
 - 1 -

Design and Implementation of a Framework for
Remotely Accessible Instruments

Bernhard Fechner

Department of VLSI and Parallel Computing

FernUniversität Hagen
Bernhard.Fechner@fernuni-hagen.de

Abstract

Remotely accessible instruments and experiments enhance the experience of students by provid-
ing a remote interface to a physical device. Photorealistic rendering of these devices makes the graphical
interfaces easy to understand, to use and to learn. Students perform their exercises at home just as in a real
lab so they can apply their experience directly when working on location. Needless to say: remote labs are
a key to raise the student’s interest and improve self-paced learning. The implementation of a generic re-
mote control interface for existing instruments and the acquisition and visualization of data is one mile-
stone on the road to the future in distance learning. To avoid obstacles on this way, the system architecture
should be understandable, modular and easy to extend, so laboratories with different hardware could be
integrated in the lab environment. The client software should be platform independent so the users can
quickly gain hands-on-experience because soft- and hardware problems (e.g. installations) are of no con-
cern. We report experience in developing such a software framework and review some of its capabilities
by using an actual deployment as an example.

Keywords: Software design, distance learning, remote laboratories, remote control

1 Introduction

The need for multimedia technology in distance teaching and learning is being recognized worldwide.
Network-based multimedia and computer-related technologies improve and enhance the quality of teach-
ing and learning. Colleges, universities and distance-learning institutions are faced with a growing number
of students particularly at introductory levels, urging to learn more. In Hagen, undergraduate courses in
computer science serve a large amount of students (1049 in 2005) with various backgrounds and abilities.
The challenge is to motivate and excite these students so that each performs to their fullest potential. This
objective can be best achieved by projecting the lab environment in a web-based, multimedia technology
because students learn science best by experimenting, gaining hands-on experience, raising questions and
by solving problems. As the instruments in the real lab can be rather fragile and expensive, remote labs are
a reasonable low-cost solution. Just like their real equivalents, remote instruments respond to students'
manipulations, but rejecting the input of incorrect data such as the choice of a frequency or amplitude out-
side the specified limits of the connected lab equipment which could lead to system damage. A remote
instrument is hereby denoted as a projection of the functionality and look and feel of a remote device such
as a function generator or an oscilloscope (server) onto a virtual device (client). All controls on the virtual
device correspond to the control on the real device. Thus, a virtual device is not just a simulation of a real
device. Simulations can not be used for the modeling of physical effects, e.g. the development of a clock
signal at higher frequencies or the influence of temperature on a circuit. Remote labs can be used to aug-
ment real laboratory experience in science and technology. When done effectively, this will increase the
access of students to knowledge and enhance performance as well as the quality of the educational out-

 - 2 -

come. The paper is organized as follows. Section 2 reviews some related work. The proposed Telematik
framework is compared with commercial and non-commercial solutions. Section 3 presents the software
architecture. Section 4 gives examples of implemented remote instruments. Section 5 concludes the paper.

2 Background and Related Work

There are several interactive virtual/ remote labs available on the web [1-8]. Physics 2000 [8] comprises
interactive Java applets through where students can explore elementary physical phenomena. Some of
these labs are implemented as Java applets or dynamic web-pages - but without generic methology for the
development of such labs. Researchers are pursuing the development of remote labs, where robots receive
commands from students and reproduce virtual experiments in a fully equipped real lab. Hagen’s faculty
of electrical engineering supports a lab exists where students can remotely control robots [14][15][16].
After the experiment is finished (the students reached the goal to control the robot such in a way that it
reaches a certain target) the robot returns to a pre-defined state. Visually advanced computer science lab
exercises are offered through the Howard Hughes Medical Institute by Bio-Interactive [7]. Bio-Interactive
is a collection of learning modules where students can interactively explore topics in cardiology, neuro-
physiology and the human immune system. Here, user-action is restricted mostly to clicking on the vari-
ous instruments. For a realistic learning experience, the users should be able to perform the exact
operations as they would on the real instrument. Slider widgets are used in most of the aforementioned
work. For the actual instrument, this might not be the case. For instance, we might need to rotate a dial to
set a particular value rather than slide a marker across a slider.
Current solutions from academic institutions have the following disadvantages:

• Insufficient availability (downtimes, browser dependencies)
• No generic methology (special solutions for existing lab equipment)
• Partially unavailable source-codes
• Elements such as knobs, etc. are not freely definable.

