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1 Introduction

The hydromad package is designed for hydrological modelling and associ-
ated data analysis. It is focussed on a top-down, spatially lumped, empir-
ical approach to environmental hydrology. In practice the emphasis is on
models of rainfall runoff in catchments (watersheds). Such models predict
streamflow from time series of areal rainfall and temperature or potential
evapo-transpiration. They can be calibrated to time series of observed data.

As spatially lumped models, they do not explicitly represent spatial vari-
ation over the catchment area. In particular, the standard formulations do
not attempt to model effects of changes in land cover. These models are
usually calibrated to a period of observed streamflow, and the parameters
defining the modelled relationship between rainfall, evaporation and flow are
assumed to be stationary in this period.

The modelling framework in the hydromad package is based on a two-
component structure: (1) a soil moisture accounting (SMA) module; and (2)
a routing or unit hydrograph module (Figure 1). The SMA model converts
rainfall and temperature into effective rainfall — the amount of rainfall
which eventually reaches the catchment outlet as streamflow (i.e. that which
is not lost as evaporation etc). The routing module converts effective rainfall
into streamflow, which amounts to defining the peak response and shape of
the recession curve. It is usually a linear transfer function, which can be as
simple as a single exponential recession (i.e. constant decay rate), although
variants with non-linearities are also available.
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Figure 1: The modelling framework in the hydromad package.

The hydromad package is intended for:
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� defining and fitting spatially-lumped hydrological models to observed
data;

� simulating these models, including model state variables and compo-
nent flow separation.

� evaluating and comparing these models: summarising performance
by different measures and over time, using graphical displays (hydro-
graph, flow duration curve, residuals, etc) and statistics;

� integration with other types of data analysis and model analysis in R,
including sensitivity and uncertainty analyis.

This tutorial describes how to get started with the hydromad R package.
It covers the basics of reading data in from files, converting it into the
appropriate format, and fitting and analysing a simple model.

Once you have R running1 and have installed the hydromad package2,
you can load it:

> library(hydromad)

2 Input data

The example we will look at is the Cotter River catchment at Gingera (gauge
410730) in the Australian Capital Territory, Australia. This is a 148 km2

catchment managed for urban water supply. Areal rainfall was estimated
from several rain gauges operated by the Bureau of Meteorology and Eco-
Wise. The temperature records come from Canberra Airport.

The Cotter data is built in to the hydromad package, and can be loaded
into the workspace with:

> data(Cotter)

See Appendix A for a demonstration of reading in the time series data
from files.

3 Data checking

In a real data analysis problem, data checking is a central issue. However, as
this document aims to introduce the core modelling functions, only a simple
check will be demonstrated here. The most obvious thing to do is to plot
the time series, as shown in Figure 2.

Table 3 shows the mean and quartiles of each input data series. One
measure that is of key interest in hydrology is the runoff ratio, the proportion

1See http://www.r-project.org/
2See http://hydromad.catchment.org/

http://www.r-project.org/
http://hydromad.catchment.org/
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To plot the raw (daily) time series:

> xyplot(Cotter)

To plot a section of the time series:

> xyplot(window(Cotter, start = "1974-01-01", end = "1975-01-01"))

And to plot the time series aggregated to a monthly time step:

> monthlyPQE <- aggregate(Cotter, as.yearmon, mean)

> xyplot(monthlyPQE, screens = c("Streamflow (mm/day)",

"Areal rain (mm/day)", "Temperature (deg. C)"),

xlab = NULL)
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Figure 2: Input data, averaged over months.
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of the rainfall which flows out of the catchment. In a simple case this is just
sum(Q) / sum(P), but as we have missing values, we should only compare
the common observations:

> ok <- complete.cases(Cotter[, 1:2])

> with(Cotter, sum(Q[ok])/sum(P[ok]))

[1] 0.279

This figure is within the range we would expect, so is looks like we
probably have the right data series and units.

