NetClamp Software User Manual

September 22, 2013

Aplysia Research Laboratory
Fishberg Department of Neuroscience
Friedman Brain Institute
Mount Sinai School of Medicine
New York, NY 10029

E. Brady Trexler, Ph.D.
ebtrexler@gothamsci.com
with
Klaudiusz R. Weiss, Ph.D.
klaudiusz.weiss@gmail.com
and
Elizabeth C. Cropper, Ph.D.
elizabeth.cropper@mssm.edu

Contents

[__Goals of Software]

IT Getting Started|

[[II Software Design and Implementation|

...
L6 TNEEWOTK - - o o o o o et e

B Real TmeN K Derioed Cl |

2.1 Derived from TCurrent!. o e
2.2 Derived from TCelll

|3 Data Acquisition Classes|

4 GUI Classes|
AT TGUINetworkForml. o e

10
10
12

13

Part 1
Goals of Software

NetClamp is a computer program that addresses the interrelated yet distinct purposes of modeling neural net-
works and performing dynamic clamp experiments. Its intuitive and powerful interface facilitates designing,
building and testing a network of cells with a variety of synaptic connections and intrinsic conductances. The net-
works can be hybrid in nature, containing both model cells and biological cells. The program operates in a pure
simulation mode if the network contains no biological cells. Inclusion of one or more biological cells results in
activation of the DAQ hardware, sampling of the membrane potential, and injection of the mathematically mod-
eled currents to “dynamically clamp” the cells. Combining any combination of model cells and biological cells in
NetClamp provides unprecedented flexibility for experimentation.

For users who wish to simulate neural network activity apart from dynamic clamp experiments, NetSim is
provided as an alternative to NetClamp. NetSim does not utilize or require data acquisition hardware or drivers
to be installed and thus can run on any computer.

NetClamp was inspired by and borrows heavily from DynamicClamp (v. 1.58) software from Farzan Nadim’s
laboratory at Rutgers University, NJ. This software could not have been written without the insights and lessons
learned with Dr. Nadim's instruction and support.

Part 11
Getting Started

Hardware requirements for NetClamp are E Series or M Series PCI boards from National Instruments.
Description of Software:
NetClamp and NetSim allow users to build networks of synaptically connected neurons with a variety of
different current types. Models also include stimulating electrodes for injecting currents. The available network
components are:

e Cell Types

— Model Cells compute the membrane potential in software, whereas
— Biological Cells sample the membrane potential from electrophysiologically recorded neurons.

— PlayBack Cells are used to regenerate a previously recorded cell membrane potential.
e Synapse Types

— Bi-Directional Synapses allow unidirectional as well as reciprocal communication between cells. Recip-
rocal synapses are commonplace in the retina, and this synapse configuration eases the creation of net-
works. Multiple currents can be added to either direction, producing compound synapses (e.g. AMPA
and NMDA).

— Gap Junction Synapses are simple resistive connections between cells.
e Current Types

- Hodgkin-Huxley Currents are voltage dependent currents with 3 HH style gates. They can be inserted in
cells or synapses.

— HH Synaptic Currents for cases when the postsynaptic conductance is voltage dependent.

— Gap Junction Currents are simple ohmic currents that only can be inserted into synapses.

— Voltage Clamp (PID) Currents that use a Proportional-Integral-Derivative algorithm to clamp a cell’s
voltage to a command value (essentially a software voltage clamp).

o Electrode Types

— Square Pulse Injection Electrodes inject current periodically according to user settings.

— Playback Electrodes inject current determined by a user supplied waveform. Users set the scale and offset
to be applied to the data in the file.

