How to Get the Most Out Of Your
Embedded Hardware While
Keeping Development Time to a
Minimum

A Comparison of Two architectures and

Two IDEs for Atmel AVR 8-bit
Microcontrollers

NICLAS ARNDT

KTH ROYAL INSTITUTE OF TECHNOLOGY

INFORMATION AND COMMUNICATION TECHNOLOGY

How to Get the Most out of Your Embedded Hardware
while Keeping Development Time to a Minimum

A Comparison of Two Architectures and Two IDEs
for Atmel AVR 8-bit Microcontrollers

Niclas Arndt

Bachelor Thesis, Information Technology

Abstract

This thesis aims to answer a number of basic questions about microcontroller development:

e What's the potential for writing more efficient program code and is it worth the effort? How could it be done?
Could the presumed trade-off between code space and development time be overcome?

e Which microcontroller hardware architecture should you choose?

e Which IDE (development ecosystem) should you choose?

This is an investigation of the above, using separate sets of incremental code changes (improvements) to a simple serial
port communication test program. Two generations of Atmel 8-bit AVR microcontrollers (ATmega and ATxmega) and two
conceptually different IDEs (BASCOM-AVR and Atmel Studio 6.1) are chosen for the comparison.

The benefits of producing smaller and/or faster code is the ability to use smaller (cheaper) devices and reduce power
consumption. A number of techniques for manual program optimization are used and presented, showing that it’s the
developer skills and the IDE driver library concept and quality that mainly affect code quality and development time, rather
than high code quality and low development time being mutually exclusive.

The investigation shows that the complexity costs incurred by using memory-wise bigger and more powerful devices with
more features and peripheral module instances are surprisingly big. This is mostly seen in the IV table space (many and
advanced peripherals), ISR prologue and epilogue (memory size above 64k words), and program code size (configuration
and initialization of peripherals).

The 8-bit AVR limitation of having only three memory pointers is found to have consequences for the programming model,
making it important to avoid keeping several concurrent memory pointers, so that the compiler doesn’t have to move
register data around. This means that the ATxmega probably can’t reap the full benefit of its uniform peripheral module
memory layout and the ensuing struct-based addressing model.

The test results show that a mixed addressing model should be used for 8-bit AVR ATxmega, in which “static” (absolute)
addressing is better at one (serial port) instance, at three or more the “structs and pointers” addressing is preferable, and at
two it’s a draw. This fact is not dependent on the three pointer limitation, but is likely to be strengthened by it.

As a mixed addressing model is necessary for efficient programming, it is clear that the driver library must reflect this,
either via alternative implementations or by specifying “interfaces” that the (custom) driver must implement if abstraction
to higher-level application code is desired. A GUI-based tool for driver code generation based on developer input is
therefore suggested.

The translation from peripheral instance number to base address so far used by BASCOM-AVR for ATxmega is expensive,
which resulted in a suggestion for a HW-based look-up table that would generally reduce both code size and clock cycle
count and possibly enable a common accessing model for ATmega, ATxmega, and ARM.

In the IDE evaluation, both alternatives were very appreciated. BASCOM-AVR is found to be a fine productivity-
enhancement tool due to its large number of built-in commands for the most commonly used peripherals. Atmel Studio 6.1
suffers greatly in this area from its ill-favored ASF driver library. For developers familiar with the AVRs, the powerful avr-
gcc optimizing compiler and integrated debugger still make it worthwhile adapting application note code and datasheet
information, at a significant development time penalty compared to BASCOM-AVR.

Regarding ATmega vs. ATxmega, it was decided that both have its place, due to differences in feature sets and number of
peripheral instances. ATxmega seems more competitively priced compared to ATmega, but incurs a complexity cost in
terms of code size and clock cycles. When it’s a draw, ATmega should be chosen.

Table of contents

1

T A oY [U 14T] o HA TP U RPN 1
1.1 OULIINE ettt ettt et et b e sb e s bt e sbeesae e s st e st e e neeeaneere e 1
1.2 GeNeral backgroUNdoouuiii i e e e e ebee e e e aba e e e e bae e e e nareeas 2
1.3 Commercial backgroUNndocuuiiiiiiiie e e et 3
1.4 oY o] (=T g o [=TYol T o 4 (o] o PSSP REPRRE 3
1.5 VT oo LY I Ta Ve I -o - | U EEPRN 5
1.6 DEIIMITATIONS ...ttt st et e e st e st e st e e e sab e e sbe e e ne e e sareesneeesareesnreas 5
1.7 B =T0 00T a7] o =42 PSP 6
1.8 RETEIEINCES ...ttt b e st s e st e e et et e e bt e bt e bt e b e e be e reennee 6
1.9 Other CONSIAEIATIONS...ccueiiiiieiee ettt st e st er e st esre e sbeeesmteesareeeane 7

=1 1 g To o IO TR PSR TP 8
2.1 VI d aToYo I [=TYol 5o [o] o HS U UERRRNE 8
2.2 Test eqUIPMENT @NA SELUP c...vvieeiiiiiee ettt e et e e e et e e e e ettae e e e s eateeeesabteeessnsaaeesnnes 8

The Atmel AVR 8-bit MICroCONtrollErsc.oovieiieiiiecee e 11
31 T (oo [¥ Tt d o] o FOU USSP ST R PSPPI 11
3.2 ArchiteCture detailsooieeeeieee e e 12
33 HW design and programming considerations...........eeeeieeciiiieeeeeiccciieeee e e e eccrreeeeeeee e e e eeenens 15
3.4 (Other) differences between ATmega and ATXMEEAueveeiuieeeeiiiieeeeeee e 16

Presentation Of the IDES.......coui ittt e st st sttt et e ne e 19
4.1 BASCOM-AVR ..ttt ettt ettt et sae e s ae e st e sare s et e et e et e e b e e be e b e e neenes 19
4.2 ATMEI STUAIO Bttt e st st st sttt 21

BASCOM-AVR @NaIYSIS.cccciiiiiiiiiiee ettt ettt e e e e st e e e e e e e st ate e e e e seeaeeessnnbasaeeeeeeesnnreeneeeas 25
5.1 Serial communication analysis teSt I0guuiriiiiiii e 25
5.2 BASCOM-AVR SUMMAIY #L.....oeuiiiiiii e rebereaaseeseessesee e nnannnnnnnnnnnnnnnnnn 32
5.3 Why is the ATxmega code SO MUCh DIgEEr?.....cccuvii i 34
5.4 GENEIAlIZATION ..ttt s 40

Atmel Studio 6.1 2562 using ASF3.13.1 code analySiScceeeeeiieieiiiiieeciieee e e evree e 42
6.1 OptiMIzZation PriMEr .. 42
6.2 ATMEZA324A ANAIYSIS.....uiiiiiiie et e e e e e e e e et ae e e e e e e e e e e e barra e e e e e e eannrraaeeas 42
6.3 ATXMEEAL28AL ANAIYSIS .eciivieiiiiiiiie et e e e etre e e e e tr e e e e s ata e e e sbaeeeeantaeeeenes 50
6.4 Scaling ATmega 324A, ATmegal284, and ATXmegal28Al......ccccccovvveeevcieeececiee e 63
6.5 Protocol-bound ISR scaling (AS3] & AS3K)uuieeiiiiieeeiieie et ecrre e et e e e esre e e s naaaee e 73

9

10

6.6 ATmega324A structs and pointers two-port USART ISR placed in IVcccovveeeevieeiiiineeennns 75

Compilation and discussion of the test resuUltscc.ceeeieeiiciie e, 76
7.1 Static vs. dynamic addressing (BASCOM-AVR) ofr S&P (AVR-GCC C)....cceevvreeecreeeeerreeeenneen. 76
7.2 Hardware-related complexity COSESuumiiiiiiiiiiiiiie e e e e 78
7.3 SOfEWAre-related COSES ...uuiiiiiiiiieiit ettt e s b e e sneeesanee s 80
7.4 ProgrammEr SKIllS......ooouiiie e et e e et e e e e aa e e e e araeeeas 83
7.5 ATmega or ATXMEEA Or BOth?oiiiiee e et ae e e 84
7.6 1972 ole] g g oI 1Yo o RN 86
7.7 Suggestions for fFULUIE WOIKeeeeee e e 88

Y U1 20] 4o -1 VR 89
8.1 IDE CROTCE .ttt et ettt e bt e e sae e e st e e st ee e sabeesabeeebeeesmbeesareeennneenee 89
8.2 HW SEIECEION ...ttt st st sttt et b e b nee 89
8.3 The programming test results and the conclusions | draw from them........ccccccoeevieriennne.n. 90
8.4 On efficient ProgrammMIiNgccocciii it re e e e e e e st re e e e bee e e enteeeeeaneeas 90

RETEIENCES ...ttt et et e st e s bt e bt e e st e e bt e e sabe e s beesreeeneeesabeesreeeas 93

Yo 01T o | N U 102
Al Response from the IDE COMPANIESuveieeeiiiieiiiiieeee e e e e e e et rree e e e e e e eannes 102
A2 AdAItIONAl SOUICES ...coiiiiieiieiieitterit ettt sttt ettt et bt e bt e sbeesbeesreesaeesane e 104
A3 HOW £0 diSASSEMDBIE ... et 107
A4 Atmel application notes on efficient programming..........ccccccveeeviiiieicciee e 108
A5 IDE-specific additional information...........coo i 112
A.6 BASCOM incremental COE PIBCESuuiiiiieiiieeciieeee ettt e e e e e e e e e e araaraae e e e e e eeannes 117
A7 Atmel studio 6.1 and ASF SCreeNn dUMPScccccurieeiiiieeeeeieeeeeiieeeesireeeesreeeeesrreeeseesreeesenses 128
A8 Atmel StUdio #POrtS SCAlING......veii e e e ere e e e 132
A9 ATmega324A structs and pointers two-port USART ISR placed in IVcccoeeeieveeiienenne, 139

1 Introduction

1.1 Outline
This is a long thesis that covers a wide area. The reader might want to choose the parts of most
interest and here | briefly describe the contents and provide reading advice.

If you want to digest this work as quickly as possible, it is recommended that you browse chapter 1,
read section 3.4.1 and then read chapters 7 and 8. Chapters 3, 5, and 6 can in this case be consulted
for details about particular tests and their results.

e Chapter 1is the introduction.

e Chapter 2 describes the method and the test setup. It briefly explains and illustrates how the
tests were performed. An experienced microcontroller programmer could probably skip this
part.

e Chapter 3 presents the AVR 8-bit microcontroller architecture, differences between ATmega
and ATxmega, and programming-related properties relevant to this thesis. It is very detailed
with regards to register design, I/0 and peripheral device registers, internal memories, and
Atmel’s advice on efficient programming. The alternative peripheral module register layout
that is very important to this paper is explained in 3.4.1. | recommend every reader to read
this last piece, but if you are seriously interested in efficient AVR programming you must get
a solid understanding of this entire chapter.

e Chapter 4 is an overview of the two IDEs, describing their most important features and
qualities. If you are mostly interested in their consequences you can find this in chapter 7.

e Chapters 5 and 6 each contain one separate IDE-specific analysis and discussion of the
findings. Written as log books that document my progress, they are very detailed and include
personal remarks indicating my reactions to the results. These chapters provide the empirical
groundwork that also explains or “proves” my findings. You can read it as a whole or read the
parts that lead up to the results you found interesting in chapter 7.

e Chapter 7 compiles and discusses the results, which leads up to a number of conclusions. All
aspects considered relevant are treated here. A must-read for this paper.

e Chapter 8 is a summary of the conclusions. This is where the different lines of investigation
end in IDE choice, HW selection, results from the programming tests, and conclusions on
efficient programming.

¢ Chapter 9 holds the table of references.

* Various additional information, sources, and incremental pieces of code have been put in
appendix A.

® The source code and disassemblies reside in the external appendix B due to their size. Please
contact the author for a copy.

1.2 General background

For many years, | have been doing microcontroller (a.k.a. embedded systems) prototyping as a
hobby. | have now reached the level at which | consider turning my hobby into a business and one of
many questions is which platform | should choose in terms of

e hardware (HW) architecture and
* Integrated Development Environment (IDE).

| also want to get a deeper understanding of (microcontroller) programming; a feeling for how much
computer programs can be improved in terms of performance and compiled code size and how
further studies in this area could be designed:

¢ Should | use a generic programming style or are there differences in IDE and HW architecture
that motivate different approaches?

¢ How good are the predefined software (SW) libraries and IDE commands with respect to
compiled code size, performance, and development time?

e Should | use high-level language only or combine it with inline assembly or custom assembly

functions?

On a similar note, as the great yearly increase in computer HW performance that we had grown
accustomed to seems to have been slowed down, | believe that there is reason to rekindle our
interest in SW performance:

The computer HW performance trend break

1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009

Figure 1: The general computer HW performance trend (relative performance vs. year)

This illustrative graph is representative of a number of real charts in “The Future of Computing
Performance: Game Over or Next Level?” (1) *. In many of the most important HW metrics, the

increase in performance has slowed down:

¢ Integer and floating-point performance
e Power dissipation and clock frequency

! Free download at http://www.nap.edu/catalog.php?record id=12980

2

So, what ways are there to further increase performance?

"The claimed benefits of high-level languages are now widely accepted. In fact, as computers got faster, modern
programming languages added more and more abstractions. For example, modern languages - such as Java, C#, Ruby,
Python, F#, PHP, and Javascript - provide such features as automatic memory management, object orientation, static typing,
dynamic typing, and referential transparency, all of which ease the programming task. They do that often at a performance
cost, but companies chose these languages to improve the correctness and functionality of their software, which they valued

more than performance mainly because the progress of Moore’s law hid the costs of abstraction." (1) 1 pl107

"Future growth in computing performance will have to come from software parallelism that can exploit hardware
parallelism. Programs will need to be expressed by dividing work into multiple computations that execute on separate

processors and that communicate infrequently or, better yet, not at all." (1) 1 pl05

| too see parallelism as a very important area in software development, but | also see great potential
in more efficient programming. 8-bit microcontrollers are simple and enable high-level development
from which the machine code consequences can be analyzed directly. I’'m hoping that such an
analysis will give insights that are also applicable to PC- and server-class programming.

1.3 Commercial background

| am currently developing a series of (uninterruptible) power supply products. They have quite
modest requirements in terms of performance and program memory size, but | still want to make an
informed platform decision and lay a solid code foundation for what will be common functionality:

® | believe that writing good code once is cheaper in the long run.

e |f the code size reduction is substantial, it will enable me to use smaller (and cheaper)
devices.

e According to Johnny Burlin at IAR Systems (one of the world-leading compiler makers for
embedded processors) (2), the best way to reduce power consumption is to speed-optimize
the code so that the microcontroller gets the job done as quickly as possible and then goes
into sleep mode. In this paper | won’t go into power efficiency, but it is relevant for battery-
powered devices.

1.4 Problem description
My previous designs are based on Atmel’s AVR 8-bit microcontrollers, more specifically the ATmega
architecture (3) ?, with the BASCOM-AVR IDE (4) ®. Its syntax is close to Visual Basic 6, here called VB.

| have now started to use the more powerful ATxmega series (5) * and | am considering a switch to
Atmel’s IDE, Atmel Studio 6 (6) >. The main reason for this would be the optimizing compiler,
integrated debugger, and being able to use the industry-standard C or C++ that are more easily
portable to other HW. It also has support for Atmel’s ARM-based products and a claimed easy
transition from ATxmega to ARM due to the common Atmel Software Foundation (ASF) (7) © driver
library.

? http://www.atmel.com/products/microcontrollers/avr/megaavr.aspx

? http://www.mcselec.com/

* http://www.atmel.com/products/microcontrollers/avr/avr_xmega.aspx
> http://www.atmel.se/microsite/atmel_studio6/

® http://www.atmel.com/tools/avrsoftwareframework.aspx?tab=overview

3

| decided that a simple feature comparison wouldn’t answer all my questions. Instead, | will
implement the same basic test program (a serial port communication routine) for each of the
HW/IDE combinations below, with a number of incremental code modifications in order to find the
optimum programming style in each situation.

| will try to see how much | can improve the generic high-level code (mostly in terms of compiled
code size, but in some cases also clock cycle count and RAM usage) and then how much further | can
reduce it by replacing parts with inline assembly. As a last step, | will see how much can be saved by
swapping the protocol-unbound design for a protocol-bound implementation.

BASCOM AVR VB-only

BASCOM AVR VB + inline assembly

BASCOM AVR VB + inline assembly, protocol-bound implementation

Atmel Studio C-only

Atmel Studio C + inline assembly

Atmel Studio C + inline assembly, protocol-bound implementation

Table 1: Test overview, for ATmega and ATxmega respectively

Below are the main questions that will guide my work. As the investigation is open-ended and the
further direction of the analysis is decided during its execution, the summary and conclusions will be
shaped by the actual findings, not necessarily following this structure.

Software-related:

¢ How much can you improve your code? Is it worth the time and effort?
o High-level language only
o With inline assembly (or custom assembly functions)
e How do the two IDEs (BASCOM-AVR 2.0.7.6 and Atmel Studio 6.1) compare?
Ease of use
Productivity-enhancement tools (software libraries / built-in commands)
Efficiency / optimization of compiled code
Simulation and debugging possibilities
SW stability
Code reusability and portability to other device types or brands

O O O O O O O

Coverage
= HW architectures (including easy transition between different HW)
= SW longevity (have the version changes been smooth?)
o User forum usefulness
¢ What are the differences between developing in BASCOM VB and AVR GCC C code (using
their respective IDE)?

Hardware-related:

e Should you strive to migrate to the newer and more feature-rich ATxmega?

Features
o Complexity
o Maturity
o New programming model and its effect on code size and clock cycle count

1.5 Purpose and goal

This thesis has the following purpose:

e Evaluate two microcontroller IDEs and two HW architectures for a decision about the
platform for my future commercial products.
® Investigate the area of efficient microcontroller programming:
o Learn how big is the potential for writing smaller or faster computer programs.
o Could the presumed code space / development time trade-off be overcome?
o Understand to what extent the programming style should be adapted to IDE and
HW, how to balance the development time savings to the cost of the abstractions
added by generic libraries / commands, and how much inline assembly should be
used.
o Get an initial picture of how further studies in this area could be designed.

In other words: To search for a way to get the most out of my embedded hardware while keeping
development time to a minimum.

1.6 Delimitations

The thesis title is chosen for two reasons: it captures the essence of the thesis and it is believed to
catch the reader’s interest. It is however too big a topic to be properly addressed by a bachelor
thesis. In this respect, this work aims to give a fundamental understanding of what drives
(microcontroller) program size and runtime.

It seems that many companies replace their old architecture with 32-bit ARM. Maybe this is what |
too will choose in the end. However, | decided that a comparison between BASCOM-AVR on 8-bit
Atmel AVR ATmega and IDE ABC on brand XYZ 32-bit ARM wouldn’t be meaningful, as so many things
would be different that not many generalizations could be made. By choosing AVR ATxmega and
Atmel Studio IDE as the alternatives, real comparisons are possible.

Development time and execution time might be difficult to actually measure. For this reason,
development time might have to be a subjective "feeling" of the effort required and execution time
might have to be measured by counting microcontroller clock cycles for the instructions in a
disassembly of the compiled code. | chose to focus on compiled program size.

With the invention of smart phones, surf pads, and so on, it could be argued that many embedded
systems are now so complex and versatile that developing them requires an operating system, high-
level languages, generic drivers, and lots of abstraction. | don’t oppose to this view on a part of the
embedded market, but my designs (like many other microcontroller systems) are fairly simple one-
task devices, so | will only consider such designs in this thesis.

1.7 Terminology
| use “IDE” (Integrated Development Environment) in the sense of development ecosystem - not only
the GUI or front end.

Some of the terms | use in this thesis are partly my own:

e “Static” or “absolute” addressing: The address (typically to a peripheral IO register) is
hardcoded. This should not be confused with the C language attribute “static”.

e “Dynamic” addressing: | came to use this expression when analyzing the BASCOM-AVR
ATxmega code that translates a port number 0-7 to the corresponding peripheral module
base address. This address is then (inside the built-in commands) used in a call to a “structs
and pointers” driver routine.

e “Structs and pointers” (S&P): This refers to the new way of addressing peripherals that Atmel
introduced with the ATxmega uniform register layout. For each type of peripheral, a struct
with all the registers is defined. Its fields implicitly denote an offset or a displacement from
the start of the struct (= the base address). The driver is written so that it only exists in one
generic version. In the driver function call you include a pointer to the peripheral module’s
(register group’s) base address. The base address is typically placed in the Z pointer and the
sub-registers are accessed via LD (load) or LDD (load with displacement) instructions (and
ST/STD for storing). The difference between “dynamic” and S&P is that the former takes a
port number and the latter an address.

| use the terms “UART” and “USART” in the same sense. (USART = Universal Synchronous and
Asynchronous serial Receiver and Transmitter, while UART is only asynchronous.)

After the tests | renamed them, so that there would be a clear structure. This means that in some
places (e.g. code comments, paths names, and examples) the old name are still used, but | decided
that it doesn’t cause any significant confusion.

There are two ways of numbering the “cells” in an array; row-major and column-major. The usual
definition can be found here: (8) 7 When you think of an array like this:

|
[Al8]c|o]

the row-major representation in memory is ‘ ‘EE

and the column-major is ‘E m

This is a fixed part of the language you are developing in, but in a row-major language like C,
you can achieve column-major behavior by swapping row and column in your declaration:
When | use the term “column-major”, this is what | actually mean.

1.8 References

In this thesis | am using Zotero, Vancouver citation style. For the reader’s convenience, | generally
both provide the reference and a footnote with a URL (web hyperlink) to the document so that it
isn’t necessary to jump back and forth when reading.

7 http://en.wikipedia.org/wiki/Row-major_order

1.9 Other considerations

1.9.1 IDE company participation and previous connections
Both MCS Electronics (4) ® (the company behind the BASCOM-AVR IDE) and Atmel (9) ° were invited
to participate and/or comment on this thesis. | leave it to the reader to decide whether | am biased.

The owner of MCS, Mark Alberts, made two comments that can be found in appendix A.1. Prior to
this thesis, | already had a friendly professional relationship with Mark Alberts, having shared library
code with an application note for an SD memory card driver and moderating its user forum thread at
MCS’ web site.

Atmel sponsored “my” team in a robot project course last spring and very generously gave all
members an ARM development board and debugger afterwards. However, we had severe difficulties
with the initial delivery and nearly had to abandon Atmel. We were afterwards asked to provide
feedback on the software and shared a strong opinion on the usefulness of their driver library.

At the start of my thesis work, Atmel declined my request for a contact for this thesis (appendix A.1).
In February 2014 when my work was almost complete, | contacted Atmel again with an invitation to
read and comment on my work, but | did not receive a reply.

1.9.2 Environmental aspects / sustainable development
On a large scale, even small improvements in clock cycle count should amount to a significant
difference in total power consumption.

1.9.3 Gender, ethnic, or religious aspects
Not applicable. The areas of programming types and HW / IDE selection are orthogonal to questions
of discrimination based on gender, ethnic belonging, and religious beliefs.

® http://www.mcselec.com/
? http://www.atmel.com/

2 Method

What’s the best way to compare two IDEs or HW architectures? | fear that a feature table with
summation of weighted scores wouldn’t capture the real qualities that in my experience become
clear only after a period of actual use.

Considering that | also want to compare programming styles, | decided that the center of this thesis
should be the incremental code changes on each platform. By focusing on a specific test program and
going as deep into this topic as possible, | believe that | will implicitly also get a reasonably good
picture of the IDEs’ ease of use, qualities, and (part of) the two HW architectures.

| decided that the best place to start is the main program loop, which in this application is quite
strongly tied to the (serial port) communication with the PC. It controls the program flow, is relatively
application-dependent, well delimited, and also involves a specific hardware module (i.e. driver
development).

The BASCOM-AVR part is completed before the start of the Atmel Studio 6 part.

2.1 Method description

The method used in this thesis is a fairly controlled (dual) set of iterative and incremental
experiments. The area (main loop with serial port communication routines) is fixed, but the direction
for the incremental changes is determined during the actual testing. When- or wherever | find
something of interest, | investigate its cause and consequences, directly influencing the direction of
the rest of the testing. The two analysis chapters are separate logs of what | do and find.

This work could be seen as an initial scientific investigation, with a complete set of source code and
incremental analyses so that others could repeat and question the actual findings. Perhaps the
results could be used as a starting point when formulating a series of tests of all ATmega and
ATxmega peripherals or a bigger programming model analysis, but that’s for others to consider.

2.2 Test equipment and setup

The PC application sends a serial port sequence of binary bytes, starting with 254 followed by
message type byte, the actual data byte(s), and terminated by 255. The AVR responds to this with a
message of the same kind. The PC will always wait for the response before sending the next message.
The AVR will only initiate a conversation to send an error message (which is not part of this work).

The test application implements two messages:
e The PCsends [254, 243, 255] and receives [254, 242, 1, 2, 3, 255]

e The PCsends [254, |=243, ..., 255] and receives [254, 251, 255]

The AVR code should be written for an ATmega324A and an ATxmegal28A1 with conditional
compilation. The first high-level-only versions are based on a circular buffer that gets its data from
the RX interrupt routine for USART. The main program loop calls a sub-routine that polls this buffer
and extracts any received data and puts it into a separate array. When the entire message is
received, the appropriate response is sent. At the end, a protocol-bound implementation is
developed. It might have to be based on inline assembly.

2.2.1 Testbeds
| used the following microcontroller types:

e ATmegaXX4 (164/A/P/PA, 324/A/P/PA, 644/A/P/PA, and 1284/P)
o This family supports JTAG debugging.
e ATxmegaAl(U) (64A1/A1U and 128A1/A1U), where “U” indicates that it is a later (bug-fixed)
revision that includes a USB module. This USB module is not covered by this thesis.
o This family supports JTAG and PDI debugging.

Within each type, the main difference lies in the size of the various memories, where the number
states the program memory size (324 == 32 kB and 128 == 128 kB program flash EEPROM).

Figure 3: ATxmegal28A1-based board, with eight USARTs, of which two are used in the tests

2.2.1.1 PC application

The PC application is developed in MS Visual Studio 2010 C#.Net, using the SerialPort class. Just
getting this to work with static COM port number assignment is very simple. However, nowadays
people mostly use USB<->serial bridges. They tend to acquire a new port number each time you plug
them in to a different port. For this reason, | added the FTDI .dIl and wrapper class for USB bridge
identification and found a nice generic COM port listing class on the internet. With them the
application automatically connects to the right COM port number.

gt Forml I.':' =] éJ

254,243,255

254, 2421, 2,3, 255 = ‘

e

-
a5l Forml [= |ulEl |ﬂ

254 243 355

Test
254 251, 255

Figure 4: The two supported messages with response

(Enter the message in the upper textbox, click “Test” and the response is shown in the lower one.)

2.2.1.2 How to disassemble
Please see appendix A.3 for information about how to disassemble.

10

3 The Atmel AVR 8-bit microcontrollers

3.1 Introduction
The AVR microcontroller is an 8-bit modified Harvard load/store RISC architecture with a 2-stage 1-
wide pipeline, which means:

e RISC, Reduced Instruction Set Computing: By using instructions that each does a very small
and specialized task, the clock speed can be increased. This boils down to higher over-all
performance. The other (and older) philosophy is CISC, Complex ISC, which has instructions
that often do very intricate (series of) operations requiring several clock cycles. RISC also
often uses the “load/store architecture” that only operates on memory using specific
instructions, rather than as part of the aforementioned complex instructions. (10) *°

e Harvard architecture: It uses separate buses for program and data memory. (11) !

¢ Modified: It is possible to access the program memory area as read-only data memory (11)
(and also update the program memory using a so called boot-loader program).

e 8-bit: It uses data registers 8 data bits wide (but the program memory uses 16 bit or
sometimes 2*16 bit wide instructions).

e 2-stage pipeline: The first stage fetches the next instruction and the second stage executes
the current instruction. (12) *

e 1-wide: It does one operation at a time. (12)

® Microcontroller: A processor with most of the peripherals and memories on the chip.

* AVR: Believed to stand for “Alf-Egil and Vegard’s RISC” processor.

AVR originates in the 1992 graduation thesis written by the two Norwegian students Alf-Egil Bogen
and Vegard Wollan. In 1997 the AT90S1200 was launched as a microcontroller product by Atmel
Corporation. It was one of the first in the industry to use internal flash program memory. (13) **

The AT90S series evolved into two product lines with self-explanatory names, ATtiny and ATmega,
which a few years later were accompanied by the ATxmega, a major revision or even redesign. They
all use the same instruction set (although each model might not support every instruction). A 32-bit
AVR was launched in 2006 (14) ** and starting in 2008, Atmel is now licensing much of the 32-bit
ARM-based microcontrollers and microprocessors. (15) *° This thesis only treats the AVR 8-bit
Atmega and ATxmega, henceforth referred to as AVR, ATmega, or ATxmega.

The “AVR and AVR32 - Quick Reference Guide” (16) *° is slightly outdated (especially as it doesn’t
contain Atmel’s ARM offering), but it still provides a good overview of the AVR products. | could also
point to “Microprocessor (MPU) or Microcontroller (MCU)?” (17)," which is a marketing
presentation that gives a good background to what was considered important in 2013.

1% http://en.wikipedia.org/w/index.php?title=Reduced instruction set computing&oldid=594087688
" http://en.wikipedia.org/w/index.php?title=Harvard _architecture&oldid=585324105

2 http://www.atmel.se/Images/Atmel-8331-8-and-16-bit-AVR-Microcontroller-XMEGA-AU_Manual.pdf
B http://www.youtube.com/watch?v=HrydNwAxbcY

" http://en.wikipedia.org/w/index.php?title=AVR32&0ldid=587706001

*® http://en.wikipedia.org/w/index.php?title=AT91SAM&oldid=584613739

'® http://www.atmel.se/Images/doc4064.pdf

Y http://www.atmel.se/Images/MCU_vs MPU_Article.pdf

11

3.2 Architecture details

3.2.1 Registers

AVR has 32 general-purpose eight-bit working registers. The last six can be used as three pairs of 16-
bit registers, called X, Y, and Z, e.g. when addressing memory locations. All of these can do pre- or
post-incementation, while Y and Z also support positive 6-bit displacement, which is practical when
accessing arrays, SW stack, or sub-registers that control a peripheral. Z can be used to read or write
flash program and special device settings. The register with the higher number is the most significant.

16 bits equates to a 64 k bytes data memory or a 64 k words program memory addressable space.
(AVR program memory is made up of 16-bit instruction words, so 128 kB of program memory can be
addressed with 16 bits.) When accessing a location above this, you must use an additional register
for the >16 bits:

e RAMPX, RAMPY, or RAMPZ: for the X, Y, or Z register pairs >64k byte (kB) data memory.
® RAMPD: when the instruction includes a 16-bit constant to access >64kB data memory.
e EIND: to do jumps or calls to >64k word program memory.

The SP (Stack Pointer) is a special register pair that resets to the highest internal SRAM address and
automatically updates when you execute PUSH or POP instructions. It is also the place where the
return address for the CALL instructions is stored.

The RO+R1 register pair is also the destination for the MULxx multiplication instructions.

The SREG (Status REGister) contains bit-wise results from or input to arithmetic and logic operations
and the global interrupt on/off setting.

Some instructions only operate on the top half of the registers (R16-R31), typically the “immediate”
ones taking a constant, and yet some others only work with R16-R23.

The 16-bit ADIW and SBIW instructions add or subtract a constant to/from the register pairs
R24+R25, X, Y, and Z. As you will typically want to reserve X, Y, and Z for stack operations and use as
memory pointers, R24+R25 is left for other 16-bit purposes, for example a counter.

This sub-section is largely based on (12) *® and (18) *°.

| present the conventions for register use and calling in appendix A.5.

8 http://www.atmel.se/Images/Atmel-8331-8-and-16-bit-AVR-Microcontroller-XMEGA-AU_Manual.pdf
' http://en.wikipedia.org/w/index.php?title=Atmel AVR instruction set&oldid=571841646

12

3.2.2 ATmega324 data memory

32 Registers 0x0000 - Ox001F
64 1/0 Registers 0x0020 - 0x005F
160 Ext I/l Reg. 0x0060 - OXO0FF
Internal SRAM 0x0100 -
1024/2048/4096/16384 x 8) | Ox04FF/0Ox08FF/0x10FF/040FF

Table 2: Data Memory Map for ATmegal64A/324A/644A/1284 et al

e table above is based on ATmega omplete P
(The table ab is based on AT 164A/PA/324A/PA/644A/PA/1284/P C lete (19) *°, p21)

The data memory is actually a collection of different types of memory that often have two different

addressing modes:

The 32 general-purpose working registers. Apart from their register number (by which they
are directly accessible by most instructions), they are also mapped into the data memory
space at 0x0000 — Ox001F, accessible via instructions LD/LDS/LDD and ST/STS/STD.

The 64 lowest I/0 registers. They can be accessed with the “short” instructions IN and OUT
on |/O address space 0x00 — 0x3F. They are also mapped into the data memory space at
0x0020 — 0x005F, in which area they can be accessed by instructions LD/LDS/LDD and
ST/STS/STD. This is the reason why these particular 1/O registers are referred to with the
double notation 0x00 (0x0020).

The lower 32 of these 64 I/0 registers can also be bit-accessed on I/O address space 0x00 —
Ox1F using instructions SBI (Set Bit in 1/O register) or CBI (Clear Bit in I/O register) and the
“mini-branch instructions” SBIS (Skip if Bit in /O Register is Set) or SBIC (Skip if Bit in I/O
Register is Cleared).

In the ATmega324’s family, these 32 addresses are most importantly home to the physical
ports A — D, which makes it possible to do bit manipulations on all the ports. The device also
has three GPIO (General-purpose 1/0) registers that are particularly useful for status flags or
global variables. GPIORO is in I/O address space at Ox1E, while GPIOR1 and GPIOR2 are
outside of the bit-operable area.

The 160 extended I/O registers only reside in the data memory space at addresses 0x0060 —
Ox00FF, accessible by instructions LD/LDS/LDD and ST/STS/STD.

The internal SRAM starts at data memory space address 0x0100 and ends at a device-specific
address that is also the end of the data memory. It can only be used with LD/LDS/LDD and
ST/STS/STD instructions.

In ATmegal284, 32/100 of the peripheral registers can be accessed via IN/OUT, plus the digital 10 pin
registers. For more information, please see the datasheet, pp 554-557 (19)

20 http://www.atmel.se/Images/Atmel-8272-8-bit-AVR-microcontroller-ATmegal64A PA-324A PA-644A PA-

1284 P datasheet.pdf

13

3.2.3 ATxmegaAU data memory

Start/End

Address Data Memory
0x000000 | /0 Memory
(Up to 4 kB)
0x001000 EEPROM

(Up to 4 kB)

0x002000 | nternal SRAM

External
Memory
OxFFFFFF (0 to 16 MB)

Table 3: ATxmegaAU data memory map

(The table above is based on Atmel AVR XMEGA AU Manual rev F (12) %!, p23)

Currently, there are five ATxmega series, A through E, with certain differences in functionality and
intended area of use. The A series is divided into one or a few “sub”-series, e.g. A1, A3, and A4, each
implementing a subset of the full A series functionality, peripheral modules, and ports (and thereby
pin count). Finally, e.g. Al exists in two memory sizes, 64kB and 128kB. The “U” states that it has
built-in HW support for USB.

In the ATxmega, the 32 working registers are not mapped into the data memory space. Instead, it
starts with (up to 4 kB of) I/0 memory with only one address numbering. The first 64 locations can be
accessed with the IN and OUT instructions and the first 32 of these can be bit-manipulated:

e At Ox0000 — OxO00F there are 16 GPIO registers that should typically be used for global
variables and flags.

® At Ox0010 — Ox001F there are four sets of virtual ports. Each port can be mapped to one of
the 11 physical ports A — R (whichever are available in the specific device). A port set consists
of the sub-registers DIR (direction), OUT, IN, and INTFLAGS (interrupt settings), so they can
be used for easy interaction bit- or byte-wise with the outside world. (Not for communicating
with the built-in peripherals.)

After the 32 bit-operable registers, there are 32 more IN/OUT-operable registers for CPU, CLK,
SLEEP, and OSCillator. In ATxmegaA1lU, 4 out of the 61 peripheral register groups can be
accessed via IN/OUT, excluding the digital 10 pin registers. 4 out of the 11 10 ports can be
mapped to virtual ports that are covered by IN/OUT.

Then follow the rest of the 1/0 registers that are accessible by instructions LD/LDS/LDD and
ST/STS/STD.

2 http://www.atmel.se/Images/Atmel-8331-8-and-16-bit-AVR-Microcontroller-XMEGA-AU Manual.pdf

14

In ATxmega, the on-chip EEPROM can be accessed either in its own EEPROM address space or
mapped into the data memory space starting at 0x1000 and ending no later than Ox1FFFF (depending
on device-specific EEPROM size). In the data memory space, the EEPROM is only accessible by
instructions LD/LDS/LDD and ST/STS/STD.

At 0x2000 the internal SRAM (of device-specific size) starts, immediately followed by (optional)
external SRAM, both only accessible by instructions LD/LDS/LDD and ST/STS/STD.

3.3 HW design and programming considerations

Due to the AVR design based on the load/store architecture with 32 general-purpose working
registers, a great fraction of the instructions require only one clock cycle. In internet user forums |
remember seeing claims that the effective average CPI (Clock cycles Per Instruction) is about 1.5, but
| haven’t been able to find the source. However, the clock cycle counts in this thesis’ analyses roughly
confirm a CPI of this magnitude.

Another distinguishing feature of the AVR is its non-banked memory, which means that the entire
data memory space is linear and continuous (even though the RAMPx and EIND registers can be seen
as a way to achieve 64k banks). This makes memory pointer displacement easy and efficient.

These two things have programming, compilation, and performance consequences that | will soon
delve into. | have found one Atmel document that looks to architectural choices and two that
describe how they affect the optimum programming style:

e “The AVR Microcontroller and C Compiler Co-Design” (20) %
e “AVRO35: Efficient C Coding for 8-bit AVR microcontrollers” (21)
e “AVR4027: Tips and Tricks to Optimize Your C Code for 8-bit AVR Microcontrollers” (22) ***

Here | will summarize the first of these documents. The last two partly contain programming
conventions that | am actually treating in a separate section, but | include them in appendix A.4 as
the C code recommendations so heavily depend on the underlying hardware.

Please also see the “AVR Instruction Set (23) % document.

3.3.1 The AVR Microcontroller and C Compiler Co-Design

“The AVR microcontroller was developed with the C language in mind in order to make it possible to
construct a code efficient C compiler for AVR.” This was done in cooperation with compiler company
IAR Systems 27,

® By not using paged memory, the memory pointers can reach 64 displacement locations
instead of just 16.

* The orginal two 16-bit pointers were too few to support both SW stack and efficiently
copying from one memory location to another, so a third one, X, was added.

22 http://www.atmel.com/dyn/resources/prod documents/COMPILER.pdf
2 http://www.atmel.se/Images/doc1497.pdf
2 www.atmel.se/Images/doc8453.pdf
> www.atmel.se/Images/AVR4027.zip
%8 http://www.atmel.com/Images/doc0856.pdf
27 .
http://www.iar.com

2

15

e |t was decided that the AVR would benefit from both indirect addressing (separately loading
the address into e.g. XL and XH and then loading the content of this location into a working
register) and direct addressing (one instruction loads the content of a specified memory
location into a working register). Direct addressing results in fewer instruction words for 1-
byte variables, while indirect addressing is more efficient when loading a 4-byte long integer.

e Atmel also decided to propagate both carry and zero flags in certain instructions so that 16-
or 32-bit operations would be easier.

e Due to space constraints, there is no ADDI (16-bit constant addition without carry) but
instead a SUBI (16-bit constant subtraction without carry) and an SBCI (16-bit constant
subtraction with carry). Addition is accomplished as a subtraction by a negation of the actual
value.

¢ They also made room for a non-destructive CPI (ComParison with Immediate) and non-
destructive CPC (Compare with Carry). (20)

3.4 (Other) differences between ATmega and ATxmega

So far | have mostly discussed (some of) the common properties of the AVR family: CPU, working
register, instruction set, and data memory space (well...). This is because | expect that they will have
the greatest effect on the optimum programming style (for my test application). Please see the
device and family datasheets for more information:

“ATmegal64A/PA/324A/PA/644A/PA/1284/P Complete” (19)
“Atmel AVR XMEGA AU Manual” (12) *

“ATxmega64A1U/128A1U Complete” (24) *°

(And the Atmel documentation web site is a good place to find e.g. application notes. (25) *%)
There are also (great) differences between ATmega and ATxmega. In short: from a feature
perspective, ATxmega is vastly superior to the ATmega with the following additions:

e DMA controller

e Eventsystem

e AES and DES crypto engine

e High-speed DAC and ADC with higher resolution

® Lower power consumption

e 1.6V operation

e 32MHz maximum clock frequency (compared to 16 or 20MHz for ATmega)
® More advanced clock system and sleep modes

® More advanced physical ports

e Virtual port mapping of physical ports to the bit-operable I/0 address area

%% http://www.atmel.se/Images/Atmel-8272-8-bit-AVR-microcontroller-ATmegal64A PA-324A PA-644A PA-
1284 P_datasheet.pdf

% http://www.atmel.se/Images/Atmel-8331-8-and-16-bit-AVR-Microcontroller-XMEGA-AU_Manual.pdf

% http://www.atmel.com/Images/Atmel-8385-8-and-16-bit-AVR-Microcontroller-ATxmega64A1U-
ATxmegal28A1U datasheet.pdf

*! http://atmel.no/webdoc/atmel.docs/atmel.docs.3.application.note.html

16

® More GPIO registers in the bit-operable I/O address area

e Multilevel interrupt controller

e EBI, External Bus Interface, for external SRAM or SDRAM

* Often “more of everything” compared to ATmega peripherals

The above and more information can be found in these documents:

“AVR XMEGA” (26) *2

“Introducing a New Breed of Microcontrollers for 8/16-bit Applications” (27) *
“AVR1005: Getting started with XMEGA” (28) **

There’s also a new (alternative) addressing scheme with uniform placement of peripheral registers,
so that one common driver can be used with module base pointer and sub-register displacement.
This is such an important change, that it gets its own sub-section:

3.4.1 Alternative struct-based addressing mode

As the ATmega series grew with more families and the families were extended with additional
devices, the 1/0 register layout(s) became more and more cluttered. This meant that static
addressing was more or less necessary, which meant that sometimes the same code had to exist in as
many copies as the used number of each peripheral type. It also required more work from Atmel to
write and maintain the datasheets. Something had to be done.

