
Reprinted from the

Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



Device discovery and power management in
embedded systems

David Gibson
OzLabs, IBM Linux Technology Center

dwg@au1.ibm.com, ols2003@gibson.dropbear.id.au

Abstract

This paper covers issues in device discovery
and power management in embedded Linux
systems. In particular, we focus on the IBM®

PowerPC® 405LP (a “system-on-chip” CPU
designed for handheld applications) and IBM’s
PDA reference design based upon it. Peripher-
als in embedded systems are often connected
in an ad-hoc manner and are not on a bus
which can be scanned or probed. Thus the
kernel must have knowledge of what devices
are present built in at compile time. We ex-
amine how the new unified device model pro-
vides a clean method for representing this in-
formation, while allowing good re-use of code
from machine to machine. The 405LP includes
a number of novel power management fea-
tures, in particular the ability to very rapidly
change CPU and bus frequencies. We also ex-
amine how the device model provides a frame-
work for representing constraints the periph-
erals and their interconnections place upon al-
lowable frequencies and other information rel-
evant to power management.

1 Introduction: the device discov-
ery problem

Device discovery is the process the kernel and
its device drivers use to determine what pe-
ripheral devices are present in a machine and

how to communicate with them. Generally this
means determining what IO addresses, inter-
rupt lines and/or other bus specific addresses
and resources are associated with each device.

Usually there are a few peripherals that are
present in every machine of a particular type.
Then there are optional devices that may or
may not be installed in a particular machine.
Some of these may be added or removed only
from one boot to the next, and some may be
hot-pluggable, added or removed while the ma-
chine is running.

The peripheral devices in an embedded ma-
chine often look very different to those in a
conventional desktop or server. Even when a
similar peripheral is used, differences in the
way it is connected into the system can mean
that it must be accessed and initialised quite
differently. Many assumptions that are made
about devices in a “normal” machine cannot
be made in embedded machines, and the hard-
ware and firmware of embedded machines gen-
erally provides much less assistance to the ker-
nel for device discovery. All these things re-
quire different approaches to device discovery
to be used.



214 • Linux Symposium

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

� � � � �
� � � � �
� � � � �
� � � � �

USB

MDOC

SDIO

FPGA

PCCF

TCPA

LED Ctrl

USB Gadget

SDIO

Tricolour LED

Frontlight
TDES

IIC
Touchpanel

GPIO

Buffers

USB Host

Ethernet

PCMCIA

Battery ADC

CSI Audio Codec
Speakers

Microphone

Line in/out

Buttons

LCD Panel

32MB SDRAM

UIC

O
n−

bo
ar

d 
P

er
ip

he
ra

l B
us

 (O
P

B
)

External Bus

Frontlight Ctrl

405LP
PowerPC 405LP PDA Reference Design (eLAP)

SDRAM

EBC

SLA

LCDC

POB

DMAC

D
ev

ic
e 

C
on

tro
l R

eg
is

te
r (

D
C

R
) B

us

P
ro

ce
ss

or
 L

oc
al

 B
us

 (P
LB

)

I2C Bus

Debug Sled

32MB NOR Flash

Core
PowerPC 405

Ethernet MAC

UART1

UART0

TS Ctrl.

RS232

PLB
OPB
External Bus

Interrupt Line
Other connection
DCR Bus
I2C Bus

Socket

Physical device

External connection

APM

CPM

RTC

APM Power management unit, implements the CPU sleep/suspend
states (NB: this is not related to the APM BIOS in PC laptops)

Audio Codec Texas Instruments TLV320AIC23 stereo audio codec
Battery ADC ADS7823 ADC monitoring battery voltage

CPM Clock and Power Management unit
CSI Codec Serial Interface (interface to audio codec devices)

DMAC DMA controller (can DMA to/from devices on both the PLB and
OPB)

EBC External Bus Controller
Ethernet MAC RTL8109 Ethernet controller
Frontlight Ctrl DS1050 LCD frontlight controller

GPIO General Purpose IO interface
IIC I2C bus interface (both master and slave capable)

LED Ctrl BU8770KN tricolour LED driver
LCDC LCD display controller

MDOC 64M of M-Systems Millennium Plus Disk-on-Chip
(NAND flash with specialised controller)

