
E^YB?=

ce``_bd�VY\Uc�V_b

@QbQTYW]�4UReW�BD

EC5B�C�=1>E1<

Release 2.0
Copyright 1995 (c) TechTools

 TechTools
PO BOX 462101 Garland,TX 75046-2101

Voice: (972) 272-9392 FAX: (972) 494-5814 email: support@tech-tools.com

INTRODUCTION __ 1

OVERVIEW __ 2

INSTALLATION AND CONFIGURATION _____________________________ 3

CONFIGURATION ___ 3

Configure PDRT__3

Configuring PDREM __3

Configuring a Script File ___4

Loading the Kernel into UniROM ___5

Verifing Basic Kernel operation ___5

Starting Paradigm DEBUG ___6

MODIFY FOR INTERRUPT MODE __________________________________ 7

Configure UniROM for Interrupt mode operation. _______________________________________7

Connect Interrupt line ___7

Rebuild the Kernel for Interrupt Mode operation __7

Load the new Kernel __7

Verify basic Kernel operation ___7

Start Paradigm DEBUG__7

NORMAL OPERATION ___ 8

GENERAL NOTES: __ 8

TROUBLESHOOTING __ 9

1

Introduction
Thank you for selecting a TechTools product. We have made every attempt to
provide a quality product at an affordable price. Our goal is to provide tools for
the Engineer and Technician that are inexpensive, but fully functional. If you
have any problems or comments, please don't hesitate to call or FAX and let us
know.

The Paradigm Support files allow one to combine the power of UniROM with that
of Paradigm DEBUG. This powerful combination provides inexpensive, Source-
level, Symbolic debugging of x86 and NEC V-series based embedded systems
with minimal target intrusion.

The Paradigm Support files from TechTools provide an interface between
Paradigm DEBUG and UniROM, enhancing the capabilities of Paradigm DEBUG
with inexpensive Hardware support. UniROM adds the following enhancements
to Paradigm DEBUG:

Allows Breakpoints in EPROM.
Unlike a traditional ICE, UniROM plugs into the target EPROM or FLASH
socket rather than the CPU socket. This approach permits full use of Software
Breakpoints in the EPROM space, eliminating the need for expensive overlay
memory or Hardware Breakpoints. Software breakpoints are more versatile than
Hardware breakpoints and are not fooled by pre-fetch queues or caches.

Eliminates the need to dedicate a target Serial port for debug.
All Host/Kernel communications are conducted through a Memory-Mapped
UART functionality within the UniROM called URCOM. This functionality
eliminates the need for a dedicated UART on the target for DEBUG, or frees up
an existing UART for the target application's use. URCOM can be located
anywhere within the emulated memory space.

Eliminates the need for extra RAM to hold the Application.
Since UniROM allows Paradigm DEBUG full Read/Write access to the EPROM
space, the Application can reside in EPROM space, even during debug. This
eliminates the need to install extra target RAM to load the Application for
debugging.

Eliminates the need for a separate EPROM for the Kernel.
UniROM can download the Kernel into EPROM space before starting Paradigm
DEBUG. The Application can be loaded into EPROM space before or after
starting Paradigm DEBUG. The ability to load BOTH into the same EPROM
space eliminates the need for a separate BOOT ROM for the Kernel.

Applications run "IN-PLACE" for less intrusive debugging.
The Application can be debugged in the exact same memory space it will occupy
in its released form. In addition, the target RAM memory map will also match its
released form. This brings the system one step closer to its release configuration.

2

Fast download of applications and the remote Kernel.
The Application and the Kernel can be downloaded with URTerm or URLoad
before starting Paradigm DEBUG at greater than 400 KBaud, independent of the
Target speed. Additionally, the Application may be downloaded from within
Paradigm DEBUG at 115Kbaud.

*NOTE: URLoad.exe can be used to download applications that are located
within the memory space emulated by UniROM. All Applications, regardless of
location, can be downloaded from within Paradigm DEBUG as usual.