Atmel’s solution to this was to create a limited number of series (named A — E) for their new
ATxmega AVR. All devices within a series share a common set of properties and features and thus
part of the datasheets could be maintained as one per series. The device-specific data remains in one
datasheet per device type, which is why ATmega has one datasheet and ATxmega two.

Atmel also took the opportunity to bring order to the I/O register layout. Central to ATxmega is the
“module”. | have failed to find an exact definition, but (29) > seems to call every separate function of
the device a module. | pragmatic view is that whatever needs to be controlled resides in an adjoined
set of registers that together constitute a module, exactly defined by a module type. Some functions
exist in more than one instance and each one is internally exactly like the other modules of the same
type. The instances are often(?) (always?) placed at an equal distance from the previous one. This
means that you can access a particular I/O register by:

1. Finding the base address of the first instance
2. Adding (a multiple of) the inter-module offset to find the base address of the instance
3. Based on the module type definition (struct), find the memory pointer displacement

% http://www.atmel.com/Images/doc7925.pdf
* http://www.atmel.com/Images/doc7926.pdf
** http://www.atmel.com/Images/doc8169.pdf
% Available from: http://www.atmel.com/Images/doc8075.pd

17

odule nstancels)

15 reglsters per lnstancs
Module Type
MODULED %%%
™ Register(s} j——| BitO
H |
A}
x Bit 7
RAGDULER ,L&\
™~ Registeris) 1 BitO
\
J \ %

Bit7

Figure 5: Module types, instances, registers, and bits

(The figure above is based on “AVR1000: Getting Started Writing C-code for XMEGA” (29), p2)

18

4 Presentation of the IDEs

4.1 BASCOM-AVR

BASCOM-AVR is an IDE developed by a small Dutch company called MCS Electronics. It is designed for
procedural programming in a Basic dialect similar to Visual Basic 6, henceforth referred to as VB. You
can also use inline assembly intermixed with your high-level code or you can define your own
assembly subroutines and functions. (A Basic subroutine is the same as a C void function.)

[l BASCOM-AVR IDE [2.0.7.7] - [CAUsers\Niclas\Documents\Atmel Mega\BASCOM\2\BTF2128b.bas] 111 e
Fw Fle Edit View Program Tools Options Window Help
*HEBE LD E. (] P V%% B-OE. /M@ 0 2, 3.
B8 prf2128b.bas |52
Sub - Label -
bregfile = "zmnlZB8aldef dat"” ' Conditional conpillation doss not yet support regfile
'S$regfile = "n3Z24Pidef dat"
"S$regfile = "nl284def dat”
$crystal = 5000000
$hvstack = 40
$svstack = 16
$framesize = 32
$baud = 15625
'Sreduceivr
Const Uc = 0 ' ATEmegab4All = 0, |ATnegald2dd = 1
#if Uc = 0 ATHEmegatdAl

Config O=c = Di=abled . Pllosc = Disabled . Extosc = Enabled . 32khzosc = Digabled . 32mhzosc = Disabled . Range
Config Sysclock = Extermal . Prescalea = 1 . Prescalebc = 1_1
Config Priority = Static . Vector = Application . Lo = Enabled . Med = Enabled . Hi = Enabled

' USART D1 (COM4) (USE port)
Config ConS = 15625 . Hode = 0 . Parity = Hone . Stopbits = 1 . Databits = §
Open "COHS:" For Binary As #1

Config Serialin3 = Buffered . Size = 20

Config PORTE. 2 Input

Config PORTE. 3 Qutput

' The header i= connected to FO (COM7)

' Bazcom only has Emega Serialin support for the first 4 UTART=s. =0 a custom ipterrupt handler must be developed
telseif Uc = 1 ' ATmegaidzd

' USE on TARTO

Figure 6: BASCOM-AVR developer view with a configuration code example

The concept of built-in commands is fundamental. They are hand-written assembly routines with the
necessary auxiliary code for handling parameters and return values. There are commands both for
configuration (like in the above screen dump) and subs/functions. The complete program is a
stichwork of these hand-optimized commands and the non-optimized VB application code that
“uses” and inter-connects them.

The company focused on functionality and ease of use, rather than ultimate performance (appendix
A.1.1), which means that it doesn’t have an optimizing compiler. There is support for most common
microcontroller peripheral types out of the box. In the following screen dumps from the online help
(30) *® you get a glimpse of extended UART configuration command options, some code samples, and
additional information. There’s currently around 220 entries in the language reference, which gives a
rough estimate of the number of built-in commands.

BASCOM-AVR has a simulator but no debugger. It outputs files that can easily be used for debugging
with Visual Studio 6.

| end this very short presentation with a reference to the “Products” web page for BASCOM-AVR.

Please look here for more details: (31) *’

% http://avrhelp.mcselec.com/index.html
% http://www.mcselec.com/index.php?option=com _content&task=view&id=14&Itemid=41

19

Action

Configures the UART of AVR chips that have an extended UART like the M2560.

Syntax

CONFIG COMx = baud , synchrone=0]| 1,parity=none|disabled|even|odd, bits=1|2,datab |61718|9,clockpol=0|1
Syntax Xmega
CONFIG COMx = baud , Mode=mode, Parity=parity, Stopbits: bit its=datab lockpol=Clockpol

Remarks

[comx [The COM port to configure. Value in range from 1-4
baud Baud rate to use.
lsynchrone 0 for asynchrone operation {default) and 1 for synchrone
operation.
Parity None, disabled, even or odd
Stopbits |The number of stop bits : 1 or 2
i IThe number of data bits : 4,5,7,8 or 9.
|Clockpol |Clock polarity. 0 or 1.

¢ @ avrhelp.meselec.com/indeshtml

$regfile = "m2560def.dat” ' specify the used micro

Scrystal = 28000000 ' used crystal frequency

$hwstack = 40 ! default use 32 for the hardware stack
$swstack = 40 ! default use 10 for the SW stack
$framesize = 40 ' default use 40 for the frame space

'The M128 has an extended UART.

‘when CO'NFIG COMx is not used, the defsult N,8,1 will be used

Config Coml = 19200 , Synchrone , Parity = None , Stopbits = 1 , Databits = & , Clockpol = 0
Config Com2 = 19200 , Synchrone , Parity = None , Stopbits = 1 , Databits = & , Clockpol = 0
Config Com3 = 19200 , Synchrone , Parity = None , Stopbits = 1 , Databits = & , Clockpol = 0
Config Com4 = 19200 , Synchrone , Parity = None , Stopbits = 1 , Databits = & , Clockpol = 0

'Open all UARTS

Open "com2:" For Binary As #1
Open "Com3:" For Binary As #2
Open "Comé:" For Binary As #3

Print "Hello"
Dim B As Byte
Dim Tel As Word

'first uart

Do
Iner Tel
Print Tel ; " test
Print #1 , Tel ; "
Print #2 , Tel : "
Print #3 , Tel ; "

serial port 1"

test serial port 2"
test serial port 3"
test serial port 4"

lﬂﬁxm—n\m E Firefox

K(-, @ authelp.mcselec.com/indexhtm!

UART
A Universal Asynchronous Receiver and Transmitter (UART) can be used to send and receive data between two devices. M
specific these devices can be PC-to-PC, PC-to-micro controller and micro controlier-to-micro controller. The UART
communicates using TTL voltages +5¥ and OV or LVTTL depending on your micro controllers VCC voltage.

If you wish to connect to a PC you need to use RS232 protocol specifications. This means that the hardware communicati
done with specific voltage levels. (+15V and -15V) This can be achieved by using a MAX232 level shifter.

The hardware is explained in this schematic:

¢FRONT UIEW)

Rl -
mx 202 Wy
DB-9 FE o< ff". CONTROLLER
TOPVEW T
. Tlowt .. ETXD
[Plan P L
3 1. Cié
ﬂ; l M

The DB-9 connector has 9 pins but you only need to use 3 of them. Notice that the drawing above shows the FRONT VIEW

Figure 7: BASCOM-AVR UART help file examples

20

4.1.1 User forum
The BASCOM-AVR user forum is located at the company’s web site www.mcselec.com. (32) 8 It is

active and a good place to get in touch with both employees and independent developers. Apart
from posting in the forum, users can also share working code and publish application notes that
typically present a complete design or a major piece of code.

4.1.2 Price
There is a free version (usually lagging some releases) that supports almost all features up to 4 kB of
compiled code. The full commercial version costs €89 at the company’s web site.

4.2 Atmel Studio 6

Atmel Studio 6.x is the company’s second release based on Microsoft Visual Studio. It has support
not only for all 8-bit AVRs, but also for AVR32 and Atmel’s ARM devices. At its heart is AVR-GCC (Gnu
Compiler Collection), which has a powerful optimizing compiler. | won’t go into AVR-GCC, but you
can find detailed information about it here: (33) * (34) °

Two other useful documents are:
The GCC (GNU Compiler Collection) manual on optimization options (35) **
The AVR-Libc manual (36) **

1581 semesusio ominrac TN

File Edit View VAssist{ ASF Project Build Debug Tools Window Help
e SH P4 a@B9 - -E-5 [P [Dbug -] [[Definesh ElCaol o A R

I CERMTF LSS mu| e b |eEESSEE T Ha [PrLi S E | 4y o % o ATumegal28Al § PDIen’
& main.c " = Iﬁ) ChUsers\Niclas\Documents\Atmel Studio\6.1\BTBEL\BTEBL\src\main.c '[?GD [
-lvoid Initialization() +)!
i
= #ifdef ATm

= #if CHANNELS == 1

// Enable power to USART®

PRR® = (1<<PRTWI)|{1<<PRTIM2)|(1<<PRTIM®)|{1<<PRUSARTL)|{1<<PRTIM1)|(1<<PRSPI)|{L1<<PRADC);
= #if AVRS_PART_IS_DEFINED(ATmegal284) || AVRS_PART_IS_DEFINED(ATmegal284P)

PRRL = @xFF; // Necessary for ATmegal2d4

#endif

#else

// Enable power to USART® and USART1

PRR® = (1<<PRTWI)|(1<<PRTIM2)|(1<<PRTIM®)|(Ll<<PRTIML)|(1<<PRSPI}|(1<<PRADC);
= #if AVRE_PART_IS_DEFINED(ATmegal284) || AVRS_PART_IS_DEFINED(ATmegal284P)

PRRL = @xFF; // Necessary for ATmegal2s4

#endif

#endif

)
=

// Mo prescaler
CLKPR = 1 << CLKPCE;
CLKPR = Bx@a;

// set the baud rate: 15625 at 6.8 MHz clock, asynchronous normal mode
/! According to datasheet: UBRR = fosc / 16 / 15625 - 1 = 23 = @x17 .
UBRRBH = UBRRH_VWAL;
UBRRBL = UBRRL_VAL; v
100% ~ < n] » i

Figure 8: Atmel Studio 6.1 developer view

In Atmel Studio you can develop in Assembly, C, and C++. For detailed information, please see the
Atmel Studio 6 web site: (6) **

% http://www.mcselec.com/index2.php?option=com forum&Itemid=59
39 ols
http://gcc.gnu.org/wiki/avr-gcc
“® http://www.avrfreaks.net/wiki/index.php/Documentation:AVR_GCC/AVR GCC Tool Collection
* http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.htmI#Optimize-Options
2 http://www.nongnu.org/avr-libc/user-manual/

21

You can simulate your program in either high-level or disassembly mode and you can also attach a
debugger to your development board / custom PCB and verify real program behavior:

#7681 Debugging) - AtmelStudio (Administraton) 1 A ... 3 TOESEEEEES S W . .. YR

File Edit View VAssistX ASF Project Build Debug Tools Window Help

P2 S % R0 - LB bk [ocbug [@[oeinesn | Bl i - - =5 [wi=lry=iresicye

PERMT A g Sinaleu b | Hex [@~ < = 2y & H fh | o o} W ATxmegal28A1 § Simulator o

Disassembly > [EJ: main.c Processor
e] Name Value
Program Counter 0x000001EL -
~ Viewing Options Stack Pointer 0:3FFC
--- C:\Users\Niclas\Documents\Atmel Studio\6.1\BTBB1\BTBB1\Debug/../src/main.c - [*Register 0x2048
Initialization(); ¥ Register 0:3FFF
= GO0Oe1El 2f.df RCALL PC-8x88D2 Relative call subroutine Z Register 0x0000
REieiXESErial(G),‘ L) = StatusRegister DD HETEAC0
e - e s ot s O £ycle Counter, (381 i
: Aok Pl sARRvE eRs s - _J| Frequency 1,000 MHz
Receiveserial(1); Stop Wateh .
88 81.e0 Load immediate 3
20 75.df Relative call subroutine t = Registers
if (SerialDataStatus[® R00 0x00
86.91.04.20 Load direct from data space o1 0300
Compare with immediate i i
Branch if equal R03]
RO4 000
.91.085.20
.30 CPI R24,@x02 i e
e BRHE PC-@x0B ko e
.co RIMP PC+0x0089 L L
SendPollPort(ph); RO8 0:00
RCALL PC-8x8823 Relative call subroutine RO9 0:00
break; R10 0x00
080081Fe T1.cT RIMP PC-@xBBE Relative jump - r1 000 -

. B Prope...
- x

Autos T
| Name Value Type +
@ CPU Register
@ System Registers Register

Memory 1

fQ:BBO%Bd c1 86 @8 Bb cl 90 90 @9 cl 9P @0 A7 UA
cl @@ 9@ @5 cl 8@ @6 @3 cl 00 90 @l cl 88 ee ff <o
@@ 0@ fd ce o @@ fb co 0@ @0 f9 co 80 80 f7 co 8o
@0 5 co 00 00 f3 co 00 00 f1 O 00 00 ef coO 00 00
ed c@ 8@ @8 eb c@ @0 80 =3 cP® 00 98 7 cO 8@ 8@ e5
cO 00 00 e3 cO 00 00 el co 00 @0 df cO 00 00 dd co
@0 @0 db c@ 90 00 d9 co o2 @2 d7 c@ @0 @0 d5 co 8o

E Me.. [Me.. 'EENL

i
=

3

SED S

o o

SRS 8 Locals B Watchl [Watch2

Ready
Figure 9: Atmel Studio 6.1 debugging

ASF (Atmel Software Foundation, formerly AVR SF) is a repository for standardized drivers and
example projects that demonstrate some Atmel Evaluation kit feature.

BTBEI - AtmelStudio (Administrator) - A T

File Edit View VAssist{ ASF Project Build Debug Tools Window Help
PRl G S He | % a9 - -5 B bW [Debug -|| # Definesh]| R BB
PEHE®mE @ 0 g S ENJJ|~>JJ >|£-ci‘;_5[;§ :t|Hex||3' &l =] ol (2 L ‘ i L ATxmegal28A1 ?Slmula‘i

I e e |
Device: ATxmegal28al Project: | BTBEBL -

Extensions Version

Available Modules Selected Modules

Extensions: | Atmel ASF131) v | Show Search fe W Generic board support (driver)

E System Clock Control (service)

! m GFX Monochreme - Spinner/Spin control widget (service) =
B GPIO - General purpose Input/Output (service)

m Huge Memory Interface (service)

B0 IOPORT - General purpose I/ service (service)

i m Sensors - Sensor Device Stack (service)

m USART - Serial interface (service)

i Sleep manager (service)

m 5PI - Serial Peripheral Interface Master (Commaon API) (service)

i m common.services.basic.spi_master.standard_spi (service)

m

[m commoen.services.basic.spi_master.usart_spi (service) -

Info Actions Details

Figure 10: ASF Wizard in Atmel Studio 6.1

? http://www.atmel.se/microsite/atmel studio6/

22

Atmel Software Framework

Main Page Related Pages Modules Namespaces Data Structures Files

Quickstart guide for Common service TWI

This is the quickstart guide for the Common service TWI, with step-by-step instructions on how to configure and use the driver
in a selection of use cases.

The use cases contain several code fragments. The code fragments in the steps for setup can be copied into a custom initialization
function, while the steps for usage can be copied into, e.g., the main application function.

Basic use case

In the most basic use case, the TWI module is configured for

Master operation

addressing one slave device of the bus at address 0x50
TWI clock of 50kHz

polled read/write handling

Setup steps

Example code

Add to your application C-file:

* woid twi_inic (void)

* {

o twi master options_t opt = {
o .zpeed = 50000,

o .chip = 0xE50

= }:

-

= twWwi master setup(&IWIMO, &opt):
&b

L3

Workflow

1. Ensure that board_init() has configured selected I/0s for TWI function.
2. Ensure that conf_twim.h is present for the driver.
o Note

This file is only for the driver and should not be included by the user.

3. Define and initialize config structs for TWI module in your TWI initialization function:

© * twi_master_options _t opt = {
. .speed = 50000,
i~ .chip = 0O=x50
* 1

o field speed =sets the baudrate of the TWI bus

o field chip sets the address of the slave device you want to communicate with
4, Call twi_master_setup and optionally check its return code

2 Note

The config structs can be reused for other TWI modules after this step. Simply reconfigure and write to
others modules.

Usage steps

Example code : Writing to a slave device

Use in application C-file:

* const uintc8 t tesc pacttern[] = {0x55, 0xAS5, OxS5S4,0x77,0x99};

=

* twi package t packet write = {

* .addr - = EEFRCM MEM ADDE, S/ TWI =lave memory address data

* .addr length = sizeof (uintlé t), S/ IWI =lave memory address data size
d .chip = EEPROM BUS ADDR, // TWI slave bus address

* .buffer = (woid ¥)test pattern, // transfer data source buffer

o .length = sizeof:test_ﬁattern} // transfer data size (bytes)

L3

}:

Figure 11: ASF online documentation example (quickstart guide)

23

For more information, please see the following two documents:
“AVR4029: Atmel Software Framework - Getting Started” (37) *
“AVR4030: AVR Software Framework - Reference Manual” (38) *

4.2.1 History: AVR Studio 4 & 5, WinAVR, and Eclipse
Please see appendix A.5.3 for information about Atmel Studio 6’s history that might shed some light

on its current state.

4.2.2 User forum
Atmel’s main user forum for their AVR offering is www.avrfreaks.net. (39) *° It is active and a mix of

independent developers and a number of more or less official employees. Users can also create

“projects” that typically contain a working application or a driver.

4.2.3 Price
AVR Studio 4 & 5 and Atmel Studio 6 are free for registered users.

4.2.4 (Inline) assembly documentation
I’'m just including these documents here for future reference:

e “AVR Assembler User Guide” (40) ¥

e “Atmel AT1886: Mixing Assembly and C with AVRGCC” (41) *®*°

e “AVR000: Register and Bit-Name Definitions for the 8-bit AVR Microcontroller” (42) *°
e “AVR001: Conditional Assembly and portability macros” (43) >

* http://www.atmel.com/Images/Atmel-8431-8-and32-bit-Microcontrollers-AVR4029-Atmel-Software-
Framework-User-Guide Application-Note.pdf

** http://www.atmel.com/Images/doc8432.pdf

* http://www.avrfreaks.net/

* www.atmel.com/images/doc1022.pdf

*® http://www.atmel.se/Images/doc42055.pdf

* http://www.atmel.se/Images/AT1886.zip

*% http://www.atmel.com/Images/doc0931.pdf

*! http://www.atmel.com/Images/doc2550.pdf

24

5 BASCOM-AVR analysis

| started with a previously developed piece of BASCOM-AVR VB code used for serial communication

between a PC monitoring application and an AVR microcontroller. | first did most of the development

on the ATmega and then added the ATxmega with conditional compilation.

5.1 Serial communication analysis test log

5.1.1 VB high-level code implementations
Please note: The original disassemblies were made on versions with "Config Com1 = 15625..." and

without "Config Portd.0"

In this section, all code sizes are in bytes.

"Input and Config Portd.1 = Output"”. The comments are on ATmega324A.

Atmega | ATxmega
Step 324A 128A1 Action Comment
Local variable Uartsendbyte in Sendpollport
sub and Senderror sub.
Printbin command used for each USART
BAla 1006 | 1720 sending
Simply by using a global variable instead of a
local one, we save 50 bytes of compiled code
(5%). See disassembly
BA2_324_dis_.dump_b.txt, ReceiveSerial sub,
for the operations concerning creating three
local variables on the frame and pointers to
Global variable Uartsendbyte. them on the software stack. (And, at the end
Printbin command used for each USART of the sub, the frame and software stack
BA1lb 956 | 1670 sending pointers must be restored.)
Changed
Config Com1 = 15625, Synchrone =0,
Parity = None, Stopbits = 1, Databits =8,
Clockpol =0
to
Config Com1 = Dummy, Synchrone =0,
Parity = None , Stopbits = 1, Databits =8,
Clockpol = 0. Assumingly this change removes the duplicate
BAlc 938 | 1670 Global variable Uartsendbyte. mentioned further down in BA2.
Moving the Printbin commands used for each
Created gosub Prbin for Printbin command. | byte to a gosub with a common Printbin
BA2 896 | 1596 Global variable Uartsendbyte. command saves us another 42 bytes.

Figure 12: BASCOM-AVR iterations 1-2

Before we continue, let's take a look at the BA2 ATmega 324A disassembly:

The actual program starts at 0x7C (after the interrupt vector). By default, an initialization
phase is run:
It sets the stack pointer to the end of RAM.
Register Y (pair R28 & R29) is used as the software stack pointer.
Pair R4 & R5 is used as the frame pointer.
Register MCUSR (reset flags) is cleared except for WDRF (watchdog refresh).
Watchdog is disabled.
The entire internal SRAM is cleared (zeroed). This means that all global variables are

automatically initialized to 0, so my current sub Initialization is unnecessary.

This initialization can be omitted by using SNOINIT at the beginning of the .bas file.

25

Then follow the setup of USARTO, clearing of special register R6, and enabling of RX0 interrupt. For
some reason the USARTO setup is done twice. According to the datasheet (p180) (19) %, this
shouldn't be necessary. (This turned out to be a programmer mistake, partly due to incomplete

documentation. See comment on BAlc above.)

Apart from the clearing of the global variables in sub Initialization, | was surprised to see that the

compiler clears R24 for each and every variable. The same can be seen at the beginning of the
Receiveserial sub. A similar case is 0x17C & Ox17E vs. 0x182 & 0x184.

Another peculiarity is that the compiler doesn't check if the jump destination is another jump (e.g. in

nested if statements). See the main program loop and the Receiveserial sub.

The routines at 0x30A to 0x30E and 0x31C to 0x324 are not used. They are probably part of
frequently used code that's included in one standardized package for simplicity. I'll come back to
them at the end of the BASCOM-AVR analysis and subtract their size from the final comparison.

It is worth noticing that turning optimization on produces no code size difference in the BA2 code. It's

still 896 bytes. | didn't disassemble to see if there are code changes.

Let’s try using array-based sending instead of byte-wise sending:

Atmega | ATXmega
Step 324A 128A1 Action Comment
At first | couldn't get this to work, neither
using Serialoutcount nor a fixed value (6). |
often got the correct response, but
sometimes several bytes with the value 0. The
correct syntax according to documentation is
Changed from global Uartsendbyte to global | with “; Serialcount”, but that would
Serialoutdata(20) array and Serialoutcount. | sometimes send additional bytes.
Subs Sendpollport and Senderror fill this As the saving with this version would be only
array, update the counter, and finally make | 6 bytes (a total of 890) with a 20 + 1 byte
one call to Prbin. increase in RAM, | didn't look closer into this
Now the Prbin gosub contains the following | until later:
command:
Printbin #1 , Serialoutdata(1), By changing to “, Serialoutcount” it seems to
BA3 880 | 1580 Serialoutcount work properly and the size becomes 880.

Figure 13: BASCOM-AVR iteration 3

As mentioned in the comment, | didn’t continue building on this branch as the RAM increase
surpasses the program code saving.

>2 http://www.atmel.se/Images/Atmel-8272-8-bit-AVR-microcontroller-ATmegal64A PA-324A PA-644A PA-

1284 P datasheet.pdf

26

| next investigated different uses of global and local variables and (byref) parameters:

Atmega | ATXmega
Step 324A 128A1 Action Comment
BAZ2 is used as the basis for BA4.
Comment out the initialization of global
BA4a 878 variables to 0.
(10 bytes saved by "If Ischarwaiting(#1) = 1
In sub Receiveserial, omit local Serialwaiting | Then". 6 bytes saved by removing local byte
BA4b 862 and use "If Ischarwaiting(#1) = 1 Then". Serialwaiting.)
In sub Receiveserial, break out
"Serialdata(receivecounter) = Serialbyte"
and place it in new sub with byref
BA4c 868 parameter.
Convert sub Receiveserial's local Serialbyte
to global Serialbyte and remove the byref
BA4d 836 parameter.
No change as a parameterless sub is in fact a
BA4de 836 Convert sub Insertserialdata to a gosub. gosub.
Convert sub Receiveserial's local Continue
BA4f 792 | 1492 to global Continue. This is the final BA4 version.
We just saw that a local byte requires 6 bytes
of program code, so the "fixed cost" of using
the first local byte is 830 - 792 - 6 = 32 bytes.
As we'll see from the disassembly of BAS, 22
of these saved bytes come from the two
sections that make room on the frame for
Added a local Test byte to sub Receiveserial. | local variables, of which 10 refer to unused
BA4g 830 This variable isn't used. code.

Figure 14: BASCOM-AVR iteration 4

We now have a figure for the cost of using local variables, both in terms of an offset and a variable

“fee” for each one. If you want to optimize your BASCOM-AVR development, you should only use

parameters and locals when there is a good reason to do so. This is quite contrary to the general

“rule” of using no global variables at all unless absolutely necessary. I'll return to this later in this

section.

To proceed, we need to look at improving the structure of the program itself:

Step

Atmega
324A

ATXmega
128A1

Action

Comment

BA5a

754

Changed all subs to gosubs.

Revised the main loop and gosub
Receiveserial.

No longer keep the program looping inside
gosub Receiveserial after start token until
end token.

BASb

748

1444

Removed global Continue.

Removed global Receivedata.

Renamed global Serialdataready to
Serialdatastatus (value 1).

Removed global Serialcommandfound. Its
meaning incorporated in Serialdatastatus
(value 2).

Figure 15: BASCOM-AVR iteration 5

At this point, | assumed that BA5b 748 is the furthest | could improve this code without resorting to

even more exotic programming. (It turned out | was very wrong.)

So far | had "only" replaced a while loop with a goto and used global variable aliasing to mimic local

27

variable use at global variable cost. As we saw earlier, the assembly implementation of nested if
clauses end with jumps to the outer if clause's ending jump and so on. This doesn't lead to an
increase in compiled code, but you lose a few clock cycles. This should be taken care of by the
compiler, but it is possible to replace the if-else-end if and Select case-case-case else-end select with
gotos to labels, but | won't do it in VB code for fear of cluttering up the code completely.

Let's sum up:

The interrupt vector takes 124 bytes compiled code. For simplicity's sake, let's say that the default
initialization (except USART setup) takes another 58 bytes. In other words, the application-specific
code starts at 0xB6 (182 dec). The initial (worst) design required 1006 bytes, netting at 824 bytes
application code. BA5b 748 has a net application size of 566 bytes. This is a reduction of (824 - 566) /
824 =31%.

Now I'll see how much more | can improve this on the assembler level.
5.1.2 Looking for inline assembly improvements to standard BASCOM-AVR funtionality

5.1.2.1 Receiveserial gosub

As mentioned before, nested if clauses result in jump to jump to destination rather than jump to
destination. Three jumps could be modified so they go directly to destination, but this is hardly worth
the conversion into inline assembler. The only real reason to do this would be if it would enable us to
realize a potential saving in Insertserialdata gosub.

5.1.2.2 Insertserialdata gosub

Change to non-autoincrementing (AC 90). This enables removal of the next operation.
0000019C AD 90 1d rl0, X+ R10 = global Receivecounter, X post-increment

Remove this: 00000122 Bl EO 1di r27, 0x01 ;1

So long as the entire array SERIALDATA resides within the same RAM address LSB (Least Significant
Byte), this RAM address MSB operation is unnecessary.

000001A6 BB 1D adc r27, ril

Total potential saving: two 1-word operations = 4 bytes. Is it possible to realize this by using inline
assembler? Yes, if we can be sure that R24, X, R10, and R11 can be used freely without pushing and
popping them on the stack.

The Bascom register convention >> doesn't mention any of these, so we should be safe. (Please see
appendix A.5.1):

Just looking at the compiled code, it seems like Bascom is generally only using / tying up the "other
registers" inside Bascom commands.

>* Look up ”Mixing ASM and BASIC” at http://avrhelp.mcselec.com/index.html

28

Two examples from the BA2 disassembly's Receiveserial:

144: 81e0 Idi r24, 0x01 ;1 Local Serialbyte on frame

146: 0e949301 call 0x326 ; 0x326

??14a: 81e0 Idi r24, 0x01 ;1 Local Serialwaiting on frame

14c: 0e949301 «call 0x326 ; 0x326 .

??150: 81 e0 Idi r24, 0x01 ;1 Local Continue on frame

152: 0e949301 call 0x326 ; 0x326

17c: aa 81 Idd r26, Y+2 ; 0x02 X points to local Serialwaiting

17e: bb 81 Idd r27, Y+3 ; 0x03

180: 8c 93 st X, r24 Local Serialwaiting = R24 (return from ISCHARWAITING)
??182: aa 81 Idd r26, Y+2 ; 0x02 X points (again) to local Serialwaiting
??184: bb 81 Idd r27,Y+3 ; 0x03

186: 0c91 Id rle, X R16 = local Serialwaiting

Similarly, R10 and R11 are only used in the Insertserialdata gosub, so it would seem safe, but how
can we know that this is true?

Please see appendix A.5.1 for user forum postings on this topic. Apparently, BASCOM-AVR could be
seen as a stitch-work of handwritten assembly code blocks (i.e. the commands) interconnected with
compiled VB statements. As far as you stay away from the reserved registers, you don’t have to take
any other precautions when writing inline assembly. It’s only in interrupt routines that you must
remember to save SREG and any used registers to stack. The downside is that the interconnections
are completely non-optimized (e.g. the repeated assignment of the same value to the same register
and the jumps to jumps). It shall be interesting to compare the BASCOM-AVR compiled code to the
one generated by Atmel Studio.

”Mixing ASM and BASIC” in the online help: (30) >* contains instructions on how you write inline
assembly and creates custom subroutines and functions. You can copy from the assembly versions of
the built-in commands in the LIB installation folder.

5.1.2.3 Assembly improvements to the USART send routines

The ATmega324A datasheet code example uses sbis to check if the USART data register is ready to be
written to.

USART_Transmit:

sbis UCSRnA,UDREN

rimp USART_Transmit

However, as sbis can only operate on the lowest Ox1F (32) registers, this is actually a typo. In other
words, the BASCOM code is optimal:
USART_Transmit:

Ids ro, OxCO ; UCSROA
sbrs ro, 5
rimp -8 ; USART_Transmit:

If we want to keep the current USART send functionality, there are no possible improvements to the
BASCOM commands. If we are prepared to alter the functionality, we could write the entire USART
send code as custom inline assembly. This will be done in versions BA7 and BAS, but first another
high-level language improvement:

** http://avrhelp.mcselec.com/index.html

29

5.1.3 Sendpollport and Senderror gosubs, Prbin command
| thought that the Printbin command doesn't support an absolute parameter value, as this isn't

mentioned in the documentation. (Only variable-based parameters are covered.) However, as |

thought that Sendpollport, Senderror, and Prbin would be great candidates for custom assembly, | on

a whim decided to try using Printbin with an absolute value. Judging by the disassembly, it looks like

this works, which brings us to BA6:

Step

Atmega
324A

ATXmega
128A1

Action

Comment

BA6a

730

1444

Remove Prbin gosub.

Change Sendpollport and Senderror like

this:

Sendpollport:
Printbin #1 , 254
Printbin #1, 242
Uartsendbyte = 1
Printbin #1 , Uartsendbyte
Uartsendbyte = 2
Printbin #1 , Uartsendbyte
Uartsendbyte = 3
Printbin #1 , Uartsendbyte
Printbin #1 , 255

Return

Senderror:
Printbin #1 , 254
Printbin #1 , 251
Printbin #1 , 255

Return

(Net use 730 - 182 = 548). Saving: (824 - 548) /
824 =33.5%.

Step

Atmega
324A

ATXmega
128A1

Action

Comment

BA6b

724

1444

Bring Prbin back in:

Sendpollport:
Printbin #1 , 254
Printbin #1, 242
Uartsendbyte = 1
Gosub Prbin
Uartsendbyte = 2
Gosub Prbin
Uartsendbyte = 3
Gosub Prbin
Printbin #1 , 255

Return

Senderror:
Printbin #1 , 254
Printbin #1, 251
Printbin #1 , 255

Return

Prbin:
Printbin #1 , Uartsendbyte
Return

(Net use 724 - 182 = 542). Saving: (824 - 542) /
824 =34.2%.

Figure 16: BASCOM-AVR iteration 6

Note that the ATxmega code remains 1444 while the ATmega code shrinks from 748 to 724. It seems

that the implementations differ.

30

5.1.4 Custom USART inline assembly send functionality

Atmega | ATXmega
Step 324A 128A1 Action Comment

Send data one byte at a time, either from a
global byte variable or from r24.

In the odd event that array data should be
sent, it should use additional inline
assembly like so:

LOADADR Serialdata0, X 'Load start
address of Serialdata0 array into register
pair X

Id r24, X+ ' Load the value of this
address into r24 and post-increment X
BA7 688 | 1364 rcall SenduartOb 'Send the byte in r24

Figure 17: BASCOM-AVR iteration 7

For some reason, we save 36 bytes on ATmega324A but 80 bytes on ATmegal28A1. Could this be
because the use of hardcoded registers in the custom assembly code avoids using lots of address
calculations necessary for the new ATxmega addressing scheme?

5.1.5 Custom USART inline assembly receive functionality

Serial communication is driven from the PC, in the form of request-response. For this reason, there
should never be more than one message in the serial buffer at any one time. This means that the
serial buffer doesn't have to be circular and that there is no need for copying out the message to a
separate array.

BASCOM-AVR’s circular buffer error handling in the interrupt routine only sets r6 bit 2 on error, after
which it silently discards the overflowing byte and leaves the interrupt routine. This doesn't seem to
be documented, so it's only after disassembly and additional r6.2 handling in the main loop that
"buffer full" error could be handled.

Atmega | ATXmega
Step 324A 128A1 Action Comment

Use status flag SerialbufferOstatus to
indicate "message being processed". In case
a new message comes in while this is set,
the interrupt routine calls Senderror and

BAS8a 484 | 1080 then resets.
No error handling. (Just to compare the
BA8b 464 sizes.) 100% stable, but error handling is nice. ;-)

Figure 18: BASCOM-AVR iteration 8

31

5.2 BASCOM-AVR summary #1

ATxmega | ATxmega
ATmega | 128A1 128A1
Step 324A v2.0.7.6 |v2.0.7.7 | Action Comment

BAla 1006 | 1720 1676 Worst VB-only implementation

Best VB-only implementation with the use
of global variable aliasing to mimic local

variable, goto-based loop, and (Net use 724 - 182 = 542). Saving:
BA6b 724 | 1448 1410 undocumented Ischarwaiting syntax. (824 - 542) / 824 = 34.2%.

BA6b with custom inline assembly send (Net use 688 - 182 = 506). Saving:
BA7 688 | 1364 1330 routine. (824 - 506) / 824 = 38.6%

(Net use 484 - 182 = 302). Saving:
(824 -302) /824 =63.3%

BA7 with custom protocol-bound inline Or: (542 - 302) / 542 = 44,3%
assembly receive routine, including error | compared to best VB-only version
BA8a 484 | 1080 1030 handling. BAG6b.

Figure 19: BASCOM-AVR iteration summary #1

For ATmega324A, | was able to reduce the actual program code (excluding interrupt vector and
default initialization) by 34% just by improving the VB code. As mentioned, | am using a few tricks
that might be frowned upon, but even without these there’s significant room for improvement
without resorting to inline assembly.

On top of this, another 44% reduction in code size was possible by replacing BASCOM commands and
“ordinary” VB serial handling routines by custom inline assembly send and procotol-bound receive
routines. Let’s look at the pros and cons:

Pros:

¢ A whopping reduction in size (a total of 63%). | didn’t count the decrease in clock cycles, but
since the size reduction doesn’t come from removing loop unrolling or other techniques that
favor speed over size, it is most likely that it also has a significant impact on processing time.
e Full error handling.

Cons:

e |t (especially the receive handling) is now application-specific and protocol-bound. The
tokens for message start (254) and end (255) are central to the receive interrupt routine.
® |t took several hours (somewhere between 8 and 16) to implement.

Much of the assembly development time was general platform and architecture learning, that only
has to be done once.

Please note that the serial handling is probably a special case. Judging by the disassembly of the
BASCOM-AVR commands, they are well written with respect to the fact that they are general-
purpose. This big reduction was only possible by making this functionality very strongly tied to this
protocol. It is not very likely that | could repeat this in (many) other parts of the functionality.

It is also worth noticing that we can use almost the same code for ATmega324A and ATxmegal28Al.
Apart from the need to change register names, the only real difference is in clock setup and interrupt

32

enabling. That said, | am surprised to see that the ATxmega uses so much more program code than

the ATmega:
Architecture Interrupt vector | Total code excl IV
BAla BA6b |BA7 BA8a
ATmega324A 124 882 600 564 360
ATxmegal28A1 v2.0.7.6 ~512 1208 936 852 568
Difference, ATx bigger by ~388B| 326B| 336B| 288B| 208B
Difference, ATx bigger by 37.0%| 56.0%| 51.0%| 57.8%
ATxmegal28A1v2.0.7.7 ~512 1164 898 818 518
Difference, ATx bigger by ~388B| 282B| 298B| 254B| 1588B
Difference, ATx bigger by 32.0%| 50.0%| 45.0%| 43.9%

Figure 20: BASCOM-AVR code size differences

(The v2.0.7.7 data will be explained later.)

| hadn’t expected that the ATxmega would require so much more code to do exactly the same thing.
It’s not that | had reason to believe otherwise, | just think that not very many people have looked
upon it like this. Atmel Sweden's tech support Marcus Woxulv said (very generally) that “developers
demand bigger program flash”(44). This could be one reason. Even with all exotic code maneuvers,
the smallest ATxmega is still bigger than the biggest ATmega implementation.

At this point, | had only tested and disassembled the ATmega324A code. Part of the ATxmegal28A1
code consists of default initialization, which should rather be seen as part of the “offset” than the
dynamic code. The question was if the actual ATxmega program code is also bigger than the ATmega
counterpart and if so: Why?

| disassembled the ATxmega version BA6b and looked at the reasons for this difference. | knew
beforehand that ATxmega’s larger register space requires a greater fraction of LDS/STS operations. |
also knew that ATxmega’s new device addressing scheme with an individual offset into identical
register structures makes it possible to use the same code block (together with the offset) to service
more than one hardware device. | assumed that the address calculations and operations are code-
intensive, but | had to disassemble and see.

33

5.3 Why is the ATxmega code so much bigger?

5.3.1 Initialization
The ATmega BA6b disassembly shows that the initialization takes 50 words.

The BASCOM ATxmega initialization takes 78 plus a call to shared code for USART register start
calculation and register writing at 19 words = 97 words. Part of this is a few extra words for the more
complex ATxmega system clock, but much of it refers to dynamic addressing:

Please see appendix A.6.1 for the ATxmega BASCOM-AVR v2.0.7.6 compiled code for USART setup.
Total code size for one port: 32 words.

® |nitialization 13 words (one set per serial port)

e USART setup 11 words (one set if serial ports are used)

e USART address calculation 8 words (one set if serial ports are used, shared with USART
writing routine as shown in the next section)

This is surprising. It’s a lot of operations just to write to five registers. In appendix A.6.2 you can see
how it scales. That code must be added if you want to set up a second serial port identical to the first
one. It adds 8 words, so the total cost is 13 + 8 + 11 + 8 = 40 words. If you want to set the second port
differently, the additional cost is up to 13 (instead of 8) words.

Let’s write our own USART setup with exactly the same functionality (appendix A.6.3). The total code
size is 13 words, one set per serial port.

How does it scale (appendix A.6.4)? The total cost for setting up two serial ports: 7 * 2 +9 =25
words.

We end up with the following list:

* Dynamic addressing one port: 32 words (of which 24 are setup-specific)
¢ Dynamic addressing two identical ports: 32 + 8 = 40 words

¢ Dynamic addressing two different ports: 32 + 13 = 45 words

e Static addressing one port: 13 words

e Static addressing two identical ports: 7 * 2 + 9 = 25 words

e Static addressing two different ports: 13 * 2 = 26 words

This is even more surprising. Dynamic addressing starts off worse and scales the same or slightly
worse than static addressing. Remember that this is just the code size. The performance loss is
significant, as will be seen in a while.

Let’s continue with the USART sending on one port. Appendix A.6.5 contains the ATmega original
disassembly; Total words: 26.

Appendix A.6.6 holds the ATxmega original disassembly; Total words: 46.

Both the ATmega and the ATxmega codes only operate on two physical registers (UCSROA & UDRO /
USARTE1_STATUS & USARTE1_DATA). The main reason why the ATxmega code is bigger is because it
uses dynamic addressing. When using only one serial port, this causes roughly a doubling of the code

size.

34

Here | must mention that | chose to analyze USART sending for its simplicity. At this point, | didn’t
consider the fact that when sending (multiple bytes of) serial port data, most of the processing time
will be spent busy-waiting for the previous byte to leave the output buffer, which means that the
clock cycle count reduction will result in a very tiny runtime improvement. However, reading data
from the instance’s circular buffer (using commands “Ischarwaiting(#1)” and “Inputbin #1,
Serialbyte”) will not involve busy-waiting, so it is most likely that the (assumed) decrease in that code
size would show a similar significant runtime decrease, although I didn’t have time to analyze that.
Generally speaking, so long as the application doesn’t have to busy-wait for a HW peripheral, the
code size reduction should be accompanied by a runtime improvement by migrating from dynamic to
static addressing. In that sense, the figures should still be a good illustration of the behavior in
situations where the clock cycle count reduction actually leads to a performance increase.

Clarification 1: Clock cycle count and busy-waiting (above)

Let’s scale to two serial ports sending one constant and one variable through two different ports. The
one-port code is the actual BASCOM-compiled one, but in order to make it more fair, | have made
small adjustments. Please see appendix A.6.7 for the modified ATmega code for two serial ports. Its
total size is 47 words.

