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Abstract

An object-oriented event-driven virtual environment (VE) for viewing the simulation results of ¯exible multibody systems (FMS) is

developed. The VE interfaces with the following output devices: immersive stereoscopic screen(s) and stereo speakers; and a variety of input

devices including, head tracker, wand, joystick, mouse, microphone, and keyboard. The VE incorporates the following types of primitive

software objects: user-interface objects, support objects, geometric entities, and ®nite elements. Each object encapsulates a set of properties,

methods, and events that de®ne its behavior, appearance, and functions. A ªcontainerº object allows grouping many objects into one object,

which inherits the properties of its ªchildrenº objects. The VE allows real-time viewing and ª¯y-throughº of photo-realistic models,

vibrational mode-shapes, and animation of the dynamic motion of FMS. An application of this VE is presented for visualization of the

dynamic analysis results of a large deployable space structure Ð NASA's Next Generation Space Telescope. Published by Elsevier Science

Ltd.
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1. Introduction

1.1. De®nition of a virtual environment

Virtual or synthetic environments (VEs) are three-dimen-

sional, computer generated environments that occur in real-

time as manipulated by the user [1]. A VE is a projection of

either some real environment, a fairly realistic environment

that does not exist, or an unreal environment (e.g. for enter-

tainment and games). VEs provide a natural interface

between humans and computers by arti®cially mimicking

the way humans interact with their physical environment. A

VE includes facilities for interfacing with humans through

output of sensory information and input of commands.

Output facilities include an immersive stereoscopic display

and stereo sound. Input facilities include a hand-held 3D

navigation device such as a wand, joystick, or 3D mouse; a

2D navigation device such as a mouse or a touch pad; a haptic

feedback device such as gloves; devices for position and

orientation tracking of parts of the user's body (such as the

head and hands); a microphone for voice commands; and a

keyboard.

1.2. Major components of a virtual environment

In order for a VE to mimic the real environment it must be

able to couple the sensory output of the environment to the

real-time actions (navigation) of the user(s). Recent review

articles [2,3] and a book [4] provide an overview of the

current research on coupling the visual output (for recogni-

tion, tracking of moving objects, distance judging, search,

and size estimation), auditory output (for recognition and

sound localization), and kinesthetic/haptic output, with the

user's navigation (¯y-through and manipulation of objects)

in the VE. The studies reviewed conclude that, in order to

achieve a ªrealisticº VE (a VE in which the user is fully

immersed and feels as if he/she is actually ªpresentº), the

following capabilities are needed:

² high-resolution (minimum 1280 £ 1028� 24-bit color,

¯icker and ghosting free, stereoscopic display;

² frame rate of at least 15 frames/s;

² head tracking;

² large ®eld-of-view (FOV) . 408;
² light source based-rendering;

² photo-realistic textures;

² consistency (the object's position and appearance are

predictable, as like in a real environment);

² no disturbance from the real-world environment;
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² navigation tool that allows accurate direction pointing

and ¯y-through or walk-through in the environment.

In addition, the following capabilities are not essential,

but can enhance the realism of the VE:

² Recognizing the actions of the user such as touching or

clicking an object. Many VEs have included standard

graphical user interface objects such as buttons, dials,

menus, and checkboxes [3].

² Generating secondary motion effects where a user's

motion and actions in the VE generate motion of other

objects in the environment. This also includes computa-

tional steering, where the user can change the parameters

of the model in the VE and watch the simulation respond

to that change [5,2,6]. In Ref. [7] lumped masses, springs,

a simpli®ed ¯uid dynamics model, and collision detec-

tion were used to model leaves, clothing, a ¯exible ¯oor

mat, and stepping in a puddle. In that reference two-way,

one-way, and hybrid coupling were used between the

primary motion and the secondary motion objects. As

expected, two-way coupling requires much more compu-

tational power than the one-way or hybrid coupling

approaches. For practical real-life systems computational

steering was only achieved when the model was grossly

simpli®ed. For example, in Ref. [8] a virtual molecular

simulation system with computational steering was

developed. Real-time simulation was obtained for a

model of up to 450 atoms. They conclude that a

massively parallel computer is required for the simula-

tion of 10,000 atoms. Today's computers do not have

enough speed to simulate, in real-time, the dynamics of

104±107 DOF systems, which is the size of practical

models.

² Stereo realistic sound effects which can help the user

localize the sound producing objects.

² Two way natural language communication, including

voice commands. The VE can feature an intelligent,

voice-enabled virtual assistant, which can respond to

the user's speech [9].

² Support for haptic feedback devices such as gloves and a

pressure sensitive joystick with force feedback.

² Tracking multiple points on the user's body. This allows

the user to use multiple parts of his body (e.g. hands,

head, and legs) to interact with the VE. It also allows

displaying realistic ªavatarº for the user, which closely

mimics the user's actual movement.

1.3. Brief review of previous VE applications and studies

Several applications of VEs have been reported in the

literature in engineering, medicine, and entertainment. In

engineering, VEs have been used for:

² Visualization of 3D models of engineering systems (e.g.

geographic information systems for agriculture, geology,

urban planning, and telecommunications [10,11]; archi-

tectural visualization and walkthrough [12]).

² Visualization of numerical and experimental simulation

results (e.g. automotive crash visualization [13,14]; ¯uid

¯ow visualization for automotive and aerospace applica-

tions [15±17]).

