot and loaded / stored as

needed.

• In order to access stack locations, avr-gcc will set up a 16-bit frame pointer in R29:R28 (Y)

because the stack pointer (SP) cannot be used to access stack slots.

• The stack grows downwards. Smaller addresses are at the bottom of the drawing at the right.

• Stack pointer and frame pointer are not aligned, i.e. 1-byte aligned.

• After the function prologue, the frame pointer will point one byte below the stack frame, i.e.

Y+1 points to the bottom of the stack frame.

• Any of "incoming arguments", "saved registers" or "stack slots" in the drawing at the right

may be empty.

• Even "return address" may be empty which happens for functions that are tail-called.

incoming arguments

return address (2-3 bytes)

saved registers

stack slots, Y+1 points at the bottom
Table 7: Frame layout after Function Prologue (reproduction of image in the Wiki)

115

Calling Convention

• An argument is passed either completely in registers or completely in memory.

• To find the register where a function argument is passed, initialize the register number Rn

with R26 and follow this procedure:

1. If the argument size is an odd number of bytes, round up the size to the next even

number.

2. Subtract the rounded size from the register number Rn.

3. If the new Rn is at least R8 and the size of the object is non-zero, then the low-byte of

the argument is passed in Rn. Subsequent bytes of the argument are passed in the

subsequent registers, i.e. in increasing register numbers.

4. If the new register number Rn is smaller than R8 or the size of the argument is zero,

the argument will be passed in memory.

5. If the current argument is passed in memory, stop the procedure: All subsequent

arguments will also be passed in memory.

6. If there are arguments left, goto 1. and proceed with the next argument.

• Return values with a size of 1 byte up to and including a size of 8 bytes will be returned in

registers. Return values whose size is outside that range will be returned in memory.

• If a return value cannot be returned in registers, the caller will allocate stack space and pass

the address as implicit first pointer argument to the callee. The callee will put the return

value into the space provided by the caller.

• If the return value of a function is returned in registers, the same registers are used as if the

value was the first parameter of a non-varargs function. For example, an 8-bit value is

returned in R24 and an 32-bit value is returned R22...R25.

• Arguments of varargs functions are passed on the stack. This applies even to the named

arguments.

For example, suppose a function with the following prototype:

int func (char a, long b);

then

• a will be passed in R24.

• b will be passed in R20, R21, R22 and R23 with the LSB in R20 and the MSB in R23.

• The result is returned in R24 (LSB) and R25 (MSB).“

116

A.5.3 Atmel Studio 6 history: AVR Studio 4 & 5, WinAVR, and Eclipse

Versions prior to 4 seem to be antiquated, but for some reasons some users still prefer AVR Studio 4

to Atmel Studio 6. (77) 129 This page claims that:

“In conclusion, AVRStudio 5 is rubbish and should be avoided, AVRStudio 6 is great if you have a very new PC with lots of

resources and AVRStudio 4 is still a very good program and perfectly suited to developing AVR projects in C or assembler,

especially AVRStudio 4.18, SP3. It would be easier for many users if Atmel could be bothered to fix v4.19 to eliminate the tool

chain bug.”

It also says:

“What about tool support in different versions? Most tools, including Kanda AVRISP programmers, AVRISP mkII

programmer, AVRDragon and JTAGICE mkII programmer and emulators will work in all versions of AVRStudio. But the

lowest cost emulator JTAGICE is not supported in version 5 or 6, so you need AVRStudio 4 to take advantage of this low cost

unit.”

The general impression I’ve got is that AVR Studio 5 had lots of teething problems and possibly that it

was released as a beta too early. E.g. it seems that C++ and one of the most popular Atmel

development boards (STK500) wasn’t supported at that point. (78) 130 Also the final release seems to

have caused strong emotional outbursts: (133) 131 I was only using AVR Studio 4 to burn my BASCOM-

AVR .hex files so I don’t have any first-hand experience.

Parallel to this, I think that many people used WinAVR, a Windows application for the AVR-GCC

toolchain. (134) 132 According to this forum thread, it is possible to use Eclipse too, on both Windows

and Linux: (135) 133 It also claims that “Atmel hired the head WinAVR developer to work on toolchains for them.”

(In addition to these free IDEs, there are also at least two commercial development platforms that

should be mentioned: IAR Embedded Workbench (136) 134 and CodeVisionAVR (137) 135.)

129

 http://www.kanda.com/blog/microcontrollers/avr-microcontrollers/avrstudio-explored/
130

 http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=103949
131

 http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=112779&start=0
132

 http://winavr.sourceforge.net/
133

 http://www.motherboardpoint.com/which-avr-studio-and-c-compiler-avr-8-bit-microcontroller-and-jtagice-

t257051.html
134

 http://www.iar.com/Products/IAR-Embedded-Workbench/
135

 http://www.codevision.be/codevisionavr

117

A.6 BASCOM incremental code pieces

A.6.1 ATxmega USART setup

Here’s the actual ATxmega BASCOM-AVR v2.0.7.6 compiled code for USART setup:

 Config Com5 = 15625 , Mode = 0 , Parity = None , Stopbits = 1 , Databits = 8

00000134 78.e0 LDI R23,0x08 Load immediate PORTE_DIRSET = 0b0000 1000 (bit 3 output)

00000135 70.93.81.06 STS 0x0681,R23 Store direct to data space ...

00000137 8f.e9 LDI R24,0x9F Load immediate Place 0x9F on stack

00000138 8a.93 ST -Y,R24 Store indirect and predecrement ...

00000139 80.e8 LDI R24,0x80 Load immediate Place 0x80 on stack

0000013A 8a.93 ST -Y,R24 Store indirect and predecrement

0000013B 83.e0 LDI R24,0x03 Load immediate Place 0x03 on stack

0000013C 8a.93 ST -Y,R24 Store indirect and predecrement

0000013D 84.e0 LDI R24,0x04 Load immediate Place 0x04 on stack (USART number)

0000013E 8a.93 ST -Y,R24 Store indirect and predecrement

0000013F 0e.94.1e.02 CALL 0x0000021E Call subroutine Calculate USART register area start and write them from stack

--USART_c: (Point X to USART data register)

00000216 79.91 LD R23,Y+ Load indirect and postincrement R23 = USART number from SW stack

00000217 a0.ea LDI R26,0xA0 Load immediate R26 = 0xA0

00000218 76.95 LSR R23 Logical shift right Logical shift R23 right bit 0 to C (in this case 4 -> 2)

00000219 08.f4 BRCC PC+0x02 Branch if carry cleared 0x21B if USART number was even X = 0x08 A0 (USARTC0_DATA)

0000021A a0.eb LDI R26,0xB0 Load immediate If USART number was odd, X = 0x08 B0 (USARTC1_DATA)

0000021B b8.e0 LDI R27,0x08 Load immediate ...

0000021C b7.0f ADD R27,R23 Add without carry Adjust XH by USART offset to 0x0A A0 (USARTE0_DATA)

0000021D 08.95 RET Subroutine return

0000021E f7.df RCALL PC-0x0008 Relative call subroutine Point X to USART data register

0000021F 14.96 ADIW R26,0x04 Add immediate to word Point X to USART ctrlb register

00000220 88.e1 LDI R24,0x18 Load immediate USARTxy_CTRLB = 0x18 (Enable RX and TX)

00000221 8d.93 ST X+,R24 Store indirect and postincrement ...

00000222 89.91 LD R24,Y+ Load indirect and postincrement USARTxy_CTRLC = 0x03 (Asynch, no par, 1 stop bit, 8-bit)

00000223 8d.93 ST X+,R24 Store indirect and postincrement ...

00000224 89.91 LD R24,Y+ Load indirect and postincrement USARTxy_BAUDCTRLA = 0x80 (BSEL = 0xF 80)

00000225 8d.93 ST X+,R24 Store indirect and postincrement

00000226 89.91 LD R24,Y+ Load indirect and postincrement USARTxy_BAUDCTRLB = 0x9F (Baud rate scale factor 9)

00000227 8d.93 ST X+,R24 Store indirect and postincrement

00000228 08.95 RET Subroutine return

A.6.2 ATxmega set up a second USART identical to the first one
Config Com6 = 15625 , Mode = 0 , Parity = None , Stopbits = 1 , Databits = 8

 1 word LDI R23,0x80 Load immediate PORTE_DIRSET = 0b1000 0000 (bit 7 output)

00000135 70.93.81.06 STS 0x0681,R23 Store direct to data space ...

 1 word SBIW YH:YL,3 Subtract 3 from the Y-pointer(r29:r28)

0000013D 1 word LDI R24,0x05 Load immediate Place 0x05 on stack (USART number)

0000013E 8a.93 ST -Y,R24 Store indirect and predecrement

0000013F 0e.94.1e.02 0x0000021E Call subroutine Calculate USART register area start and write them from stack

118

A.6.3 ATxmega custom USART setup

Custom USART setup with exactly the same functionality as 6.1:

 Config Com5 = 15625 , Mode = 0 , Parity = None , Stopbits = 1 , Databits = 8

78.e0 LDI R23,0x08 Load immediate PORTE_DIRSET = 0b0000 1000 (bit 3 output)

70.93.81.06 STS 0x0681,R23 Store direct to data space ...

 LDI R26,0xA4 Load immediate Point X to USARTE0_CTRLB

 LDI R27,0x0A Load immediate ...