To estimate the delay time between rainfall and a consequent streamflow
response, we can look at the cross-correlation function. The hydromad func-
tion estimateDelay picks out the lag time corresponding to the maximum
correlation between rainfall and rises in streamflow. In the Cotter this is
0 days. For more detail there is a function rollccf which calculates the
cross-correlation in a moving window through the data, shown in Figure 3.
When the cross-correlation value drops down towards zero, there is little
connection between rainfall and streamflow, and you should start to worry
about the data. If the lag 1 value jumps above the lag 0 value, this indicates
that the delay time has changed.

4 Model Specification

A hydromad object encapsulates the chosen model form, parameter values
(or ranges of values), as well as results. The model form is divided into two
components: SMA (Soil Moisture Accounting) and routing. Additionally,
a specification can be given for fitting the routing component (rfit). If
given, this is applied automatically to fit the routing component after the
SMA parameters have been specified.

Let us define some data periods. We will fit a model to one, the calibra-
tion period, and then simulate it on the other periods to cross-check model
performance.

> ts70s <- window(Cotter, start = "1970-01-01",

end = "1979-12-31")

> ts80s <- window(Cotter, start = "1980-01-01",

end = "1989-12-31")

> ts90s <- window(Cotter, start = "1990-01-01",

end = "1999-12-31")

When we first set up the model, most of the parameters are not uniquely
specified, but rather have a range of possible values. These defaults are taken
from hydromad.options(), and they can be over-ridden by arguments to
the hydromad function.
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Rolling cross-correlation between rainfall and streamflow rises:

> x <- rollccf(Cotter)

> xyplot(x, xlim = extendrange(as.Date(c("1980-01-01",

"1990-01-01"))))
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Figure 3: Cross-correlation between rainfall and streamflow rises, in two
rolling windows of width 90 days and 365 days.
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A nice simple starting point is the classic ihacres model of Jakeman
and Hornberger (1993), which is a Soil Moisture Accounting model referred
to here as "cwi" (Catchment Wetness Index).

The routing component typically used in ihacres is a Unit Hydrograph
composed of exponential components, a structure referred to here as "ex-

puh". Up to three time constants can be specified, referred to as tau_s

(slow component τs), tau_q (quick component τq) and tau_3. The parti-
tioning of flow between the stores is set by v_s (fractional volume in the
slow component vs), and by default the quick flow component is assigned
the remainder.3

When a model structure is specified, default parameter ranges for the
given SMA model are applied, and others can be specified:

> cotterMod <- hydromad(ts90s, sma = "cwi", routing = "expuh",

tau_s = c(5, 100), tau_q = c(0, 5), v_s = c(0,

1))

> print(cotterMod)

Hydromad model with "cwi" SMA and "expuh" routing:

Start = 1990-01-01, End = 1999-12-31

SMA Parameters:

lower upper

tw 0 100

f 0 8

scale NA NA

l 0 0 (==)

p 1 1 (==)

t_ref 20 20 (==)

Routing Parameters:

lower upper

tau_s 5 100

tau_q 0 5

v_s 0 1

With this model specification, we can choose to calibrate the model in
various ways, or to simulate from the specified parameter space, or to run
sensitivity or uncertainty analysis.

4.1 Calibration

Currently implemented calibration methods include simple sampling schemes
(fitBySampling), general optimisation methods with multistart or presam-

3for more complex structures v_3 and/or v_q may be specified. See the help page for
details.
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pling (fitByOptim) and the more sophisticated Shuffled Complex Evolution
(fitBySCE) and Differential Evolution (fitByDE) methods. All attempt to
maximise a given objective function.

The objective function can be specified as the objective argument to
these functions, or by setting hydromad.options(objective = ). It is
given as an R function which may refer to the values Q and X, represent-
ing observed and modelled flow, respectively. For more advanced use it may
also refer to U (modelled effective rainfall), or the full input DATA matrix.