PCCF PCMCIA and Compact Flash controller
POB PLB-to-OPB bridge
RTC Real Time Clock

SDIO Toshiba TC6380AF Secure Digital and SDIO inter-
face

SDRAM SDRAM controller
SLA Speech Label Accelerator (hardware implementation

of a particular speech recognition algorithm)
TCPA Atmel AT97SC3201 TPM
TDES Triple-DES accelerator

TS Ctrl Semtech UR7HCT52_S840L touchscreen controller
UARTx NS16550 compatible UARTs

UIC Universal Interrupt Controller
USB Phillips ISP1161 USB interface (includes both host

controller and gadget-side interface)

Figure 1: Block diagram of the eLAP

2 The PowerPC 405LP PDA refer-
ence design

Most of the issues we discuss in this paper
apply to many different embedded machines.
However, for simplicity we focus on one ex-
ample machine, the PowerPC 405LP PDA ref-
erence design, also known as the Embedded
Linux Application Platform or eLAP. As the
name suggests, this is a prototype reference de-
sign for a PDA based on the PowerPC 405LP
CPU.

The IBM PowerPC 405LP is a CPU from the
PowerPC 4xx family. This series of CPUs is
designed for “system-on-chip” embedded ap-
plications. As the name suggests these proces-
sors are implementations of the PowerPC Ar-
chitecture™, however they have some notable
differences from “classic” PPC CPUs (as used
in IBM pSeries™ servers and Apple worksta-
tions). The 4xx CPUs operate at much lower
clock rates (and hence are cooler and cheaper),
although they are in the high end by embedded
standards. They have a much simpler MMU
(just a software loaded TLB) and they have no



Linux Symposium 2003 • 215

FPU. More interestingly, they include a num-
ber of peripheral devices built into the CPU die
itself (hence the term “system-on-chip”).

Different CPUs in the 4xx family are designed
for different applications and have different
collections of on-chip peripherals. The 405LP
is designed for handheld, battery-powered ap-
plications. Figure 1 shows a block diagram
of the eLAP, including the various built-in
peripherals of the 405LP. The chip includes
no less than three internal buses: the high-
bandwidth Processor Local Bus (PLB) con-
nected directly to the CPU core, the slower
On-Board Peripheral bus (OPB), and the spe-
cial DCR bus. The latter is used to implement
Device Control Registers: rather than using
normal memory-mapped IO, some of the on-
chip devices use these special registers which
are accessed using special machine instruc-
tions. As shown, the 405LP’s peripherals in-
clude amongst other things, an LCD controller,
a real-time clock, an I2C interface and two se-
rial ports. Other 4xx chips can include devices
such as Ethernet controllers, HDLC interfaces,
PCI host bridges, IDE and USB controllers.
The 405LP also includes a number of novel
power management features, which we’ll ex-
amine in §5.

In addition to the devices within the 405LP, the
eLAP includes 32MB of RAM, 32MB of NOR
Flash and a number of additional peripherals,
also shown in Figure 1. Most of these are con-
nected via a minimal bus driven by the 405LP’s
on-chip External Bus Controller (EBC) unit.
An extra debug and development sled can be
attached to the eLAP, again shown in Figure
1. It includes an Ethernet controller, the physi-
cal PCMCIA slot driven by the 405LP’s PCCF
core and the physical connectors for the USB
host port and serial port. Of course, as well as
the peripherals shown, further devices can be
attached via the PCMCIA and SDIO slots and
the USB host interface.

3 Current approaches

3.1 Conventional machines

On normal server or workstation machines, de-
vice discovery is mostly quite straightforward.1

Nearly all modern machines are based on PCI,
which (like most modern buses) is designed so
that devices can be queried and configured in a
standard way. This makes it easy for the kernel
to scan the PCI bus (or buses), determine what
devices are present and their addresses, and
pass this information to the appropriate device
drivers. USB devices provide similar function-
ality, as do PCMCIA and ISA/PnP devices.2

The few remaining devices (including the PCI
host bridge itself) are usually standard—to be
found on all machines of this type and often
nearly all machines of this architecture. They
can be found at well-known addresses, so the
drivers for these devices simply hardcode this
information. On PCs, non-PnP ISA devices do
introduce some problems. In fact they demon-
strate a subset of the problems with embedded
hardware that we will examine in the next sec-
tion.