88.e1 LDI R24,0x18 Load immediate USARTE0_CTRLB = 0x18 (Enable RX and TX)

8d.93 ST X+,R24 Store indirect and postincrement ...

 LDI R24,0x03 Load immediate USARTE0_CTRLC = 0x03 (Asynch, no par, 1 stop bit, 8-bit)

8d.93 ST X+,R24 Store indirect and postincrement ...

 LDI R24,80 Load immediate USARTE0_BAUDCTRLA = 0x80 (BSEL = 0xF 80)

8d.93 ST X+,R24 Store indirect and postincrement ...

 LDI R24,9F Load immediate USARTE0_BAUDCTRLB = 0x9F (Baud rate scale factor 1001 == -7)

 ST X,R24 Store indirect ...

A.6.4 ATxmega USART setup scaling example
 Config Com6 = 15625 , Mode = 0 , Parity = None , Stopbits = 1 , Databits = 8

78.e0 LDI R23,0x08 Load immediate PORTE_DIRSET = 0b0000 1000 (bit 3 output)

70.93.81.06 STS 0x0681,R23 Store direct to data space ...

 LDI R26,0xA4 Load immediate Point X to USARTE0_CTRLB

 LDI R27,0x0A Load immediate ...

2 words CALL __USART_write_settings

 LDI R23,0x80 Load immediate PORTF_DIRSET = 0b1000 0000 (bit 7 output)

70.93.81.06 0x0681,R23 Store direct to data space ...

 LDI R26,0xB4 Load immediate Point X to USARTE1_CTRLB

 LDI R27,0x0A Load immediate ...

2 words CALL __USART_write_settings

__USART_write_settings:

88.e1 LDI R24,0x18 Load immediate USARTE1_CTRLB = 0x18 (Enable RX and TX)

8d.93 ST X+,R24 Store indirect and postincrement ...

 LDI R24,0x03 Load immediate USARTE1_CTRLC = 0x03 (Asynch, no par, 1 stop bit, 8-bit)

8d.93 ST X+,R24 Store indirect and postincrement ...

 LDI R24,80 Load immediate USARTE1_BAUDCTRLA = 0x80 (BSEL = 0xF 80)

8d.93 ST X+,R24 Store indirect and postincrement ...

 LDI R24,9F Load immediate USARTE1_BAUDCTRLB = 0x9F (Baud rate scale factor 9)

 ST X,R24 Store indirect ...

08.95 RET Subroutine return

A.6.5 USART sending one port, ATmega original disassembly
Printbin #1 , 254

 19e: 8e ef ldi r24, 0xFE ; 254 R24 = 254

 1a0: 0e 94 2c 01 call 0x258 ; 0x258 Call Send USART byte

Uartsendbyte = 1, Gosub Prbin

 1aa: 81 e0 ldi r24, 0x01 ; 1 Uartsendbyte = 1

 1ac: 80 93 2d 01 sts 0x012D, r24 ...

 1b0: 0e 94 f2 00 call 0x1e4 ; 0x1e4 Call Prbin gosub

Prbin gosub:

 1e4: 31 e0 ldi r19, 0x01 ; 1 R19 = 1 (number of bytes to send)

 1e6: ad e2 ldi r26, 0x2D ; 45 X points to global Uartsendbyte

 1e8: b1 e0 ldi r27, 0x01 ; 1 ...

 1ea: 0e 94 27 01 call 0x24e ; 0x24e Call Printbin command

 1ee: 08 95 ret

Printbin command:

119

 24e: 8d 91 ld r24, X+ R24 = value of X (Global Uartsendbyte)

 250: 03 d0 rcall .+6 ; 0x258 rcall Send USART byte

 252: 3a 95 dec r19 Repeat until there are no more bytes to send

 254: e1 f7 brne .-8 ; 0x24e ...

 256: 08 95 ret

Send USART byte

 258: 00 90 c0 00 lds r0, 0x00C0 R0 = UCSR0A

 25c: 05 fe sbrs r0, 5 Skip next op if bit 5 is set (UDREn: USART ready to receive

new data)

 25e: fc cf rjmp .-8 ; 0x258 Repeat until register ready

 260: 80 93 c6 00 sts 0x00C6, r24 UDR0 = R24

 264: 08 95 ret

(Disassembled with AVR-objdump.)

A.6.6 USART sending one port, ATxmega original disassembly
 Printbin #1 , 254

1B1: 8e.ef LDI R24,0xFE Load immediate R24 = byte to send

1B2: 74.e0 LDI R23,0x04 Load immediate Place USART number on SW stack Y

1B3: 7a.93 ST -Y,R23 Store indirect and predecrement ...

1B4: 0e.94.5d.02 CALL 0x25D Call subroutine --USART_b2

 Uartsendbyte = 1, Gosub Prbin

1BB: 81.e0 LDI R24,0x01 Load immediate Uartsendbyte = 1

1BC: 80.93.56.20 STS 0x2056,R24 Store direct to data space ...

1BE: 0e.94.e0.01 CALL 0x1E0 Call subroutine --USART_b (Gosub Prbin)

Prbin gosub: Printbin #1 , Uartsendbyte

1E0: 31.e0 LDI R19,0x01 Load immediate R19 = number of bytes to send

1E1: a6.e5 LDI R26,0x56 Load immediate X = Uartsendbyte

1E2: b0.e2 LDI R27,0x20 Load immediate ...

1E3: 74.e0 LDI R23,0x04 Load immediate R23 = USART number 4 (place on SW

stack Y)

1E4: 7a.93 ST -Y,R23 Store indirect and predecrement ...

1E5: 0e.94.2f.02 CALL 0x22F Call subroutine --USART_a: (Printbin command)

1E7: 08.95 RET Subroutine return

--USART_c: (Point X to USART data register)

216: 79.91 LD R23,Y+ Load indirect and postincrement R23 = USART number from SW stack

217: a0.ea LDI R26,0xA0 Load immediate R26 = 0xA0

218: 76.95 LSR R23 Logical shift right Logical shift R23 right bit 0 to C (in this

case 4 -> 2)

219: 08.f4 BRCC PC+0x02 Branch if carry cleared 0x21B if USART number was even X = 0x08 A0

(USARTC0_DATA)

21A: a0.eb LDI R26,0xB0 Load immediate If USART number was odd, X = 0x08 B0 (USARTC1_DATA)

21B: b8.e0 LDI R27,0x08 Load immediate ...

21C: b7.0f ADD R27,R23 Add without carry Adjust XH by USART offset to 0x0A B0 (USARTE1_DATA)

21D: 08.95 RET Subroutine return

Printbin command

--USART_a:

22F: 8d.91 LD R24,X+ Load indirect and postincrement R24 = Uartsendbyte from X, post-

increment

230: 2a.d0 RCALL PC+0x002B Relative call subroutine --USART_b

231: 3a.95 DEC R19 Decrement More bytes to

send?

232: e1.f7 BRNE PC-0x03 Branch if not equal Yes, --USART_a

233: 21.96 ADIW R28,0x01 Add immediate to word No, Y++ (SW stack pointer)

234: 08.95 RET Subroutine return

--USART_b:

25B: 78.81 LDD R23,Y+0 Load indirect with displacement R23 = USART number from SW stack Y

25C: 7a.93 ST -Y,R23 Store indirect and predecrement Place copy of USART number on SW

stack Y

--USART_b2:

25D: bf.93 PUSH R27 Push register on stack Place X on stack (would be next byte if array)

25E: af.93 PUSH R26 Push register on stack ...

25F: b6.df RCALL PC-0x0049 Relative call subroutine --USART_c (Point X to USART data register)

120

260: 11.96 ADIW R26,0x01 Add immediate to word Point X to USART status register

261: 7c.91 LD R23,X Load indirect Check status register bit 5 until data reg ready

262: 75.ff SBRS R23,5 Skip if bit in register set ...

263: fd.cf RJMP PC-0x0002 Relative jump ...

264: 11.97 SBIW R26,0x01 Subtract immediate from word Point X back to USART data register

265: 8c.93 ST X,R24 Store indirect Write Uartsendbyte to USART data register

266: af.91 POP R26 Pop register from stack Retrieve the X pointer to the next array byte to send

267: bf.91 POP R27 Pop register from stack ...

268: 08.95 RET Subroutine return

(Disassembled with Atmel Studio 6.1.)