UniROM interfaces to the target through the EPROM or FLASH socket. This
eliminates any dependencies on CPU speed, package style, pin-out, internal
peripherals, MIN/MAX modes or other manufacture's variants. This
independence allows UniROM to work with ALL of your Intel x86 and NEC V-
Series target systems.

Overview
These instructions are intended to SUPPLEMENT the user’s manuals that come
with Paradigm DEBUG and UniROM, NOT REPLACE THEM. The following
sections assume that you have read and are familiar with those manuals. Their
contents are not duplicated here.

REQUIREMENTS:
A complete development systems consists of the following:

- UniROM
- URCOM option board for UniROM
- Paradigm Support diskette and instructions
- Paradigm Debug RT Version 4.0 or later
- Paradigm LOCATE Version 5.0 or later

The following steps were organized to isolate and detect problems as they occur,
making it far easier to troubleshoot. Each step assumes the previous step was
completed successfully, so do NOT skip any steps that fail. Stop and correct
problems as they are uncovered. If you get stuck on a step, call for tech support.
If each step is completed in sequence, you should have a full functioning setup by
the time you start up Paradigm DEBUG!

We recommend that the system be brought up incrementally as follows:

3

Installation and Configuration

Installing and Testing UniROM
Refer to Chapters 1 and 2 of the UniROM User’s Manual for complete
instructions on installing and testing UniROM.

Do NOT skip connecting the RESET line. It allows UniROM to hold the target in
reset during trasfers to insure consistent loads and target start-up.

Installing Paradigm Debug
Install Paradigm Debug, PDRemote and Locate as instructed in their manuals,
using the build that most closely matches your target configuration.

Installing the Support Files
Copy the files from the TechTools “UniROM support for Paradigm Debug”
diskette into the PDREM sub-directory. This will REPLACE your existing
DCOMMS.C file with a UniROM specific version.

Configuration

Configure PDRT
Configure Paradigm DEBUG to operate at the 115200 BAUD. This is
accomplished by editing the PDRT186.INI file as follows.

DEVICE = COM2
SPEED = 115200

Configuring PDREM
Edit the URCOM_BASE define at the top of the DCOMMS.C file to reflect the
address segment you selected for the URCOM port. This can be any unused
address segment that lands within UniROM’s emulation space. The default
location is 0xFFFC. NOTE that this is a SEGMENT definition. The actual linear
target address is 16 times this value. The default setting of 0xFFFC places the
URCOM at 0xFFFC0 in the target’s memory space; 64 bytes below the top of
memory.

If you are emulating a 16 or 32 bit EPROM DATA PATH, change the SCALE
definition to 2 or 4 respectively. Note that this refers to the data path to the
EPROMs, which is not necessarily as wide as the PROCESSOR’s data path.
Many targets will use 32 bit processors with 8 or 16 bit data paths to the
EPROMs.

Edit the PDREM.CFG file to generate a BINARY file. Some of the
PDREM.CFG files are already configured for BINARY files. Others are
configured to generate extended INTEL HEX. To place PDREM at the top of
memory, use:

 “hexfile binary offset=0xFD000 size=12”.

Edit any other configuration items in PDREM.CFG to match your system. For
example, if your target uses an 80186 variant, you may need to configure

4

waitstates or some of the chip select registers to enable the EPROM, SRAM or
other peripherals.

MAKE your PDREM kernel as instructed in the PDREMOTE section of the
Paradigm DEBUG manual.

Configuring a Script File
You will find 2 sample script files in your PDREM directory called “pdrem8.cfg”
and “pdrem16.cfg”. If your target uses a single 8 bit EPROM for its code, copy
“pdrem8.cfg” to “UNIROM.CFG”. If your target uses a single 16bit EPROM or 2
8 bit EPROMS, copy “pdrem16.cfg” to “UNIROM.CFG”.

Edit “UNIROM.CFG” to reflect your configuration. The following sections
discuss each item that may need to be modified. The UniROM User’s Manual
documents each command and configuration item in detail.

