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1. ABSTRACT 
We construct a parameterizable out-of-order execution and 
superscalar CPU microarchitectural (timing) model based 
on the Metropolis, which provides a design environment 
with formal semantics. This model is strictly non-
functional in that it only models instruction dependencies 
and latencies, but doesn’t do the actual computation. This 
model will be connected to a functional ISS (instruction set 
simulator) that produces traces to drive it. We start with 
designing an unconstrained model with a particular fetch 
width, perfect speculation and no-resource constraints. 
Then the model is further refined by adding in variable 
latencies, realistic branch prediction, ordering constraints, 
and resource constraints. This refinement will primarily 
take place by adding constraints to the model, which can be 
formally defined in Metropolis. The main value of this 
project is to provide a proof of concept for a new 
microarchitectural design space exploration methodology 
based on Metropolis, which leverages: object oriented 
design with formal semantics, models of computation, and 
the concept of refinement in general. The abstract model 
we constructed has good modularity and parameterizability. 
Furthermore, it can be implemented easier than traditional 
design scheme because it is based on a formal semantics. 
We compare our model with SimpleScalar in the execution 
cycle count. The results are close.  
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2. Introduction 
CPU design and modeling is a fairly tedious and error-
prone process. The typical design flow is to write down a 
high-level model in C or C++, then rewrite a detailed 
implementation of this architecture. There is a quite large 
gap between the functional description and the 
implementation, since any change of the high-level model 
might require the re-write of the low-level implementation. 
And it is fairly difficult to do the design space exploration 
in this design flow because there is no automatically 
mapping between the high-level functionality description 
and low-level architecture implementation.  
We advocate a more formal design methodology for the 
microarchitectural modeling and design space exploration. 

Under the framework of Metropolis [1] which provides a 
formal semantics. It also supports many kinds of model of 
computations (MOC), we choose one appropriate MOC, 
propose a perfectly speculative model, and then we do the 
refinements to turn it into a realistic model.  
The paper is organized as following: in the remainder of 
this section we first provide some background information 
about Metropolis, explain the single issue models that this 
work is an extension of, and discuss some related work, to 
show the novelty of our work. In section 3 we give an 
overview of our modeling methodology. In section 4 we 
first introduce our abstract two-process model and its 
refinements, and then present its advantages and limitations. 
In section 5 we show the comparison results with 
Simplescalar on a superscalar architecture loosely based on 
the Intel XScalar microarchitecture. This can prove the 
correctness of our models. In the last section 6, conclusions 
and future works are presented.  

2.1 Metropolis 
Modern-day system designs are becoming more and more 
complicated, which make it harder to effectively design 
them. Therefore, establishing formal design methodologies 
is imperative to effectively manage complex design tasks. 
This involves defining various levels of abstraction to 
formally represent systems being designed, as well as 
formulating problems to be addressed at and across the 
abstraction levels. This calls for a design environment in 
which systems can be unambiguously represented 
throughout the abstraction levels, the design problems can 
be mathematically formulated, and tools that can be 
incorporated to solve some of the problems automatically. 
Metropolis is such an environment, which provides 
different kinds of model of computations (MOC) to define 
the systems, and provides a formal semantics to formulate 
the problems at different abstract levels. 
Metropolis consists of an infrastructure, a tool set, and 
design methodologies for various application domains.  
In this framework, we construct a CPU model based on a 
formal semantics. This can prove the feasibility of the new 
methodology of CPU modeling provided by Metropolis. 
The blocks of our model make up an architecture platform 
for CPU modeling, which can be easily reused to help 
designers to design new CPU model. This is different from 
some traditional CPU model like SimpleScalar, which is 



only used to simulate. Our model exploits the following 
feature of Metropolis:  
 Formal Semantics 

Metropolis provides a formal semantics to describe the 
systems. For example, the definition of process, medium, 
channel, port and so on. These semantics can greatly help 
the design flow; make it more formal and less error-prone. 
Also these semantics have explicit meaning in 
implementation, which will make the implementation more 
effectively. 
 Platform-Based Design 

Metropolis is constructed based on the concept of platform-
based design. A platform is an abstraction layer that covers 
a number of possible refinements into a lower level. A 
system can be represented at many different abstraction 
levels in Metropolis. This feature can greatly help the 
design re-use and regularity to the fullest extent. 
 Support many kinds of MOC’s 

For different kinds of applications, it may be good to use 
different kinds of MOC (model of computation), such as 
FSM, data flow or Petri net. Metropolis can support many 
kinds of MOC from the meta-model library. So the users 
can have more choice to get faster and better design. 
 Uniform Framework 

Today, the design chain lacks adequate support, with most 
system-level designers using a collection of unlinked tools. 
The implementation then proceeds with informal 
techniques involving numerous human-language 
interactions that create unnecessary and unwanted 
iterations among groups of designers in different 
companies or different divisions. Metropolis seeks to 
develop a unified framework that can cope with today's 
design challenge. 

