
CAROL Library User Manual

CAROL Library User Manual
Copyright © 1999-2005 ObjectWeb Consortium

CAROL is a library allowing to use different RMI implementations. Thanks to CAROL, a Java server application can
be independent of RMI implementations and accessible simultaneously by RMI clients using different RMI
implementations. CAROL allows to design, implement, compile, package, deploy, and execute distributed
applications compliant with the RMI model.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy

of the license is included in the section entitled "GNU Free Documentation License".

Table of Contents
1. Introduction ..1

1.1. About this manual...1
1.2. What is CAROL?..1
1.3. Why CAROL?...2

2. CAROL overview...3

2.1. Presentation of the CAROL library...3
2.2. CAROL standard architecture...3

2.2.1. CAROL architecture...3
2.2.2. RMI IIOP development rules...5
2.2.3. JNDI development rules...10

2.3. Non standards CAROL tools and mechanisms...12
2.3.1. Implicit context propagation with RMI JRMP...12
2.3.2. Referenceable an Reference binding through a RMI IIOP CosNaming......................13
2.3.3. Name Service Management..13

2.4. Getting started conclusion...13

3. CAROL Configuration ..15

3.1. Presentation of the CAROL library configuration..15
3.2. CAROL configuration...15

3.2.1. General configuration files...15
3.2.2. General configuration rules for all RMI and JNDI architectures.................................15
3.2.3. RMI JRMP configuration...17
3.2.4. RMI IIOP configuration...18
3.2.5. RMI JEREMIE personality configuration..19
3.2.6. IRMI configuration...21
3.2.7. MULTI RMI configuration...21

4. CAROL requirements ...25

Web sites index...25

5. Links and Reference..26

Web sites index...26

A. Licence...27

A.1. Free Documentation Licence...27

Glossary..36

iii

List of Tables
3-1. Carol general properties...16
3-2. Carol RMI XXX specifics properties...17
3-3. Carol RMI JRMP specifics properties..18
3-4. Carol RMI IIOP specifics properties..19
3-5. Carol RMI JEREMIE specifics properties...20

iv

Chapter 1. Introduction

1.1. About this manual

This manual was meant as a tutorial that can give you an introduction on how to use the CAROL RMI
IIOP library.

Note: Please note that this manual is designed to be used along with, not instead of, the RMI IIOP
Tutorial (http://java.sun.com/j2se/1.4/docs/guide/rmi-iiop/tutorial.html) and the JNDI tutorial
(http://java.sun.com/products/jndi/tutorial). There are a number of cases where it is much easier to
refer to the rather RMI IIOP and JNDI tutorials than trying to rehash what it already covers.

This manual will teach you the general way to use the CAROL abstraction in order to manipulate remote
object on multi-RMI architecture. You will learn in particular:

• The CAROL configuration rules for each RMI architecture,

• the RMI IIOP general mechanism and programming rules,

• the JNDI general mechanism and programming rules,

• the Extended RMI JRMP mechanisms for implicit context propagation.

1.2. What is CAROL?

CAROL is a library allowing to use different RMI implementations. Thanks to CAROL, a Java server
application can be independent of RMI implementations and accessible simultaneously by RMI clients
using different RMI implementations. CAROL allows to design, implement, compile, package, deploy,
and execute distributed applications compliant with the RMI model. CAROL provide tools for accessing
to a Java server, in the same time, through the ObjectWeb JEREMIE RMI like RPC, through the JAVA
standard RMI RPC and through a CORBA RPC (via a RMI IIOP). Therefore, a Java server using
CAROL manipulates remote object only through RMI IIOP API classes and interfaces and never through
CAROL classes or interface. So, CAROL allows a Java server to be independent, by configuration, of the
RMI architecture and provider.

The CAROL library basically provides support (CAROL basic SPIs) for the following RMI
implementations:

• ObjectWeb JEREMIE (JRMP 1.1 and 1.2)

• Sun RMI JRMP (JRMP 1.1 and 1.2)

• Sun JDK 1.4 RMI IIOP

• JacORB IIOP implementation

1

Chapter 1. Introduction

• CAROL CMI implementation

• CAROL Intercepting RMI (IRMI) implementation

The CAROL library provides also non standard tools for RMI and JNDI architecture:

• a set of mechanisms for implicit context propagation in RMI JRMP,

• a set of mechanisms for Referenceable and Reference objects binding in a CosNaming.

• a set of mechanisms for RMI Registry, Jeremie Registry and CosNaming management.

Please see theNon standard CAROL tools and mechanismschapter for more information.

1.3. Why CAROL?

CAROL is basically design to be a solution for implementing J2EE specifications on interoperability and
implicit context propagation. This library allows a J2EE server to be accessible, at the same time, by
IIOP and JRMP clients.

2

Chapter 2. CAROL overview

2.1. Presentation of the CAROL library

This section describes the general CAROL architecture and development rules. CAROL is based on an
API/SPI mechanism for export and registering RMI objects. This section describes which API are used
by CAROL and how to develop a server using this API. This section is supposed to be used with the RMI
IIOP tutorial (http://java.sun.com/j2se/1.4/docs/guide/rmi-iiop/tutorial.html) and the JNDI tutorial
(http://java.sun.com/products/jndi/tutorial).