The nseStat function implements a generalisation of the familiar R2

coefficient of efficiency (Nash and Sutcliffe, 1970):

nseStat(Q,X) =

∑
|Q∗ −X∗|2∑
|Q∗ − Z∗|2

(1)

where Q and X are the observed and modelled values; Z is the result
from a reference model, which is the baseline for comparison. Z defaults to
the mean of observed data E(Q∗), corresponding to the typical R2 statistic.
Subscript ∗ denotes transformed data, and the transform can be specified.
See ?nseStat and ?hydromad.stats for examples.

Here we use the default, which is a weighted sum of the R2 of square-
root transformed data, and (with less weight) the R2 of monthly-aggregated
data.

For this simple example, the model will be calibrated using the fitBy-

Optim function, which performs parameter sampling over the pre-specified
ranges, selecting the best of these, and then runs an optimisation algorithm
from that starting point.

> cotterMod <- update(cotterMod, routing = "armax",

rfit = list("sriv", order = c(n = 2, m = 1)))

> cotterFit <- fitByOptim(cotterMod, samples = 100,

method = "PORT")

See the help pages help("hydromad") and help("fitByOptim") for de-
tails of some of the options available.

5 Model Output

Now that we have an object representing a calibrated model, what can we
do with it? There are many standard R functions which have methods for
hydromad objects, which allow one to:

� view model info using print(), summary(), and objFunVal().

� extract parameter values using coef().
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� access data with fitted(), residuals(), and observed(). (These
exclude the warm-up period by default.)

� run with new data using update() or predict().

� simulate from parameter ranges using simulate().

� generate plots using xyplot(), qqmath(), etc.

For details, see the examples below, the user manual, and the help page
of each function.4 The help pages are also available from the web site http:

//hydromad.catchment.org/.
Most basically, one can extract the modelled streamflow time series with

the function fitted(), and this can of course be used with any of R’s
library of analysis functions. A quick way to view the modelled and observed
streamflow time series together is to call xyplot() on the model object, as
in Figure 4. Figures 5 and 6 also show the output from calling the functions
print() and summary() on the model object.

6 Model Simulation

We can simulate this model on the other periods using the update function:

> sim70s <- update(cotterFit, newdata = ts70s)

> sim80s <- update(cotterFit, newdata = ts80s)

> simAll <- update(cotterFit, newdata = Cotter)

For verification purposes, we would like to calculate performance statis-
tics for the whole dataset but excluding the calibration period. The easiest
way to do this is to set the observed streamflow data in the calibration period
to NA (missing), and then run the simulation:

> tsVerif <- Cotter

> tsVerif$Q[time(ts90s)] <- NA

> simVerif <- update(cotterFit, newdata = tsVerif)

It is convenient to group these models together into a runlist, which is
just a list of fitted models:

> allMods <- runlist(calibration = cotterFit, sim70s,

sim80s, simVerif)

The predicted time series (hydrograph) and cumulative distribution (flow
duration curve) can be generated as in Figures 7 and 10.

4Note that to get help for generic functions it is necessary to specify the method for
hydromad objects: e.g. ?predict.hydromad or ?xyplot.hydromad.

http://hydromad.catchment.org/
http://hydromad.catchment.org/
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> xyplot(cotterFit, with.P = TRUE, xlim = as.Date(c("1994-01-01",

"1997-01-01")))
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Figure 4: Observed vs modelled streamflow in part of the calibration pe-
riod.