2.2 Prior Work 
Our models build upon ongoing work to model embedded 
microarchitectures in Metropolis [11]. In this work the 
XScale and Strongarm microarchitectures are modeled 
using proecess networks using techniques similar to the 
ones in this work. However, these models were single-issue 
scalar models that can only have one pending instruction 
waiting for operands (like in both the XScale and 
Strongarm). This work significantly extends these models 
by allowing superscalar execution with complicated 
features such as reservation stations, and the notions of 
refinement. The XScale and Strongarm models can be 
viewed as a particular endpoint of the refinement presented 
in this report.  
 

2.3 Related Work 
SimpleScalar [2] is considered to be the standard 

microarchitectural simulator. It is a highly optimized C-
model that supports the Alpha, and ARM ISA’s. Because 
of the emphasis on optimization, SimpleScalar is highly 
programmed at a very low level and can be difficult to 
modify. Our models are at a much higher level of 
abstraction, and are easier to modify and reuse. The more 
important thing is that our model is not only a simulator; 
the main value of it is to prove the feasibility of the new 
design methodology, which can be used to guide the CPU 
design more formally. 
Architectural Description Languages (ADLs) such as LISA 
[3] are specialized languages for describing instruction sets 
and microarchitectures, but often cannot describe 
microarchitectural features such as out of order execution. 
The Liberty Simulation Environment LIBERTY [4] 
provides a highly composable environment for constructing 
cycle-accurate simulators, at a fine grain of detail. The 
Operation State Machine [5] presents a model based state-
machines, token managers, and four types of transactions 
(allocate, inquire, release, and discard) that achieves high 
performance simulations and simplifies complexity. We are 
trying to make high-level abstract models that are accurate 
highly reusable and simplifier to specify than the above 
mentioned work. Our work is most similar to the OSM 
work, and is complementary to ADL’s.  

3. Our Modeling Methodology 
One of the advantages from Metropolis is the clear 
orthogonalization of functionality and architecture, or more 
precisely, “functional specification” and “implementation 
platform”, which are often defined and developed 
separately, even by different groups. This separation results 
in better reuse, because it decouples independent aspects, 
which would otherwise be tied together, e.g. a given 
functional specification to low-level implementation details, 
or to a specific communication paradigm, or to a 
scheduling algorithm. It is very important to define only as 
many aspects as needed at every level of abstraction.  
The Metropolis methodology for CPU design and modeling 
can be done in the following flow, as shown in Figure 1. 



 
Figure 1: CPU Modeling Methodology in Metropolis 

 
The first step is to specify the abstract description of ISA 
functionality, which is relatively independent from the 
micro-architecture which will be used to implement this 
functionality. This can be simply exemplified by the fact 
that the same ISA can be implemented as single-issue, in--
order execution microarchitecures; or multiple-issue, out-
of-order execution microarchitectures.  
The next step consists of constructing and selecting 
different architecture blocks. An architecture component in 
Metropolis is defined as a set of services which specify 
what it can do and how much it may cost (e.g, in time, 
power, or other composite quantities). For example, we can 
use a branch predictor block to model different branch 
prediction schemes, and for each scheme, we can associate 
it with the cost of different mis-prediction penalty. Then we 
can map the functionality specification to implementation 