2.2. CAROL standard architecture

2.2.1. CAROL architecture

CAROL is behind the standard RMI IIOP and JNDI API. A Java server using CAROL have to be a
standard RMI IIOP server and use only the JNDI interfaces for name service connections (see the section
RMI IIOP Development rulesand theJNDI Development rulessection). A standard RMI IIOP server is
required to migrate to the CAROL library without any code modification. Using CAROL library, in this
case, is only a configuration manipulation. CAROL simulates a standard RMI IIOP
PortableRemoteObjectDelegate and a standard JNDI context factory for interceptions and manipulations
of the RPC and naming mechanism. CAROL allows any RMI IIOP remote object to be manipulate by a
server on different RMI architectures and different naming services, in the same time, without code
modification on the server or on the client side.

CAROL uses the standard RMI IIOP PortableRemoteObject to abstract the export mechanism. The
figure 2.1 shows that the server only manipulate remote object via the RMI IIOP PortableRemoteObject
and this PortableRemoteObject is a delegation to a "configured by system properties"
PortableRemoteObjectDelegate class.

3

Chapter 2. CAROL overview

Figure 2-1. RMI IIOP mechanism

In fact, the CAROL remote object API is the standard RMI IIOP API. A Java server using CAROL is
supposed to use only the java.rmi.* and the javax.rmi.* classes and never to call directly the CAROL
library classes.

The same mechanism is used for objects registering through JNDI: a CAROL server is supposed to use
only the JNDI interface to manipulate and contact the remote object name service. So, with JNDI, a
CAROL server use the InitialContext mechanism, for (un)registering object, and this InitialContext
delegate the registering to a context object build by a factory "configured by system properties". In the
figure 2.2 we can see that the server only manipulates remote object registered via the JNDI
InitialContext API.

4

Chapter 2. CAROL overview

Figure 2-2. JNDI mechanism

2.2.2. RMI IIOP development rules

This section describes the basic rules of RMI IIOP development. For more information, see the Sun entry
for RMI IIOP Documentation(http://java.sun.com/j2se/1.4/docs/guide/rmi-iiop/index.html). This RMI
IIOP quick start guide is design for a 3 step development:

• Development of the RMI IIOP remote objects and development of the RMI server part

• Java and CAROL RMI IIOP objects compilation

• Deployment step in a distributed environment

The Java classes used in this section are:

• java.rmi.Remote (http://java.sun.com/j2se/1.4/docs/api/java/rmi/Remote.html)

• javax.rmi.PortableRemoteObject

(http://java.sun.com/j2se/1.4/docs/api/javax/rmi/PortableRemoteObject.html)

2.2.2.1. RMI IIOP remote objects development step

A RMI IIOP remote object needs only to expose its remote methods in a Java interface extending
Remote . This is exactly the same development rules than in classical RMI JRMP. In the example 2-1, the

5

Chapter 2. CAROL overview

remote objectFoo exposes its remote methodmyMethod() in the remote interface
FooRemoteInterface .

Example 2-1. RMI basic example

//The foo object is a remote object
import java.rmi.RemoteException;

//The class foo implements only
//the FooRemoteInterface interface
public class Foo implement FooRemoteInterface {

//This method is remote
public Integer myMethod() throws RemoteException{

return new Integer(0);
}

}

//The foo remote interface
//extends only the Remote interface
//and exposes the remote methods
import java.rmi.Remote;
import java.rmi.RemoteException;

public interface FooRemoteInterface extends Remote {

//This method is remote
public Integer myMethod() throws RemoteException;

}

Note: The method myMethod() throws a RemoteException if an exceptions occurs in the remote
method call.

2.2.2.2. RMI IIOP server development step

The RMI IIOP server has to manage remote objects. This section only describes the (un)export
management of a RMI IIOP remote object. Please see theJNDI development rulessection for the remote
object (un)registering managment. One of the most important step in a remote object life cycle is the
export step (and the opposite unexport step). To Exporte a remote object means to prepare this object to
receive remote call. RMI IIOP abstracts the intricate CORBA implementation mechanism of this export
with the API classPortableRemoteObject . To Export a remote object is mandatory for remote call.
There is two way for this export:

6

Chapter 2. CAROL overview

• The implicit method: if the remote object class implements thePortableRemoteObject class, this
remote object is automatically export in is creation time. In the example 2-2 the remote object is
implicitly exported by inheritance. In this case, the server only needs to construct the remote object to
exported it.

Example 2-2. RMI implicit export

//The foo object is a remote object
import java.rmi.RemoteException;
import javax.rmi.PortableRemoteObject;

//The class foo extends PortableRemoteObject
//and implements the FooRemoteInterface interface
public class Foo extends PortableRemoteObject

implements FooRemoteInterface {

//The constructor
public Foo() throws RemoteException {

super();
}

//This method is remote
public Integer myMethod() throws RemoteException {

return new Integer(0);
}

}

//The foo remote object server
import java.rmi.RemoteException;
import org.objectweb.carol.util.configuration.CarolConfiguration;

public class Server {

//The main method of this server
public static void main(String [] args) {

try {
//initialize carol
CarolConfiguration.init();

FooRemoteInterface myFoo = new Foo();
// the object is automatically
// exported on RMI IIOP

} catch (RemoteException e) {
//Foo construction problem

}

}
}

7

Chapter 2. CAROL overview

• The explicit method: if the remote object class do not implement thePortableRemoteObject class,
this remote object has to be explicitly exported by the server. Thepublic static void

exportObject(java.rmi.Remote) method inPortableRemoteObject class allow to do that. In
the example 2-3 the remote object is explicitly exported by the server.