² Computational steering and simulation-based design

(e.g. molecular simulation for material characterization

[8]; visualization and computational steering for a tractor

lift arm [5]; landing gear modeling [4]).

² Solid modeling [19±21].

² Virtual product development including design and virtual

prototyping (e.g. automotive assembly and design [4];

robotics modeling and design [20]).

² Virtual manufacturing and factory simulation [4].

² Tele-collaboration.

² Tele-presence [18].

² Training and education [22].

Most of the aforementioned VE studies use an object-

oriented approach to represent the various virtual objects,

which simulate the behavior of the real objects. In an object-

oriented paradigm, each object ªencapsulatesº a set of prop-

erties (data), which determines its appearance and behavior.

The objects are polymorphic, which means that objects of

different types can contain or respond to the same function

without regard to the object type. The objects are persistent,

which means that they behave in a natural predictable way.

Also, their properties can be modi®ed, they can be deleted,

and new objects can be added. In addition, different objects

can be grouped together into one ªgroup objectº. The last

characteristic allows a hierarchical, directed, tree-type

representation of the VE. The group object can be trans-

formed (translated, rotated, and scaled) as one entity. This

hierarchical object-oriented representation (including the

transformation hierarchy) is called the ªscene graphº [23].

Several general-purpose toolkits, based on the scene-graph

approach [24], have been developed for construction and

display of VEs. Among the toolkits that enable the devel-

opment of custom VE applications are: SGI's Inventor [25],

SGI's IRIS Performer 2.0 [26], WorldToolKit (WKT) from

Sense8 [27], MR Toolkit [28], muse SDK [29], Karma VI

[11] for GIS visualization, and Lego Toolkit [30]. These

toolkits consist of a collection of C/C11 functions and

classes for interfacing with the various hardware compo-

nents and navigation in the VE. The Virtual Reality Model-

ing Language 2.0 (VRML 2.0) [31] is a ®le format

speci®cation for scene-graph description of VEs on the

internet. VRML includes a set of primitive geometry, group-

ing, sensor, interpolator, texture map, and lights objects that

allow construction of dynamic interactive multimedia VEs.

1.4. Application of VEs to ¯exible multibody systems

A ¯exible multibody system (FMS) is a group of

interconnected rigid and deformable solid bodies (or
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components), each of which may undergo large 3D

motions. Typical connections between the components

include: revolute, spherical, prismatic, and planar joints,

gears, and cams. The bodies can be connected in closed-

loop con®gurations (e.g. linkages) and/or open-loop (or

tree) con®gurations (e.g. manipulators). A large number

of practical devices and systems can be modeled as an

FMS. These include: ground, air, and space transporta-

tion vehicles (automobiles, trains, airplanes, and space-

craft); manufacturing equipment; machines; manipulators

and robots; mechanisms; articulated earth-bound struc-

tures (such as cranes and draw bridges); articulated

space structures (such as deployable satellites, space tele-

scopes, and space stations); microelectro-mechanical

systems (MEMS), and bio-dynamical systems (human

body and animals). Physics-based techniques for model-

ing the dynamics of FMS generate the time histories of

quantities of interest in design and control of these

systems such as motion, strain, stress, and internal

forces. In addition, the models can also generate the

frequency response of the FMS including mode shapes

and natural frequencies. The majority of high-®delity

physics-based models of large FMS are based on the

®nite element method. Solid shell, beam, and truss

elements are used to model the various ¯exible com-

ponents. FMSs naturally lend themselves to the object-

oriented as well as the scene-graph representation

[32,20].

VEs can be used to visualize geometric and ®nite

element models of FMS as well as dynamic simulations

of the motion of the FMS calculated using physics-based

simulation codes. Users can move around the model of the

FMS while it is moving, and look at it from any position

or angle. The ªclose to real-lifeº visualization allowed by

the VE helps to quickly attain a better understanding of

the FMS and its dynamic response. Typical ways of

displaying an FMS in a VE include any combination of

the following:

² photo-realistic rendering of the FMS in its ®nal

environment;

² ®nite element mesh of the FMS with exploded

elements and/or element boundaries;

² animation of the motion of the FMS;

² shading of the FMS using a scalar response quantity

such as a stress/strain component, strain energy density,

and displacement component, etc.;

² animated mode shapes;

² 2D or 3D graphs of time histories of response quanti-

ties of interest.

A user interface inside the VE allows the user to

control the way the model is displayed. Typical user

actions include controlling the animation speed, setting

shading parameters and selecting the shading variable,

loading a model, moving objects (e.g. light sources and

model parts), selecting natural frequencies and mode

shapes, selecting graph variables, etc.

1.5. Objectives and scope of the present study

The objective of the present study is to describe an object-

oriented, scene-graph toolkit Ð IVRESS (Integrated

Virtual-Reality Environment for Synthesis and Simulation)

Ð which is speci®cally designed for visualization of FMS

®nite element simulation results. The Cave Automatic

Virtual Environment (CAVE) facility at NASA Langley

Research Center is used for demonstrating the effectiveness

of this toolkit. IVRESS can be used to construct a ªrealisticº

VE which supports the aforementioned ways of viewing

FMS and their simulation results. Unlike other VE

development toolkits that consist of a set of C/C11

T.M. Wasfy, A.K. Noor / Advances in Engineering Software 32 (2001) 295±315 297

Stereoscopic
Display

Tracking
Emitters

Display Computer

Keyboard Mouse /
Touch Pad

Microphone GlovesWand

Speakers

Ethernet Port

Support Computer

Ethernet Port

Support Computer

Ethernet Port

Stereo
Emitter

LCD Shuttered
Glasses with

Stereo Receiver

Wand
Tracking
Receiver

Head
Tracking
Receiver

Input
Devices

Output
Devices

Fig. 1. Schematic diagram of the VR system hardware.