platform, i.e., to select from these architecture blocks to 
implementing an ISA.  
Using the meta-model and formal semantics in Metropolis, 
an architecture can be represented at different levels of 
abstraction. For example, we may start from an abstract 
speculative model which has perfect speculation for a given 
fetch rate, then we assign latencies to the execution of each 
instruction. After that, there are a variety of refinements 
that can be done, e.g. adding non-perfect branch prediction, 
limiting the number of execution blocks, and adding 
memory and communication latencies. This is the synthesis 
and refinement. Except this, we can do analysis and 
verification, which is beyond this project. 
In our synthesis and refinement, we simulate our model to 
check the correctness. So far, we focus on the execution 
cycle count. We will add other quantities to our simulation 
in our future work. 
The simulation procedure we employ is pictured in Figure 
2. The application code is compiled using a cross compiler. 
The compiled code is then executed on a modified 
instruction set simulator to generate an execution trace that 
consists of an annotated trace of instructions in the order 
that they were executed. The execution trace is then run on 
a microarchitectural model which is specified in metropolis 
using its YAPI library [6]. Modeling using YAPI library 
will be explained in more detail in the next section. 
The microarchitectural model executes an instruction trace, 
and returns the number of cycles that it takes to execute. To 
ensure accuracy the model must account for the delays of 
individual instructions, the interaction between them, and 
the impact of limited resources.  
 

 
     Figure 2. Simulation Procedure Overview 
 
The execution trace is generated by the modified ISS. 
When the ISS begins execution of an instruction (or 
decides to not conditionally execute that instruction) it 
outputs that instruction word to the generated trace file. In 
addition to the instruction word, the instruction’s address 
and whether or not executes is outputted the trace. Given 
this trace a microarchitectural model can usually faithfully 
reproduce the execution overheads without having to worry 

about individual values or the locations, leading to a 
greatly simplified microarchitectural model. All control 
flow and conditional-execution information can easily be 
obtained by examining the execution and address fields of 
the trace entry. The one exception is when the time of the 
execution depends on the value of the operands (e.g. taking 
a short cut when multiplying by 0). The trace could be 
extended to handle such value dependencies, but this would 
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lower simulator performance. Actually, the trace-drive 
model can get the benefits from abstraction, while 
sacrifices some simulation functions. We use it because the 
inherent abstraction of it can meet the abstraction 
requirement of our model. On the other hand, we can 
modify our model to be execution-driven or other types, by 
adding some blocks, such as data value resolution block. 

4. Our Model 
Our model utilizes meta-model and YAPI library in 
Metropolis. In this section, we first introduce the semantics 
of Process in Metropolis meta-model. Then we discuss our 
use of YAPI channel, focusing on its extension from Kahn 
Process Network MOC. After that, we will detail our 
current microarchitectural models, and present the 
advantages and limitations of the models.  

4.1 Process 
The function of a system is described as a set of objects 
that concurrently take actions while communicating with 
each other. We call such an object process in the meta-
model, and associate a sequential program with it. A 
process always defines at least one constructor and exactly 
one function called thread, the top-level function to specify 
the behavior of the process.  
A process communicates through ports defined in the 
process. A port is specified with an interface, declaring a 
set of methods that can be used by the process through the 
port. Different implementations of the methods provide 
different ways of communication. In general, one may have 
a set of implementations of the same interface, and we refer 
to objects that implement port interfaces as media. YAPI 
channel is one of the communication medium which we use 
in our model. Any medium can be connected to a port if it 
implements the interface of the port. This mechanism, 
which is borrowed from object-oriented concepts, allows 
the meta-model to separate computation carried out by 
processes from communication among them. This 

separation is essential to facilitate the description of the 
objects to be reused for other designs.  

4.2 YAPI 
YAPI [6] is an extension of Kahn Process Networks [7] 
that in addition to having processes communicating via 
unbounded FIFO’s it allows for a non-deterministic select. 
To synchronizing the execution of processes, the 
communication channels are read-blocking, meaning a 
process has to wait to read from the channel until there are 
some tokens in it. Kahn Process Networks have the 
property that their result is deterministic and independent 
of their firing order. We use YAPI in a cyclical manner, 
where each cycle every process reads one token from all of 
its input channels and writes a token to each of its output 
channels. In order to model a particular pipeline length, 
channels are pre-filled with the number of tokens equal to 
the pipeline length. As long as the cyclic assumption is 
maintained the pipeline behavior is guaranteed.  
Using YAPI simplifies the modeling because of the 
abstraction, the synchronous assumptions, and the 
guarantee of deadlock avoidance and determinism provided 
by the combination of YAPI with the cyclic assumption.  