Example 2-3. RMI explicit export

//The foo object is a remote object
import java.rmi.RemoteException;

//The class foo implements
//only the FooRemoteInterface interface
public class Foo implement FooRemoteInterface {

//The constructor
public Foo() throws RemoteException {

super();
}

//This method is remote
public Integer myMethod() throws RemoteException {

return new Integer(0);
}

}

// The foo remote object server

import java.rmi.RemoteException;
import javax.rmi.PortableRemoteObject;
import org.objectweb.carol.util.configuration.CarolConfiguration;

public class Server {

//The main method of this server
public static void main(String[] args) {

try {
//initialize carol
CarolConfiguration.init();

FooRemoteInterface myFoo = new Foo();
//The object is explicitly exported on RMI IIOP:
PortableRemoteObject.exportObject(myFoo);

} catch (RemoteException e) {
//Foo construction problem

}

}
}

8

Chapter 2. CAROL overview

2.2.2.3. CAROL RMI IIOP compilation step

The compilation step is designed by Java and RMI. There is no particular compilation step in order to
use CAROL. Therefore, you need to compile Java classes and to compile stubs and skeletons with each
RMI provider compiler for each RMI architecture (IIOP, JRMP, JEREMIE ...).

2.2.2.4. CAROL RMI IIOP server deployment step

The three points below are mandatory for CAROL server deploying on multi-RMI architecture:

• There is 2 ways for carol initialization: first, the best way, is to call the
org.objectweb.carol.util.configuration.CarolConfiguration.init() method. The second way is to set the
2 system property javax.rmi.CORBA.PortableRemoteObjectClass
=org.objectweb.carol.rmi.multi.MultiPRODelegate and java.naming.factory.initial
=org.objectweb.carol.jndi.spi.MultiOrbInitialContextFactory in the server JVM. This second method
doesn’t allows to switch off carol features by configuration: The properties carol.start.rmi=false and
carol.start.jndi=false doesn’t work with this configuration method.

• Thecarol.properties file can be configured (see theCAROL Configurationchapter) and visible
in the JVM classpath.

• For each RMI architecture all remote objects stub and skeleton have to be visible in the classpath.

Note: For the moment, in CAROL library, there is 3 remote architectures available (CAROL SPI
implementation): IIOP, JRMP and JEREMIE. There is no, in those 3 architectures, stub/skeleton
class conflicts. For example, if my remote object is Foo with FooItf remote interface:

• The stub/skel name for IIOP are: _FooItf_Stub /_Foo_Tie

• The stub/skel name for JRMP are: FooItf_Stub /FooItf_Skel

• The stub/skel name for JEREMIE are: FooItf_OWStub /FooItf_OWSkel

And so there is no class name conflict, those 3 RMI architectures can be available in the same JVM.
The Java classes used in this section are:

• javax.naming.InitialContext

(http://java.sun.com/j2se/1.4/docs/api/javax/naming/InitialContext.html)

• org.objectweb.carol.rmi.jrmp.interceptor.JServerRequestInterceptor

• org.objectweb.carol.rmi.jrmp.interceptor.JServerRequestInfo

• org.objectweb.carol.rmi.jrmp.interceptor.JServiceContext

• org.objectweb.carol.rmi.jrmp.interceptor.JClientRequestInterceptor

• org.objectweb.carol.rmi.jrmp.interceptor.JClientRequestInfo

• org.objectweb.carol.rmi.jrmp.interceptor.JInitializer

• org.objectweb.carol.rmi.jrmp.interceptor.JInitInfo

• org.objectweb.carol.rmi.jrmp.interceptor.ProtocolInterceptorInitializer

• org.objectweb.carol.jndi.iiop.IIOPContextWrapperFactory

9

Chapter 2. CAROL overview

• org.objectweb.carol.jndi.iiop.IIOPContextWrapper

Warning

But, be careful, there is stubs and/or skeletons class name conflicts for different
providers of the same RMI architecture. For example, this is not possible, with
CAROL, to deploy a remote object on two RMI provider with the same architecture
(for example RMI JRMP 1.1 and RMI JRMP 1.2 or DAVID RMI IIOP and SUN JDK
1.4 RMI IIOP) because there are a stubs and/or skeletons class name conflicts in
the server JVM.

2.2.3. JNDI development rules

This section describes the basic JNDI development rules. For more information, see the Sun entry for
JNDI Documentation(http://java.sun.com/products/jndi/1.2/javadoc/). This JNDI start guide is designed
for a 2 steps development:

• Development of the JNDI server part

• JNDI deployment step on a distributed environment

2.2.3.1. Development of the JNDI server part

For remote object access with CAROL, the first part is to develop and deploy RMI IIOP remote objects
(see theRMI IIOP Development ruleschapter) on a Java server. The second part is to register those
objects in one/many name service through the standard JNDI Interface. For this, the server needs to build
a InitialContext object and to register all remote objects in this context like in the Example 2-4:

Example 2-4. JNDI basic example

//The foo remote object server
import java.rmi.RemoteException;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import org.objectweb.carol.util.configuration.CarolConfiguration;

public class Server {

//The main method of this server
public static void main(String [] args) {

try {
//initialize carol
CarolConfiguration.init();

10

Chapter 2. CAROL overview

// the object is automatically
// exported on RMI IIOP
FooRemoteInterface myFoo = new Foo();

// now the server bind this object trough JNDI
// with the name myobjectname
InitialContext ic = new InitialContext();
ic.rebind("myobjectname", myFoo)

} catch (RemoteException e) {
//Foo construction problem

}catch (NamingException ne) {
//Foo binding problem

}

}
}

Note: In this example, the server use a default IntialContext without configuration. You may want
to configure your server JNDI for each name service (registry, cosnaming ...). Please use only the
CAROL configuration to setup your multi JNDI name service. For this feature, a Java server, needs
the CAROL JNDI context factory (see the CAROL Configuration chapter).