A.6.7 Modified ATmega for two serial ports
Printbin #1 , 254

19e: 8e ef ldi r24, 0xFE ; 254 R24 = 254

 ldi r23, 0 Send through channel 0

1a0: 0e 94 2c 01 call 0x258 ; 0x258 Call Send USART byte

Uartsendbyte = 1, Gosub Prbin

1aa: 81 e0 ldi r24, 0x01 ; 1 Uartsendbyte = 1

1ac: 80 93 2d 01 sts 0x012D, r24 ...

 ldi r23, 0 Send through channel 0

1b0: 0e 94 f2 00 call 0x1e4 ; 0x1e4 Call Prbin gosub

Printbin #2 , 254

19e: 8e ef ldi r24, 0xFE ; 254 R24 = 254

 ldi r23, 1 Send through channel 1

1a0: 0e 94 2c 01 call 0x258 ; 0x258 Call Send USART byte

Uartsendbyte = 1, Gosub Prbin

1aa: 81 e0 ldi r24, 0x01 ; 1 Uartsendbyte = 1

1ac: 80 93 2d 01 sts 0x012D, r24 ...

 ldi r23, 1 Send through channel 1

1b0: 0e 94 f2 00 call 0x1e4 ; 0x1e4 Call Prbin gosub

Prbin gosub:

1e4: 31 e0 ldi r19, 0x01 ; 1 R19 = 1 (number of bytes to send)

1e6: ad e2 ldi r26, 0x2D ; 45 X points to global Uartsendbyte

1e8: b1 e0 ldi r27, 0x01 ; 1 ...

1ea: 0e 94 27 01 call 0x24e ; 0x24e Call Printbin command

1ee: 08 95 ret

Printbin command:

 24e: 8d 91 ld r24, X+ R24 = value of X (Global Uartsendbyte)

 250: 03 d0 rcall .+6 ; 0x258 rcall Send USART byte

 252: 3a 95 dec r19 Repeat until there are no more bytes to send

 254: e1 f7 brne .-8 ; 0x24e ...

 256: 08 95 ret

Send USART byte

258: cpi r23, 0

 brne USART1_send

__USART0_send:

 00 90 c0 00 lds r0, 0x00C0 R0 = UCSR0A

 05 fe sbrs r0, 5 Skip next op if bit 5 is set (UDREn: USART ready to receive new data)

 fc cf rjmp __USART0_send Repeat until register ready

 80 93 c6 00 sts 0x00C6, r24 UDR0 = R24

 08 95 ret

__USART1_send:

 00 90 c0 00 lds r0, UCSR1A R0 = UCSR1A

 05 fe sbrs r0, 5 Skip next op if bit 5 is set (UDREn: USART ready to receive new data)

 fc cf rjmp __USART1_send Repeat until register ready

 80 93 c6 00 sts UDR1, r24 UDR1 = R24

 ret

121

A.6.8 Modified ATxmega for two serial ports
 Printbin #1 , 254

1B1: 8e.ef LDI R24,0xFE Load immediate R24 = byte to send (254)

1B2: 74.e0 LDI R23,0x04 Load immediate Place USART number on SW stack Y

 CALL --USART_b1 Call subroutine --USART_b1

 Uartsendbyte = 1, Gosub Prbin

1BB: 81.e0 LDI R24,0x01 Load immediate Uartsendbyte = 1

1BC: 80.93.56.20 STS 0x2056,R24 Store direct to data space ...

1E3: 74.e0 LDI R23,0x04 Load immediate R23 = USART number 4 (place on SW

stack Y)

1BE: 0e.94.e0.01 CALL 0x1E0 Call subroutine --USART_b (Gosub Prbin)

Printbin #2, 254

1B1: 8e.ef LDI R24,0xFE Load immediate R24 = byte to send (254)

1B2: 74.e0 LDI R23,0x05 Load immediate Place USART number 5 on SW stack Y

 CALL --USART_b1 Call subroutine --USART_b1

 Uartsendbyte = 1, Gosub Prbin

1BB: 81.e0 LDI R24,0x01 Load immediate Uartsendbyte = 1

1BC: 80.93.56.20 STS 0x2056,R24 Store direct to data space ...

 LDI R23,0x05 Load immediate R23 = USART number 5 (place on SW

stack Y)

1BE: 0e.94.e0.01 CALL 0x1E0 Call subroutine --USART_b (Gosub Prbin)

Prbin gosub:

 Printbin #1 , Uartsendbyte

1E0: 31.e0 LDI R19,0x01 Load immediate R19 = number of bytes to send

1E1: a6.e5 LDI R26,0x56 Load immediate X = Uartsendbyte

1E2: b0.e2 LDI R27,0x20 Load immediate ...

1E4: 7a.93 ST -Y,R23 Store indirect and predecrement ...

1E5: 0e.94.2f.02 CALL 0x22F Call subroutine --USART_a: (Printbin command)

1E7: 08.95 RET Subroutine return

--USART_c: (Point X to USART data register)

216: 79.91 LD R23,Y+ Load indirect and postincrement R23 = USART number from SW stack

217: a0.ea LDI R26,0xA0 Load immediate R26 = 0xA0

218: 76.95 LSR R23 Logical shift right Logical shift R23 right bit 0 to C (in this

case 4 -> 2)

219: 08.f4 BRCC PC+0x02 Branch if carry cleared 0x21B if USART number was even X = 0x08 A0

 (USARTC0_DATA)

21A: a0.eb LDI R26,0xB0 Load immediate If USART number was odd, X = 0x08 B0

 (USARTC1_DATA)

21B: b8.e0 LDI R27,0x08 Load immediate ...

21C: b7.0f ADD R27,R23 Add without carry Adjust XH by USART offset to 0x0A B0

 (USARTE1_DATA)

21D: 08.95 RET Subroutine return

Printbin command

--USART_a:

22F: 8d.91 LD R24,X+ Load indirect and postincrement R24 = Uartsendbyte from X, post-increment

230: 2a.d0 RCALL PC+0x002B Relative call subroutine --USART_b

231: 3a.95 DEC R19 Decrement More bytes to send?

232: e1.f7 BRNE PC-0x03 Branch if not equal Yes, --USART_a

233: 21.96 ADIW R28,0x01 Add immediate to word No, Y++ (SW stack pointer)

234: 08.95 RET Subroutine return

--USART_b:

25B: 78.81 LDD R23,Y+0 Load indirect with displacement R23 = USART number from SW stack Y

--USART_b1:

25C: 7a.93 ST -Y,R23 Store indirect and predecrement Place copy of USART number on SW stack Y

--USART_b2:

25D: bf.93 PUSH R27 Push register on stack Place X on stack (would be next byte if array)

25E: af.93 PUSH R26 Push register on stack ...

25F: b6.df RCALL PC-0x0049 Relative call subroutine __USART_c (Point X to USART data register)

260: 11.96 ADIW R26,0x01 Add immediate to word Point X to USART status register

261: 7c.91 LD R23,X Load indirect Check status register bit 5 until data reg ready

262: 75.ff SBRS R23,5 Skip if bit in register set ...

263: fd.cf RJMP PC-0x0002 Relative jump ...

122

264: 11.97 SBIW R26,0x01 Subtract immediate from word Point X back to USART data register

265: 8c.93 ST X,R24 Store indirect Write Uartsendbyte to USART data register

266: af.91 POP R26 Pop register from stack Retrieve the X pointer to the next array byte to send

267: bf.91 POP R27 Pop register from stack ...

268: 08.95 RET Subroutine return

A.6.9 Modified ATmega for three serial ports
Printbin #1 , 254

 19e: 8e ef ldi r24, 0xFE ; 254 R24 = 254

 ldi r23, 0 Send through channel 0

 1a0: 0e 94 2c 01 call 0x258 ; 0x258 Call Send USART byte

Uartsendbyte = 1

Gosub Prbin

 1aa: 81 e0 ldi r24, 0x01 ; 1 Uartsendbyte = 1

 1ac: 80 93 2d 01 sts 0x012D, r24 ...

ldi r23, 0 Send through channel 0

 1b0: 0e 94 f2 00 call 0x1e4 ; 0x1e4 Call Prbin gosub

+++ two more like the above, each 10 words

Prbin gosub:

 1e4: 31 e0 ldi r19, 0x01 ; 1 R19 = 1 (number of bytes to send)

 1e6: ad e2 ldi r26, 0x2D ; 45 X points to global Uartsendbyte

 1e8: b1 e0 ldi r27, 0x01 ; 1 ...

 1ea: 0e 94 27 01 call 0x24e ; 0x24e Call Printbin command

 1ee: 08 95 ret

Printbin command:

 24e: 8d 91 ld r24, X+ R24 = value of X (Global Uartsendbyte)

 250: 03 d0 rcall .+6 ; 0x258 rcall Send USART byte

 252: 3a 95 dec r19 Repeat until there are no more bytes to send

 254: e1 f7 brne .-8 ; 0x24e ...