Many non-x86 machines make device discov-
ery even simpler with firmware support. Open
Firmware (on IBM and Apple PowerPC ma-
chines) and likewise its ancestor OpenPROM
(on Sun machines) builds a tree with informa-
tion about each of the peripherals on the ma-
chine. At boot time the kernel queries this in-
formation, making a copy of the device tree
which can later be used by drivers to find
devices. The ACPI BIOS found on recent
Intel® machines provides some similar infor-
mation, although neither the ACPI implemen-
tations nor Linux’s use of them is very well es-

1Although on big servers keeping track of the devices
once they’re discovered can be another matter.

2At least in theory; many ISA/PnP implementations
are buggy in practice.



216 • Linux Symposium

tablished as yet.

3.2 Embedded weirdness

On embedded machines all the assumptions
that are made on “normal” machines break
down. Embedded machines can and do have
arbitrarily peculiar combinations of peripherals
connected in a more-or-less ad-hoc manner.

Often, many of an embedded machine’s pe-
ripherals are connected via an unconventional
bus which provides no facilities for system-
atic scanning or probing of devices. On the
405LP this is true of both the on-chip buses
and the main external bus. Devices can appear
essentially anywhere within the CPU’s phys-
ical address space. Some times the address or
other behaviour of a device is affected by a cus-
tom FPGA or other programmable logic device
with its own control registers. Device inter-
rupt lines introduce even more problems, being
routed in complex and arbitrary ways that are
often controlled or masked by a board-specific
FPGA or CPLD. Devices can sometimes have
multiple dependencies on other devices: for
example on the eLAP, audio is driven by the TI
codec, which is controlled and configured via
the I2C bus. However, the actual audio data is
delivered to the codec via a serial connection to
the on-chip Codec Serial Interface (CSI). The
CSI in turn depends on the on-chip DMA con-
troller to supply data from RAM.

Sometimes machines also have a more conven-
tional bus such as PCI or PCMCIA, but it may
have to be accessed via a bridge which is not
configured in the same way as one would ex-
pect on a conventional machine. Worst of all,
there are dozens or hundreds of different types
of embedded machine, each with its own com-
pletely different set of devices and connections.

Under these circumstances, it is tempting to
turn to each board’s firmware to provide in-

formation about which devices are present.
Unfortunately the firmware on most embed-
ded machines is very primitive, providing little
more than a boot loader. Usually it will provide
a few useful pieces of information, such as the
amount of RAM on the system or the board
revision, but it certainly won’t give compre-
hensive device information. Furthermore, what
information the firmware does provide usually
can’t be used without already knowing some-
thing about the machine in question, since em-
bedded firmwares are almost as varied as em-
bedded machines themselves.

Since embedded machines can and do break
any assumption one might care to make about
how devices are attached, there is no magical
way that the kernel can detect what devices are
present. So, the only approach is to have the
kernel “just know” the device setup for a par-
ticular board by building the knowledge into
the kernel at compile time.

Although it is impossible to completely avoid
hardwired knowledge of boards in the kernel,
we do want to keep this information in as clean
a way as possible. Specifically, we want to iso-
late the direct knowledge of board specific de-
tails to as small a section of the kernel as pos-
sible, and we want to make it easy to add the
details of new boards and their peripherals.

In this paper, we generally assume that the ker-
nel must be configured for one particular type
of embedded machine, since this is the sim-
plest case. Building a kernel which will sup-
port multiple machines is certainly possible,
and most of the methods we discuss can still
be applied. In this case the kernel need to in-
clude device information about all supported
boards. Early in boot, the kernel will identify
the machine it is running on (by some ad-hoc
method), and select which information to use
on that basis.

Now, we examine some of the existing meth-



Linux Symposium 2003 • 217

ods by which embedded devices are supported
in the kernel.