> summary(allMods)

rel.bias r.squared r.sq.sqrt r.sq.log

calibration -0.03 0.77 0.84 0.85
sim70s -0.32 0.68 0.68 0.61
sim80s -0.12 0.73 0.83 0.86

simVerif -0.18 0.70 0.75 0.75

Table 1: Performance statistics for a set of models.
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To display information and parameters of a model:

> print(cotterFit)

Hydromad model with "cwi" SMA and "armax" routing:

Start = 1990-01-01, End = 1999-12-31

SMA Parameters:

tw f scale l p t_ref

29.2377 1.8969 0.0017 0.0000 1.0000 20.0000

Routing Parameters:

a_1 a_2 b_0 b_1 delay

1.532 -0.546 0.156 -0.141 0.000

TF Structure: S + Q (two stores in parallel)

Poles:0.5655, 0.9661

Fit: ($fit.result)

fitByOptim(MODEL = cotterMod, method = "PORT", samples = 100)

216 function evaluations in 85.8 seconds

Routing fit info: list(converged = TRUE, iteration = 5)

Message: false convergence (8)

Figure 5: Printing a model to view its parameter values. Note one can get
hold of the parameter values using coef(cotterFit) or coef(cotterFit,

which = "routing") (for the unit hydrograph only).
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To display basic performance statistics for a model:

> summary(cotterFit)

Call:

hydromad(DATA = ts90s, tau_s = c(5, 100), tau_q = c(0, 5), v_s = c(0,

1), sma = "cwi", routing = "armax", rfit = list("sriv", order = c(n = 2,

m = 1)), tw = 29.2377, f = 1.89694, scale = 0.00170432)

Time steps: 3552 (33 missing).

Runoff ratio (Q/P): (0.818 / 3.21) = 0.255

rel bias: -0.0314

r squared: 0.773

r sq sqrt: 0.836

r sq log: 0.852

For definitions see ?hydromad.stats

Figure 6: Calculating basic performance statistics for a model. The sum-

mary function actually returns a list, containing the values of various per-
formance statistics.

7 Model and Calibration Options

There are several extensions to the basic model used so far. With different
types of data, such as very dry or wet catchments, sub-daily time steps, poor
areal rainfall estimates, cases of baseflow loss to groundwater, etc, different
models or calibration methods will need to be used.

7.1 Model Structure and Parameter Ranges

We have used an ihacres CWI model in this tutorial, which is a simple
metric type model. Other SMA models are included in the package, or one
can define a new model. See the user manual for details.

Ranges of parameters to search when calibrating the effective rainfall
model can be specified as arguments to the hydromad or update() functions.
Alternatively, parameters can be fixed to a given value by specifying a single
number.

The default ranges can be seen, and set, using the function hydro-

mad.options().
The example, in the CWI model, the threshold parameter l (used for

intermittent or ephemeral rivers), defaults to a fixed value of 0. To al-
low calibration of this parameter, specify a numerical range. Similarly, the
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> xyplot(allMods[2:3], scales = list(y = list(log = TRUE)))
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Figure 7: Observed vs modelled streamflow in validation periods.
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> summary(simAll, breaks = "5 years")

timesteps missing mean.P mean.Q runoff rel.bias

1966-08-09 1606 0 2.67 0.853 0.319 -0.3172

1971-01-01 1826 0 3.17 1.164 0.367 -0.3318

1976-01-01 1827 0 2.67 0.719 0.269 -0.2259

1981-01-01 1826 0 2.91 0.790 0.271 -0.1119

1986-01-01 1826 33 3.15 0.956 0.303 -0.1579

1991-01-01 1826 0 3.36 0.915 0.273 -0.0909

1996-01-01 1827 0 3.04 0.627 0.206 0.1466

2001-01-01 893 0 2.47 0.395 0.160 0.1685

2003-06-12 893 0 2.47 0.395 0.160 0.1685

r.squared r.sq.sqrt r.sq.log

1966-08-09 0.533 0.632 0.681

1971-01-01 0.719 0.701 0.621

1976-01-01 0.663 0.716 0.682

1981-01-01 0.775 0.842 0.861

1986-01-01 0.695 0.804 0.854

1991-01-01 0.775 0.842 0.855

1996-01-01 0.756 0.812 0.838

2001-01-01 0.517 0.668 0.694

2003-06-12 0.517 0.668 0.694

Figure 8: Viewing a break-down the performance of a model over 5-year
blocks.
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To plot performance statistics over time:

