
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET
FAKULTET FOR MATEMATIKK, INFORMASJONSTEKNOLOGI OG

ELEKTROTEKNIKK

HOVEDOPPGAVE

Kandidatenes navn: Svein Løvland og Audun Mathisen

Fag: Datateknikk

Oppgavens tittel (norsk):

Oppgavens tittel (engelsk): Mobile Instant Messaging – Extending Jabber to Sup-
port Mobility

Oppgavens tekst:

This work will engineer a software system prototype for instant message ex-
change. The system is designed and implemented using Jabber, extended to
support mobility.

Several areas are to be investigated:

• handling of very thin clients, by reducing client processing and com-
munication

• multiple simultaneously active clients for single person

• integration of location information in presence/awareness protocol

• support for both transparent and opaque messaging wrt. recipient, tar-
get device and location

The project will be based on exchange of XML messages, using the Jabber
XML middleware and messaging protocols. This will ensure interoperability
with existing Jabber clients, and the other IM systems that Jabber supports.

The thesis will include a study of the Jabber architecture leading to an im-
proved system architecture and implementation, extended to support mobil-
ity.

The architecture of the system will be used as an example in the context
of the software architecture course SIF8056. This case study will comprise
at least an architecture assessment session to which both students and system
architects will participate.

Oppgaven gitt: 20. januar 2002
Besvarelsen leveres innen: 17. juni 2002
Besvarelsen levert: 14. juni 2002
Utført ved: Institutt for datateknikk og informasjonsvitenskap
Veiledere: Letizia Jaccheri og Hallvard Trætteberg

Trondheim, 14. juni 2002

Letizia Jaccheri
Faglærer



2



Preface

This master thesis was worked out at the Norwegian University of Science and
Technology, Department of Computer and Information Science in the period Jan-
uary to June 2002. The background for the master thesis is the project ‘Java 2
Micro Edition – Technology Driven Architecture Work’, which we conducted dur-
ing the fall 2001. Results of this thesis were an instant messaging (IM) system
which included a client application for J2ME devices. However, we wanted to
investigate what changes has to be done when making IM mobile beyond simply
developing clients for mobile devices.

Results of this thesis include suggestions for extensions which can be implemented
in an IM system to support mobility. As a proof of concept we developed the SIGN
prototype. SIGN consists of a modified Jabber server along with client applications
for mobile phones, PDAs and desktop PCs. Although SIGN is a prototype we be-
lieve it provides a platform on which further work can be done.

The architecture developed during the work was used in an assessment session in
the software architecture course SIF8056, given by our advisor associate professor
M. Letizia Jaccheri. Although the session took on a different form than intended,
we presented our work to the students, resulting in a discussion of our proposed
architecture and design. The session provided valuable suggestions for areas of
improvement.

We wish to thank our advisors, associate professor M. Letizia Jaccheri for valu-
able insights and comments and PhD. student Hallvard Trætteberg for a seemingly
endless repository of ideas for our work.

Trondheim, June 14. 2002

Svein Løvland Audun Mathisen
sveinlo@idi.ntnu.no audunma@idi.ntnu.no



ii Preface



Abstract

To extend instant messaging (IM) with support for mobility, merely providing
clients for wireless devices is not sufficient. Characteristics of wireless devices
and networks, and the context in which the system is used affects the users’ abil-
ity to communicate. This suggests that new functionality should be introduced to
make IM useful and efficient in a mobile setting.

In this master thesis we have studied how support for mobility can be introduced
in IM systems. New features and functionality for this purpose is demonstrated
in a prototype implementation of an IM system with mobility support – SIGN.
The open-source software Jabber and its open XML message protocol is used as a
framework for basic IM functionality. Upon this framework we added the function-
ality found important to support users on wireless devices. SIGN provides client
applications for mobile phones, PDAs and desktop PCs, developed with Java 2 Mi-
cro Edition, PersonalJava and Java 2 Standard Edition, respectively.

Providing users with extended awareness information is a fundamental feature of
the SIGN prototype. Mobile users can be in different environments and settings not
captured by the awareness information available in existing systems. The aware-
ness information in SIGN is structured along three independent axes – presence,
device and context. Extended awareness information is important to improve com-
munication between users in mobile environments.

In SIGN, control is pushed the towards the recipient rather than the sender. The
user can decide where and how messages shall be delivered. Limited device ca-
pabilities and cumbersome input mechanisms led to a differentiation of the func-
tionality among the client applications. The desktop client serves as an interface
to setting preferences and controlling the system, whereas the wireless clients only
offer basic awareness and IM functionality. Due to the low bandwidth and the
payment model of wireless networks, the user can limit the bandwidth usage by
applying restrictions on messages destined for the wireless clients.

We studied the Jabber software architecture and design before incorporating our
changes and extensions to Jabber. The Jabber reference architecture, with empha-
sis on component-based design and external as well as internal XML routing, is
meant to facilitate addition of functionality through components. However, our



iv Abstract

proposed extensions were not easily incorporated at an architectural or component
level. We were thus faced with the option of either duplicating existing function-
ality in new components or make changes in the source code. We found the latter
approach most suitable to implement the extensions within the scope of this thesis.
The Java implementation of Jabber used in this master thesis proved to be imma-
ture and not true to the important Jabber concept of component based design.

The XML based Jabber message protocol was easily extended to our needs, but
required low-level changes on the server. Parsing the messages on the wireless
clients caused no problems, as the messages exchanged in an IM system can be
characterized by small size, low complexity and low frequency.



Contents

Preface i

Abstract iii

Introduction xiii

1 Project Description 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 The SIGN prototype . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Main focus and evaluation . . . . . . . . . . . . . . . . . . . . . 4

1.5.1 User scenario . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 J2ME project . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 MobileIMS . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 XML in MobileIMS . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Project conclusions . . . . . . . . . . . . . . . . . . . . . 9

2.3 Jabber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 Jabber message protocol . . . . . . . . . . . . . . . . . . 10
2.3.2 Resources and priorities . . . . . . . . . . . . . . . . . . 13
2.3.3 The jabberd server . . . . . . . . . . . . . . . . . . . . . 13
2.3.4 JabaServer . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.5 Jabber clients . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Instant messaging services . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 ICQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 AOL Instant Messenger . . . . . . . . . . . . . . . . . . 17
2.4.3 MSN Messenger . . . . . . . . . . . . . . . . . . . . . . 18
2.4.4 Yahoo! Messenger . . . . . . . . . . . . . . . . . . . . . 18

2.5 Wireless devices . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.1 Device categories . . . . . . . . . . . . . . . . . . . . . . 20



vi CONTENTS

2.5.2 Wireless Java in SIGN . . . . . . . . . . . . . . . . . . . 21
2.5.3 Wireless networks . . . . . . . . . . . . . . . . . . . . . 23

3 The SIGN Prototype 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Conceptual model . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 User . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Instant Messaging . . . . . . . . . . . . . . . . . . . . . 27
3.2.3 Awareness information . . . . . . . . . . . . . . . . . . . 27
3.2.4 Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.5 Personalization . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.6 Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Awareness in SIGN . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.1 Existing systems . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Awareness model . . . . . . . . . . . . . . . . . . . . . . 31
3.3.3 Presence . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.4 Device . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.5 Location and context . . . . . . . . . . . . . . . . . . . . 33

3.4 Personalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 System Requirements 37
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.1 Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1.2 Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.3 Other services . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Awareness requirements . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Device requirements . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.1 Thin clients . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.2 Reduce amount of information exchanged . . . . . . . . . 41

4.4 Personalization requirements . . . . . . . . . . . . . . . . . . . . 41
4.5 Message routing requirements . . . . . . . . . . . . . . . . . . . 42

4.5.1 Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5.2 Simultaneous clients . . . . . . . . . . . . . . . . . . . . 43
4.5.3 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Architectural Choices 47
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 jabberd server . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.1 Base components . . . . . . . . . . . . . . . . . . . . . . 49
5.2.2 Component connection methods . . . . . . . . . . . . . . 51

5.3 Jaba server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3.1 Jaba components . . . . . . . . . . . . . . . . . . . . . . 52
5.3.2 Jaba design overview . . . . . . . . . . . . . . . . . . . . 54

5.4 Architectural choices . . . . . . . . . . . . . . . . . . . . . . . . 57



CONTENTS vii

5.4.1 Layered design . . . . . . . . . . . . . . . . . . . . . . . 57
5.4.2 Internal components . . . . . . . . . . . . . . . . . . . . 60

5.5 Jaba vs. jabberd . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.5.1 jabberd . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.5.2 Jaba . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Design 63
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2 SIGN system architecture . . . . . . . . . . . . . . . . . . . . . . 64
6.3 Server design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3.1 Jabber component . . . . . . . . . . . . . . . . . . . . 67
6.3.2 Process component . . . . . . . . . . . . . . . . . . . 69
6.3.3 Users component . . . . . . . . . . . . . . . . . . . . . 71
6.3.4 Services component . . . . . . . . . . . . . . . . . . . 72
6.3.5 Component dependency . . . . . . . . . . . . . . . . . . 73

6.4 Client design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.4.1 Design overview . . . . . . . . . . . . . . . . . . . . . . 76
6.4.2 Message exchange and processing . . . . . . . . . . . . . 77