 256: 08 95 ret

Send USART byte

258: cpi r23, 0

 brne USART1_send

__USART0_send:

 00 90 c0 00 lds r0, 0x00C0 R0 = UCSR0A

 05 fe sbrs r0, 5 Skip next op if bit 5 is set (UDREn: USART ready to receive new data)

 fc cf rjmp .-8 Repeat until register ready

 80 93 c6 00 sts 0x00C6, r24 UDR0 = R24

 08 95 ret

__USART1_send:

 dec r23

 brne USART2_send

 00 90 c0 00 lds r0, UCSR1A R0 = UCSR1A

 05 fe sbrs r0, 5 Skip next op if bit 5 is set (UDREn: USART ready to receive new data)

 fc cf rjmp .-8 Repeat until register ready

 80 93 c6 00 sts UDR1, r24 UDR1 = R24

 ret

__USART2_send:

 00 90 c0 00 lds r0, UCSR2A R0 = UCSR2A

 05 fe sbrs r0, 5 Skip next op if bit 5 is set (UDREn: USART ready to receive new data)

 fc cf rjmp .-8 Repeat until register ready

 80 93 c6 00 sts UDR2, r24 UDR2 = R24

 ret

123

A.6.10 Improved ATxmega dynamic addressing for two serial ports
Printbin #1 , 254

 1 ldi r24, 0xFE ; 254 R24 = 254

 1 ldi r23, 4 Send through channel 4

 2 call __USART_send _const Send constant

Uartsendbyte = 1, Gosub Prbin

 1 ldi r24, 0x01 ; 1 Uartsendbyte = 1

 2 sts 0x012D, r24 ...

 1 ldi r23, 4 Send through channel 4

 2 call __Prbin_gosub Call Prbin gosub

Printbin #2 , 254

 1 ldi r24, 0xFE ; 254 R24 = 254

 1 ldi r23, 5 Send through channel 5

2 call __USART_send _const Send constant

Uartsendbyte = 1, Gosub Prbin

 1 ldi r24, 0x01 ; 1 Uartsendbyte = 1

 2 sts 0x012D, r24 ...

 1 ldi r23, 5 Send through channel 5

 2 call __Prbin_gosub Call Prbin gosub

__Prbin_gosub: (Send 1 byte from global Uartsendbyte)

 1 ldi r19, 0x01 ; 1 R19 = 1 (number of bytes to send)

 1 ldi r26, 0x2D ; 45 X points to global Uartsendbyte

 1 ldi r27, 0x01 ; 1 ...

 ; rjmp __USART_send_varrary Not needed here (but will be for the next Prbin_gosub)

 ; ret Not needed at all if compiler can handle un-ended gosub

 (or inline assembly is used for the __Prbin_gosub)

__USART_send_varray: Launcher for sending variable or array

 1 LDI r18, 0x00 Clear skip variable (variable or array sending)

 2 rjmp __USART_point_Z Send variable (or array)

 Launcher for sending constant

__USART_send_const: 1 LDI r18, 0xFF ; 254 Set skip variable (constant sending)

 1 LDI r19, 0x01 ; 1 R19 = 1 (number of bytes to send)

__USART_point_Z: (Point Z to USART data register), port number in R23 (R23 changed by routine)

 1 PUSH R30 Free Z from frame use

 1 PUSH R31 ...

 1 LDI R30,0xA0 Load immediate ZL

 1 LSR R23 Logical shift right Logical shift R23 right bit 0 to C (here 4->2)

 1 BRCC PC+0x02 Branch if carry cleared If USART # was even: Z = 0x08 A0 (USARTC0_DATA)

 1 LDI R30,0xB0 Load immediate If USART # was odd: Z = 0x08 B0 (USARTC1_DATA)

 1 LDI R31,0x08 Load immediate ...

 1 ADD R31,R23 Add without carry Adjust ZH by USART offset up to 0x0B (USARTFx_DATA)

 1 SBRS R18, 7 Skip if R18 bit 7 set When sending constant, don’t change R24

__USART_loop: (Send byte in R24 to USART with base address in Z)

 1 ld r24, X+ R24 <- X, post-increment Load byte from X into R24

 1 ldd R4,Z+1 Load indirect w displm Wait until port available (check status register bit 5)

 1 SBRS R4,5 Skip if bit in register set ...

 1 RJMP PC-0x0002 Relative jump … until data reg ready

 1 ST Z,R24 Store indirect Write R24 to USART data register

 1 dec r19 R19- -

 1 BRNE __USART_loop … until all bytes have been sent

 1 POP R31 Restore Z for frame use

 1 POP R30 ...

 1 ret

124

A.6.11 ATxmega USART initialization improvements from 2.0.7.6 to 2.0.7.7
Config Priority = Static , Vector = Application , Lo = Enabled , Med = Enabled (as before)

258 77 E0 LDI R23,0x07 Load immediate PMIC_CTRL = 0x07 (Enable high, mid, & low interrupts)

25A 70 93 A2 00 STS 0x00A2,R23 Store direct to data space ...

Config Com5 = 15625 , Mode = 0 , Parity = None , Stopbits = 1 , Databits = 8 (changed to exactly the code I sent to BASCOM)

25E 78 E0 LDI R23,0x08 Load immediate PORTE_DIRSET = 0b0000 1000 (bit 3 output)

260 70 93 81 06 STS 0x0681,R23 Store direct to data space ...

264 88 E1 LDI R24,0x18 Load immediate USARTE0_CTRLB = 0x18 (Enable RX and TX)

266 A4 EA LDI R26,0xA4 Load immediate Point X to USARTE0_CTRLB

268 BA E0 LDI R27,0x0A Load immediate ...

26A 8D 93 ST X+,R24 Store indirect and postincrement

26C 83 E0 LDI R24,0x03 Load immediate USARTE0_CTRLC = 0x03 (Asynch, no par, 1 stop bit, 8-bit)

26E 8D 93 ST X+,R24 Store indirect and postincrement

270 80 E8 LDI R24,80 Load immediate USARTE0_BAUDCTRLA = 0x80 (BSEL = 0xF 80)

272 8D 93 ST X+,R24 Store indirect and postincrement

274 8F E9 LDI R24,0x9F Load immediate USARTE0_BAUDCTRLB = 0x9F (Baud rate scale factor 9)

276 8C 93 ST X,R24 Store indirect

Config Serialin3 = Buffered , Size = 20 (as before)

278 80 91 B3 09 LDS R24,0x09B3 Load direct from data space R24 = USARTD1_CTRLA (USART D1 RXC interrupt level MED)

27C 8F 7C ANDI R24,0xCF Logical AND with immediate R24 = R24 & 0b1100 1111

27E 80 62 ORI R24,0x20 Logical OR with immediate R24 = R24 | 0b0010 0000

280 80 93 B3 09 STS 0x09B3,R24 Store direct to data space USARTD1_CTRLA = R24

A.6.12 ATmega324A initialization code
 7c: 8f ef ldi r24, 0xFF ; 255 K0xFF -> SPL

 7e: 8d bf out 0x3d, r24 ; 61 ...

 80: c8 ed ldi r28, 0xD8 ; 216 K0xD8 -> R28 (Y LSB) Software stack start

 82: e0 ec ldi r30, 0xC0 ; 192 K0xC0 -> R30 (Z LSB) Frame start

 84: 4e 2e mov r4, r30 R4, R5 holds the current frame position

 86: 88 e0 ldi r24, 0x08 ; 8 K0x08 -> R24

 88: 8e bf out 0x3e, r24 ; 62 SPH stack pointer now points to RAMEND (0x8FF) 0x100 to 0x8FF = 2kB

 8a: d8 e0 ldi r29, 0x08 ; 8 K0x08 -> R29 (Y MSB) Software stack start

 8c: f8 e0 ldi r31, 0x08 ; 8 K0x08 -> R31 (Z MSB) Frame start

 8e: 5f 2e mov r5, r31 R4, R5 holds the current frame position

 90: a8 95 wdr Watchdog reset

 92: 84 b7 in r24, 0x34 ; 52 Read MCUSR

 94: 08 2e mov r0, r24 Keep MCUSR in R0 ???

 96: 87 7f andi r24, 0xF7 ; 247 Mask MCUSR 0b1111 0111 (clear any reset flag except WDRF)

 98: 84 bf out 0x34, r24 ; 52 ...

 9a: 88 e1 ldi r24, 0x18 ; 24 Disable watchdog

 9c: 99 27 eor r25, r25 ...

 9e: 80 93 60 00 sts 0x0060, r24 ...

 a2: 90 93 60 00 sts 0x0060, r25 ...