> twoYrStats <- summary(simAll, breaks = "2 years")

> statSeries <- twoYrStats[, c("r.squared", "r.sq.sqrt",

"rel.bias", "runoff")]

> statSeries[, 1:2] <- pmax(statSeries[, 1:2], 0)

> c(xyplot(statSeries, type = "s", lwd = 2, ylab = "statistic",

xlab = NULL), `observed streamflow` = xyplot(observed(simAll)),

layout = c(1, 5), x.same = TRUE) + layer_(panel.refline(h = 0,

v = time(statSeries)))
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Figure 9: Performance statistics plotted over time in regular 2 year blocks.
The runoff coefficient and observed streamflow data are also shown.
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To plot the flow duration curve for modelled vs observed data in the
calibration period:

> qqmath(cotterFit, scales = list(y = list(log = TRUE)),

type = c("l", "g"))

To plot a flow duration curve for each of the simulated models:

> qqmath(allMods, type = c("l", "g"), scales = list(y = list(log = TRUE)),

xlab = "Standard normal variate", ylab = "Flow (mm/day)",

f.value = ppoints(100), tails.n = 50, as.table = TRUE)
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Figure 10: Log-normal Daily Flow Duration Curve for models in simula-
tion.
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evapo-transpiration coefficient e defaults to the range [0.01, 1.5]; to fix it to
a given value, just specify it:

> hydromad(ts90s, sma = "cwi", l = c(0, 200), e = 0.166)

7.2 Optimisation settings

Each of the fitting functions has several options, and the help pages should
be consulted for details. An important option is the choice of objective
function; see the discussion above about how to specify it.

In the simple cases of using fitBySampling or fitByOptim, the argu-
ment samples specifies how many random parameter sets will be sampled
(from the predefined parameter ranges), and argument sampletype chooses
Uniform Random, Latin Hypercube, or “all combinations” (a regular grid
of values). The one model with best objective function value is chosen. In
the case of fitByOptim this is then improved locally with an optimisation
algorithm.

7.3 Unit Hydrograph Transfer Functions

A typical unit hydrograph model, at least in ihacres models, is a linear
transfer function, i.e. an ARMAX-like (Autoregressive, Moving Average,
with eXogenous inputs). This can often, but not always, be formulated
mathematically as a set of exponentially receding stores, which may be in a
parallel and/or series configuration. ARMAX-type models are specified by
the number of auto-regressive terms n and the number of moving average
terms m. For example, a model with one store is (n = 1,m = 0); two
stores in parallel is (n = 2,m = 1); two stores and an instantaneous store in
parallel is (n = 2,m = 2). Three stores in parallel is (n = 3,m = 2).

When using armax or expuh routing, specialised methods are available
to estimate for calibration, such as the SRIV (Simple Refined Instrumental
Variable) algorithm. These are specified using the rfit argument.

The order of the transfer function may be varied, as well as the delay
time. If there is any ambiguity in choosing the best delay time, each possi-
bility should be tried.

To test different model structures systematically, a convenience function
tryModelOrders is provided. An example is given in Table 2. In this case
a simple SMA is used with fixed parameters.

For more information on these issues see, for example, Jakeman et. al.
(1990) and Young (2003).

7.4 Unit Hydrograph Inverse Fitting Methods

Unit Hydrograph routing models are typically fitted using least squares or
SRIV algorithms, but this depends on the modelled effective rainfall, and
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> ihSpec <- hydromad(ts90s, sma = "cwi", tw = 10,

f = 1, routing = "armax")

> osumm <- tryModelOrders(update(ihSpec, rfit = "sriv"),

n = 0:3, m = 0:3, delay = 0)

> summary(osumm)