5.3.2 Modified ATxmega for two serial ports

BASCOM-AVR is slightly less efficient than the code below, as can be seen in the BA6b disassembly
(appendix B). | moved the ST -Y,R23 operation that puts R23 on the stack from address 1B3 to label
___USART b1, so that it will only be included once. This was done in order to make it fairer for the
ATxmega, i.e. so that no part of the difference between static and dynamic addressing could be
explained by inefficient implementation. (This is only relevant for static addressing and hence only
occurs for ATxmega in the version of BASCOM-AVR | was analyzing.)

Please see appendix A.6.8 for the code that requires 55 words. Each new serial port adds 10 words.
All of these 10 are “variable”, in the sense that they “cost” this much for each “use”.

5.3.3 Modified ATmega for three serial ports
This code can be found in appendix A.6.9, amounting to 27 + 9 + 3 * 10 = 66 words. Each new serial
port adds 9 + 10 = 19 words. Of these, 10 are “variable” with actual “use” in the VB code.

So, with my sample code, at three serial ports the two addressing modes are just about the same
code size. (ATmega at 66 and ATxmega at 65.) Based on the above code modifications, the following
table and graph emerge:

Code size, words (1 word = 2 bytes):

serial ports o 1| 2| 3| 4| 5 6| 7| 8
Dynamic addressing |28 |46 |55(65|75| 85| 95|105|115
Static addressing 122647 |66|85|104|123|142|161
Actual/Modified MIAMIM|MM M |M |M

Table 4: Code size extrapolation (Actual = data from real disassembly, Modified = data from original disassembly re-
written for more ports and (where specified) minimal code size. See 5.3.2.)

35

180
160 , 161
140 142
/

20 123 115
100 104 95 10 e Dynamic addressing

80 85 85

60 6 = Static addressing

40 / 4 47

28/ %6
04
0 ' ! ' ! ! T T T 1
0 1 2 3 4 5 6 7 8

Figure 21: Serial port scaling

Just looking at these, it seems like the dynamic addressing “wins” after 3 serial ports. By using
dynamic addressing, we reduce the code size at eight serial ports by (161 - 115) / 161 = 28.6%.

However, it’s not just the program code size that we’re interested in. We also want to see the
performance consequences. Let’s do a small cycle count on a part of both of the modified two-port
samples (but please note Clarification 1):

Printbin #1, 254 - dynamic addressing, best case:
1+14342+1+142+ 141+ 142+ 14 1+442+1+2+2+1+2+2+4=38 cycles.

Printbin #1, 254 - static addressing, 1* port used, best case:
1+143+1+1+2+2+2+4=17 cycles. (Dynamic addressing requires 38 / 17 = 124% more clock cycles.)

Printbin #1, 254 - static addressing, g port used:
1+1+3+41+2+14+2+142+1+2+142+1+2+1+42+2+2+2+4=36 cycles.

With static addressing and 8 ports, the average clock cycle count would be (17 + 36) / 2 = 26.5.
(Dynamic addressing requires 38 / 26.5 = 36% more clock cycles.)

With static addressing and 3 ports, the average clock cycle count would be (17 + 23) / 2 = 20.
(Dynamic addressing requires 38 / 20 = 90% more clock cycles.)

In this example, dynamic addressing leads to a remarkable increase in the number of clock cycles for
exactly the same functionality. This is largely “variable” with actual “use” (meaning the number of
times the VB commands are used in the program). It turns out that some of this is due to the
BASCOM-AVR implementation. Please see 5.3.4 for an improved version.

The above is for sending either a single byte or a byte-sized constant. To enable byte array sending,
an additional gosub with a few statements would be necessary, equal for ATmega and ATxmega, so it
doesn’t change the comparison in absolute numbers.

36

| should point out that several of the instructions used for the sample code have a better
implementation in the ATxmega than in the ATmega. (Appendix A.4.3.)

5.3.4 Improved ATxmega dynamic addressing for two serial ports

The BASCOM-AVR implementation in 5.3.2 is not optimal: The Printbin command (at label --USART _a
and onwards) first loads (and autoincrements) the X pointer and then calls the send routine at label -
-USART _b, that calls label --USART _c for module instance address calculation before sending. This is
repeated for each array byte, which seems quite unnecessary as the entire array is sent through the
same instance.

So, | decided to rewrite the 5.3.5 disassembly (using “MS Word assembly”) in order to see if | could
reduce its size and / or clock cycle count (appendix A.6.10): Total words: 46. This is 9 words less than
the BASCOM-AVR implementation. Each new port adds 10 words. Please note the extra requirement
placed on the compiler by the __ Prbin_gosub.

We have achieved 2-port dynamic addressing at the same program size as static addressing (or
slightly worse if you play safe with the compiler requirement mentioned above). Furthermore, the
serial port base address is only calculated once per transfer.

Printbin #1, 254 improved addressing:
1+1+3 +1+1 +1+1 +1+142+1+1+ 2+ 3+2+1+1+1 +2+2+4 = 33.

This is 5 clock cycles less than the BASCOM-AVR implementation but 33 - 26.5 = 6.5 more than the 8-
port average for static addressing. (Again, please note Clarification 1.)

5.3.5 Investigating hardware-based port address lookup

| thought about adding hardware support for address lookup. In the above solution, the last six of the
appendix A.6.10 instructions in italic (or perhaps optionally even the two first) could be replaced by
one new instruction as described in the summary chapter.

Assuming that it could (like LDD) be constructed so that it requires only 1 instruction word, the 2-port
USART sending routine above could be reduced to 41 words. Compared to the static addressing
version that takes 47 bytes, it’s quite ok. Given that each peripheral module has its “italic” address
calculation code that could hereby be removed, we would be looking at a total code size reduction of
(5 or7) * (the number of different peripherals we’re using) words.

However, assuming that the new instruction “block” should use a maximum of 2 clock cycles (LD to
r24 and the new read instruction), the above example would at most amount to 1+1+3 +1+1 +1+1
+2+4 2+ 342+1+1+1 +2+42+4 = 29 clock cycles. This is only a (33-29)/33 = 12% reduction compared to
code-based calculation, but at least we’re getting close to the 8-port static addressing average 26.5.

Perhaps other peripherals require more than two register operations per “run”. In that case, the
fraction of “overhead” generated by address calculation would be slightly less. Nevertheless, it’s
clear that dynamic address calculation significantly increases the number of clock cycles compared to
static addressing, even with hypothetic tailor-made hardware support. When sending one byte
constant using only one serial port, dynamic hardware-based address lookup requires 29/17 = 70%
more clock cycles than static addressing. The 5.3.7-improved dynamic code-based address
calculation requires 33/17 = 94% more.

37

While the improvement might be too small to justify a hardware address lookup table, it has one
other advantage: It would enable a uniform programming style for both ATmega and ATxmega (and
AVR32 and ARM?).

5.3.6 Improvements from 2.0.7.6 to 2.0.7.7

| posted a question in the BASCOM-AVR forum about the possibility to use the interrupt vector
program code area for regular code. (45) > As a result of this, version 2.0.7.7 includes an
unsupported setting (Sreduceivr) that places the regular program code just after the last used
interrupt’s address rather than after the end of the entire interrupt vector. This saves 724 - 684 = 40
bytes on the current ATmega324A code for BA6b and 1410 - 1278 = 132 bytes on ATxmegal28A1.
While this is a nice feature, | haven’t included this saving in my program size measures simply
because that would hide part of the ATxmega inefficiency in the actual program code.

When | was finalizing the work with BASCOM-AVR, | e-mailed Mark Alberts, the owner of MCS
Electronics that produces BASCOM-AVR, pointing out that the ATxmega compiled code was much
larger than the ATmega compiled code of exactly the same BASCOM-AVR program. The ATxmega
USART initialization in version 2.0.7.7 is now using exactly the same code as | sent him (appendix
A.6.11).

In addition to this code size reduction, he discovered some other possible improvements in other
parts of the code. This is the reason why version 2.0.7.7 compiles to smaller size than 2.0.7.6.

5.3.7 How big is the initialization code?
Please see appendix A.6.12 for the ATmega324A initialization (50 words) and A.6.13 for
ATxmegal28A1 (75 words).

In other words, for the BA6b code, | had expected the ATxmega size to be close to 512 - 124 + 724 +
(75 -50) * 2 = 1162 bytes. The 2.0.7.6 version compiles to 1448 and 2.0.7.7 compiles to 1410 bytes.
As mentioned before, 2.0.7.6 is using address calculation for USART initialization and sending, while
2.0.7.7 is using static addressing for initialization and address calculation for sending.

5.3.8 Other compiled code that’s unused by the test application

Apart from the device-specific initialization and the actually utilized program code, BASCOM-AVR
also adds pieces of code that | suppose is generic, “frequently used” code and therefore always
includes it. This section was compiled with v2.0.7.7.

Common to both architectures (and identically implemented):

e Delay
e Seterror bitin R6
e (Clear error bitin R6

The size of this is 9 words (18 bytes).

After looking at the ATxmega disassembly, | realized that | had missed the fact that devices with
more than 64 kB program memory require additional MSB bit(s) for addressing. This doesn’t affect

>> http://www.mcselec.com/index2.php?option=com forum<emid=598&page=viewtopic&t=11718

38

the ATmega 324, but it does affect the ATxmegal28A1. For this reason, | also compiled the BA6a
version for ATmegal284.

For these two, we have a common piece of code (identically implemented):
® RAMPZ register addressing
Its size is 15 words (30 bytes).

Then there’s a chunk of 45 words (90 bytes) of code that operates on a BASCOM-AVR internal
_XMEGAREG 32 bytes RAM area that | don’t know what it’s for:

e (Clear the entire area
¢ Double a 5-byte number at the start of this area

| have googled and searched the BASCOM forum but found no clue.

e Both ATmega and ATxmega: 9 words (appendix A.6.14.1).
® Only ATmegal284 and ATxmegal28A1l: 15 words (appendix A.6.14.2).
® Only ATxmegal28A1l: 45 words (appendix A.6.14.3).

5.3.8.1 Summing up the unused code section

In order to make the comparison fair, | must compensate for the RAMPZ difference in the summary
table. After some consideration, | decided that the ATxmega-specific 32-byte data area handling
should be included as it’s an actual difference compared to the BASCOM-AVR implementation of the
ATmega architecture, but it’s not established that it’s really required by the ATxmega architecture
itself. This is getting messy...

For some reason, the ATmegal284 compilation requires 770 = 132 + 638 bytes in total (compared to
724 =124 + 630) for ATmega324. Part of the difference is a slightly bigger interrupt vector table and
8 more bytes of compiled program code inside used routines that | haven’t analyzed further. (After
the Atmel Studio 6 analysis, | think that these 8 bytes are ISR RAMPZ stack operations.) The
comparisons between ATmega and ATxmega are still done on ATmega324 (to avoid having to
recalculate all the data). As you can see in the table below, it doesn’t make much of a difference:

Architecture IV table |Total code excl IV, bytes

BA6b+RAMPZ | BA6b+RAMPZ-

BAla |BAG6b _XMEGAREG BA7 BA8a

ATmega324A 124 882 600 630 630 564 360
ATmegal284 132 638 638
ATxmegal28A1 v2.0.7.6 ~512| 1208| 936 852 568
Difference, ATx bigger by ~388B| 326 B| 336B 288 B| 208 B
Difference, ATx bigger by 37.0% | 56.0% 51.0% | 57.8%
ATxmegal28A1 v2.0.7.7 ~512| 1164| 898 898 808 818 518
Difference, ATx bigger by ~388B| 282B| 298 B 238 B 178B| 254B| 158B
Difference, ATx bigger by 32.0% | 50.0% 42.5% 28.3% | 45.0% | 43.9%

Figure 22: BASCOM-AVR total code size comparison

39

Even when compensating for RAMPZ and excluding the 32-byte BASCOM-AVR ATxmega data area,
the ATxmega still compiles to about 28% bigger for exactly the same functionality. | suspected that
the difference is caused mostly by the following:

® Bigger initialization code due to ATxmega having a more complex architecture

* Dynamic address calculation being more “expensive” than static addressing

e The ATxmega’s bigger register address space leads to a higher fraction of LDS/STS rather than
IN/OUT operations.

The question is: how much of the difference does each of the above cause? As we saw in the
previous subsection, the ATmega initialization is 50 words and the ATxmega is 75 words. A quick look
at the datasheets tells us that the lowest ATmega324 USART register is placed at OxCE (206) and the
ATxmegaAl at 0x8A0 (2208). So, no IN/OUT instructions are used, which means that the entire
remainder of 178 - (75-50)*2 = 128 bytes are due to the difference between static and dynamic
addressing.

In other words, after compensating for initialization, RAMPZ, the zero effect of IN/OUT vs LDS/STS,
and unused generic code, an additional 128/630 = 20% of code is the consequence of the different
programming styles.

(Adjustment: After the Atmel Studio ISR analyses, we know that the static ATxmegal28A1 ISR is 10
words bigger than the ATmega3241’s, due to the use of RAMPD and RAMPZ. The S&P ISR is 14 words
bigger as it also requires RAMPX for ATxmegal28A1. This doesn’t have a significant effect - the 20%
above becomes 17%.)

5.4 Generalization
To what extent is this result generally valid? Or, is this just an unfortunate coincident in the
otherwise successful use of dynamic addressing?

| can hardly see how you can get around the performance issue but dynamic addressing should scale
size-wise comparably better when you are working with a (larger) series of sub-register operations
than our two (status and data) registers.

| think that it is safe to say that whole-hearted conformance to a specific ideal or concept runs the
risk of losing focus of what is really important, in this case both code size and performance. Here |
would use a mix of static and dynamic addressing, probably leaving it up to the programmer to
decide which scheme the compiler should use. However, it is expensive to develop and support
multiple ways to do the same thing. Unless the users demand efficient code, it is just an additional
cost for the IDE developer.

40

5.4.1 What’s the problem with bigger code and lower performance?

Why do | spend so much time and effort on the addressing topic? Firstly it’s because | set out to
evaluate the two architectures, so a 2:1 performance difference is too big to overlook. On the other
hand, it’s probably still not noticeable in any of my designs. | guess this fact is true for many (most?)
other designs as well.

However, | strongly believe in making informed decisions. This is the difference between dabbling
and being a professional. By properly understanding the basics, you become a better programmer.

Disregarding work ethics, If for example you are using the current version (2.0.7.7) of BASCOM-AVR
on ATmega644 running at 20MHz with 64kB program code and you want to change it to an ATxmega,
you will need to buy the next bigger program flash size and clock it significantly faster if you want it
to act the same.

The ATxmega is a more powerful and complex design. This means that initialization needs more code
(with this sample code roughly 50% more) and that a greater fraction of the instructions must use
the “bigger” LDS and STS instructions instead of IN and OUT. On the other hand, some instructions
require fewer clock cycles in ATxmega than in ATmega, so the ATxmega could actually run general
application code roughly as fast at the same clock frequency. The additional RAMPD/X/Y/Z and EIND
registers on ATxmegal28A1 incur an additional cost, but probably (almost) only for ISRs.

The big BASCOM-AVR difference comes from the choice between static addressing and dynamic
address calculation.

41

6 Atmel Studio 6.1 2562 using ASF3.13.1 code analysis

6.1 Optimization primer
There are five pre-defined optimization levels:

| AVR/GNU C Compiler & Optimization |

Optimization Level: Optimize for size (-Os) v]

Mone (-00)
Other optimization flags: Optimize (-01)

. Cptimize more (-02)
0 Prepare functions for garh Optimize mast (-03)

Prepare data for garbage {8JailulrR{s Ry G013

[T Pack Structure members together (-fpack-struct)
[C] Allocate only as many bytes needed by enum types (-fshort-enums)
[E] use rimp/reall (limited range) on >8K devices (-mshort-calls)

Figure 23: AVR-GCC optimization levels

The GCC online docs has a manual page on optimization. (35) *° There are many options (flags), but
basically -O1 does optimizations that don’t “take a great deal of compilation time”, -0O2 does “nearly
all supported optimizations that do not involve a space-speed tradeoff”. -03 is roughly -0O2 with
speed optimization (that might increase code size) and -Os is the parts of -O2 that “do not typically
increase code size”. It “also performs further optimizations designed to reduce code size”.

6.2 ATmega324A analysis

6.2.1 Getting the base serial port routines in place

BTAL - AtmelStudio (Administrator)

File Edit View VAssistX ASF Project Build Debug Tools Window Help

g - S @ B9 - - S-E [D M [pebug][[date R BIE A
PR Ao GiMma|o b |oSE(ESEE T |H [P E) 8o S| % o ATmega3A § Simulator

ASF Wizard X [[uEILRd -
Device: ATmega324A Project:
Extensions Version

Available Modules Selected Modules
Extensions: [Atmel ASF(313.1) '] Show: [AII v| Searc 4 Bl Generic board support (driver
4 BB Compiler abstraction and code utilities - megaAVR and tinyAVR implementation (drive
I @ Calendar functionality (service) 4 B MEGA compiler driver (driver)
L I | i
@ System C ?ck Contrf (service) B Interrup - megaAVR and tinyAVR implementation (driver)

b - Delay routines (service)

B GPIO - General purpose Input/Output (service) B Partidentification macros (service)

i I IOPORT - General purpose /O service (service)
b - Interrupt management (Common API) (driver)
i @ Unit test framework (driver)

B ADC - Analog to Digital Converter (driver)

- CPU specific features (driver)

i @I IOPORT - Input/Output Port Controller (driver)

Info Actions Details

Calendar functionality

Calendar service Provides functionality to convert UNIX timestamps to dates and back. Also provides functionality for calculating the time difference between dates and converting timestamps to

dates with different time zones and back.

Figure 24: ASF wizard for ATmega324A (showing the available modules)

*® http://gcc.gnu.org/onlinedocs/gcc-4.8.2/gcc/Optimize-Options.htmI#Optimize-Options

42

| begun by creating a new project, C/C++, User-Boards, User Board template - megaAVR
ATmega324A. The User Board template includes the Interrupt management driver and CPU specific
features. AS1 started as an empty project that compiled to 156 bytes program code (text) (-O1). It
contains a 124 byte interrupt vector, proceeds with clearing R1 and SREG, sets SP via Y, calls
board_init(), clears R24 and R25 (W), disables global int, and does eternal loop.

Then | added the "System Clock Control (service)" using ASF Wizard and made the following
additions:

In board_init(): call sysclk_init();

In conf_clock.h: change to
#define SYSCLK_SOURCE SYSCLK_SRC_XOC16MHZ
#define CONFIG_SYSCLK_PSDIV SYSCLK_PSDIV_1

AS1 now compiled to (bytes text):
362 text, ? bss (-00)
192 text, ? bss (-01)
190 text, ? bss (-02)
190 text, ? bss (-03)
190 text, ? bss (-Os)

It also shuts down the peripherals (PRRO and PRR1, Power Reduction Registers to OxFF): "Since all
non-essential peripheral clocks are initially disabled, it is the responsibility of the peripheral driver to
re-enable any clocks that are needed for normal operation." (46) >’

Then it reads SREG, writes 0x80 and then 0x00 to CLKPR (CLocK PRescaler register) to set prescaler to
1, and restores SREG.

This is about as far as | can go when developing my ATmega test program using Atmel Studio 6.1 and
ASF 3.13.1. It has interrupt handling code but no USART driver. (It does have IOPORT, ADC, delay, and
calendar functionality.) | therefore looked at application note AVR306 (47) > *° that has USART code
samples for AT90S8515 and ATmegal28, both polled and interrupt-based with circular buffer.
ATmegal28's USART is almost identical to ATmega324. For ATmega324, register UCSRnC.7 must also
be set (or cleared).

The application note is fairly valid, even though it was released in 2002 for what | suspect is the IAR
Systems compiler. | had to update the SEl instruction call and the interrupt handler syntax, which was
quite simple.

The basic serial port routines without base-2 requirement and without overflow protection:
315 text, 18 bss (-01). Please note that this isn’t functionally equivalent to the BASCOM-AVR built-in
interrupt handler that discards overflowing USART characters with an R6.2 error flag.

The basic serial port routines with base-2 requirement and without overflow protection:
298 text, 18 bss (-01). This is the version closest to the application note code.

> http://asf.atmel.com/docs/3.13.1/mega/html/group _sysclk _group.html
*% http://www.atmel.se/Images/doc1451.pdf
*% http://www.atmel.com/images/avr306.zip

43

Before proceeding, | did some rearranging and cleaning up of the application note code. The
appendix ASla code and disassembly don't re-initialize the global variables to zero:
290 text, 17 bss (-01)

6.2.2 Early impressions of Atmel Studio 6.1 and ASF 3.13.1

At this point, | would like to summarize my early impressions of Atmel Studio 6.1 and ASF3.13.1: For
ATmega it seems that the core drivers (and ADC) are available in ASF, while the majority of the
peripheral drivers aren’t included. This is in line with my expectations. | guess Atmel had to prioritize
and decided to make a minimal ATmega ASF implementation (although this assumption is placed in a
different light in the ATxmega analysis later on). The available ATmega ASF parts are a good start and
there’s a very big user base that publishes code samples and asks or replies to user forum questions.
During my research for and writing of the chapter on AVR HW, | found a very satisfying number of
Atmel datasheets, application notes, and marketing material that helped me write the serial
communication routines in a few hours (and later the ASF documentation).

However, | also came across a bit too many dead ASF documentation links to not mention it here.
Please see appendix A.7.1 for a number of screen dumps documenting various ASF issues. Atmel
Studio 6.1 was stable when developing and using ASF but on rare occasions it hang when debugging.
To be fair, much documentation exists and ranges from ok to very good (appendix A.7.2).

There’s also another thing that (at least as a beginner) annoys me about the Atmel driver library: it’s
very difficult to get an overview of which header and code files your project really consists of and is
using, as they form a very big tree of includes within includes within includes... | used this IDE for
about a week in a robot project course half a year ago and then ended up utilizing the ASF library as a
copy&paste sample code repository, into very few custom header and code files. | realize that | have
started doing this with the ATmega test program as well. | fear that this might be a common way of
doing things in the GCC (Gnu Compiler Collection) “world”, but | will keep this in mind when writing
the ATxmega test program.

Except for these issues, my overall impression of developing and debugging in Atmel Studio 6.1 is
good. It takes a long time to install and start up the program but it’s intuitive and very agreeable. I'm
not partial to ASF though, as we will soon discover.

6.2.3 The first version of the test program

With the USART routines in place, | proceeded by translating the rest of the BASCOM-AVR BA6b test
program. (This was the best VB-only version.) Please note that there are two functional differences:
The BASCOM-AVR circular buffer used in the serial port receiver interrupt handler doesn’t have to be
dividable by 2 and it does overflow signaling by setting the R6.2 error bit.

When building the test program | noticed that -O2 and -O3 do performance optimization by inlining
the transmit function:

void USARTO_Transmit(unsigned char data)

{
while (!(UCSROA & (1<<UDRE®))); /* Wait for empty transmit buffer */

UDRO = data; /* Start transmission */

}

44

This compiles to a great many almost identical copies of this:

while (! (UCSROA & (1<<UDREO))); /* Wait for empty transmit buffer */
000000BB 80.91.c0.00 LDS R24,0x00CO0 Load direct from data space
000000BD 85.ff SBRS R24,5 Skip if bit in register set
000000BE fc.cf RJMP PC-0x0003 Relative jump
UDRO = data; /* Start transmission */
000000BF 82.e0 LDI R24,0x02 Load immediate
000000C0O 80.93.c6.00 STS 0x00C6,R24 Store direct to data space

The thing is that there is little point in speed optimizing the wait for sequential asynchronous serial
port transmission. (Please see Clarification 1.) My application uses a 6 MHz system clock and a 15 625
baud rate in asynchronous mode. This equates to 6000 000 / 15625 = 384 system clock cycles per
serial port bit or a minimum of 384 * 9 = 3456 system ticks per received byte with my settings. An
RJUMP (with RET) to a dedicated assembly routine only costs an additional 2 + 5 = 7 clock cycles.
There will still be plenty of turns in the while loop waiting for the previous byte transmission to be
completed, so the performance gain when sending multiple bytes is actually never bigger than these
seven clock cycles. (Two cycles to RJUMP to the dedicated routine the first time, then it’s waiting
until it can send the next byte so the RET and next RIMP don’t matter, and finally it takes five cycles
to do the last RET.)

However, the program code has grown substantially:

-00 890, 37
-01514,37
-02 556, 37
-03 544, 37
-0s 490, 37

Of course the compiler doesn’t know this and it’s a clear sign that you can’t rely on the compiler to
produce optimal code for you.

After changing the declaration of the transmit function to “__attribute__ ((noinline)) void
USARTO_Transmit(unsigned char data)” | get the following compilation results:

-00 890, 37
-01514, 37
-02 476, 37
-03 470, 37
-Os 490, 37

-02 has shrunk with 556 — 476 = 80 bytes (14%). | include the new -O3 compilation in the appendix.

Turning my attention to the two smallest compiler results -O1 and -Os (and the previous -03), |
notice some differences: -O1 contains one more instance of “SerialData[abc] = def;” and “while
(DatalnReceiveBuffer())” than the C code has. -Os has the same number of these two statements as
the C code. -03 has the same number of the first but one more of the second. | suppose that there
are good reasons for this, but the question is how to properly predict the outcome.

It seems to me that professional use of IDEs based on the AVR GCC toolchain requires quite a bit of
knowledge about GCC optimization. Perhaps even then you need to look at disassemblies (or
compiler-generated assembly files) of your compiled code and give the compiler explicit instructions

45

as you move along. How big is the step between this and simply converting (select parts of) your
disassembly to hand-optimized inline assembly (which is what you (in some situations) must do in
BASCOM-AVR if you want efficient code)?

(In certain cases you must give the compiler explicit instructions, as for example writing to a register
and then reading it back will result in the compiler optimizing the read away. It doesn't "know" that
the register value could have changed.)

6.2.4 Making the USART receiver interrupt handler protocol-bound

As there’s no counterpart to the BASCOM-AVR USART send commands, I’'m already using a custom
one in my C program. For this reason, | go straight to the program version with protocol-bound
USART receiver interrupt handler corresponding to BASCOM-AVR BAS8a at the total size of 484 bytes.
It can be found in the appendix, called AS1c. | also include the disassembly of -Os.

-00: 742 text, 18 bss
-01: 418 text, 18 bss
-02: 414 text, 18 bss
-03: 412 text, 18 bss
-Os: 412 text, 18 bss

This version isn’t restricted to a 2" buffer size, so they are (almost) functionally equivalent. (A 16-byte
buffer is used for comparison to the restricted versions, while the BASCOM-AVR has a 20-byte buffer.
This only affects the SRAM use.)

Let’s do a rough backward comparison:

6.2.4.1 BASCOM-AVR
50 bytes of initialization:

e Set SP to RAMEND

e SetYtoSW stack start

e SetZto frame start

e Store frame start in R4+R5
e Watchdog reset

e (Clear any reset flag except watchdog
e Watchdog disable

e (Clear entire SRAM

® USART settings

e C(Clear R6 (error flags)

® Enable global interrupts

18 bytes of unused code (delay and R6.2 error bit handling).

A total of 68 bytes.

46

6.2.4.2 Atmel Studio AVR GCC
50 bytes of initialization:
e (learR1
e (Clear SREG
e SetYto RAMEND
® (Clear SRAM global area
e Disable peripheral clocks
® Temp save SREG
e Disable global interrupts
e Set system clock prescaler =1
e Restore SREG
® USART settings
® Enable global interrupts

Apart from the fact that the initializations are slightly different, we see that Atmel Studio produces
smaller code:

e BASCOM-AVR: 484 - 124 - 50 - 18 = 292 bytes.
e Atmel Studio AVR-GCC -Os: 412 - 124 - 50 = 238 bytes, about 18.5% smaller.

Please bear in mind that this comparison is a bit rough as they don’t do exactly the same things. Both
contestants could be further improved, e.g. by reducing the interrupt jump table.

6.2.5 TryingI/O registers for the two global variables
How much can be gained by using I/0 registers accessible by IN/OUT?

-00 790 text, 16 bss
-01 404 text, 16 bss
-02 400 text, 16 bss
-03 398 text, 16 bss
-Os 398 text, 16 bss

Additionally changing ReceiveCounter from GPIOR2 to R3 results in a 2-byte -Os reduction.

On the ATmega324A the following IN/OUT-accessible 1/0 registers could possibly be used for global
variables:

0x28 (0x48) OCROB Timer/Counter0 Output Compare Register B
0x27 (0x47) OCROA Timer/Counter0 Output Compare Register A
0x26 (0x46) TCNTO Timer/CounterO (8 Bit)

0x2B (0x4B) GPIOR2 General Purpose 1/O Register 2

Ox2A (0x4A) GPIOR1 General Purpose I/O Register 1

0x21 (0Ox41) EEARL EEPROM Address Register Low Byte

0x20 (0x40) EEDR EEPROM Data Register

Ox1E (Ox3E) GPIORO General Purpose I/O Register 0 (bit-operable)

As we can see, the possibility to reduce program code size and execution time by using I/0O registers
for global variables is quite limited on this microcontroller. For this reason, | continue the analysis by
using SRAM for global variables. AS1d is not included in appendix B, but its version-specific code can
be seen in ASle.

47

6.2.6 Custom initialization
| noticed two unwanted compilation results caused by using the library function “sysclk_init()”:

¢ |t did a few RCALLs as the underlying code comes from several places (unnecessary extra
size).

® |t wrote to the non-existent PRR1 register when unnecessarily shutting down all peripherals
so | had to re-enable USARTO with an additional statement.

Also, | like to have a clear picture of exactly what is done, which is very difficult when library
functions make nested calls. For these reasons, | simply copied and altered the library code and
declared the “Initialization” function “inline”. Now the custom initialization sequence disables
interrupts, enables power only to USARTO, sets prescaler to 1, does the USART initialization, clears
SREG, and enables interrupts. (This is in addition to the default initialization code inserted by the
compiler.)

Oddly enough, -O0 wouldn’t compile and gave me the error message shown in appendix A.7.3. | had
to remove the “inline” directive for the “Initialization” function for it to work. The other compilation
levels have the “inline” directive.

When testing this program version (on -Os), | noticed that my SW reset (by goto *@x0000;) wasn’t
working properly. Sometimes the PC received a truncated error message. It turned out that removing
the unnecessary library initialization code and avoiding the RCALLs sped up the entire initialization
process so much that often it didn’t have time to finish sending all of the error message. When
bugsearching | also noticed, on very few occasions, that this did in fact also happen when using the
library sysclk_init() function. | could use the watchdog timer to wait for a certain period, but | would
still have to enter a(n eternal) loop while waiting for it to trigger, so | chose to just copy the generic
delay code “do { barrier(); } while (--counter);”.20 passesseem to be enough, while 17 is
too few. This makes the code sensitive to errors in case of future changes, but as an actual
production program based on this code would have more global variables that need clearing by the
default initialization (which takes longer), it should be less of a problem.

At this point -Os without the time-out loop makes 386 and with it 394 bytes. This is in comparison to
version C at 412 bytes (without time-out loop).

Compiled size:

-00 608 text, 18 bss (but only after | removed “inline”)
-01 400 text, 18 bss

-02 396 text, 18 bss

-03 394 text, 18 bss

-Os 394 text, 18 bss

48

Looking at the initialization code, | notice that the USART register writes are done via STS
instructions.

UBRROH = 0x00;
00000075 10.92.c5.00 STS 0x00C5,R1 Store direct to data space

UBRROL = 0x17;

00000077 87.el LDI R24,0x17 Load immediate

00000078 80.93.c4.00 STS 0x00C4,R24 Store direct to data space
UCSROB = (1<<RXCIEO) | (1<<RXENO) | (1<<TXENO) ;

0000007A 88.e9 LDI R24,0x98 Load immediate

0000007B 80.93.c1.00 STS 0x00C1,R24 Store direct to data space
UCSROC = (1<<UCSZz01) | (1<<UCSZ00) ;

0000007D 86.e0 LDI R24,0x06 Load immediate

0000007E 80.93.c2.00 STS 0x00C2,R24 Store direct to data space

Using ST with displacement with the Z pointer could be more efficient. Should this be done via inline
assembly or using a struct? In the ATmega324 both USARTs have the same relative register
placement, so first | try the struct, partly based on “AVR1000: Getting Started Writing C-code for
XMEGA” (29) *:

/* Type definition for the USART struct */
typedef struct USART_struct {

uint8_t UCSRA;

uint8_ t UCSRB;

uint8_ t UCSRC;

uint8_t Reserved;

uint8 t UBRRL;

uint8_ t UBRRH;

uint8_t UDR;
JUSART _t;

USART_t *USART inst
(USART_inst)->UCSRB
(USART_inst)->UCSRC
(USART_inst)->UBRRL
(USART_inst)->UBRRH

(USART_t *)&(UCSR@A);
(1<<RXCIEQ) | (1<<RXENQ) | (1<<TXENQ);
(1<<UCSZe1) | (1<<UCSZe0);

ox17;

0x00;

No difference using -Os. It produces exactly the same machine code. | then try to be even more
specific:

uint8_t *reg = (uint8_t *)&(UCSROA);
*(reg + 1) = (1<<RXCIE®)|(1<<RXEN®)|(1<<TXEN@); // UCSReB

*(reg + 2) = (1<<UCSZ01)|(1<<UCSZ00); // UCSReC
*(reg + 4) = 0x17; // UBRROL
*(reg + 5) = 0x00; // UBRR@H

No difference using -Os. It produces exactly the same machine code. Am | doing something wrong or
is the potential improvement too small for the compiler to use the Z pointer? | try inline assembly as
a last resort:

® http://www.atmel.com/Images/doc8075.pdf

49

ASM(

"1di r30, exCl \n\t"
"clr r31 \n\t"
"ldi r24, 0x98 \n\t"
"st Z+, r24 \n\t"
"1ldi r24, oxe6 \n\t"
"st Z, r24 \n\t"
"1di r24, ox17 \n\t"
"std Z+2, r24 \n\t"
"clr r24 \n\t"
"std Z+3, r24 \n\t"

)5

This results in an -Os reduction by a mere 2 bytes (= 1 instruction). | could shorten it slightly more by
omitting the “clr r24” and instead doing “std Z+3, r1”, but this is hardly worth the effort. Apparently |
am overdoing this. A simple calculation tells me that the Z pointer and static addressing generate the
same code size when writing to three registers. | don’t think | can manage to reduce the ATmega
code size any more than this. After some consideration, | revert to static addressing as | like this
notation better than defining a struct and using C pointers. Version ASle is in the appendix.

| mentioned this in an AVRfreaks thread and it seems that when testing on his own, user clawson
received the following result with both -Os and -03: (48) ®

Struct-based: Does STD (store at Z+displacement) and uses 18 bytes, 13 cycles.
Absolute: Does STS (store at harcoded address) and uses 22 bytes, 11 cycles.

It seems that he too wasn’t able to make it use ST+ (store at Z with post-increment). | suppose the
compiler doesn’t have a heuristic for identifying this.

6.3 ATxmegal28A1 analysis

6.3.1 Getting the base serial port routines in place

AS2 started as an empty project that compiled to 544 bytes program code (text) (-O1). It contains a
500 byte interrupt vector, proceeds with clearing R1 and SREG, sets SP via Y, clears EIND and
RAMPD/X/Y/Z, and the (at this point nonexisting) global variables, calls board_init(), clears R24 and
R25 (W), disables global int, and does eternal loop.

Then | added the "System Clock Control (service)" (49) ® using ASF Wizard (the interrupt handling is
already part of the custom board template) and made the following additions:

In board_init(): call sysclk_init();

In conf_clock.h: change to
#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_XOSsC
#define CONFIG_XOSC_RANGE XOSC_RANGE_2TO9

61

http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=140145&postdays=0&postorder=asc
&sid=e3717428757c8e0fcac437a5ae45306b
®2 http://asf.atmel.com/docs/3.13.1/xmegaa/html/group _sysclk _group.html

50

The actual program at this point consists of:

/* Initialize clock systems and turn off all peripherals */
sysclk_init();

/* Turn on power to USARTE@Q */
PR_PRPE = (1 << PR_TWI_bp)|(1 << PR_USART1 bp)|(1 << PR_SPI bp)|(1 << PR_HIRES bp)|(1
<< PR_TC1 bp)|(1 << PR_TCO bp);

/* Enable all interrupt levels */
irqg_initialize_vectors();

AS2 now compiled to:
1002 text, 0 bss (-00)
638 text, 0 bss (-01)
636 text, 0 bss (-02)
636 text, 0 bss (-03)
636 text, 0 bss (-Os)

It turns off power to all peripherals, waits for XOSC to become ready, enables XOSC source, saves
SREG, disables interrupts, disables the previous clock source, and restores SREG. (Finally it turns on
power to USARTEO and enables all interrupt levels (low, medium, and high).)

6.3.2 Trying out ASF - will it eliminate or reduce the need to read the datasheets?

It's now time to include the ASF USART library driver. This is my first real attempt at fully using the
ASF documentation and code. | noticed that once you have added the documentation modules to
your project, the links to the documentation can’t be reached from the ASF Wizard. Before | realized
that they can now be found in the top-right window nambed “ASF Explorer”, | removed the modules
from the project, clicked on the links, and then re-added the modules to use the documentation.
Being somewhat annoyed by this, | decided to reference the XMEGA A Documentation (12) ® so that
| will find it easily the next time. Then | read “AVR4029: Atmel Software Framework - Getting Started”
(37) ®* and realized my mistake...

The two available modules are:
USART - Serial interface (service) (50) ® (51) *®
USART - Universal Synchronous/Asynchronous Receiver/Transmitter (driver) (52) ¢

According to the ASF Wizard, the first one is a generic abstraction layer (wrapper) that’s using the
second one (which is included in the first module):

Service function “usart_serial_init(USART_SERIAL, &usart_options)” calls
“sysclk_enable_module(SYSCLK_PORT_E,PR_USARTO_bm)” and then
“usart_init_rs232(usart, &usart_rs232_options)”.

® http://asf.atmel.com/docs/3.13.1/xmegaa/html/index.html

* http://www.atmel.com/Images/Atmel-8431-8-and32-bit-Microcontrollers-AVR4029-Atmel-Software-
Framework-User-Guide Application-Note.pdf

® http://asf.atmel.com/docs/3.13.1/xmegaa/html/serial_quickstart.html

% http://asf.atmel.com/docs/3.13.1/xmegaa/html/serial _use case 1.html

® http://asf.atmel.com/docs/3.13.1/xmegaa/htm|/xmega_usart_quickstart.html

51

Driver function “usart_init_rs232(USART_SERIAL, &USART_SERIAL_OPTIONS)” calls
“sysclk_enable_peripheral_clock(usart)”, does the USART settings, and enables receiver and
transmitter.

Please note that “sysclk_enable_peripheral_clock(usart)” calls
“sysclk_enable_module(SYSCLK_PORT_E, SYSCLK_USARTO0)"”. In other words, the wrapper turns on
the USART clock twice. On the other hand, the ASF quick start document for the driver instructs you
to call the sysclk_enable_module function before calling the usart_init_rs232 function, to the same
effect. Maybe the optimizer discovers this and removes the superfluous one, but it demonstrates a
problem with abstraction; it can hide the real world a bit too well.

| suppose that the reason for the first layer of abstraction (the driver) is to make it possible to write
microcontroller programs without knowing the hardware details. Similarly, the second layer of
abstraction (the service) is probably created to give the programmer one common API regardless of
which type of microcontroller (AVR 8-bit ATxmega, AVR32, or ARM) you are working with. The
question is whether these two abstractions really make it unnecessary to study the datasheets (as |
would like) or if it just adds one (two?) entire additional terminology for the programmer to master. |
will return to this topic.

While writing this, | notice that the ASF documentation pages referenced above have hung my
Firefox browser.

Also, when googling (now using IE) for the correct syntax (not included in the ASF documentation) for
what | figured out should be “sysclk_enable_peripheral_clock (&USARTEO)”, my third hit was an
AVRFreaks user forum thread from December 2011 where two different people summarize their ASF
experience:

"I think | have saved no time at all using this Atmel framework. It has been a complete pain. Totally frustrated with it." (User
name TrevorWhite)

"The ASF could be documented better... But if you spend some time with it looking over the source it becomes clearer. As far
as the TCs go, lately | find myself writing my own code rather than using the TC driver in the ASF." (User name GTKNarwhal)

Both quotes found at (53) 68,

Appendix A.7.4 shows that the ASF project counter shows the sum of all releases’ counts (most of
which are in all essence the same code). It would behoove Atmel to correct this miscalculation.

Anyway, with the help from the ASF quick start guide | have presumably successfully configured and
initialized my serial port. | have added the following statements to the Initialization function:

/* Initialize USARTEO */

static usart_serial_options_t usart_options = {
.baudrate = USART_SERIAL_BAUDRATE,
.charlength = USART_SERIAL_CHAR_LENGTH,
.paritytype = USART_SERIAL_PARITY,
.stopbits = USART_SERIAL_STOP_BIT

2

usart_serial_init(USART_SERIAL, &usart_options);

®8 http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=115038&start=0

52

AS2 now compiles to:

3176 text, 10 data, 0 bss (-00)
2186 text, 10 data, 0 bss (-01)
2258 text, 10 data, 0 bss (-02)
2434 text, 10 data, 0 bss (-03)
1874 text, 10 data, O bss (-Os)

The service contains four more documented functions, to send and receive one or several characters.
As my test program does non-interrupt-based sending, | add this to the main loop in order to send
one character:

uint8 t received_byte = 0;
usart_serial_putchar(USART_SERIAL, received_byte);

This brings us to:

3862 text, 10 data, O bss (-00)
2200 text, 10 data, 0 bss (-01)
2272 text, 10 data, 0 bss (-02)
2448 text, 10 data, 0 bss (-03)
1898 1908 text, 10 data, 0 bss (-Os)

These numbers are so ridiculously big that | think | must have made a mistake. (No ISR nor
application code yet.) | therefore include the code in the appendix (AS2a) and create a fresh project.
Then | add the three ASF modules mentioned above, update conf_clock.h, and paste the AS2a code
into the new main file. Nope. Still the same size. Something is definitely wrong here.

| come to think of the fact that | haven’t told the compiler about the crystal properties (and the PLL
settings of conf_clock.h mentions BOARD_XOSC_HZ), so | look for it in the System Clock Control ASF
documentation (54) ® but it only mentions that it needs to be defined in conf_board.h. After
googling, | found some demo board code (55) ’° that | change and add:

#define BOARD_XOSC_HZ 8000000UL
#define BOARD_XOSC_TYPE XOSC_TYPE_XTAL
#define BOARD_XOSC_STARTUP_US 2000

(The demo board documentation actually says “#define BOARD_XOSC_HZ 8000000”, which | think
will result in a data type error, but | am not sure.)