functions and classes, IVRESS is a stand-alone program. An

object-oriented scripting language, IVRESS script, allows

describing the various objects and writing custom event

handling routines. Custom objects can be added to IVRESS

by writing C/C11 code for the object and linking that code

to IVRESS either dynamically (using a dynamic link

library), or statically (by linking with IVRESS object

®les). Four types of ªmodularº objects are used to de®ne

the FMS components, the data used for displaying the defor-

mation, motion, and mode shapes of the FMS, as well as the

user interface. These are: user-interface (UI) objects,

support objects, geometric entities, and ®nite elements. Each

object has a set of properties and methods that determine its

appearance, behavior, and actions. Also associated with each

object is a set of ªeventsº that are triggered when certain condi-

tions, initiated by the user or the passage of time, are met.

UI objects provide the functionality in the VE. Typical UI

objects include buttons, check boxes, slider bars, text boxes,

labels, graphs, tables, light sources, and selection tools. The

scene-graph capability is enabled by using the ªcontainerº

object, which is a special type of UI object that can contain

ªchildrenº objects. Children objects are displayed using the

homogeneous geometric transformation of the ªparentº

container. Children objects can be other UI objects (includ-

ing other containers), geometric entities, and ®nite

elements. Support objects contain information that can be

referenced by other objects. Typical support objects include

material properties, time-history data, and mode-shape data.

Geometric entities represent the geometry of the physical

components of the FMS. Finite elements represent the

numerical model of the physical components of the FMS.

2. Hardware of the virtual-reality facilities

A review of the input (navigation) and output

(display) devices of virtual-reality (VR) systems is

presented in Ref. [2]. A VR system includes output

and input facilities for interfacing with users, computers

for generating the VE, and facilities for communication

with other computers. Fig. 1 shows a schematic diagram

of the hardware con®guration of a typical VR facility

that was used in conjunction with IVRESS. A typical

VR facility, the CAVE, is shown in Fig. 2. The follow-

ing output facilities were used:

² Immersive stereoscopic displays. Stereoscopic viewing is

achieved by displaying the correct perspective view of

the model for both eyes of the user. This can be achieved

by using LCD shuttered glasses which are synchronized

with the screen refresh rate. When the correct perspective

view for the right eye is displayed, the left eye is black-

ened, and vice versa. An infrared emitter, which is linked

to the display output signal, sends the screen refresh trig-

ger signal to infrared receivers in the glasses to shutter

them. A refresh rate above 72 Hz. (usually 96 Hz.) will

result in a ¯icker free stereoscopic display. This techni-

que is used in the CAVE and ImmersaDesk. Stereoscopic

display can also be achieved by using head-mounted

displays. These consist of two small LCD screens

which display the correct perspective view for each

eye. In order to achieve a high level of immersion, one

or more large ¯at or curved screens, which allow an FOV

larger than 458, are used. For example, in the CAVE, four

¯at 3 £ 3 m2 screens arranged as a cubical room (one

front screen, two side screens, and a ¯oor or a ceiling

screen) are used (FOV , 90±1808). In the ImmersaDesk,

one ¯at 2 m screen is used (FOV , 458), and in the

VisionDome one hemispherical 5±10 m diameter screen

is used (FOV , 90±1808).
² Two or four speakers. The speakers can be used to output

spoken messages, sound effects, and data soni®cation.

The following input facilities were used:

² A position and orientation tracking device for tracking

the position and orientation of the user. This can be

achieved by using six or more ®xed electromagnetic or

ultrasonic emitters and a receiver placed on the part of

body to be tracked. The data from the receiver indicates

the distance between the receiver and each emitter which

is triangulated to obtain three position coordinates and

three orientation angles of the receiver. Tracking recei-

vers are usually placed on the stereo glasses for head

tracking in order to calculate the correct perspective

view, as well as a hand-held ªwandº for navigating and

pointing in the VE.

² Tracked 3D navigation and selection device such as the

wand. The wand has a pressure sensitive 2D joystick that

can be used to control the speed and direction of motion.

Also, the wand has two or more buttons that can be

programmed to perform special functions.

² 2D navigation device such as a mouse, touch pad, or

joystick.

² Microphone for voice commands.

² Keyboard.
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Typically, three computers are used: a display computer,

a support computer for sound input/output, and a support

computer for tracking and navigation (Fig. 1). The display

computer is either an SGI Onyx station with an In®nite

Reality 3 multi-pipe rendering engine or a Pentium III PC

with an open-GL accelerated graphics card. The sound

support computer is a Pentium III PC with a stereo digital

sound card. The tracking and navigation support computer

is also a Pentium III PC with interface boards for the track-

ing system and optional haptic-feedback gloves. Communi-

cation between the three computers is achieved by using a

standard Ethernet connection.

3. Features of the object-oriented VE

Fig. 3 shows the objects that can be used in the VE. These

can be divided into four categories: UI objects, support

objects, geometric entities, and ®nite elements (see Tables

1±4 for descriptions of the various available objects), and

are described subsequently:

² UI objects (Table 1) provide various functions in the VE.