Part I1I
Software Design and Implementation

NetClamp source code is divided into three interconnected compo-
nents. First, a class framework provides the rules for setting up
a network of neurons with their respective synapses and intrinsic
currents. A second set of classes provides the interface to data ac-
quisition and experimental control hardware. A third set of classes + Divide software into 3 sections
builds a highly flexible user interface that, in conjunction with the Network creation, “wiring” and storage
network classes, can accommodate new ideas easily and robustly. Data Acquisition
The software was coded in the C++ language using the Embar- B g terace (GO
cadero RAD Studio development environment for Microsoft Win- [S N S
. . . provides a single interface. Implementations must
dows(R) operating systems. Thus, the present implementations of I entions of theNn e
the GUI and DAQ portions of the software are dependent on the » Keep 3 sections distinct and agnostic of the others.
Windows(R) environment, but one goal of the development process No section needs to know how the others are
was to create the network creation, wiring and storage portion without By oontcd. Eachscotion is, howCHGEEu
. . . . the others' interfaces.
this dependency. In realization of this goal, the collection of abstract
classes that forms the network logic respects the required interac-
tions with the GUI and DAQ components but is agnostic of how they are implemented. In the next section we
describe the network classes.

Design Considerations

1 Real Time Network Base Classes

At present, there are 4 types of objects that can exist in a NetClamp network: cells, synapses, currents and elec-
trodes. While the first three are obvious and usual, electrodes are objects that can inject arbitrary currents into cells.
With electrodes, a network of model cells can be stimulated similar to a network of biological cells, and resulting
behavior examined. A fifth element not yet implemented is a mechanism for inter-current communications, such
as would occur with a calcium dependent potassium current.

Overview of Real Time Network Class
Framework

* Inheritance » Wiring / Parent-Child
. Relationships

TNetwork
TElectrode TCurrent TNetwork

TCurrentUser

SF [@T

TCurre

L J Pre to Post TCz;;e TC:;e Post to Pre

TCell TSynapse

Figure 1: Diagrams of the Inheritance and Wiring relationships among the framework classes

To orient the reader, a bit of C++ and object-oriented programming jargon must be introduced. Classes begin
with a capital T, to denote a Type. Classes may be derived from a base class, and in doing so, inherit the data
and methods (functions) associated with that class. Pure virtual methods are placeholders for derived classes
to add behaviors. A class containing pure virtual functions is considered abstract. Abstract classes provide an
interface that is common to all derived classes. When creating a class framework such as pictured in Figure
the programmer considers which behaviors or methods should be common among some or all classes in that
framework, and introduces an abstract or base class to capture that commonality. By doing so, other parts of
the program can interact with classes derived from an abstract class without direct knowledge of the specific
kind of derived object they are dealing with. This mechanism for generalization or abstraction is what makes
object-oriented programming so appealing.

1.1 TRTBase

TRTBase is the pure virtual base class for all other classes in the network. It sets up streaming of network com-
ponents using the boost::serializatiorﬂ library. In addition, TRTBase provides an interface for communication be-
tween the GUI and the network classes. Each derived network component should own a GUI “form” that allows
manipulation of the parameters that define that component. For example, a model cell should have parameters for
capacitance and the potential at which the simulation/calculations begin, and the form that provides the interface
for the cell should have edit fields for capacitance and starting potential.

As most programming environments have GUI building blocks that are based on the idea of forms, TRTBase
provides a generic interface that can be used in numerous environments. To that end, there are 3 pure virtual
functions that derived classes must override to implement GUI behaviors.

e virtual void __ fastcall PopulateEditForm() = 0;
Interface for derived classes, called by GUI to update form edit components.

e virtual bool __ fastcall ValidateEditForm() = 0;
Interface for derived classes, called by GUI to read form values and check for appropriate input.

e virtual void xconst __fastcall GetEditForm() =0;
Returns a pointer to the form, usually called to display the form at the appropriate time.

Isee boost.org for more information

A 4th pure virtual function is virtual bool __fastcall Initialize () = 0;, which provides an interface for resetting
before running the simulation or dynamic clamp experiment.