Clear entire SRAM (X address 0x0100 to 0x08FF (Z from 0x07FE to 0x0000))

 a6: ee ef ldi r30, 0xFE ; 254 Z = 0x07FE

 a8: f7 e0 ldi r31, 0x07 ; 7 ...

 aa: a0 e0 ldi r26, 0x00 ; 0 X = 0x0001

 ac: b1 e0 ldi r27, 0x01 ; 1 ...

 ae: 88 27 eor r24, r24 Clear R24

 b0: 8d 93 st X+, r24 Clear X address and post-increment

 b2: 31 97 sbiw r30, 0x01 ; 1 Z--

 b4: e9 f7 brne .-6 ; 0xb0 Repeat until Z == 0

 b6: 87 e1 ldi r24, 0x17 ; 23 0x17 -> UBRR0L

 b8: 80 93 c4 00 sts 0x00C4, r24 ...

 bc: 80 e0 ldi r24, 0x00 ; 0 K0 -> UBRR0H: fosc / ((UBRR0 + 1) * 16) = 6 000 000 / 24 / 16 = 15 625 Hz

 be: 80 93 c5 00 sts 0x00C5, r24 ... (UCSR0A.U2X0 is initialized to 0 => prescaler 16 above)

 c2: 88 e1 ldi r24, 0x18 ; 24 K0b0001 1000 -> UCSR0B (USART control and status register 0 B)

 c4: 80 93 c1 00 sts 0x00C1, r24 ... Enable RXEN0 and TXEN0

 c8: 66 24 eor r6, r6 Clear R6 (reserved for e.g. error flag)

 ca: 86 e0 ldi r24, 0x06 ; 6 K0b0000 0110 -> UCSR0C (Asynch, no parity, 1 stop bit, 8 bit char, pol 0)

 cc: 80 93 c2 00 sts 0x00C2, r24 ...

 d0: 70 91 c1 00 lds r23, 0x00C1 UCSR0B -> R23

 d4: 70 68 ori r23, 0x80 ; 128 R23 = R23 | 0b1000 0000 = 0b0001 1000 | 0b1000 0000 = 0b1001 1000

 d6: 70 93 c1 00 sts 0x00C1, r23 This enables RX0 interrupt

125

 da: 50 98 cbi 0x0a, 0 ; 10 PortD.0 = input

 dc: 51 9a sbi 0x0a, 1 ; 10 PortD.1 = output

 de: 78 94 sei Set global interrupt flag in SREG (enable interrupts)

A.6.13 ATxmega128A1 initialization code
100 8f.ef SER R24 Set Register SPL = 0xFF

101 8d.bf OUT 0x3D,R24 Out to I/O location ...

102 c8.ed LDI R28,0xD8 Load immediate XL = 0xD8

103 e0.ec LDI R30,0xC0 Load immediate YL = 0xC0

104 4e.2e MOV R4,R30 Copy register R4 = 0xC0

105 8f.e3 LDI R24,0x3F Load immediate SPH = 0x3F (SP = 0x3F FF)

106 8e.bf OUT 0x3E,R24 Out to I/O location ...

107 df.e3 LDI R29,0x3F Load immediate YH = 0x3F (Y = SW stack pointer = 0x3F C0)

108 ff.e3 LDI R31,0x3F Load immediate ZH = 0x3F

109 5f.2e MOV R5,R31 Copy register R5 = 0x3F (Frame pointer = 0x3F C0)

10A 00.90.78.00 LDS R0,0x0078 Load direct from data space R0 = RST_STATUS

10C 8f.e3 LDI R24,0x3F Load immediate RST_STATUS = 0x3F (clear all reset flags)

10D 80.93.78.00 STS 0x0078,R24 Store direct to data space ...

10F 78.ed LDI R23,0xD8 Load immediate CCP (Configuration Change Protection) = 0xD8) IOREG

110 74.bf OUT 0x34,R23 Out to I/O location ...

111 80.93.80.00 STS 0x0080,R24 Store direct to data space WDT_CTRL (Watchdog timer control) = 0x3F

 (Enable WDT but w/ reserved setting that doesn't time out)

; Clear SRAM from 0x20 00 to 0x3FF FF

113 ee.ef LDI R30,0xFE Load immediate Z = 0x1F FE

114 ff.e1 LDI R31,0x1F Load immediate ...

115 a0.e0 LDI R26,0x00 Load immediate X = 0x20 00

116 b0.e2 LDI R27,0x20 Load immediate ...

117 88.27 CLR R24 Clear Register R24 = 0

118 8d.93 ST X+,R24 Store indirect and postincrement ...

119 31.97 SBIW R30,0x01 Subtract immediate from word ...

11A e9.f7 BRNE PC-0x02 Branch if not equal ...

11B 8f.e1 LDI R24,0x1F Load immediate ???

11C 66.24 CLR R6 Clear Register Clear BASCOM status register R6

; Config Osc = Disabled , Pllosc = Disabled , Extosc = Enabled , 32khzosc = Disa

11D 73.e4 LDI R23,0x43 Load immediate OSC_XOSCCTRL = 0x43 (2MHz - 9MHz, XTAL_256CLK)

11E 70.93.52.00 STS 0x0052,R23 Store direct to data space ...

120 78.e0 LDI R23,0x08 Load immediate OSC_CTRL = 0x08 (Enable external clock)

121 70.93.50.00 STS 0x0050,R23 Store direct to data space ...

; Config Sysclock = External , Prescalea = 1 , Prescalebc = 1_1

123 80.91.51.00 LDS R24,0x0051 Load direct from data space Wait until bit 3 in OSC_STATUS is set (clock stable)

125 83.ff SBRS R24,3 Skip if bit in register set ...

126 fc.cf RJMP PC-0x0003 Relative jump ...

127 78.ed LDI R23,0xD8 Load immediate CCP (Configuration Change Protection) = 0xD8) IOREG

128 74.bf OUT 0x34,R23 Out to I/O location ...

129 73.e0 LDI R23,0x03 Load immediate CLK_CTRL = 0x03 (Use external clock)

12A 70.93.40.00 STS 0x0040,R23 Store direct to data space ...

12C 78.ed LDI R23,0xD8 Load immediate CCP (Configuration Change Protection) = 0xD8) IOREG

12D 74.bf OUT 0x34,R23 Out to I/O location ...

12E 70.e0 LDI R23,0x00 Load immediate CLK_PSCTRL = 0 (Divide by 1, presc B and C no division)

12F 70.93.41.00 STS 0x0041,R23 Store direct to data space ...

; Config Priority = Static , Vector = Application , Lo = Enabled , Med = Enabled

131 77.e0 LDI R23,0x07 Load immediate PMIC_CTRL = 0x07 (Enable high, mid, & low interrupts)

132 70.93.a2.00 STS 0x00A2,R23 Store direct to data space ...

; Config Com5 = 15625 , Mode = 0 , Parity = None , Stopbits = 1 , Databits = 8

;134 78.e0 LDI R23,0x08 Load immediate PORTE_DIRSET = 0b0000 1000 (bit 3 output)

;135 70.93.81.06 STS 0x0681,R23 Store direct to data space ...

 1 word LDI R26,0xA4 Load immediate Point X to USARTE0_CTRLB

 1 word LDI R27,0x0A Load immediate ...

 88.e1 R24,0x18 Load immediate USARTE0_CTRLB = 0x18 (Enable RX and TX)

 8d.93 ST X+,R24 Store indirect and postincrement...

126

 1 word LDI R24,0x03 Load immediate USARTE0_CTRLC = 0x03 (Asynch, no par, 1 stop bit, 8-bit)

 8d.93 ST X+,R24 Store indirect and postincrement...

 1 word LDI R24,80 Load immediate USARTE0_BAUDCTRLA = 0x80 (BSEL = 0xF 80)

 8d.93 ST X+,R24 Store indirect and postincrement...

 1 word LDI R24,9F Load immediate USARTE0_BAUDCTRLB = 0x9F (Baud rate scale factor 9)

 1 word ST X,R24 Store indirect ...

; Config Serialin4 = Buffered , Size = 20

141 80.91.b3.09 LDS R24,USARTE0_CTRLA Load direct from data space R24 = USARTE0_CTRLA (USART E0 RXC interrupt level

MED)

143 8f.7c ANDI R24,0xCF Logical AND with immediate R24 = R24 & 0b1100 1111

144 80.62 ORI R24,0x20 Logical OR with immediate R24 = R24 | 0b0010 0000

145 80.93.b3.09 STS USARTE0_CTRLA,R24 Store direct to data space USARTE0_CTRLA = R24

; Config Porte.2 = Input

147 74.e0 LDI R23,0x04 Load immediate PORTE_DIRCLR = 0b0000 0100 (bit 2 input) (unnecessary)

148 70.93.82.06 STS 0x0682,R23 Store direct to data space

; Config Porte.3 = Output

14A 78.e0 LDI R23,0x08 Load immediate PORTE_DIRSET = 0b0000 1000 (bit 3 output) (unnecessary)

14B 70.93.81.06 STS 0x0681,R23 Store direct to data space

Enable Interrupts

14D 78.94 SEI Global Interrupt Enable

A.6.14 Other compiled code that’s unused by the test application

A.6.14.1 Both ATmega and ATxmega
Generic delay routine (place 16-bit delay value in Z and rcall x20D, which will count down to zero and return)