7 Implementation and Deployment 79
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.2 Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.2.1 Users component . . . . . . . . . . . . . . . . . . . . . 80
7.2.2 Jabber component . . . . . . . . . . . . . . . . . . . . 81
7.2.3 Process component . . . . . . . . . . . . . . . . . . . 82
7.2.4 Core component . . . . . . . . . . . . . . . . . . . . . . 84

7.3 Client implementations . . . . . . . . . . . . . . . . . . . . . . . 85
7.3.1 Mobile phone - J2ME client . . . . . . . . . . . . . . . . 85
7.3.2 PDA and desktop clients . . . . . . . . . . . . . . . . . . 85

7.4 XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.4.1 Parsers . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.4.2 Jabber XML message protocol . . . . . . . . . . . . . . . 87

7.5 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.5.1 SIGN server application . . . . . . . . . . . . . . . . . . 90
7.5.2 Database . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.5.3 Mobile phone client . . . . . . . . . . . . . . . . . . . . 91
7.5.4 PDA client . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.5.5 Desktop client . . . . . . . . . . . . . . . . . . . . . . . 92

8 Evaluation 93
8.1 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.1.1 Scenario description . . . . . . . . . . . . . . . . . . . . 94
8.1.2 Scenario run and results . . . . . . . . . . . . . . . . . . 94

8.2 Wireless client development . . . . . . . . . . . . . . . . . . . . 101



viii CONTENTS

8.3 Changes to Jabber . . . . . . . . . . . . . . . . . . . . . . . . . 101

9 Related Work 105
9.1 Similar efforts and related work . . . . . . . . . . . . . . . . . . 106
9.2 MOTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
9.3 CAMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
9.4 The PRAVATA prototype . . . . . . . . . . . . . . . . . . . . . . 111
9.5 ConNexus and Awarenex . . . . . . . . . . . . . . . . . . . . . . 112

10 Conclusion 115
10.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
10.2 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A Requirements Specification 121
A.1 Functional requirements . . . . . . . . . . . . . . . . . . . . . . 122

A.1.1 Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
A.1.2 Desktop client . . . . . . . . . . . . . . . . . . . . . . . 124
A.1.3 Wireless clients . . . . . . . . . . . . . . . . . . . . . . . 126
A.1.4 Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A.2 Non-functional requirements . . . . . . . . . . . . . . . . . . . . 130
A.2.1 Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
A.2.2 Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
A.2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . 131

B SIF8056 Presentation 133

C SIGN Source Code 149
C.1 Mobile phone client . . . . . . . . . . . . . . . . . . . . . . . . . 150
C.2 PDA client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
C.3 Desktop client . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
C.4 Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

C.4.1 New classes . . . . . . . . . . . . . . . . . . . . . . . . . 245
C.4.2 Modified classes . . . . . . . . . . . . . . . . . . . . . . 254

References 272



List of Figures

1.1 Scenario of use . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Distributed Jabber network . . . . . . . . . . . . . . . . . . . . . 14
2.2 The J2ME enabled Siemens SL45i . . . . . . . . . . . . . . . . . 21
2.3 The Handspring Treo 180 . . . . . . . . . . . . . . . . . . . . . . 22
2.4 The Siemens SX45 PocketPC . . . . . . . . . . . . . . . . . . . . 23

3.1 SIGN conceptual model . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Awareness along three axis . . . . . . . . . . . . . . . . . . . . . 31

4.1 High level system overview . . . . . . . . . . . . . . . . . . . . . 38
4.2 ’Forward message’ flow chart . . . . . . . . . . . . . . . . . . . . 43
4.3 ’Deliver message’ flow chart . . . . . . . . . . . . . . . . . . . . 44

5.1 jabberd and base components . . . . . . . . . . . . . . . . . . . . 50
5.2 Jaba packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3 Relations between Jaba components . . . . . . . . . . . . . . . . 53
5.4 Jaba class diagram overview . . . . . . . . . . . . . . . . . . . . 55
5.5 Jaba class diagram for XML processing . . . . . . . . . . . . . . 56
5.6 Jaba sequence diagram for message processing . . . . . . . . . . 57
5.7 Jaba class diagram for XML elements . . . . . . . . . . . . . . . 58
5.8 Jaba user class diagram . . . . . . . . . . . . . . . . . . . . . . . 59
5.9 Layered server . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.10 Internal server components . . . . . . . . . . . . . . . . . . . . . 61

6.1 SIGN high-level system architecture . . . . . . . . . . . . . . . . 65
6.2 Class diagram of Jabber in SIGN . . . . . . . . . . . . . . . . 68
6.3 Class diagram of Process in SIGN . . . . . . . . . . . . . . . . 70
6.4 Interaction between Process and other components . . . . . . . 71
6.5 UserHome interface . . . . . . . . . . . . . . . . . . . . . . . . 72
6.6 Class diagram of Service in SIGN . . . . . . . . . . . . . . . . 74
6.7 Dependency between SIGN components . . . . . . . . . . . . . . 75
6.8 Sequence diagram of message delivery . . . . . . . . . . . . . . . 75
6.9 Client design overview . . . . . . . . . . . . . . . . . . . . . . . 76
6.10 Client message handling . . . . . . . . . . . . . . . . . . . . . . 77



x LIST OF FIGURES

7.1 Jaba ER diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.2 SIGN ER diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.3 getMaxSize() implementation . . . . . . . . . . . . . . . . . 83
7.4 CD directory structure . . . . . . . . . . . . . . . . . . . . . . . 89

8.1 Evaluation scenario . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.2 Mobile phone screen shot . . . . . . . . . . . . . . . . . . . . . . 96
8.3 Desktop screen shot(1) . . . . . . . . . . . . . . . . . . . . . . . 97
8.4 Desktop screen shot(2) . . . . . . . . . . . . . . . . . . . . . . . 97
8.5 PDA screen shot . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.6 Desktop screen shot(3) . . . . . . . . . . . . . . . . . . . . . . . 99
8.7 Desktop screen shot(4) . . . . . . . . . . . . . . . . . . . . . . . 100
8.8 Desktop screen shot(5) . . . . . . . . . . . . . . . . . . . . . . . 100
8.9 Desktop screen shot(6) . . . . . . . . . . . . . . . . . . . . . . . 101

9.1 Overview of the MOTION Architecture . . . . . . . . . . . . . . 107
9.2 The MOTION Messaging Architecture . . . . . . . . . . . . . . . 108
9.3 The CAMP adaptation mechanism . . . . . . . . . . . . . . . . . 110
9.4 The PRAVATA architecture . . . . . . . . . . . . . . . . . . . . . 112
9.5 ConNexus screenshot . . . . . . . . . . . . . . . . . . . . . . . . 113
9.6 The Awarenex components . . . . . . . . . . . . . . . . . . . . . 114



List of Tables

2.1 Jabber message types . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Possible � show/ � values . . . . . . . . . . . . . . . . . . . . . . 12
2.3 IQ States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 ICQ presence values . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 AIM presence values . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 MSN Messenger presence values . . . . . . . . . . . . . . . . . . 19
2.7 Yahoo! Messenger presence values . . . . . . . . . . . . . . . . . 20

3.1 Device input mechanisms . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Presence states . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1 Selection criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Component connection methods . . . . . . . . . . . . . . . . . . 51

6.1 Additional UserHomemethods . . . . . . . . . . . . . . . . . . 73

7.1 Device id values . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.2 Preferences and parameters . . . . . . . . . . . . . . . . . . . . . 84
7.3 GUI-component methods . . . . . . . . . . . . . . . . . . . . . . 86
7.4 Desktop– and PDA client Jabber-component methods. . . . . . 87
7.5 Directory description . . . . . . . . . . . . . . . . . . . . . . . . 90

8.1 Actions on mobile phone . . . . . . . . . . . . . . . . . . . . . . 95
8.2 Actions on PDA . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.3 Actions on Desktop PC . . . . . . . . . . . . . . . . . . . . . . . 96
8.4 Changes to Jaba components . . . . . . . . . . . . . . . . . . . . 103

9.1 Areas to compare . . . . . . . . . . . . . . . . . . . . . . . . . . 106
9.2 Comparable work . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A.1 Requirements labelling . . . . . . . . . . . . . . . . . . . . . . . 122
A.2 Presence states . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.3 Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
A.4 Filter rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128



xii LIST OF TABLES



Introduction

Since the late 1990’s instant messaging (IM) services on the Internet have become
increasingly popular. The allow people connected to the Internet to communicate
with family, friends and colleagues all over the world and be notified of their cur-
rent presence. One of the first of such services, ICQ, was launched in November
1996. It grew quickly to be a popular service and only six months later 850 000
users had registered. Today several similar services are available and used by mil-
lions of users all over the world.

IM systems provide awareness information and by checking the system one can
determine the availability of other users. “Online”, “Do not disturb” and “Away”
are examples of presence states a user can set and thereby communicate to others.
There has been huge interest in developing systems for collaborative work, provid-
ing people in business organisations with information about colleagues. Knowing
if a colleague is busy in a meeting or available in the office can make it easier
to know when to place a call or make a visit to the office. Although many sys-
tems have been developed aiming to support collaborative work, instant messaging
services are often used instead or in addition.

In recent years the proliferation of powerful mobile devices has enabled the
use of such systems while on the move. Several IM services now provide clients
that can run on wireless devices. However, little has been done to make IM mobile
beyond simply offering clients for wireless devices. We believe this is insufficient
as the ability to communicate may be reduced due to characteristics of the wireless
devices, such as cumbersome input methods and small screens. Further on, an
IM system supporting mobility enables use in environments that affect the user’s
ability to read and write messages.