It should be noted that most, if not all, derived classes will expose a method, Update(), that is called to calculate
the current, given time and voltage parameters. The information needed for each object’s Update() function varies;
since a single function signature could not be appropriate for all object types, each type introduces its own Update()
method. TRTBase does not have an Update() method. In each network object, Update() is a public method that calls
a protected pure virtual method, Dollpdate(). Usually it is sufficient to override DolUpdate() alone, since Update()
will simply check if a network object is set to Active, and then call DoUpdate() accordingly.

1.2 TCurrent

TCurrent is an abstract base class from which all currents must be derived. Users wishing to implement new
behavior most often need only subclass TCurrent, providing a concrete class that overrides the pure virtual method
of TCurrent:

e virtual double __ fastcall DoUpdate(double step, double Vkin, double Vdrv) = 0;

Dolpdate() is called by the public method TCurrent::Update(), and takes three parameters. First is step, which is
the number of milliseconds passed since last call. The second is Vkin, which is the voltage governing kinetics of
conductance. The third is Vdro, which is the voltage governing ionic flow through conductance. The two voltage
parameters allow the same current class to serve as an intrinsic cellular current as well as a synaptic current whose
kinetics are determined by the presynaptic voltage and postsynaptic driving force (see Section 2.1|below).

1.3 TCurrentUser

TCurrentUser is a base class for TCell and TSynapse, and provides methods common to both, such as AddCurrent()
and RemoveCurrent().

1.4 TCell

TCell is an abstract base class from which all cells must be derived. TCell owns one array each of Currents, Elec-
trodes, and Synapses. TCell’s Update(double step) member function calls the Update() functions of its Currents,
Electrodes, and Synapses in a loop, summing each contribution to calculate the total current and storing the value.
Derived classes normally do not need to override TCell::Update();

TCell::Update(double step) takes only one parameter - the time since the last call (in ms). Because a cell’s voltage
can be calculated (in a simulation) or sampled (in dynamic clamp), the membrane voltage must be set by one of
two methods before the call to Update(). The three pure virtual methods that determine the appropriate function
calls are:

e virtual bool __ fastcall IsVoltageDependent () = 0;
Used to determine if cell voltage is sampled (true) or calculated (false). If true, then the GUI must handle the
network as a dynamic clamp experiment.

e virtual double __fastcall SetVm (double Vm) = 0;
Sets the cell’s membrane voltage to value sampled from DAQ part of program.

e virtual double __fastcall CalcVm (double step) = 0;
Calculates membrane voltage according to an appropriate algorithm.

1.5 TSynapse

TSynapse is an abstract base class from which all cells must be derived. It is a base class for current containers
that facilitate communication between cells. TSynapse is bidirectional by design and has two arrays of TCurrents,
accessed by PreToPostCurrents() and PostToPreCurrents(). Arrays were chosen rather than single TCurrents, because

it is possible that a single neurotransmitter activates multiple postsynaptic receptors or a synapse might co-release
transmitters and peptides or some other effector. TSynapse owns pointers to the pre- and postsynaptic TCells,
accessed through Pre() and Post().

TSynapse’s Update method is called by the each of the cells that it connects.

e double __fastcall Update(TCell « const cell, double step);

Depending on the identity of the cell parameter (ei-
ther Pre() or Post()), the Update() methods of either
the PreToPostCurrents() or the PostToPreCurrents() are Figure 2: Flowchart for TNetwork Method Calls
called and their sum returned (see Listing .

Prepare For

1.6 TNetwork Simulation /
Experiment

TNetwork owns and organizes all other classes and
provides text based methods for creating, delet-
ing, connecting and modifying network components.
There is no need to subclass TNetwork.