It now compiles to:

3906 text, 10 data, O bss (-00)
2218 text, 10 data, 0 bss (-01)
2296 text, 10 data, 0 bss (-02)
2472 text, 10 data, 0 bss (-03)
1922 text, 10 data, O bss (-Os)

% http://asf.atmel.com/docs/3.13.1/xmegaa/html/group _clk _group.html
70

http://194.19.124.62/docs/latest/xmega.drivers.des.unit_tests.xmega al xplained/html/group atxmegal28
al xpld config.html

53

This is surprising. | have only included initialization of the serial port and a dummy transmit
statement. No receiver interrupt handler (can’t find one in the ASF library) and no real program code.

| think that maybe this immense size is due to the generic, cross-platform service so | change calls
from

usart_serial_init(USART_SERIAL, &usart_options);
usart_serial_putchar(USART_SERIAL, received_byte);

to the direct driver calls:

sysclk_enable_module(SYSCLK_PORT_E, PR_USARTO_bm);
usart_putchar(USART_SERIAL, received_byte);
usart_init_rs232(USART_SERIAL, &USART_SERIAL_OPTIONS);

This brings a slight reduction in size:
3600 text, 10 data, O bss (-00)
2136 text, 10 data, 0 bss (-01)

2214 text, 10 data, 0 bss (-02)

2390 text, 10 data, 0 bss (-03)

1840 text, 10 data, 0 bss (-Os)

Finally, | remove the USART service from the project to see if it gets compiled in even though | wasn’t
calling it, but the code size is the same. The good news is that the cross-platform code-size overhead
is only 1922-1840 = 82 bytes for whatever gets compiled in additionally with the service, so making a
custom driver ARM-compatible shouldn’t be so “expensive”. The bad news is that it’s the ATxmega-
specific driver that’s the culprit. This means that there’s very little point in using the ASF USART code
for anything but a copy&paste source of sample code bits into a custom driver.

Just to verify that | haven’t made a mistake, | create a New Example Project based on “USART
Example - STK600 - ATxmegal28A1”. It is a simple polling program that returns the incoming serial
data, based on the “driver” code. -Os compilation yields 2102 text, 30 data. Apparently my AS2a
implementation isn’t an anomaly in the ASF world.

| continue to look for an example project with interrupt-based receiver. This is a slow and irritating
process. | give up after looking at a handful of projects and google for “atmel asf xmega usart
interrupt”. | find application note AVR1522 (56) "* 2, which is a demo for the XMEGA-A1 Xplained
board. It has both polled and interrupt-based receiver, so hopefully it can be used. After asking for
ASF support for serial port interrupt-based receiver at www.avrfreaks.net, | now know that there is
only an ASF general-purpose FIFO queue:

“No. There is a FIFO service in the ASF that you can use, but you will have to write the ISR(s) to make this happen. ASF

examples, at least as far as the USARTs are concerned, are very simple.” (User name GTKNarwhal) (57) 7

The PMIC (Programmable Multi-level Interrupt Controller) Quick Start guide (58) " has an ISR
skeleton code sample, so it’s possible to copy it and add the necessary content, but calling generic
ASF FIFO buffer code from within an interrupt service routine seems like a very bad idea.

™ http://www.atmel.com/Images/doc8408.pdf
72 http://www.atmel.com/Images/AVR1522.zip
3 http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=139232

54

It’s time to answer the question in this section’s header; does ASF eliminate or reduce the need to
read the datasheets? Unfortunately, the answer is no, at least for the USART and clock management.
| fear that there are clock and other settings that | have missed. At least | am very uncertain if the
ones | have defined are the correct ones, with the correct value, and all the necessary ones. The
Quick Start guide for System clock Management has a note that says “For user boards, BOARD_X0OSC_HZ
should be defined in the board conf_board.h configuration file as the frequency of the crystal attached to XOSC.” (59) 73
and that’s it. This and two other defines are mentioned in the “XMEGA-A1 Xplained Board
Configuration” (55) "® that | found by googling as mentioned above.

While trying to look at the ASF USART modules’ Quick Start and API Documentation it hangs my
Firefox browser again. And... now it crashed.

There’s another problem with the USART documentation: It fails to mention that the USART
transmitter pin must be set to output (and the receiver to input, which is the startup default). The
closest | come is the text “port_driver_group for peripheral io port control.” listed under dependencies in the
driver’s API Documentation (60) ”. It's not included in the Quick Start code samples for either of the
two modules, so that code actually won’t work. It could be that the person(s) who wrote the USART
Quick Start guides had all pin settings in a board_conf.h file and therefore forgot to include them in
the guide, but that would mostly serve as an illustration to the problem of having too many includes.

The ATxmega AU manual’s USART section is clear, though. It tells me what | need to know.

6.3.3 Checking how big the minimum ASF library would be for my real application
Before | proceed with my 100% custom driver based on Atmel application note AVR1522, | decide
that | want to see how big the ASF library code would be for my actual application. It is using the
following peripherals:

e Timer/counter for HW PWM

e USART for serial ports

® Analog to Digital conversion for voltage and current measuring
¢ Digital to Analog conversion for linear DC control

e External interrupts for events

e TWI (1°C) for communication with peripherals

e SPl for communication with peripherals

e RTC (Real-Time Clock)

e General-purpose I/O for sensing and controlling the board

e Watchdog timer

" http://asf.atmel.com/docs/3.13.1/xmegaa/html/xmega pmic_quickstart.html

7 http://asf.atmel.com/docs/3.13.1/xmegaa/html/sysclk _quickstart.html
76

http://194.19.124.62/docs/latest/xmega.drivers.des.unit_tests.xmega al xplained/html/group atxmegal28
al xpld config.html
"7 http://asf.atmel.com/docs/3.13.1/xmegaa/html/group _usart _group.html

55

Based on AS2a, | add the relevant ASF modules, which means that the project now incorporates the
following:

Selected Modules

i Bl Generic board support (driver)

I E Systern Clock Control (service)

[E Delay routines (service]

I B0 IOPORT - General purpose IO service (service)

I E TWI - Two-Wire Interface (Commaon APT) (service)

I E Interrupt management (Commaon API) (driver)

I |8 ADC - Analog to Digital Converter (driver)

I B0 DAC - Digital to Analog Converter (driver)

i B PMIC - Pregrammable Multi-level Interrupt Controller (driver)
I E RTC - Real Time Counter (driver)

[E 5PI - Serial Peripheral Interface (driver)

[E TC - Timer Counter (driver)

[m TWI - Two-wire Interface (driver)

i Bl USART - Universal Synchrencus/Asynchronous Receiver/Transmitter (driver)
I Bl WDT - Watchdog Timer (driver)

Figure 25: Selected ASF ATxmegal28A1 modules

It leads to this:

14522 text, 10 data, 104 bss (-00)
8762 text, 10 data, 104 bss (-01)

8830 text, 10 data, 104 bss (-02)
9954 text, 10 data, 104 bss (-03)
8334 text, 10 data, 104 bss (-Os)

| try to reduce the code size slightly by setting the TWI module to “master”, but it complains about a
missing file, so | have to put it back to “both”. | also deliberately choose the driver version instead of
the service whenever possible in order to make this test as “good” as possible for ASF. Similarly, as |
haven’t included code that initializes the new modules this is the smallest it could ever become.

All this code does (well, it’s not tested and | know that the transmitter pin needs setting to output, so
| would need to add some things) is to initialize the system clock and one USART and send one byte
through a serial port. A sneak peak at my subsequent test results tells me that a minimum hand-
written C implementation takes -Os 822 bytes, of which the interrupt vector table is 500 bytes and
the default initialization and clock management account for 122 bytes. | just got hit with about 8kB of
ASF library code, most of which would not be used by the application. With hand-written C code,
each individual module should require some 200 bytes, very roughly speaking.

56

A short note here: | posted the question “Does anybody know if | should do something else so that
the compiler removes unused code from the ASF library?“ in the user forum at www.avrfreaks.net

(61) ® and received two replies:

“Look at the .map file to find out where the bloat is but be warned that ASF is not designed for efficiency but ease of use and
to present a generic interface across architectures. This results in sub-optimal code.” (user name clawson, later refered to as

Cliff)

“This is quite a common question. Basically, ASF is as Cliff says, meant to be a generic interface and have the same
abstraction across multiple architectures. It will therefore to assertions, check data validity, transform parameters etc on a
level that is not necessary at a single device level.

You are probably also seeing the module interconnectivity of asf, e.g. that modules are depending on functionality of other
modules (e.g. usart would need the sysclk and sysclk need powermgmt....), which also lead to inclusion of all the generic
code for these modules.

The positive thing (guess positive can be discussed), is that a full-fledged application does not increase the code size as
much, as some of the code paths are already present in an already included module. So yes, using only USART may seem
very big, but adding CHIPID and GPIO to this will be a small increase. (guess this is more true for SAM than for xMega, but |
am most familiar with ASF on SAM and the idea should be similar).” (user name meolsen, Atmel employee according to the
user profile)

First of all: these replies seem to come from people who generally know what they are talking about
(as is most often my experience from these user forums).

Second: judging by my simple USART service vs. driver code size test, only 82 of the 1922 bytes come
from the “generic interface”. This is equal to (slightly more than) 82 / (1922 — 622) = 6,3%. (Later
during the ATxmega analysis, we'll see that the interrupt vector and (slimmed) clock configuration
take 622 bytes. In other words, there’s reason to question the assumption that much of the ASF

excess baggage comes from cross-platform transformation code. At least for the USART modules this

doesn’t seem to be the case. Most of it is caused by the fact that the ASF modules aren’t written in
such a way that unused code gets eliminated by the compiler. | have only looked at the compiled
code sizes (i.e. not analyzed the .mabp file as clawson suggested) and | have only looked closer at the
USART module. However, by the increase in total code size just by including ASF modules
documented above, | think it is reasonable to believe that this ailment is common to all or much of
the ASF code.

Third: | do agree that some of the library code would be used by the real application, but in my
experience not even remotely close to this size. E.g. my application will use two serial ports for
sending binary data, each having an ISR (Interrupt Service Routine) that either places the incoming
data in a generic circular buffer or in a protocol-bound vector. The application will not change clock
frequencies and the serial port configuration will not change. No matter how much my application
grows, it will never use more of this ASF library code. The same is true for the other HW modules and
peripherals. They are all used for one specific purpose, generally hardwired to another HW
component.

Fourth: in my opinion, the beauty of microcontroller development is the fact that you are coding
directly against the actual hardware. What | want is a tool that makes this as easy as possible, so that
| wouldn’t have to consult the datasheets and application notes so much. If | could make a wish, it

8 http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&p=1126226#1126226

57

would be for a GUI tool that generates HW-specific driver code for you, based on input from the
developer. In fact, BASCOM-AVR is doing this with built-in commands and their parameters that
(behind the scene) lay out hand-written assembly based on these parameters.

With this | end my investigation of ASF. Perhaps my serial port-based test program (decided before |
had looked at what ASF offers) was an unfortunate choice for ASF. For example, the ASF ADC module
quick start guide is informative and (by a quick look) seems user-friendly and efficient to use. Also,
the “System Clock Control (service)” did only result in a little dead code, even though it isn’t
sufficiently documented. Still, as this test shows, generally speaking ASF comes at a code size cost
that | am not willing to pay. Maybe this is part of the reason why Atmel doesn’t have much ASF
support for ATmega. Many of these microcontrollers are very usable in 8kB program size (or even
less), but there wouldn’t be much place for the user’s own code after ASF moved in.

Due to the excess ASF code, | can only use it as a copy&paste source, probably after looking for
application notes describing the module on which | am developing. This will have the good side-
effect of letting me create my entirely own inclusion tree, giving me a complete overview of what’s
actually being done. But, there is no productivity enhancement in sight. It should also be mentioned

that ASF can be used as a copy&paste source in two ways, both of which are better done in a
separate project; you can use the ASF Wizard to include modules into your temp project so that you
can drill down and copy the code and headers to your real project. Alternatively, you can look for an
ASF Example Project that might (or might not) contain valuable sample code. In this case you end up
with a number of unwanted projects that fill up your work folder:

— =
-] Motepad r prTe
' (@ BTA3.atsIn
| Calculator (@ USER_APPLICATIONL.atsln
: @ PWM_EXAMPLE21 atsin
'ﬁ atmel St 6.1 b | [@ USART_EXAMPLE1 atsln
(@ USART_EXAMPLES2.atsIn
A | BASCOM-AVR »
(@ USART_EXAMPLESL.atsIn
EAGLE58.0 (@ BTA2.atsIn
(@l BTAl.atsin
EHHEI] Far WinHex ﬂ main.c
] main.c

Microsoft Visual C# 2010 Express

Microsoft Visual Web Developer
2010 Express

Figure 26: Sample project residue

58

6.3.4 Using application note AVR1522 USART driver

| start a new project named AS3 and copy the test program application code from the ATmega AS1b
(which is the version using the generic circular buffer based on application note “AVR306 Using the
AVR UART in C” (47) 7 %).

For the ATxmega USART, | look in two application notes: “AVR1522 XMEGA-A1 Xplained Training -
XMEGA USART” (56) 8 8, which is largely a copy of “AVR1307 Using the XMEGA USART” (62) & &,
The main advantage of the first one is that it is using AVR GCC syntax while the second has IAR
Systems syntax, but the zip file belonging to AVR1307 has a valuable tool: an Excel sheet baud rate
calculator. The formulas can be found on p282 in the AU manual (63) ®. The test board has an 8 MHz
crystal (and as before we use 15 625 baud and asynchronous normal mode). There are several USART
settings that result in the above and I’'m using BSCALE = 0, BSEL = 31, and CLKX2 = 0.

Oddly enough, the AVR1522 polling example isn’t using the usart_driver library functions for
configuration, while its interrupt example does. The original code in AVR1307 is consistently using
the library code it is there to present. Anyway, after replacing much of the polling configuration code
with the AVR1522 interrupt configuration code, a clear design idea can be seen. This sample code
also takes care of the pin settings, that the ASF module library failed to do. Unfortunately, both
application note sample program are omitting the system clock settings, so at first nothing works.

I include the ASF module System Clock Control (service) and modify conf_clock.h so that it contains
the following definitions:

#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_XOSC
#define CONFIG_SYSCLK_PSADIV SYSCLK_PSADIV_1
#define CONFIG_SYSCLK_PSBCDIV ~ SYSCLK_PSBCDIV_1 1

#tdefine BOARD_XOSC_HZ 8000000UL

#tdefine BOARD_XOSC_TYPE XOSC_TYPE_XTAL

#define BOARD_XOSC_STARTUP_US 2000 // What should this value be?
#define CONFIG_XOSC_RANGE X0SC_RANGE_2T09

In my initialization function | start with

sysclk_init();
sysclk_enable_module(SYSCLK_PORT_E, PR_USARTO_bm);.

Now it’s working and compiles to:
2114 text, O data, 47 bss (-00)
1156 text, 0 data, 47 bss (-01)
1144 text, 0 data, 47 bss (-02)
1130 text, 0 data, 47 bss (-03)
1136 text, 0 data, 47 bss (-Os)

 http://www.atmel.se/Images/doc1451.pdf

8 http://www.atmel.com/images/avr306.zip

8 http://www.atmel.com/Images/doc8408.pdf

8 http://www.atmel.com/Images/AVR1522.zip

8 http://www.atmel.com/Images/AVR1522.zip

¥ http://www.atmel.com/Images/AVR1307.zip

& http://www.atmel.com/Images/Atmel-8331-8-and-16-bit-AVR-Microcontroller-XMEGA-AU Manual.pdf

59

Compare the AS3a version to the worst BASCOM-AVR high-level-only implementation (BAla) at 1720
and best (BA6a) at 1444 bytes text.

| wonder why Atmel didn’t include the application note code in ASF, as AVR1307 was released in
February 2008.

Anyway, the next step is to see what happens if | copy all used code from the USART library files into
the main file. AS3b is included in the appendix.

1944 text , 0 data, 41 bss (-00)
1118 text, 0 data, 41 bss (-01)
1060 text, 0 data, 41 bss (-02)
1054 text, 0 data, 41 bss (-03)
1064 text, 0 data, 41 bss (-Os)

Much of the reduction from 1136 to 1064 bytes is caused by exclusion of some struct fields relating
to transmitter interrupt buffer and fewer function calls.

6.3.5 Adjusting the ATmega static addressing code for ATxmega
| was quite happy with the ATmega code with circular receiver buffer based on AVR306. What if |
insert the ATxmega-specific code into it and clean up the ATxmega initialization?

The result can be seen in AS3c in the appendix. This contains three types of changes:

e The S&Ps are replaced by static addressing.

® The USART initialization has been cleaned up. -Os becomes 1014 text, 37 bss.

e The USARTEO power-on call was replaced with a register write without preserving the
interrupt flags.

We are now at:

1648 text , 0 data, 37 bss (-00)
1010 text, 0 data, 37 bss (-01)
976 text, 0 data, 37 bss (-02)
970 text, 0 data, 37 bss (-03)
990 text, 0 data, 37 bss (-Os)

| then dissected sysclk_init() and (by reading the ATxmega AU manual) extracted the things really
needed at initialization. This reduced -Os to about 964-968 text. (I didn’t record this state.) Then |
included soft reset by jumping to the reset vector address. (Unlike the ATmega, the ATxmega can be
software-reset by writing to a register. For cross-platform compatibility, | stay with the ATmega
approach at least for now.) | also disable interrupts before sending the error message, no longer set
the receiver pin to input as it’s the startup default, and clear SREG at the end of initialization. These
changes landed me at -Os 974 text. | noticed that the loop that disables all peripheral clocks do
repetitive STS calls instead of using ST Z+. | would like to understand how to instruct the compiler to
do it from C, but for now | settle with inline assembly. This seems to be the smallest implementation
of one serial port on ATxmega.

60

Note that -Os (optimize for size) produces bigger code than -02 and -03:

1332 text, 0 data, 37 bss (-00)
980 text, 0 data, 37 bss (-01)
950 text, 0 data, 37 bss (-02)
944 text, 0 data, 37 bss (-03)
964 text, 0 data, 37 bss (-Os)

AS3d is included in appendix B, both C and disassembly. This will be my baseline when | go in a few
different directions:

6.3.5.1 Only clock config with transmit and ISR-based circular buffer receiver
| strip all the application code so only the following remains (including clock and USART
configuration):

® |SR-based circular buffer receiver

® Function to check if there is data in the circular buffer
® Function to read a byte from the circular buffer

® Function for transmission

* Simple check for data and transmission of read byte

This is just to get a definite figure of how big the generic one-port USART driver really needs to be:

1094 text , 0 data, 18 bss (-00)
816 text, 0 data, 18 bss (-01)
806 text, 0 data, 18 bss (-02)
806 text, 0 data, 18 bss (-03)
822 text, 0 data, 18 bss (-Os)

6.3.5.2 Only clock config
AS3e is included in the appendix, with the USART code commented out. It only does clock
management:

708 text, 0 data, 0 bss (-00)
618 text, 0 data, 0 bss (-01)
622 text, 0 data, 0 bss (-02)
622 text, 0 data, 0 bss (-03)
622 text, 0 data, 0 bss (-Os)

For the sake of simplicity, let’s say that the USART functionality requires 200 bytes, and that the
interrupt vector table and system clock configuration “offset” is 622 bytes.

6.3.6 Adding one more serial port

6.3.6.1 Simple two-dimensional array and if statement for port selection
| noticed that | had made a slight mistake with the variable SerialByte. By changing it from global to
local -Os becomes 960 text, 36 bss.

The first dual-port version compiles to -Os 1268 text, 0 data, 72 bss. The second serial port adds 304
text, 36 bss, while the first cost 338 text, 36 bss. | notice that the function call to ReceiveSerial starts

61

with PUSHing eleven registers. When inlining USART_Receive and DatalnReceiveBuffer, -Os becomes
1190 text, O data, 72 bss.

By using a two-dimensional array for SerialData, much of the high-level code complexity can be
avoided. However, indexing requires a few calculations. When | looked at the disassembly | realized
that | had made a mistake; | had put the column before the row, which means that the two-
dimensional array was in fact column-major addressed. | switched order so that | got row-major
addressing, which surprisingly resulted in -Os 1204 text, 0 data, 72 bss:

Column-major: Row-major:

1852 text , 0 data, 72 bss (-00) 1884 text , 0 data, 72 bss (-00)
1192 text, 0 data, 72 bss (-01) 1216 text, 0 data, 72 bss (-01)
1192 text, 0 data, 72 bss (-02) 1210 text, 0 data, 72 bss (-02)
1218 text, 0 data, 72 bss (-03) 1220 text, 0 data, 72 bss (-03)
1190 text, O data, 72 bss (-Os) 1204 text, O data, 72 bss (-Os)

Version AS3f is included in appendix B, with disassemblies before and after inlining, with row-major
and column-major array addressing. | would have liked to analyze this, but | must press on.

The question is: is this better or worse than placing the global variables in structs and sending
pointers for parameters?

6.3.7 Structs and pointers
| retrace my steps to the AVR1522 application note and its S&P-based design.

AS3g compiles to:

1980 text , 0 data, 80 bss (-00) (without inlining of USART_RXComplete)
1248 text, 0 data, 80 bss (-01)

1246 text, 0 data, 80 bss (-02)

1316 text, 0 data, 80 bss (-03)

1218 text, 0 data, 80 bss (-Os)

Without inlining of USART_RXComplete -Os compiles to 1250 text. This is because the register
PUSHing and POPing when entering and exiting the ISR is more expensive than the code itself.

| tried to place the contents of USART_RXComplete in each ISR, but this didn’t affect the total size
(compared to inlined USART_RXComplete). While this might seem obvious, | wanted to make extra
sure that it isn’t possible to reduce it further. | also tried to move the vector and fields of struct
USART_Buffer_t into struct USART_data_t. This didn’t make any difference either (so a multilevel
struct hierarchy doesn’t seem to incur a penalty).

The BASCOM-AVR scaling tests only covered the bare sending routines (not receiver ISR and
application code), but the results are similar. The general-purpose ISR circular receiver buffer for two
serial ports requires slightly less program memory for static addressing with two-dimensional array
than the “structs and pointer”-based version. For some reason this column-major array
implementation is yet a bit more efficient from a code-size point of view.

BASCOM-AVR has commands and configuration options that automatically generate and use the
circular buffer. This hides the ISR buffer from the developer, which from a high-level perspective
makes it less obvious that you spend some program code, SRAM, and clock cycles on moving the

62

received bytes from the circular buffer to the actual work area. | don’t know how common it is to
develop a protocol-bound serial port ISR routine and vector, but my protocol benefits from it.

It's now time to see how the S&P approach scales. Version AS3h is a fully developed test program for
1-3 ATxmega ports and 1-2 ATmega ports. It’s included in the appendix, with -Os disassemblies of
both types.

6.4 Scaling ATmega 324A, ATmegal284, and ATxmegal128A1

| have omitted optimization level -O0 as it isn’t a usable alternative.
6.4.1 Structs and pointers (AS3h)

6.4.1.1 ATmega324A total size
Atmega324A, interrupt vector table 126 bytes

Ports 1 2

Opt |Text Data BSS Delta Text Data BSS
-01 574 0 40 134 708 0 80
-02 642 0 40 66 708 0 80
-03 786 0 40 160 946 0 80
-Os 550 0 40 130 680 0 80

Atmega324A, interrupt vector table excluded

-01 448 582
-02 516 582
-03 660 820
-Os 424 554

Note the surprising -02 and-03 deltas when going from 1-2 ports.

6.4.1.2 ATmegal284 total size
Atmegal284, interrupt vector table 140 bytes

Ports 1 2

Opt |Text Data BSS Delta Text Data BSS
-01 604 0 40 142 746 0 80
-02 678 0 40 68 746 0 80
-03 822 0 40 162 984 0 80
-Os 580 0 40 138 718 0 80

Atmegal284, interrupt vector table excluded

-01 464 606
-02 538 606
-03 682 844
-Os 440 578

63

6.4.1.3 ATxmegal28A1 total size
Atxmega 128A1, interrupt vector table 500 bytes
Ports 1 2 3
Opt |Text Data BSS | Delta Text Data BSS Delta Text Data BSS

-01 1060 0 40 188 1248 0 80 174 1422 0 120
-02 1078 0 40 168 1246 0 80 168 1414 0 120
-03 1054 0 40 262 1316 0 80 266 1582 0 120
-Os 1050 0 40 168 1218 0 80 168 1386 0 120

Atxmega 128A1, interrupt vector table excluded

-01 560 748 922
-02 578 746 914
-03 554 816 1082
-Os 550 718 886
Structs and pointers -Os, incl IV Structs and pointers -Os, excl IV
1600 1000
@ 900
£ — g o ——
L a2 700
& 1000 - g 600 /
§ 800 ATxmegal28A1 % 500 __h e ATxmega128A1
°
é 600 |—gm—— ATmegal284 g ggg ATmega1284
& 400
?f e— ATMega324A S 200 em— ATMega324A
& 200 2 100
[-%
0 0
1 2 3 1 2 3
#Serial ports #Serial ports

Figure 27: Structs and pointer scaling

This is surprising. | had expected an offset caused by the differently sized IVs (Interrupt Vector
tables), but even without it there is a significant difference between ATmega and ATxmega:

e 2 serial ports: ATxmegal28A1l is 718-554=164 bytes bigger than ATmega324A
e 1 serial port: ATxmegal28A1 is 550-424=126 bytes bigger than ATmega324A
® Fictive O serial ports: ATxmegal28A1 is 126-(164-126)=88 bytes bigger than ATmega324A

As we see in the tables on the previous page, the various optimization levels don’t scale uniformly,
but for -Os let’s roughly say that an additional port (including both application code and driver)
requires 164-126=38 more bytes for ATxmegal28A1 than for ATmega324A. As the high-level
application code is identical, we could at least assume that it’s the driver itself that is more
“expensive”. It we subtract 38 from 126 we get a fictive 0-port difference of 88 bytes. Just looking at
the high-level code, it’s not possible to see where the 38 bytes come from. | can only find this:

e ATxmega needs to set TX pin as output, while ATmega does this automatically when enabling
the USART.

e The ATxmega USART config writes to one more register than the ATmega counterpart (which
is partly specific to my settings).

64

Could it be that the compiler is including support for the EIND and RAMP/D/X/Y/Z registers? | added
support for the 128kB ATmega:

e 2 serial ports: ATxmegal28A1 is 718-578=140 bytes bigger than ATmegal284
e 1 serial port: ATxmegal28A1 is 550-440=110 bytes bigger than ATmegal284
® Fictive O serial ports: ATxmegal28A1 is 110-(140-110)=80 bytes bigger than ATmega1284

Slightly different results, but
The -Os deltas are:

e ATmega324A: 130 bytes
® ATmegal284: 138 bytes
e ATxmegal28Al: 168 bytes

| will have to look at the disassemblies to see what is going on.

An 88- or 80-byte initial offset is more credible, as the ATxmega clock, peripheral module power, and
interrupt level configuration is much more extensive than ATmega’s.

6.4.2 Statics
The test results are listed in appendix A.8. Generally speaking, the “statics, row-major” and “statics,
column-major” graphs are very similar to the S&P graphs above.

6.4.3 Code size comparative graphs

From an ATmega code size perspective, static addressing is clearly better when using only one serial
port. At two ports it’s a tie. Column-major array addressing is consistently better than row-major
(which is the C “default”). With three or more ports, S&P become increasingly better. A small note:
row-major addressing might be better in the long run, as successive reads from one port’s “working
area” can use post-increment, which is more efficient than adding to the pointer or using
displacement. This is why | choose to concentrate on row-major.

The ATxmegal28A1 graph indicates something quite unexpected: the lines don’t seem to be
crossing. At least up to and including three ports, static addressing is better. Please bear in mind that
after initialization, the only real high-level differences are the register addresses to exactly the same
kind and number of registers. | had expected the ATxmegal28A1 to scale very similarly to the
ATmegal284. There is a fluctuation in the deltas, which indicates that the compiler, while adhering
to its rules, might produce results that seem a bit random. This is pure speculation in an effort to
make sense of the test results. We’ll soon see.

65

ATmega324A -Os, incl IV ATmegal284 -Os, incl IV

700 800

N

680
660

640 /

620 /

600 Structs

580 -# Statics, row-m
560

750

700 /

650 Structs

e Statics, row-m
600 -

Program code size, bytes
Program code size, bytes

// Statics, col-m Statics, col-m
540 550 4
520 14
500 500
1 2 1 2
#Serial ports #Serial ports

ATxmegal28A1 -Os, incl IV

1400

1350 y i
«»
£ 1300 y 4
-]
o 1250
N
]
3 1200 e— Structs
g 1150
£ 1100 | £ em—tatics,row-m
e
:'c_f 1050 + Statics, col-m
a

1000

950

1 2 3

#Serial ports

Figure 28: Scaling #ports

6.4.4 Code size and clock cycle count ISR, Interrupt Service Routine

6.4.4.1 Statics row-major
Please see appendix A.8.3.1 for the test result data. The clock cycle count on the static row-major ISR
routine shows two reasons for the difference in code size (and clock cycles):

e Devices with >64kB program memory must use the RAMPX/Y/Z registers for the >16bit part
of the address. This doesn’t apply for ATmega324A but for the other two.

e Devices with support for EBI (External Bus Interface) can address more than 64kB of data
memory. So long as the application only uses internal SRAM, it is far from reaching this limit.
Of the microcontrollers in this test, this is only relevant for the ATxmegal128A1. Its internal
SRAM starts at 0x2000 (8kB) and ends at 16kB (0x4000).

| did a quick search for a way to tell the compiler that only internal data memory is used, but | only
found one web page that expressly deals with it: (64) %

“Unfortunately the only way to do this is to use the "naked" function attribute on your ISRs, but then you'll have to take care
of doing the ISR prologue and epilogue yourself.

8 http://avr.2057.n7.nabble.com/How-can-I-turn-off-gt-64K-ram-support-for-ATxmegal28al-target-
td10341.html

66

If you compile using a different architecture (that doesn't have > 64K RAM), then you'll have to deal with including the
correct 10 header file, and possible other issues.”(User name Weddington, Eric)

“It seems the gcc does what | want if | use the atxmega128a3 target with the atxmega128al 10 header file. The XMEGA
manual doesn't say if the RAMP* registers are cleared by reset, so to be sure | clear the RAMP* registers in init2, before first
RAM access.” (User name Rothe, Michael, who asked the original question)

| suppose that the compiler keeps track of the RAMPD value and thereby knows that it never changes
from zero, so that the actual application code isn’t bothered by this. It probably generates a set of
default ISR entry and exit operations. If this is the case, only the ISRs will suffer from the 5-word
RAMPD waste.

| first thought that there’s a bug in the ATmegal284 ISR entry. It PUSHes RAMPZ but doesn’t clear it
afterwards like the ATxmegal28A1 code. After looking at the ATmegal284 datasheet, it seems that
the RAMPZ register is only relevant for the ELPM/SPM program memory instructions.

Another thing is also clearly seen: A number of instructions have different implementations in
ATmega and ATxmega. Mostly this seems to be to ATxmega’s advantage and in the PUSH-frequent
ISRs this means that although it is six instruction words larger, it takes only one more clock cycle. If it
were possible to instruct the compiler to disable EBI support (so that RAMPD would only be cleared
in the default initialization), the ATxmega128A1 ISR could actually be five clock cycles (9%) faster
than the ATmega1284. (It could of course be done with inline assembly.) As it currently is, the
ATxmegal28A1 incurs a “complexity cost” of 18% over the program memory-wise equally-sized
ATmegal284 microcontroller.

6.4.4.2 Structs and pointers

Please see appendix A.8.3.2 for the test result data. The S&P approach additionally uses the X pointer
(including RAMPX), which adds five instructions and six clock cycles to ATxmegal128A1. This is only
part of the difference, however. Let’s look at the disassemblies:

67

6.4.4.3 Structs and pointers function code for inlining into ISR
inline void USART_RXComplete(UsartData_t * usart_data)

{
uint8_t tempRxHead = \

(usart_data->RxHead + 1) & USART_RX_BUFFER_MASK; // Advance buffer head

usart_data->RxHead = tempRxHead; // Store new index
usart_data->RxBuffer[tempRxHead] = \
usart_data->Usart->DATA; // Store received data in buffer

}

This becomes the following ATmega324A assembly (with the corresponding figures for
ATxmegal28A1):

W C Description

LDS R26,0x013C 2/3 X points to USART reg

LDS R27,0x013D 2/3 X points to USART reg

ADIW R26,0x06 1/0 2/0 X points to USART reg -> DATA/UDR
LD R24,X 1 1/2 R24 =received character

LDI R26,0x4E 1 1 Xpointsto RxHead

LDI R27,0x01 1 1 X points to RxHead

LD R30,X 1 1/2 Low(Z) = RxHead

SUBI R30,0xFF 1 1 Low(Z)=RxHead+1

ANDI R30,0x0F 1 1 Low(Z)=(RxHead + 1) & bitmask

ST X,R30 1 1 RxHead=Low(2)

LDI R31,0x00 1 1 High(Z) = 0 (Z now contains buffer index)
2
2

SUBI R30,0xC4 1 1 Add buffer base address to Z pointer
SBCI R31,0xFE 1 1 Add buffer base address to Z pointer
STD Z+2,R24 1 2 Storereceived character in buffer + 2
ATmega total 16 18
ATxmega total 15 20

Please note that the ADIW instruction isn’t necessary for ATxmega, as its struct starts with the DATA
register. In ATmega324/1284, the data register UDR is the sixth in its struct. Also, | fail to see why the
compiler didn’t include the displacement in the preceding SUBI&SBCI, as the ATxmega would have
saved one clock cycle by it.

68

6.4.4.4 Statics row-major ISR code

uint8_ t data = UDR1; // Read the received data
uint8_t tmphead = \

(USART_RxHeadl + 1) & USART_RX_BUFFER_MASK; // Calculate buffer index
USART_RxHeadl = tmphead; // Store new index
USART_RxBufl[tmphead] = data; // Store received data in buffer

This becomes the following ATmega324A assembly (with the corresponding figures for
ATxmegal28A1):

C
2/3 R24 = received character
2/3 Low(Z) = RxHead

LDS R24,0x00CE
LDS R30,0x0101

W

2

2
SUBI R30,0xFF 1 1 Low(Z)=RxHead+1
ANDI R30,0x0F 1 1 Low(Z)=(RxHead + 1) & bitmask
STS 0x0101,R30 2 2 RxHead =Llow(2)
LDI R31,0x00 1 1 High(2) =0 (Z now contains buffer index)
SUBI R30,0xC8 1 1 Add buffer base address to Z pointer
SBCI R31,0xFE 1 1 Add buffer base address to Z pointer
STD Z+0,R24 1 2/1 Store received character in buffer
ATmega total 12 13
ATxmega total 12 14

It is clear that the additional operations required by pointing into the struct come at a cost:

ISR actual code ATmega324A ATmegal284 ATxmegal28A1

InstrW InstrC |InstrW InstrC |InstrW InstrC
Statics, row-major 12 13 12 13 12 14
Structs and pointers 16 18 16 18 15 20
Worse % 333% 385%| 33.3% 38.5%| 25.0% 42.9%

The above table only contains the actual application code. On average, it's 29% more program code
and 41% more clock cycles.

Just to get the complete picture, here are the figures for the entire ISRs:

Complete ISR ATmega324A ATmegal284 ATxmegal28Al

InstrW InstrC |InstrW InstrC |InstrW InstrC
Statics, row-major 29 46 33 53 39 54
Structs and pointers 37 59 41 66 51 72
Worse % 27.6% 28.3%| 242% 24.5%| 30.8% 33.3%

Including the ISR entry and exit code yields a slightly better result. It should be said that the ISR:s
contain all code in each one, as the other option (additional function call) resulted in more stack

operations plus (R)CALL&RET than was saved by code reuse. In non-ISR code, function calls might
work better than here.

69

A rearrangement of the figures for complete ISR also clearly shows the complexity cost, as we change
from smaller and simpler to larger and more complex:

ATmega324A ATmegal284 ATxmegal28Al

Structs and pointers, W 37 41 51
Statics row-major, W 29 33 39
Structs and pointers, C 59 66 72
Statics row-major, C 46 53 54
Complexity cost, instruction words Complexity cost, clock cycles
60 80
% i /
60 -
40 2 5o | —
3 — E -
‘g 30 - ;: 20
= Structs and 3 30 Structs and
20 pointers, W * pointers, C
10 Statics row-major, 2 e Statics row-major,
w 10 C
0 0
K o> » N > 0o
Q’Q??;\’ &QO;& z@& é‘;ﬂ @&0 z"g’&
9({\ ® & v& ® <«
Microcontroller Microcontroller

Figure 29: Complexity cost

6.4.5 Code size and clock cycle count, transmitting

6.4.5.1 Statics row-major

Please see appendix A.8.4.1 for the test result data. The reason why the ATmegas have fewer clock
cycle counts is more efficient LDS instructions and a quicker RET due to 16-bit PC. The code in italic is
hand-written for a quick comparison.

6.4.5.2 Structs and pointers

Please see appendix A.8.4.2 for the test result data. This is the situation in which S&P is at its best,
when recieving base address pointer and data it’s as small and fast as one-port static
implementation, for any number of ports.

This is also illustrated by the following two graphs:

70

ATxmegal28A1l transmit
instruction words

30

25

. e
. pd
o /

Z

e Statics

#Instruction words

— S & P

1 port 2 ports 3 ports

#Ports

ATxmegal28A1 transmit clock
cycles

25

20

M S&P one impl

W Statics port 0

#Clock cycles

10
W Statics port 1

Statics port 2

1 port 2 ports 3 ports

#Ports

Figure 30: Transmit scaling

This very good result is maintained so long as your application can supply a base address pointer. As

we saw in the BASCOM-AVR ATxmega implementation, it can also be useful to be able to pass a

simple integer port number. This is what the current statics version wants for input, but the S&P

approach requires a conversion. This could be done in several ways:

® As a switch statement that assigns the corresponding base address pointer (to the USART

directly or to a struct variable with such a pointer).
® As a calculation (which is the BASCOM-AVR approach).
® Asalookup in a vector that holds the base address for each index.

e (As ahardware lookup table reached from a new assembly instruction as discussed in the

summary.)

The first three add a one-time bit of code and a number of clock cycles, both adding an offset to the

S&P numbers.

6.4.6 Why is the transmitting code so much neater than the ISR code?
Let’s modify the USART_Transmit function so that instead of taking the data byte and a pointer to
the USART it takes a pointer to the SerialPort struct that now also contains a field with the data byte:

Original version:

__attribute__ ((noinline)) void USART_Transmit(uint8_t data, USART_ATmega324_t *

usart) {
while (!(usart->UCSRA & (1<<UDRE®)));
usart->UDR = data;

}

Structs and pointers
ATmega324A

Instr

MOVW R30,R22
LDD R25,Z+0

SBRS R25,5

RIMP PC-0x0003
STD Z+6,R24

RET

Instr W InstrC Comment

1
1
2 1sttry
2
2
4

16-bit PC

N R N R R R

12

71

// Wait for empty transmit buffer
// Start transmission

Modified version:

__attribute__ ((noinline)) void USART Transmit(UsartData_t * SerialPort) {
while (!(SerialPort->Usart->UCSRA & (1<<UDRE®))); // Wait for empty tx buffer

SerialPort->Usart->UDR = SerialPort->Data; // Start transmission
}
Structs and pointers
ATmega324A
Instr Instr W Instr C Comment Description
MOVW R26,R24 1 1 X points to the struct SerialPort that starts with *Usart
LD R30,X+ 1 1 Z points to the USART status register
LD R31,X 1 1 Z points to the USART status register
LDD R18,Z+0 1 1 R18 = content of the status register
SBRS R18,5 1 2 1sttry Check if data register is ready to receive
RJMP PC-0x0002 1 2 If not, repeat
MOVW R26,R24 1 1 X points to struct SerialPort
ADIW R26,0x14 1 2 Adjust so X points to SerialPort->Data
LD R24,X 1 1 R24 = SerialPort->Data
STD Z+6,R24 2 2 Write R24 to USART data register
RET 1 4 16-bit PC

12 18

These very similar high-level functions become slightly different in assembly: 71.4% more code and
50% more clock cycles. The reason is that two pointers (X and Z) are now necessary.

The conclusion | draw from this is that with an object-inspired data model (S&P with encapsulated
data) you run the risk of hidden complexity that makes the application bigger and slower. In my
particular application | could probably avoid conversion from serial port #0-7 to a HW module base
register pointer (as shown in the S&P code), but we have seen that if such a software-based
conversion must be used, S&P will only become an option at higher module instance counts.

Please note that the differentiator isn’t really the number of instances of a specific HW module but
actually in how many different ways your application uses it. If your external peripheral driver
operates on all instances in one go, S&P will never have a chance to scale into competitiveness. The
serial ports, on the other hand, are used independently so S&P is an option.

6.4.7 How to choose between legacy static addressing and structs and pointers?
This is as far as | can go in my analysis of the “legacy” use of static addressing vs. the alternative use
of S&P. There are several considerations | can immediately think of:

® |sthe object-oriented data model (S&P) better when applications grow in size?

® |s S&P better at explaining the data model, due to its data grouping? Or is this rather a
guestion of coming up with informative variable names and writing good documentation?

® |s static addressing better at showing what the program really does?

e At a certain point, it becomes inefficient to pass more parameters to a function (not to
mention receiving the return value(s)). It depends on how many registers you can use
without putting the parameters on the SW stack, so it also depends on how “big” your
parameters are.

| thought about the possibility of combining the two models, so | changed the S&P ISR to be as similar
to the statics version as possible:

72

ISR(USARTE@_RXC_vect)

{
uint8_t data = SerialPort@.Usart->DATA; // Read the received data
uint8_t tmphead = \

(SerialPort@.RxHead + 1) & USART_RX_BUFFER_MASK; // Calculate buffer index
SerialPort@.RxHead = tmphead; // Store new index
SerialPort@.RxBuffer[tmphead] = data; // Store received data in buffer

}

Unfortunately it -Os compiles to the same size as the original S&P version, so it’s apparent that this
could only be achieved by hardcoding the memory addresses for the instance fields. This would make
the application very difficult to maintain.

Another way to use a hybrid data model might be to do HW module register operations with structs
but otherwise use static addressing. However, | don’t know if this would be possible and better and |

don’t have time to investigate it.

6.5 Protocol-bound ISR scaling (AS3j & AS3Kk)

As previously discussed, | chose row-major array addressing as it is more efficiently read (and
written) with post-incrementing pointer, even though column-major consistently resulted in slightly
smaller code.

The test results (appendix A.8.5) show that the optimization levels scale differently. | have mostly
used -Os for comparisons, so I'll continue doing so. Please note that with -Os S&P is slightly better
than statics, but with -0O3 the situation is reversed.