In our work we have identified several extensions which we believe will offer
better support for mobility in IM systems. To demonstrate these concepts we have
implemented a prototype IM system called SIGN. Using the open source software
Jabber as basis we have implemented our suggested extensions. SIGN offers client
applications for mobile phones, PDAs and desktop PCs.

This master thesis presents the results of our study of IM systems, suggestion
for improved mobility support and how we proceeded with the prototype imple-
mentation. The latter includes a comparison of two available Jabber implementa-
tions and how we changed the architecture and design to realize the SIGN proto-
type.

A part of our work consisted of using our architecture and design in the soft-



xiv Introduction

ware architecture course SIF8056, where we conducted an architecture evaluation
session in collaboration with the students.

The following sections give a short description of the content of each of the
chapters in this report.

Chapter 1 - Project Description
This chapter outlines the work to be performed in this master thesis. It gives a short
introduction to the problem, our research questions and our work process.

Chapter 2 - Background
This chapter presents background information on four different topics which are
important to the work of this master thesis.

Chapter 3 - The SIGN Prototype
This chapter presents the conceptual model of the SIGN prototype we have devel-
oped. Further on, the main areas of the model are discussed.

Chapter 4 - System Requirements
The chapter presents a discussion on the main functional requirements for the
SIGN prototype. The requirements specification which is the basis for this dis-
cussion is presented in appendix A.

Chapter 5 - Architectural Choices
Two different Jabber implementations, jabberd and Jaba, are presented and com-
pared in relation to architecture and design. Subsequently architectural choices for
extending Jabber are discussed.

Chapter 6 - Design
In this chapter we present the architecture and design of the SIGN prototype, in-
cluding both server and the different client applications.

Chapter 7 - Implementation and Deployment
A detailed description of server– and client implementations is presented in this
chapter. In addition we give a description of how the system can be deployed.

Chapter 8 - Evaluation
In this chapter we evaluate the work done in this master thesis.

Chapter 9 - Related Work
This chapter presents four different efforts similar to the SIGN prototype.

Chapter 10 - Conclusion
The conclusion describes the important results from this thesis and suggestions for
further work.



Chapter 1

Project Description



2 Project Description

1.1 Introduction

Today some instant messaging (IM) services support mobility by providing IM
clients on PDAs. Some services also offer support for Short Message Service
(SMS) to enable users with mobile phones to interact with their IM service. In
supporting mobility the IM services will be used in situations and environments
were IM earlier has not been available. When sending messages or chatting with
another user one could earlier presume that this user was by his desktop computer
at the office or home. With the support for mobility this is no longer true, as the
user now can be anywhere using a wireless device.

Many of the IM services now supporting mobility offer their IM clients on
wireless devices but have done little about the functionality of the service. We be-
lieve that in order to provide true mobility to IM services merely offering clients
for wireless devices is not enough. Making IM mobile will affect the communi-
cation among users on several areas, thus the IM service should be enhanced with
functionality supporting the use of IM in a mobile environment. Below is a short
summary of the key issues that should be addressed when making IM mobile.

Wireless devices and IM clients To support mobility the first problem to be solved
is enabling access to IM from wireless devices. This is to some extent pro-
vided by some IM services today. However this often includes the use of
technologies such as SMS, telephony and WAP.

Awareness information Enabling the user to use IM away from the desktop com-
puter means that the user can be anywhere and still connected to the IM
service. This should be reflected by the awareness information provided by
the IM system.

Multiple devices Going from one device, the desktop PC, to many different de-
vices introduces a range of new aspects. One of the major tasks is handling
the interaction between the different devices and the transition when the user
moves from one device to another. Due to the different nature of the wireless
devices, functionality might also differ across devices.

1.2 Research questions

Our work is to engineer a software system prototype for instant messaging. This
prototype shall provide users with access to IM from wireless devices and net-
works. Below we present the research questions we have stated for this project.



1.3 The SIGN prototype 3

1. How can existing IM functionality be extended to support mobil-
ity and make IM useful in a mobile environment?

2. What new features should be introduced to support users in mo-
bile environments and settings?

3. How can IM be implemented on wireless devices used in every
day life?

In this project we shall use Jabber to support basic IM functionality. Jabber is
an open source instant messaging system and it implements an open XML message
protocol.

4. What changes are necessary to the architecture and design of an
existing IM system, Jabber, to extend the system with support for
mobility?

5. Is XML a suitable message format for communication using thin,
wireless clients?

6. How can the existing Jabber XML message protocol be extended
to support mobility?

During our work with Jabber we will in addition investigate if Jabber is a suit-
able framework for further work on IM and development of systems based on
XML.

1.3 The SIGN prototype

The SIGN prototype that will be developed in this thesis is a system extending
instant messaging to wireless devices and aims to solve the issues briefly discussed
in previous sections. The system will provide basic IM functionality and clients
for various wireless devices will be developed. More specific, IM clients will be
developed for mobile phones, PDAs and desktop PCs. The awareness information
in the system will be extended to reflect users in a mobile environment and the
system will be enhanced with functionality supporting the use of wireless devices.

1.4 Prerequisites

Some prerequisites are given in this master thesis and they are presented below.

Jabber - Open source software

One of the prerequisites of this project is to use the open source software Jabber.
Jabber is server software providing, among others, basic IM functionality.

One important aspect of Jabber is enabling Jabber users to communicate with
users of other commercial IM services. In fact this was one of the main reasons



4 Project Description

for the initialisation of the Jabber project - “finding a solution to the soup of in-
compatible IM systems that meant that it was necessary to run a whole host of
different programs just to talk with friends”. Jabber offers interfaces to the major
IM services and translates the Jabber message protocol to the specific service and
vice versa.

XML message protocol

The open Jabber XML message protocol shall be used. XML is the only infor-
mation exchanged between the clients and the server in Jabber meaning that any
device capable of making a connection over an IP network and processing XML
can in principal be made into a Jabber client. Interoperability with existing clients
shall be ensured, but extensions to the protocol can be made to implement new
functionality and extend the awareness information.

For limited devices such as mobile phones it might be necessary to use a mes-
sage protocol other than XML, one that is less resource demanding.

Wireless devices and J2ME

IM clients shall be developed for several wireless devices where one client shall be
developed using the language J2ME. Other languages may be used for development
at the server side and for desktop and PDA client development.

1.5 Main focus and evaluation

The focus in this master thesis will be on defining an IM system supporting aware-
ness and mobility and implement a working prototype of the system. In addition
to demonstrating IM mobility concepts it will be a system that can be used and
extended in further studies on IM, mobility and awareness.

We will not conduct usability tests of large scale. During development of the
prototype we will continuously test the system, but this can only establish that the
system behaves according to the specification

To demonstrate the functionality and test that the system behaves as expected
we will, upon prototype completion, run through the scenario described in the fol-
lowing section. This description is only a short summary of the scenario and the
actual test, detailed description of different actions and the results will be presented
in chapter 8.

1.5.1 User scenario

The scenario we intend to run through to test and demonstrate the system is de-
picted in figure 8.1.

Three devices will be used during the run of the scenario. This is a J2ME
enabled mobile phone, a PDA and a desktop PC. The scenario will simulate a day



1.6 Process 5

Figure 1.1: Scenario of use

where the user starts out at home in the morning connected with her mobile phone.
She then leaves home for a lunch meeting at a café. At the café she uses her PDA.
Later she arrives at the office and continues the day in front of her desktop PC.

During this time a series of events will occur, triggering different actions in the
IM service. Messages will be sent and received and awareness information will
change.

1.6 Process

This section defines how we intend to proceed in our work with this thesis. First
we present the process of defining the functionality SIGN shall provide, then how
the architecture of the system is developed and finally how we will implement the
system.

The SIGN prototype

Before developing the SIGN prototype, we define a conceptual model for the sys-
tem. The challenge is to identify the problem areas which need to be addressed
when making an IM system mobile. Based on the conceptual model and proposed
solutions to the problems, we arrive at the functional requirements to the system.

Some of the concepts which shall be investigated are stated in the description
of the thesis. Others will result from a study of existing IM systems and our own
experience with use of instant messaging. Further on a study of literature on the
subjects of instant messaging, mobility and awareness will be conducted in order
to serve as inputs to this task. The conceptual model for SIGN along with other
key-points, is presented in chapter 3.

Based on this chapter, we will specify the requirements to the different parts of
the SIGN prototype. Chapter 4 gives a motivation for these requirements and the
full requirement specification is listed in appendix A.



6 Project Description

SIGN architecture and design

As stated in the thesis description, the Jabber XML middleware shall be used in
the system prototype. Once the requirements to the system are established, the
system architecture shall be made such that the requirements can be incorporated
into Jabber. In order to accomplish this, a thorough study of the Jabber architecture
must be performed. However, as there are two available Jabber implementations
– the reference implementation jabberd and a Java implementation Jaba – both of
these will be studied in order to choose which one is best suited for the purpose.
The results of this study are presented in chapter 5.

The architecture for the server-part of the system will depend on the architec-
ture of the chosen Jabber version. Regardless of which we choose, focus will be on
minimizing the changes to the existing architecture and design. As for the client
applications, the key issue will be isolation of the Jabber-related parts of the design.

In addition to being presented in chapter 6 of this thesis, the resulting archi-
tecture shall be communicated to the students in the software architecture course
SIF8056, given at NTNU. The slides from our presentation to the students can be
found in appendix B.