Typical UI objects include container, button, check box,

dial, and graph. The container is a special type of object

that is used to group ªchildrenº objects. Typical uses of

these objects include displaying information to the user

in the VE as well as allowing the user to input data or

commands in the VE.

² Support objects (Table 2) contain data that can be refer-

enced by other objects. For example, a ®nite element

refers to a nodal positions list, a physical material, and

a material color support object. Operations such as arith-

metic (addition, multiplication, and division) and logical

(and, or, not,¼), can be performed on support objects.

² Geometric entities (Table 3) represent the geometry of

the physical components of the multibody system. Typi-

cal geometric entities include boundary-representation

solid, box, cone, and sphere.

² Finite elements (Table 4) represent the numerical model

of the physical components of the multibody system.

Typical ®nite elements include beam, shell, and solid

elements.

In addition, the scripting language, ªIVRESS-scriptº, can

be used to customize the VE for the multibody system appli-

cation. An IVRESS script ®le consists of subroutines and

objects. Each subroutine has a name, a list of input/output

parameters, and a main body of script commands. The script

is interpreted and executed one command at a time.

All objects have the same basic structure. Each object

de®ned in the script ®le has a name and may be followed

by a list of properties and property values. Property values

that are not explicitly de®ned are set to a default value. Also,

each object is automatically assigned a unique reference

number. The object can be referenced either by its name

or reference number. Each object has properties that
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determine its state and behavior, methods which are

functions that it can perform, and events that are triggered

when certain conditions are met. Common properties of UI

objects include translation, orientation, scale, foreground

material color name, background material color name, and

visibility. Common properties of geometric entities include

names of the material color, physical material, and image

texture support objects. Common properties of ®nite
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Table 1

UI objects

UI object Description

Container The container is a special type of UI object

that is used to group ªchildrenº objects.

Children objects are displayed using the

homogeneous 4 £ 4 geometric

transformation matrix of the ªparentº

container. Other UI objects (including other

containers, geometric entities, and ®nite

elements can be children objects. Each

multibody system component is represented

by a container that holds geometric entities

for representing the geometry of the

component and ®nite elements for

representing the numerical model of the

component. A ªshapeº property for the

container determines its shape appearance.

It can be set to 2D form, box, room, or no-

shape.

Observer The observer is used to de®ne the viewer's

head position and orientation. The observer

object is controlled by using the wand. The

user points the wand in the direction he

wants to move, then uses the pressure

sensitive joystick to control the speed of

motion in that direction. Also, by holding a

function key on the wand and using the

pressure sensitive joystick, the user can

rotate around the axis of the wand.

3D selection tool The 3D selection tool is used to select,

move, and touch objects in the VE. The 3D

selection tool is controlled using the wand.

The object consists of a selection bounding

box and two perpendicular vectors,

indicating the current spatial orientation of

the wand. The user points the wand in the

direction he wants the selection box to

move (the direction vector) and then uses

the pressure sensitive joystick to control the

speed of motion in that direction. Once the

selection bounding box touches an object, a

touch event for that object is triggered

which, in turn, executes an associated sub-

routine. Also, a click event is triggered

when the selection box is touching the

object and the user clicks the ®rst wand

function key.

2D selection tool Similar to the 3D selection tool, the 2D

selection tool is used to select, move, touch,

and click on objects. The 2D selection tool

consists of a selection bounding box which

can only move in a plane. The motion of the

2D selection tool can be controlled using

the wand's joystick, a mouse, or a touch

pad.

Light Light sources can be de®ned in the VE. The

properties of a light source include position,

spot direction, spot angle, color, and

intensity. Geometric entities and ®nite

elements of the multibody system are

rendered using the active light sources.

Table 1 (continued)

UI object Description

Button The button is used to perform prede®ned

functions which are triggered by user

generated events including clicking and

touching the button using a 2D or 3D

selection tool. The button changes its

appearance when it is touched. The button

appearance properties include color, shape,

and texture picture.

Check box The user toggles the check box on and off

by clicking on it using a selection tool.

Label The label displays single or multi-line text.

Text box The text box displays single or multi-line

editable text.

2D and 3D graphs The graph object displays static or animated

time-dependent plots. The graph reads its

data from a FE data support object.

Picture Displays a single picture or multiple

pictures (movies). The picture reads the

image data from an image data support

object. Standard image and movie formats

are supported.

Dial The dial points to a speci®ed dial position in

a continuous range. The dial object can be

used as a slider bar by dragging the dial

pointer to change the position of the dial.

Linear and rotary dials can be displayed.

Table The table is a spreadsheet object used for

displaying or editing text in a 2D tabular

form.

Color key The color key is a bar which displays the

mapping between the value of a shading

variable and the shading color. The color

key data is read from a ªcolor key dataº

support object.



elements include names of the physical material, material

color, and nodal positions support objects, as well as the

element nodal connectivity. Common methods of all objects

include: Draw and Check-events. The container methods

invoke the methods of all the children nodes. For example,

the container Draw method invokes all Draw methods of all

the objects contained within, including other containers.

Typical events include Touch, Press, and Click. For exam-

ple, the Touch event is invoked when a selection tool

touches the object. The Click event is invoked when a selec-

tion tool is touching the object and the user clicks on the ®rst

wand button. An event is triggered by calling a subroutine

associated with that event. The subroutine name consists of

the object name concatenated with an underscore and the

event name (e.g. object-name_event-name).