Port Selection
This should be set to the port you intend to use for Paradigm Debug
communications.

Valid PORT settings are COM1, COM2 COM3 or COM4.

Device SIZE and Type
The SIZE parameter is the size of the memory being emulated by THIS
EMULATION BOARD in KBYTEs. Notice that a 27512 is a 512Kbit device or
64KBytes total. Also note that 16 bit EPROMs can be confusing. A 27240 is a
4Mbit device, organized as 256Kx16. When emulating 16bit devices, EACH
emulation board (lower and upper) are emulating 1/2 of the device. Therefore we
would enter “256” for the SIZE parameter in each board definition.

The type parameter simply indicates the type of device UniROM is emulating. If
your target sockets are wired for FLASH devices, select FLASH, otherwise select
EPROM

The ‘F0000’ or ‘E0000’ in this command is the ADDRESS parameter. This
should be the REAL PHYSICAL ADDRESS of the start of emulation memory.

Reset
DON’T overlook this one. When debugging a program (or anything else) it is
very important that your tools operate consistently. Configuring and connecting
the reset line helps to insure that consistency.

Fill
We use this command to initialize the RAM underlying the URCOM board. This
insures that the target will see that the URCOM has not been initialized yet and
will NOT make false decisions based on the data in the RAM at the URCOM’s
location. This initialization capability eliminates the need to hard-code it within
the monitor as “define constant” statements. It also allows us to release reset and
wait for target activity BEFORE initializing the CONSOLE connection (and

5

therefore URCOM). The target monitor will hit the initialization code long before
URCOM is initialized. This insures a consistent start by forcing the target to wait
for URCOM initialization.

The first parameter is URCOM’s address. This should be set to URCOM’s actual
address (from the target’s view). The second parameter should be set to the last
address occupied by URCOM. URCOM occupies 16 bytes in the LOWER
emulation board. If your target uses two or more emulation boards in an
interleaved configuration, URCOM will space 32 or 64 bytes, respectively. This is
the LAST byte to fill, for a total of 16, 32 or 64 bytes, depending on the address
scaling. The third parameter is the fill value. Leave it set to 01.

Console
The CONSOLE line specifies that we should initiate a CONSOLE connection
with the URCOM option board. The second parameter specifies URCOM’s
ADDRESS. It should be the same as the first parameter in the FILL command.
The “RX” specifies that we should generate interrupts when we place data in the
target’s RECEIVE register. We will not be servicing interrupts on the target side
yet, but it does no harm to go ahead and let UniROM generate them. The final
parameter is the CONSOLE connection BAUD rate. This MUST match the baud
rate the debugger will use to communicate with the target.

Loading the Kernel into UniROM
Type “URLOAD” to load the kernel into UniROM. Urload looks in the current
directory for the default script file named “UNIROM.CFG”.

Verifing Basic Kernel operation
Watch for Target activity on the target status LED. If the kernel is alive and
polling for commands, the target status LED should show continuous activity. If
it does NOT show activity, then UniROM is not being accessed. If there is no
target activity, check the following:

Verify all UniROM settings, in particular, the device type, size and length.

Start URTERM and use the READ command to verify that the Kernel LOOKS
OK. For instance, if we are emulating the boot ROM, look for a long jump (EA
xxxx xxxx) at 0xFFFF0. If we are emulating a ROM-SCAN device, look for the
characteristic 55AA at the start of ROM. If you can not identify the kernel,
review the file type, offset and upload procedures. Also review the steps taken to
build the kernel. Verify that PDREM.CFG is configured so that the kernel is
LOCATED to execute in UniROM’s memory space.

If the kernel LOOKS OK but UniROM still shows no target activity, then verify
the kernel configuration. Verify that PDREM.CFG accurately reflects your
target’s memory map. In particular, verify that the Kernel’s Data and Stack are
mapped to real RAM addresses. Also verify all initcode directives in the
PDREM.CFG file to insure that you are properly configuring all chip selects,
wait-states , etc.