3.3 Hardcoded hacks

The naïve approach to handling embedded de-
vices that aren’t on a conventional bus is to
treat them all like the “system” devices on a PC
or other conventional machine. That is, sim-
ply hardcode knowledge of the device into the
relevant device driver or into the kernel initial-
isation code for the machine in question. This
approach is currently used for quite a number
of embedded devices—unsurprisingly since, as
we’ll see, a comprehensive better approach has
yet to be implemented.

This method has some serious shortcomings.
The most obvious problems come with embed-
ded peripherals that are similar to ones also
found in conventional machines. For obvious
reasons, it is normal in this case to adapt the
existing conventional driver for use in the em-
bedded machine.

Sometimes this has been done by adding
#ifdef s to the driver for the board specific
code. For example, this has been done with the
cs89x0 driver for the CrystalLAN CS8900
Ethernet chip. This chip is used on some ISA
cards, but is also found on the “Beech” em-
bedded board (another IBM reference board
based on the 405LP). Apart from the fact
that#ifdef s make the driver code ugly, this
clearly causes a problem if the embedded ma-
chine can also have a normal ISA or PCMCIA
version of the device: the kernel can’t support
both versions of the peripheral on the same ma-
chine.

Another method is to copy, then modify the
existing driver to make a version specific to a
particular embedded machine. The approach
was taken for thearctic_enet driver for
the Ethernet on the eLAP’s debug sled. The

sled’s Ethernet is based on an RTL8019 chip,
which is used in a number of ISA cards, as
well as several other embedded machines. This
method allows multiple versions of the de-
vice to be simultaneously supported, but incurs
the obvious maintenance problems of having
several almost-but-not-quite identical drivers
present in the kernel. The situation is aggra-
vated as more embedded machines are sup-
ported.

The fundamental problem with this approach
is that there are many more types of embed-
ded machine than there are of normal ma-
chines. Indeed there is often only one domi-
nant type of conventional machine per archi-
tecture (PC for x86, CHRP for PowerPC, Sun
server/workstation for SPARC, etc.). With the
large number of different types of embedded
machine, direct hardcoding quickly becomes
messy: there is a lot of duplicated code, and
it is inconvenient to add new machines and pe-
ripherals.

3.4 The OCP subsystem

Since we can’t entirely avoid hardcoded infor-
mation, the obvious approach to isolating the
messiness is to encode information about de-
vices into a data structure which is statically
compiled into the kernel, but parsed to provide
data to the drivers at runtime. This solution is
conceptually similar to using device informa-
tion from firmware except that the device tree
is supplied by the kernel itself, rather than read
at boot time.

The “OCP” subsystem (standing for On-Chip
Peripheral) is a partial implementation of this
approach. It only covers the on-chip devices on
PPC 4xx chips, and is quite limited in the sorts
of device information it can represent, but it iss
still a substantial improvement over hardcoded
drivers.



218 • Linux Symposium

The subsystem has been through several signif-
icant rewrites before reaching its present form.
The initial implementation in thelinuxppc_
2_4_devel BK tree had a number of seri-
ous design and interface problems. It was then
rewritten in 2.5 based on the new Linux uni-
fied device model, and using the PCI subsys-
tem as a reference. This version is considerably
cleaner, but still contains some poorly thought
out elements, in particular some things have
been copied from PCI which make little sense
in their new context. It has now been rewrit-
ten again by Benjamin Herrenschmidt in the
linuxppc-2.4 BK tree. This latest rewrite
is conceptually similar to the 2.5 version, but
considerably simpler and cleaner. This final
version still needs to be forward ported to 2.5,
re-introducing the integration with the unified
device model.

For each CPU with OCP devices, there is a ta-
ble of definitions like that in Figure 2. This is
found in a C file specific to the particular CPU,
along with any initialisation or support code for
that CPU. The example in Figure 2 doesn’t in-
clude all the 405LP’s on-chip devices, since
not all the drivers have been adapted to use
the OCP infrastructure yet. The table con-
sists of ocp_def structures, shown in Fig-
ure 3. At boot time, the OCP system scans the
core_ocp table to produce a list of OCP de-
vices present, making anocp_device struc-
ture (also in Figure 3) for each to keep track of
it at runtime.