4.3 Model Detail 
We use a two processes model as shown in Figure 3. The 
two processes include a fetch process that handles the fetch 
and issue of instructions from execution trace, and an 
execution process that handles the execution, operand 
dependencies, and forwarding delays between instructions. 
We use three kinds of YAPI channels: an issue channel 
which passes the instructions from the fetch process to the 
execution process, a RS_Info channel from the execution 
process to the fetch process which passes information 
about reservation stations, and several result channels that 
model the execution process of instructions by connecting 
the execution process to itself. Following we will explain 
each process further. 

 



 
Figure 3. Two Processes Our of Order Execution Model 

 

4.3.1 Fetch Process 
The fetch process gets the instructions from execution trace, 
generated by the instruction set simulator, and then issues 
the instructions to the execution process.  We use a data 
type called instruction group to represent a set of 
instructions, which also can be just one instruction or even 
none. Therefore, our model can deal with single-issue and 
multiple-issue without any special change. We will first get 
an instruction group which was called fetch_group from 
the trace file. The number of instructions of fetch_group 
usually equals to the maximum issue width except when a 
branch instruction is presented in the group. In this case, 
the instructions following the branch will not be included 
in the group. After we get the fetch_group, we will do the 
structural hazard check and choose an issue group from the 
fetch group. We preserve the in-order issue, i.e., we will 
not issue following instructions if one instruction is stalled 
for the structural hazard. We will also consider the extra 
issue cycles for some instructions. Whenever there is a stall, 
we will issue an empty instruction group at that cycle. 
The pseudo code of the main part of this process is shown 
as follows: 

while (simulation_not_end) { 
    Read_RS_Info();  

//Read the reservation station information 
    if (extra_issue_stall > 0){ 
 //extra issue stall come from some instructions 
which need more than one cycles to be issued 
 Write_Issue_Channel(bubble_group); 

 //bubble group is an instruction group with no 
instructions, which is written to channel when stall occurs 

extra_issue_stall--; 
}else{   

        if (inst_group_wait){ 
//this means there is one instruction group which 

was waiting to be issued because of extra issue cycles and 
now it can go, it is stored in the issue_group 
           Write_Issue_Channel(issue_group); 
           inst_group_wait = false; 
        }else{ 
            if (! structure_stall){ 
              //structure_stall means there is an 
instruction group which had been fetched but has not been 
issued completely because of the structural hazard from 
RS, the left instructions will be stalled in the fetch_group 
                Get_InstGroup_from_trace(); 
    //get the fetch_group from the trace 
             } 
             Detect_Structural_Hazard(); 
             //detect the structural hazard in fetch_group and get 
the issue_group which will be issued 
             extra_issue_stall = Get_Extra_Stall(issue_group); 
            if (extra_issue_stall == 0){ 

  Write_Issue_Channel(issue_group); 
            }else{    
 Write_Issue_Channel(bubble_group); 

extra_issue_stall--; 
 inst_group_wait = true; 
            } 
       } 



   } 
   cycle_count++; 
} 
 
 Branch Predictor 

A branch predictor is integrated with the fetch process, and 
the mode of this predictor can be configured. So far, a 2-
bits predictor or just a perfect branch mode can be chosen. 
In the 2-bits predictor, we get the branch result from trace 
file and update those 2-bits pattern. If a misprediction 
occurs, we simply add the misprediction penalty, i.e., extra 
execution cycles to the cycle count. Since we use a trace-
driven model, in which the trace file has the information 
that whether an instruction is really executed or not, we do 
not need to simulate the flash in pipeline. More branch 
predictor types can easily be added to the model because of 
its modularity. 

4.3.2 Execution Process 
The execution process gets the instructions from the fetch 
process through the channels between them. Since the fetch 
process performs the structural hazard check, execution 
process simply puts the instructions into corresponding 
reservation stations. If the execution condition for an 
instruction is satisfied, this instruction will be dispatched to 
the execution pipeline, which is modeled by the Result 
Channel. After the instruction goes through the Result 
Channel, it will be written back if the CDB resource is 
available. A CDB controller can be integrated to arbitrate 
the write back. When an instruction is written back, the 
information of corresponding instructions which are 
waiting for the results will be updated. Also the register file 
may be updated if it is waiting for the result, and the entry 
for this instruction in reservation stations will be released. 
This is a general flow of execution process. Following we 
will describe the schemes further. 
 Reservation Station 

The instructions in one instruction group will be added to 
the reservation stations in program order to preserver the 
data dependencies. When one instruction is added to a 
reservation station entry, the fields in the entry should be 
set to indicate the data dependencies for this instruction. 
Also the register file needs to be updated if the instruction 
writes the register file. Furthermore, we consider the 
condition code, which is introduced in some instruction 
sets, such as ARM. Since the condition code represents a 
kind of dependency, we can deal with it in a similar way as 
data dependency. For each instruction, we use a tag to 
indicate which other instruction will give the condition 
code to it. There is also a global register for the condition 
code, which stores the tag of last instruction that will write 
the condition code.  