2.2.3.2. JNDI deployment step on a distributed environment

The three points below are mandatory for CAROL server deploying on multi name service architecture:

• The system property java.naming.factory.initial need to be instantiated to
org.objectweb.carol.jndi.spi.MultiOrbInitialContextFactory in the server JVM.

• Thecarol.properties and thejndi.properties files need to be configured (see theCAROL
Configurationchapter) and visible in the server JVM classpath.

• Each name service (registry, cosnaming, ...) can be launched in the distribute environment.

Warning

Be careful, the InitialContext need to be configured for CAROL with the system
property java.naming.factory.initial instantiated to
org.objectweb.carol.jndi.spi.MultiOrbInitialContextFactory . Every
other properties configured directly in the server InitialContext will be lost. The
important point is to understand that the IntialContext is an indirection to an
other context, the CAROL one, which manage all the contexts for each name
service.

11

Chapter 2. CAROL overview

2.3. Non standards CAROL tools and mechanisms

2.3.1. Implicit context propagation with RMI JRMP

One of the non standard features (API) provided by CAROL is the possibility to instantiate, for a Java
server, an implicit context propagation. This API is very useful for security and transaction behavior.
This API is a simplification of CORBA portable interceptor concept. Therefore, this feature use a server
and client interceptor with an initializer registering mechanism. This mechanism is pure Java without any
CORBA classes connection (only thert.jar classes is needed). This mechanism works with 1.1 and
1.2 RMI version. This section explain the way to build, register and use server and client interceptor
through RMI JRMP.

2.3.1.1. CAROL RMI JRMP interceptors API

Implementing JRMP interceptors is very easy. A server interceptor only need to implements the
JServerRequestInterceptor interface and use theJServerRequestInfo interface to propagate a
JServiceContext . On the client side this is the same concept withJClientRequestInterceptor

interface andJClientRequestInfo interface. For propagation, a CAROL propagation context need
only to be a Serializable (or Externalizable) object and to implements the interfaceJServiceContext .

2.3.1.2. CAROL RMI JRMP Client interceptor

A JRMP client interceptor is a class implements theJClientRequestInterceptor . All the methods
in this class are executed in the same Thread than the client remote call. All JServiceContext registered
in the JClientRequestInfo (in the send_* methods) are send to the Server. All JServiceContext send by
the server can be found in the JClientRequestInfo (in the receive_* methods).

2.3.1.3. CAROL RMI JRMP Server interceptor

A JRMP server interceptor is a class implements theJServerRequestInterceptor . All the methods
in this class are executed in the same Thread than the server remote call. All JServiceContext registered
in the JServerRequestInfo (in the send_* methods) are send to the Client. All JServiceContext send by
the client can be found in the JServerRequestInfo (in the receive_* methods).

2.3.1.4. CAROL RMI JRMP JServiceContext

For each call,A CAROL JServiceContext can be find with is context_id. A JServiceContext is just a
Serializable Object. For performance reason, it can be interesting to decrease the Context size by using a
Externalizable mechanism. Carol provide a tool (org.objectweb.carol .util.perfs
.CarolJRMPPerfomanceHelper) with static methods to calculate the Serializable size of a Serializable
object.

12

Chapter 2. CAROL overview

2.3.1.5. CAROL RMI JRMP interceptor registering

To register interceptor in CAROL is very easy. A server/client initializer implements theJInitializer

and use the pre_init and post_init methods for registering server and client interceptors through
JInitInfo interface. For JVM CAROL JRMP initialization, use the
org.objectweb.PortableInterceptor.JRMPInitializerClass.XXX property where XXX is the JInitializer
full classname (for example pass -Dorg.objectweb.PortableInterceptor.JRMPInitializerClass
.org.objectweb.carol.rmi.jrmp.interceptor.ProtocolInterceptorInitializer register into CAROL the
ProtocolInterceptorInitializer class). Register more than one JInitializer is possible with
CAROL (TheProtocolInterceptorInitializer is mandatory for CAROL multi protocol
management).

2.3.2. Referenceable an Reference binding through a RMI
IIOP CosNaming

The second non standard CAROL features is a way to register Referenceable/Reference and Serializable
objects in a CosNaming through JNDI. The IIOP InitialContext delivered for IIOP wrap the
Referenceable/Reference or Serializable object into a standard remote object. This remote object is
exported into the JNDI context bind(or rebind) method and unexported into the JNDI context unbind
method. CAROL use automatically, on the server side, this mechanism with a standard CAROL IIOP
configuration (you need to call the IIOP protocol ’iiop’ in thecarol.properties file see theCAROL
configurationchapter).