Some solutions are based on platform-independent Java applets. But it is a general (known) problem that
the execution of Java applets can be browser dependent. Since we use Java applications, we are only de-
pended on the Java version the student is running, but not on the browser.
Current commercial products have a number of disadvantages compared to our solution:

• They are not free
• They are platform-dependent
• The source code is not available and therefore not adaptable
• The programmer has to learn a (non-standard) graphical programming language – therefore the

development time will increase in comparison with traditional programming languages like C,
C++ or Java

• No code-inheritance
• Elements such as knobs, etc. are not freely definable.

It should be mentioned that commercial solutions offer a wide variety of drivers for different devices and a
large library of definable elements. With the graphical programming language, code can be inherited by
using the same basic elements. Source-code availability is important because it makes the software less
error-prone and more maintainable. Furthermore, the user is not dependent on a company, where the
products may quickly change or will not be supported any more. We overcome these shortcomings
through a number of advantages:
Documentation

• Source availability ⇒ better documentation/ improvement
• Direct control over the existing device, no simulation

 - 3 -

Data Management:
• Data won from experiments can be quickly and easily exported and analyzed using external solu-

tions like MathLAB, Excel, MathCAD or SPSS etc.
• Printing to any printer including network printers and faxes is possible

Cost:
• No additional, and/or hidden costs, e.g. no GPIB-cards (General Purpose Interface Bus)1, web-

cams, etc. have to be bought to get the system to its fully functionality
• Existing experiments can easily be ported/re-used to remotely controlled labs
• Compared with graphical programming languages, the coding of device drivers is accomplished

faster when using an object-orientated programming language like Java when sufficient documen-
tation is available. Therefore the development costs are reduced

• Easy adaptation to newer technologies and low development costs through code-inheritance
The use of creative renderings of objects and their behaviors allows the student to freely experiment in the
virtual world. The module content - complexity of problem solving and sophistication of technical skills
are vertically scaled so that each student can move through the module depending on the preparation. De-
velopers can use a graphical composition tool from modern graphical Rapid Application Development
(RAD)-Tools to set up the user-interface and basic communication. The only thing the developer has to do
is to implement a subset of the commands the device supports. Code inheritance makes the implementa-
tion of device-family based device drivers easy and fast. To accomplish this and to ensure the re-use of
code [9], we used Java Beans[10][11].

3 The Telematik Architecture

The development and implementation of remote laboratories is a very tedious and costly task. A central
challenge is to develop a starting point to allow the rapid, easy and flexible creation of remote laborato-
ries. To access many different devices, a high level of abstraction from the developer’s point of view must
be reached. The Telematik framework simplifies the integration of new real hardware into a virtual com-
puter science laboratory, furthermore the integration of existing hardware by distinguishing a device de-
pendent and independent part.

We have identified two levels of abstraction for a device:

• Communication: here, we separate device-specific communication (commands, hardware inter-
face) and general communication over TCP/IP (Transmission Control Protocol/ Internet Protocol)
[12][13].

• Front-end: we separate a device-specific part (knobs, buttons with certain properties) of the
Graphical User Interface (GUI) to control a remote device and a generalized version, so code in-
heritance can be used for the simple and fast implementation of new front-ends.

The modeling of a device can be explained by the ring model in Figure 1.

1 The GPIB specification was developed by Hewlett-Packard and is also known as IEEE-488.

 - 4 -

I/O
Hardware

Dependent

Independent Modeling

Device-independent
Communication

Device
Dependent Modeling/Driver

Figure 1: The ring model with different levels of abstraction

In the centre all hardware dependent I/O is modeled. Since we have used java, we use the Java Native In-
terface (JNI) at this level to model communication ports such as RS232. A java native method can use
native hardware, because it is a part of e.g. a compiled C-program, using the native method interface from
JNI. We use javax.comm from Sun Microsystems for the communication over serial and parallel ports.
However, the modeling of other communication protocols such as GPIB is possible by using JNI. In the
next ring the device driver is modeled as a set of java methods. Here, a subset of the device’s commands
has to be specified. This set of commands is integrated in the client and not part of the server, although
RMI (Remote Method Invocation) could be used. Since this methology would increase development time
and communication overhead, we omitted the use of RMI. By using a subset, it is possible to increase se-
curity, because it is not possible to send system-control messages from the client. The next ring contains
the device-independent communication which is done over TCP/IP. The server accepts commands as plain
text messages, since we have no sensitive data which must be encrypted. Thus, it is possible to test the
server implementation without having to implement a GUI for the device. Figure 2 shows the basic cli-
ent/server based architecture.