 Functional Unit 
Generally, each reservation station is corresponding to a 
functional unit. For the architecture which has several same 
functional units, we can model it in two ways, depending 
on the requirement. If there is a separate reservation station 
for each functional unit, we can send the corresponding 
instructions to one of them, depending on the availability 
of each functional unit. In this case, one reservation station 
is also mapped to one functional unit. If there is an 
integrated reservation station for all these same functional 
units, we can let one reservation station map to several 
functional units, or we can let one functional unit map to 
several same channels, which is more convenient based on 
YAPI channel. If we use the latter scheme, we need to 
allow multiple instructions to be dispatched to one 
functional unit in the same cycle. So far in our model, only 
one instruction can be dispatched to one function unit 
within a cycle. We will extend it in our future work. 
 RS_Info 

Every cycle, the availability information of reservation 
stations is sent to the fetch process. The YAPI channel has 
the blocking-reads characteristic, which can be used to 
synchronize the linked processes. Therefore, the fetch 
process will get the current information of reservation 
stations, and use it to decide which instructions to issue. To 
decide this, the fetch process needs to know the association 
between instruction types and functional units, which is 
sent to it from execution process at the start of the 
simulation. 
 Result Channel 

Result channels, which use the YAPI channel as in cyclic 
way, are used to model the execution delay of functional 
units. One functional unit can be mapped to several result 
channels, the number of which can be configured by the 
designer. Therefore, the various execution latencies for 
instructions in the same functional unit can be modeled, by 
setting different lengths of the result channels for this 
functional unit. And as we mentioned above, several 
channels mapping to one functional unit can be used to 
model several same functional units.  
We use the number of tokens in the channels to represent 
the length of channels, which can be seen as the execution 
latencies. At the start of the simulation, we will prefill the 
channel with a certain number of tokens. And then at each 
cycle, one token will be written to the channel while one 
token will be read from the channel. Therefore, the length 
of the channel will be kept during the simulation, which 
will give fixed execution latency for this channel. . This 
gives us much flexibility to model different ISAs: we use 
an individual channel to represent each type of instructions 
with different execution cycles.  
 CDB Controller 



For multiple-issue architecture, more than one instruction 
may complete the execution in the same cycle. If there is 
no constraint on the common data bus (CDB) resource, 
these instructions will all be written back in this cycle. 
However, sometimes the CDB resource is limited, so we 
model the constraint of write-back width, which is 
proportional to the number of CDBs. We construct a CDB 
controller model, which arbitrates the write-back of 
instructions. When the execution of an instruction is 
complete, this instruction will be read from the channel and 
stored into a buffer corresponding to the channel. Then the 
length of the channel can be kept and the complete 
instruction will not be lost. At each cycle, the CDB 
controller will choose the instructions to commit (write 
back) from the buffers, which are corresponding to the 
channels. The number of instructions that can be 
committed, i.e., commit length, is configured by the 
designer. CDB controller decides which channels should be 
chosen by using an arbitration scheme. This scheme can 
also be configured. So far we use a simple round-trip 
scheme, in which we check the channel buffers one by one. 
If a channel buffer has instructions waiting for commit and 
there is still available CDB resource, the oldest instruction 
will be committed, and then it turns to the next channel 
buffer. When there is not any available CDB resource or all 
the channels have been checked, the check will be stopped. 
And next time, it will start from the stop place. Of course, 
some more complicated schemes can be used to arbitrate. 
For example, we could give a higher priority to those 
channels whose buffers are nearly full.  
 