For a JNDI java RMI IIOP client you can use theIIOPContextWrapperFactory by setting the
-Djava.naming.factory.initial jvm properties (with the full name of the factory). This factory builds a
JNDI Context based on youjndi.properties uses the wrapping mechanism. For other client (Non
JNDI), you can re-build manually the Referenceable or Serializable object for the CosNaming wrapper
remote object (see inside theIIOPContextWrapper class for a detailed mechanism. A CAROL server
can be also an IIOP CAROL client without any extra configuration than in a classical IIOP CAROL
server.

2.3.3. Name Service Management

The third non standard CAROL features is a way to start and stop automatically RMI Name Services.
This mechanism is based on a API/SPI system. The API is represented by the
org.objectweb.carol.jndi.ns.NameServiceManager . This class provide static methods for start
and stop configured name services for each protocol. A CAROL configuration property can be set inside
the carol.properties for automatically start all non started and configured Name Services (see the
configuration chapter). Carol provide also three Name Service SPI implementation for RMI Registry,
Jeremie Registry and CosNaming management. This mechanism start those Name Services on the port
defined by the jndi url property.

13

Chapter 2. CAROL overview

2.4. Getting started conclusion

CAROL is only configured by system properties and files. There is no intrusion of CAROL classes in a
standard RMI IIOP server. The server is RMI architecture independent but work simultaneously on
different RMI architectures. The next chapter explains the general rules for this configuration.

14

Chapter 3. CAROL Configuration

3.1. Presentation of the CAROL library configuration

This section describes the configuration rules for different RMI and name services managed by CAROL.
Currently, CAROL is distributed with tools and classes that allow to use:

• Jonathan/ObjectWeb JEREMIE (http://jonathan.objectweb.org/) RMI JRMP like

• Sun RMI JRMP (http://java.sun.com/j2se/1.4/docs/guide/rmi/index.html) (version 1.1 and 1.2)

• Sun RMI IIOP (>JDK 1.4) (http://java.sun.com/j2se/1.4/docs/guide/idl/index.html)

• Cluster Method Invocation (CMI) for clustered rmi server

• Intercepting RMI (IRMI). This is a drop in replacement for the Sun specific portions of the JRMP
protocol.

CAROL allows to configure a remote (or local) Java server to be accessible by one,two or three of those
RMI architectures, in the same time, through it’s configuration.

3.2. CAROL configuration

3.2.1. General configuration files

CAROL configuration is based on three properties files. Thecarol-defaults.properties file, the
carol.properties file and thejndi.properties file. Thecarol-defaults.properties file is
mandatory to configure CAROL. This file is embedded in the carol jar file and the CAROL standard user
is not suppose to modify those defaults properties. Carol load first this default file properties and erase all
configuration property with the properties find in the jndi file configuration and (after) with the properties
find in the carol file configuration. So, the only important file for the CAROL standard user is the
carol.properties . We are going to describe, in the next section, only the content of this file.

Note: If there is an (rpc-)URL property in the jndi.properties , the RMI name of the url is use
instead of the carol-defaults.properties configured one (jrmp). By default, in the
carol.properties , no configuration is needed.

The configuration described below only use thecarol.properties file. Do not forget that the JNDI
configuration (of one of the activated protocols) can be set inside thejndi.properties file.

15

Chapter 3. CAROL Configuration

3.2.2. General configuration rules for all RMI and JNDI
architectures

Thecarol.properties file is a standard Java properties file. All properties, in this file, follow the
rules below (we suppose that XXX is the RMI name like ’jrmp’, ’iiop’,’jeremie’, ’cmi’, or ’irmi’. For all
those defaults provided RMI protocol, please use those names.

Table 3-1. Carol general properties

Property name Property value Description Required

carol.protocols ’XXX protocol-name’,
’YYY protocol-name’

Activated protocols
names. The first (XXX) is
the default protocol for
CAROL. This default
protocol is used by the
server when there is no
entrant protocol

No, default: jrmp

carol.start.ns ’true’, ’false’ CAROL will
automatically start all non
started and configured
Name Services if this
property is set to ’true’

No, default: false

carol.start.rmi ’true’, ’false’ The CAROL PortableRe-
moteObjectDelegate
mechanism will be
deactivated if this
property is set to ’false’

No, default: true

carol.start.jndi ’true’, ’false’ The CAROL
InitialContextFactory
mechanism will be
deactivated if this
property is set to ’false’

No, default: true

carol.jvm.’property-
name’

’property-value’ All extra JVM properties
for RMI (directly pass to
the JVM with ’name’
name and ’value’ value
without any verifications).
This is equivalent to put
-D’property-
name’=’property-value’
in the Java JVM option

No

16

Chapter 3. CAROL Configuration

Property name Property value Description Required

carol.jndi.’property-
name’

’property-value’ All JNDI properties for
all RMI (directly pass to
JNDI with ’name’ name
and ’value’ value without
any verifications). This is
equivalent to put
’property-
name’=’property-value’
in the JNDI properties file

No

Table 3-2. Carol RMI XXX specifics properties

Property name Property value Description Required

carol.XXX .PortableRe-
moteObjectClass

’XXX portable remote
object class name’

The portable remote
object delegate class
name for this RMI
(CAROL provides the
implementation of this
class for JRMP,
JEREMIE, CMI, and
IRMI. See below.)