The vendor and function fields between
them identify the type of device. This mim-
ics the vendor/function pairs used to iden-
tify PCI and USB devices. However in this
case the ID values are not built into the de-
vice but are simply arbitrary values allocated
in include/asm/ocp_ids.h . Drivers
for the on-chip peripherals register themselves
when loaded, using theocp_register_
driver function and a table of OCP device

from
arch/ppc/platforms/ibm405lp.c

struct ocp_def core_ocp[]
__initdata = {

{ .vendor = OCP_VENDOR_IBM,
.function = OCP_FUNC_OPB,
.index = 0,
.irq = OCP_IRQ_NA,
.pm = OCP_CPM_NA,

},
{ .vendor = OCP_VENDOR_IBM,

.function = OCP_FUNC_16550,

.index = 0,

.paddr = UART0_IO_BASE,

.irq = UART0_INT,

.pm = IBM_CPM_UART0
},
{ .vendor = OCP_VENDOR_IBM,

.function = OCP_FUNC_16550,

.index = 1,

.paddr = UART1_IO_BASE,

.irq = UART1_INT,

.pm = IBM_CPM_UART1
},
{ .vendor = OCP_VENDOR_IBM,

.function = OCP_FUNC_IIC,

.paddr = IIC0_BASE,

.irq = IIC0_IRQ,

.pm = IBM_CPM_IIC0
},
{ .vendor = OCP_VENDOR_IBM,

.function = OCP_FUNC_GPIO,

.paddr = GPIO0_BASE,

.irq = OCP_IRQ_NA,

.pm = IBM_CPM_GPIO0
},
{ .vendor = OCP_VENDOR_INVALID
}

};

Figure 2: OCP device table for 405LP



Linux Symposium 2003 • 219

from include/asm/ocp.h

struct ocp_def {
unsigned int vendor;
unsigned int function;
int index;
phys_addr_t paddr;
int irq;
unsigned long pm;
void *additions;

};

struct ocp_device {
struct list_head link;
char name[80];
const struct ocp_def *def;
void *drvdata;
struct ocp_driver *driver;
u32 current_state;

};

Figure 3: OCP device structure

from drivers/i2c/i2c-ibm_iic.c

static struct ocp_device_id
ibm_iic_ids[] = {

{ .vendor = OCP_ANY_ID,
.function = OCP_FUNC_IIC },

{ .vendor = OCP_VENDOR_INVALID }
};

static struct ocp_driver
ibm_iic_driver = {

.name = "iic",

.id_table = ibm_iic_ids,

.probe = iic_probe,

.remove = iic_remove,
};

...

ocp_register_driver(
&ibm_iic_driver);

Figure 4: OCP driver registration (for the IIC
driver)

IDs like that shown in Figure 4. This again is
analogous to a PCI driver. The OCP subsys-
tem matches the driver against the list of OCP
devices, calling the driver’s probe routine for
each relevant device.

The index field is used to distinguish be-
tween multiple devices of the same type. The
paddr and irq fields, unsurprisingly, give
the device’s physical base address (on PPC all
IO is memory-mapped) and its IRQ line. The
pmfield is used for power management, we’ll
look at it in §5.3. Finally, theadditions
field is a hack used to supply extra device-
specific information. It is not needed for any
of the devices on the 405LP but it is used
on some other chips: for example, some 4xx
CPUs, such as the 405GP and NPe405H in-
clude one or more Ethernet MAC controller
(EMAC) units. These make use of a spe-
cialised DMA controller known as the Memory
Access Layer (MAL). Theadditions field
is used to identify which MAL channels are
associated with each EMAC—another piece of
information that the kernel has to “just know.”

The 2.5 version of the OCP system is in-
tegrated with the unified device model. At
bootup the OCP code registers an OCPbus_
type and one instance of it—all the OCP de-
vices are registered as devices on this bus.3 The
ocp_device and ocp_driver structures
become wrappers around the device model’s
device anddevice_driver structures.

4 Future approaches

As yet, there is no really convenient and com-
prehensive way of dealing with embedded “un-
probeable” peripherals. The OCP system is

3This ignores the distinction between the two on-chip
buses, PLB and OPB. We can get away with this because
the POB is always enabled and has a fixed configuration,
so in practice we can ignore the distinction for the pur-
poses of device discovery.