ARPE r.squared r.sq.log

(n=0, m=0, d=0) 0.000 -5.432 -2.421
(n=1, m=0, d=0) 0.000 0.545 0.705
(n=1, m=1, d=0) 0.000 0.671 0.774
(n=2, m=0, d=0) 0.014 0.346 0.554
(n=2, m=1, d=0) 0.001 0.694 0.782
(n=2, m=2, d=0) 0.005 0.698 0.782
(n=3, m=0, d=0) 98.529 0.605 0.720
(n=3, m=1, d=0) 0.023 0.697 0.782
(n=3, m=2, d=0) 54.085 0.698 0.782
(n=3, m=3, d=0) 0.005 0.699 0.785

Table 2: Fit and information statistics from fitting different unit hydrograph
transfer functions with SRIV algorithm. ARPE is the Average Relative Pa-
rameter Error estimated by SRIV. The effective rainfall input was generated
by an ihacres CWI model with fixed parameters.
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so must be continuously re-fitted while calibrating the SMA model. One
alternative is to fit the unit hydrograph to the observed streamflow data
directly – though usually constrained by rainfall – and then use that as a
fixed component while calibrating the SMA model. This can be done using
an inverse filtering method with rfit = list("inverse", ...). (There
are many options here also).

Other such inverse fitting methods are possible, e.g. average event unit
hydrograph estimation, but are not currently implemented in this package.

7.5 Other Options

If model calibration is failing, you can set hydromad.options(trace = TRUE)

and/or hydromad.options(catch.errors = FALSE) to track down what is
happening.

It is sometimes useful to look at the model state variables, available
as predict(mod, return_state = TRUE) (for the SMA model), or pre-

dict(mod, return_components = TRUE) (for the routing model), to see if
they look sensible.

Some other things to try are

� using different calibration periods;

� changing the warmup period length;

� changing the optimisation method and/or settings.

8 What Next?

This document has described only a basic model fitting process.
Help pages are available for most functions, and these are also available

online at http://hydromad.catchment.org/. There is also a set of demos:
see demo(package = "hydromad") for a list.

Please discuss any problems or suggestions with the package maintainer.

A Reading in data

The required input data files for this tutorial are included with the hydromad
package, in the doc directory. Note that the processed data is available
directly in R – just type data(Cotter) – but this section shows how to read
it in from text files as an exercise.

A few simple steps are required to import and convert the data into
a usable form: extracting dates from the files, converting streamflow from
ML/day to mm/day, handling missing data values, and aligning the three
time series in a common time period.

http://hydromad.catchment.org/
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Let’s first view the content of one of the input files. Set the working
directory to where the data file is:

> setwd(system.file("doc", package = "hydromad"))

> file.show("pq_cotter.csv")

-99,49.8405,3/01/1964

-99,48.5998,4/01/1964

-99,46.3199,5/01/1964

-99,44.5028,6/01/1964

-99,41.9241,7/01/1964

...

There is no header in the file, but we know that the columns represent
rainfall (P), streamflow (Q) and date of observation. The temperature file is
similar. Knowing the format and columns we can use read.table to import
the data:

> pqdat <- read.table("pq_cotter.csv", sep = ",",

col.names = c("P", "Q", "Date"), as.is = TRUE)

> tdat <- read.table("t_cotter.csv", sep = ",",

col.names = c("T", "Date"), as.is = TRUE)

and view the structure of the resulting data frames:

> str(pqdat)

'data.frame': 15339 obs. of 3 variables:

$ P : num -99 -99 -99 -99 -99 -99 -99 -99 -99 -99 ...

$ Q : num 49.8 48.6 46.3 44.5 41.9 ...

$ Date: chr "3/01/1964" "4/01/1964" "5/01/1964" "6/01/1964" ...

> str(tdat)

'data.frame': 15467 obs. of 2 variables:

$ T : num 28.8 29.4 32.8 35.7 37.2 22.9 25.5 23.8 23.7 24.9 ...

$ Date: chr "3/01/1964" "4/01/1964" "5/01/1964" "6/01/1964" ...