No, There is a default for
each RMI provided by
carol

carol.XXX
.NameServiceClass

’XXX carol Name
Service class name’

The Name Service class
name for this RMI
(CAROL provides the
implementation of this
class for JRMP,
JEREMIE, CMI, and
IRMI. See below.)

No, this property is only
necessary for
automatically start a
Name Service for this
protocol and there is a
default for each RMI
provided by carol

carol.XXX.url
’property-name’

’property-value’ JNDI url value. This
property is equivalent to
the jndi java.naming.
provider.url property

No, there is defaults for
each RMI provided by
carol

carol.XXX.context.
factory ’property-name’

’property-value’ JNDI initial context
factory class name. This
property is equivalent to
the jndi java.naming.
factory.initial property

No, there is defaults for
each RMI provided by
carol.

carol.XXX. interceptors ’interceptor 1
name’,’interceptor 2
name’

Interceptors initializers
names

No

17

Chapter 3. CAROL Configuration

3.2.3. RMI JRMP configuration

One of the SPI personality provided by CAROL is the standard Sun RMI JRMP. This personality can be
used with all standard RMI JRMP features. CAROL allows implicit context propagation with RMI
JRMP (like a transactional or a security context) via a RMI IIOP Interceptors like mechanism. The
example below explains the general way for CAROL RMI JRMP configuration:

Example 3-1. RMI JRMP carol.properties file.

activated protocols
carol.protocols=jrmp

Example of Interceptors initializer class
carol.jrmp.interceptors=

org.objectweb.carol.jtests.conform.interceptor.jrmp.Initializer

In the file above we see a JRMP standard configuration, note that nothing is needed except custom
interceptors configuration. You can customized your configuration with:

Table 3-3. Carol RMI JRMP specifics properties

Property name Property value Description Required

carol.jrmp. PortableRe-
moteObjectClass

’JRMP portable remote
object class name’

JRMP implementation of
the Portable Remote
Object class name

No, there is a default for
JRMP

carol.jrmp.
NameServiceClass

’JRMP carol Name
Service class name’

JRMP implementation of
the Carol name service

No, there is a default for
JRMP based on the
registry

carol.jvm.rmi. server.port’rmi port number’ Set the port number for
exporting object thru
Jeremie, 0 means random
open port number

No, there is a default for
JRMP (0)

carol.jvm.org. objectweb.
PortableInterceptor.
JRMPInitializerClass.
’jrmp initializer name’

” (empty) Initializer for JRMP
inteceptors

No, there is defaults for
JRMP. If there is a multi
protocol configuration,
CAROL automaticaly put
interceptors for multi
protocol management.
This property is
equivalent, for jrmp, to
the carol.jrmp
.interceptors one

18

Chapter 3. CAROL Configuration

3.2.4. RMI IIOP configuration

One of the SPI personalities provided by CAROL is the standard Sun RMI IIOP. This personality can be
used with all standard RMI IIOP features. CAROL allow implicit context propagation with RMI IIOP
(like a transactional or a security context) via a RMI IIOP Interceptors mechanism. The example below
explains the general way for CAROL RMI IIOP configuration:

Example 3-2. RMI IIOP carol.properties file.

activated protocols
carol.protocols=iiop

Example of Interceptors initializer class (class name with package)
carol.iiop.interceptors=

org.objectweb.carol.jtests.conform.interceptor.iiop.IIOPInitializer

In the file above we see a IIOP standard configuration, note that nothing is needed except custom
interceptors configuration. You can customized your configuration with:

Table 3-4. Carol RMI IIOP specifics properties

Property name Property value Description Required

carol.iiop. PortableRemo-
teObjectClass

’IIOP portable remote
object class name’

IIOP implementation of
the Portable Remote
Object class name

No, there is a default for
IIOP

carol.iiop.
NameServiceClass

’IIOP carol Name Service
class name’

IIOP implementation of
the Carol name service

No, there is a default for
IIOP based on the
tnameserv CosNaming

carol.jvm.org.objectweb.
PortableInterceptor.
IIOPInitializerClass. ’iiop
initializer name’

” (empty) Initializer for IIOP
inteceptors

No, there is defaults for
IIOP. If there is a multi
protocol configuration,
CAROL automaticaly put
interceptors for multi
protocol management.
This property is
equivalent, for iiop, to the
carol.iiop .interceptors
one

3.2.5. RMI JEREMIE personality configuration

One of the SPI personalities available/provided by CAROL is the ObjectWeb Jonathan JEREMIE
personality. This personality can be used with all standard JEREMIE features. CAROL also allow

19

Chapter 3. CAROL Configuration

JEREMIE to propagate implicitly a context (like a transactionnal or a security context) via a JEREMIE
handler mechanism. This section explains the general way for CAROL JEREMIE configuration in the
two jonathan.xml and carol.properties files:

Example 3-3. JEREMIE jonathan.xml file

<?xml version="1.0"?>
<!DOCTYPE Configuration SYSTEM "configuration.dtd">

<CONFIGURATION>
<ELEM name="DavidCarolHandler">

<ATOM class="org.objectweb.carol.rmi.jonathan.david.DavidCarolHandler"/>
</ELEM>
<ELEM name="david/orbs/iiop/services_handler_context/1534">

<ALIAS name="/DavidCarolHandler" />
</ELEM>
<ELEM name="JeremieCarolHandler">

<ATOM
class="org.objectweb.carol.rmi.jonathan.jeremie.JeremieCarolHandler"/>

</ELEM>
<ELEM name="jeremie/service_handler_context/1535">

<ALIAS name="/JeremieCarolHandler" />
</ELEM>
<ELEM name="jeremie/stub_factories/std">

<CONFIGURATION>
<ELEM name="Stub name extension">

<PROPERTY type="String" value="OW"/>
</ELEM>

</CONFIGURATION>
</ELEM>

</CONFIGURATION>

Inside The above file, JEREMIE is configured to use the OW extension for stub/skeleton and to use the
CAROL protocol handler.