20D 31.97 SBIW R30,0x01 Subtract immediate from word

20E f1.f7 BRNE PC-0x01 Branch if not equal

20F 08.95 RET Subroutine return

Set error bit 2 in R6

210 68.94 SET Set T in SREG

211 62.f8 BLD R6,2 Bit load from T to register

212 08.95 RET Subroutine return

Clear error bit 2 in R6

213 e8.94 CLT Clear T in SREG

214 62.f8 BLD R6,2 Bit load from T to register

215 08.95 RET Subroutine return

A.6.14.2 Only ATmega1284 and ATxmega128A1
RAMPZ

288 0F 93 Push R16 Set RAMPZ to 1

28A 01 E0 Ldi R16, 0x01

28C 0B BF Out RAMPZ, R16

28E 0F 91 Pop R16

290 88 94 Clc (clear carry flag)

292 08 95 Ret

294 0F 93 Push R16 Set RAMPZ to 0

296 00 27 eor r16, r16 Clear R16

298 F9 CF rjmp -7+1 0x28C

29A 0F 93 Push R16 Set RAMPZ to 2

29C 02 E0 Ldi R16, 0x02

29E F6 CF rjmp -10+1 0x28C

2A0 0F 93 Push R16 Set RAMPZ to 3

2A2 03 E0 Ldi R16, 0x03

2A4 F3 CF -13+1 0x28C

127

A.6.14.3 Only ATxmega128A1
Clear _XMEGAREG 32 bytes BASCOM area

269 8f.93 PUSH R24 Push register on stack

26A 9f.93 PUSH R25 Push register on stack

26B af.93 PUSH R26 Push register on stack

26C bf.93 PUSH R27 Push register on stack

26D 88.27 CLR R24 Clear Register

26E 90.e2 LDI R25,0x20 Load immediate

26F a1.e0 LDI R26,0x01 Load immediate _XMEGAREG

270 b0.e2 LDI R27,0x20 Load immediate

271 8d.93 ST X+,R24 Store indirect and postincrement Clear 0x2001 _XMEGAREG ___BTMPAX

272 9a.95 DEC R25 Decrement

273 e9.f7 BRNE PC-0x02 Branch if not equal Do 32 times until R25 == 0

274 bf.91 POP R27 Pop register from stack

275 af.91 POP R26 Pop register from stack

276 9f.91 POP R25 Pop register from stack

277 8f.91 POP R24 Pop register from stack

278 08.95 RET Subroutine return

Shift each of the 5 first bytes of _XMEGAREG left by one through carry. Multiply 5-byte number by 2.

279 8f.93 PUSH R24 Push register on stack

27A 80.91.01.20 LDS R24,0x2001 Load direct from data space

27C 88.1f ROL R24 Rotate Left Through Carry

27D 80.93.01.20 STS 0x2001,R24 Store direct to data space

27F 80.91.02.20 LDS R24,0x2002 Load direct from data space

281 88.1f ROL R24 Rotate Left Through Carry

282 80.93.02.20 STS 0x2002,R24 Store direct to data space

284 80.91.03.20 LDS R24,0x2003 Load direct from data space

286 88.1f ROL R24 Rotate Left Through Carry

287 80.93.03.20 STS 0x2003,R24 Store direct to data space

289 80.91.04.20 LDS R24,0x2004 Load direct from data space

28B 88.1f ROL R24 Rotate Left Through Carry

28C 80.93.04.20 STS 0x2004,R24 Store direct to data space

28E 80.91.05.20 LDS R24,0x2005 Load direct from data space

290 88.1f ROL R24 Rotate Left Through Carry

291 80.93.05.20 STS 0x2005,R24 Store direct to data space

293 8f.91 POP R24 Pop register from stack

294 08.95 RET Subroutine return

128

A.7 Atmel studio 6.1 and ASF screen dumps

A.7.1 ASF error messages

Figure 35: Missing ASF ATmega system clock control quickstart guide

Figure 36: Maintenance Notice

129

Figure 37: Missing ASF MEGA compiler driver missing documentation

Figure 38: Hanging when debugging, in this case when using the simulator

130

A.7.2 ASF quick start guide example

Figure 39: Quick start guide example

131

A.7.3 -O0 optimization error message

Figure 40: -O0 optimization error message

A.7.4 Misleading ASF project counter

(Atmel needs to correct the project counter so that it only counts a project once.)

132

A.8 Atmel Studio #ports scaling

A.8.1 Statics, row-major (AS3i)