220 • Linux Symposium

probably the closest thing to such a system,
but it has significant limitations: it only covers
PPC 4xx on-chip devices, and its data structure
is a flat table so it cannot represent peripherals
behind a bus-to-bus bridge or other more com-
plex interconnections.

The fact that some peripherals are built into
the CPU chip is interesting from a hardware
point of view. However, for the purposes of de-
vice discovery, there is little inherent difference
between on-chip devices, and devices which
are on a separate chip, but which still can’t be
straightforwardly scanned or probed. It seems
worthwhile, then, to extend the idea of the OCP
system to cover embedded devices more gener-
ally.

The Linux unified device model provides the
obvious place to represent information about
these devices at runtime: it already provides
the code for matching devices to drivers and its
tree structure allows multiple buses with con-
figurable bridges between them to be repre-
sented.

It is not immediately clear how to represent
everything that’s needed in the device tree,
though. While for many devices the physical
address and IRQ number is all the informa-
tion that is needed, some devices have mul-
tiple IRQs and/or IO windows, at discontinu-
ous addresses. Some buses require different re-
source addresses: for example many of the 4xx
on-chip devices need DCR numbers, and I2C
devices need I2C addresses rather than phys-
ical IO addresses. Hence, devices on differ-
ent buses are likely to need different wrappers
aroundstruct device providing different
address information.

Even less obvious is how to represent devices
with multiple connections, such as the audio
codec on the eLAP, connected both the the I2C

bus and to the CSI.4 As yet, the device model
does not have a clear way to represent this.

Another as yet unanswered question is how the
device information should be represented in the
kernel image. In fact, we gain a little flexibil-
ity if this information is removed from the ker-
nel proper by having it as a blob of data which
is passed to the kernel by the bootstrap loader
(the shim between the firmware bootloader and
the kernel proper which handles decompress-
ing the kernel and moving it to the correct ad-
dress in memory). This has the advantage that
on those machines which do have a reasonable
sophisticated firmware or bootloader, such as
PPCBoot/U-Boot (see [7]), the device informa-
tion can be taken from there.

from include/asm/bootinfo.h

struct bi_record {
unsigned long tag;
unsigned long size;
unsigned long data[0];

};

#define BI_FIRST 0x1010
#define BI_LAST 0x1011
#define BI_CMD_LINE 0x1012
#define BI_BOOTLOADER_ID 0x1013
#define BI_INITRD 0x1014
#define BI_SYSMAP 0x1015
#define BI_MACHTYPE 0x1016
#define BI_MEMSIZE 0x1017
#define BI_BOARD_INFO 0x1018

Figure 5: Boot info records

On PPC systems, there already exists a flexible
method of passing data from the bootstrap to
the kernel proper through “boot info records.”
The bootstrap passes to the kernel a list ofbi_
record structures, shown in Figure 5. Each

4Note that this is a different problem to multipath IO.
That deals with the case where a device can be accessed
by any of several routes, here we have devices that re-
quires several connections simultaneously.



Linux Symposium 2003 • 221

bi_record is a blob of data with a length and
tag, the internal format of the information be-
ing determined by the tag (some tag values are
also shown in Figure 5). Currently this method
is used for passing information such as the size
of memory and the board and bootloader ver-
sions. This system could be extended to pass
an entire set of device information to the kernel
(there is no reason a particularbi_record
couldn’t contain a list of furtherbi_record s,
giving a tree structure).

A related question is how to represent the de-
vice information in the kernel source. The sim-
plest approach would be to directly include the
data structure used to represent the informa-
tion at boot time. However, that’s likely to
be quite inconvenient to edit and extend, espe-
cially if the format includes length fields (like
bi_record s) or internal pointers. It might be
worthwhile, then, to create adevice tree com-
piler: a program used during the kernel build
to take a text file describing the device layout
and generate code or data to be included in the
kernel image.

5 Power management

In a battery powered device such as the eLAP,
it is clearly important to minimise power con-
sumption. The most obvious way to do this
is to power down sections of the system when
they are not in use. Obviously, this means that
the kernel needs to know when a device is in
use, including when it is in use indirectly be-
cause another device relies on it.