Protocol-bound ISR, incl IV -Os

1200

1000

@
Q
B3
) W ATmega324A
o
x
& H ATmegal284
= ATxmegal28A1

1S statics row-m, 18 BSS 1M S&P, 20 BSS 1M statics row-m, 18 BSS 2M S&P, 40 BSS 2M statics row-m, 36 BSS

#ports, single- or multi-port code, statics or structs and pointers

Figure 31: ISR scaling, incl IV

73

Protocol-bound ISR, excl IV -Os Protocol-bound ISR, excl IV -03

700 700 -

Text, bytes
Text, bytes

m ATmega324A m ATmega324A
W ATmegal284 W ATmegal284
ATxmegal28A1 ATxmegal28A1
1S statics 1M S&P, im 2M S&P, M 1S statics 1M S&P, im 2M S&P, M
row-m, 20BSS statics 40BSS statics row-m, 20BSS statics 40BSS statics
18 BSS row-m, row-m, 18 BSS row-m, row-m,
18 BSS 36 BSS 18 BSS 36 BSS
#ports, single- or multi-port code, statics or structs and pointers #ports, single- or multi-port code, statics or structs and pointers

Figure 32: ISR scaling, excl IV

This test consists of one generic version that supports one to several ports and one version that only
works with one port. This is to get a feeling for the cost of using a generic design. A very rough
number is the average of (1M statics — 1S statics) / 1S statics for tests w/o IV but with initialization:
14.6%.

One thing stands out when looking at the protocol-bound ISR: The prologue (26 instructions) and
epilogue (22 instructions) are big. What’s more: the ISR code in appendix A.8.6 is included once per
instance. With inline assembly, it should be possible to save some 90 bytes for ATxmegal28A1. (Less
for the other two, but still a significant reduction.) The “-mcall-prologues switch” can be used to
generate one common set of this code. (65) ¥’

Alternatively, it would be nice to be able to place it in the unused parts of the IV. An AVR Freaks user
forum thread describes in detail two ways to do it: either provide a custom .vectors section or use
the -nostartfiles flag and write all IV and default initialization yourself. (66) ® Similar (and other)
information can be found here: (67) ¥ (68) ° This post explains why it isn’t (?) a standard feature; it’s
safer to let all the unused interrupts jump to an eternal loop. (69) **

87

http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=97382&start=all&postdays=0&posto
rder=asc

® http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&p=1131093#1131093

plog.schicks.net/wp-content/uploads/2009/09/bootloader fag.pdf

% http://gcc.gnu.org/onlinedocs/gec/Link-Options.html

! http://sourceware.org/ml/binutils/2013-02/msg00180.html|

74

6.6 ATmega324A structs and pointers two-port USART ISR placed in IV

| was curious of how difficult and time-consuming it would be to place the USART ISR inside the ISR,
so | had to test it. | made some minor changes to the interrupt handler C code and -Os compiled it to
get the disassembly. (Appendix A.9.1.)

My real application uses two more interrupts, INT2 and PCINT2.18, so | had to reserve vectors 0x06
and 0x0C for them. There are three main differences compared to the default ISR prologue and
epilogue generated by C code:

® |t has one common epilogue and most of the prologue is also shared.

e Asit doesn’t call a function, the ISR only needs to PUSH&POP the used registers.

e |t only cares about the RAMPD/X/Y/Z and EIND registers that are relevant. This makes no
difference for the ATmega324A, some for ATmegal284, and some more for the
ATxmegal28A1l as shown earlier.

Reusing part of the disassembly code, | end up with the below myvects.S file. It took me some four to
eight hours to complete this, most of which is research time. If | were to do it again, it might take me
two hours. It uses global C variables, a global #define value, and hooks up to INT2 and PCINT2 ISR
handlers written in C code. (Appendix A.9.2.)

It compiles to:

498 text, 0 data, 40 bss (-01)
474 text, 0 data, 40 bss (-02)
430 text, 0 data, 40 bss (-03)
464 text, 0 data, 40 bss (-Os)

The same implementation in C code compiles to:
704 text, 0 data, 40 bss (-01)
680 text, 0 data, 40 bss (-02)
654 text, 0 data, 40 bss (-03)
668 text, 0 data, 40 bss (-Os)

This is roughly 200 bytes more. The default IV ends with instruction word 0x3D (124 used bytes),
which means that my ISR fits into the default IV plus five words. The RJUMPs past the interrupt
vectors take four instructions, so let’s say that the (two first of the) “main differences” listed above
result in a 75 byte code size reduction. (You should be able to achieve something like this with the
naked attribute and assembly placed outside of the IV.) It would have been more on the
ATxmegal28A1 due to the RAMPD/X/Y/Z and EIND registers. (I would disable interrupts when inside
the bootloader and with only internal RAM there’s not much need for >64k support in the ISR.)

Is it worth it? Well, once you have learned how to do it, it is pretty quick. | would recommend
keeping the C code and doing future changes to the high-level code, with disassembly and manual
modifications to the assembly code. It is of course more time-consuming to maintain than high-level
code, but not very much for an experienced developer. Nevertheless, placing code in the IV space is
something you normally only do when you’ve run out of program memory or when you need to
squeeze in as much as possible in a bootloader. (Later | moved the ISR out of the IV and instead
placed a number of short custom math (and other) routines there. They are easy to move if you need
to start using an additional interrupt vector. The maintenance cost is practically zero.)

75

7 Compilation and discussion of the test results

7.1 Static vs. dynamic addressing (BASCOM-AVR) or S&P (AVR-GCC C)

The BASCOM-AVR implementation of the ATmega USART send commands is static, while the
ATxmega design does base address calculation based on port number. We saw that the two
approaches are almost identical in size at three ports, although the address calculation makes it
much slower. At eight ports, dynamic addressing takes 36% more clock cycles compared to the static
addressing average. At three ports it’s 90% more and at one port it’s 124% more clock cycles.

At one port, dynamic-addressed sending uses (46 - 26) / 26 = 76.9% more program code than static.
At eight ports it saves (161 - 115) / 161 = 28.6%.

Much of the extra cost comes from the address calculation. In the AVR-GCC comparisons the pure
S&P-based code is equal in size to static-addressed at two ports. At only one port they are equally
fast, but S&P scales better (=flat), so from a performance perspective it is always a good choice.
Please note that this test result requires that the base address is always known, i.e. an object-
oriented way of always referring to (a struct variable with a pointer to) the USART base address. It
also requires that only one variable is using pointers at each moment. With multiple simultaneous
pointers the calculation and operations come at an additional cost.

If your program uses some kind of device numbering, e.g. port #0-7, and needs to translate this to
either a (pointer to a) peripheral module base address or a (pointer to a) struct variable, you have a
few alternatives that all add program code (mostly once) and clock cycles (for each call):

® As aswitch statement or an “if elseif else” block that assigns the corresponding (base)
address pointer. (The compiler might generate a lookup table.)

® As a calculation (which is the BASCOM-AVR approach).

® Asalookup in a vector that holds the base address for each index.

7.1.1 Suggestion for HW-based translation

To bring this down, | would like to suggest HW-based translation; a dedicated 256 lines * 16-bit wide
SRAM or register lookup table that you call with a device type code and an instance number using a
new set of assembly (machine) instructions:

rlut 0x12 Places the content of LUT address 0x12 in Z.
It uses hardcoded device type and instance number.

rluu 0x3 Places the content of LUT address 0x3[r24 content] in Z.
It uses hardcoded device type. It requires that the instance number is already in r24.
rluv Places the content of LUT address 0x[r25 content][r24 content] in Z.

It requires that the device type and instance number are already in r25 and r24.

wlut 0x07 | Writes the value in Z to LUT address 0x07.
It uses hardcoded device type and instance number.

wluu 0x0 Writes the value in Z to LUT address 0x0[r24 content].
It uses hardcoded device type. It requires that the instance number is already in r24.

wluv Writes the value in Z to LUT address 0x[r25 content][r24 content].
It requires that the device type and instance number are already in r25 and r24.

Figure 33: Proposed instructions for look-up table operations

76

| realize that it’s highly unlikely that Atmel would actually implement this, but I still think there is
evidence that HW-based translation from instance number to base address is worth investigating
further. Even though | have only analyzed the serial ports, | think that the results are generally valid.
What | want to achieve is a uniform programming style, based only on the S&P approach, but
without the penalties we have seen (especially in the BASCOM-AVR ATxmega implementation). It
would make less of a difference in a pure struct variable design (where the base address is a pointer
field), but the need to translate should be common enough.

Example: A call to a device driver:
Place the instance number in r24 unless it’s already there (as a regular first byte parameter)
rcall your_function

Inside the function:

If necessary, place r31:r30 on the stack. (It would be done anyway, here or before the rcall.)
rluu (hardcoded device type)

Proceed with the driver code.

This would actually result in more than a reduction in the translation itself. Today, the AVR-GCC
function call contains a pointer variable to the device instance base address, e.g. in r25:r24. Before
the call, these two registers must be be written to (possibly after being saved on the stack). rluu only
needs one register. Inside the function, movw r31:r30, r25:r24 is done. rluu eliminates the need for
this. This is a minimum save of one instruction for each function that operates on a base address
pointer and at least one instruction for each time this type of function is called, probably more with
the stack operations.

The struct variable that today has a 2-byte pointer field for the base address would only need one
byte for the instance number, a save of 1 byte of regular SRAM for each instance. This information
might already be in a struct field, in which case 2 bytes would be saved.

This concept is not limited to drivers, but all types of struct variables or “objects”. rluv or rluu could
be used for iteration on objects of the same type, without an overlying vector or linked list that holds
their base address. In this sense, the LUT would implicitly take the place of the data structure itself. It
would certainly be a lot more efficient (and quicker) to increment one or two bytes for the LUT
addressing than do vector indexing or linked list positioning with LDS from SRAM into r25 and r24.

It has another kind of potential advantage: it only requires that the peripheral register layout is
internally uniform (for the registers that are used by the driver), not that the register groups are
placed at an equal distance from each other. Compared to switch/if _elseif else or vector-based
translation, it wouldn’t make a difference, but it would compared to calculation-based translation. |
haven’t analyzed this, but | think that it is worth looking at. It might make it possible to use generic
S&P drivers also for ATmega. At least this is the case for the ATmegaXX4 USARTSs.

There is of course a cost in terms of the dedicated LUT SRAM/registers and logic, and you have to
make at least one initial write to it, which takes a minimum of three instructions. Alternatively, this
functionality could be silicon-based, with only read operations. It would limit the functionality to
peripheral |0 registers, but at no initialization cost. As a third option, it could be an SRAM/register
area that initializes to the silicon-based values but can be over-written.

77

Of course it requires some further analysis, but it would be interesting to test. Maybe I'll try it on a
soft-core logic device.

Please see the XMEGA Custom Logic (XCL) for quite a different type of special functionality. (70) **

7.1.2 More simultaneous pointers with displacement

| have only touched on this subject, but we have seen that S&P performs best when it only needs as
many simultaneous pointers as it can access without moving register content around. As Y is often
used as a SW stack pointer, only Z remains with displacement functionality. X can be used, but
requires addition or subtraction (ADIW, SUBI, SBCI) for each new address (unless post-increment or
pre-decrement can be used).

It’s clear that the struct variable-based programming model often wants more than 2-3 pointers. |
suppose that there are HW or instruction set size limitations, but it would be very interesting to see
how much could be gained by additional full-featured pointers. This need is also stated clearly in
“AVR-GCC-Codeoptimierung” (71) ** and implicitly in “The AVR Microcontroller and C Compiler Co-
Design” (20).

In comparison, ARM has full pointer support on 13 general-purpose registers. (72) ** This should
enable quite different possibilities for the struct- or object-based programming model. The fact that
AVR 8-bit microcontrollers only have three memory pointers is probably its greatest weakness. If
ever Atmel releases an ATxmega2, it should definitely incorporate more pointers.

7.2 Hardware-related complexity costs

Experienced designers and developers are generally aware that there are hardware complexity cost
factors, although | believe that their actual impact in terms of code size and clock cycles is less well-
known. As we’ve seen from the disassemblies they can make a significant contribution, especially in
certain cases.

7.2.1 Program memory sizes

If your application uses “many” interrupts, a lot of ATxmega instruction words will do RAMP stack
operations (unless you tell the AVR GCC compiler to generate one common set of interrupt prologue
and epilogue that does a lot of stack operations or use “ISR(vector_name, ISR_NAKED)” to prevent it
from generating prologue and epilogue). BASCOM-AVR has a corresponding “nosave” attribute. The
ISR disassemblies showed us that this effect can be quite big (37.8% more code with S&P and 34.5%
with statics):

Structs and pointers ISR Statics ISR

ATxmegal28A1 51W, 72C ATxmegal28A1 39W, 54C
ATmegal284 41W, 68C ATmegal284 33W, 53C
ATmega324A 37W, 61C ATmega324A 29W, 46C

%2 http://www.atmel.se/Images/Atmel-42083-XMEGA-E-Using-the-XCL-Module Application-Note AT01084.pdf
% http://www.mikrocontroller.net/articles/AVR-GCC-Codeoptimierung
** http://www.eng.auburn.edu/~nelson/courses/elec5260 6260/ARM Assylang.pdf

78

However, | don’t think that the typical application (except for the ISRs) suffers that much from this as
| assume that the compiler only changes these registers when it has to.

A short summary:

® RAMPD together with constant K: necessary for addressing data memory above 64kB. This is
(only?) relevant when using ATxmega EBI (External Bus Interface) with external RAM.

e RAMPX/Y/Z together with X/Y/Z pointer: used for indirect addressing of the data memory
above 64kB. RAMPZ:Z is also used when reading and writing program memory above 64k
words (128kB), typically by bootloader code.

e EIND together with Z pointer: used for certain jumps and calls on devices with more than 64k
words (128kB) program memory. 128kB devices with bootloader space outside of the regular
memory called “application section” and “application table section” need this, e.g.
ATxmegal28Al.

ATxmega64A1 has all of these except EIND while ATxmegal28A1 has all.

ATmegal284 has RAMPZ for ELPM and SPM program memory operations, but the other ATmegaXX4
don’t have any.

7.2.2 Feature-fulness and architecture

7.2.2.1 1V, Interrupt vector
More peripheral types and instances means a bigger IV:

* ATmega324A: 124B
e ATmegal284:140B
e ATxmegal28Al: 500B

| have shown various ways of using all or the end of the IV space for custom code, but this is
something you typically don’t do unless you have exceeded the program memory size. The simple
two-port S&P ISR code without error handling for ATmega324A saved roughly 200 bytes, of which
about 75 came from avoiding duplication of ISR prologue and epilogue.

As a result of a forum question by me, BASCOM-AVR 2.0.7.7 and later has an unsupported switch,
Sreduceivr, that truncates the unused end of the IV. This means that your application code will start
inside the IV area, giving you some extra space.

7.2.2.2 Configuration code
More configuration options means more configuration code:

® ATmegaxx4: system clock setup is mainly done via flash fuse bits. With an external crystal,
ilt’s only the prescaler that needs to be set with two two-word instructions. Power reduction
is one two-word instruction for all ATmegaXX4 devices except ATmegal284 that (might)
write to two registers.

® ATxmegal28Al: A system clock setup sequence that takes about 26 instruction words for
external crystal and six power reduction registers that require at least eleven one-word
instructions to write to. ATxmega also requires that you set the USART transmitter pin to

79

output, while ATmega does this automatically. (This shouldn’t make an actual difference in a
real application, as you typically initialize each port in one go.)

7.2.3 Instruction set and CPU register file

| don’t have time to go into these areas, but | should at least mention the fact that that differences in
memory layout (e.g. banked or non-banked), instruction set, and the number and type of CPU
registers have an impact. E.g. RISC programs have been found to be 30% bigger than CISC. (73)

It’s also worth noticing that “Our study suggests that at performance levels in the range of [ARM Cortex] A8 and
higher, RISC/CISC is irrelevant for performance, power, and energy.” (74)

7.2.4 Is HW complexity costs a reason to use soft-core logic devices instead?
Is there a complexity-related boundary for general-purpose microcontrollers? | won’t try to answer
this question here, but rather just put it up for discussion.

7.3 Software-related costs
7.3.1 Optimizing or non-optimizing compiler

7.3.1.1 AVRGCC

The AVR GCC (Gnu Compiler Collection) toolchain is the heart of Atmel Studio 6. It has a powerful
optimizing compiler with four usable optimization levels. As we’ve seen, you can’t be sure to get the
smallest code with the -Os level (size-optimization) nor the fastest one with -O3 (speed-
optimization). If you are seriously interested in optimizing your code, you are adviced to disassemble
and look at what it actually does, typically doing iterative modifications to your high-level code.

Nevertheless, | am very happy with its performance. Sometimes you can get a big improvement by
using hand-written assembly (e.g. ISR), but on other occasions the two seem to be on a par with each
other. Especially in very complex situations, | believe that the optimizing compiler wins so long as you
write code that is easy to compile well. This is easier said than done in a complex situation.

7.3.1.2 BASCOM-AVR

BASCOM-AVR is a non-optimizing compiler that generates a stitch-work of pre-defined (hand-
optimized) assembly code (i.e. built-in commands) and interconnecting pieces of compiled VB. It
places all local variables and call parameters on a SW frame stack. This can save RAM compared to
using global or static local variables and in some environments enables reentrancy and recursion.
(General information about the use of stacks can be found here: (75) %)

An optimizing compiler keeps as many variables as possible in the working registers, which can
eliminate or reduce the need to work with the frame stack, with the advantage of smaller and faster
code.

BASCOM-AVR’s advantage is that it is completely predictable. You can look at the assembly library
code and probably also modify it (or at least reuse it). It’s also a trade-off against IDE and command
development time. They put great effort into making it easy for the developer to implement the
most common functionality, quickly.

% http://www.ece.cmu.edu/~koopman/stack _computers/secl 4.html

80

7.3.1.3 Comparison
BASCOM-AVR’s ATxmega sole design principle of doing address calculation makes it impossible for a
comparison of compiler efficiency. (After writing this, BASCOM’s owner Mark Alberts has read and

commented on my thesis. He will include a developer option for ATxmega, which should put it back
in the game.)

Luckily, BASCOM-AVR’s ATmega implementation is static, so it’s quite ok for such a benchmark:

Excl. 124B1V,
Excl. 124 B IV and | unused B-A code,
ATmega324A |All code Excl. 124 B IV unused B-A code |and init
Compiler BA6b BA7 BA8a|BA6b BA7 BA8a|BA6b BA7 BA8a|BA6b BA7 BA8a

BASCOM-AVR | 724 688 484| 600 564 360| 582 546 342| 532 496 292
AVR GCC-03 470 470 412| 346 346 288| 346 346 288| 296 296 238
AVR GCC -Os 490 490 412| 366 366 288| 366 366 288| 316 316 238
B-A biggerby | 51% 43% 17%| 69% 58% 25%| 63% 53% 19%| 74% 62% 23%

The BASCOM-AVR version was developed first and then translated into C. BA6b and BA7 has the
same C counterpart as the latter’s send routine is already “custom-like” in BA6b.

e BAG6b: VB high-level only version
e BA7: Custom inline assembly send routine

e BAB8a: Custom inline assembly send routine and protocol-bound ISR

Please note that:

* There are slight differences in the ISR functionality, although both use a circular RX buffer.
e The BASCOM-AVR BA6b version has a more multi-purpose send functionality.

In other words, you must take the above figures with a grain of salt. Nevertheless, | draw two
conclusions from this:

e BASCOM-AVR’s design with command stiching generates some 70% bigger code in this test,
when the IV is excluded.

® |tis possible (and wise?) to reduce the difference by using inline assembly in select places.

7.3.2 Generic software library or built-in commands

The test results above (mostly BA6b and its C counterpart) come from using BASCOM-AVR built-in
commands and Atmel application note code. For BASCOM-AVR it means a certain overhead when
entering and exiting the commands, but it is still much more efficient than writing VB-only

implementations of the commands. In other words: BASCOM-AVR benefits greatly from its
commands.

81

When it comes to Atmel library code there are two choices:

® Application notes that present the design, its background and considerations, and give you a
simple demo program with the driver code. | found these to be informative, to the point, and
easy to use together with the datasheets.

e ASF, Atmel Software Foundation, is a repository for drivers and demo projects. | found this to
be buggy, tedious, fragmented and bloated beyond comprehension. In the end, | have come
to use the ASF Wizard to include ASF modules just to get convenient access to the driver
header files. This also enables me to look at the ASF code and in some cases copy from it.
Generally, | prefer reading application notes and datasheets.

This means that | opt out of the claimed easy transition to ARM - it’s not worth the ASF
penalty. If and when that day comes, | will write custom drivers for ARM.

What | would like from Atmel in this area is a driver code generator with a simple GUI.

7.3.2.1 (Lack of) exclusion of unused code

BASCOM-AVR suffers a little from unused code, but the cases | have come across are mostly basic
supporting functionality that you are likely to need at some later point in your actual application. Due
to its use of built-in commands, it avoids the problem of massive inclusion of unused driver code.
This means that compared to ASF, BASCOM-AVR in many cases actually produces a lot less code.

ASF, on the other hand, is like getting fleas: You don’t just get one. You get all their aunts and cousins
too. A simple ATxmega clock setup, USART driver/service configuration, and dummy sending of one
byte (without the ISR) lands you at about 1900 bytes. We saw that a minimum hand-written C
implementation takes -Os 822 bytes, of which the interrupt vector table is 500 bytes and the default
initialization and clock management account for 122 bytes. Just including all the driver modules my
real application needs would leave me with -Os 8334 or -0O3 9954 bytes. This is just silly. | wonder if
this is part of the reason why Atmel has so limited ASF support for ATmega; It simply wouldn’t work -
the program memory would already be filled with dead code from AZF, the Atmel Zombie
Foundation.

The good news is that going from USART HW-oriented driver to cross-platform service only sets you
back 82 bytes on top of the driver’s 1840 bytes. It doesn’t seem to be very expensive to add an
abstraction layer to your custom driver code, although this is really only an assumption.

82

7.3.2.2 General-purpose driver that does something similar to what you need
The BASCOM-AVR send routines support three different types of transfer:

¢ Sending a constant
¢ Sending a 1-byte variable
¢ Sending an n-byte string variable

The Atmel application note code is a simple “send one character” routine — just what | wanted. To
send a string you must add custom application code, which makes the BASCOM-AVR approach less
expensive in comparison.

7.3.3 High-level code vs. assembly

Due to the lack of optimization in BASCOM-AVR, | would say that it benefits more from inline
assembly and custom assembly subroutines and functions. While the built-in commands greatly
reduce development time, sometimes a custom implementation is prefereable. One example is the
protocol-bound ISR handler. A 44% reduction in code size was achieved by replacing the generic
command-based ISR and VB application code with protocol-bound inline assembly.

With AVR GCC’s optimizing compiler you can manage with high-level code in most situations. Inline
assembly or assembly functions are necessary when you want to make sure that operations are
carried out in a certain order and proximity. We also saw that assembly makes it possible to use all of
the IV, with a minimal increase in maintenance “cost” (which you’d normally only do for a
bootloader).

| found that using Assembly doesn't take much time, if you start with high-level code and modify the
disassembly. Much of the time spent is on initial learning, a one-time cost.

7.4 Programmer skills

The incremental improvements to the BASCOM-AVR ATmega324A test code showed that | could
reduce the VB-only code (excl. IV) from 882 to 600 bytes (32%). | found a bug (in the routine for
copying data from the circular buffer to the work vector) and understood some consequences of
various programming styles and ways to encase commands. The most striking was how expensive it
is to use locals and call parameters in a stack-only compiler philosophy. If you want to minimize your
BASCOM-AVR code, you should use global variables with gosub-specific alisases. If you do, an
absolute requirement is that you make 100% sure that your alias-globals really only have local
scopes. You must also be certain that your code doesn’t have to be reentrant, e.g. from an ISR, which
is the only real multi-process situation you can have with AVRs.

It is obvious that really knowing what you are doing can have a great impact on code size. Being
willing to question and circumvent conventions helps.

83

7.5 ATmega or ATxmega or both?

7.5.1 Hardware aspects

So, how do you choose between ATmega and ATxmega? For my application needs, ATxmegaAlU has
four main advantages: HW encryption engine (for my bootloader), USB interface, DAC, and a lower
price for more or similar functionality. It has a higher maximum clock frequency, DMA, event system,
bootloader in addition to the 64 or 128kB program memory, can use external RAM, and possibly has
lower power consumption (and more), although | currently don’t need this.

On 2014-02-05, www.farnell.se lists the following prices for similarly sized or featured AVRs:

e ATMEGA324A-AU: SEK 41.92

e ATMEGA1284-AU: SEK 58.46

e ATMEGA128A-AU: SEK92.21

e ATMEGA1280-16AU: SEK 145.32
e ATMEGA1281-16AU: SEK 123.39
* ATXMEGA64A1-AU: SEK 75.17

e ATXMEGA128A1U-AU: SEK51.12

We have seen that the additional and improved functionality has a cost in terms of:

e Bigger |V, interrupt vector table.
®* More configuration code and possibly more transaction-related code (although this is an
assumption).
e More memory-related additional operations needed (RAMPD/X/Y/Z and EIND). Especially for
ISRs with individual prologue and epilogue, this makes a code size difference.
e A greater fraction of registers outside of the |0 memory area. This couldn’t be seen in my
test programs as the ATmegaXX4 USARTSs are outside of the IN/OUT instruction area.
o InATmegal284, 32 of the 100 peripheral registers can be accessed via IN/OUT, plus
the digital 10 pin registers.
o In ATxmegaAlU, 4 of the 61 peripheral register groups can be accessed via IN/OUT,
excluding the digital 10 pin registers. 4 of the 11 10 ports can be mapped to virtual
ports that are covered by IN/OUT.

ATxmega has a more efficient implementation of some instructions, which means that they take
fewer clock cycles. The opposite case also exists.

All'in all, ATxmegaA1U is slower at the same clock frequency and requires more code to do “the
same thing”, but its boot section is in addition to the specified program memory. It’s cheaper
than its ATmega counterparts and can be clocked at a 60% higher frequency. A1(U) has more
internal peripheral types and instances, which means that you might need less external
peripheral circuitry. It has 16 General-Purpose 10 registers that can be used for global variables
with single-instruction bit operations, whereas ATmegaXX4 has only three, of which one is bit-
operable.

84

With the ATxmega product offering ranging from 8kB to 384kB and 32 to 100 pins, | think it’s
clear that Atmel is slowly phasing out the ATmega line. It must be very expensive to maintain so
many different devices.

The complexity costs can be seen in the following graphs:

Protocol-bound ISR, incl IV -Os Protocol-bound ISR, excl IV -Os

1200 700

1000 -

Text, bytes
Text, bytes

m ATmega324A m ATmega324A
B ATmegal284 H ATmegal284
ATxmegal28A1 ATxmegal28A1
1S statics IM S&P, 1M 2MS&P, 2M 1S statics 1M S&P, im 2M S&P, M
row-m, 20BSS statics 40BSS statics row-m, 20BSS statics 40BSS statics
18 BSS row-m, row-m, 18 BSS row-m, row-m,
18 BSS 36 BSS 18 BSS 36 BSS
#ports, single- or multi-port code, statics or structs and pointers #ports, single- or multi-port code, statics or structs and pointers

Figure 34: ISR scaling demonstrating complexity costs

7.5.2 IDE aspects on architecture choice

7.5.2.1 Atmel Studio 6

One of my main concerns about Atmel Studio 6 was ASF’s weak support for ATmega. | was also
wondering if using library drivers with the new ATxmega struct-based addressing would introduce a
programming style that isn’t compatible to ATmega, in effect forcing me to use two different
programming models for the same functionality. This didn’t sound very desirable.

However, with ASF being what it is, | am left with custom code based on application notes,
datasheets, occasional ASF copy&paste, and user forum posts and projects. It takes more time, but it
means that | could develop my own programming model. Based on my investigation results, it would
be a mixed model.

My different test program versions have shown me that the S&P approach is size-wise on a par with
static addressing at two ports if you use a pure S&P design with only one pointer. If you need more
pointers or have to translate a port number to a base, the balance point shifts up. | suspect that
break-even is case-specific but the general principle should hold. For single-instance drivers it
generally seems better to use static addressing.

7.5.2.2 BASCOM-AVR

With BASCOM-AVR you really have one common IDE for ATmega and ATxmega. The commands are
generally the same or similar and it is easy to develop for more than one device in the same ‘project’.
Its users don’t have to worry about which AVR architecture to choose.

The downside is the current ATxmega address calculation design that is very big and slow. | would
like the possibility to choose addressing mode in the configuration command (which will be possible
in a later version due to the results in this thesis).

85

7.5.3 HW (and SW) maturity

One very important factor when deciding on a microcontroller (architecture) is whether the teething
problems are over and it has gained a large user base. At least certain ATxmega devices have had
serious problems. (76) % | have 10 pieces of ATxmega128A1 that | can’t use because single-ended
ADC seems to have been broken in all HW revisions until the silent replacement by the A1U series. |
don’t know what the status is right now, but my general impression is that the ATmega series is
safer. This said, | have reported to Atmel that the ATmegaXX4 datasheet was very unclear about the
fact that only ATmegal284 has timer3. This cost me a PCB redesign...

This is an important topic. HW that doesn’t work as specified or is announced a long time before it’s
generally available, SW that aggravates the user base by simply not working properly, and faulty
documentation is a risky business. At some point, customers might decide to look for another
manufacturer that goes the extra mile to ensure that its customers don’t get nasty surprises. This is
even more important on the ARM market where it’s so much easier to change suppliers.

However, launching two IDEs, a software library, ATxmega, and ARM in such a short period is a
gargantuan task, so maybe they have managed quite well under the circumstances. | can only hope
that their offering is stabilizing now.

7.6 IDE comparison
Both ASF and the BASCOM-AVR documentation could be improved, especially the first. The Atmel
application notes | have used have been relevant and informative.

7.6.1 Atmel Studio 6 with ASF

Atmel Studio 6 is the company’s second IDE based on MS Visual Studio. The predecessor, AVR Studio
5, had a very short life and does not seem to have had many admirers. (77) *’ (78) ® | only used their
proprietary AVR Studio 4 for programming the .hex files from BASCOM-AVR, so my first encounter
with the actual IDE was last spring, on AS 6 for the Cortex M4 ARM. At that point we suffered from
frequent crashes when debugging and had strong opinions on ASF.

Half a year later | am doing this AVR thesis tests on a later version and | am very happy with the
studio itself, even though it takes a long time to start up. Once it’s up and running it’s responsive and
intuitive. The integration with ASF works well, except for the weird fact that it has hung my Firefox
browser on several occasions. This shouldn’t be a problem as | would almost only use ASF for
convenient inclusion of the proper header files. | have a very good impression of the application
notes that | have come across. | also like both the ATmega single datasheet and the ATxmega dual
datasheets, even though | have found and heard of several errors. (76) *°

| haven’t investigated what | would need to do to enable multi-device development in an Atmel
Studio 6 project, but | assume that | would have to take care of all file inclusions. | guess that this
would break the ASF integration, but all this is speculation.

% http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=103269
%7 http://www.kanda.com/blog/microcontrollers/avr-microcontrollers/avrstudio-explored/
% http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=103949
% http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=103269

86

So long as you use custom drivers, Atmel Studio 6 with AVR GCC produces very efficient code. The
toolchain has very many features that | have only just started to learn and master. All in all, it's a
powerful developer tool that | like very much, so long as | can avoid ASF.

| would like for Atmel to develop a simple GUI tool for driver code generation. After all, this is what
BASCOM-AVR does when it converts its commands to device-specific assembly blocks.

7.6.2 BASCOM-AVR

The BASCOM-AVR users haven’t had to suffer major IDE changes with all the unavoidable initial
problems. While | would say that Atmel Studio 6 is an excellent development environment with an
auxiliary code base (application notes and ASF) that you can copy from, BASCOM-AVR is rather a
productivity-enhancement tool (plenty of standardized built-in commands) with a development
environment. If you want to minimize development time, BASCOM-AVR is a very good choice.

The fact that the company behind BASCOM-AVR is fairly small means that you can get in direct
contact with the IDE developers and decision makers. | am the initiator of two pieces of BASCOM-
AVR functionality and two implementation changes:

e The dword (unsigned 32-bit int) data type was necessary for the SD card and FAT16/32
library | wrote a few years ago, so they agreed to implement it. (79) ® (80) **

e The unsupported Sreduceivr switch that makes your application code start directly after the
last used interrupt vector, was implemented after a forum post by me early in the thesis
work. (45) 1%

¢ The change in v2.0.7.7 to static configuration of the USARTSs is the direct result of my e-mail
correspondence with BASCOM-AVR'’s owner.

¢ Inthe feedback on the nearly completed thesis from BASCOM-AVR’s owner, Mark Alberts
says that he will make it possible for the developer to choose static or dynamic addressing
for ATxmega.

Being able to access and influence the development team is invaluable. | can’t sufficiently stress the
importance of this.

Multi-device development is easy with BASCOM-AVR. You just need to change a pre-compiler
definition and uncomment the inclusion of your device and that’s it.

| would like a BASCOM-AVR optimizer, pointer support, and debugging. (It has a built-in simulator
and produces output files that can be debugged in Atmel Studio 6.)

7.6.3 User forums
Both IDE alternatives have very active, helpful, and competent user forums. They are a valuable
source of code samples and information, lots of information.

100 http://www.mcselec.com/index.php?option=com _content&task=view&id=291&Itemid=57

http://www.mcselec.com/index2.php?option=com forum&Itemid=59&page=viewforum&f=18
http://www.mcselec.com/index2.php?option=com forum&Itemid=59&page=viewtopic&t=11718

101

102

87

7.7 Suggestions for future work

Do a paper-based analysis of the suggested HW-based peripheral instance base address look-
up table. If it still seems like a good idea, implement it on a softcore microcontroller and test
run it on a few real-world programs.

Analyze the difference between using separate shared global arrays and vars compared to
global struct variables or even extend it to a comparison between procedural and object-
oriented programming

We have clearly seen the complexity costs that more advanced devices with more instances
incur. Analyze the trade-offs of this kind, on paper and on a real softcore microcontroller.
Analyze the trade-off between writing code that is portable from e.g. an 8-bit microcontroller
to ARM, using both pre-existing driver library (not ASF...) and handwritten code based on
application notes and datasheets. How much does portability “cost” with clever driver design
and what are the trade-offs?

88

8 Summary

8.1 IDE choice

The BASCOM-AVR IDE is found to be a fine productivity-enhancement tool for quick development
(due to its well-documented built-in commands supporting most common peripherals) but its lack of
an optimizing compiler makes its compiled test code size about 70% bigger than Atmel Studio 6’s. For
ATxmega, it currently goes all-in for the dynamic addressing model with calculation of base address
from instance number, which makes it produce very inefficient code for this architecture for the
most common use cases. After reading my thesis, the company will make it possible for the
developer to choose ATmega-type static or dynamic addressing for ATxmega, effectively putting it
back in the race. | also want to emphasize the value of being able to get in contact with “the right”,
people at the company, which | know is easy at BASCOM-AVR’s support forum or by e-mail.

The Atmel Studio 6.1 IDE itself also wins my approval, being an enjoyable programming environment,
having a graphic debugger and a powerful optimizing compiler (avr-gcc). Very disappointingly, the
driver library Atmel Software Foundation (ASF) inserts huge amounts of unused (“dead”) code, which
together with annoying bugs, incomplete documentation, and weak support for ATmega makes it
unusable for the author’s purposes. It doesn’t make it less necessary to read datasheets and
application notes, so there is no productivity enhancement. With no real upgrade/downgrade path
between ATmega and ATxmega and no desire to use it for ATxmega anyway, there is also no
portability to (Atmel) ARM gained, which after all must have been Atmel’s intent in the first place.

In the end | choose Atmel Studio 6 for my future 8-bit class applications, using datasheets and (the
very good) application notes for custom drivers for a platform | by now am quite familiar with. For
future ARM development | will have to look for either a competitively priced multi-brand IDE with a
good driver library or one from another manufacturer who makes a good one themselves.

8.2 HW selection

ATxmega is a more powerful architecture, competitively priced compared to similarly sized ATmega
devices, and by now hopefully free from its teething problems. The additional and more powerful
peripherals together with its support for external RAM come at a considerable complexity cost in
terms of code size and total clock cycle count. | decide to consider both types for my designs (based
on the application’s need for features and pin count), but choose ATmega when it’s a tie, rather than
switching completely to ATxmega.

89

8.3 The programming test results and the conclusions I draw from them

| was surprised to see how big the complexity costs associated with bigger and more powerful
devices are. This is mostly seen in the IV table space (many and advanced peripherals), ISR prologue
and epilogue (memory size above 64k words), and program code size (configuration and initialization
of peripherals).

The programming investigations show that the legacy static (absolute) peripheral addressing model is
better at one “instance of use” of the peripheral type than the S&P model introduced by the new
uniform memory layout in ATxmega. At two ports it’s a draw and above that S&P is preferable.

For efficient programming, you should therefore use a mixed addressing model and the driver library
concept should support it. To enable abstraction for higher-layer application code, the driver library
should specify an “interface” that the (custom) driver must implement. A default implementation (or
alternative ones) is welcome, but most importantly the driver library should contain a GUI-based tool
in which the developer enters device brand, type, model, parameters, and optimization type. The
output should be C and assembly code with an identification string that could be used to retrieve the
same GUI settings for another brand or type. In fact, BASCOM-AVR’s configuration and use of its
built-in commands do a similar thing behind the scene.

This paper also suggests a new type of HW-based look-up table from peripheral module type and
instance to its base address. It should be a 256-line 16-bit wide RAM memory area initializing to the
peripheral map but be possible to overwrite with pointers to generic application-specific data
structures (global “objects”). It comes with new machine instructions for reading and writing. It
would save both program code and clock cycles, effectively making S&P as good as static addressing
for all numbers of instances. It would also enable a uniform programming style, making S&P possible
also for ATmega and be a differentiator among competing ARM manufacturers.

8.4 On efficient programming

There is clearly a big potential in developing skills and methods for more efficient programming.
Exactly how big wasn’t really possible to ascertain, due to BASCOM-AVR not using an optimizing
compiler and ASF being so poor.

e The BASCOM-AVR test program could be reduced by 34% using only high-level language code
and another 44% by replacing the generic receiver with handwritten protocol-bound
assembly.

e The BASCOM-AVR test program was about 70% bigger than the compiled code from the avr-
gcc toolchain.

® For the incomplete ASF serial port test program there was a 6:1 ((1840-622)/(822-622))
difference in compiled code size when comparing ASF to the slightly improved application
note code.

All 8-bit AVRs suffer from the fact that they only have three memory pointers, which at a certain
point forces the compiler to do expensive register data movements. This has a direct effect on the
programming model | recommend for AVR: avoid occupying several concurrent memory pointers, if
possible by keeping variables in registers or else (when there is no available memory pointer) by
using standalone global variables. It thereby also affects the informed choice of using a data model
with separate global arrays and variables or one with struct-based “objects”.

90

| (later) saw that when the code grows beyond the very simplest of test programs, the quickly
increasing complexity (also witnessed in the simple thesis tests) makes it very difficult to foresee the
consequences, e.g. when choosing between using separate varables and two-dimensional arrays for
global data or grouping it in object-like struct variables. This is a fundamental design choice, but |
believe that people today generally make it based on concept preference rather than performance
facts. After seeing the complexity | find it easier to “forgive” such a decision, but I still think that it is
highly relevant to analyze this on an academic level. With the slower HW performance increase we
now have and the diminishing return on parallelism, this should be an area of big commercial
interest, perhaps not by the companies selling server or desktop HW or operating systems but by the
immense user base.

How could you make the study and gradual build-up of systematic knowledge of such a complex area
into an academic discipline? Well, | am rather surprised that we (as it seems) have not yet made a
serious attempt (at least in recent years), given the importance of computers in today’s society. |
think that it requires a large number of very small test implementations of great many isolated areas,
e.g. between procedural programming’s data structures and the object-oriented counterparts,
scaling up in data size or comparing different processor architectures, or different high-level
languages on their respective compilers. Perhaps a linguistic approach with grammars could be used
to structure the test cases and organize the results in this multitude of valid and invalid
combinations. There needs to be a system (approach / set of rules / calculus) for calculating the cost
of a certain “construct”, e.g. a method or a set of data structures. One end goal should probably be
to integrate it into the IDE, but most importantly it should be common knowledge at the design
stage. However, this is all very early thinking.

Generally, you shouldn’t need to adapt your core programming style to the IDE when using an IDE
equipped with an optimizing compiler, but as BASCOM-AVR doesn’t have one, you should in this case
avoid local variables and parameters in subroutines and functions. Whether you should use the
alternative struct-based addressing model for ATxmega depends on the use case. For few instances
the legacy static (absolute) addressing is smaller and at least as fast.

How much inline assembly should you use? In retrospect, | find this question badly put. The fact that
we are brought up writing practically only high-level code has made us fear assembly for no good
reason. As | learned how to use it, | found it enjoyable and the natural choice in those situations
when you want full control (e.g. configuration or timing-related situations) or do data manipulations
that are easier to formulate on the instruction level (e.g. math routines). It is also necessary to
understand assembly when analyzing how the high-level code gets compiled to machine code
(represented by assembly). A practical approach is to write high-level code, compile and then modify
this code for your purposes, and use it as inline assembly or assembly functions. Quick and efficient.

| think it is safe to say that | have got as much as possible out of the AVR HW using avr-gcc. | have
continuously monitored and adapted to the disassembled code, replaced part of the C code with
hand-written assembly, filled up the empty IV table space with custom assembly code, and shown
the effect of the two different peripheral module addressing models.

Have | found a way to keep development time to a minimum, while also producing highly efficient
code? Well, not out of the box with these two IDEs. With BASCOM-AVR you get development speed.
Atmel Studio 6 and avr-gcc are tools for writing highly optimized code, using the techniques | have

91

demonstrated, with application note sample code. There is a learning curve for this, but with some
training you should be able to do it quite quickly, gradually reusing more of your own code base. It’s
an investment, like any other. A good driver library would of course mean a better starting point.

| can find no support for the notion that highly optimized code must mean low development speed
and vice versa, nor the prejudice that writing efficient code is wasteful (“HW is cheap — developers
expensive”). Instead, this thesis shows that the dedicated programmer can improve his or her
‘baseline’. By gaining a better understanding of the HW and IDE ecosystem, it should indeed be
possible to write better code about as fast as the uneducated developer writes worse code.

Is writing efficient code worth the effort? There are many different types of answers to that:

* For many simple one-task microcontroller applications, performance and code size (including
energy efficiency) are not the primary concern.

e At the other end of the embedded SW spectrum — e.g. smartphones — all of the above are of
great importance.