So far, the Date columns are only text; R does not know they are dates.
We need to specify the date format, where %d is day, %m is month number, %b
is month name, %Y is four-digit year and %y is two-digit year (see ?strptime).

> pqdat$Date <- as.Date(pqdat$Date, "%d/%m/%Y")

> tdat$Date <- as.Date(tdat$Date, "%d/%m/%Y")

If the day, month and year were in separate columns of the file, with
names "day", "mon" and "yr" then you could do something like:
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> pqdat$Date <- with(pqdat, as.Date(ISOdate(yr,

mon, day)))

If you have sub-daily time steps, a good choice is to use the chron()

function from the chron package to represent the time index.5

Negative values (-99) in the pq input file represent missing data; in R they
should be set to the special value NA. Also, some dates in the temperature
file are blank, and need to be removed.

> pqdat$P[pqdat$P < 0] <- NA

> pqdat$Q[pqdat$Q < 0] <- NA

> tdat <- subset(tdat, !is.na(Date))

The hydromad model fitting functions require that rainfall and stream-
flow are given in the same units, typically mm / day. The streamflow data
in our input file is measured in ML / day, so we need to convert it, supplying
the catchment area of 148 km2.

> pqdat$Q <- convertFlow(pqdat$Q, from = "ML", area.km2 = 148)

For simple applications, when the data series are already synchronised,
this data frame (or matrix) format may be enough. However, there are
benefits in working with actual time series objects: because they handle
observation times, they allow powerful merging, treatment of missing values,
rolling averages and other functions. While R has a built-in structure for
regular time series (ts), these do not handle specific dates or times, only
index numbers. It is recommended to work with zoo objects (using the zoo
package).6

> library(zoo)

> tsPQ <- zoo(pqdat[, 1:2], pqdat$Date, frequency = 1)

> tsT <- zoo(tdat[, 1], tdat$Date, frequency = 1)

We can now merge the time series together into a final dataset. Note that
the hydromad package expects temperature or evapo-transpiration data to
be called E, not T.7

> Cotter <- merge(tsPQ, E = tsT, all = FALSE)

Print the first few rows (the head) of the time series, to check that
everything looks OK:

> head(Cotter, 6)

5There is a time class built into R, called POSIXct, but this represents time zones which
can sometimes lead to complications.

6zoo objects are a generalisation of ts objects and in many cases can be used in the
same way; see vignette("zoo").

7This avoids name conflicts since in R, T is a shorthand for TRUE.
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P Q E

1964-01-03 NA 0.337 28.8

1964-01-04 NA 0.328 29.4

1964-01-05 NA 0.313 32.8

1964-01-06 NA 0.301 35.7

1964-01-07 NA 0.283 37.2

1964-01-08 NA 0.291 22.9

> range(time(Cotter))

[1] "1964-01-03" "2005-12-31"

This shows that the rainfall data has missing values at the beginning. At
the other end of the series, Streamflow data is missing. This will not cause
a problem, but let us tidy it up anyway:

> Cotter <- na.trim(Cotter)

The final dataset extends from 1966-05-01 to 2003-06-12, and is shown
in Figure 2 and Table 3:

> summary(Cotter)

P Q E

Min. 0.00 0.01 2.80
1st Qu. 0.00 0.23 14.00
Median 0.00 0.48 19.20

Mean 2.97 0.83 19.69
3rd Qu. 1.65 1.04 24.60

Max. 141.39 28.50 42.20
NA’s 0.00 33.00 0.00

Table 3: Data summary. P = precipitation (mm/day), E = temperature
(deg. C), Q = streamflow (mm/day).

Computational details

The results in this paper were obtained using R 2.13.0 with the pack-
ages hydromad 0.9–8, zoo 1.6–5 and latticeExtra 0.6–17. R itself and all
packages used are (or will be) available from CRAN at http://CRAN.R-

project.org/.
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