TNetwork exposes an Update() method that takes
four parameters and returns a pointer to the fourth:

Query Network
By calling
InitializeNetwork()

\

e doublex __fastcall Update(double step, doublex / N \
Vm_in, doublex Vm_out, doublex I_nA); NO ~Are there any . YES
Voltage dependent
The step is the time (in ms) since the last call, Vm_in is 6 . Cells?

the array of sampled cell voltages for this time point,
Vm_out is the array of voltages of all cells in the net-
work, and I_nA is the array of scaled voltages for in-
jecting currents. Vm_in and I_nA can be empty if the
network is in simulation mode (no dynamic clamp-
ing). Within the TNetwork::Update() method, the Up-

Set up for N
Simulation
only

Arm ADCs
and DACs

N

date() methods of all cells in the network members are Initialize all Initialize all
. . c - Network
called and their currents stored in I_nA (see Listing Network Components
. n Components)
1). TNetwork also overrides and exposes an Initial- With With

TNetwork->Initialize() RS

ize() method, which must be called before calling TNet-
work::Update(). TNetwork::Initialize calls the Initialize()

method of all network components.

Get DAQ data and

Call
i TNetwork->Update:

Step time and
Call
TNetwork->Update!

Using TNetwork in a simulation or dynamic clamp
experiment

See the following flowchart which diagrams the order g

/ \|
of function calls when running a simulation \

NO . ,__NO
L nd of Run?
1. TNetwork->InitializeNetwork() to differentiate sim-
ulation (all model cells) versus dynamic clamp
(some voltage dependent cells). YES

2. TNetwork->Initialize(), to initialize all network

lot the datag”
components

3. TNetwork->Update(), repeatedly called to ad-
vance the network state and calculate currents if necessary

To promote a better understanding of the order of operations when using TNetwork::Update(), a pseudocode pro-
gram listing is provided.

Listing[T|shows the order of operations for calculating the cell voltages and currents in a network. The Update()
method of each component is either called directly by TNetwork->Update(), or within the Update() method of the
synapse or cell.

Listing 1: Pseudocode implementation of TNetwork::Update()

TNetwork ->Update (step /#ms#*/, *Vm_in /#*Volts*/, *Vm_out /#mV+*/, *I_nA /*Volts*/)
VmArray = for each VmDepCells->SetVm // DAC Volts covert to mV in SetVm()
VmArray = for each TimeCells->CalcVm
For each cell:

Cells->Update(step)
Icell = 0;
For each intrinsic current
Icell = Icell - Current->Update(step, Vm, Vm); // subtract
For each electrode
Icell = Icell + Electrode->Update(step); // add
For each synapse
Icell = Icell - Synapse->Update(thiscell, step); // subtract
Isyn = 0

For each synaptic current
If thiscell is Postsynaptic
Isyn += PreToPostCurrs-> Update(step, Pre->Vm, Post->Vm)
Else if thiscell is Presynaptic
Isyn += PostToPreCurrs-> Update(step, Post->Vm, Pre->Vm)

O O NONUTHWN -~

S e e Gy S G Y
U= WO DN = O

16
17
18

2 Real Time Network Derived Classes

2.1 Derived from TCurrent

Figure 3: Classes derived from TCurrent

Derived Classes that Implement
Current Function

TCurrent

THHCurrent TVoltageClamp_PID_Current
I'= Gmax * m”p * h*q * n*r * (Vm - Vrev) Uses Proportional-Integral-Derivative
algorithm to clamp cell voltage to a
TGapJunctionCurrent set potential
| = GMax * (Vpost-Vpre)

THHCurrent

There are a total of 7 parameters to set. THHCurrent Uses 3 voltage-dependent kinetic parameters (or gates), m(V),
h(V), and n(V), and 3 exponents, p, q, and r, to determine the fraction of Gmax available to conduct current. The
inclusion of a third voltage dependent gate, n(V), differs from standard Hodgkin-Huxley type implementations;
however, it increases flexibility by allowing two separate activation or inactivation gates with different kinetics.
Current is calculated according to

[=Gpax xm(V)P s« h(V)P xn(V) % (Viy — View) (1)

For each voltage dependent parameter (m(V), h(V), or n(V)) there are seven separate parameters that define its
voltage dependence. The equations that define each parameter (y(V)) are:

dy(t,V) _ yss(V) —y(t, V)
dt y(V)

1 — SSin
(14 exp(Y2))»

)

ySS(V) = + SSiin 3)

10

Tow — Thi
+ Thi (4)
(1 +exp(Tye "

]/r(v) =

Equation B|represents the steady state activity of the gates (from 0 to 1) as a function of voltage.]represents the
time constant of the relaxation to the steady state value at that voltage. Please note that in Equation 4 the absolute
value of k is used. This provides consistent interface to the T7j,,and T;,; parameters, which are interpreted as the
time constants to the left of and to the right of V), respectively.