Implementation

The SIGN system will consist of four different applications: the Jabber based
server and client applications for mobile phones, PDAs and desktop PCs. We plan
to have basic1 client applications up and running at an early stage of our work,
before the requirements to the system are settled and an architecture for the clients
has been developed. In our J2ME project [17] we developed IM clients which ex-
changed XML with the server, and they are therefore a natural starting point for
the client applications in SIGN.

By experimenting with the clients and the server software, we will investigate
possible solutions for extending Jabber with the additional functionality needed by
SIGN.

The basic client applications will be fully implemented when the client require-
ments and architecture is made.

Although we plan to base our development on prototyping, we do not intend to
follow any formally defined software development processes. Chapter 7 describes
details of the server and client implementation and deployment.

1With basic we mean applications that can connect to a Jabber server, but with very limited
functionality and user interface.



Chapter 2

Background



8 Background

2.1 Introduction

In this chapter we present background information on four different topics which
will be important to the work of this thesis. We start off by giving a short descrip-
tion of a project which we conducted during the fall 2001 – ’J2ME - Technology
Driven Architecture Work’ [17]. Java 2 Micro Edition (J2ME) was used in an
XML-based instant messaging system and the lessons learned from the project
will be applied in this thesis.

The following section provides an introduction to the Jabber middleware and
the Jabber message protocols, which will be a fundamental part in our work.

Then follows an overview of the four most popular instant messaging services
on the market – ICQ, AOL Instant Messenger, MSN Messenger and Yahoo! Mes-
senger. The section gives a short description of the functionality of these services,
their availability on wireless devices and finally the presence information offered.
Knowledge of existing services is important when specifying the functionality of
SIGN.

A section on wireless devices concludes this chapter. First we present char-
acteristics of different categories of devices, then two different Java environments
targeted at wireless devices and finally some properties of wireless networks which
are fundamental for using wireless IM clients.

2.2 J2ME project

This master thesis is based upon the project ’J2ME - Technology Driven Archi-
tecture Work’ [17], which was written in the ninth semester course ’SIF8094P1
Prosjektarbeid’ at the Department of Computer and Information Science, NTNU.
The goal for the project was to use a technology as a starting point and investigate
what implications use of that specific technology had on a system’s architecture and
development process. Our chosen technology was Java 2 Micro Edition (J2ME).

2.2.1 MobileIMS

In addition to an evaluation of J2ME, a part of the project consisted of using J2ME
in an implementation of a software system, and designing the system to take into
account the possible constraints use of J2ME had on the system. We developed an
instant messaging system called MobileIMS, using J2ME to implement clients for
Java enabled phones and PalmOS PDAs.

One of the goals for MobileIMS was to differentiate the client applications
according to device characteristics and capabilities, with regards to screen-size,
processing power and memory budget. In other words, the more capable devices
should provide more functionality compared to less capable devices.

As the system itself was not the main focus of the project, the functionality was
restricted to basic messaging, contact list management and distribution of presence
information.



2.3 Jabber 9

The server part of the system was written using Java 2 Standard Edition (J2SE).
The non-functional requirements to the server were heavily relaxed, as the main
goal was to pinpoint implications imposed by the J2ME clients. Further on, persis-
tent data storage, such as user accounts and contact lists, was not implemented as
we considered it to be beyond the scope of the project. As a consequence of this,
the resulting system was nothing more than a rudimentary prototype of an instant
messaging system.

2.2.2 XML in MobileIMS

Messages exchanged between the MobileIMS server and clients were XML for-
matted. Use of XML has several advantages, such as platform independence and
ease of use, but comes at the cost of processing requirements and bandwidth usage.
During our work we found three different XML parsers for J2ME. We ended up
using a parser called kNanoXML, which is a small, non-validating DOM parser.

The MobileIMS message protocol was not written in accordance with any ex-
isting standards, as it was kept as simple as possible.

2.2.3 Project conclusions

The main conclusion of the project was that J2ME in itself, had less architectural
implications on the system than we had expected. Rather, the limited capabilities
of the J2ME devices constituted for most of the implications. However, as J2ME
was designed to run on wireless devices with limited capabilities, one must take
the implications into account when developing a system where J2ME is used.

At the start of the project we were uncertain if the XML-parsing would be too
processor intensive for the relatively limited mobile phones. We concluded that this
was not the case, however we found XML to be rather bandwidth-intensive when
used over a GSM data connection, which is only capable of 9600 kbps. However,
GPRS is gradually replacing GSM for data traffic in the mobile networks, and
with the higher bandwidth in GPRS bandwidth usage becomes less of an issue.
Further on, IM services are hardly usable in a circuit switched network like GSM
anyway, as the cost of staying connected for longer period becomes too high. A
packet switched network like GPRS is on the other hand a perfect match for IM
systems, as the user pays for the amount of data transferred rather than the time he
is connected.

2.3 Jabber

The Jabber Communications Platform is an open-source, XML-based platform
which provides basic networking and communication services. One application
available on the platform is the Jabber instant messaging service, which provides
standard IM functionality, such as messaging, contact lists management and distri-



10 Background

bution of presence information. Jabber will be used as the core part of the server
in SIGN.

There were several reason why Jabber was chosen for this project. The first and
most obvious reason is the advantages associated with using existing components.
We could have continued work on the server developed in the MobileIMS system,
but using Jabber allows us to keep focus on the key areas as described in section 1.1.

The second reason is that Jabber is open-source, which allows us to extend the
server’s functionality to deal with multiple device categories and provide richer
awareness information.

The fact that Jabber is based on XML is another reason as we had experience
with XML from the MobilIMS system. In addition XML allows platform indepen-
dence.

Finally, one reason for choosing Jabber was to get a better understanding of
emerging XML based technologies.

The following subsections will present the Jabber message protocol and other
parts of the Jabber platform.

2.3.1 Jabber message protocol

The Jabber message protocol is an open, XML based protocol managed by the Jab-
ber Software Foundation (JSF).1. The fact that it is open enables third party devel-
opers to develop their own client applications for any platform capable of parsing
XML messages. This is in contrast to the IM services [13, 2, 23, 31], which use
periodically changed and proprietary message protocols to prevent unauthorized
client applications to be developed.

The Jabber protocols have been submitted by the JSF to the Internet Engineer-
ing Task Force (IETF) for consideration as an Informational RFC [20]. Port 5222
is also registered by Internet Assigned Numbers Authority (IANA) as the standard
port for Jabber.

The different entities of the Jabber architecture pass data to each other using
XML streams, which is essentially the exchange of data in the form of XML frag-
ments in “streaming” mode over a network connection. During the lifetime of a
connection between two entities, a complete XML document will be sent from
each entity to the other, one fragment at a time.

There are three top-level XML fragments exchanged between the entities: <mes-
sage/>, <presence/> and <iq/>, each containing attributes and child nodes.
These elements are described in then following subsections. For more details
see [1].

Message element

The most fundamental part of an instant messaging system is the ability to ex-
change messages between the user, and the <message/> element provides this

1see http://www.jabber.org/jsf.html



2.3 Jabber 11

facility. Each message has one or more attributes and sub elements, which are
presented below.

The attributes to and from contain the sender and recipient addresses, respec-
tively. <message/> can also contain a type attribute, which gives an indication
to the recipient as to what sort of content the message contains. Table 2.1 presents
the possible values and a short description of their meaning. An id attribute may

Table 2.1: Jabber message types

Value Description
normal The normal message type used for simple messages

that are often one-time in nature. Similar to an e-
mail message.

chat Chat messages which usually carry a message that is
part of a live conversation.

groupchat The groupchat message type is used to notify the
user that the message comes from a conference
room.

headline Headline messages are designed to carry news style
information, often accompanied by a URL.

error Error messages signifies that the message is convey-
ing error information to the client.

optionally be included as well, and is used to uniquely identify a response to an
outgoing message.

Sub elements of <message/> include <subject/> which is used to carry
a message subject for normal type messages, but is usually not used for other
message types. The <body/> sub element carries the body of the message. If the
message type is error, the <error/> sub element contains the error message.
Messages can optionally contain a <thread/> sub element, which contains an
identification to group together chat messages belonging to one specific conversa-
tion.

Presence element

The <presence/> element is used to convey awareness of a user’s presence
state. Users can either be available or unavailable. In the first case, the user is
currently connected and messages destined for him are delivered immediately. In
the latter case, the user is not connected and messages are delivered the next time
he connects to the server. The user himself controls the availability information
through the client application. However, when the user disconnects, the server will



12 Background

communicate the user’s unavailability if he has sent his availability beforehand.
The availability information for a particular user is distributed to other users

that subscribe to that user’s availability information. Each user can require to au-
thorize other users before they can subscribe to his availability information.

In addition to the availability information, presence messages can also be qual-
ified with more detail. The two sub elements <show/> and <status/> are
used for this purpose. The <show/> tag can contain one of the values listed in
table 2.2. The show value is often presented graphically using different icons in
the client applications. The <status/> tag often contains a textual description

Table 2.2: Possible � show/ � values

Value Description
normal The normal situation where the user is available. If

the � show/ � tag is not present, this is used as the
default value.

chat Similar to normal, but in addition indicates that the
user is open to conversation.

dnd Dnd stands for “Do not disturb” and means that the
user is available but does not want to be disturbed.
Messages are, however, immediately sent to the user.

away The user is temporarily away from the client

xa xa stands for “extended away” and indicates that the
user will not return to the client for some time.

of the show mnemonic, for instance “Extended away” when show is xa. However
it can also contain a value set by the user such as “Out to lunch!” when the show
value is set to away.