The topics of power management and device
discovery are therefore related: device discov-
ery is about providing exactly the sort of in-
formation about the interconnection of devices
that effective power management requires.

As yet the integration of power management
techniques with detailed device information is

very much a work-in-progress, even on con-
ventional systems and doubly so on embedded
machines. So, we can only give an overview
here of what the major issues are: most of the
hard cases remain to be investigated, let alone
implemented.

Again we will use the eLAP as our example:
the 405LP’s power management features intro-
duce some new (and largely unsolved) prob-
lems in providing device information for power
management. So, we first examine these fea-
tures, then in §5.2, §5.3 and §5.4 we examine
several different methods of reducing power
consumption and the device information prob-
lems they introduce.

5.1 eLAP power management features

The 405LP CPU is designed especially for low
power operation and as such it has some novel
and interesting power management features.
Most of the on-chip peripherals can be pow-
ered on and off under software control. Some
also provide more detailed power control to al-
low power savings when only parts of the pe-
ripheral are in use, or when it is in use inter-
mittently. It also allows for several methods of
saving the CPU state while shutting down the
chip as a whole (i.e., “sleep” modes).

More interestingly, the 405LP includes a clock
generation core that allows the clock frequency
of the CPU core and also the PLB, OPB and
EBC buses to be altered dynamically. The ra-
tios between the CPU and various bus frequen-
cies are not fixed, so the chip can be adjusted
differently for IO versus compute performance.
While a number of different CPUs allow the
frequency to be changed while running, the
405LP can change frequency exceptionally
quickly (microseconds) which enables new
power management techniques based on dy-
namically adjusting frequency based on work-
load and idle periods. The 405LP can also op-



222 • Linux Symposium

erate at a variety of different voltages, which
can provide much greater power savings than
just adjusting the frequency (power consump-
tion varies roughly linearly with frequency and
cubicly with voltage, maximum frequency is
roughly linear with voltage). Another novel
feature of the 405LP is that it can continue to
operate, albeit slowly in some cases, while a
voltage transition is in progress.

As well as supporting the 405LP’s features,
the eLAP board has some extra power man-
agement features of its own. A number of the
on-board devices, such as the audio codec, in-
clude the ability to power down some or all of
their operations while not in use. Other de-
vices, such as the USB and SDIO chips can be
powered down under the control of an FPGA
register.

5.2 Static power management

We use the term static power management for
the process of suspending or sleeping a ma-
chine, i.e. saving the machine’s state while
turning most or all of the machine off, then
restoring the state when the machine is pow-
ered on again. This of course is normal in ev-
eryday laptops, and handling this for embed-
ded machines is not a great deal different.

Embedded devices do introduce some extra
complexities, though. On PC laptops, the
BIOS (either APM or ACPI) provides some
support to the kernel on how to properly sus-
pend the machine (indeed, in the APM case the
BIOS handles most of the work itself). Em-
bedded machines, on the other hand, usually
require the kernel to know how to suspend and
resume the machine directly. For example the
suspend code for the eLAP knows how to use
the 405LP’s features to save the CPU state,
how to configure the RAM to enter self-refresh
mode, how to use the board’s FPGA registers
to turn off the board, and how to rebuild the

state when the machine is resumed.

In addition, static power management on all
machines requires knowledge of what devices’
dependencies on each other are, so they can
be shut down and later restarted in the cor-
rect order—this was one of the major moti-
vations for the creation of the unified device
model. Hence, all the complexities of obtain-
ing detailed device information for embedded
systems impact on static power management.
However static power management doesn’t re-
ally add further difficulties beyond those we
have already discussed for device discovery.

5.3 Peripheral power management

We use the term peripheral power management
to refer to disabling and powering down pe-
ripheral devices when they are not in use. This
is often relatively straightforward, since it can
be handled directly by the driver for the device
in question. This also delegates the question
of when the device is “in use” to the driver.
Sometimes it is sufficient to enable power to
the device when it is open, and disable it when
closed, other times more fine-grained control
of the power is desirable, e.g. to take advan-
tage of idle periods.