Table 1: Parameters for THHCurrent

| Parameter Name | Values Notes
Vo(Vzero) -150..150 mV midpoint for sigmoid function
k -20..20 dimensionless term for sigmoid steepness
Tow 0..00 ms time constant for relaxation to steady state (left of V{)
Thi 0..c0 ms time constant for relaxation to steady state (right of Vj)
SS,in 0.1 minimum steady state value
w (den. exponent) 0,1,2,3... another way to change the steepness of the sigmoid functions
p,q,r (exponent) 0,1,23.. Cooperativity of gates: if 0, gate is not voltage dependent

Figure 4: GUI Interface for THHCurrent

Tooe: I
m
765.2

Parameter Value 400

Vzero (mV) -50 T

k 5 =

Tau low (ms) 50 Z

Tau hi (ms) 100 — EJ-DO

- z

SSmin 0 F55.0

den. exponent 1 mv 100] 100

p(exponent) 0 -150.0 Lock [# 151.0

Tao=: |

1.01
08

Parameter Value

Vzero (mV}) -50 E

k 5 0.4

Tau low (ms) 50 @

Tau hi (ms}) 100 .01

S5min o my 100 [100

den. exponent 1 -150.0 lock [¥] 1510

q (exponent) 0

Tao=: [

100.5

50
n

T w
Parameter Value =
Vzero (mV) -50 £ "
. > 2@
Tau low (ms) 50 5.5
Tau hi (ms) 100 mv_ 100 0 100
SSmin 0 -150.0 lock [@] 1510

den. exponent 1
r (exponent) 0

PRESS ENTER TO UPDATE PLOTS

Load Params
Gmax 5 pst 0 S Save Params

Erev 0 mV

11

TGapJunctionCurrent

Uses the voltage difference between pre- and postsynaptic cells to calculate current. The only parameter is Gmax,
in uS.

TVoltageClamp_PID_Current

This current is based on an article entitled "PID_without_a_PhD".

From wikipedia and a_sample_book_chapter, “The PID controller calculation (algorithm) involves three sep-
arate constant parameters, and is accordingly sometimes called three-term control: the proportional, the integral
and derivative values, denoted P, I, and D. Heuristically, these values can be interpreted in terms of time: P de-
pends on the present error, I on the accumulation of past errors, and D is a prediction of future errors, based on
current rate of change.”

A block diagram describing its function:

A 4

P K e(1)

—Setpoimi;@f Error - 1 K;.Je(r)dr {Z‘D—» Process |—Output—»
1]

A

D K, de(t)
dt

Y

When used, this should be the only current in a cell. There are 7 parameters to set:

Vcommand - the desired potential that the cell will hold.

Imax and Imin - the maximal and minimal limits on the integral term calculation.

Pgain, Igain, and Dgain - the respective gains of the Proportional, Integral and Differential components of the
calculation.

tau - an added stability term to slow the predictive effects of the D term.

It is advised that tests for parameters (tuning the PID controller) be performed on resistor/capacitor model
cells before attempting on live cell.

2.2 Derived from TCell
o TModelCell

— This cell calculates the voltage after the step by integration of

I=co)

— It takes two parameters - the membrane capacitance in nF and the starting membrane potential in mV.
¢ TBiologicalCell

— This cell implements the “dynamically clamped” cell. The user interface for this cell

12

http://www.eetimes.com/ContentEETimes/Documents/Embedded.com/2000/f-wescot.pdf
http://en.wikipedia.org/wiki/PID_controller
http://www.eolss.net/ebooks/Sample%20Chapters/C18/E6-43-03-03.pdf

e TPlaybackCell

— This cell takes a previously recorded voltage trace and “Plays back” this voltage. Ideally, this cell type
is used in a network as a presynaptic input to another cell. The Update() method for this cell returns 0
and ignores any intrinsic, synaptic or electrode currents.