Client

DD-Client

Server

DD-Server

DD-GUI

Commands/ Replies

Device dependent (DD)

Code inheritance

Figure 2: The client/server-based architecture

 - 5 -

4 Exemplary deployment of a lab using the Telematik architecture

Our remote lab consists of a function generator, a DSP (digital signal processor) development board and
an oscilloscope, each with specific pre-programmed behaviors, interface, look-and-feel and commands to
control the device. To load programs onto the development board, the extraction of the communication
protocol was necessary. As every device-specific part, the protocol was implemented directly in the server
structure. Students select the binary file they produced at home. The file is uploaded using the client soft-
ware. The server receives the binary file, extracts the data, converts it in the device-specific protocol and
uploads the data to the development board. Then it will start the program execution. When the program
starts, a feedback is given to the user. The student interacts with the devices in order to attain a set of
given goals, i.e. the study of DSPs, microcontrollers, communication protocols, etc. Users can access the
lab via wireless LAN (local area network) or any other network connection. Figure 3 shows the experi-
mental setup. It consists of two main servers (telematik1, telematik3). The server telematik2 is only listed
for completeness. A primary firewall protects the subnet against malicious attacks. All web-based accesses
go to the webserver, running on server telematik1. Telematik1 also runs the servers for the function gen-
erator and the digital oscilloscope, both connected to the serial ports. All servers run Microsoft Windows
2000. With few changes, the system is able to run on any java-capable system where the javax.comm in-
terface is available. Every server is running a personal firewall, blocking all accesses from non-local IP
addresses. Over a virtual private network (VPN) connection, students are able to get a local IP and access
the lab. Telematik1 also runs the experiment selector. The selector is a development from the technical lab
in Hagen. It integrates simple filter experiments such as high-, band- and lowpass on a printed circuit
board. A PHP-script is used to access the board and to switch between experiments/outputs. Additionally,
the output can be switched to the DSP (digital signal processor) development board from analog devices.
This board holds the popular ADSP2181 [20] signal processor. A DSP-client, which is based on the
Telematik framework is able to load and execute programs on the board. The output of the DSP board is
connected to the experiment selector. Remember that the outputs of the high-, band-, lowpass and the
DSP-board are connected to the selector. The output of the function generator is connected to the experi-
ment selector and to channel 1 of the oscilloscope. The output of the experiment selector is connected to
the oscilloscope (channel 2). So, the outputs from the filters and the DSP can be manipulated by the func-
tion generator, depending on the experiment selection. The original and the modified signal can be ob-
served on the oscilloscope. To do this in real time a webcam is connected to Telematik3. Over an
integrated web-interface, all functions of the lab can be accessed without knowing the experimental setup.
In case of a non-terminating DSP program (e.g. an endless loop, waiting infinitely for an external event)
there must be the possibility to remotely reset the DSP-board. There are several ways to do this. We dis-
covered the possibility to apply the reset signal externally and used the experiment selector for this opera-
tion. The selector produces the necessary reset signal at a certain signal combination on the parallel port.
For remote administration, a virtual network computer service is running on all servers.

 - 6 -

Figure 3: Experimental setup

4.1 The Function Generator Client Application

A function generator is a signal source which provides precision waveform signals (e.g. sine, square or
triangular) over a frequency range. The instrument also provides a continuously variable amplitude level.
Figure 4 shows the function generator interface. For better operation, all basic default settings are inte-
grated in the client.

Figure 4: The HAMEG8131-2 function generator application

 - 7 -

4.2 The Oscilloscope Client Application

The oscilloscope (Figure 5) draws the graph of an electrical signal. In most applications, the graph shows
how signals change over time: the vertical (Y) axis represents voltage and the horizontal (X) axis repre-
sents time. An oscilloscope is therefore a linear voltage indicating device. A spot on a display screen is
caused to deflect in proportion to the applied voltage. The vertical position of the spot depends on the 'Y-
amplifier' input while horizontal position of the spot is determined by the waveform applied to the 'X-
amplifier' input. The oscilloscope has a time base generator circuit that generates a voltage that varies
linearly with time. When this voltage is applied to the X-amplifier, the voltage applied to the Y-amplifier
can be observed with respect to time. The time base generator circuit is also connected to the 'trigger' cir-
cuitry which controls the starting instant of the waveform. Any output from the oscilloscope can be cap-
tured and copied in the report document as pure data.