A.8.1.1 ATmega324A total size

Atmega324A, interrupt vector table 126 bytes

Ports 1

2

 Opt Text Data BSS

Delta

Text Data BSS

-O1 532 0 36

180

712 0 72

-O2 566 0 36

128

694 0 72

-O3 716 0 36

260

976 0 72

-Os 518 0 36

170

688 0 72

Atmega324A, interrupt vector table excluded

-O1 406

586

 -O2 440

568

 -O3 590

850

 -Os 392

562

A.8.1.2 ATmega1284 total size

Atmega1284, interrupt vector table 140 bytes

Ports 1

2

 Opt Text Data BSS

Delta

Text Data BSS

-O1 562 0 36

188

750 0 72

-O2 602 0 36

130

732 0 72

-O3 752 0 36

262

1014 0 72

-Os 548 0 36

178

726 0 72

Atmega1284, interrupt vector table excluded

-O1 422

610

 -O2 462

592

 -O3 612

874

 -Os 408

586

133

A.8.1.3 ATxmega128A1 total size

Atxmega 128A1, interrupt vector table 500 bytes

 Ports 1

2

3

 Opt Text Data BSS

Delta

Text Data BSS

Delta

Text Data BSS

-O1 1012 0 36

204

1216 0 72

190

1406 0 108

-O2 1014 0 36

196

1210 0 72

178

1388 0 108

-O3 996 0 36

224

1220 0 72

240

1460 0 108

-Os 1006 0 36

198

1204 0 72

172

1376 0 108

Atxmega 128A1, interrupt vector table excluded

 -O1 512

716

906

 -O2 514

710

888

 -O3 496

720

960

 -Os 506

704

876

A.8.2 Statics, column-major

A.8.2.1 ATmega324A total size

Atmega324A, interrupt vector table 126 bytes

Ports 1

2

 Opt Text Data BSS

Delta

Text Data BSS

-O1 510 0 36

178

688 0 72

-O2 548 0 36

128

676 0 72

-O3 698 0 36

270

968 0 72

-Os 502 0 36

172

674 0 72

Atmega324A, interrupt vector table excluded

-O1 384

562

 -O2 422

550

 -O3 572

842

 -Os 376

548

134

A.8.2.2 ATmega1284 total size

Atmega1284, interrupt vector table 140 bytes

Ports 1

2

 Opt Text Data BSS

Delta

Text Data BSS

-O1 540 0 36

186

726 0 72

-O2 584 0 36

130

714 0 72

-O3 534 0 36

472

1006 0 72

-Os 532 0 36

180

712 0 72

Atmega1284, interrupt vector table excluded

-O1 400

586

 -O2 444

574

 -O3 394

866

 -Os 392

572

A.8.2.3 ATxmega128A1 total size

Atxmega 128A1, interrupt vector table 500 bytes

 Ports 1

2

3

 Opt Text Data BSS

Delta

Text Data BSS

Delta

Text Data BSS

-O1 990 0 36

202

1192 0 72

202

1394 0 108

-O2 996 0 36

196

1192 0 72

188

1380 0 108

-O3 996 0 36

222

1218 0 72

262

1480 0 108

-Os 990 0 36

200

1190 0 72

182

1372 0 108

Atxmega 128A1, interrupt vector table excluded

 -O1 490

692

894

 -O2 496

692

880

 -O3 496

718

980

 -Os 490

690

872

135

A.8.3 Code size and clock cycle count ISR, Interrupt Service Routine

A.8.3.1 Statics row-major
BTBB1i =

BTAA1i

BTBB1i = BTAA1i

BTBB1i =

BTAA1i

 Statics, row-

major

Statics, row-major

Statics, row-

major

 ATxmega128A1

ATmega1284

ATmega324A

Instr

Instr

W

Instr

C

Comme

nt Instr Instr W

Instr

C

Comme

nt Instr

Instr

W

Instr

C

Comme

nt

RJMP

PC+0x0182 1 2

RJMP PC+0x00E9 1 2

RJMP

PC+0x00DA 1 2

 PUSH R1 1 1

PUSH R1 1 2

PUSH R1 1 2

 PUSH R0 1 1

PUSH R0 1 2

PUSH R0 1 2

 IN R0,0x3F 1 1 SREG IN R0,0x3F 1 1 SREG IN R0,0x3F 1 1 SREG

PUSH R0 1 1

PUSH R0 1 2

PUSH R0 1 2

 CLR R1 1 1

CLR R1 1 1

CLR R1 1 1

 IN R0,0x38 1 1 RAMPD

 PUSH R0 1 1

 OUT 0x38,R1 1 1 RAMPD

 IN R0,0x3B 1 1 RAMPZ IN R0,0x3B 1 1 RAMPZ

 PUSH R0 1 1

PUSH R0 1 2

OUT 0x3B,R1 1 1 RAMPZ

RAMPZ only relevant for

ELPM/SPM

 PUSH R24 1 1

PUSH R24 1 2

PUSH R24 1 2

 PUSH R30 1 1

PUSH R30 1 2

PUSH R30 1 2

 PUSH R31 1 1

PUSH R31 1 2

PUSH R31 1 2

LDS

R24,0x09A0 2 3
1 extra

cycle

inserted

for int

SRAM

LDS R24,0x00CE 2 2

LDS

R24,0x00CE 2 2

LDS R30,0x2001 2 3 LDS R30,0x0101 2 2

LDS

R30,0x0101 2 2

 SUBI R30,0xFF 1 1

SUBI R30,0xFF 1 1

SUBI R30,0xFF 1 1

 ANDI R30,0x0F 1 1

ANDI R30,0x0F 1 1

ANDI R30,0x0F 1 1

STS 0x2001,R30 2 2

STS 0x0101,R30 2 2

STS

0x0101,R30 2 2

 LDI R31,0x00 1 1

LDI R31,0x00 1 1

LDI R31,0x00 1 1

 SUBI R30,0xC8 1 1

SUBI R30,0xC8 1 1

SUBI R30,0xC8 1 1

 SBCI R31,0xDF 1 1

SBCI R31,0xFE 1 1

SBCI R31,0xFE 1 1

 STD Z+0,R24 1 1

STD Z+0,R24 1 2

STD Z+0,R24 1 2

 POP R31 1 2

POP R31 1 2

POP R31 1 2

 POP R30 1 2

POP R30 1 2

POP R30 1 2

 POP R24 1 2

POP R24 1 2

POP R24 1 2

 POP R0 1 2

POP R0 1 2

 OUT 0x3B,R0 1 1 RAMPZ OUT 0x3B,R0 1 1 RAMPZ

 POP R0 1 2

POP R0 1 2

POP R0 1 2

 OUT 0x38,R0 1 1 RAMPD

 POP R0 1 2

 OUT 0x3F,R0 1 1 SREG OUT 0x3F,R0 1 1 SREG OUT 0x3F,R0 1 1 SREG

POP R0 1 2

POP R0 1 2

POP R0 1 2

 POP R1 1 2

POP R1 1 2

POP R1 1 2

RETI 1 5

22-bit

PC RETI 1 5

22-bit

PC RETI 1 4

16-bit

PC

Statics, row-

major 39 54

33 53

29 46

Blue colour indicates that the implementation is more efficient, red that it is less so. “Instr W” means

Instruction size in words (=2 bytes) and “Instr C” means number of clock cycles.

136

A.8.3.2 Structs and pointers

BTB1h = AS1h

BTB1h = AS1h

BTB1h = AS1h

 Structs and

pointers

Structs and

pointers

Structs and

pointers

 ATxmega128A1

ATmega1284

ATmega324A

Instr

Instr

W

Instr

C

Comme

nt Instr

Instr

W

Instr

C

Comme

nt Instr

Instr

W

Instr

C

Comme

nt

RJMP PC+0x017D 1 2

RJMP PC+0x00DB 1 2

RJMP PC+0x00CC 1 2

 PUSH R1 1 1

PUSH R1 1 2

PUSH R1 1 2

 PUSH R0 1 1

PUSH R0 1 2

PUSH R0 1 2

 IN R0,0x3F 1 1 SREG IN R0,0x3F 1 1 SREG IN R0,0x3F 1 1 SREG

PUSH R0 1 1

PUSH R0 1 2

PUSH R0 1 2

 CLR R1 1 1

CLR R1 1 1

CLR R1 1 1

 IN R0,0x38 1 1 RAMPD

 PUSH R0 1 1

 OUT 0x38,R1 1 1 RAMPD

 IN R0,0x39 1 1 RAMPX

 PUSH R0 1 1

 OUT 0x39,R1 1 1 RAMPX

 IN R0,0x3B 1 1 RAMPZ IN R0,0x3B 1 1 RAMPZ

 PUSH R0 1 1

PUSH R0 1 2

OUT 0x3B,R1 1 1 RAMPZ

RAMPZ only relevant for

ELPM/SPM

 PUSH R24 1 1

PUSH R24 1 2

PUSH R24 1 2

 PUSH R26 1 1

PUSH R26 1 2

PUSH R26 1 2

 PUSH R27 1 1

PUSH R27 1 2

PUSH R27 1 2

 PUSH R30 1 1

PUSH R30 1 2

PUSH R30 1 2

 PUSH R31 1 1

PUSH R31 1 2

PUSH R31 1 2

 LDI R26,0x4E 1 1

LDI R26,0x4E 1 1

LDI R26,0x4E 1 1

 LDI R27,0x20 1 1

LDI R27,0x01 1 1

LDI R27,0x01 1 1

 LD R30,X 1 2 Below LD R30,X 1 2

LD R30,X 1 2

 SUBI R30,0xFF 1 1

SUBI R30,0xFF 1 1

SUBI R30,0xFF 1 1

 ANDI R30,0x0F 1 1

ANDI R30,0x0F 1 1

ANDI R30,0x0F 1 1

 ST X,R30 1 1

ST X,R30 1 1

ST X,R30 1 1

 LDI R31,0x00 1 1

LDI R31,0x00 1 1

LDI R31,0x00 1 1

LDS R26,0x203C 2 3

1 extra

cycle

inserted

for int

SRAM

LDS R26,0x013C 2 2

LDS R26,0x013C 2 2

 LDS R27,0x203D 2 3 LDS R27,0x013D 2 2

LDS R27,0x013D 2 2

ADIW R26,0x06 1 2

ADIW R26,0x06 1 2

 LD R24,X 1 2 LD R24,X 1 2

LD R24,X 1 2

 SUBI R30,0xC4 1 1

SUBI R30,0xC4 1 1

SUBI R30,0xC4 1 1

 SBCI R31,0xDF 1 1

SBCI R31,0xFE 1 1

SBCI R31,0xFE 1 1

 STD Z+2,R24 1 2

STD Z+2,R24 1 2

STD Z+2,R24 1 2

 POP R31 1 2

POP R31 1 2

POP R31 1 2

 POP R30 1 2

POP R30 1 2

POP R30 1 2

 POP R27 1 2

POP R27 1 2

POP R27 1 2

 POP R26 1 2

POP R26 1 2

POP R26 1 2

 POP R24 1 2

POP R24 1 2

POP R24 1 2

 POP R0 1 2

POP R0 1 2

POP R0 1 2

 OUT 0x3B,R0 1 1 RAMPZ OUT 0x3B,R0 1 1 RAMPZ

 POP R0 1 2

POP R0 1 2

 OUT 0x39,R0 1 1 RAMPX

 POP R0 1 2

 OUT 0x38,R0 1 1 RAMPD

 POP R0 1 2

 OUT 0x3F,R0 1 1 SREG OUT 0x3F,R0 1 1 SREG OUT 0x3F,R0 1 1 SREG

POP R0 1 2

POP R0 1 2

POP R0 1 2

 POP R1 1 2

POP R1 1 2

POP R1 1 2

RETI 1 5 22-bitPC RETI 1 5

22-bit

PC RETI 1 4

16-bit

PC

Structs & ptrs

51 72

41 68

37 61

137

A.8.4 Code size and clock cycle count, transmitting

A.8.4.1 Statics row-major

BTBB1i = BTAA1i

 Statics

 ATxmega128A1 1 port NN 2 ports Port 0 Port 1 3 ports Port 0 Port 1 Port 2

 Instr Instr W Instr C Instr W Instr C Instr C Instr W Instr C Instr C Instr C Comment

CPSE R22,R1 1 2 1 1 2 1 1

 RJMP PC+0x0008 1

2 1

2 2

 LDS R25,0x0AA1 2 3 2 3 2 3

 Int SRAM

SBRS R25,5 1 2 1 2 1 2

 1st try

RJMP PC-0x0003 1 2 1 2 1 2

 STS 0x0AA0,R24 2 2 2 2 2 2

 RET 1 5 1 5 1 5

 22-bit PC

DEC R22

 1

1 1

 BRNE _+8

 1

1 2

 LDS R25,0x0AA1

 2

3 Int SRAM

SBRS R25,5

 1

2 1st try

RJMP PC-0x0003

 1

2

 STS 0x0AA0,R24

 2

2

 RET

 1

5 22-bit PC

LDS R25,0x09A1 2

3 2

3 Int SRAM

SBRS R25,5 1

2 1

2 1st try

RJMP PC-0x0003 1

2 1

2

 STS 0x09A0,R24 2

2 2

2

 RET 1

5 1

5 22-bit PC

Statics ATxmega128A1 7 14 16 16 17 25 16 19 20

 Statics ATmega1284 7 13 16 15 16

 Statics ATmega324A 7 12 16 14 15

A.8.4.2 Structs and pointers

BTB1h = AS1h

 Structs and pointers

 ATxmega128A1

 Instr Instr W Instr C Comment

MOVW R30,R22 1 1

 LDD R25,Z+1 1 3 Int SRAM

SBRS R25,5 1 2 1st try

RJMP PC-0x0003 1 2

 STD Z+0,R24 2 1

 RET 1 5 22-bit PC

S&P ATxmega128A1 7 14

 S&P ATmega1284 7 13 Quicker LDD but slower STD Z+

S&P ATmega324A 7 12 Above and quicker RET due to 16-bit PC

138

A.8.5 Protocol-bound ISR scaling (AS3j & AS3k)