IQ element

The IQ element is the third of top-level XML elements in the Jabber message proto-
col. IQ stands for “info/query” and is used for sending and retrieving information
between entities. IQ messages are exchanged as a request/response mechanism
similar to the GET and POST mechanism in HTTP.

An IQ element can be in one of the four states described in table 2.3. The IQ
element is used for various purposes and to distinguish between them, namespaces
are used in each IQ message. There are too many namespaces to list here, but the
most commonly used are namespaces for registration, authentication and contact
list management. For a detailed description of the various uses of the <iq/>
element and the different namespaces see [1].



2.3 Jabber 13

Table 2.3: IQ States

State Description
get Request information.

set Set information

result Show the result if the get or set was successful.

error Specify the error if the get or set was not successful.

2.3.2 Resources and priorities

In Jabber each online client is attached to a resource and each resource has an
associated priority. The resource is a string appended to the jid, for instance
peer@vinstra.net/mobile, used by the server to distinguish between the
connections. The priority is a positive integer used by the server to decide which
resource, or client, a message shall be sent to. Larger numbers have higher prior-
ity, which means that a resource with priority 5 outranks a resource with priority
1. In the event of a tie between priorities, messages are sent to the most recent
connection.

2.3.3 The jabberd server

The jabberd server is the original server implementation of the Jabber protocols for
instant messaging and XML routing. jabberd is written in C for Linux and Unix,
and is both open-source and free software. The project was started by Jeremie
Miller in 1998, and has since then been worked on by the Jabber community to the
current version, which at the time of writing, is 1.4.2.

Distributed architecture

The Jabber network architecture is modelled after the e-mail system where users
have one server – the home server – that they connect to. User accounts and user
data, such as contact lists and preferences, are stored on the home server. User
identities are unique for each server, and by appending ’@’ and the server address,
globally unique user identities are created, ex. peer@vinstra.net where peer is the
local unique name and vinstra.net is the server address. These identities are called
Jabber IDs or jids.

An instance of jabberd is running on the server jabber.org, where anybody
can sign up for a user account. However, anybody can set up their own Jabber
server that exchanges information with other servers over the Internet through a
component called Etherx. This component communicates with the local Jabber
server and remote Etherx components. When a user sends a message to a user on
a different home server, the message is forwarded as shown in picture 2.1. In this



14 Background

Figure 2.1: Distributed Jabber network

way a decentralized, distributed network of servers can be established.

Transports

A transport is a program running on the server that acts as a gateway between
the Jabber server and other, non-Jabber instant messaging systems. The transports
allow Jabber users to connect to other IM systems to send and receive messages.
Translation between the Jabber message protocol and the other IM message proto-
col must be done in each transport. Although work is being done on standardizing
instant messaging message protocols [7, 6], no standard has yet to be embraced by
the industry. As a result, message protocols are changed frequently to monopolize
the user accounts. This means that the transports must be updated every time a
change has occurred.

2.3.4 JabaServer

JabaServer (Jaba) is an open-source Java implementation of Jabber, distributed un-
der the BSD licence . It is being developed as a project under SourceForge2 , and is
at the time of writing at version 0.6. Jaba uses Apache’s Jakarta Avalon3, which is
a framework for server development using Java. The framework contains tools for
among other things connection handling, thread pooling and logging.

Jaba is at the time of writing quite basic compared to the original jabberd
implementation. Transports are for instance not implemented, neither is online user
account registration, which must be done directly in the database. However, the
handling of core protocol elements <message/>, <iq/> and <presence/>
are implemented.

2see http://sourceforge.net/projects/jabaserver/
3see http://jakarta.apache.org/avalon/



2.4 Instant messaging services 15

2.3.5 Jabber clients

Jabber client applications must be written in accordance with the Jabber message
protocol, but does not necessarily have to implement every feature of it. Clients
can be written for any platform capable of parsing XML, and implementations
are available for most operating systems. This includes � Messenger for J2ME
and JabberCE (alpha version) for Windows CE or PocketPC devices. The clients
do not have to be neither open source nor free software, but many clients can be
downloaded from [14].

The clients communicate with the users home server over a TCP socket con-
nection, and uses XML for all communication.

2.4 Instant messaging services

Instant messaging services on the Internet have become extremely popular. The
awareness information provided by these services enables users to check the sta-
tus of people in their contact list, check if they are available, busy or offline. IM
systems can span the entire Internet such that users all over the world can commu-
nicate or they can be used internally in an organization between colleagues. Either
way they provide the users with information about other users and a wide variety
of ways of communication.

Four services are established as market leaders among the IM services, with
user bases in the millions. These IM services were originally developed for desktop
PCs, but as wireless Internet access is becoming increasingly common, versions for
wireless devices have been released.

Each of these services are presented in the following subsections, with a de-
scription of each system’s:

• functionality

• availability on wireless devices

• presence

2.4.1 ICQ

The first, and perhaps most well-known, IM service is ICQ [13] – pronounced ”I
seek you”. The first version of ICQ was released late 1996 and instantly became
tremendously popular, with 850000 users registering during the first half-year of
existence. Since then, the user-base has grown consistently, exceeding 50 million
registrations by the end of 1999.

From being a way of exchanging short text messages between computers, the
service has been extended to include functionality such as file transfer, SMS mes-
saging, tele-conferencing and multi-user gaming. ICQ was bought by America
Online for $400 million in 1998 [29].



16 Background

Table 2.4: ICQ presence values

Presence Icon

Available

Free For Chat

Away

N/A (Extended Away)

Occupied (Urgent Messages)

DND (Do Not Disturb)

Privacy (Invisible)

Offline

Wireless ICQ

Beta versions of ICQ are available for both PocketPC and PalmOS. Both versions
are stripped down versions of the desktop client.

In ICQ the contact lists are stored locally on each device or PC. When using
ICQ from more than one machine, contacts must thus be added to each machine.
Although this can be bothersome, it allows a user to keep a smaller contact list on
the wireless device.

Presence

The presence values, and the corresponding icons, available in ICQ are listed in
table 2.4. The system does not allow the user to define other presence values but
ICQ users can write a status message to describe the reason for a presence value
when selecting it. This message is not automatically distributed to contacts, but can
be read by other users on request. In ICQ there is a one-to-one mapping between a
presence value and an icon.

Free for chat is not a presence value per se, but is used to set up chat room to
which user other users can join. This initiates a different form of messaging, where
messages are broadcast to all users currently “in the room”.



2.4 Instant messaging services 17

2.4.2 AOL Instant Messenger

AOL Instant Messenger [2] (AIM) is America Online Time Warners instant mes-
saging client. In addition to messaging, AIM also provides content such as stock-
quotes and news headlines.

With the acquisition of ICQ, AOL has more than 130 million users worldwide
[29], a domination that led the American Federal Communications Commission to
force AOL to open up its technology to other companies [9].

Wireless AIM

Versions of AIM are available for PalmOS and PocketPC devices. As with ICQ,
these are stripped down versions of the desktop application.

AIM also provides an interface for mobile phone users called AIM Wireless [3],
however it is available in USA only. Users with operators AT&T, Sprint or Voice-
Stream can use AIM by sending SMS messages, using a WAP-enabled phone or
using a Nokia 3390. When a user is connected by a mobile phone, other users
are made aware of this by displaying a mobile phone icon in the buddy lists. Co-
operation with the network providers is required for this to work, and there is no
information available on the web-site regarding support for this in countries outside
the United States.

Presence

AIM has three presence values: Available, Away and Offline. Away can be qualified
with an auto-response text message i.e. a message which is automatically sent as a
reply to other users when they send a message. The icon in table 2.5 displayed in
other users contact lists when the presence is set to Away.

No icons are used for the Available and Offline states. Instead, offline contacts
are displayed in a separate group.

Table 2.5: AIM presence values

Presence Icon

Available N/A

Away

Offline N/A



18 Background

2.4.3 MSN Messenger

MSN Messenger [23] is Microsoft’s instant messaging client, and is, according to
data released by Media Matrix Inc., the most popular instant messaging service, ex-
ceeding 29.5 million unique users primo 2001 [24]. With Microsoft’s domination
on the personal computer market, the popularity of MSN Messenger should come
as no surprise. Further on, the tight integration between Hotmail, .NET Passport
and MSN Messenger accounts, serve to consolidate MSN Messengers position in
the IM market.

MSN Messenger also serves as a distribution channel for content. Further on,
MSN Messenger support SMS messaging, e-mail messaging, tele-conferencing
and file-transfer.

Wireless MSN Messenger

MSN Messenger is included in PocketPC 2002, which is Microsoft’s latest version
of the Windows CE operating system. There are no versions available for neither
PocketPC 2000 nor PalmOS.

Presence

The presence values which can be set in MSN Messenger are listed in table 2.6.
The user must choose one of these values, i.e. no customized presence value can
be set. Neither is it possible to add a presence message – a message explaining the
reason for the current presence value.

Some of the presence values share an icon, as is the case with the values Right
back, Away and Out to lunch. In each case the icon symbolizes that the user is
(presumably) away from the computer, and the text is used to give an indication of
the duration of the absence. Similarly, Busy and Telephone share an icon, where
the latter is a special case of the first.