IVRESS can read and write ®le formats for geometry data

(e.g. VRML 2.0 [31], Open Inventor [25], DXF [33], and

LightWave [34]), ®nite element information (e.g. MSC/

NASTRAN [35], MSC/DYTRAN [36], ABAQUS [37],

and DIS [38]), pictures (e.g. Bitmaps, PNG, JPEG, and

GIF), movies (e.g. MPEG and AVI), and user interfaces

(e.g. VRML 2.0) ®les. In addition, IVRESS has facil-

ities for voice commands and communication with other

computers.

A ¯ow chart of a typical execution sequence is shown in

Fig. 4. When IVRESS is executed, an initial container called

ªWorldº is created. Then a default script ®le is loaded.

Inside the script ®le an entry-point command is used to

de®ne the starting subroutine. The starting subroutine

executes the following functions:

² open the raster display;

² set display parameters;

² load true-type fonts;

² load other included script ®les;

² place objects in appropriate containers;

² run the initialization subroutines;

² start the display loop.

All root containers should be placed inside the ªWorldº

container using the ªAddº container method. The Draw and

Check-events methods for the ªWorldº container are called

during the display loop at each frame update. These in turn

call the Draw and Check-events methods for all objects

inside ªWorld.º

4. Application of the VE to multibody systems

After starting the VE, the user can load a multibody

system simulation. A typical simulation script consists of

six main steps.

Step 1. Create a root container (for example, MBS)

for the multibody system and place it in the World

container.

Step 2. Create UI objects such as graphs, dials,

checkboxes, buttons, and containers (for organizing

and grouping other UI objects) for displaying custom

data for the multibody system. Those objects are also

placed in MBS.
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Table 2

Support objects

Support object Description

Geometric property This support object has the following properties:

Shell thickness.

Beam cross-sections and moments of inertia.

Physical material This support object has the following

properties:

Material type (linear, isotropic, orthotropic,

general,¼).

Values for the material parameters: Young's

modulus, Poisson ratio, density, thermal

conductivity,¼.

Material color Contains the color information which includes:

ambient color, diffuse color, specular color and,

shininess.

Image Stores a single picture or a series of pictures

(a movie). An image object has the following

properties:

Red, green, blue, and transparency intensities

for each pixel.

Horizontal and vertical pixel size of the image.

Number of pictures (1 for a still image and .1

for a movie).

Font Connectivity and control-point positions for

each character.

Nodal positions Stores a list of nodal positions. This support

object has the following properties:

The total number of nodes N.

A list of 3 £ N ¯oating point values. Each three

of these numbers correspond to the position

coordinates of a node.

FE data For storing ®nite element vectors such as nodal

positions, velocities, and accelerations; nodal

values (stress, strain, displacement,¼),

element values (stress, strain¼), other

response quantities of interest (relative angles,

internal force and torque, controller

actions,¼). It can store time-independent,

time-dependent, or frequency dependent data.

Variables This support object can store either single

values or arrays of values. The data type for

these variables include variant, string, integer,

single-precision ¯oat, and real.

Color key data Contains a list of colors and corresponding

normalized values between 0 and 1, which are

used for shading a model using a response

variable.

Texture map Contains texture parameters for mapping an

image texture on a geometric entity. These

include: name of the image support object,

algorithm for wrapping the picture on the

geometric entity, rotation, and repetition of the

picture.



Step 3. Load the multibody system data ®le. This ®le

includes the following objects:

± FE nodal positions support objects (see Table 2).

± Physical material support objects (see Table 2).

± Material color support objects (see Table 2).

± Finite-elements (see Table 4). Each ®nite element

has the following properties: names of the nodal

positions, physical material, material color support

objects, and element nodal connectivity.

± Geometric entities (see Table 3).

± Containers. Each container is a component of the

multibody system. Each container groups a number

of ®nite elements and corresponding geometric enti-

ties, which form the multibody system component (see

Fig. 5). All of the root containers should be placed

inside the MBS container. The motion of the geometric

entities can be interpolated from the motion of the

corresponding ®nite elements.

Step 4. Load time history and/or modal FE data support

objects. These support objects hold the position (velocity

or acceleration) vs. time or frequency, or selected para-

meters (e.g. stresses, strains, internal forces,¼) for the

nodes of the multibody system. The properties of these

objects include the total number of variables N, the

number of time steps S, and the value of each variable

at each time step.

Step 5. Set the ®le POSITION_FILE property of the MBS

container to the name of an appropriate FE data support

object. Although the container does not have a property

ªPOSITION_FILE,º the children ®nite elements have

that property. Setting that property for the container sets

it for all children objects inside that container. Set the

SHADE_FILE property of the MBS container to the

name of an appropriate FE data support object. Also, in

the case of displaying mode shapes, set the MODES_-

FILE property of the MBS container to the name of an

appropriate FE data support object. Also, set the FILE

property for the graphs to the name of an appropriate FE

data support object.

Step 6. Create a subroutine to handle the draw event of

MBS called MBS_DRAW. In the case of displaying a

motion animation, a function to set the support object
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Table 3

Geometric entities

Geometric entity Description

Solids Box De®ned by its center point and three

dimensions (width, length, and height).

Cone De®ned by its center point, top radius, bottom

radius, and height. A cylinder is a special case

of a cone with equal top and bottom radii.

Sphere De®ned by its center point and radius.