Example 3-4. JEREMIE carol.properties file

activated protocols
carol.protocols=jeremie

In the file above we see a JEREMIE standard configuration, note that nothing is needed except custom
interceptors configuration. You can customized your configuration with:

Table 3-5. Carol RMI JEREMIE specifics properties

Property name Property value Description Required

20

Chapter 3. CAROL Configuration

Property name Property value Description Required

carol.jeremie.
PortableRemoteObject-
Class

’JEREMIE portable
remote object class name’

JEREMIE
implementation of the
Portable Remote Object
class name

No, there is a default for
JEREMIE

carol.jeremie.
NameServiceClass

’JEREMIE carol Name
Service class name’

JEREMIE
implementation of the
Carol name service

No, there is a default for
JEREMIE based on the
jeremie registry

carol.jvm.rmi. server.port’rmi port number’ Set the port number for
exporting object thru
Jeremie, 0 means random
open port number

No, there is a default for
JEREMIE (0)

3.2.6. IRMI configuration

The IRMI protocol is an alternative to the Sun specific JRMP protocol. It is intended as a drop in
replacement for the sun specific portions of the JRMP protocol and so supports interceptor configuration
through exactly the same APIs and properties as the JRMP protocol with the following exceptions. The
default registry port is 1098 instead of port 1099, and the server port is configured through the
"carol.irmi.server.port" property instead of "carol.jrmp.server.port".

3.2.7. MULTI RMI configuration

The example below describes a general RMI configuration with 3 RMI architectures configured and 2
RMI activated (RMI IIOP and JEREMIE) and with RMI IIOP default:

Example 3-5. MULTI RMI carol.properties s file

carol properties
(note that for this configuration only this
property is needed)
carol.protocols=iiop,jeremie

start or not all non started name services
carol.start.ns=true

use carol rmi (Multi PORD)
carol.start.rmi=true

use carol naming (Multi JNDI)
carol.start.jndi=true

port number
carol.jvm.rmi.server.port=10

21

Chapter 3. CAROL Configuration

###
Configuration for Rmi JRMP
###

portable remote object delegate class
carol.rmi.PortableRemoteObjectClass

=org.objectweb.carol.rmi.multi.JrmpPRODelegate

Name service class for this protocol
carol.rmi.NameServiceClass

=org.objectweb.carol.jndi.ns.JRMPRegistry

here, for jndi we take the jndi.properties but
we can make some :
configuration for rmi jrmp jndi
java.naming.factory.initial property
carol.jrmp.context.factory

=com.sun.jndi.rmi.registry.RegistryContextFactory
java.naming.provider.url property
carol.jrmp.url

=rmi://localhost:1099

##
Configuration for Rmi IIOP
##

portable remote object delegate class for this protocol
carol.iiop.PortableRemoteObjectClass

=com.sun.corba.se.internal.javax.rmi.PortableRemoteObject

Name service class for this protocol
carol.iiop.NameServiceClass

=org.objectweb.carol.jndi.ns.IIOPCosNaming

configuration for rmi jrmp jndi
java.naming.factory.initial property
carol.iiop.context.factory

=org.objectweb.carol.jndi.iiop.IIOPReferenceContextWrapperFactory
java.naming.provider.url property
carol.iiop.url

=iiop://localhost:2000

##
Configuration for JEREMIE
##

portable remote object delegate class for this protocol
carol.jeremie.PortableRemoteObjectClass

=org.objectweb.carol.rmi.multi.JeremiePRODelegate

Name service class for this protocol
carol.jeremie.NameServiceClass

=org.objectweb.carol.jndi.ns.JeremieRegistry

22

Chapter 3. CAROL Configuration

here, for jndi we take the jndi.properties but we can make some :
configuration for rmi jrmp jndi
java.naming.factory.initial property
carol.jeremie.context.factory

=org.objectweb.jeremie.libs.services.registry.jndi.JRMIInitialContextFactory
java.naming.provider.url property
carol.jeremie.url

=jrmi://localhost:2001

##
Configuration for CMI
##

portable remote object delegate class for this protocol
carol.cmi.PortableRemoteObjectClass

=org.objectweb.carol.rmi.multi.CmiPRODelegate

Name service class for this protocol
carol.cmi.NameServiceClass

=org.objectweb.carol.jndi.ns.CmiRegistry

here, for jndi we take the jndi.properties but we can make some :
configuration for rmi jrmp jndi
java.naming.factory.initial property
carol.cmi.context.factory

=org.objectweb.carol.cmi.jndi.CmiInitialContextFactory

java.naming.provider.url property
carol.cmi.url

=cmi://localhost:2002

##
Configuration for LMI
##

portable remote object delegate class for this protocol
carol.lmi.PortableRemoteObjectClass