Figure 5: The Tektronix TDS210 oscilloscope application

5 Conclusion

The benefits of remote labs over actual laboratories are found in their increased portability, cost effective-
ness, reduced need for teacher intervention, increased student interest and control, adaptability to various
learning styles and learning rates, web-ready software and self-testing. Remote labs will satisfy a growing
need for truly interactive learning software. This paper presented software architecture for the develop-
ment of remote laboratories. The architecture can be used to develop tools to support scientific laborato-
ries that allow the sharing of unique or expensive instruments. Our first experimental findings called for a
user manual, covering the most frequently asked questions. When doing web-based exercises, it is deceiv-
ing to play around and not to do any useful work. We suggest a strict level-based concept to solve this
problem. When doing experiments the students can gain credits. The credits are summed up and added to
a basic amount of credits. The higher the level of questions, the more credits a student can get. This is a
good measurement for the level of preparation, because non-prepared students might open the labs and
simultaneously refer to their textbooks in order to understand the concepts. More motivated students get
more credits and hence more time. The deployed lab is currently a single-user lab because not enough
hardware is available. With more hardware, the support of multiple-users is possible. A future extension
will be the support collaborative work [17][18][19]. This enables researchers and students to work to-
gether across geographic and organizational boundaries to solve complex, interdisciplinary problems by
accessing remote resources. The short-term goal of remote labs is to serve as a preparation and supplement
for actual labs. The students are familiarized with devices and procedures before they actually go into the
lab and perform experiments. The rehearsal of an experiment with little complexity is a cost-effective

 - 8 -

preparation for the use of limited and expensive lab facilities. The lab is continuously available on our
website.

References

[1] Deutsches Museum München, remote_lab - Das ferngesteuerte Labor im Internet.

Eberhard von Kuenheim Stiftung, Deutschland.
http://www.remote-lab.de/

[2] California State University, Center for Distributed Learning (CDL),
http://www.cdl.edu/

[3] M. W. Davidson, K. I. Tchourioukanov, and M. Abramowitz, Virtual scanning electron microscopy
applet, Olympus America Inc. and The Florida State University, 1998.
http://micro.magnet.fsu.edu/primer/java/electronmicroscopy/magnify1/index.html

[4] M. Duguay, The TeleLearning Experience, http://www.telelearn.ca/
[5] Virtual Laboratory, National University of Singapore (NUS),

http://vlab.ee.nus.edu.sg/vlab/authfinal.html
[6] M. V. Goldman, “Physics 2000 interactive applets”, University of Colorado, Boulder, CO.

http://www.colorado.edu/physics/2000
[7] Howard Hughes Medical Institute, “Virtual laboratories” http://www.biointeractive.org/
[8] LEYBOLD DIDACTIC GmbH, Remote-Lab Versuch, http://remote-lab.leybold-

didactic.de/cgi/nm_rclShow_cgi.exe
[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-

Oriented Software, Addison Wesley Longman, Inc., Reading, MA, 1995.
[10] IBM, Inc., "Bean markup language," At: http://www.alphaWorks.ibm.com/tech/bml/
[11] Sun Microsystems, Inc., "JavaBeans API specification," At: http://www.javasoft.com/beans/
[12] Defense Advanced Research Projects Agency (DARPA), Transmission Control Protocol, RFC: 793,

Sept. 1981, At: http://www.faqs.org/rfcs/rfc793.html
[13] Defense Advanced Research Projects Agency (DARPA), Transmission Control Protocol, RFC: 791,

Sept. 1981, At: http://www.ietf.org/rfc/rfc0791.txt
[14] C. Röhrig, A. Jochheim: Remote Control of Laboratory Experiments, 19th World Conference on

Open Learning and Distance Education, ICDE-1999, Vienna, Austria 1999
[15] W. Laaser, M. Gerke, H. Hoyer: Teaching Control Theory by Multimedia, 19th World Conference on

Open Learning and Distance Education, ICDE-1999, Vienna, Austria 1999
[16] C. Röhrig, A. Jochheim: The Virtual Lab for Controlling Real Experiments via Internet, IEEE Inter-

national Symposium on Computer-Aided Control System Design, CACSD'99, Kohala Coast-Island
of Hawaii, Hawaii, August 1999

[17] A. Haake, M. Bourimi, J. Haake, T. Schümmer, B. Landgraf, Endbenutzer-gesteuerte Gruppen-
bildung in gemeinsamen Lernräumen, DeLFI 2004: Die 2. e-Learning Fachtagung Informatik, GI-
Edition Lecture Notes in Computer Science , GI e.V., Bonn, 2004, pp. 235-246.

[18] A. Haake, M. Bourimi, J. Haake, T. Schümmer, B. Landgraf, CURE – Eine Umgebung für selbstor-
ganisiertes Gruppenlernen, i-com Zeitschrift für interaktive und kooperative Medien, 2004.

[19] A. Haake, M. Bourimi, J. Haake, T. Schümmer, B. Landgraf, Supporting flexible collaborative dis-
tance learning in the CURE platform, Proceedings of the Hawaii International Conference On Sys-
tem Sciences (HICSS-37), IEEE Press, 2004.

[20] Analog Devices, DSP Microcomputer ADSP-2181,
http://www.analog.com/UploadedFiles/Data_Sheets/505104853ADSP2181_d.pdf, 1998.