Indexed-face

set

De®ned by a list of position coordinates and

connectivities. In addition, a list of normals and

texture coordinates can also be speci®ed. These

lists are stored as variables, arrays and support-

objects of an appropriate type and referenced

by the indexed-face set using their names. If

the indexed-face set forms a set of

unintersecting closed surfaces, it represents a

ªboundary-repº solid.

Extrusion De®ned by using a closed curve for de®ning

the cross-section and a path curve for de®ning

the extrusion path of the cross-section.

Surfaces Elevation

surface

De®ned by the length and width of the surface,

the number of nodes along the length and

width, and a list of elevation values.

Surface De®ned by a 2D ordered matrix of nodes.

3Dface De®ned by either three (triangle) or four

(polygon) 3D points.

Curves Polyline An ordered list of 3D points that are connected

by straight line segments to form the polyline.

Line Two 3D points connected by a straight line

segment.

Spline An ordered list of 3D control points de®ne a

Bezier spline.

Circle De®ned by its center, radius, and a normal

vector to the plane of the circle.

Arc De®ned by its center, starting point, arc angle,

and a normal vector to the plane of the arc.

Ellipse De®ned by its center, two radii, a normal

vector to the plane of the ellipse, and a vector

in that plane de®ning the direction of the ®rst

radius.

Point A 3D point.

Table 4

Finite elements

Finite element Description

Solid (brick) Eight-noded solid brick element.

Shell (brick) Eight-noded shell element. The top shell surface is

de®ned by the ®rst four nodes and the bottom

surface by the last four nodes. The normal to the

shell surface is the vector connecting the two

surfaces.

Truss Two-noded truss element.

Beam Three-noded beam element.

Zero-length spring Used to impose an equal position constraint on two

nodes. It is used to de®ne hinge joints.

Prismatic joint De®ned by two nodes which de®ne the path of the

joint and a third node which is restricted to move on

that path.

Point mass De®ned by the value of the point mass at a node.

Rotary actuator De®ned by the direction of the rotation axis, and

three nodes corresponding to the actuator action

points.

Linear actuator De®ned using two nodes corresponding to the

actuator action points.



pointer to the next nodal positions is called. Linear inter-

polation is used to obtain the positions at any arbitrary

time between stored time steps.

5. Visualization capabilities

The object-oriented approach allows simultaneous view-

ing of multiple models in the same VE. Each model can be

loaded into its own container. A virtual model of the multi-

body system can be viewed in the following ways:

² A detailed geometric model including surface textures,

transparency, and light sources.

² The ®nite element mesh including the element edges and

exploded elements in order to delineate the element

boundaries.

² Animation of the motion of the ®nite element model and

the geometric model. The motion of the geometric model is

interpolated from the motion of the underlying nodes of the

FE model. The FE nodal positions at each time instant are

obtained from a FE data support object. Linear interpola-

tion between two successive node positions is used to

obtain the node position at any arbitrary time in between.

² Shading of the ®nite element model using a scalar response

quantity such as: a stress/strain component, combined stress/

strain, strain energy density, displacement component, and

combined displacement, etc. The FE data support object is

used to store the time history of the scalar response quantity.

² 2D and 3D graphs of time histories of response quantities.

² 2D and 3D static graphs of response quantities.

² Viewing animated mode shapes of the FE model shaded

using the displacement or strain/stress magnitudes.

The following tools for enhancing the visualization experi-

ence are provided in IVRESS:

² The ªobserverº object interfaces with the ªwandº in order to

allow the user to naturally move and rotate in 3D so that he

can examine the model from any angle.

² The 3D selection tool can be used to move the various

components of the multibody system which allows viewing

hidden parts of the model. The 3D selection tool is also used

to interact with the menu and with various UI objects.

² Multiple observers can be de®ned. For each observer a

3D selection tool is de®ned. The user can switch between

observers by clicking a function key on the wand. This

can be used to de®ne an observer for the menu and an

observer for the model such that when the user is exam-

ining the model the menu is not hindering his view and

vice versa.

6. Case study: application to the NGST

The foregoing object-oriented VE was used to view the

dynamic simulation results of a large deployable space
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structure Ð NASA's NGST (Fig. 6). The NGST is designed

as a deployable structure in order to ®t in the shroud of

the launch vehicle. The NGST's components can be

folded and unfolded either by using mechanical joints

(e.g. revolute, prismatic and spherical) or by in¯ation.

Low hysteresis joints and actuators, along with actuators

for active shape control, are used to maintain the precise

shape of the structure. The NGST has an aperture

diameter of 8 m, which is 10 times the collecting area

of the Hubble Space Telescope (HST) and mass of

about 3100 kg, which is 28% of the mass of the HST

[39,40]. It will be passively cooled to 708K by shading

it from the sun using a large in¯atable sunshield. The

NGST primary mirror, secondary mirror, and isolation

truss are deployed using revolute and prismatic joints,

along with rotary and linear actuators. The attitude

control system (ACS) is composed of four reaction wheels

mounted on revolute joints in a pyramid con®guration.

These provide the torque necessary for orienting the

NGST. The attitude is sensed using gyros and a star-tracker

camera. The ACS can maintain pointing accuracy of

0.4 arcs [40].

Detailed dynamic numerical simulations were performed

using the DIS code [38] for the vibrational response, attitude

control, and deployment of the NGST [41]. The vibrational

response was evaluated by converting the time domain

vibrational response of the NGST to the frequency

domain using an FFT algorithm. In the attitude control

simulation, the four reaction wheels along with a

proportional-derivative (PD) tracking attitude controller

were used to rotate the structure 58 around the Y-axis.