When the device depends on other devices be-
ing enabled, the situation is a little more com-
plex. However the driver will generally know
what the other devices are and their drivers, so
it is usually quite simple to create an ad-hoc in-
terface whereby one driver can ask the other to
enable the device it requires.

Difficulties do arise where power to one de-
vice is controlled by another: for example the
4xx on-chip devices are controlled by a cen-
tral clock and power management unit (CPM).
Similarly many boards have devices which are
powered on and off by board-specific FPGA
registers.



Linux Symposium 2003 • 223

The 4xx CPM has a simple interface, allow-
ing the OCP subsystem to support peripheral
power management quite easily. Thepmfield
in the OCP device definitions (see Figures 2
& 3) is a mask describing which bit in the
CPM registers controls power to this periph-
eral. Drivers can then use functions from the
OCP subsystem to switch the device on and off.

Obviously, for peripherals that are unique to a
particular board it is also easy for the driver
to directly control power to the device. So far
however, little work has been done on the gen-
eral case where common devices may be pow-
ered on and off by board specific controls.

5.4 Dynamic power management

Dynamic power management (DPM) refers to
dynamically adjusting CPU frequencies and
voltage during operation. This approach is
quite new, at least in Linux, and very much un-
der development. The details of the motiva-
tions and approaches to dynamic power man-
agement are outside the scope of this paper,
for more information see [4]. IBM and Mon-
taVista software are collaborating on further
development in this area.

DPM does introduces some new problems re-
lated to device information. To work properly,
devices in operation may have to impose con-
straints on what frequency or other settings are
allowed. For example, a device may require
a certain amount of bus bandwidth, and hence
impose a minimum bus frequency, or it may re-
quire interrupts to be handled without too high
a latency, and hence impose a minimum CPU
frequency.

These constraint details are somewhat like the
basic information about device interconnection
that we have already examined, but clearly re-
quire even more detailed information about the
devices. Since these constraints may well de-

pend on details of the hardware interconnects,
this is yet more information which the kernel
must “just know.”

Again, the unified device model provides an
obvious framework in which to represent this
information. [4] discusses some methods for
setting constraints within drivers. A general
approach to representing constraints in a way
that is easily extensible to new boards is yet to
be implemented, and is likely to take consider-
able further investigation and development.

References

[1] IBM Corporation,PowerPC® 405LP
Embedded Processor User’s Manual,
Preliminary, 2002.

[2] IBM Corporation,PowerPC® 405GP
Embedded Processor User’s Manual,
Seventh Preliminary Edition, 2000.

[3] IBM Corporation,PowerNP NPe405H
Network Processor User’s Manual,
Preliminary, 2002.

[4] IBM and MontaVista Software,Dynamic
Power Management for Embedded
Systems, Version 1.0,
http://www.research.ibm.
com/arl/projects/papers/
DPM_V1.1.pdf , 2002.

[5] linuxppc_2_4_devel kernel tree,
bk://ppc@ppc.bkbits.net/
linuxppc_2_4_devel .

[6] linuxppc-2.4 kernel tree,
bk://ppc@ppc.bkbits.net/
linuxppc-2.4 .

[7] PPCBoot homepage,http:
//ppcboot.sourceforge.net/ .



224 • Linux Symposium

About the author

David Gibson is an employee of the IBM Linux
Technology Center, working from Canberra,
Australia. Most recently he has been work-
ing on board and device bringup for Linux on
embedded PowerPC machines, along with var-
ious bits of kernel infrastructure for cleanly
supporting PowerPC 4xx and other system-on-
chip CPUs. He is also the author and main-
tainer of the orinoco driver for Prism II based
802.11b NICs. In the past he has worked on
ramfs (as included in the -ac kernel tree), and
“esky,” a userspace implementation of check-
point/resume.

Legal Statement

This work represents the view of the author and
does not necessarily represent the view of IBM.

IBM, PowerPC, PowerPC Architecture and pSeries
are trademarks or registered trademarks of Interna-
tional Business Machines Corporation in the United
States and/or other countries.

Intel is a registered trademark of Intel Corporation
in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.