® In between, there are many applications that are battery-powered and hence benefit from
energy-efficient fast code. (This thesis has mostly focused on code size, but in all relevance,
the techniques are the same for clock cycle count reduction.)

* Inlarge volumes, the cost saving of using smaller (=cheaper) devices is substantial.

® In PC- and server-class computing, performance and energy-efficiency can be very important.
Although the differences in HW and IDEs are too great for directly applying the thesis results,
| believe that they give insights that to a great extent are valid for other types of computers.

| have shown that once you master a few reasonably simple techniques, it really isn’t that much of an
effort. In the end it’s up to you: Do you want to be a master?

92

9 References

Most of my references are datasheets and software documentation produced by Atmel Corporation
and MCS Electronics or Wikipedia, without a reference to any specific individual. Hence, only some of
the sources have a named author.

1. Fuller SH. Future of Computing Performance : Game Over or Next Level? National Academies
Press; 2011.

2. Burlin J. Telephone interview IAR Systems AB. 2014.

3. megaAVR Microcontrollers [Internet]. [cited 2014 Feb 13]. Available from:
http://www.atmel.com/products/microcontrollers/avr/megaavr.aspx

4. Home - MCS Electronics [Internet]. [cited 2014 Feb 13]. Available from:
http://www.mcselec.com/

5. AVR XMEGA Microcontrollers [Internet]. [cited 2014 Feb 13]. Available from:
http://www.atmel.com/products/microcontrollers/avr/avr_xmega.aspx

6. Atmel® Studio 6 - Supporting Two Architectures: AVR and ARM, with One Integrated Studio -
Overview [Internet]. [cited 2014 Feb 12]. Available from:
http://www.atmel.se/microsite/atmel_studio6/

7. Atmel Software Framework [Internet]. [cited 2014 Feb 13]. Available from:
http://www.atmel.com/tools/avrsoftwareframework.aspx?tab=overview

8. Row-major order - Wikipedia, the free encyclopedia [Internet]. [cited 2014 Feb 14]. Available
from: http://en.wikipedia.org/wiki/Row-major_order

9. Atmel Corporation. Atmel Corporation - Microcontrollers, 32-bit, and touch solutions [Internet].
[cited 2014 Jun 3]. Available from: http://www.atmel.com/

10. Reduced instruction set computing [Internet]. Wikipedia, the free encyclopedia. 2014 [cited 2014
Feb 13]. Available from:
http://en.wikipedia.org/w/index.php?title=Reduced_instruction_set_computing&oldid=5940876
88

11. Harvard architecture [Internet]. Wikipedia, the free encyclopedia. 2013 [cited 2013 Dec 28].
Available from:
http://en.wikipedia.org/w/index.php?title=Harvard_architecture&oldid=585324105

12. Atmel AVR XMEGA AU Manual [Internet]. 2013 [cited 2013 Dec 28]. Available from:
http://www.atmel.se/Images/Atmel-8331-8-and-16-bit-AVR-Microcontroller-XMEGA-
AU_Manual.pdf

13. The Story of AVR - YouTube [Internet]. 2008 [cited 2013 Dec 28]. Available from:
http://www.youtube.com/watch?v=HrydNwAxbcY

14. AVR32 [Internet]. Wikipedia, the free encyclopedia. 2013 [cited 2013 Dec 28]. Available from:
http://en.wikipedia.org/w/index.php?title=AVR32&0ldid=587706001

93

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

AT91SAM [Internet]. Wikipedia, the free encyclopedia. 2013 [cited 2013 Dec 28]. Available from:
http://en.wikipedia.org/w/index.php?title=AT91SAM&oldid=584613739

AVR and AVR32 - Quick Reference Guide [Internet]. 2009 [cited 2013 Dec 28]. Available from:
http://www.atmel.se/Images/doc4064.pdf

Gaillard F, Eieland A. Microprocessor or Microcontroller [Internet]. 2013 [cited 2013 Dec 28].
Available from: http://www.atmel.se/Images/MCU_vs_MPU_Article.pdf

Atmel AVR instruction set [Internet]. Wikipedia, the free encyclopedia. 2013 [cited 2013 Dec 28].
Available from:
http://en.wikipedia.org/w/index.php?title=Atmel_AVR_instruction_set&oldid=571841646

ATmegal64A/PA/324A/PA/644A/PA/1284/P Complete [Internet]. 2012 [cited 2013 Dec 28].
Available from: http://www.atmel.se/Images/Atmel-8272-8-bit-AVR-microcontroller-
ATmegal64A PA-324A PA-644A PA-1284 P_datasheet.pdf

Myklebust G. The AVR Microcontroller and C Compiler Co-Design [Internet]. 1996 [cited 2013
Dec 28]. Available from: http://www.atmel.com/dyn/resources/prod_documents/COMPILER.pdf

AVRO035: Efficient C Coding for 8-bit AVR microcontrollers [Internet]. 2004 [cited 2013 Dec 28].
Available from: http://www.atmel.se/Images/doc1497.pdf

Atmel AVR4027: Tips and Tricks to Optimize Your C Code for 8-bit AVR Microcontrollers
[Internet]. 2011 [cited 2013 Dec 29]. Available from: http://www.atmel.se/Images/doc8453.pdf

AVR Instruction Set [Internet]. 2012 [cited 2013 Dec 29]. Available from:
http://www.atmel.se/Images/doc0856.pdf

ATxmega64A1U/128A1U Complete [Internet]. 2012 [cited 2013 Dec 30]. Available from:
http://www.atmel.com/Images/Atmel-8385-8-and-16-bit-AVR-Microcontroller-ATxmega64A1U-
ATxmegal28A1U_datasheet.pdf

Available from: http://atmel.no/webdoc/atmel.docs/atmel.docs.3.application.note.html

AVR XMEGA [Internet]. 2008 [cited 2013 Dec 30]. Available from:
http://www.atmel.com/Images/doc7925.pdf

Introducing a New Breed of Microcontrollers for 8/16-bit Applications [Internet]. 2008 [cited
2013 Dec 30]. Available from: http://www.atmel.com/Images/doc7926.pdf

AVR1005: Getting started with XMEGA [Internet]. 2009 [cited 2013 Dec 30]. Available from:
http://www.atmel.com/Images/doc8169.pdf

AVR1000: Getting Started Writing C-code for XMEGA [Internet]. 2008 [cited 2013 Dec 30].
Available from: http://www.atmel.com/Images/doc8075.pdf

BASCOM-AVR online help [Internet]. [cited 2014 Feb 12]. Available from:
http://avrhelp.mcselec.com/index.html

BASCOM-AVR - MCS Electronics [Internet]. [cited 2014 Feb 12]. Available from:
http://www.mcselec.com/index.php?option=com_content&task=view&id=14&Itemid=41

94

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Forum - MCS Electronics [Internet]. [cited 2014 Feb 12]. Available from:
http://www.mcselec.com/index2.php?option=com_forum&Itemid=59

avr-gcc - GCC Wiki [Internet]. [cited 2014 Feb 12]. Available from: http://gcc.gnu.org/wiki/avr-gcc

Documentation:AVR GCC/AVR GCC Tool Collection - AVRFreaks Wiki [Internet]. [cited 2014 Feb
12]. Available from:
http://www.avrfreaks.net/wiki/index.php/Documentation:AVR_GCC/AVR_GCC_Tool_Collection

Optimize Options - Using the GNU Compiler Collection (GCC) [Internet]. 2014 [cited 2014 Jan 23].
Available from: http://gcc.gnu.org/onlinedocs/gcc-4.8.2/gcc/Optimize-Options.html#Optimize-
Options

AVR Libc [Internet]. [cited 2014 Feb 12]. Available from: http://www.nongnu.org/avr-libc/user-
manual/

Atmel AVR4029: Atmel Software Framework - Getting Started [Internet]. 2013 [cited 2013 Dec
30]. Available from: http://www.atmel.com/Images/Atmel-8431-8-and32-bit-Microcontrollers-
AVR4029-Atmel-Software-Framework-User-Guide_Application-Note.pdf

Atmel AVR4030: AVR Software Framework - Reference Manual [Internet]. 2012 [cited 2013 Dec
30]. Available from: http://www.atmel.com/Images/doc8432.pdf

AVR Freaks [Internet]. [cited 2014 Feb 12]. Available from: http://www.avrfreaks.net/

AVR Assembler User Guide [Internet]. Pre-W2k [cited 2013 Dec 29]. Available from:
http://www.atmel.com/images/doc1022.pdf

Atmel AT1886: Mixing Assembly and C with AVRGCC [Internet]. 2012 [cited 2013 Dec 28].
Available from: http://www.atmel.se/Images/doc42055.pdf

AVRO00O: Register and Bit-Name Definitions for the 8-bit AVR Microcontroller [Internet]. 2009
[cited 2013 Dec 30]. Available from: http://www.atmel.com/Images/doc0931.pdf

AVR001: Conditional Assembly and portability macros [Internet]. 2008 [cited 2013 Dec 30].
Available from: http://www.atmel.com/Images/doc2550.pdf

Woxulv M. Telephone conversation Atmel Sweden. 2013.

Inline assembler: Possible to specify code placement? [Internet]. [cited 2014 Feb 7]. Available
from:
http://www.mcselec.com/index2.php?option=com_forum&aItemid=59&page=viewtopic&t=1171
8&highlight=reduceivr

ASF ATmega System Clock Management Documentation [Internet]. [cited 2014 Jan 23]. Available
from: http://asf.atmel.com/docs/3.13.1/mega/html/group__sysclk__group.html

AVR306: Using the AVR UART in C on tinyAVR and megaAVR devices [Internet]. 2002 [cited 2013
Dec 28]. Available from: http://www.atmel.se/Images/doc1451.pdf

View topic - HW lookup table for address pointers - good or bad idea? :: AVR Freaks [Internet].
[cited 2014 Feb 12]. Available from:

95

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=140145&postdays=0&
postorder=asc&sid=e3717428757c8e0fcac437a5ae45306b

ASF ATxmega System Clock Management Documentation [Internet]. [cited 2014 Jan 23].
Available from: http://asf.atmel.com/docs/3.13.1/xmegaa/html/group__sysclk__group.html

ASF Source Code Documentation - Quick start guide for Serial Interface service [Internet]. [cited
2014 Feb 13]. Available from:
http://asf.atmel.com/docs/3.13.1/xmegaa/html/serial_quickstart.html

ASF Source Code Documentation - Advanced use case - Send a packet of serial data [Internet].
[cited 2014 Feb 13]. Available from:
http://asf.atmel.com/docs/3.13.1/xmegaa/html/serial_use_case_1.html

ASF Source Code Documentation - Quick start guide for USART module [Internet]. [cited 2014
Feb 13]. Available from:
http://asf.atmel.com/docs/3.13.1/xmegaa/html/xmega_usart_quickstart.html

White T, GTKNarwhal. AVR Freaks :: View topic - tc.h in the xmega atmel framework [Internet].
XMEGA forum - tc.h in the xmega atmel framework. 2011 [cited 2014 Jan 6]. Available from:
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=115038&start=0

ASF Source Code Documentation - Clock Management [Internet]. [cited 2014 Feb 13]. Available
from: http://asf.atmel.com/docs/3.13.1/xmegaa/html/group__clk__group.html

ASF Source Code Documentation - XMEGA-A1 Xplained Board Configuration [Internet]. [cited
2014 Feb 13]. Available from:
http://194.19.124.62/docs/latest/xmega.drivers.des.unit_tests.xmega_al_xplained/html/group
__atxmegal28al__ xpld__config.html

AVR1522: XMEGA-A1 Xplained Training - XMEGA USART [Internet]. 2011 [cited 2014 Jan 6].
Available from: http://www.atmel.com/Images/doc8408.pdf

View topic - AS 6.1 ASF ATxmega support for multiple UART and ISR :: AVR Freaks [Internet].
[cited 2014 Feb 13]. Available from:
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=139232

ASF Source Code Documentation - Quick start guide for PMIC driver [Internet]. [cited 2014 Feb
13]. Available from:
http://asf.atmel.com/docs/3.13.1/xmegaa/html/xmega_pmic_quickstart.html

ASF Source Code Documentation - Quick Start Guide for the System Clock Management service
(XMEGA) [Internet]. [cited 2014 Feb 13]. Available from:
http://asf.atmel.com/docs/3.13.1/xmegaa/html/sysclk_quickstart.html

ASF Source Code Documentation - USART module (USART) [Internet]. [cited 2014 Feb 13].
Available from: http://asf.atmel.com/docs/3.13.1/xmegaa/html/group__usart__group.html

View topic - AS 6.1 ASF ATxmega USART library compiled code size :: AVR Freaks [Internet]. [cited
2014 Feb 13]. Available from:
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&p=1126226#1126226

96

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

AVR1307: Using the XMEGA USART [Internet]. 2008 [cited 2013 Dec 30]. Available from:
http://www.atmel.com/Images/doc8049.pdf

Atmel-8331-8-and-16-bit-AVR-Microcontroller-XMEGA-AU_Manual.pdf [Internet]. 2013 [cited
2014 Jan 6]. Available from: http://www.atmel.com/Images/Atmel-8331-8-and-16-bit-AVR-
Microcontroller-XMEGA-AU_Manual.pdf

AVR - gcc - How can | turn off >64K ram support for ATxmegal28al target? [Internet]. 2009
[cited 2014 Jan 22]. Available from: http://avr.2057.n7.nabble.com/How-can-I-turn-off-gt-64K-
ram-support-for-ATxmegal28al-target-td10341.html

View topic - [TUT][C]Optimization and the importance of volatile in GCC :: AVR Freaks [Internet].
[cited 2014 Jan 27]. Available from:
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=97382&start=all&post
days=0&postorder=asc

View topic - AVR-GCC. How to remove Interrupt table? :: AVR Freaks [Internet]. [cited 2014 Jan
27]. Available from:
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&p=1131093#1131093

Schick B. AVR Bootloader FAQ [Internet]. 2009. Available from: blog.schicks.net/wp-
content/uploads/2009/09/bootloader_faq.pdf

Link Options - Using the GNU Compiler Collection (GCC) [Internet]. [cited 2014 Jan 27]. Available
from: http://gcc.gnu.org/onlinedocs/gcc/Link-Options.html

Georg-Johann Lay - Re: [avr-gcc-list] [Patch, avr] Shrink interrupt vector table down to la
[Internet]. [cited 2014 Jan 27]. Available from: http://sourceware.org/ml/binutils/2013-
02/msg00180.html

Atmel-42083-XMEGA-E-Using-the-XCL-Module_Application-Note_AT01084.pdf [Internet]. [cited
2014 Feb 5]. Available from: http://www.atmel.se/Images/Atmel-42083-XMEGA-E-Using-the-
XCL-Module_Application-Note AT01084.pdf

AVR-GCC-Codeoptimierung - Mikrocontroller.net [Internet]. [cited 2014 Feb 14]. Available from:
http://www.mikrocontroller.net/articles/AVR-GCC-Codeoptimierung

Knaggs P, Welsh S. ARM_AssyLang.pdf [Internet]. 2004 [cited 2014 Feb 14]. Available from:
http://www.eng.auburn.edu/~nelson/courses/elec5260_6260/ARM_AssyLang.pdf

Jamil T. RISC versus CISC. IEEE Potentials. 1995 Aug;14(3):13-6.

Blem E, Menon J, Sankaralingam K. Power struggles: Revisiting the RISC vs. CISC debate on
contemporary ARM and x86 architectures. 2013 IEEE 19th International Symposium on High
Performance Computer Architecture (HPCA2013). 2013. p. 1-12.

Koopman P. Stack Computers: 1.4 WHY ARE STACKS USED IN COMPUTERS? [Internet]. [cited
2014 Feb 5]. Available from: http://www.ece.cmu.edu/~koopman/stack_computers/secl_4.html

AVR Freaks :: View topic - Why AVRFreaks members do not like XMEGA [Internet]. [cited 2014
Feb 7]. Available from:
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=103269

97

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

Which AVRStudio Version is best? AVRStudio 6 versus AVRStudio 4 [Internet]. 2013 [cited 2014
Feb 7]. Available from: http://www.kanda.com/blog/microcontrollers/avr-
microcontrollers/avrstudio-explored/

AVR Freaks :: View topic - AVR Studio 5 Released - Get Your BETA Here! [Internet]. [cited 2014
Feb 7]. Available from:
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=103949

Arndt N. AN #186 - KokkeKat FAT-free SD card library - MCS Electronics [Internet]. [cited 2014
Feb 7]. Available from:
http://www.mcselec.com/index.php?option=com_content&task=view&id=291&Itemid=57

Arndt N. KokkeKat FAT-free SD card lib forum [Internet]. [cited 2014 Feb 7]. Available from:
http://www.mcselec.com/index2.php?option=com_forum&aItemid=59&page=viewforum&f=18

Barrett SF, Pack DJ. Microcontrollers fundamentals for engineers and scientists. [San Rafael,
Calif.]: Morgan & Claypool Publishers; 2006.

Barrett SF, Pack DJ. Atmel AVR microcontroller primer: Programming and interfacing, second
edition. Atmel AVR Microcontroller Primer Program Interfacing Second Ed. 2012;39:1-246.

Barrett SF. Embedded Systems Design with the Atmel AVR Microcontroller. Part |. San Rafael, CA,
USA: Morgan & Claypool Publishers; 2010. xiii+164 p.

Barrett SF. Embedded Systems Design with the Atmel AVR Microcontroller. Part Il. San Rafael,
CA, USA: Morgan & Claypool Publishers; 2010. xii+296 p.

Salewski F, Kowalewski S. Hardware Platform Design Decisions in Embedded Systems: A
Systematic Teaching Approach. SIGBED Rev. 2007 Jan;4(1):27-35.

ATAM: Method for Architecture Evaluation | SEI Digital Library [Internet]. [cited 2014 Feb 9].
Available from: http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=5177

Slade M, Jones MH, Scott JB. Choosing the right microcontroller: A comparison of 8-bit Atmel,
Microchip and Freescale MCUs [Internet]. Faculty of Engineering, The University of Waikato;
2011 Nov. Available from: http://researchcommons.waikato.ac.nz/handle/10289/5938

Wong W. IDEs of change. Electron Des. 2006;54(9):52—60.

Atmel AVR Studio 5 Provides Fully Integrated Development Platform for Embedded
Microcontroller Designs. - Free Online Library [Internet]. [cited 2014 Feb 14]. Available from:
http://www.thefreelibrary.com/Atmel+AVR+Studio+5+Provides+Fully+Integrated+Development
+Platform+for...-a0250183971

Silvestre J, Cardoso D, Correia A. AVR Studio 5 | ImaginationOverflow [Internet]. [cited 2014 Feb
14]. Available from: http://imaginationoverflowsw.wordpress.com/tag/avr-studio-5/

Engineering Softwares: AVR Studio 5 - Atmel Studio 6 [Internet]. [cited 2014 Feb 14]. Available
from: http://engineering-softwares.blogspot.se/2013/04/avr-studio-5-atmel-studio-6.html

Nath N. Atmel Studio 6 — Install Guide, Walk-Through, Review | Nicky goes Nuts and Bolts
[Internet]. [cited 2014 Feb 14]. Available from: http://nishantnath.com/2012/05/05/atmel-
studio-6-install-guide-walk-through-review/

98

93. Tomar A. Atmel: Atmel Studio 6 IDE Overview | element14 [Internet]. [cited 2014 Feb 14].
Available from: http://www.element14.com/community/docs/DOC-46581

94. New Atmel Studio 6 Release with Support for ARM Microcontrollers [Internet]. [cited 2014 Feb
14]. Available from: https://www.futurlec.com/News/Atmel/Studio6.shtml|

95. Stroustrup B. Abstraction and the C++ machine model / Embedded Software and Systems.
Springer Berlin / Heidelberg; 2005.

96. Wybolt N. Experiences with C++ and Object-oriented Software Development. SIGSOFT Softw Eng
Notes. 1990 Apr;15(2):31-9.

97. Ada-Europe International Conference on Reliable Software Technologies J, Chatzigeorgiou A,
Blieberger J, Strohmeier A. Evaluating performance and power of object-oriented vs. procedural
programming in embedded processors / Reliable Software Technologies - Ada-Europe 2002.
2002.

98. Titzer BL. Virgil: Objects on the head of a pin. ACM SIGPLAN Not. 2006;41(10):191-207.

99. Program optimization - Wikipedia, the free encyclopedia [Internet]. [cited 2014 Feb 15].
Available from: http://en.wikipedia.org/wiki/Program_optimization

100. C code optimisation | Member Robot Tutorials [Internet]. [cited 2014 Feb 15]. Available from:
http://www.societyofrobots.com/member_tutorials/node/202

[cited 2013 Oct 5]. Available from:
http://www.eventhelix.com/realtimemantra/basics/optimizingcandcppcode.htm#.UIAfOVPRVdh

102. Shlomi F. Optimizing Code for Speed [Internet]. 2009 [cited 2013 Oct 5]. Available from:
http://www.shlomifish.org/philosophy/computers/optimizing-code-for-speed/

103. Edwards LARW. Embedded System Design on a Shoestring. Newnes; 2003. 1 p.

104. View topic - Memory barrier: what it does and what it does not do :: AVR Freaks [Internet].
[cited 2014 Jan 27]. Available from:
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=94571&start=all&post
days=0&postorder=asc

105. Taylor C. Mixing C and Assembly [Internet]. [cited 2014 Feb 17]. Available from:
http://msoe.us/taylor/tutorial/ce2810/candasm

106. Doncaster R. Nerd Ralph: Trimming the fat from avr-gcc code [Internet]. 2013 [cited 2014 Jan
26]. Available from: http://nerdralph.blogspot.ca/2013/12/trimming-fat-from-avr-gcc-code.html

107. Hyde R. Write Great Code Volume 1: Understanding the machine. San Francisco: No Starch
Press; 2004.

108. Hyde R. Write Great Code Volume 2: Thinking low-level, writing high-level. San Francisco No
Starch Press; 2006.

109. Hyde R. The Art of Assembly Language, Second Edition. No Starch Press; 2010.

99

110. Hyde R. The Fallacy of Premature Optimization. Ubiquity [Internet]. 2009 Feb [cited 2014 Feb
9];2009(February). Available from: http://doi.acm.org/10.1145/1513450.1513451

111. Optimizing Code Performance and Size for Stellaris® Microcontrollers [Internet]. [cited 2014
Feb 15]. Available from:
http://www.ti.com/general/docs/lit/getliterature.tsp?literatureNumber=spma014&fileType=pdf

112. Yiu, Frame J, Andrew. (ARM) 32-Bit Microcontroller Code Size Analysis Draft 1.2.4. [Internet].
[cited 2013 Oct 5]. Available from:
www.arm.com/files/pdf/ARM_Microcontroller_Code_Size_ (full).pdf

113. Isensee P. C++ Optimization Strategies and Techniques [Internet]. ???? [cited 2013 Oct 5].
Available from: http://www.tantalon.com/pete/cppopt/main.htm

114. Lee ME. Optimization of Computer Programs in C [Internet]. 1999 [cited 2013 Oct 5]. Available
from: http://leto.net/docs/C-optimization.php

115. Hsieh P. Programming Optimization [Internet]. 2007 [cited 2013 Oct 9]. Available from:
http://www.azillionmonkeys.com/ged/optimize.html

116. University of lowa. Tips for Optimizing C/C++ Code [Internet]. 2007 [cited 2013 Oct 5].
Available from: https://www.cs.uiowa.edu/~cwyman/classes/spring07-
22C251/handouts/optimize.pdf

117. Ghosh K. Writing Efficient C and C Code Optimization [Internet]. 2004 [cited 2013 Oct 5].
Available from: http://www.codeproject.com/Articles/6154/Writing-Efficient-C-and-C-Code-
Optimization

118. Shalom H. Writing Efficient C Code for Embedded Systems [Internet]. 2010 [cited 2013 Oct 5].
Available from: http://www.rt-embedded.com/blog/archives/writing-efficient-c-code-for-
embedded-systems/

119. Chan W. Writing optimized C code for microcontroller applications. Proceedings of Embedded
Systems Conference, 1-4 March 1999. Miller Freeman; 1999. p. 45-57.

120. Ganssle J. The Firmware Handbook: Embedded Technology. Newnes; 2004. 385 p.

121. Ayache N, Amadio RM, Regis-Gianas Y. Certifying and Reasoning on Cost Annotations in C
Programs. Formal Methods for Industrial Critical Systems 17th International Workshop, FMICS
2012, 27-28 Aug 2012. Springer-Verlag; 2012. p. 32-46.

122. Johnson NE. Code size optimization for embedded processors [Internet]. University of
Cambridge, Computer Laboratory; 2004 Nov p. 159. Report No.: 607. Available from:
www.cl.cam.ac.uk/techreports/UCAM-CL-TR-607.pdf

123. Leupers R. Compiler design issues for embedded processors. IEEE Des Test Comput.
2002;19(4):51-8.

124. Naik M, Palsberg J. Compiling with code-size constraints. Joint Conference on Languages,

Compilers and Tools for Embedded Systems and Software and Compilers for Embedded Systems,
June 19, 2002 - June 21, 2002. Association for Computing Machinery; 2002. p. 120-9.

100

125. Alba C, Carro L, Lima A, Suzim A. Embedded systems design with frontend compilers.
Proceedings of the 1996 International Conference on Computer Design, ICCD’96, October 7,
1996 - October 9, 1996. IEEE; 1996. p. 200-5.

126. De Bus B, De Sutter B, Van Put L, Chanet D, De Bosschere K. Link-time optimization of ARM
binaries. ACM SIGPLAN Not. 2004;39(7):211-20.

127. Zhao M, Childers B, Soffa ML. Predicting the impact of optimizations for embedded systems.
ACM SIGPLAN Not. 2003;38(7):1-11.

128. Yang X. Eliminating the call stack to save RAM. ACM SIGPLAN Not. 2009;44(7):60-9.

129. Lin FX, Wang Z, Likamwa R, Zhong L. Reflex: Using low-power processors in smartphones
without knowing them. 17th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2012, March 3, 2012 - March 7, 2012. Association for
Computing Machinery; 2012. p. 13-24.

130. Brandon J. AVR op codes [Internet]. [cited 2014 Feb 14]. Available from:
http://www.zbasic.net/download/AVR_opcodes.txt

131. AVRO034: Mixing C and Assembly Code with IAR Embedded Workbench for 8-bit AVR
microcontrollers [Internet]. 2003 [cited 2013 Dec 29]. Available from:
http://www.atmel.com/Images/doc1234.pdf

132. Forum - MCS Electronics - Register conventions [Internet]. [cited 2014 Feb 13]. Available from:
http://www.mcselec.com/index2.php?option=com_forum&Itemid=59&page=viewtopic&p=6080
5#60805

133. AVR Freaks :: View topic - How to combine C program with external ASM [Internet]. [cited
2014 Jan 30]. Available from:
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=112779&start=0

134. WinAVR : AVR-GCC for Windows [Internet]. [cited 2014 Feb 12]. Available from:
http://winavr.sourceforge.net/

135. Which AVR Studio and C compiler for AVR 8-bit microcontroller and JTAGICE? [Internet]. [cited
2014 Feb 14]. Available from: http://www.motherboardpoint.com/which-avr-studio-and-c-
compiler-avr-8-bit-microcontroller-and-jtagice-t257051.html

136. Optimizing C/C++ Compilers and Debuggers from IAR Systems - IAR [Internet]. [cited 2014 Feb
15]. Available from: http://www.iar.com/Products/IAR-Embedded-Workbench/

137. CodeVisionAVR. The Lowest Price on the Web. High Performance ANSI C Compiler for Atmel

AVR microcontrollers [Internet]. [cited 2014 Feb 15]. Available from:
http://www.codevision.be/codevisionavr

101

10 Appendix A

A.1 Response from the IDE companies

A.1.1 History and plans for the future
Mark Alberts, the owner of MCS Electronics, tells the history of BASCOM-AVR and his plans for the
future:

“As you can find in the help, | wrote BASCOM-LT for Windows 3.1 as a tool for personal use. This was for the 8051 family.
The 8051 has just a few registers but you can use bank switching. Further it has very limited internal memory. All this
memory needs to be used for the stack and internal variables.

Normally one would create a stack machine in order to support expressions but as the memory was limited and | had no
need for complex expressions | decided to allow only simple assignments. The real power of BASCOM was that | added
support for hardware. Controlling the serial port or LCD was usually done by assembler but now a simple CONFIG would
allow you to use hardware without figuring out protocols.

Since writing the software was a lot of work and hardware was not as cheap as today, i decided to make a commercial
version. | added a help file and simulator and many hobbyists liked the software. In the first year | got many wishes and the
tool grew enormeously. With Windows 95, | rewrote the tool to support arrays and floating point. And many different 8051
processors were supported.

When users asked for an AVR version | had to study the AVR architecture which was very different. But | recognized the
great linear memory and ISP programming with 5V, so this was a step forward compared to the 89c2051. Again | rewrote
the software where | used the old BASCOM-8051 as a basis. That was probably not the smartest thing to do because the
AVR was well suited as stack machine. And the additional work would have paid off. But | was doing all this in my spare
time, and | was giving support to BASCOM-8051 users with new features, helping with their hardware problems, etc. Of
course a lot of improvements were made compared to the 8051. Doubles were added, trig was added and so on.

With more users also came more support and ideas. | had to chose between my job and supporting BASCOM users so | quit
my job to work full time on BASCOM, support, custom projects. All user ideas that were hard to implement | worked out in a
new version where | rewrote almost everything. A number of these features you can find in BASCOM-AVR like the code
explorer, and draw indents, proper indent, unused code marking.

The Xmega was a great new chip but had a lot of impact on support. As you can see from the help there are a lot of CONFIG
commands just for xmega. In my normal code | used pointers to registers but that was not possible for xmega. So | had to
recode that in a way all other code would still work. And all new hardware took a lot of time to implement. But it is great
that these chips have so much hardware inside. With the linear fixed address | got carried away and | did not have a look at
the impact. So it was good you had a look at that. All other compiler things | knew already.

As you probably have found out, is that the asm libs are efficient but depeding on the statement one uses, things can be
done more efficient. Once in a while when | look at some code | find inefficient code which | then change, but some
improvements require big changes. That is why | left that for another product. At some stage it is best to rewrite completely
and not to try to change code. This because any mistake | make will cause problems for users. | can do only limited tests with
hardware.

My goal was never to make the best compiler of the world but the easiest software tool for processors. With many
professional users, | shifted focus to a better tool (like more build in error checking). And the focus for the next IDE is more
about safe and reliable commands. So no poking, pointers, recursion etc.”

(MCS Electronics’ owner Mark Alberts, 2014-02-11)

102

A.1.2 BASCOM-AVR feedback on v0.9
“Hello Niclas

thanks for the update. | have read it with interest.
Here is my comment/opinion.

- bascom can handle recursion. and you can use isr's multiple times and/or at the same time. [This is in response to a
previous error in my thesis.]

- it is great that you researched the dynamic xmega handling in bascom. | never realized the consequence. i will add a static
option so the user can control how it works.

- i knew re-using the value of registers could optimize things. i used that for a new assembler but it is better if the compiler
deals with it.

- i think you focused too much on pieces of code and how you could optimize it. It is also not a real good comparison to
compare different products. You could better have checked the difference between normal mega, xmega and ARM using
studio. Especially because studio supports them all.

- instead of focusing on pieces of code, a real world app would have been a better test IMO. If you write 1000 or 10000 lines
of code, and you need to alter or change it later it will be harder if you write a lot of custom asm.

also, since some chips do not have some instructions, the code will not work, work different or requires modifications when
porting to a new chip or platform. So what | miss in the investigation is what happens if you code some functions in asm and
port it from mega to xmega to ARM compared to using plain high level code. for example 1 line, or 10, or 100.

In any case you made it clear that using a high level language including cpp, has a penalty. But that was clear already.
You put alot of effort in it and i hope your professor likes it. In any case it helped me.

best regards,

Mark”

(MCS Electronics’ owner Mark Alberts, 2014-02-19)

A.1.3 Atmel’s response

“I have received an answer from one of my colleagues at the Trondheim support about this. Unfortunately they have already
filled the quota of students they can help this year. | will try to find an alternative way or some other contact with whom you
can talk, but at this point the forecast is a bit dark.”

(Marcus Woxulv, Atmel Sweden tech support, 2013-06-28, translated from Swedish)

103

A.2 Additional sources

There are two types of sources for this thesis. One is datasheets, application notes, documentation,
user forum posts, and so on, that contain certain specific information. There’s an abundance of
these. They are frequently referenced in the next chapter that presents the AVR microcontroller and
throughout the thesis.

However, a scientific publication is supposed to take off from previous writers’ work. In this area |
haven’t been very successful. Either | have been searching for the wrong terms or there has been
very little interest in these areas. | have spent several days browsing IEEE Explore, ACM Digital
Library, Inspec, Compendex, Referex, and the internet.

A.2.1 AVR ATmega general functionality
There are several books and much material on ATmega functionality. Steven F. Barrett has published
a few (partly overlapping) ones:

e “Microcontrollers Fundamentals for Engineers and Scientists” (81)

e “Atmel AVR Microcontroller Primer: Programming and Interfacing, 2" edition” (82)
¢ “Embedded Systems Design with the Atmel AVR Microcontroller Part |” (83)

¢ “Embedded Systems Design with the Atmel AVR Microcontroller Part II” (84)

A.2.2 Hardware platform evaluation

e “Hardware Platform Design Decisions in Embedded Systems - A Systematic Teaching
Approach” (85) lists a number of important HW attributes when deciding on a (teaching)
platform covering both microcontrollers and soft-core programmable logic devices.

e “ATAM (Architecture Tradeoff Analysis Method): Method for Architecture Evaluation” (86) is
a very thorough methodology that is mostly outside of the scope of this thesis.

® “Choosing the right microcontroller: A comparison of 8-bit Atmel, Microchip and Freescale
MCUs” (87)

A.2.3 IDE evaluation
e “IDEs of change” (88) is an overview of development platforms in 2006.

Except for the above, | found very little in this area. Nothing else in the scientific databases and only
a few mostly uninteresting hits on Google and Bing:

e Apress release for AVR Studio 5: (89) '*
¢ Ashort blog post on one person’s experience from AVR Studio 5 and AVR32: (90)
e Product presentations for AVR Studio 5 and Atmel Studio 6: (91) '®

¢ Aninstallation walk-through and a tiny “review” of Atmel Studio 6: (92)

104

1% 1t is mostly a

change list from the previous version and a conclusion that WinAVR with AVR Studio 4 is
preferred.

103

http://www.thefreelibrary.com/Atmel+AVR+Studio+5+Provides+Fully+Integrated+Development+Platform+for..

.-a0250183971

1% http://imaginationoverflowsw.wordpress.com/tag/avr-studio-5/
http://engineering-softwares.blogspot.se/2013/04/avr-studio-5-atmel-studio-6.html
http://nishantnath.com/2012/05/05/atmel-studio-6-install-guide-walk-through-review/

105

106

104

A commercial product presentation of Atmel Studio 6 published by an electronic component
vendor: (93) '

A press release for Atmel Studio 6 published by another component vendor: (94) *®

Actually, the information | found that most resembles an evaluation are user forum posts with

outbursts from annoyed users. Some are referenced in the analysis.

A2.4

A.2.5

Analyses of programming models

“Abstraction and the C++ Machine Model” (95)

“Experiences with C++ and Object-Oriented Software” (96)

“Evaluating Performance and Power of Object-Oriented Vs. Procedural Programming in
Embedded Processors” (97) presents a test that showed a significant penalty in code size and
RAM and a modest increase in instructions and clock cycles when using OOP compared to
procedural programming.

“Virgil: Objects on the Head of a Pin” (98) presents “a lightweight objectoriented language designed
with careful consideration for resource-limited domains.”

Efficient programming and (inline) assembly

This is a big area with lots of material. User forums often contain both answers to specific questions

and more or less well-structured how-tos. | frequently reference this type of sources in my thesis.

Wikipedia has a good overview on program optimization: (99) **®
The German web site www.mikrocontroller.net has an in-depth page on AVR-GCC code

optimization: (71) *° It also points out the consequences of only having 2-3 memory
pointers.

“C code optimization” at Society of Robots (100) '** claims (in “08 - H files versus C files”) that
“If you define a method in a .h file then it is normally only compiled once and any references to it end up calling it.
So the difference between .h and .c is small. Even if you define a method in a .h file that is never called then it still
gets compiled. Equally: if you compile a .c file into a library and the rest of the code only accesses one of the
methods in that file then the entire compiled .c file will be added to your program.”

“Optimizing C and C++ Code” (101)

“Optimizing Code for Speed” (102) '**

The book “Embedded System Design on a Shoestring” has a very large section on the GNU
toolchain (for ARM). (103)
Optimization and volatile (65)
Memory barrier (104) '**

113

107

http://www.element14.com/community/docs/DOC-46581

108

https://www.futurlec.com/News/Atmel/Studio6.shtml

109

http://en.wikipedia.org/wiki/Program optimization

110

http://www.mikrocontroller.net/articles/AVR-GCC-Codeoptimierung

111

http://www.societyofrobots.com/member_tutorials/node/202

112

http://www.shlomifish.org/philosophy/computers/optimizing-code-for-speed/

113

http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=97382&start=all&postdays=0&posto

rder=asc

114

http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=94571&start=all&postdays=0&posto

rder=asc

105

e “Mixing C and Assembly Languages” (105) '**

e An approach similar to mine on incremental code reduction and elimination: (106) **°

| also came across three books by Randall Hyde on writing assembly or assembly-friendly high-level
language:

e Write Great Code Volume 1: Understanding the machine (107)

¢ Write Great Code Volume 2: Thinking low-level, writing high-level (108)

e The Art of Assembly Language, Second Edition (109)

He also makes a strong case against today’s unwillingness to optimize code: (110)

A.2.5.1 Optimization on competing or generic architectures
e “Optimizing Code Performance and Size for Stellaris® Microcontrollers” (111) "’

e “32-Bit Microcontroller Code Size Analysis” (ARM) (112) **®

e “C++ Optimization Strategies and Techniques” (PC) (113) **°

® “Optimization of Computer Programs in C” (UNIX) (114)

e “Programming Optimization” (PC) (115) ** has lot of information and a number of links to
other sites.

® “Tips for Optimizing C/C++ Code” (116)

e “Writing Efficient C and C Code Optimization” (Windows) (117) '

e “Writing Efficient C Code for Embedded Systems” (ARM) (118) **

® “Writing optimized C code for microcontroller applications” (119) '**

e Chapters 18 and 19 of “The Firmware Handbook” (120) deal with optimization.

A.2.5.2 Compiler-related
e “Certifying and Reasoning on Cost Annotations in C Programs” (121) treats labelling of code
costs done by the compiler.
e “Code size optimization for embedded processors” (122)
e “Compiler Design Issues for Embedded Processors” (123)
e “Compiling with Code-Size Constraints” (124)
¢ “Embedded Systems Design with Frontend Compilers” (125)
e “Link-Time Optimization of ARM Binaries” (126)
e “Predicting the Impact of Optimizations for Embedded Systems” (127)

A.2.5.3 Other approaches
e “Eliminating the Call Stack to Save RAM” (128)
e “Reflex: Using Low-Power Processors in Smartphones without Knowing Them” (129)

1> http://msoe.us/taylor/tutorial/ce2810/candasm

http://nerdralph.blogspot.ca/2013/12/trimming-fat-from-avr-gcc-code.html
http://www.ti.com/lit/an/spma014/spma014.pdf

® www.arm.com/files/pdf/ARM_Microcontroller Code Size (full).pdf

9 http://www.tantalon.com/pete/cppopt/main.htm
http://www.azillionmonkeys.com/qed/optimize.html
http://www.codeproject.com/Articles/6154/Writing-Efficient-C-and-C-Code-Optimization
http://www.rt-embedded.com/blog/archives/writing-efficient-c-code-for-embedded-systems/
http://www.docshut.com/imwzpt/writing-optimized-c-code-for-microcontroller-applications.html

116

117

11

120

121

122

123

106

A.3 How to disassemble

If you are using Atmel Studio 6, you select the simulator or the debugger in the Tool tab for your
project. Then you click the “Start Debugging and Break” icon, which opens up the Disassembly tab. It
combines your high-level code and the compiled assembler instructions in the same view.

With BASCOM-AVR, | found it easiest to compile so that it generates a .obj file. Next, start Atmel
Studio 6 and click File/Open/Open Object File For Debugging. This will set up a project for this object
file and you use it like above.

As | started with BASCOM-AVR, | only figured this out at the middle of that analysis. | had first used
two other methods:

2. Use AVR GCC'’s avr-objdump.

o Requires a reboot into Linux (or using a virtual machine?).

o avr-objdump -s -m avr5 -D /root/Downloads/BTf2128.hex > /root/BTf2128.dump
3. Open the .hex or .bin files in an advanced hex editor and if necessary convert .hex to the

humanly readable .bin format.
o Convert the machine code manually by converting it (minding that it’s little-endian)
to bit code, looking up the assembly instruction (130) *** and its details (23) **°. Very

time-consuming...

o lused a commercial version of WinHex.

124 http://www.zbasic.net/download/AVR opcodes.txt

http://www.atmel.se/Images/doc0856.pdf

125

107

A.4 Atmel application notes on efficient programming

A.4.1 Efficient C Coding for 8-bit AVR microcontrollers

This document is based on IAR Systems’ compiler *° and published in 2004, so some of this
information isn’t valid for the Atmel Studio avr-gcc compiler. (This is the case for at least parameter
passing and function return.)

It shows how the four (SP, X, Y, and Z) 16-bit pointers can be used with indirect addressing and
displacement or pre- or post-decrement. It also has a large section about EEPROM handling.

There are a number of examples of syntactically correct C statements together with their compiled
Assembly code. The “volatile” option (force read or write, i.e. don’t optimize) is mentioned, we are
III

advised to use as “small” variables as possible, and the ways to declare variables is mentioned:

® Global: Common to the program (i.e. not defined inside a function). Must be loaded from
SRAM into working registers, so their use imposes a performance penalty.

¢ Local: Declared and only exists inside a function. As far as possible, working registers are
used directly for locals, so no penalty.

e Static local: Function-internal variables that keep their value between the function calls.
Typically stored in SRAM, so performance penalty.

The global variable penalty is demonstrated; a simple assignment requires 10 code bytes and 5 clock
cycles for a global, but only 2 code bytes and 1 clock cycle for a local. A static local is loaded from
SRAM at the function entry but only stored back to SRAM at the function exit, which potentially
decreases the penalty hit.

Global variables should as far as possible be declared as part of a structure, which enables
compilation to indirect access. An example is given, showing that with only one variable the code size
is the same, but each additional global inside a structure saves four code bytes.