3 Data Acquisition Classes

Under construction — for now, DAQ is hardwired to use NIDAQmx functions and is integral to GUI classes.

4 GUI Classes

The GUI has two main forms: TGUINetworkForm, for setting up the network and all parameters, and TGUIRun-
ModelForm for running the simulation/experiment and viewing the results.

4.1 TGUINetworkForm

The network setup form consists of 3 vertical panels (see Figure [5). The leftmost panel is where the network is
“drawn”. There are two arrangements for the network: the Square Lattice (SL) or the Circle Perimeter (CP). When
Create Cell is clicked, an image of a red circle appears that can be placed by the mouse pointer. In the SL config-
uration, the cell is constrained to be placed on a grid. In the CP configuration, the cell can be placed anywhere,
and the software decides where to draw it. The software provides two different network arrangements, or views,
to accommodate a variety of intercellular connections. The SL configuration is appropriate for networks in which
cells are connected only to their nearest neighbors, or adjacent cells. If the cells are connected to distant cells,
the SL view is insufficient. To accommodate multiple, distant connections, The CP view places all cells around
the perimeter of a circle, and connections are displayed as chords that link up the cells. With this arrangement,
each cell can have a connection with every other cell. The idea for the CP configuration was “borrowed” from the
SNNAP program from the Neurobiology and Anatomy department at the UT Health Science Center at Houston
Medical School.

Placing a cell on either the SL or CP panel opens a dialog box that asks which type of cell should be created.
Once cells have been positioned, synapses can be created by clicking Create Synapse. The mouse cursor changes
to a star shape. Two cells are chosen in order and a dialog box appears that asks which type of synapse should be
created. Electrodes are created by choosing Create Electrode and clicking on the appropriate cell. Again, a dialog
box appears that asks which type of electrode should be created. Current creation is handled similarly, but the
choice of current container, either cell or synapse, is made in the middle column that holds a heirarchical tree view
of the network.

The choices that appear in the dialog box are obtained from a object database. Classes derived from the base
classes described in Section [1| register themselves with this database. One of the benefits of the object oriented
model used is that the base classes (see Figure [I) and the main GUI classes do not need to know anything about
the derived classes: neither their specific implementation nor their unique GUL When a derived class is coded,
the GetEditForm() method is overriden to return a pointer to a GUI object that allows editing of that class’ pa-
rameters. TGUINetworkForm uses this pointer to display the GUI object in the rightmost column when a cell,
synapse, current or electrode is created, or when it is chosen in the heirarchical tree view. The agnostic behavior
of TGUINetworkForm with respect to the function and GUI of the derived classes means that TGUINetworkForm
source code is never altered when a new derived class is added to the application.

The dialog box that allows the user to choose which type of derived class the queries the database which classes
are available. Based on the user’s choice, a global class factory is petitioned to create the appropriate object. The
details of the class factory’s implementation are too involved to be included in this document, but the reader
should be aware of its presence and utility. Any new features to be added to the NetClamp software will likely be
accomplished by deriving from one of the base classes, and the source code for the derived class must contain the
appropriate measures to register the new class with the database and the class factory.

13

http://nba.uth.tmc.edu/snnap/

Figure 5: Image of application window upon start-up, displaying TGUINetworkForm.

132 NETClamp RealTime | [)

File MNetwork

(= Open... n Save As... ﬁ Clear Metwork ﬁ Run...