Following is the pseudo code of the execution process. 
Since we have explained some details of this process, we 
will just give a very brief description of the process. 
current_packet = Get_Inst_Packet_from_Fetch(); 
 //get the instruction packet from fetch process 
Add_to_RS(current_packet); 

//add the instructions to reservation stations 
Dispatch_to_Exectue (); 
 //dispatch the ready instructions to corresponding 
functional units 
Add_to_Commit_Queue(); 
 //add the complete instructions to correspoding channel 
buffers to wait for commitment 
Write_Back(); 
 //write back the instructions which are committed 
Write_RS_Info_Channel(rs_info); 
 //send the information of reservation stations to the 
fetch process 
cycle_count++; 

 //increase the cycle count, actually, we use this number 
as the cycle count for all the simulation 

4.4 Advantages 
Our model has some advantages which can benefit the user 
in the design flow.  

4.4.1 Formal Semantics 
Our model is based on a formal semantics provided by 
Metropolis, which uses a logic language to capture non-
functional and declarative constraints. Because the model 
has a precise semantics, it can support several synthesis and 
formal analysis tools in addition to simulation.  
Since both the computation and the communication are 
clearly defined by this formal semantics, a clear design 
flow can be easily achieved in our model. Therefore, we 
can make the design more quick and errorless. 
Formal Semantics also makes the model easy to be 
implemented in hardware. This is a big advantage over 
some low-level simulator such as SimpleScalar. For 
example, there is no clear correspondence from a 
communication channel to a real implementation in 
SimpleScalar. So the user will always be confused while 
going to the final implementation. In our model, because 
we have a clear semantic of what a communication channel 
is, and because of the unified framework in Metropolis, we 
can easily find what kind of architecture blocks to 
implement it, e.g by shared memory, FIFO, or something 
else.  

4.4.2 Easy refinement and modification 

In general, a design of what one designer conceives as the 
entire system is a refinement of a more abstracted model of 
a service, which is in turn employed as a single component 
of the larger system. This is the built-in notion of 
refinement in Metropolis. When a design is refined, 
typically a sequence of event instances of the original 
design corresponds to a set of sequences of event instances 
of the refined one and this correspondence can be modeled 
with coordination of event instances, and a set of individual 
designs related in this way constitutes a hierarchy where a 
part of a higher level design is related to a set of parts of 
the lower designs. For CPU modeling, we make our model more 
and more powerful through the refinement. The concept of 
platform based design and the built-in notion of refinement in 
Metropolis make this refinement process much easier than 
tradition scheme.  

4.4.3 Reusability and Parameterizability 

Our CPU model can be highly reused, also based on the 
concept of platform-based design in Metropolis. Users can 
easily parameterize their designs to test on different 
configuration of architecture. Since the model is at a high 



level, there are many parameters can be configured. e.g. 
issue width; branch model; number of FUs; misprediction 
penalty; instruction types, instruction execution time; 
reservation station size. We will show an example in next 
section, which lists the execution cycle count for different 
issue width.  

4.4.4 Unified Framework 

The Metropolis meta-model is a language to specify netlists 
of concurrent objects, each taking actions sequentially. The 
behavior of a netlist is formally defined by the execution 
semantics of the language. A set of netlists can be used to 
represent different levels of abstractions or different 
portions of the system being designed, where the behaviors 
of the netlists can be related to each other by using meta-
model constructs. This allows one to specify all the aspects 
described in the previous section for conducting designs, 
i.e. function, architecture, mapping, refinement, abstraction, 
and platforms, using the same building blocks of the 
language.  
This unified framework provide by Metropolis is greatly 
helpful. Users can explore the design space and implement 
their designs on a uniform platform. Furthermore, our CPU 
model can be extended easily in Metropolis; such as 
multiple CPU's, memory system, I/O system and so on. 
Above advantages can shorten the design time of processor 
design, make the design process more formal and provide 
the users an easy way to specify, simulate, and verify their 
systems. Furthermore it enables microarchitectural design 
space exploration for processing elements at the system 
level.  

4.5 Limitations 
Our model also has some limitations as follows: 

4.5.1 Performance Lost 

For the design methodology, more formal usually means 
the loss of some performance. This is a tradeoff in the 
design: higher level of abstraction can give you more 
flexibility, reusability, and provide a quicker design flow. 
But this may lead to the performance loss. However, if we 
can control the performance loss within a certain range, we 
can get more benefits from the shorter time-to-market, 
more stable systems and highly reusable. Then how can we 
ensure the performance? We can utilize the concept of 
platform based design, i.e., transfer the quantity estimation 
from the lower level to the higher level, and then we can 
choose the mapping which will give our better performance. 
Another question is how to test our performance. We will 
explain it in the Implementation part in next section. 