6

Verify that URCOM is placed in un-used space. Look for the “01” bytes at the
selected URCOM address. The default script placed them at 0xFFFC0. If your
initcode directives produce a lot of code, that code may bleed into this address. If
you do not see several FF pad characters before the URCOM address, move the
ini-code section lower in memory to give it more room. Edit the ??LOCATE in
PDREM.CFG file to the following:

class ??LOCATE = 0xffe0

This will allow an additonal 256 bytes of space for the initialization code.

Starting Paradigm DEBUG
If all goes well, you should see the Paradigm DEBUG sign-on message. If not,
you may get a link time-out or the PC may hang. If Paradigm DEBUG does not
start up, verify that baud rate and com port selections in the PDRT186.INI file and
the PORT definition line in UNIROM.CFG match.

Always RESET UniROM and reload the kernel after after any type of Paradigm
DEBUG failure, to eliminate any communications problems and to insure a
consistent start.

7

Modify for interrupt mode
The following steps assume that a working POLLED MODE driver has been built
and debugged, allowing us to concentrate only on the changes necessary for
INTERRUPT operation.

Configure UniROM for Interrupt mode operation.
Edit the UNIROM.CFG file to set the INTERRUPT active level and driver type.
This is the only change to UniROM’s configuration required to support interrupt
mode.

Connect Interrupt line
To run the Kernel in Interrupt mode, you will need to connect the UniROM IRQ
line (pin 7) to the target's interrupt request input. We suggest using the NMI
interrupt if possible.

Rebuild the Kernel for Interrupt Mode operation
Edit TARGET.H to indicate the Target interrupt number to use and to enable
interrupt operation.

If necessary, edit DCOMMS.C to reflect your Target's interrupt structure. It
defaults to a PC type environment with an 8259 interrupt controller located at
0x20.

If you are using a processor with an internal interrupt controller (like the
80c186EC), you may also need to modify some of the initcodes in the
PDREM.CFG.

Refer to the PDREM manual for additional information.

Build the Kernel (PDREM) as instructed in the PDREM manual.

Load the new Kernel
Use URLOAD to load the new Kernel to UniROM as before.

Verify basic Kernel operation
Reset UniROM and watch for target activity on the status LED.

Start Paradigm DEBUG
If all goes well, you should see the Paradigm DEBUG sign-on message. If not,
you may get a link time-out or the PC may hang. If Paradigm DEBUG does not
start up, RESET UniROM and try again. If problems persist, review the interrupt
controller setup, interrupt polarity and drive type configurations and the interrupt
connection point on the target. Try returning to a polled mode driver to establish
a base-line.

8

Normal Operation
Once you have a working setup, UniROM is VERY easy to use. In normal day-to-
day debugging, follow these steps:

1. Apply power to UniROM
2. Apply power to the Host system.
3. Run “URLOAD kernel.ini” to upload the Kernel to UniROM.
4. Apply power to the target system.
5. Start Paradigm DEBUG.
6. Start debugging!

General NOTES:
UniROM should always be powered up before the target and powered down after
the target.

You should always QUIT Paradigm Debug BEFORE turning off the target.

9

Troubleshooting
Most problems should be diagnosed and corrected during the configuration steps
described above. However, the following problems could be encountered after
basic operation is established.

Paradigm DEBUG is showing that the Target is RUNNING, but you can not
stop it.

The Kernel can be configured for Polled mode or Interrupt driven operation. When
configured for Polled mode, the is no way to interrupt a run away target program
from within Paradigm DEBUG. You may RESET the target to regain control or re-
configure the Kernel to operate in interrupt mode. You may also connect an
external switch to your NON-MASKABLE Interrupt line.

Paradigm DEBUG tries to load, but just responds with "........" or a "Link
Time-out" message.

If you never have had the system working, follow through the sequential steps
outlined above. This should pinpoint the problem. If this finds a problem you do
not know how to solve, call us for suggestions.