Furthermore, it is possible (after allocation in the compiler options setup) to utilize unused 1/0
registers for global flags. [As mentioned above, I/0 0x00 — Ox1F is bit-accessible and I/0 0x00 — Ox03F
can use the shorter IN and OUT instructions, my comment.] An example is given, showing:

® Global bit-flag in SRAM: 10 code bytes

® Global bit-flag in working register: 4 code bytes
e Global bit-flag in I/0 0x20 — Ox3F: 6 code bytes
e Global bit-flag in I/0 0x00 — Ox1F: 2 code bytes

Datain |Datainl/O Data in Datainl/O
Action SRAM | Above Ox1F | Register File | Below Ox1F
Set/clear single bit 10 6 4 2
Test single bit 6 4 2 2
Set/clear multiple bits 10 6 4 6
Compare with immediate value 6 4 4 4

Table 5: Code Size (Bytes) for some Common Operations

(The table above is based on “AVR035: Efficient C Coding for 8-bit AVR microcontrollers” (21), p15)

108

"The examples shows using free 1/0 locations are very efficient for flag variables that operates on
single bits, while using dedicated registers are efficient for frequently accessed variables. Note that
locking registers for global variables limits the compilers ability to optimize the code. For complex
programs it may increase the code size when dedicating registers for global variables.”

The document proceeds with a comparison of bit-mask vs. bit-field for use with flags. Following the
above, using a working register (e.g. a local variable) is most efficient but can only be used with bit-
mask. “Below I/0” is roughly equally efficient and works with both bit-mask and bit-field, as does the
less efficient “above I/0” and SRAM storage.

Global variables are initialized to zero unless a value is specified. For code density reasons, this is
recommended compared to using a separate init routine.

Here | omit the parts about parameter passing and function return as it differs from avr-gcc. The
differences can be seen in (131) and (41). I'll return to the latter when | present the Atmel Studio IDE
conventions.

The document ends with an IAR Systems-centered summary that’s better quoted in full:
“Eighteen Hints to Reduce Code Size

Compile with full size optimization.

Use local variables whenever possible.

Use the smallest applicable data type. Use unsigned if applicable.

If a non-local variable is only referenced within one function, it should be declared static.

vk whN e

Collect non-local data in structures whenever natural. This increases the possibility of

indirect addressing without pointer reload.

6. Use pointers with offset or declare structures to access memory mapped 1/0.

7. Use for(;;) { } for eternal loops.

8. Use do { } while(expression) if applicable.

9. Use descending loop counters and pre-decrement if applicable.

10. Access I/O memory directly (i.e., do not use pointers).

11. Declare main as C_task if not called from anywhere in the program.

12. Use macros instead of functions for tasks that generates less than 2-3 lines assembly code.

13. Reduce the size of the Interrupt Vector segment (INTVEC) to what is actually needed by the
application. Alternatively, concatenate all the CODE segments into one declaration and it will
be done automatically.

14. Code reuse is intra-modular. Collect several functions in one module (i.e., in one file) to
increase code reuse factor.

15. In some cases, full speed optimization results in lower code size than full size optimization.
Compile on a module by module basis to investigate what gives the best result.

16. Optimize C_startup to not initialize unused segments (i.e., IDATAO or IDATAL if all variables
are tiny or small).

17. If possible, avoid calling functions from inside the interrupt routine [as this causes all
registers to be placed on the stack].

18. Use the smallest possible memory model.

109

Five Hints to Reduce RAM Requirements

1.

All constants and literals should be placed in Flash by using the Flash keyword.

Avoid using global variables if the variables are local in nature. This also saves code space.
Local variables are allocated from the stack dynamically and are removed when the function
goes out of scope.

If using large functions with variables with a limited lifetime within the function, the use of
subscopes can be beneficial.

Get good estimates of the sizes of the software Stack and return Stack (Linker File).

Do not waste space for the IDATAO and UDATAO segments unless you are using tiny variables
(Linker File).

Checklist for Debugging Programs

AA4.2

Ensure that the CSTACK segment is sufficiently large.

Ensure that the RSTACK segment is sufficiently large.

Ensure that the external memory interface is enabled if it should be enabled and disabled if it
should be disabled.

If a regular function and an interrupt routine are communicating through a global variable,
make sure this variable is declared volatile to ensure that it is reread from RAM each time it
is checked.”

Tips and Tricks to Optimize Your C Code for 8-bit AVR Microcontrollers

This document from 2011 is targeted at avr-gcc and it contains some general information about

compiler (optimization) settings and the tool-chain. It is similar to the IAR Systems document:

Use as small variables as possible, both for size and execution performance.

Use locals instead of globals.

Write loops to count down to zero, with pre-decrement as this sets the SREG Z flag, which
means that a separate comparison isn't needed. This reduces both size and clock cycles.

Use loop jamming (combining different loops).

Programs often run out of SRAM before running out of flash. Therefore, store constants in
flash with help from the PROGMEM AVR-Libc macro. Reading from flash is slower than
SRAM, so if necessary, use a temporary (typically local) variable for it where it is needed.
Global static variables can only be accessed in the file where they are defined. This is a way
to prevent unplanned use. The same applies for static functions.

Static functions that are only called from one place get optimized automatically as inline
code (unless optimization level OO0 is used).

Static local variables preserve their value between function calls, but are only in scope inside
their function.

Use macros instead of functions that generate less than 2-3 lines of assembly code.

Unroll short loops to avoid testing of loop index and branching. This can increase codesize
but reduce the number of clock cycles.

Always put the most probable outcome first in "if-else" statements.

"Switch-case" statements are often compiled to a lookup table with indexed jumps, so there
is less of a need to organize the outcomes. This might result in quicker but bigger code.

110

The document ends with an optimization example on a test program compiled with the -s option
enabled. | include it here for plausibility comparison to my code samples:

Test Items Before optimization | After optimization | Test result
Code size 1444 bytes 630 bytes -56.5%
Data size 25 bytes 0 bytes -100.0%

Execution speed

(1 loop incl 5 ADC samples and 1
USART transmission) 3.88 ms 2.6 ms -33.0%

Table 6: Example application speed and size optimization result

A.4.3 Some clock cycle counts for ATmega and ATxmega
e add1l
e adiw?2
® brcc 1if false, 2 if true
* breq1iffalse, 2 if true
e brne 1if false, 2 if true
e call ATmega 16bit PC 4, 22bit PC 5, ATxmega 16bit PC 3, 22bit PC 4

e ¢pl

e cpil
e decl
* incl
e [dX1

e |d X+ ATmega 2, ATxmega 1
¢ |dd with displacement from SRAM ATxmega 3

e |dil
e |ds2
e srl
® pop?2

e push ATmega 2, ATxmega 1

¢ rcall ATmega 16bit PC 3, 22bit PC 4, ATxmega 16bit PC 2, 22bit PC 3
e ret 16bit PC4, 22bit PC5

® rimp2

e shiw?2

e sbrs1if false, 2 if true and skipped instruction is 1 word, 3 if true and skipped instruction is 2

words
® sts2
e st XATmega 2, ATxmega l
e st-Y2

111

A.5 IDE-specific additional information

A.5.1 BASCOM-AVR register conventions
When writing inline assembly for BASCOM-AVR, what must you consider in order to avoid
overwriting register data? The following information can be found in "Mixing ASM and BASIC” in the
online help: (30) *¢
® Yisused as the soft stack pointer.
e R4 and R5 are used to point to the stack frame or the temp data storage
® R6is used to store some bit variables:

o R6 bit 0 = flag for integer/word conversion

o R6 bit 1 = temp bit space used for swapping bits

o R6 bit 2 = error bit (ERR variable)

o R6 bit 3 = show/noshow flag when using INPUT statement
e R8and R9 are used as a data pointer for the READ statement.

All other registers are used depending on the used statements.

One of the good things about the non-optimizing compiler is that the built-in commands are separate
entities. You only have to make sure that you don’t disturb these registers.

| posted the following question in the Bascom user forum: (132) **/
PostPosted: Wed Jul 10, 2013 7:36 pm Post subject: Inline assembler register conventions Reply with quote
Hi,

In the "Mixing ASM and BASIC" help file, | have found this info:

Y is used as the SW stack pointer.

R4 and R5 are used to point to the stack frame or the temp data storage
R6 is used to store some bit variables:

R6 bit 0 = flag for integer/word conversion

R6 bit 1 = temp bit space used for swapping bits

R6 bit 2 = error bit (ERR variable)

R6 bit 3 = show/noshow flag when using INPUT statement

R8 and R9 are used as a data pointer for the READ statement.

All other registers are used depending on the used statements.

If | want to write an inline assembly using for example R24, X, R10, and R11, can | safely assume that these registers will not
have to be pushed and popped on HW stack? At least my disassembly seems to suggest that this is the case in 2.0.7.6, but
what is certain?

Is there a more complete listing of Bascom's conventions?
Can I generally assume that the "other registers" are typically used inside Bascom commands?
Grateful for any input. Thanks in advance.Niclas

Posted: Wed Jul 10, 2013 9:13 pm Post subject: Reply with quote

126 http://avrhelp.mcselec.com/index.html

127

http://www.mcselec.com/index2.php?option=com forum&Itemid=59&page=viewtopic&p=60805#6
0805

112

ASM-Code between Bascom statements can use any registers freely without need of saving, beside those mentioned, of
course. It's different in an ISR, there you don't know which instruction was interrupted, so every register used by the ISR
needs to be saved.

MWS”

A.5.2 AVR-GCCregister layout, frame layout, and calling convention
The below is taken directly from the AVR-GCC Wiki: (33) **®

“Values that occupy more than one 8-bit register start in an even register.
Fixed Registers

Fixed Registers are registers that won't be allocated by GCC's register allocator. Registers RO and R1
are fixed and used implicitly while printing out assembler instructions:

e RO:is used as scratch register that need not to be restored after its usage. It must be saved
and restored in interrupt service routine's (ISR) prologue and epilogue. In inline assembler
you canuse __tmp_reg__ for the scratch register.

e R1:always contains zero. During an insn the content might be destroyed, e.g. by a MUL
instruction that uses RO/R1 as implicit output register. If an insn destroys R1, the insn must
restore R1 to zero afterwards. This register must be saved in ISR prologues and must then be
set to zero because R1 might contain values other than zero. The ISR epilogue restores the
value. In inline assembler you can use __zero_reqg__ for the zero register.

e T:the T flagin the status register (SREG) is used in the same way like the temporary scratch
register RO.

User-defined global registers by means of global register asmand/or -ffixed-n won't be
saved or restored in function pro- and epilogue.

128 http://gcc.gnu.org/wiki/avr-gec

113

Call-Used Registers

The call-used or call-clobbered general purpose registers (GPRs) are registers that might be destroyed
(clobbered) by a function call.

e R18-R27, R30, R31: These GPRs are call clobbered. An ordinary function may use them
without restoring the contents. Interrupt service routines (ISRs) must save and restore each
register they use.

e RO, T-Flag: The temporary register and the T-flag in SREG are also call-clobbered, but this
knowledge is not exposed explicitly to the compiler (RO is a fixed register).

Call-Saved Registers

e R2-R17,R28, R29: The remaining GPRs are call-saved, i.e. a function that uses such a
registers must restore its original content. This applies even if the register is used to pass a
function argument.

e R1:The zero-register is implicity call-saved (implicit because R1 is a fixed register).

Frame Layout

During compilation the compiler may come up with an arbitrary number of pseudo registers which
will be allocated to hard registers during register allocation.

e Pseudos that don't get a hard register will be put into a stack slot and loaded / stored as
needed.

e Inorder to access stack locations, avr-gcc will set up a 16-bit frame pointer in R29:R28 (Y)
because the stack pointer (SP) cannot be used to access stack slots.

e The stack grows downwards. Smaller addresses are at the bottom of the drawing at the right.

e Stack pointer and frame pointer are not aligned, i.e. 1-byte aligned.

e After the function prologue, the frame pointer will point one byte below the stack frame, i.e.
Y+1 points to the bottom of the stack frame.

e Any of "incoming arguments", "saved registers" or "stack slots" in the drawing at the right
may be empty.

e Even "return address" may be empty which happens for functions that are tail-called.

incoming arguments

return address (2-3 bytes)
saved registers

stack slots, Y+1 points at the bottom
Table 7: Frame layout after Function Prologue (reproduction of image in the Wiki)

114

Calling Convention

e Anargument is passed either completely in registers or completely in memory.
e To find the register where a function argument is passed, initialize the register number R,

with R26 and follow this procedure:

1.

6.

If the argument size is an odd number of bytes, round up the size to the next even
number.

Subtract the rounded size from the register number R,.

If the new R, is at least R8 and the size of the object is non-zero, then the low-byte of
the argument is passed in R,. Subsequent bytes of the argument are passed in the
subsequent registers, i.e. in increasing register numbers.

If the new register number R, is smaller than R8 or the size of the argument is zero,
the argument will be passed in memory.

If the current argument is passed in memory, stop the procedure: All subsequent
arguments will also be passed in memory.

If there are arguments left, goto 1. and proceed with the next argument.

e Return values with a size of 1 byte up to and including a size of 8 bytes will be returned in

registers. Return values whose size is outside that range will be returned in memory.

e If areturnvalue cannot be returned in registers, the caller will allocate stack space and pass

the address as implicit first pointer argument to the callee. The callee will put the return

value into the space provided by the caller.
e If the return value of a function is returned in registers, the same registers are used as if the

value was the first parameter of a non-varargs function. For example, an 8-bit value is
returned in R24 and an 32-bit value is returned R22...R25.
e Arguments of varargs functions are passed on the stack. This applies even to the named

arguments.

For example, suppose a function with the following prototype:

int func (char a, long b);

then

e awill be passed in R24.
e b will be passed in R20, R21, R22 and R23 with the LSB in R20 and the MSB in R23.
e Theresultis returned in R24 (LSB) and R25 (MSB).“

115

A.5.3 Atmel Studio 6 history: AVR Studio 4 & 5, WinAVR, and Eclipse
Versions prior to 4 seem to be antiquated, but for some reasons some users still prefer AVR Studio 4
to Atmel Studio 6. (77) *° This page claims that:

“In conclusion, AVRStudio 5 is rubbish and should be avoided, AVRStudio 6 is great if you have a very new PC with lots of
resources and AVRStudio 4 is still a very good program and perfectly suited to developing AVR projects in C or assembler,
especially AVRStudio 4.18, SP3. It would be easier for many users if Atmel could be bothered to fix v4.19 to eliminate the tool
chain bug.”

It also says:

“What about tool support in different versions? Most tools, including Kanda AVRISP programmers, AVRISP mkll
programmer, AVRDragon and JTAGICE mkll programmer and emulators will work in all versions of AVRStudio. But the
lowest cost emulator JTAGICE is not supported in version 5 or 6, so you need AVRStudio 4 to take advantage of this low cost
unit.”

The general impression I've got is that AVR Studio 5 had lots of teething problems and possibly that it
was released as a beta too early. E.g. it seems that C++ and one of the most popular Atmel
development boards (STK500) wasn’t supported at that point. (78) **° Also the final release seems to
1| was only using AVR Studio 4 to burn my BASCOM-
AVR .hex files so | don’t have any first-hand experience.

have caused strong emotional outbursts: (133)

Parallel to this, | think that many people used WinAVR, a Windows application for the AVR-GCC
toolchain. (134) 32 According to this forum thread, it is possible to use Eclipse too, on both Windows
and Linux: (135) " It also claims that “Atmel hired the head WinAVR developer to work on toolchains for them.”

(In addition to these free IDEs, there are also at least two commercial development platforms that
should be mentioned: IAR Embedded Workbench (136) ** and CodeVisionAVR (137) ***.)

129 http://www.kanda.com/blog/microcontrollers/avr-microcontrollers/avrstudio-explored/

http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=103949
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=printview&t=112779&start=0
http://winavr.sourceforge.net/
http://www.motherboardpoint.com/which-avr-studio-and-c-compiler-avr-8-bit-microcontroller-and-jtagice-
1257051.html

B4 http://www.iar.com/Products/IAR-Embedded-Workbench/

http://www.codevision.be/codevisionavr

130

131

132

133

135

116

A.6 BASCOM incremental code pieces

A.6.1 ATxmega USART setup

Here's the actual ATxmega BASCOM-AVR v2.0.7.6 compiled code for USART setup:

Config Com5 = 15625 , Mode =0, Parity = None , Stopbits = 1, Databits = 8

00000134
00000135

00000137
00000138

00000139
0000013A

0000013B
0000013C

0000013D
0000013E
0000013F

78.e0
70.93.81.06

8f.e9
8a.93

80.e8
8a.93

83.e0
8a.93

84.e0
8a.93
0e.94.1e.02

LDI R23,0x08
STS 0x0681,R23

LDI R24,0x9F
ST-Y,R24

LDI R24,0x80
ST-Y,R24

LDI R24,0x03
ST-Y,R24

LDI R24,0x04
ST-Y,R24

CALL 0x0000021E

--USART_c: (Point X to USART data register)

00000216
00000217

00000218
00000219
0000021A
0000021B
0000021C
0000021D

0000021E
0000021F

00000220
00000221

00000222
00000223

00000224
00000225

00000226
00000227
00000228

79.91
a0.ea

76.95
08.f4
a0.eb
b8.e0
b7.0f
08.95

f7.df
14.96

88.el
8d.93

89.91
8d.93

89.91
8d.93

89.91
8d.93
08.95

LD R23,Y+
LDI R26,0xA0

LSR R23

BRCC PC+0x02
LDI R26,0xB0
LDI R27,0x08
ADD R27,R23
RET

RCALL PC-0x0008
ADIW R26,0x04

LDI R24,0x18
ST X+,R24

LD R24,Y+
ST X+,R24

LD R24,Y+
ST X+,R24

LD R24,Y+
ST X+,R24
RET

Load immediate PORTE_DIRSET = 0b0000 1000 (bit 3 output)
Store direct to data space

Load immediate Place 0x9F on stack
Store indirect and predecrement

Load immediate Place 0x80 on stack
Store indirect and predecrement

Load immediate Place 0x03 on stack
Store indirect and predecrement

Load immediate Place 0x04 on stack (USART number)
Store indirect and predecrement
Call subroutine Calculate USART register area start and write them from stack

Load indirect and postincrement R23 = USART number from SW stack

Load immediate R26 = 0xAO

Logical shift right Logical shift R23 right bit 0 to C (in this case 4 -> 2)
Branch if carry cleared 0x21B if USART number was even X = 0x08 A0 (USARTCO_DATA)
Load immediate If USART number was odd, X = 0x08 BO (USARTC1_DATA)

Load immediate ...

Add without carry Adjust XH by USART offset to 0xOA A0 (USARTEO_DATA)

Subroutine return

Relative call subroutine Point X to USART data register
Add immediate to word Point X to USART ctrlb register
Load immediate USARTxy_CTRLB = 0x18 (Enable RX and TX)

Store indirect and postincrement

Load indirect and postincrement USARTxy_CTRLC = 0x03 (Asynch, no par, 1 stop bit, 8-bit)
Store indirect and postincrement

Load indirect and postincrement USARTxy_BAUDCTRLA = 0x80 (BSEL = OxF 80)
Store indirect and postincrement

Load indirect and postincrement USARTxy_BAUDCTRLB = 0x9F (Baud rate scale factor 9)
Store indirect and postincrement
Subroutine return

A.6.2 ATxmega set up a second USART identical to the first one
Config Com6 = 15625, Mode =0, Parity = None , Stopbits = 1, Databits = 8

00000135

0000013D
0000013E
0000013F

1 word
70.93.81.06

1 word
1 word

8a.93
0e.94.1e.02

LDI R23,0x80
STS 0x0681,R23

SBIW YH:YL,3
LDI R24,0x05

ST-Y,R24
0x0000021E

Load immediate PORTE_DIRSET = 0b1000 0000 (bit 7 output)
Store direct to data space

Subtract 3 from the Y-pointer(r29:r28)

Load immediate Place 0x05 on stack (USART number)
Store indirect and predecrement
Call subroutine Calculate USART register area start and write them from stack

117

A.6.3 ATxmega custom USART setup
Custom USART setup with exactly the same functionality as 6.1:

Config Com5 = 15625 , Mode =0, Parity = None , Stopbits = 1, Databits = 8

78.e0 LDI R23,0x08
70.93.81.06 STS 0x0681,R23

LDI R26,0xA4
LDI R27,0x0A

88.el LDI R24,0x18

8d.93 ST X+,R24

LDI R24,0x03

8d.93 ST X+,R24
LDI R24,80

8d.93 ST X+,R24
LDI R24,9F
ST X,R24

Load immediate
Store direct to data space

Load immediate
Load immediate

Load immediate

PORTE_DIRSET = 0b0000 1000 (bit 3 output)

Point X to USARTEO_CTRLB

USARTEO_CTRLB = 0x18 (Enable RX and TX)

Store indirect and postincrement

Load immediate USARTEO_CTRLC = 0x03 (Asynch, no par, 1 stop bit, 8-bit)
Store indirect and postincrement

Load immediate USARTEO_BAUDCTRLA = 0x80 (BSEL = OxF 80)
Store indirect and postincrement

Load immediate USARTEO_BAUDCTRLB = 0x9F (Baud rate scale factor 1001 == -7)
Store indirect

A.6.4 ATxmega USART setup scaling example

Config Com6 = 15625 , Mode =0, Parity = None , Stopbits = 1, Databits = 8

78.e0 LDI R23,0x08

70.93.81.06 STS 0x0681,R23
LDI R26,0xA4
LDI R27,0x0A

2 words CALL __USART_write_settings

LDI R23,0x80

70.93.81.06 0x0681,R23

LDI R26,0xB4
LDI R27,0x0A
2 words CALL __USART_write_settings

__USART_write_settings:

88.el LDI R24,0x18

8d.93 ST X+,R24

LDI R24,0x03

8d.93 ST X+,R24
LDI R24,80
8d.93 ST X+,R24
LDI R24,9F
ST X,R24
08.95 RET

Load immediate
Store direct to data space
Load immediate
Load immediate

Load immediate
Store direct to data space

Load immediate
Load immediate

PORTE_DIRSET = 0b0000 1000 (bit 3 output)

Point X to USARTEO_CTRLB

PORTF_DIRSET = 0b1000 0000 (bit 7 output)

Point X to USARTE1_CTRLB

Load immediate USARTE1_CTRLB = 0x18 (Enable RX and TX)
Store indirect and postincrement

Load immediate USARTE1_CTRLC = 0x03 (Asynch, no par, 1 stop bit, 8-bit)
Store indirect and postincrement

Load immediate USARTE1_BAUDCTRLA = 0x80 (BSEL = OxF 80)
Store indirect and postincrement

Load immediate USARTE1_BAUDCTRLB = 0x9F (Baud rate scale factor 9)
Store indirect

Subroutine return

A.6.5 USART sending one port, ATmega original disassembly

Printbin #1 , 254
19e: 8e ef
1a0: 0e 94 2c 01

Uartsendbyte = 1, Gosub Prbin

laa: 81 e0

lac: 8093 2d01
1b0: Oe 94 f2 00
Prbin gosub:

led: 31e0

le6: ad e2

le8: bl e0

lea: 0e 94 2701
lee: 08 95

Printbin command:

Idi
call

Idi
sts
call

Idi
Idi
Idi
call
ret

r24, OxFE
0x258

r24, 0x01

0x012D, r24

Oxled

r19, 0x01
r26, 0x2D
r27, 0x01
0x24e

; 254
; 0x258

;1
; Oxled
;1
;45

;1
; 0x24e

118

R24 =254

Call Send USART byte
Uartsendbyte = 1

Call Prbin gosub

R19 =1 (number of bytes to send)
X points to global Uartsendbyte

Call Printbin command

24e: 8d 91
250: 03 do
252: 3a95
254: elf7
256: 08 95

Send USART byte
258: 0090 c0 00

25c: 05 fe

new data)

25e: fc cf

260: 8093 c6 00
264: 08 95

(Disassembled with AVR-objdump.)

Id r24, X+

rcall +6

dec ri9

brne -8

ret

Ids r0, 0x00CO
sbrs ro, 5

rimp -8

sts 0x00C6, r24
ret

; 0x258

; Ox24e

; 0x258

R24 = value of X (Global Uartsendbyte)
rcall Send USART byte
Repeat until there are no more bytes to send

RO = UCSROA
Skip next op if bit 5 is set (UDREn: USART ready to receive

Repeat until register ready
UDRO = R24

A.6.6 USART sending one port, ATxmega original disassembly

Printbin #1, 254

1B1: 8e.ef
1B2: 74.e0
1B3: 7a.93
1B4: 0e.94.5d.02

LDI R24,0xFE
LDI R23,0x04
ST-Y,R23

CALL Ox25D Call subroutine

Uartsendbyte =1, Gosub Prbin

1BB: 81.e0
1BC: 80.93.56.20
1BE: 0e.94.e0.01

LDI R24,0x01
STS 0x2056,R24

CALL Ox1EO Call subroutine

Prbin gosub: Printbin #1 , Uartsendbyte

1EO: 31.e0

1E1: ab.e5

1E2: b0.e2

1E3: 74.e0
stack Y)

1E4: 7a.93

1E5: 0e.94.2f.02
1E7: 08.95

LDI R19,0x01
LDI R26,0x56
LDI R27,0x20
LDI R23,0x04

ST-Y,R23
CALL Ox22F
RET

--USART_c: (Point X to USART data register)

216: 79.91
217: al.ea
218: 76.95
case 4 ->2)

219: 08.f4
(USARTCO_DATA)
21A: a0.eb
21B: b8.e0
21C: b7.0f
21D: 08.95

Printbin command

--USART_a:

22F: 8d.91
increment

230: 2a.d0
231: 3a.95
send?

232: el.f7
233: 21.96
234: 08.95
--USART_b:

25B: 78.81
25C: 7a.93
stack Y
--USART_b2:
25D: bf.93
25E: af.93
25F: b6.df

LD R23,Y+
LDI R26,0xA0
LSR R23

BRCC PC+0x02

LDI R26,0xB0
LDI R27,0x08
ADD R27,R23
RET

LD R24,X+

RCALL PC+0x002B
DECR19

BRNE PC-0x03
ADIW R28,0x01
RET

LDD R23,Y+0
ST-Y,R23

PUSH R27
PUSH R26
RCALL PC-0x0049

Load immediate
Load immediate

R24 = byte to send
Place USART number on SW stack Y

Store indirect and predecrement

--USART_b2

Load immediate

Store direct to data space

Uartsendbyte = 1

--USART_b (Gosub Prbin)

Load immediate
Load immediate
Load immediate
Load immediate

Store indirect and predecrement

Call subroutine
Subroutine return

Load indirect and postincrement

Load immediate
Logical shift right

Branch if carry cleared

Load immediate
Load immediate
Add without carry
Subroutine return

Load indirect and postincrement

Relative call subroutine
Decrement

Branch if not equal
Add immediate to word
Subroutine return

Load indirect with displacement
Store indirect and predecrement

Push register on stack
Push register on stack
Relative call subroutine

119

R19 = number of bytes to send
X = Uartsendbyte

R23 = USART number 4 (place on SW

--USART_a: (Printbin command)

R23 = USART number from SW stack
R26 = 0xAO

Logical shift R23 right bit 0 to C (in this
0x21B if USART number was even X = 0x08 A0

If USART number was odd, X = 0x08 BO (USARTC1_DATA)

Adjust XH by USART offset to 0xOA BO (USARTE1_DATA)

R24 = Uartsendbyte from X, post-

--USART_b
More bytes to

Yes, --USART_a
No, Y++ (SW stack pointer)

R23 = USART number from SW stack Y
Place copy of USART number on SW

Place X on stack (would be next byte if array)

--USART_c (Point X to USART data register)

260: 11.96
261: 7c91
262: 75.ff

263: fd.cf

264: 11.97
265: 8c.93
266: af.91
267: bf.91
268: 08.95

(Disassembled with Atmel Studio 6.1.)

ADIW R26,0x01

LD R23,X
SBRS R23,5

RJMP PC-0x0002
SBIW R26,0x01

ST X,R24
POP R26
POP R27
RET

Add immediate to word
Load indirect

Skip if bit in register set
Relative jump
Subtract immediate from word Point X back to USART data register
Store indirect Write Uartsendbyte to USART data register

Pop register from stack Retrieve the X pointer to the next array byte to send
Pop register from stack

Subroutine return

Point X to USART status register
Check status register bit 5 until data reg ready

A.6.7 Modified ATmega for two serial ports

Printbin #1, 254
19e: 8e ef

1a0: 0e 94 2c 01

Idi
Idi
call

Uartsendbyte = 1, Gosub Prbin

laa: 81e0
lac: 8093 2d01
1b0: Oe 94 f2 00

Printbin #2 , 254
19e: 8e ef

1a0: 0e 94 2c 01

Idi
sts
Idi
call

Idi
Idi
call

Uartsendbyte = 1, Gosub Prbin

laa: 81 e0

lac: 8093 2d01
1b0: Oe 94 f2 00
Prbin gosub:

led: 31e0

le6: ad e2

1le8: bl e0

lea: 0e 94 2701
lee: 08 95

Printbin command:

24e: 8d 91
250: 03 do
252: 3a 95
254: elf7
256: 08 95

Send USART byte
258:

__USARTO_send:
0090 c0 00
05 fe
fccf
8093 ¢c6 00
08 95
__USART1_send:
0090 c0 00
05 fe
fccf
8093 ¢c6 00

Idi
sts
Idi
call

Idi
Idi
Idi
call
ret

rcall
dec
brne
ret

cpi
brne

Ids
sbrs
rimp
sts
ret

Ids
sbrs
rimp
sts
ret

r24, OxFE
r23,0
0x258

r24, 0x01
0x012D, r24
r23,0
Oxled

r24, OxFE
r23,1
0x258

r24, 0x01
0x012D, r24
r23,1
Oxled

r19, 0x01
r26, 0x2D
r27, 0x01
0x24e

r24, X+
+6
r19

r23,0

USART1_send

r0, 0x00CO
ro, 5

__USARTO_send

0x00C6, r24

r0, UCSR1A
ro, 5

__USART1_send

UDR1, r24

;254 R24 = 254
Send through channel 0
; 0x258 Call Send USART byte
;1 Uartsendbyte = 1
Send through channel 0
; Oxled Call Prbin gosub
;254 R24 =254
Send through channel 1
; 0x258 Call Send USART byte
;1 Uartsendbyte = 1
Send through channel 1
; Oxle4d Call Prbin gosub
;1 R19 =1 (number of bytes to send)
;45 X points to global Uartsendbyte
;1
; Ox24e Call Printbin command
R24 = value of X (Global Uartsendbyte)
; 0x258 rcall Send USART byte
Repeat until there are no more bytes to send
; 0x24e

RO = UCSROA

Skip next op if bit 5 is set (UDREn: USART ready to receive new data)
Repeat until register ready
UDRO = R24

RO = UCSR1A

Skip next op if bit 5 is set (UDREn: USART ready to receive new data)
Repeat until register ready
UDR1 =R24

120

A.6.8 Modified ATxmega for two serial ports

Printbin #1, 254
1B1: 8e.ef LDI R24,0xFE
1B2: 74.e0 LDI R23,0x04
CALL --USART_b1

Uartsendbyte = 1, Gosub Prbin

1BB: 81.e0 LDI R24,0x01
1BC: 80.93.56.20 STS 0x2056,R24
1E3: 74.e0 LDI R23,0x04
stack Y)

1BE: 0e.94.e0.01 CALL Ox1EO

Printbin #2, 254

1B1: 8e.ef LDI R24,0xFE

1B2: 74.e0 LDI R23,0x05
CALL --USART_b1

Uartsendbyte =1, Gosub Prbin

1BB: 81.e0 LDI R24,0x01

1BC: 80.93.56.20 STS 0x2056,R24
LDI R23,0x05

stack Y)

1BE: 0e.94.e0.01 CALL Ox1EO

Prbin gosub:

Printbin #1 , Uartsendbyte

1EO: 31.e0 LDI R19,0x01

1E1: a6.e5 LDI R26,0x56

1E2: b0.e2 LDI R27,0x20

1E4: 7a.93 ST -Y,R23

1ES: 0e.94.2f.02 CALL Ox22F

1E7: 08.95 RET

--USART_c: (Point X to USART data register)

216: 79.91 LD R23,Y+
217: al.ea LDI R26,0xA0
218: 76.95 LSR R23

case 4 ->2)

219: 08.f4 BRCC PC+0x02
21A: a0.eb LDI R26,0xBO
21B: b8.e0 LDI R27,0x08
21C: b7.0f ADD R27,R23
21D: 08.95 RET

Printbin command

--USART _a:
22F: 8d.91 LD R24,X+

230: 2a.do RCALL PC+0x002B
231 3a.95 DEC R19

232 el.f7 BRNE PC-0x03
233: 21.96 ADIW R28,0x01
234: 08.95 RET

--USART_b:

25B: 78.81 LDD R23,Y+0
--USART_b1:

25C: 7a.93 ST-Y,R23
--USART_b2:

25D: bf.93 PUSH R27

25E: af.93 PUSH R26

25F: b6.df RCALL PC-0x0049
260: 11.96 ADIW R26,0x01
261: 7¢.91 LD R23,X

262: 75.ff SBRS R23,5

263: fd.cf RIMP PC-0x0002

Load immediate
Load immediate
Call subroutine

Load immediate
Store direct to data space
Load immediate

Call subroutine

Load immediate
Load immediate
Call subroutine

Load immediate
Store direct to data space
Load immediate

Call subroutine

Load immediate
Load immediate
Load immediate

Store indirect and predecrement

Call subroutine
Subroutine return

Load indirect and postincrement

Load immediate
Logical shift right

R24 = byte to send (254)

Place USART number on SW stack Y
—-USART_b1

Uartsendbyte = 1

R23 = USART number 4 (place on SW
--USART_b (Gosub Prbin)

R24 = byte to send (254)

Place USART number 5 on SW stack Y
—-USART_b1

Uartsendbyte = 1

R23 = USART number 5 (place on SW

--USART_b (Gosub Prbin)

R19 = number of bytes to send
X = Uartsendbyte

--USART_a: (Printbin command)

R23 = USART number from SW stack
R26 = OxAO
Logical shift R23 right bit 0 to C (in this

Branch if carry cleared 0x21B if USART number was even X = 0x08 AO

Load immediate

Load immediate
Add without carry

Subroutine return

Load indirect and postincrement

Relative call subroutine
Decrement

Branch if not equal

Add immediate to word
Subroutine return

Load indirect with displacement

Store indirect and predecrement

Push register on stack
Push register on stack
Relative call subroutine
Add immediate to word
Load indirect

Skip if bit in register set
Relative jump

121

(USARTCO_DATA)
If USART number was odd, X = 0x08 BO
(USARTC1_DATA)

Adjust XH by USART offset to OxOA BO
(USARTE1_DATA)

R24 = Uartsendbyte from X, post-increment

—-USART_b

More bytes to send?

Yes, --USART_a

No, Y++ (SW stack pointer)

R23 = USART number from SW stack Y

Place copy of USART number on SW stack Y

Place X on stack (would be next byte if array)

__USART_c (Point X to USART data register)

Point X to USART status register

Check status register bit 5 until data reg ready

264:
265:
266:
267:
268:

A.6.9

19e:

1a0:

11.97
8c.93
af.91
bf.91
08.95

SBIW R26,0x01

ST X,R24
POP R26
POP R27
RET

Subtract immediate from word Point X back to USART data register
Store indirect Write Uartsendbyte to USART data register

Pop register from stack Retrieve the X pointer to the next array byte to send
Pop register from stack

Subroutine return

Modified ATmega for three serial ports
Printbin #1, 254

8e ef

0e 94 2c 01

Uartsendbyte = 1

Gosub Prbin

laa: 81e0

lac: 8093 2d01
Idi r23,0

1b0: Oe 94 f2 00

Idi
Idi
call

Idi
sts

call

r24, OxFE
r23,0
0x258

r24, 0x01
0x012D, r24

Oxled

+++ two more like the above, each 10 words

Prbin gosub:

led: 31e0

le6: ad e2

le8: bl e0

lea: 0e 942701
lee: 08 95

Printbin command:

24e:
250:
252:
254:
256:

8d 91
03do
3a95
el f7
08 95

Send USART byte

258:

__USARTO_send:

0090 c0 00
05 fe

fccf

8093 c6 00
08 95

__USART1_send:

0090 c0 00
05 fe

fc cf

8093 c6 00

__USART2_send:

0090 c0 00
05 fe

fc cf

8093 c6 00

Idi
Idi
Idi
call
ret

rcall
dec
brne
ret

cpi
brne

Ids
sbrs
rimp
sts
ret

dec
brne

Ids
sbrs
rimp
sts
ret

Ids
sbrs
rimp
sts
ret

r19, 0x01
r26, 0x2D
r27, 0x01
0x24e

r24, X+
+6
ri9

r23,0

USART1_send

r0, 0x00CO
r0, 5

-8

0x00C6, r24

r23

USART2_send

r0, UCSR1A
r0, 5

-8

UDR1, r24

r0, UCSR2A
r0, 5

-8

UDR2, r24

;254 R24 =254

Send through channel 0
; 0x258 Call Send USART byte
;1 Uartsendbyte = 1

Send through channel 0

; Oxled Call Prbin gosub

;1 R19 =1 (number of bytes to send)
;45 X points to global Uartsendbyte
;1

; Ox24e Call Printbin command

R24 = value of X (Global Uartsendbyte)
; 0x258 rcall Send USART byte

Repeat until there are no more bytes to send
; Ox24e

RO = UCSROA

Skip next op if bit 5 is set (UDREn: USART ready to receive new data)
Repeat until register ready
UDRO = R24

RO = UCSR1A

Skip next op if bit 5 is set (UDREn: USART ready to receive new data)
Repeat until register ready
UDR1 =R24

RO = UCSR2A

Skip next op if bit 5 is set (UDREn: USART ready to receive new data)
Repeat until register ready
UDR2 =R24

122

A.6.10 Improved ATxmega dynamic addressing for two serial ports

Printbin #1, 254
1
1
2

Idi r24, OxFE ;254 R24 =254
Idi 23,4 Send through channel 4
call __USART_send_const Send constant

Uartsendbyte = 1, Gosub Prbin

1
2
1
2

Printbin #2, 254
1
1
2

Idi r24, 0x01 ;1 Uartsendbyte = 1

sts 0x012D, r24

Idi r23,4 Send through channel 4
call __Prbin_gosub Call Prbin gosub

Idi r24, OXFE ;254 R24 = 254

Idi r23,5 Send through channel 5
call __USART_send_const Send constant

Uartsendbyte = 1, Gosub Prbin

1
2
1
2

__Prbin_gosub:
1
1
1

__USART_send_varray:
1
2

__USART_send_const: 1
1

__USART_point_Z:
1

R R R R R RR

Idi r24, 0x01 ;1 Uartsendbyte = 1

sts 0x012D, r24

Idi r23,5 Send through channel 5

call __Prbin_gosub Call Prbin gosub
(Send 1 byte from global Uartsendbyte)

Idi r19, 0x01 ;1 R19 = 1 (number of bytes to send)

Idi r26, 0x2D ;45 X points to global Uartsendbyte

Idi r27, 0x01 ;1

; rimp __USART_send_varrary Not needed here (but will be for the next Prbin_gosub)

;ret Not needed at all if compiler can handle un-ended gosub
(or inline assembly is used for the __Prbin_gosub)
Launcher for sending variable or array

LDI r18, 0x00 Clear skip variable (variable or array sending)

rjimp __USART_point_zZ Send variable (or array)
Launcher for sending constant

LDI r18, OxFF ;254 Set skip variable (constant sending)

LDI r19, 0x01 ;1 R19 =1 (number of bytes to send)

(Point Z to USART data register), port number in R23 (R23 changed by routine)

PUSH R30 Free Z from frame use

PUSH R31

LDI R30,0xA0 Load immediate ZL

LSR R23 Logical shift right Logical shift R23 right bit 0 to C (here 4->2)

BRCC PC+0x02 Branch if carry cleared If USART # was even: Z = 0x08 A0 (USARTCO_DATA)

LDI R30,0xB0 Load immediate If USART # was odd: Z = 0x08 BO (USARTC1_DATA)

LDI R31,0x08 Load immediate .

ADD R31,R23 Add without carry Adjust ZH by USART offset up to 0xOB (USARTFx_DATA)
SBRS R18, 7 Skip if R18 bit 7 set When sending constant, don’t change R24

__USART_loop: (Send byte in R24 to USART with base address in Z)

1

PR R R R R R R

Id r24, X+ R24 <- X, post-increment Load byte from X into R24

Idd R4,Z+1 Load indirect w displm Wait until port available (check status register bit 5)
SBRS R4,5 Skip if bit in register set

RJMP PC-0x0002 Relative jump ... until data reg ready

ST Z,R24 Store indirect Write R24 to USART data register

dec ri9 R19- -

BRNE __USART_loop ... until all bytes have been sent

POP R31 Restore Z for frame use

POP R30

ret

123

A.6.11 ATxmega USART initialization improvements from 2.0.7.6 to 2.0.7.7

Config Priority = Static , Vector = Application , Lo = Enabled , Med = Enabled (as before)
258 77 E0 LDI R23,0x07 Load immediate PMIC_CTRL = 0x07 (Enable high, mid, & low interrupts)
25A 7093 A2 00 STS 0x00A2,R23 Store direct to data space

Config Com5 = 15625, Mode = 0, Parity = None, Stopbits = 1, Databits = 8 (changed to exactly the code | sent to BASCOM)

25E 78 EO LDI R23,0x08 Load immediate PORTE_DIRSET = 0b0000 1000 (bit 3 output)

260 70938106 STS 0x0681,R23 Store direct to data space...