4.5.2 More blocks 

For our models, some blocks need to be added to make the 
models more general. We will discuss this in the future 
work section. Actually, this is not an inherent limitation; it 
is just the limitation of our current model, which will be 
further refined in the future.  

5. Experimental Results 
In this section we provide some experiment results. To 
verify the correctness of our model methodology, first we 
take Intel XScale microprocessor as an example and 
compare the simulation results of our model with 
SimpleScalar, which is considered as a standard 
microarchitecture simulation tool. Then to show the 
effectiveness of parameterization in our model, we 
parameterize our out-of-order execution model by 
changing issue width and compare the impact of these 
changes on the performance in terms of CPU cycles.  
Because Metropolis is mainly used to design embedded 
systems, we choose Mibench [8] as our test benches, which 
have several characteristics suitable for embedded systems. 
MiBench is a free, commercially representative embedded 
benchmark suite developed at University of Michigan. 
MiBench has considerably different characteristics than the 
SPEC2000 benchmarks when analyzing the static and 
dynamic characteristics of embedded processor 
performance. The dynamic instruction profile has more 
variation in the number of branch, memory, and integer 
ALU operations. It also has more variable text and data 
memory segment sizes, but the data tends to be more 
cacheable. MiBench and SPEC2000 both have very 
predictable branches. The variation in the number of 
instructions per cycle also shows that the benchmarks fall 
into the expected control and data intensive categories, as 
in embedded system applications.  

5.1 Comparison with SimpleScalar 
We choose to model architectures based on the ARM ISA 
[9] because it features a simple and powerful instruction set 
that is popular in embedded systems. In particular, we 
model the Intel XScale PCA-255 processor [10], which is a 
successor to the famous StrongARM. It implements versio 
5 of the ARM ISA with thumb extensions and several 
custom instructions implemented as a coprocessor. Like the 
StrongARM, the XScale is a scalar processor, which has a 
7 stage execution pipeline, dynamic branch prediction, and 
out-of-order commitment. It has an issue channel length of 
4. For detailed configuration of XScale, please refer to 
Appendix.  
The results is shown in Table 1. From it, we can see that 
averagely the timing accuracy of our model with respect to 
SimpleScalar is about 3% according to our measurements. 
As an architecture modeling tool which will be used in 



high-level design space exploration, the accuracy of our 
model is good enough. This exemplified the correctness of 
our model.  

Testbench #Inst. Simple-
Scalar 

Our 
model 

Relative 
Error 

rijndael 15146 21662 20234 -6.6% 

fft 15460 21994 20612 -6.3% 

tiffdither 22696 30555 30107 -1.5% 

ispell 41936 59175 60001 1.4% 

madplay 148674 178881 179681 0.4% 

search 187422 238402 231819 -2.8% 

Average    3.2% 

Table 1: Cycle Count Comparison 
 

But we still can make it more accurate. We try to analyze 
the sources of errors in the remainder of this section, and 
leave the possible modifications to the next section.  

5.1.1 Sources of errors 
The first possibility comes from the different abstraction 
level of our model and SimpleScalar. Our model is YAPI 
based, which is focusing on the very high level 
functionalities and communications. While SimpleScalar is 
fairly lower level. So it is hard to configure these two 
models exactly the same, since there is no one-to-one 
correspondence of the functional blocks.  
The second source is the lack of value dependency in the 
generated trace file. Although given an execution trace our 
microarchitectural model can usually faithfully reproduce 
the execution overheads without having to worry about 
individual values or the locations, leading to a greatly 
simplified microarchitectural model, an exception is when 
the time of the execution depends on the value of the 
operands (e.g. taking a short cut when multiplying by 0). 

Furthermore, so far we deal with branch mispenalty and 
memory access very roughly, which will lead to some 
inaccuracy. We will improve this in our future work. 

5.2 Parameterize 
As mentioned in section 4, in our abstract model, we can 
easily parameterize our design. Following Table 2 shows 
the different cycle count of different issue width, from 
single issue to 4 instructions per cycle. 
 