J Create Cell =9 Create Synapse 45’ Create Electrode

Square Lattice | Cirde Perimeter : % Add Current | Remove Ttem (Ctri-D)

/%% Network
J Cells
m Synapses
g.{" Electrodes

4.2 TGUIRunModelForm

The TGUIRunModelForm class contains DAQ and GUI code for performing the simulation/experiment (Figure
[e). Although the parameter edit labels are appropriate for dynamic clamp experiments, the parameter values also
operate for simulations. There are differences between how the parameters are used, however. The parameter
meanings for dynamic clamp experiments will be defined first, followed by identification of those parameters
whose meaning changes for simulations.

Dynamic Clamp Experiments

e Sample Rate is a request to the DAQ system. Since dynamic clamp experiments rely on DAQ hardware, and
Windows is not a real-time operating system, the time between each sample can vary. The software measures
the performance of the DAQ system and provides an analysis at the bottom of the form. The histogram shows
the number of samples of a given duration. Because the requested rate is not the true sample rate, it can be set

14

as high as possible. The effective sample rate is taken from the inverse of the average time between samples.
Experience has shown that with requested sample rates from 100 kHz to 500 kHz, the effective sample rate
can be as high as 33 kHz. The effective sample rate is highly dependent on the National Instruments board
installed, the operating system, and the CPU type and speed.

o The times before, during and after the application of dynamic clamping are set by the three edit boxes below
the sample rate input. Membrane voltages are sampled and calculated during all 3 periods, but clamping
currents are only injected in the middle segment.

e Initialize to Last Point works in conjunction with the Number of Repeats input. If checked, the Network::Ini-
tialize() is not called between repeats. This behavior allows continuity between the end of one run and the
beginning of the next, without resetting all integration values to their initial state.

e Save Data allows saving of all channel voltages in a tab delimited text file for import into other analysis
programs. If checked, and a suitable file name/path given, a file with columns for each cell will be written
after the data is plotted to the screen.

e CGM and the adjacent input box export the voltage traces as Computer Graphics Metafiles, with scale bars
included. This eases construction of figures.

e Up to 8 plots can be displayed at once. The list of all available cells is given in the top box, and the choices
are displayed below. The two arrow buttons and the tilde (~) are used to move plots to and from, or clear
the “displayed” list.

Simulation Experiments
For when no biological cell’s membrane voltages are sampled, the:

e Sample Rate assigned for a simulation sets the precise step size for each integration step, and

e Time Before and Time After are ignored

15

Figure 6: Image of TGUIRunModelForm

#2 Run the model......

Sample Rate (per channel) (Hz)
5000

B31/32
B&3

Coerced sample rate (Hz)

5000

Time before dynamic damp:

1 seC

Duration of dynamic damp:

25 sec

Time after dynamic damp:

1 sec

Choose Up to & Plots

—u =1 |
=

Taas: |

-30.4

36
40
44
48
52

mv (B31/32)

(z)d] -56

-60.3

seconds 2 4 B 8
0.0

20 22

Lock |V

10 12 18

25.0

Taas: |

W4

Initialize to Last Point Plots to Display

B31/32

Mumber of repeats 1
B&3

Save Data | File Location |

24!

mv (B63)

-40

)

-30.0 (L)
seconds 2 4 B 8 20 22 24 |
0.0 Lock |V 25.0

Repeats remaining: 1of1

Proaress Run Performance

MfA ... Model netwark

Average Number of Samples Per Call;

Average us per Read:
Maximum us single Read:

Total Mumber of Samples Requested:
Total Mumber of Samples Read:
Total Mumber of Successful Reads:

"DURING leop” Sample Time Histogram

MfA ... Model netwo
MfA ... Model netwao

Courts
L=

125000
125000
125000

us per sample

16

	I Goals of Software
	II Getting Started
	III Software Design and Implementation
	Real Time Network Base Classes
	TRTBase
	TCurrent
	TCurrentUser
	TCell
	TSynapse
	TNetwork

	Real Time Network Derived Classes
	Derived from TCurrent
	Derived from TCell

	Data Acquisition Classes
	GUI Classes
	TGUINetworkForm
	TGUIRunModelForm