264 88E1l LDI R24,0x18 Load immediate USARTEO_CTRLB = 0x18 (Enable RX and TX)

266 A4 EA LDI R26,0xA4 Load immediate Point X to USARTEO_CTRLB

268 BAEO LDI R27,0x0A Load immediate

26A 8D93 ST X+,R24 Store indirect and postincrement

26C 83 EO LDI R24,0x03 Load immediate USARTEO_CTRLC = 0x03 (Asynch, no par, 1 stop bit, 8-bit)
26E 8D 93 ST X+,R24 Store indirect and postincrement

270 80E8 LDI R24,80 Load immediate USARTEO_BAUDCTRLA = 0x80 (BSEL = OxF 80)

272 8D 93 ST X+,R24 Store indirect and postincrement

274 8FE9 LDI R24,0x9F Load immediate USARTEO_BAUDCTRLB = 0x9F (Baud rate scale factor 9)
276 8C93 ST X,R24 Store indirect

Config Serialin3 = Buffered , Size = 20 (as before)

278 8091 B309 LDS R24,0x09B3 Load direct from data space R24 = USARTD1_CTRLA (USART D1 RXC interrupt level MED)
27C 8F7C ANDI R24,0xCF Logical AND with immediate R24 =R24 & 0b1100 1111

27E 8062 ORI R24,0x20 Logical OR with immediate R24 = R24 | 0b0010 0000

280 8093 B309 STS 0x09B3,R24 Store direct to data space USARTD1_CTRLA = R24

A.6.12 ATmega324A initialization code

7c: 8f ef Idi r24, OxFF ; 255 KOXFF -> SPL

7e: 8d bf out 0x3d, r24 ;61

80: c8ed Idi r28, 0xD8 ;216 KOxD8 -> R28 (Y LSB) Software stack start

82: el ec Idi r30, 0xCO ;192 KOxCO -> R30 (Z LSB) Frame start

84: de 2e mov r4, r30 R4, R5 holds the current frame position

86: 88 e0 Idi r24, 0x08 ;8 KOx08 -> R24

88: 8e bf out 0x3e, r24 ;62 SPH stack pointer now points to RAMEND (0Ox8FF) 0x100 to Ox8FF = 2kB
8a: d8 el Idi r29, 0x08 ;8 KOx08 -> R29 (Y MSB) Software stack start

8c: f8 e0 Idi r31, 0x08 ;8 KOx08 -> R31 (Z MSB) Frame start

8e: 5f 2e mov r5,r31 R4, R5 holds the current frame position

90: a8 95 wdr Watchdog reset

92: 84 b7 in r24, 0x34 ;52 Read MCUSR

94: 08 2e mov r0, r24 Keep MCUSR in RO ???

96: 87 7f andi r24, OxF7 ;247 Mask MCUSR 0b1111 0111 (clear any reset flag except WDRF)
98: 84 bf out 0x34, r24 ;52

9a: 88 el Idi r24, 0x18 ;24 Disable watchdog

9c: 99 27 eor r25, r25

9e: 80936000 sts 0x0060, r24

a2: 90936000 sts 0x0060, r25

Clear entire SRAM (X address 0x0100 to 0x08FF (Z from 0x07FE to 0x0000))

ab6: ee ef Idi r30, OxFE ;254 Z = 0x07FE

a8: f7 e0 Idi r31, 0x07 ;7

aa: a0 el Idi r26, 0x00 ;0 X =0x0001

ac: bl e0 Idi r27, 0x01 ;1

ae: 8827 eor r24, r24 Clear R24

b0: 8d 93 st X+, r24 Clear X address and post-increment

b2: 3197 shiw r30, 0x01 ;1 Z--

ba: e9 f7 brne -6 ; 0xb0 Repeat untilZ==0

b6: 87el Idi r24, 0x17 ;23 0x17 -> UBRROL

b8: 8093¢c400 sts 0x00C4, r24

bc: 80 e0 Idi r24, 0x00 ;0 KO -> UBRROH: fosc / ((UBRRO + 1) * 16) = 6 000 000 / 24 / 16 = 15 625 Hz
be: 8093c¢500 sts 0x00C5, r24 ... (UCSROA.U2XO is initialized to 0 => prescaler 16 above)

c2: 88 el Idi r24, 0x18 ;24 KOb0001 1000 -> UCSROB (USART control and status register 0 B)

c4: 8093¢c100 sts 0x00C1, r24 ... Enable RXENO and TXENO

c8: 66 24 eor r6, ré Clear R6 (reserved for e.g. error flag)

ca: 86 e0 Idi r24, 0x06 ;6 KOb0000 0110 -> UCSROC (Asynch, no parity, 1 stop bit, 8 bit char, pol 0)
cc: 8093 c200 sts 0x00C2, r24

do: 7091c100 Ids r23, 0x00C1 UCSROB -> R23

da: 70 68 ori r23, 0x80 ;128 R23 =R23 | 0b1000 0000 = 0b0001 1000 | Ob1000 0000 = 0b1001 1000
d6: 7093¢c100 sts 0x00C1, r23 This enables RX0 interrupt

124

da:
dc:
de:

A.6.13

100
101
102
103
104
105
106
107
108
109
10A
10C
10D
10F
110
111

5098
519a
7894

cbi
sbi
sei

0x0a, 0
0x0a, 1

;10
;10

PortD.0 = input
PortD.1 = output

Set global interrupt flag in SREG (enable interrupts)

ATxmegal128A1 initialization code

8f.ef

8d.bf

c8.ed

e0.ec

de.2e

8f.e3

8e.bf

df.e3

ff.e3

5f.2e
00.90.78.00
8f.e3
80.93.78.00
78.ed

74.bf
80.93.80.00

SER R24
OUT 0x3D,R24
LDI R28,0xD8
LDI R30,0xCO
MOV R4,R30
LDI R24,0x3F
OUT Ox3E,R24
LDI R29,0x3F
LDI R31,0x3F
MOV R5,R31
LDS RO,0x0078
LDI R24,0x3F
STS 0x0078,R24
LDI R23,0xD8
OUT 0x34,R23
STS 0x0080,R24

; Clear SRAM from 0x20 00 to Ox3FF FF

113
114
115
116
117
118
119
11A
118

11C

ee.ef
ff.el
a0.e0
b0.e2
88.27
8d.93
31.97
e9.f7
8f.el

66.24

LDI R30,0xFE
LDI R31,0x1F
LDI R26,0x00
LDI R27,0x20
CLR R24

ST X+,R24
SBIW R30,0x01
BRNE PC-0x02
LDI R24,0x1F

CLR R6

Set Register

Out to I/0 location

Load immediate

Load immediate

Copy register

Load immediate

Out to I/0 location

Load immediate

Load immediate

Copy register

Load direct from data space
Load immediate

Store direct to data space
Load immediate

Out to I/0 location

Store direct to data space

SPL = OxFF

XL =0xD8
YL =0xCO
R4 =0xCO
SPH = 0x3F (SP = Ox3F FF)

YH = 0x3F (Y = SW stack pointer = 0x3F CO)
ZH = 0x3F

R5 = 0x3F (Frame pointer = 0x3F CO)

RO = RST_STATUS

RST_STATUS = 0x3F (clear all reset flags)

CCP (Configuration Change Protection) = 0xD8) IOREG

WDT_CTRL (Watchdog timer control) = Ox3F

(Enable WDT but w/ reserved setting that doesn't time out)

Load immediate
Load immediate
Load immediate
Load immediate
Clear Register

Z=0x1F FE
X =0x20 00

R24=0

Store indirect and postincrement ...
Subtract immediate from word ...

Branch if not equal
Load immediate

Clear Register

; Config Osc = Disabled , Pllosc = Disabled , Extosc = Enabled , 32khzosc = Disa

11D
11E
120
121

73.e4
70.93.52.00
78.e0
70.93.50.00

LDI R23,0x43

STS 0x0052,R23
LDI R23,0x08

STS 0x0050,R23

Load immediate
Store direct to data space
Load immediate
Store direct to data space

; Config Sysclock = External , Prescalea =1, Prescalebc=1_1

123
125
126

127
128

129
12A

12C
12D

12E
12F

80.91.51.00
83.ff
fe.cf

78.ed
74.bf

73.e0
70.93.40.00

78.ed
74.bf

70.e0
70.93.41.00

LDS R24,0x0051
SBRS R24,3
RIMP PC-0x0003

LDI R23,0xD8
OUT 0x34,R23

LDI R23,0x03
STS 0x0040,R23

LDI R23,0xD8
OUT 0x34,R23

LDI R23,0x00
STS 0x0041,R23

Load direct from data space
Skip if bit in register set
Relative jump

Load immediate
Out to I/0 location

Load immediate
Store direct to data space

Load immediate
Out to I/0 location

Load immediate
Store direct to data space

; Config Priority = Static, Vector = Application, Lo = Enabled , Med = Enabled

131
132

77.e0
70.93.a2.00

LDI R23,0x07
STS 0x00A2,R23

Load immediate
Store direct to data space

; Config Com5 = 15625, Mode = 0, Parity = None , Stopbits = 1, Databits =8

;134
;135

78.e0
70.93.81.06
1 word

1 word
88.el

8d.93

LDI R23,0x08
STS 0x0681,R23
LDI R26,0xA4
LDI R27,0%0A
R24,0x18

ST X+,R24

Load immediate
Store direct to data space
Load immediate
Load immediate
Load immediate

???

Clear BASCOM status register R6

0SC_XOSCCTRL = 0x43 (2MHz - 9MHz, XTAL_256CLK)
OSC_CTRL = 0x08 (Enable external clock)

Wait until bit 3 in OSC_STATUS is set (clock stable)

CCP (Configuration Change Protection) = 0xD8) IOREG
CLK_CTRL = 0x03 (Use external clock)
CCP (Configuration Change Protection) = 0xD8) IOREG

CLK_PSCTRL = 0 (Divide by 1, presc B and C no division)
PMIC_CTRL = 0x07 (Enable high, mid, & low interrupts)
PORTE_DIRSET = 0b0000 1000 (bit 3 output)

Point X to USARTEO_CTRLB

USARTEO_CTRLB = 0x18 (Enable RX and TX)

Store indirect and postincrement...

125

1 word
8d.93
1 word
8d.93
1 word
1 word

LDI R24,0x03
ST X+,R24
LDI R24,80
ST X+,R24
LDI R24,9F
ST X,R24

; Config Serialin4 = Buffered , Size = 20

141
MED)
143
144
145

; Config Porte.2 = Input

147
148

80.91.b3.09

8f.7¢c
80.62

80.93.b3.09

74.e0

70.93.82.06

LDS R24,USARTEO_CTRLA Load direct from data space R24 = USARTEO_CTRLA

ANDI R24,0xCF
ORI R24,0x20

Load immediate USARTEO_CTRLC = 0x03 (Asynch, no par, 1 stop bit, 8-bit)
Store indirect and postincrement...

Load immediate USARTEO_BAUDCTRLA = 0x80 (BSEL = OxF 80)

Store indirect and postincrement...

Load immediate USARTEO_BAUDCTRLB = 0x9F (Baud rate scale factor 9)
Store indirect

(USART EO RXC interrupt level

R24 =R24 & 0b1100 1111
R24 = R24 | 0b0010 0000

Logical AND with immediate
Logical OR with immediate

STS USARTEO_CTRLA,R24 Store direct to data space USARTEO_CTRLA = R24

LDI R23,0x04
STS 0x0682,R23

; Config Porte.3 = Output

14A
148

78.e0

70.93.81.06

Enable Interrupts

14D

78.94

LDI R23,0x08
STS 0x0681,R23

SEI

Load immediate PORTE_DIRCLR = 0b0000 0100 (bit 2 input) (unnecessary)
Store direct to data space

Load immediate PORTE_DIRSET = 0b0000 1000 (bit 3 output) (unnecessary)
Store direct to data space

Global Interrupt Enable

A.6.14 Other compiled code that's unused by the test application

A.6.14.1 Both ATmega and ATxmega

Generic delay routine (place 16-bit delay value in Z and rcall x20D, which will count down to zero and return)

20D
20E
20F

Set error bit 2 in R6

210
211
212

Clear error bit 2 in R6

213
214
215

31.97
f1.f7
08.95

68.94
62.f8
08.95

e8.94
62.f8
08.95

SBIW R30,0x01
BRNE PC-0x01
RET

SET
BLD R6,2
RET

CLT
BLD R6,2
RET

Subtract immediate from word
Branch if not equal
Subroutine return

Set T in SREG
Bit load from T to register
Subroutine return

Clear T in SREG
Bit load from T to register
Subroutine return

A.6.14.2 Only ATmega1284 and ATxmegal28A1

RAMPZ
288
28A

28C
28E
290
292

294
296
298

29A
29C
29E

2A0
2A2
2A4

OF 93
01EO

0B BF
OF 91
8894
08 95

OF 93
00 27
F9 CF

OF 93
02 EO
F6 CF

OF 93
03 EO
F3 CF

Push R16
Ldi R16, 0x01

Out RAMPZ, R16
Pop R16

Clc (clear carry flag)
Ret

Push R16
eor rl6, r16
rjimp -7+1

Push R16
Ldi R16, 0x02
rjmp -10+1

Push R16
Ldi R16, 0x03
-13+1

Set RAMPZ to 1

Set RAMPZ to 0
Clear R16
0x28C

Set RAMPZ to 2
0x28C

Set RAMPZ to 3

0x28C

126

A.6.14.3 Only ATxmega128A1
Clear _XMEGAREG 32 bytes BASCOM area

269 8f.93 PUSH R24
26A 9f.93 PUSH R25
26B af.93 PUSH R26
26C bf.93 PUSH R27
26D 88.27 CLR R24

26E 90.e2 LDI R25,0x20
26F al.e0 LDI R26,0x01

270 b0.e2 LDI R27,0x20
271 8d.93 ST X+,R24
272 9a.95 DECR25

273 e9.f7 BRNE PC-0x02
274 bf.91 POP R27

275 af.91 POP R26

276 9f.91 POP R25

277 8f.91 POP R24

278 08.95 RET

Push register on stack
Push register on stack
Push register on stack
Push register on stack

Clear Register
Load immediate

Load immediate
Load immediate

_XMEGAREG

Store indirect and postincrement ~ Clear 0x2001 _XMEGAREG ___ BTMPAX

Decrement

Branch if not equal Do 32 times until R25 == 0
Pop register from stack

Pop register from stack

Pop register from stack

Pop register from stack

Subroutine return

Shift each of the 5 first bytes of _XMEGAREG left by one through carry. Multiply 5-byte number by 2.

279 8f.93 PUSH R24

27A 80.91.01.20 LDS R24,0x2001
27C 88.1f ROL R24

27D 80.93.01.20 STS 0x2001,R24
27F 80.91.02.20 LDS R24,0x2002
281 88.1f ROL R24

282 80.93.02.20 STS 0x2002,R24
284 80.91.03.20 LDS R24,0x2003
286 88.1f ROL R24

287 80.93.03.20 STS 0x2003,R24
289 80.91.04.20 LDS R24,0x2004
28B 88.1f ROL R24

28C 80.93.04.20 STS 0x2004,R24
28E 80.91.05.20 LDS R24,0x2005
290 88.1f ROL R24

291 80.93.05.20 STS 0x2005,R24
293 8f.91 POP R24

294 08.95 RET

Push register on stack

Load direct from data space
Rotate Left Through Carry
Store direct to data space

Load direct from data space
Rotate Left Through Carry
Store direct to data space

Load direct from data space
Rotate Left Through Carry
Store direct to data space

Load direct from data space
Rotate Left Through Carry
Store direct to data space

Load direct from data space
Rotate Left Through Carry
Store direct to data space
Pop register from stack
Subroutine return

127

A.7 Atmel studio 6.1 and ASF screen dumps

A.7.1 ASF error messages

Bookmarks Tools Help
mentation % | # ASF Source Code Documentation x

0cs/3.13.1/missing_doc.html rve| 8- Google

Atmel Atmel Software Framework

Features Missing documentation

ASF-CAN/LIN
£ Release ASF-3.13.1

ASF-DSP Unfortunately the documentation for this module is missing or not yet written.
ASF-FS We are aware of the problem and are working on fixing it in a future release of ASF.

ASF-Sensors Please contact Atmel support at http://support.atmel.com/ if you need further assistance working with this module.

ASF-Services

ASF-USB

3rd Party

CMSIS
Documentation

ASF Architecture

Reference Manual

AP1

—— s Contact Jobs Site Use Terms Privacy Sales Terms © 2012 Atmel Corporation

Figure 35: Missing ASF ATmega system clock control quickstart guide

9-0-S-G AR > w| | 2 |data A B s
1Back © X F QA i W@ |O u b |e5E(E 3 T|He BT D IR E :

e/update-profile.aspx ~|

Worldwide Communities myAtmel LogOut Cart 7

Products Applications Technologies Design Support About Atmel Buy

Home > myAtmel *) SHARE K YE . Print

m

Maintenance Notice

The page you have requested is temporarily not available. Please check back later. We are sorry for any inconvenience.

Figure 36: Maintenance Notice

128

@ 404 Not Found - Moxzilla Fi
File Edit View History Bookmarks Tools Help

r—a

I i 1404 Not Found

| @ asf.atmel.com/docs/3.13.1/mega/html/group__group__mega__ utils.html
g group__group g

Not Found

The requested URL /docs/3.13.1/mega’html/group _group _mega uiils himl was not found on this server.

Apache/2.2.3 (Red Hat) Server at asf atmel.com Port 80

Figure 37: Missing ASF MEGA compiler driver missing documentation

”
B Atmel Studio Application

Atmel Studio Application has stopped working

Windows is checking for a solution to the problem...

= | — |

Figure 38: Hanging when debugging, in this case when using the simulator

129

A.7.2 ASF quick start guide example

yim/docs/3.13.1/mega/html/ioport_quickstart.html dve | ‘ Ry - Google

Atmel Atmel Software Framework

Q- search
Home . .
Main Page Related Pages Modules Data Structures Files
Features
ASF-Boards
ASF-CAN/LIN - = .
er-Components Quick start guide for the common IOPORT service
ASF-Drivers
ASF-DSP
ASF-FS This is the quick start guide for the Common IOPORT API, with step-by-step instructions on how to configure and use the service
ASF-GFX in a selection of use cases.
ASF-Sensors The use cases contain several code fragments. The code fragments in the steps for setup can be copied into a custom initialization
ASF-Services function, while the steps for usage can be copied into, e.g., the main application function.
GEELEE Basic use case
3rd Party 5 p o : -
cMSIS In this use case we will configure one IO pin for button input and one for LED control. Then it will read the button state and output
= it on the LED.
Documentation
ASF Architecture Setup steps
Reference Manual
AR Example code
Applications
Unit-Tests * §define MY LED IOPORT_CREATE_PIN (PORTA, 5)
Release Notes * #define MY BUTTON IOPORT_CREATE_ PIN(PORTA, 6)
-
Get Start‘.ed * ioport_init():;
I *
Bug Tracker * ioport_set_pin dir (MY _LED, IOPORT DIR_OUTPUT):
* ioport_set_pin dir (MY BUTTON, IOPORT DIR_INPUT):
* ioport_set_pin mode (MY BUTTON, IOPORT_MODE_PULLUP) ;
*

Workflow

1. It's useful to give the GPIOs symbolic names and this can be done with the IOPORT_CREATE_PIN macro. We define one
for a LED and one for a button.

o % #define MY LED IOPORT_CREATE PIN(PORTA, 5)
i #define MY BUTTON IOPORT_ CREATE_PIN (PORTA, 6)
*

o/ Note

The usefulness of the IOPORT_CREATE_PIN macro and port names differ between architectures:
= MEGA, MEGA_RF and XMEGA: Use IOPORT_CREATE_PIN macro with port definitions PORTA, PORTB

® UC3: Most convenient to pick up the device header file pin definition and us it directly. E.g.:
AVR32_PIN_PB06
= SAM: Most convenient to pick up the device header file pin definition and us it directly. E.g.:
PIO_PAS_IDX
IOPORT_CREATE_PIN can also be used with port definitions PIOA, PIOB ...
2. Initialize the ioport service. This typically enables the I0 module if needed.
O ioport_init():
3. Set the LED GPIO as output:
o |ioport_set_pin dir (MY LED, IOPORT DIR OUTPUT):
4. Set the button GPIO as input:
o |ioport_set pin dir (MY BUTTON, IOPORT DIR_INPUT):
S. Enable pull-up for the button GPIO:
0 ioport_set_pin mode (MY BUTTON, IOPORT_MODE_PULLUP) ;

Usage steps

Example code
* bool value;
.

* value = ioport_get_pin level (MY BUTTON):
* ioport_set_pin_level (MY _LED, value);
*

Workflow

1. Define a boolean variable for state storage:

o bool value;
2. Read out the button level into variable value:

© value = ioport_get pin level (MY BUTION):
3. Set the LED to read out value from the button:

o ioport_set pin level (MY LED, value):

Advanced use cases

¢ ‘Advanced use case doing port access : Port access

Generated on Thu Nov 28 2013 11:31:23 for megaAVR by

Figure 39: Quick start guide example

130

A.7.3 -00 optimization error message

| L Configuration Manager...
‘ Toolchain

Device 4 [E] AVR/GNU Common * |[AVR/GNU C Campiler = Optimization
[General
Tool [OutputFiles Optimization Level: None (-00)
4 [E] AVR/GNU C Compiler

Advanced X General =
[Preprocessor

& Symbals Prepare functions for garbage collection (-ffunction-sections)

X Directories = :
Z’Oplimization = Prepare data for garbage collection (-fdata-sections)

[E# Debugging [T] Pack Structure members together (-foack-struct)
[EH Warnings
& Miscellaneous [Alocate only as many bytes needed by enum types (-fshort-enums)

- @ﬁVWGNU Linker [T Use rjmpyreall (limited range) on >8K devices (-mshart-calls)
[General =

Cther optimization flags: -fdata-sections

Error List
@ 2Errors | _:x 0 Warnings ‘ (i) 0 Messages
Description File
@ 1 undefined reference to Initialization’ main.c

@ 2 Idreturned 1 exit status collect?.exe

Figure 40: -00 optimization error message

A.7.4 Misleading ASF project counter

File Edit View WVAssistX ASF Project Debug Tools Window Help

- [=:] =] m - J i

Mew Example Project from ASF or EﬂensinnH
Device Family: | AVR XMEGA, 8-bit ~ | Category: | Al - |
All Projects 4 (3] Atmel (3880 projects)

Kit

Category

(=1 Atmel Corp. - ASF(3.13.1) (503 projects)
(=] Atmel Corp. - ASF(3.12.1) (503 projects)
(=1 Atmel Corp. - ASF(3.11.0) (503 projects)
(=] Atmel Corp. - ASF(3.10.1) (498 projects)
(=1 Atmel Corp. - ASF(3.9.1) (498 projects)
(= Atmel Corp. - ASF(3.8.1) (498 projects)
(=1 Atmel Corp. - ASF(3.7.3) (499 projects)
(= Atmel Corp. - ASF(3.6.0) (378 projects)

Technology

Iﬂ Mew Example Pro

(Atmel needs to correct the project counter so that it only counts a project once.)

131

A.8 Atmel Studio #ports scaling
A.8.1 Statics, row-major (AS3i)

A.8.1.1 ATmega324A total size
Atmega324A, interrupt vector table 126 bytes

Ports 1 2
Opt |Text Data BSS Delta Text Data BSS
-01 532 0 36 180 712 0o 72
-02 566 0 36 128 694 0o 72
-03 716 0 36 260 976 0o 72
-Os 518 0 36 170 688 0o 72
Atmega324A, interrupt vector table excluded
-01 406 586
-02 440 568
-03 590 850
-Os 392 562
A.8.1.2 ATmegal284 total size
Atmegal284, interrupt vector table 140 bytes
Ports 1 P
Opt |Text Data BSS Delta Text Data BSS
-01 562 0 36 188 750 0o 72
-02 602 0 36 130 732 0 72
-03 752 0 36 262 1014 0o 72
-Os 548 0 36 178 726 0o 72

Atmegal284, interrupt vector table excluded

-01 422 610
-02 462 592
-03 612 874
-Os 408 586

132

A.8.1.3 ATxmegal28A1 total size

Ports
Opt

Atxmega 128A1, interrupt vector table 500 bytes

1

Text
1012
1014
996
1006

Data

o O O o

BSS
36
36
36
36

Atxmega 128A1, interrupt vector table excluded

512
514
496
506

Delta
204
196
224
198

A.8.2 Statics, column-major

A.8.2.1 ATmega324A total size
Atmega324A, interrupt vector table 126 bytes

Ports
Opt

1
Text
510
548
698
502

Data

o O O o

BSS
36
36
36
36

Delta
178
128
270
172

2
Text Data BSS
1216 0o 72
1210 0o 72
1220 0o 72
1204 0o 72
716
710
720
704
2
Text Data BSS
688 0 72
676 0 72
968 0 72
674 0 72

Atmega324A, interrupt vector table excluded

384
422
572
376

562
550
842
548

133

Delta
190
178
240
172

3
Text Data BSS
1406 0 108
1388 0 108
1460 0 108
1376 0 108
906
888
960
876

A.8.2.2 ATmegal284 total size
Atmegal284, interrupt vector table 140 bytes

Ports
Opt

A.8.2.3 ATxmegal28A1 total size

Ports
Opt

1
Text
540
584
534
532

Data

o O O O

BSS
36
36
36
36

Delta
186
130
472
180

2

Text
726
714
1006
712

Data

O O o o

BSS
72
72
72
72

Atmegal284, interrupt vector table excluded

400
444
394
392

586
574
866
572

Atxmega 128A1, interrupt vector table 500 bytes

1
Text
990
996
996
990

Data

o O O o

BSS
36
36
36
36

Atxmega 128A1, interrupt vector table excluded

490
496
496
490

Delta
202
196
222
200

2

Text
1192
1192
1218
1190

Data

O O O o

BSS
72
72
72
72

692
692
718
690

134

Delta
202
188
262
182

3
Text Data BSS
1394 0 108
1380 0 108
1480 0 108
1372 0 108
894
880
980
872

A.8.3 Code size and clock cycle count ISR, Interrupt Service Routine

A.8.3.1 Statics row-major

BTBB1i =
BTAA1Li

Statics, row-
major
ATxmegal28A1

Instr
RIMP
PC+0x0182

PUSH R1
PUSH RO

IN RO,0x3F
PUSH RO
CLRR1

IN RO,0x38
PUSH RO
OUT 0x38,R1
IN RO,0x3B
PUSH RO

OUT 0x3B,R1
PUSH R24
PUSH R30
PUSH R31

LDS
R24,0x09A0

LDS R30,0x2001
SUBI R30,0xFF
ANDI R30,0x0F

STS 0x2001,R30
LDI R31,0x00
SUBI R30,0xC8
SBCI R31,0xDF
STD Z+0,R24
POP R31

POP R30

POP R24

POP RO

OUT 0x3B,R0
POP RO

OUT 0x38,R0
POP RO

OUT 0x3F,RO
POP RO

POP R1

RETI
Statics, row-
major

Instr

w

=R N N PR R R R R R R R R R

PR R R R R R RRRRRRR RN

39

Instr

C

Y e e N e e N = = T = N

= e

N N RPN P NP NNNNMNR R RPN

54

Comme
nt

SREG

RAMPD

RAMPD
RAMPZ

RAMPZ

1 extra
cycle
inserted
forint
SRAM

RAMPZ

RAMPD

SREG

22-bit
PC

BTBB1i = BTAALI

Statics, row-major
ATmegal284

Instr

RIMP PC+0x00E9
PUSH R1

PUSH RO

IN RO,0x3F

PUSH RO

CLRR1

IN RO,0x3B
PUSH RO

Instr W

RAMPZ only relevant for

ELPM/SPM
PUSH R24
PUSH R30
PUSH R31

LDS R24,0x00CE

LDS R30,0x0101
SUBI R30,0xFF
ANDI R30,0x0F

STS 0x0101,R30
LDI R31,0x00
SUBI R30,0xC8
SBCI R31,0xFE
STD Z+0,R24
POP R31

POP R30

POP R24

POP RO

OUT 0x3B,R0
POP RO

OUT 0x3F,RO
POP RO
POPR1

RETI

T

Jany

N T Y

33

Instr

=N RN NN

[any

N P NNNNNPRPR R RPN

53

Comme
nt

SREG

RAMPZ

RAMPZ

SREG

22-bit
PC

BTBB1li =
BTAA1li
Statics, row-
major
ATmega324A

Instr
RIMP
PC+0x00DA

PUSH R1
PUSH RO
IN RO,0x3F
PUSH RO
CLRR1

PUSH R24
PUSH R30
PUSH R31

LDS
R24,0x00CE

LDS
R30,0x0101

SUBI R30,0xFF
ANDI R30,0x0F
STS
0x0101,R30
LDI R31,0x00
SUBI R30,0xC8
SBCI R31,0xFE
STD Z+0,R24
POP R31

POP R30

POP R24

POP RO

OUT 0x3F,RO
POP RO
POP R1

RETI

Instr

w

T

Jany

L)

29

Instr

C

PN RN NN

Jany

N N NN P P PN

46

Blue colour indicates that the implementation is more efficient, red that it is less so. “Instr W”

Instruction size in words (=2 bytes) and “Instr C” means number of clock cycles.

135

Comme
nt

SREG

SREG

16-bit
PC

means

A.8.3.2 Structs and pointers

BTB1h = AS1lh BTB1lh = AS1lh BTB1h = AS1lh
Structs and Structs and Structs and
pointers pointers pointers
ATxmegal28A1 ATmegal284 ATmega324A
Instr Instr Comme Instr Instr Comme Instr Instr Comme
Instr W C nt Instr W c nt Instr w c nt
RIMP PC+0x017D 1 2 RIJMP PC+0x00DB 1 2 RIMP PC+0x00CC 1 2
PUSH R1 1 1 PUSH R1 1 2 PUSH R1 1 2
PUSH RO 1 1 PUSH RO 1 2 PUSH RO 1 2
IN RO,0x3F 1 1 SREG IN RO,0x3F 1 1 SREG IN RO,0x3F 1 1 SREG
PUSH RO 1 1 PUSH RO 1 2 PUSH RO 1 2
CLRR1 1 1 CLRR1 1 1 CLRR1 1 1
IN RO,0x38 1 1 RAMPD
PUSH RO 1 1
OUT 0x38,R1 1 1 RAMPD
IN RO,0x39 1 1 RAMPX
PUSH RO 1 1
OUT 0x39,R1 1 1 RAMPX
IN RO,0x3B 1 1 RAMPZ IN RO,0x3B 1 1 RAMPZ
PUSH RO 1 1 PUSH RO 1 2
RAMPZ only relevant for
OUT 0x3B,R1 1 1 RAMPZ ELPM/SPM
PUSH R24 1 1 PUSH R24 1 2 PUSH R24 1 2
PUSH R26 1 1 PUSH R26 1 2 PUSH R26 1 2
PUSH R27 1 1 PUSH R27 1 2 PUSH R27 1 2
PUSH R30 1 1 PUSH R30 1 2 PUSH R30 1 2
PUSH R31 1 1 PUSH R31 1 2 PUSH R31 1 2
LDI R26,0x4E 1 1 LDI R26,0x4E 1 1 LDI R26,0x4E 1 1
LDI R27,0x20 1 1 LDI R27,0x01 1 1 LDI R27,0x01 1 1
LD R30,X 1 2 Below LD R30,X 1 2 LD R30,X 1 2
SUBI R30,0xFF 1 1 SUBI R30,0xFF 1 1 SUBI R30,0xFF 1 1
ANDI R30,0x0F 1 1 ANDI R30,0x0F 1 1 ANDI R30,0x0F 1 1
ST X,R30 1 1 ST X,R30 1 1 ST X,R30 1 1
LDI R31,0x00 1 1 LDI R31,0x00 1 1 LDI R31,0x00 1 1
LDS R26,0x203C 2 3 iyi’l(;ra LDS R26,0x013C 2 2 LDS R26,0x013C 2 2
LDS R27,0x203D 2 3 inserted LDSR27,0x013D 2 2 LDS R27,0x013D 2 2
forint ADIW R26,0x06 1 2 ADIW R26,0x06 1 2
LD R24,X 1 2 SRAM LD R24,X 1 2 LD R24,X 1 2
SUBI R30,0xC4 1 1 SUBI R30,0xC4 1 1 SUBI R30,0xC4 1 1
SBCI R31,0xDF 1 1 SBCI R31,0xFE 1 1 SBCI R31,0xFE 1 1
STD Z+2,R24 1 2 STD Z+2,R24 1 2 STD Z+2,R24 1 2
POP R31 1 2 POP R31 1 2 POP R31 1 2
POP R30 1 2 POP R30 1 2 POP R30 1 2
POP R27 1 2 POP R27 1 2 POP R27 1 2
POP R26 1 2 POP R26 1 2 POP R26 1 2
POP R24 1 2 POP R24 1 2 POP R24 1 2
POP RO 1 2 POP RO 1 2 POP RO 1 2
OUT 0x3B,R0 1 1 RAMPZ OUT 0x3B,R0 1 1 RAMPZ
POP RO 1 2 POP RO 1 2
OUT 0x39,RO 1 1 RAMPX
POP RO 1 2
OUT 0x38,R0 1 1 RAMPD
POP RO 1 2
OUT 0x3F,RO 1 1 SREG OUT 0x3F,R0 1 1 SREG OUT 0x3F,RO 1 1 SREG
POP RO 1 2 POP RO 1 2 POP RO 1 2
POP R1 1 2 POP R1 1 2 POP R1 1 2
22-bit 16-bit
RETI 1 5 22-bitPC RETI 1 5 PC RETI 1 4 PC
Structs & ptrs
51 72 41 68 37 61

136

A.8.4 Code size and clock cycle count, transmitting

A.8.4.1 Statics row-major

BTBB1i = BTAALI
Statics
ATxmegal28A1 1 port NN 2 ports Port 0 Port 1 3 ports Port0 Port 1 Port 2
Instr Instr W Instr C | Instr W Instr C InstrC | InstrW InstrC InstrC InstrC | Comment
CPSE R22,R1 2
RJMP PC+0x0008
LDS R25,0x0AA1
SBRS R25,5
RIMP PC-0x0003
STS O0x0AAO,R24
RET

DECR22

BRNE _+8

LDS R25,0x0AA1
SBRS R25,5
RJMP PC-0x0003
STS Ox0AAO,R24
RET

LDS R25,0x09A1
SBRS R25,5
RIMP PC-0x0003
STS 0x09A0,R24
RET

Statics ATxmegal28A1 7 14 16 16 17
Statics ATmegal284 7 13 16 15 16
Statics ATmega324A 7 12 16 14 15

Int SRAM
Ist try

RN R RN
NN W
RPN R R NP R
ON NN W
N NN W

22-bit PC

Int SRAM
Isttry

G NN N WR R

22-bit PC
Int SRAM
1st try

P N R P NRNRRNRRRPBNRRNBR R

BN R RN
N NN W
aN NN W

22-bit PC

N
v

16 19 20

A.8.4.2 Structs and pointers

BTB1h = AS1h
Structs and pointers
ATxmegal28Al
Instr Instr W Instr C Comment
MOVW R30,R22
LDD R25,Z+1

SBRS R25,5

RIMP PC-0x0003
STD Z+0,R24

RET

S&P ATxmegal28Al
S&P ATmegal284
S&P ATmega324A

Int SRAM
1st try

U= NN W -

22-bit PC
14
13 | Quicker LDD but slower STD Z+

12 | Above and quicker RET due to 16-bit PC

NN[NRP, NP R R R

137

A.8.5 Protocol-bound ISR scaling (AS3j & AS3Kk)
1M S&P, 20 BSS

Text, bytes
-01
-02
-03
-Os

-01
-02
-03

-01
-02
-03
-Os

1S statics row-m, 18 BSS

ATmega324A

ATmegal284

ATxmegal28A1

444
438
436
438

472
466
464
466

932
934
932
934

A.8.6 Common ISR assembly code

000001DO0O
000001D1
000001D2
000001D3
000001D4
000001D5
000001D6
000001D7
000001D8
000001D9
000001DA
000001DB
000001DC
000001DD
000001DE
000001DF
000001EQ
000001E1
000001E2
000001E3
000001E4
000001ES
000001E6
000001E7
000001ES8
000001E9

000001EA
000001EB
000001EC

000001ED
000001EE
000001EF
000001F0
000001F1
000001F2
000001F3
000001F4
000001F5
000001F6
000001F7
000001F8

1f.
0f.
0f.
0f.
.24
.b6

11
08

0f.
.be
.b6

18
09

Of.
.be
Ob.
0f.
1b.
2f.
3f.
4f.
5f.
6f.
Tf.
8f.
9f.
af.
bf.
ef.
ff.

19

84
90
c2

ff.
ef.
bf.
af.
9f.
8f.
7f.
6f.
5f.
.91
3f.
2f.

4f

92
92
b6
92

92

92

b6
92
be
93
93
93
93
93
93
93
93
93
93
93
93

USART_RXComplete (&SerialDatal);
LDI R24,0x14
LDI R25,0x20
RCALL PC-0x003D

el
.e2
.df

}
91
91
91
91
91
91
91
91
91

91
91

PUSH
PUSH

R1
RO

512
490
486
484

536
514
510
508

996
990
990
982

IN RO, 0x3F

PUSH
CLR

RO
R1

IN RO,0x38

PUSH

OUT 0x38,R1

RO

IN RO, 0x39

PUSH

OUT 0x39,R1

RO

IN RO, 0x3B

PUSH

OUT O0x3B,R1

PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH

POP
POP
POP
POP
POP
POP
POP
POP
POP
POP
POP
POP

RO

R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R30
R31

R31
R30
R27
R26
R25
R24
R23
R22
R21
R20
R19
R18

1M statics row-m, 18 BSS 2M S&P, 40 BSS

138

502 636
488 606
478 680
492 604
530 668
516 638
506 712
520 636
990 1170
984 1140
974 1218
988 1140

Push register on stack
Push register on stack
In from I/O location
Push register on stack
Clear Register

In from I/O location
Push register on stack
Out to I/O location

In from I/O location
Push register on stack
Out to I/O location

In from I/O location
Push register on stack
Out to I/O location
Push register on stack
Push register on stack
Push register on stack
Push register on stack
Push register on stack
Push register on stack
Push register on stack
Push register on stack
Push register on stack
Push register on stack
Push register on stack
Push register on stack

Load immediate
Load immediate

Relative call subroutine

Pop register from stack
Pop register from stack
Pop register from stack
Pop register from stack
Pop register from stack
Pop register from stack
Pop register from stack
Pop register from stack
Pop register from stack
Pop register from stack
Pop register from stack
Pop register from stack

2M statics row-m, 36 BSS

700
666
680
658

736
702
716
694

1216
1200
1214
1192

000001F9 0£.90 POP RO Pop register from stack

000001FA 0Ob.be OUT 0x3B, RO Out to I/0 location
000001FB 0£f.90 POP RO Pop register from stack
000001FC 09.be OUT 0x39,R0 Out to I/O location
000001FD 0£.90 POP RO Pop register from stack
000001FE 08.be OUT 0x38, R0 Out to I/0 location
000001FF 0f.90 POP RO Pop register from stack
00000200 Of.be OUT O0x3F,RO0O Out to I/O location
00000201 0£.90 POP RO Pop register from stack
00000202 1£.90 POP R1 Pop register from stack
00000203 18.95 RETI Interrupt return

A.9 ATmega324A structs and pointers two-port USART ISR placed in IV

A9.1 Ccode
void USART_RX_complete(working data_t * working data)
{

uint8_t data = working_data->usart->UDR;
if (data == 254)
{
working_data->serial_data_status = 1;
working_data->receive_counter = 0;
working_data->serial_data[@] = 254;
}
else
{
working_data->receive_counter++;
if (working_data->receive_counter < USART_RX_BUFFER_SIZE)
{
working_data->serial_data[working_data->receive_counter] = data;
if (data == 255)
{

}

working_data->serial_data_status = 2;

}

else

{

working_data->serial_data_status = 9;
working_data->receive_counter = 0;

}

139

A.9.2 Assembly

#include <avr/io.h>

#include "defines.h"

.section .myvectors, "ax", @progbits
.global _ vector_default
__vector_default:

// Reset vector

rjmp __init // ©x00
rx_common_entry:
push ri // exel
push re // 0x02
in re, _SFR_IO_ADDR(SREG) // ©x03 SREG
push roe // oxe4
rjmp rx_skip_int2 // 0x0e5
// INT2 vector
rjmp __vector_3 // 0x06 INT2
rx_skip_int2:
clr r1 // exe7
push r25 // 0xe8
push r26 // 0x09
push r27 // Ox0A
rjmp rx_skip_pcint2 // ©xeB
// PCINT2 vector
rjmp __vector_6 // ©xeC PCINT2
rx_skip_pcint2:
cpi r24, oxfe // exeD if (data == 254)
brne rx_not_start_token // OxOE else
1di r25, oxe1l // OxOF working_data->serial_data_status=1;
std Z+18, r25 // ©ox1e
std Z+19, rl // 0x11 working_data->receive_counter = 0;
std Z+2, r24 // 0x12 working_data->serial_data[@] = 254;
rjmp rx_epilogue // ©x13 jump to isr epilogue
rx_not_start_token:
ldd r25, Z+19 // ©x14 working_data->receive_counter++;
subi r25, oxff // 0x15
std Z+19, r25 // 0x16
ldd r25, Z+19 // 0x17 if (working_data->receive_counter < USART_RX_BUFFER_SIZE)
cpi r25, USART_RX_BUFFER_SIZE // 0x18
brcc rx_overflow // ©x19

ldd r25, Z+19//0x1A working_data->serial_data[working_data->receive_counter]= data;
movw r26, r30 // ©x1B

add r26, r25 // 0x1C
adc r27, ri // 0x1D
adiw r26, 0x02 // Ox1E
st X, r24 // Ox1F
rx_cont4:
cpi r24, oxff // 0x20 if (data == 255)
brne rx_not_end_token // 0x21 else
1di r24, oxe2 // 0x22 working_data->serial_data_status=2;
rx_not_end_token:
std Z+18, r24 // 0x23
rx_epilogue:
pop r27 // 0x24
pop r26 // 0x25
pop r25 // 0x26
rjmp rx_skip_usarte // 0x27
// USART@ RX vector
push r24 // 0x28
push r3e // 0x29
push r31 // Ox2A

1di r3e, lo8(serial data @) // ©x2B
1di r31, hi8(serial_data_@) // ox2C

140

lds

/] 2-

rjmp

r24, SFR_MEM_ADDR(UDRO)
word instruction
rx_common_entry

rx_skip_usarte:

pop
out
pop
pop
pop
pop
pop
reti

ro
_SFR_IO_ADDR(SREG), re
ro
ri
r3l
r30
r24

// USART1 RX vector

push
push
push
1di
1di
lds

/] 2-

rjmp

r24

r3e

r3l1

r30, lo8(serial_data_1)
r31, hi8(serial data_1)
r24, _SFR_MEM_ADDR(UDR1)
word instruction
rx_common_entry

rx_overflow:
std Z+18, ril
std Z+19, ri

rjmp

rx_epilogue

0x2D UDRO
Ox2E
Ox2F

0x30
0x31 SREG
0x32
0x33
0x34
0x35
0x36
Ox37

0x38
0x39
Ox3A
0x3B
0x3C
0x3D UDR1
Ox3E
Ox3F

0x40 working_data->serial_data_status=0;

0x41 working_data->receive_counter = 0;
0x42

141

TRITA-ICT-EX-2014:63