If you HAD a working setup at one time and this problem just started, try pressing
the RESET switch on UniROM and then re-start Paradigm DEBUG. Also verify
the serial port connections. If the problem persists, re-trace the steps outlined
above to pinpoint the cause of the problem.

Paradigm loads, but locks-up intermittently
Any communications failure between Paradigm Debug and the PDREM kernel
will cause the PC to hang. Since the target is managing the communications, the
PC may hang if the target dies or stops responding to interrupts. This can be
particularly annoying during the initial bring-up. Running Paradigm Debug under
Windows helps because it will often allow you to kill the program when this
happens. You may also find that adding “FLAGS = -f “ to the PDRT186.INI file
helps.

If the system works well in POLLED mode, but LOCKS-UP in interrupt mode,
the problem may be due to improper Interrupt polarity or driver type
configuration, or an inproper target connection point.

Noise on the interrupt line can also cause this problem by generating false
interrupts to the interrupt controller. The NMI interrupt is usually more forgiving
to this than others. You may also try using a SPECIFIC END OF INTERRUPT
instead of the NON-SPECIFIC type. This is usually more immune to false
triggers.

You should also verify that no other signal is driving this same interrupt line,
causing a conflict. Of course you should also verify that the interrupt controller is
configuration properly and that the end of the interrupt routine cleans-up properly.

10

The target may not be capable of keeping up at 115200 BAUD. This is not a very
likely problem because UniROM provides large FIFOs that are capable of
buffering entire packets. However, it is possible. To change to a different baud
rate, three items need to be modified. Set the BAUD= line in “kernel.ini” to the
new BAUD rate. Also change the default BAUD rate in the Setup/Baud menu
within UniROM (and STORE it). Finally, change the BAUD rate in PDRT186.ini
to match.

If you are running under Windows, be sure to use the PIF provided by Paradigm.
In extreme cases, you may need to reduce the BAUD rate or close down other
applications that are competing for CPU resources. You may also try adding
“pace 40” to the “[CFG]” section of the script file.

Trouble loading Applications into UniROM space
If you can load and debug applications in RAM, but get errors when trying to load
applications into UniROM space, the target may be having problems writing to
UniROM’s memory space. Verify that the target CAN write to UniROM. If
UniROM is plugged into an EPROM socket, you need to connect the target’s
write signal to UniROM’s external write input. If UniROM is plugged into a
FLASH socket, verify that UniROM is configured for FLASH operation.

In order to write to UniROM, the target must:
- Enable the chip select during the write operation.
- Provide a BI-DIRECTIONAL data path to the CPU
- Provide a write signal to the socket (or external input)

Some targets will NOT provide this functionality, because the board designer did
not envision anybody wanting to write to the code space.

You may choose to write a simple test routine that writes a message into some
unused memory location within the space emulated by UniROM. You could then
use URTERM or Paradigm DEBUG to view those locations to determine if the
write succeeded.

If your target uses a 16 or 32 bit data path to its EPROMs, you may encounter
another problem when attempting to write to this space. Many targets are NOT
CAPABLE of doing BYTE-WIDE WRITES to the EPROM/FLASH sockets.
Often a single chip select line is used to activate ALL EPROMs in the code bank.
This means that ANY WRITE to ONE of the EPROMS would result in writing
garbage into the remaining EPROMs. The ideal solution would be modify the
target’s chip selects to qualify the EPROM chip selects with A0 (and possibly A1)
to allow individual byte selection capability.

There is another work-around. TechTools has modified one of Paradigm’s
modules (HELPERS.C) to force WORD WIDE accesses to the code space for all
code loading and breakpoint patching. At the time of this writing, this was
experimental. Please contact TechTools for information on its availability and
use.

11

If you need additional assistance, please call or FAX:

TechTools
PO BOX 462101

Garland TX 75046-2101

Voice: (972) 272-9392 FAX: (972) 494-5814 email: support@tech-tools.com

	Contents
	Introduction
	OverView
	Configuration
	Interrupt Mode
	Normal Operation
	Troubleshooting