=org.objectweb.carol.rmi.multi.LmiPRODelegate

Name service class for this protocol
carol.lmi.NameServiceClass

=org.objectweb.carol.jndi.ns.LmiRegistry

here, for jndi we take the jndi.properties but we can make some :
configuration for rmi jrmp jndi
java.naming.factory.initial property
carol.lmi.context.initial

=org.objectweb.carol.jndi.lmi.LmiInitialContextFactory

java.naming.provider.url property
(only for carol, no importance)
carol.lmi.url

23

Chapter 3. CAROL Configuration

=lmi://nohost:0

##
Configuration for Interceptor
##

xtra properties for the jvm (only in use in the multi protocol case)

Protocol Interceptors initializer class
carol.jrmp.interceptors=

org.objectweb.carol.interceptor.myJRMPInterceptorInitializer

Protocol Interceptors initializer class
carol.iiop.interceptors=

.org.objectweb.carol.interceptor.myIIOPInterceptorInitializer

##
Configuration for Global JNDI
##

note that all other jndi properties than
url and context factory can be found in
the jndi.properties file or in the jvm
(like this one)
carol.jndi.java.naming.factory.url.pkgs

=org.objectweb.carol.naming

24

Chapter 4. CAROL requirements

This chapter describe the system requirements for CAROL.

Web sites index

General CAROL requirements
Java environment

A CAROL Java server need a JDK 1.2 or greater

A CAROL Java server need thecarol.jar file in it’s classpath

CAROL RMI JRMP requirements
Server Environement

A CAROL RMI JRMP Java server need a JDK 1.2 or greater

Client Environement

A CAROL RMI JRMP Java client need a JDK 1.2 or greater

A CAROL RMI JRMP Java client need thecarol.jar file in it’s classpath

CAROL RMI IIOP requirements
Server Environement

A CAROL RMI IIOP Java server need a JDK 1.4 or a 2.6 CORBA with RMI IIOP

Client Environement

A CAROL IIOP client need a CORBA 2.6

A CAROL RMI IIOP Java client need a JDK 1.4 or a 2.6 CORBA with RMI IIOP and thecarol.jar file in it’s

classpath

CAROL JEREMIE requirements
Server Environement

A CAROL JEREMIE Java server need a JDK 1.2 and a Jonathan 3.0 alpha10 or greater

Client Environement

A CAROL JEREMIE Java client need a JDK 1.2 and a Jonathan 3.0 alpha10 or greater

25

Chapter 5. Links and Reference

Web site list and book reference

Web sites index

ObjectWeb web sites
ObjectWeb

ObjectWeb main web site

CAROL

CAROL ObjectWeb web site

JONATHAN

JONATHAN ObjectWeb web site

JMX Management

JMX Management web site

MX4J

MX4J web site

Commons logging

Commons Logging web site

SUN web sites
Java Sun

Java Sun main web site

JDK 1.4

Java JDK 1.4 API

RMI

RMI documentation and tutorial web site

RMI IIOP

RMI IIOP documentation and tutorial web site

OMG web sites
OMG

OMG main web site

CORBA web page

CORBA web page

PortableInterceptor

PortableInterceptor documentation

26

Appendix A. Licence

This document is released under Free Documentation licence; the terms of this licence are detailed below.

A.1. Free Documentation Licence

GNU Free Documentation License
Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document "free" in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that

27

Appendix A. Licence

contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The "Document", below,
refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you". You accept the license if you
copy, modify or distribute the work in a way requiring permission
under copyright law.

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document’s overall subject
(or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount

28

Appendix A. Licence

of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work’s title,
preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title"
of such a section when you modify the Document means that it remains a
section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

29

Appendix A. Licence

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution

30

Appendix A. Licence

and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the
Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications

adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice

giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add

to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If
there is no section Entitled "History" in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the "History" section.
You may omit a network location for a work that was published at
least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications",
Preserve the Title of the section, and preserve in the section all
the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document,
unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section
may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements"

31

Appendix A. Licence

or to conflict in title with any Invariant Section.
O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version’s license notice.
These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

32

Appendix A. Licence

In the combination, you must combine any sections Entitled "History"
in the various original documents, forming one section Entitled
"History"; likewise combine any sections Entitled "Acknowledgements",
and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all
other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation’s users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of
the entire aggregate, the Document’s Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include

33

Appendix A. Licence

translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements",
"Dedications", or "History", the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except
as expressly provided for under this License. Any other attempt to
copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such
parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and

34

Appendix A. Licence

license notices just after the title page:

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the "with...Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License,
to permit their use in free software.

35

Glossary
RMI

(Remote Method Invocation) This is the standard specifications of the Java RPC.

RPC

(Remote Procedure Call) all remote method call protocol is a RPC.

JVM

(Java Virtual Machine) The Java virtual machine.

JDK

(Java Development Kit) A set a Java tools (compiler, jvm, library ...) for Java programs
development.

API

(Application Programming Interface) Interfaces allowing to use library in programs.

SPI

(Service Provider Interface) Interface for provider library plugging in an other library.

JNDI

(Java Naming Directory Interface) Standard API/SPI for J2EE naming interface.

OMG

(Object Management Group) Industrial group for computer standard specifications.

36

Glossary

CORBA

(Common Object Request Broker Architecture) OMG RPC specification.

IIOP

(Inter-operable Internet Object Protocol) CORBA RPC standard protocol on TCP/IP

JRMP

(Java Remote Method Protocol)Java RMI standard protocol

37