Show as offline makes the user appear as if he were offline to other users, but
he will continue to receive messages and presence information.

2.4.4 Yahoo! Messenger

Yahoo! Messenger [31] was released June 1999 and is similar to MSN Messenger
in that it, in addition to instant messaging, serves as a distribution channel for
content: 20 minutes delayed stock-quotes from European and US stock markets
can be viewed free of charge. Domestic news, sport results and the weather forecast
for the users country is available. Further on, airplane tickets can be booked and
the Yahoo! search engine can be accessed.

Yahoo! Messenger has a Personal Information Management (PIM) system as
well. Data is stored serve-side, and can be accessed from a web-browser or the
Yahoo! Messenger client.



2.4 Instant messaging services 19

Table 2.6: MSN Messenger presence values

Presence Icon

Online

Offline

Busy

Right back

Away

Telephone

Out to lunch

Show as offline

Wireless Yahoo! Messenger

Yahoo! Messenger versions are available for both PocketPC and PalmOS. As with
ICQ, these versions are stripped down in terms of functionality.

Further on, the customization of the content to be accessed with Yahoo! Mes-
senger must be done from the desktop PC client. The customization can not be
done on a per-device basis, which means that the same amount of data is sent re-
gardless of which devices a user is connected with. The lower bandwidth in the
wireless networks makes this scheme undesirable, as the user is faced with the
option of either overloading the wireless device with data or removing content he
would like to receive to the desktop PC. With the payment model of GPRS net-
works, cost becomes an issue as well.

As in ICQ, the contacts are stored locally.

Presence

Presence values in Yahoo! Messenger are similar to MSN Messenger, but with
some additional values. Table 2.7 shows some of the presence values. Yahoo!
Messenger allows users to write their own presence values, which are automatically
displayed in other users contact list when selected.

Available and Unavailable have a unique icon each, whereas the same icon is
shared among all the other values. There are two values – (Busy and On the Phone
– indicating that a user is currently by the computer/device, but not interested in
receiving messages. The remaining values can be set to indicate absence, with Be



20 Background

Right Back and On Vacation at the far ends of the time scale. The user can choose
whether to show the online– or away/busy icon for the user-defined presence mes-
sages.

Table 2.7: Yahoo! Messenger presence values

Presence Icon

Available

Unavailable

Busy

Not at Home

Not in the Office

On Vacation

Out to Lunch

Invisible

2.5 Wireless devices

Wireless Internet access is now offered by mobile network providers, enabling the
use of Internet services such as e-mail and Web browsing on wireless devices, in
addition to ordinary voice calls. SMS provides functionality similar to the mes-
sage exchange in instant messaging services. SMS has proved extremely popular
although no awareness information is provided in this service.

For a desktop client connecting through a LAN, processing power and network
capacity is more than sufficient. Users connecting with a mobile phone through a
wireless network have far less recourses available, including limited bandwidth.

2.5.1 Device categories

Wireless devices have become increasingly popular over the last 5-10 years, and
range from pagers and mobile phones to PDAs as powerful as desktop PCs only
few years old. The characteristics of the devices vary in terms of screen-size, input
mechanisms, memory budget, processing power and operating system. Devices
can be categorized into groups of devices with similar characteristics:

Mobile phones Primarily used for voice-calls and SMS messaging, but many phones
include additional software such as PIM applications, games and WAP-browsers.



2.5 Wireless devices 21

Figure 2.2: The J2ME enabled Siemens SL45i

The most common input-mechanism is a 0-9 keypad, and the screen is small
(usually 3–7 lines of text).

Smart phones This category consists of mobile phones with a richer operating
system and more applications than regular mobile phones. These devices
feature larger screens, often with a touch-screen complementing the keypad
for input.

Palm PDAs PDAs running PalmOS, with a rich software environment. These de-
vices feature larger screens, more memory and faster processors than devices
in the previous categories. A touch-screen and buttons are used for input, and
an external mini-keyboard can be connected as well.

PocketPCs These devices run Microsoft’s Windows CE operating system, and are
the most powerful in terms of processor speed and memory. Input is handled
through touch-screens and buttons. Some devices in this category have built
in GSM and/or GPRS mobile phones.

2.5.2 Wireless Java in SIGN

There are obvious advantages of using the same programming language when de-
veloping software for different platforms. With cross-platform compatibility as one
of the main goals, the Java programming language is a natural choice. However,
due to the varying capabilities of the wireless devices, different Java environments
must be used. The next two subsections present two such versions which will be
used in SIGN.



22 Background

Figure 2.3: The Handspring Treo 180

J2ME

Java 2 Micro Edition (J2ME) is Sun Microsystems’ latest addition to the Java fam-
ily, and addresses the vast consumer space, which covers the range of extremely
tiny commodities such as smart cards or a pager all the way up to the set-top box,
an appliance almost as powerful as a computer. J2ME provides building blocks
called profiles and configurations, which target categories of devices with similar
capabilities in terms of processing power, memory budget, screen-size and input
mechanisms. One such category is called Mobile Information Devices, which con-
sists of devices such as mobile phones and PDAs. The Mobile Information Device
Profile (MIDP) is a set of Java APIs which, together with the Connected, Limited
Device Configuration (CLDC), provides a complete J2ME application runtime en-
vironment targeted at this category.

Up until the introduction of J2ME and MIDP/CLDC, third party software de-
velopment for mobile phones was not possible. Since then, J2ME has been em-
braced by all the major mobile phone manufacturers, such as Nokia, Siemens, Mo-
torola and Sony Ericsson. Examples of existing J2ME phones are: Siemens SL45i
(see figure 2.2), Motorola Accompli 008 and Nokia 7650.

J2ME applications can also be run on PalmOS PDAs, which are available from
a number of different manufacturers. These devices can be connected to the In-
ternet using a separate mobile phone or a device such as the Handspring Treo
(figure 2.3), which has a built-in mobile phone module. J2ME will be used for
developing software for mobile phones, smart phones and PalmOS devices.

PersonalJava Application Environment

The PersonalJava Application Environment (PJAE) consists of a virtual machine
and an API optimized for consumer electronics devices. Network connectable de-
vices for home, office, and mobile use are the targeted applications for the Person-



2.5 Wireless devices 23

Figure 2.4: The Siemens SX45 PocketPC

alJava AE. Examples of devices implementing the PersonalJava AE are Internet
telephones, personal electronic organizers, and set-top boxes.

The PersonalJava runtime environment is based on JDK 1.1.x, and contains a
lot more features than J2ME. This enables more complex programs, but it requires
more powerful hardware than J2ME. There is no compiler included in the PJAE,
rather it relies on the standard compiler distributed with Java 2 Standard Edition
(J2SE).

PersonalJava will be used for developing software for PocketPC devices. The
PersonalJava runtime environment for Windows CE 2.11–3.0 can be downloaded
from [27], and runs on devices with MIPS or SH3 processors. Examples of devices
are: Casio Cassiopeia E-115, HP Journada 540 and Siemens SX45 (see figure 2.4).

2.5.3 Wireless networks

Bandwidth has increased with the transition from the GSM to the GPRS carrier for
data traffic in wireless networks. And it will increase even further when UMTS is
implemented. However, the transition from a line-switched to a packet-switched
network probably has greater impact on popularity of wireless Internet access.
Instant messaging for instance is characterized by a irregular transfer of small
amounts of data over long time intervals, which makes use expensive in a circuit
switched network.



24 Background



Chapter 3

The SIGN Prototype



26 The SIGN Prototype

3.1 Introduction

In this chapter we present the conceptual model and discuss key areas of the SIGN
prototype – awareness and personalization. The conceptual model is shown in
figure 3.1 and the following section describes each of the entities in the model. The
next section discusses the awareness model used in the SIGN prototype. Finally
we present the users possibilities to personalize the system.

Before this discussion we briefly present some key concepts and terminology
concerning mobility.

UserPersonalization

Awareness

Context Presence Device

Message forwarding

E-mail

SMS Instant Messaging

PDA
Desktop PCMobil Phone

Device
Preferences

Figure 3.1: SIGN conceptual model

Mobility concepts

In the telecommunications domain, three mobility concepts have been defined,
quoted in [28]. These three are personal mobility, service mobility and termi-
nal mobility. Personal mobility - concerns possibility to redirect communication
across heterogeneous user devices. Service mobility - or terminal adaptation con-
cerns the user endpoint and the ability to access services independent of these.
Terminal mobility - allows users to move from one physical location to another and



3.2 Conceptual model 27

still having the same set of services available. More specific it is the capability of
mobile devices to change its attachment point to the network and retain the same
network address and maintain active connections. The wireless networks today
provide terminal mobility.

3.2 Conceptual model

3.2.1 User

The user interacts with the system using one or more of the available clients. In-
dependent of device the user sees an interface for instant message and awareness
exchange, although clients may differ in functionality dependent on device capa-
bilities. Each user is represented in the system by a unique user name.

In today’s telecommunication the caller controls how to reach the callee. In the
SIGN prototype the recipient shall be able to decide how incoming messages are
handled, thus being in control of how he can be reached. In the telecommunica-
tions terminology this refers to pushing control towards the callee or recipient [28].
Based on the users preferences incoming messages are sent to the preferred device
or service at the current time.