In the deployment simulation, PD controllers placed on
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Fig. 6. Rendered model of the NGST: (a) VRML model; (b) FE model; and (c) exploded elements view for the FE model.



the deployment actuators are used to adjust the position

of the space support module, isolation truss, primary

mirror, and secondary mirror.

The present VE is used for the visualization of the

geometric and FE models of the NGST as well as the afore-

mentioned dynamic simulation results. A menu system is

designed using the UI objects in order to allow changing the

viewing parameters inside the VE.

6.1. Menu

The menu allows changing the viewing parameters/settings
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Table 5

Main components of the NGST structure

Module Sub-module Description Model

Optical

telescope

assembly

(OTA)

OTA reaction

structure

X Secondary

mirror conical

mast

X Center rings

The reaction structure is a shell structure that

represents the main frame of the OTA.

Primary mirror The primary mirror is composed of eight petals.

Each petal is composed of two layers, 4 cm apart.

Each layer is 2 mm thick Beryllium shell. Each petal

is connected to the OTA supporting structure

through revolute joints. Rotary actuators along with

PD controllers, located at each revolute joint, are

used to deploy the primary mirror petals. In the

deployed con®guration, the petals are latched

together and to the supporting structure.

Secondary mirror The secondary mirror is connected to the conical

mast through longerons which are mounted on

prismatic joints. A linear actuator along with a PD

controller allows deployment of the secondary

mirror. Once the secondary mirror is deployed

latches are engaged to hold the longerons in the ®nal

deployed position.

Integrated

science

instrument

(ISIM)

This module comprises the science instruments of

the NGST along with its supporting structure.

Space support

module (SSM)

Support module This module contains all the power, controls

(including attitude control), and communication

systems of the NGST. It contains the reaction wheels

and the thrusters. Also, the sunshield is mounted on

this module.

Attitude Control

System

The ACS is inside the SSM. Attitude control is

achieved using four reaction wheels mounted in a

pyramid con®guration. The inertia of each wheel is

0.0948 kg m2. The maximum angular velocity of a

wheel is 100 rev/s.

In¯atable

sunshield

A simpli®ed beam type model of the in¯atable

sunshield is used.



inside the VE. The menu system consists of containers with the

shape property set to ªformº. A main container is used to hold

the entire menu system. Children containers are used to hold

the sub-menus. Each menu can consist of UI objects such as

buttons, check boxes, slider bars, and pictures. A script routine

is associated with the object's events. For example, the ªclickº

event for a check box can execute a function to change a

display property. The user utilizes the menu by clicking,

touching, or dragging the various UI objects with the 3D or

2D selection tools. A picture of the menu system used with the

NGST application is shown in Fig. 7a and the menu tree struc-

ture is shown in Fig. 7b.
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Table 5 (continued)

Module Sub-module Description Model

Isolation truss The purpose of the isolation truss is to thermally

isolate the cold ISIM from the warm SSM and

sunshield. This is a deployable truss, which is

deployed using revolute joints, rotary actuators and

PD controllers. The truss is mounted on a connection

disk that is connected to the ISIM.

Linear actuators

Fig. 8. The total power spectrum plot for the NGST primary mirror and two typical mode shapes of the NGST primary mirror shaded using the total vibration

amplitude.



6.2. NGST model

Fig. 6 shows a rendered model of the NGST. The model is

rendered by using:

² light sources;

² ambient, specular, and diffuse material colors;

² image textures mapped on the components' surfaces.

A VRML geometric model is shown in Fig. 6a. The ®nite

element model is shown in Fig. 6b. Fig. 6c shows the ®nite

element model with the ®nite elements exploded in order to

delineate the individual elements. Table 5 lists the main

components of the NGST. Each component is a container.

These components include sub-components which are also

containers. The components of the NGST are connected via

revolute joints, prismatic joints, and latches, which are also

placed inside containers.

The observer object enables the use of the wand to exam-

ine the NGST model from any angle and scale in the VE.
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Fig. 9. The total power spectrum plot for the NGST and two typical mode shapes shaded using the total vibration amplitude.
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Fig. 10. Attitude control system.

Fig. 11. (a) A snapshot of the VE display at the end-of the attitude control maneuver rendered using light sources. (b) Time history of the command slew. (c)

Slew error at the reaction wheel pyramid. (d) Slew error at the OTA conical mast. (e) Reaction wheel angular velocity.



6.3. Vibrational response

The vibrational response was generated by applying a

short duration disturbance force on the structure. An FFT

algorithm is then applied to the time history of the subse-

quent motion of all the FE nodes. The resulting frequency

response of the nodes gives the mode shapes at discrete

frequencies. The total amplitude of vibration A at a pre-

selected frequency f is given by:

A� f � �
XN
i�1

mi�x2
i1 1 x2

i2 1 x2
i3�

where N is the total number of nodes in the model, mi is the

mass of the ith node, and xij is the modal displacement of

node i in direction j. Fig. 8 shows two typical mode shapes

of the primary mirror along with the total power spectrum

plot for the vibration of the primary mirror of the NGST as

they are displayed in the VE. The mirror is shaded using the

nodal values of A. A mode shape is animated using the

following formula:

xij�t� � x0ij 1 S cos�at��xij� f �2 x0ij�
where t is the global time, f is the selected frequency, x0 is

the initial position of the node, S is the scale factor for

plotting the mode shape, and a is a time scale factor. The

values for xij� f � and x0ij are stored in a response data support

object. A slider bar allows selection of the frequency and

corresponding mode shape. The user selects the frequency

by dragging the slider pointer using the 3D selection tool.