Testbench #Inst. Width=

1 
Width=

2 
Width=

3 

rijndael 15146 22103 20733 20234 

fft 15460 22133 20897 20612 
tiffdither 22696 33207 30462 30107 

ispell 41936 61326 60040 60001 
madplay 148674 193016 182319 179681
search 187422 260022 235742 231819

Table 2: Parameterizability Results 

5.3 Implementations 
It would be interesting if we could show some results of 
real implementation and compare its cost functions with the 
results of current design flows. But we are still on the way 
of going to the final implementation because of the 
incompleteness of the infrastructure in Metropolis. As in 
section 2, after the specification of functionality and 
architecture platform, we will map the functionality 
specification to an appropriate architecture, namely the 
mapping step in the whole design flow. Now we have 
finished the execution model of quantity requests and 
resolutions, i.e. the semantics to annotate a specific number 
of quantities (e.g, time, power, or composite quantities) 
with an event. This semantics of event coordination with 
respect to quantities play a key role in the design flow. First, 
architecture is defined as a platform which provides a set of 
services and how much these services cost. It is necessary 
to support the event coordination mechanism to annotate 
specific cost to the services. Second, mapping is actually 
the coordination between the execution of function and 
architecture networks. Third, a refinement through event 
coordination provides a platform because (1) when a 
design is refined, typically a sequence of event instances of 
the original design corresponds to a set of sequences of 
event instances of the refined one and this correspondence 
can be modeled with coordination of event instances, and 
(2) a set of individual designs related in this way 
constitutes a hierarchy where a part of a higher level design 
is related to a set of parts of the lower designs.  

Now the formal semantics to support the mapping 
constraints are still under construction. So the step to final 
implementation can not be done in the near future. We 
leave this part in the future work.  

6. Conclusions and Future Work 

6.1 Conclusions 
Through our CPU modeling, we prove the feasibility of 
constructing CPU models by a new design methodology 
based on Metropolis. This methodology is more formal, 
more abstract, more modular, and more parameterizable. 
We also presented a variety of techniques for easing and 
automating the design and modeling of microprocessors. 



And the blocks of our model can be reused in new CPU 
model design. 
Our model can also be a simulator, which can be 
configured easily and provides a close estimation at a high 
level. This will be greatly helpful to the design space 
exploration, because current design complexity requires the 
early stage estimation more and more. We compared our 
results with SimpleScalar to validate the accuracy of our 
model, taking the ARM instruction set as an example. The 
results show that the average error with respect to 
SimpleScalar is about 3%, which is acceptable as a high-
level model. Therefore, our model can be directly used in 
early stage of design space exploration in system-level 
design.  

6.2 Future Work 
There are lots of work can be done in the near future. First, 
our model itself is incomplete. We can add models of 
memory systems, interruptions and exceptions. Also more 
functional blocks can be modeled and added to our 
architecture library, such as more branch prediction 
schemes, out-of-order issue and so on.  
Second, as mentioned in section 5.3, we do not show any 
results about the costs of final implementation because the 
infrastructure of Metropolis is still under development. But 
as the final goal of Metropolis, we are looking forward to 
some exciting results to show the advantage of both our 
model and Metropolis. Therefore, we will try going deeply 
into the real implementation in future work. Before that, we 
will first add the quantity resolution to estimate some other 
quantities, such as area and power. 
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Appendix  
Here we list the appendix table to show the issue and result 
delay (in CPU cycles) for instructions on the Intel XScale 
PXA-255 microarchitecture. Question marks indicate that 
we are not sure about the given values.  
Instruction 
Desription 

Issue Delay Result Delay 

Data processing 
shift amount literal 

1 0 

Data processing 
shift amount for 
register 

2 0 

Mul or Mul/Add 
giving 32-bit result 

1...4 0…3 

Mul or Mul/Add 
giving 64-bit result 

? ? 



Load single – write-
back of base 

1 0 

Load single – load 
data zero extended 

1 2 

Load single – load 
data sign extended 

1 2 

Store single – write-
back of base 

1 0 

Load multiple 3…23 1…3 
Store multiple – 
write-back of base 

3…18 0 

Branch or branch 
and link 

1(5) 0 

MCR 4(7) 4(7) 
MRC 2(7) N/A 
MSR to control 2(6) 0 
MRS 1 1 
Swap 5 0 
SWI 6 0 
 
 

 