3.2.2 Instant Messaging

Instant messaging is one of the main functions of the SIGN prototype with focus on
enabling the use of wireless devices and handling the users’ transition between dif-
ferent devices. Concerning instant messaging the main functions in the prototype
are:

Create contact lists A user can create contact lists containing other users. Users
added to the list receive a message asking them to approve to be added to
the users list. The contact lists can be changed continuously by adding and
removing users.

In the SIGN prototype the user can store separate contact lists for each device
type. This enable the users to have a long contact list on the desktop PC,
while keeping the list on a wireless device short.

Message exchange The user can send and receive messages to and from users in
the contact list. A user is notified when new messages have arrived and can
choose to read and reply. A history of sent and received messages is also
available.

3.2.3 Awareness information

In addition to instant messaging, most IM systems provide awareness of presence.
With the SIGN prototype users can be connected with a variety of devices. In



28 The SIGN Prototype

addition, aspects of the user’s context, or environment, may affect his ability to
communicate with others.

The extended awareness model of the SIGN prototype is presented and dis-
cussed in detail in section 3.3, but we briefly present the main aspects of the model
here.

Presence The system must be able to reflect and communicate the presence of
each user. In the simplest sense this means the information concerning if the
user is online or not.

Context The context is information that reflects the current situation of a user and
properties of the surrounding environment.

Device The device the user is connected with affects his ability to communicate
with others. For example, the characteristics of a mobile phone and wireless
network restricts the user’s ability to receive, read and write messages.

3.2.4 Devices

With the growing number of mobile terminals it is important to deliver services
independent of terminal and access network limitations, an aspect described earlier
as service mobility. However, differences in device capabilities regarding screen
size, input method, processing power etc. makes it evident that functionality and
presentation should be dependent on device. In order to meet the user expectations
and provide a functional user interface the service must be adapted to the device
being used.

Devices supported by the SIGN prototype are desktop PCs, PDAs and mobile
phones as shown in figure 3.1. This enables the users to access the service using a
wide range of devices and networks. Functionality will be differentiated based on
device because of the variation in the device capabilities. The clients on the mobile
devices will be adapted to meet the characteristics of the device in order to provide
the user with a functional and neat user interface. In the SIGN prototype we will
also try to maintain a certain consistency of the user interface across the different
platforms. Below is a short description of the devices and functionality provided.

Desktop PC client The desktop client will be similar to clients provided in exist-
ing IM system. In addition the desktop client will be the interface to control-
ling the preferences the user chooses to set. While working at the desktop
the user will probably choose to use this client.

PDA client PDAs has in most cases a touch screen and the use of a stylus as input
method. It is natural to assume a PDA will be utilized with a wireless net-
work although LAN interfaces are available. Basic IM functionality will be
available on the PDA client but it will not be possible to control the prefer-
ences.



3.2 Conceptual model 29

Mobile phone client The mobile phone is the device with the most cumbersome
input mechanism. A user connected with a mobile phone with limited input
methods will tend to write shorter messages and use abbreviations compared
to a user on a desktop PC. Standard IM functionality will be available on the
mobile phone client.

3.2.5 Personalization

In order to meet user demands a service should be highly configurable, especially
in a mobile environment were the user can be connected with different devices
through different networks.

In the SIGN prototype control is pushed towards the recipient rather than the
sender, in contrast to most existing systems. The user can set preferences control-
ling the following areas:

Opaque or transparent communication This enables the user to choose what
awareness information shall be communicated to others. Opaque communi-
cation signifies that the information communicated is minimal, while trans-
parent reveals all available information about the user.

How to be reached The user shall be able to specify the preferred way to be
reached at the current time. When connected with several devices, for exam-
ple a desktop client and a mobile phone the user can specify which device
incoming messages should be sent to.

Who can make contact The user shall be able decide who shall be allowed to
make contact. For example, a user may specify only to accept messages
from users on the contact list.

Auto reply messages Users can specify auto reply messages to be sent in specific
situations. While busy, incoming messages can be answered with a self-
composed automatic reply message.

Forwarding of messages In the SIGN prototype users can set the option to for-
ward messages to other services. This is described further in the next sec-
tion.

3.2.6 Forwarding

In a service supporting mobility, were users can be reached anywhere using any
device, it should be possible to redirect message and information to alternative
devices or services. The SIGN prototype supports many device types, nevertheless
it can be situations where the user wishes to forward messages to other services.
Messages can be forwarded to the following services:

E-mail User may choose to forward messages to their e-mail.



30 The SIGN Prototype

SMS Users may choose to forward messages to a mobile phone using SMS avail-
able in the GSM networks.

3.3 Awareness in SIGN

Much research is done on the area of how to provide awareness information and
what information is relevant, especially in the area of collaborative work. In [4]
awareness is defined as information that is highly relevant to a specific role and
situation of a process participant. Further it is argued that awareness information
must be digested into a useful form and delivered to exactly the user who needs it.
If given to little information users will act in properly or be less effective. With too
much information, users must deal with an information overload that adds to their
work and masks important information.

Studies conducted in [26, 21] shows that IM often is used to negotiate the avail-
ability of others to initiate a conversation or a meeting. By consulting the contact
list and the awareness information users can determine whether the recipient are
available or not. Providing awareness cues to help people find opportune times to
initiate contact is in [30] defined as a key design goal in a workplace communica-
tion tool.

In [8] a definition of awareness is given as: “an understanding of the activities
of others which provides a context for your own activity”. In the case of an IM
system, the activities of a user’s contact will set a context in which he will decide
whether or not to initiate a message exchange with that contact. This will depend
on the contact’s willingness and/or ability to write and read messages, which we
will call his communication level. The communication level must be inferred by
the user based on the available information about the contact.

The contact’s communication level is dependent on several factors, one of
which is his presence state. Most existing IM systems provide users with aware-
ness of the presence of their contacts. However, other factors, in addition to the
presence state of a contact, affects the communication level. The SIGN prototype
supports wireless devices in addition to desktop PC’s, and which type of device a
user is connected with may affect his ability to read and write messages. Further
on, the context or location in which a contact is using the IM system will affect his
communication level.

The next section will discuss the awareness information available in the ex-
isting IM systems which have been presented earlier. We will then present the
awareness model of the SIGN prototype.

3.3.1 Existing systems

The awareness information available in ICQ, AIM, MSN Messenger and Yahoo!
Messenger was presented in sections 2.4.1– 2.4.4, and relates solely to awareness
of presence. These IM systems were originally developed for desktop computers



3.3 Awareness in SIGN 31

and the wireless device clients have come along at later stages. However, none
of the systems have included awareness information about which type of device
a user is currently connected with. Users are thus left with incomplete informa-
tion about the state of his contacts, which makes it difficult to infer the contact’s
communication level.

3.3.2 Awareness model

Figure 3.2 show the model for awareness in SIGN. In addition to awareness of
presence, awareness of device and context is communicated by the system. The
axes are orthogonal to reflect that values along the axes are non-related and that
values can be selected independently for each axis. With this extended awareness
model, SIGN provides the users better understanding of their contacts’ communi-
cation level.

Context/
Location

Device

Presence

Mobile phone

Desktop PC

Office

Running

Offline

Online

Do not
disturb

Away

PDA

Meeting

Extended
away

Figure 3.2: Awareness along three axis

The next three subsections will cover awareness of presence, device and con-
text/location as provided in SIGN.

3.3.3 Presence

RFC 2778[7] defines presence in instant messaging systems as something that “al-
lows users to subscribe to each other and be notified of changes in state.” The state
refers to the users availability.

Upon connection to the server, the client application sends an Online message
to the server, which distributes the message to all subscribers. Online is the normal
presence state for a user and indicates that he is ready to write and read messages.
When the user disconnects from the server, an Offline presence message is sent



32 The SIGN Prototype

to the server. In between the available and unavailable states there can be several
states which reflect the users ability or willingness to communicate. These are:

• Online

• Do not disturb

• Away

• Extended away

The presence state can be set manually by the user or automatically according
to some criteria, such as if the connection to the server fails (Offline) or if the device
is idle for a certain period of time (Away).

Depending on which device a user is connected with, different presence values
are available. If a user is connected with a mobile phone, he is not likely to be
Extended away or Away, because a mobile phone is usually kept in close range
to the user. During phone calls the presence is automatically changed to Do not
disturb.

On a PDA Away should be available, as a user is more likely to leave the device
unattended for shorter periods of time.

On a desktop PC Extended away is frequently used instead of logging off the
system. If the PC is unused for a certain period of time, the presence can automat-
ically be set to Away.

3.3.4 Device

SIGN offers awareness of device by keeping users informed of what type of de-
vice available contacts are currently connected with. This is important because the
characteristic of the various devices will affect a user’s communication level. In
SIGN users can connect to the service using the following devices:

• Mobile phones

• PDAs or handheld PCs

• Desktop PCs

A discussion of the implications the different device characteristics have on a user’s
communication level, thus motivating the need for awareness of device, follows in
the next subsection.

Input mechanism

The input mechanism varies between devices, and are typically as listed in ta-
ble 3.1. The input mechanism affects the speed at which a message can be written,
with a full-size keyboard being several times faster than a 0-9 keypad.



3.3 Awareness in SIGN 33

Table 3.1: Device input mechanisms

Device Input mechanism
Mobile phones 0-9 keypad

PDAs Touch screen or
mini-keyboard

Desktop PCs Full-size keyboard

Message length is also affected because a user is not likely to write messages
exceeding 200 characters on a mobile phone.1 Input mechanism affects the lan-
guage used in messages as well. Mobile device users are more likely to use incom-
plete sentences and non-standard abbreviations, which have become widely used
in SMS messages.