1S statics row-m, 18 BSS 1M S&P, 20 BSS 1M statics row-m, 18 BSS 2M S&P, 40 BSS 2M statics row-m, 36 BSS

Text, bytes ATmega324A

-O1 444 512 502 636 700

-O2 438 490 488 606 666

-O3 436 486 478 680 680

-Os 438 484 492 604 658

ATmega1284

-O1 472 536 530 668 736

-O2 466 514 516 638 702

-O3 464 510 506 712 716

-Os 466 508 520 636 694

ATxmega128A1

-O1 932 996 990 1170 1216

-O2 934 990 984 1140 1200

-O3 932 990 974 1218 1214

-Os 934 982 988 1140 1192

A.8.6 Common ISR assembly code
000001D0 1f.92 PUSH R1 Push register on stack

000001D1 0f.92 PUSH R0 Push register on stack

000001D2 0f.b6 IN R0,0x3F In from I/O location

000001D3 0f.92 PUSH R0 Push register on stack

000001D4 11.24 CLR R1 Clear Register

000001D5 08.b6 IN R0,0x38 In from I/O location

000001D6 0f.92 PUSH R0 Push register on stack

000001D7 18.be OUT 0x38,R1 Out to I/O location

000001D8 09.b6 IN R0,0x39 In from I/O location

000001D9 0f.92 PUSH R0 Push register on stack

000001DA 19.be OUT 0x39,R1 Out to I/O location

000001DB 0b.b6 IN R0,0x3B In from I/O location

000001DC 0f.92 PUSH R0 Push register on stack

000001DD 1b.be OUT 0x3B,R1 Out to I/O location

000001DE 2f.93 PUSH R18 Push register on stack

000001DF 3f.93 PUSH R19 Push register on stack

000001E0 4f.93 PUSH R20 Push register on stack

000001E1 5f.93 PUSH R21 Push register on stack

000001E2 6f.93 PUSH R22 Push register on stack

000001E3 7f.93 PUSH R23 Push register on stack

000001E4 8f.93 PUSH R24 Push register on stack

000001E5 9f.93 PUSH R25 Push register on stack

000001E6 af.93 PUSH R26 Push register on stack

000001E7 bf.93 PUSH R27 Push register on stack

000001E8 ef.93 PUSH R30 Push register on stack

000001E9 ff.93 PUSH R31 Push register on stack

 USART_RXComplete(&SerialData1);

000001EA 84.e1 LDI R24,0x14 Load immediate

000001EB 90.e2 LDI R25,0x20 Load immediate

000001EC c2.df RCALL PC-0x003D Relative call subroutine

 }

000001ED ff.91 POP R31 Pop register from stack

000001EE ef.91 POP R30 Pop register from stack

000001EF bf.91 POP R27 Pop register from stack

000001F0 af.91 POP R26 Pop register from stack

000001F1 9f.91 POP R25 Pop register from stack

000001F2 8f.91 POP R24 Pop register from stack

000001F3 7f.91 POP R23 Pop register from stack

000001F4 6f.91 POP R22 Pop register from stack

000001F5 5f.91 POP R21 Pop register from stack

000001F6 4f.91 POP R20 Pop register from stack

000001F7 3f.91 POP R19 Pop register from stack

000001F8 2f.91 POP R18 Pop register from stack

139

000001F9 0f.90 POP R0 Pop register from stack

000001FA 0b.be OUT 0x3B,R0 Out to I/O location

000001FB 0f.90 POP R0 Pop register from stack

000001FC 09.be OUT 0x39,R0 Out to I/O location

000001FD 0f.90 POP R0 Pop register from stack

000001FE 08.be OUT 0x38,R0 Out to I/O location

000001FF 0f.90 POP R0 Pop register from stack

00000200 0f.be OUT 0x3F,R0 Out to I/O location

00000201 0f.90 POP R0 Pop register from stack

00000202 1f.90 POP R1 Pop register from stack

00000203 18.95 RETI Interrupt return

A.9 ATmega324A structs and pointers two-port USART ISR placed in IV

A.9.1 C code

void USART_RX_complete(working_data_t * working_data)
{
 uint8_t data = working_data->usart->UDR;
 if (data == 254)
 {
 working_data->serial_data_status = 1;
 working_data->receive_counter = 0;
 working_data->serial_data[0] = 254;
 }
 else
 {
 working_data->receive_counter++;
 if (working_data->receive_counter < USART_RX_BUFFER_SIZE)
 {
 working_data->serial_data[working_data->receive_counter] = data;
 if (data == 255)
 {
 working_data->serial_data_status = 2;
 }
 }
 else
 {
 working_data->serial_data_status = 0;
 working_data->receive_counter = 0;
 }
 }
}

140

A.9.2 Assembly

#include <avr/io.h>
#include "defines.h"
.section .myvectors, "ax", @progbits
.global __vector_default
__vector_default:
// Reset vector
 rjmp __init // 0x00
rx_common_entry:
 push r1 // 0x01
 push r0 // 0x02
 in r0, _SFR_IO_ADDR(SREG) // 0x03 SREG
 push r0 // 0x04
 rjmp rx_skip_int2 // 0x05
// INT2 vector
 rjmp __vector_3 // 0x06 INT2
rx_skip_int2:
 clr r1 // 0x07
 push r25 // 0x08
 push r26 // 0x09
 push r27 // 0x0A
 rjmp rx_skip_pcint2 // 0x0B
// PCINT2 vector
 rjmp __vector_6 // 0x0C PCINT2
rx_skip_pcint2:
 cpi r24, 0xfe // 0x0D if (data == 254)
 brne rx_not_start_token // 0x0E else
 ldi r25, 0x01 // 0x0F working_data->serial_data_status=1;
 std Z+18, r25 // 0x10
 std Z+19, r1 // 0x11 working_data->receive_counter = 0;
 std Z+2, r24 // 0x12 working_data->serial_data[0] = 254;
 rjmp rx_epilogue // 0x13 jump to isr epilogue
rx_not_start_token:
 ldd r25, Z+19 // 0x14 working_data->receive_counter++;
 subi r25, 0xff // 0x15
 std Z+19, r25 // 0x16
 ldd r25, Z+19 // 0x17 if (working_data->receive_counter < USART_RX_BUFFER_SIZE)
 cpi r25, USART_RX_BUFFER_SIZE // 0x18
 brcc rx_overflow // 0x19
 ldd r25, Z+19//0x1A working_data->serial_data[working_data->receive_counter]= data;
 movw r26, r30 // 0x1B
 add r26, r25 // 0x1C
 adc r27, r1 // 0x1D
 adiw r26, 0x02 // 0x1E
 st X, r24 // 0x1F
rx_cont4:
 cpi r24, 0xff // 0x20 if (data == 255)
 brne rx_not_end_token // 0x21 else
 ldi r24, 0x02 // 0x22 working_data->serial_data_status=2;
rx_not_end_token:
 std Z+18, r24 // 0x23
rx_epilogue:
 pop r27 // 0x24
 pop r26 // 0x25
 pop r25 // 0x26
 rjmp rx_skip_usart0 // 0x27
// USART0 RX vector
 push r24 // 0x28
 push r30 // 0x29
 push r31 // 0x2A
 ldi r30, lo8(serial_data_0) // 0x2B
 ldi r31, hi8(serial_data_0) // 0x2C

141

 lds r24, _SFR_MEM_ADDR(UDR0) // 0x2D UDR0
 // 2-word instruction // 0x2E
 rjmp rx_common_entry // 0x2F
rx_skip_usart0:
 pop r0 // 0x30
 out _SFR_IO_ADDR(SREG), r0 // 0x31 SREG
 pop r0 // 0x32
 pop r1 // 0x33
 pop r31 // 0x34
 pop r30 // 0x35
 pop r24 // 0x36
 reti // 0x37
// USART1 RX vector
 push r24 // 0x38
 push r30 // 0x39
 push r31 // 0x3A
 ldi r30, lo8(serial_data_1) // 0x3B
 ldi r31, hi8(serial_data_1) // 0x3C
 lds r24, _SFR_MEM_ADDR(UDR1) // 0x3D UDR1
 // 2-word instruction // 0x3E
 rjmp rx_common_entry // 0x3F
rx_overflow:
 std Z+18, r1 // 0x40 working_data->serial_data_status=0;
 std Z+19, r1 // 0x41 working_data->receive_counter = 0;
 rjmp rx_epilogue // 0x42

TRITA-ICT-EX-2014:63

www.kth.se