Figs. 8 and 9 show, respectively, two typical mode shapes of

the primary mirror of the NGST and of the entire NGST

structure along with the total power spectrum.

6.4. Attitude control simulation

The NGST attitude control system (ACS) is composed of

four reaction wheels that provide the torque necessary for

orienting the NGST around three axes in space. This allows

an extra degree-of-freedom, which can be used to minimize

the mean wheel speed. The reaction wheels are mounted in a

pyramid con®guration (Fig. 10a). The attitude is sensed

using gyros and a star-tracker camera [40]. A PD controller

is used for attitude control of the NGST. The pyramid struc-

ture of the ACS is modeled using beam and truss elements

(Fig. 10b). The reaction wheels are also modeled using

beam and truss elements, along with lumped masses

to account for wheel inertia. Each reaction wheel is

connected to the pyramid structure using a revolute

joint. A rotary actuator along each revolute joint

provides the wheel torque. Each wheel can rotate at a

speed of up to 100 rev/s.

An attitude control maneuver of 58 around the inertial Y-axis

was simulated using DIS. The total time for the maneuver is
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Fig. 12. A snapshot of the VR display with some components moved to reveal the components underneath.



70 s. A constant acceleration/deceleration slew angle pro®le is

selected. The rise time is 35 s and the fall time is 35 s with zero

dwell time. The attitude is measured at the reaction wheel

pyramid assembly such that the attitude control actuators

and the sensors are collocated. Initially, all reaction wheels

are at rest. The sampling frequency for attitude measurement is

10 Hz. Fig. 11 shows a snapshot at the end of this maneuver.

The ®gure also shows time history plots of the command slew,

the slew error at the reaction wheel pyramid assembly, the

slew error at the OTA conical mast, and the angular velocity

of the two active reaction wheels. Note that only two reaction

wheels are active during this maneuver. The torque applied to

the two active wheels and the resulting angular velocity

pro®les of the two wheels are almost the same. The other
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Fig. 13. Snapshots of the NGST during the deployment maneuver rendered using light sources.



two wheels remain at almost rest. In Fig. 12, the 3D selec-

tion tool was used to grab some of the NGST components

and move them in order to better reveal the components

underneath.

6.5. Deployment simulation

The simulation starts with all the deployable compo-

nents of the NGST in the retracted position (Fig. 13a).

Deployment is performed in 120 s. and involves adjust-

ing the sunshield angle (angle between SSM and OTA),

then deploying the isolation truss, primary mirror, and

secondary mirror. These steps are executed in the

following order:

² Step 1. The sunshield angle is adjusted from time 0 to
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Fig. 14. Simultaneous viewing of motion and response time history plots.

Fig. 15. Snapshot of the NGST during the deployment maneuver shaded using strain energy density.



time 40 s. Two revolute joints along with two linear

actuators are used to perform this motion.

² Step 2. The isolation truss is deployed from time 40 to

time 70 s. A revolute joint along with a rotary actuator at

the mid-point of each of the isolation truss members are

used to deploy the isolation truss.

² Step 3. The primary mirror is deployed from time 70 to

time 100 s. Each primary mirror petal is attached to the

main structure using two revolute joints. A rotary actua-

tor located at the center of the petal axis is used to deploy

the petal.

² Step 4. The secondary mirror is deployed from time 100

to time 120 s. The secondary mirror is mounted on eight

prismatic joints. A linear actuator is used to deploy the

secondary mirror.

PD tracking controllers are used to control the linear and

rotary deployment actuators. A constant acceleration/decel-

eration trajectory for the motion of all deployable compo-

nents is selected with a zero dwell time. Fig. 13 shows

snapshots of the deployment motion of NGST rendered

using light sources. Fig. 14 shows the user's view of the

VE during deployment of the NGST. The ®gure shows a

snapshot of the NGST along with time history plots of the

trajectory for some of the deployment joints and the user's

menu. Fig. 15 shows a snapshot of the NGST during deploy-

ment shaded using strain energy density.

7. Concluding remarks

An object-oriented event-driven VE for viewing the

simulation results of FMS is developed. The VE incorpo-

rates the following types of primitive objects: UI objects,

support objects, geometric entities, and ®nite elements.

Each object encapsulates a set of properties, methods, and

events which completely de®ne its behavior, appearance,

and function. A container object allows grouping of many

objects into one object and this object inherits the properties

of its ªchildrenº objects. The VE interfaces with the VR

facilities-human input and output devices. The output facil-

ities include stereoscopic screen(s) and stereo speakers. The

input devices include head tracker, wand, joystick, mouse,

microphone, and keyboard. The VE allows real-time view-

ing of photo-realistic models, pre-computed mode-shapes,

and pre-computed dynamic motion of FMS.

The application of the VE to the visualization of the

dynamic response of a large deployable space structure,

the NGST, is described. A detailed ®nite element model

for the NGST is constructed. Each component of the

model is a container object, which includes ®nite elements

(trusses, beams, shells, and solids), geometric entities, as

well as other containers. The vibrational response (mode

shapes), attitude control, and deployment, for the NGST

were computed using a ¯exible multibody dynamics ®nite

element code, DIS, and then were displayed in the VE.
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