Screen size

Screen-sizes vary dramatically, with a mobile phone and a desktop PC at the far
ends of the scale, and has implications on the length of a message a user can read
efficiently and how fast it can be read. Further on, the sender may adapt his lan-
guage according to the screen-size of the receiver, for instance by using “SMS
language” and reducing the use of blank lines to partition messages.

Bandwidth

Mobile phones typically communicate over a network with bandwidth between 9.6
kbps and 38.4 kbps, whereas a desktop PC connected to a LAN can have up to 100
Mbps. The bandwidth affects how fast a message can be transmitted and indirectly
the message length.

Further on, the payment models of mobile networks also affect the usage char-
acteristics for users connected with a mobile phone. In packet switched networks
the user is charged based on bandwidth usage, and the user may thus not want
to receive messages exceeding a certain size. The user may also want to receive
messages from fewer users when connected over a wireless network, in order to
minimize network traffic.

3.3.5 Location and context

Location and context say something about where the user is or in what surround-
ings, respectively. However, context is also used for extending the concept of mo-
bility beyond the sheer geographical meaning.

1SMS has maximum 160 characters per message



34 The SIGN Prototype

Information about the context can be collected from different sources. One
source of information is what the user enters. In addition there can be other sources
of information to capture the user’s context. [18] defines the terms sensor and
context deductors. A sensor can for instance detect the number of persons in a
room, temperature or motion. A context deducer can examine a user’s calendar to
find out if a meeting is going on.

SIGN is capable of distributing context information, however neither sensors
nor deducers are available to obtain this information. Users can, however, enter
this information themselves.

Different contexts or locations indirectly tell something about the users ability
to communicate. For instance, if a contact’s context is set to driving, he may be
able to read a message but not reply to it. Examples of other contexts and locations
are:

• office

• noisy environment

• car

• meeting

• airport

3.4 Personalization

In this section we present important concepts and functionality introduced in SIGN
to support mobility. These concepts can be controlled by the user.

Push control towards recipient

One fundamental property of SIGN is that control is pushed towards the recipi-
ent. This is in contrast to how most commercial IM systems work today. Pushing
control towards the recipient will help reduce interruptiveness of the IM service,
a phenomenon described in [26]. In SIGN the user can control where and how
messages shall be delivered and which awareness information is visible to other
users.

Control of message delivery

SING supports multiple simultaneous active clients for one user. This means that
the user can be connected to the system with multiple devices at the same time.

Providing support for multiple simultaneous active clients will render the ser-
vice more user friendly. The user is relieved of connecting and disconnecting to
the service while moving from one device to another. However this introduces a
new problem of how to route messages to users that are connected with several



3.4 Personalization 35

clients. This will in the SIGN prototype be controlled by the user. By assigning
priorities to the connected clients the user chooses which one that should receive
the message. In addition the user can set up different contact lists for each device
and optionally select to not receive message from other than his contacts.

To reduce the amount of data transferred to wireless devices, it is possible to
set a maximum size on messages destined for these devices.

In addition, the user can decide that messages should be forwarded to other
services, e-mail or SMS.

Control of awareness

Support for transparent or opaque communication is provided by some commercial
IM services. However in the SIGN prototype we will provide support for this
on all levels of our awareness model. Regarding the awareness model presented
in section3.3 the user can decide which of this information should be opaque or
transparent independent of each other. This means that the user can hide the device
he is connected with, but still communicate the presence and context.

Degrees of personalization

The concept of control can render the service quite different from user to user. A
user very restrictive about how he can be reached can virtually block all messages
and for example forward these to e-mail. This will of course remove some of
the advantages of IM such as quick communication and fast responses. Another
user can choose to be easy to reach accepting virtually all incoming attempts for
communication.



36 The SIGN Prototype



Chapter 4

System Requirements



38 System Requirements

4.1 Introduction

In this chapter we present the requirements related to the main functional areas of
the SIGN prototype. These requirements are extracted based on the prerequisites
for the system and the discussion from the previous chapters. We will divide and
present the requirements according to these main functional areas:

• Awareness

• Device differences

• Personalization

• Message delivery

The complete requirements specification is provided in appendix A.
Before presenting the requirements we give a short presentation of the compo-

nents of the system. Figure 4.1 shows a high level view of the system with possible
clients and other services which the system can interact with.

Internet

Instant Messaging
Server

Mobile phone

Laptop

Database

PDA

Server

Other services
E-mail, SMS

Figure 4.1: High level system overview

4.1.1 Clients

The Instant Messaging system will provide clients for the different devices depicted
in the figure and listed below.

• Desktop PCs – J2SE

• PDAs – PersonalJava



4.2 Awareness requirements 39

• Mobile phones – J2ME

The different devices will connect to the SIGN prototype server through the
Internet using standard sockets.

4.1.2 Server

The Jabber Communications Platform, based on XML, will be the core part of
the server in the SIGN prototype. Jabber will provide basic services such as net-
work communication, authentication and message routing. Components providing
extended functionality such as preference storing and processing, extended aware-
ness handling, interface to other services etc will be developed.

Database

The database will store user information, preferences and offline messages.

4.1.3 Other services

Depicted in figure 4.1 are also the different services the system can interact with.
The SIGN prototype will have interfaces to two other services, SMS and e-mail.

4.2 Awareness requirements

The awareness information in the SIGN prototype is comprised of information
from three sources, namely device, presence and context/location.

The presence value is set by the user from a predefined list and distributed to
other users. The presence behaviour is equal on all the clients except from the
values the user can choose from. When a user is connected with a mobile phone
or PDA it is unlikely that the user is far away from, not using or inattentive of this
device. This is not true for a desktop PC, were the user can have left the office, but
still be connected.

The presence values that can be set for the different devices are shown in the
table 4.1 below that is taken from requirement FC7 - Set presence, in the require-
ments specification.

In addition to setting the presence the use can chose to hide the presence value
from other users. This functionality relates to the possibility to allow both opaque
and transparent communication. If choosing to hide the presence values, the user
will be displayed as offline to others (see FC8 - Show/hide presence).

In addition to presence, information regarding device can also be hidden. See
requirement FCW2 - Show/hide device.

Context or location information, the last of the three sources for awareness
information, must be written by the user and cannot be pre selected from any source



40 System Requirements

Table 4.1: Presence states

Desktop
PC

PDA Mobile
phone

Online X X X

Free for chat X X X

Do not disturb X X X

Away X X

Extended away X

(see FC11 - Set context/location). This feature is built into the system mainly for
expansion reasons.

The awareness information concerning device is sent automatically by the ap-
plication (see FCW1 - Device type). This is to relieve the user of as much input
as possible, making the system easy to use. The information regarding device is
sent immediately after logon and is communicated to other users. Another feature
concerning awareness is the automatic presence change on mobile phones. The
presence information is changed to busy if a user is connected with a mobile phone
a engages in a telephone call (see FCW5 - Automatic presence change).

4.3 Device requirements

In the SIGN prototype there are differences in the functionality of the clients. This
differentiation is done because of the characteristics of the client devices and the
networks they connect through.

4.3.1 Thin clients

The wireless devices have limited resources and the client application that shall
run on such devices should be lightweight. This is not entirely true for devices
such as PDAs since these devices have powerful processors and more memory.
However, limited input capabilities reduces the amount of tasks it is practical to
perform on such devices. In the SIGN prototype we have chosen to put most of the
functionality other than messaging and awareness to the desktop client. It will serve
as an interface to setting most of the preferences in the system and administration
of the contact lists. The following requirements are functionality that are only
available on the desktop client:

• FCD5 - Add Contact

• FCD6 - Remove Contact



4.4 Personalization requirements 41

• FCD7 - Edit contact lists

4.3.2 Reduce amount of information exchanged

The wireless devices will usually be connected to the service using networks with
limited bandwidth and high latency making it important to reduce the amount of
information exchanged. In the SIGN prototype preferences and contact lists can
be set for each device (see FS5 - Device dependent contact lists and FS14 - Device
dependent preferences).

Contact lists dependent on device will make it possible for users to reduce the
amount of contacts when using a wireless device. This will reduce the amount of
data downloaded at logon and awareness information regarding other users. Pref-
erences dependent on device makes it possible to limit the amount of information
received on a wireless device without reducing the functionality of the desktop
client.

4.4 Personalization requirements

Preferences can be set by the user to control various functionality in the SIGN pro-
totype. This enables the user to adapt the service to his needs, control information
flow and information amount. All the preferences set are stored on the server.(see
FS13 - Preferences stored on the server).

Most of the preferences are controlled from the desktop client. Specifying the
maximum size of a message sent to a wireless client and setting forwarding rules
for SMS or e-mail are examples (see FCD10 - Set forwarding and FCD9 - Set
maximum message length).

An auto reply message can be set for wireless clients. The reason is that user
connected with wireless devices might be in situations where it is difficult or im-
practical to answer messages. Setting an auto reply message will inform the sender
that the messages is received and any other information the recipient wants to com-
municate. An example of an auto reply message can be: ”The message is read, but
it will take a while before I can get back to you.” The user can change the auto
reply message whenever he pleases (see FCW3 - Set auto reply message).

Users of clients on wireless devices can also choose to forward messages to
SMS. This could be the case if a user is connected with a PDA or mobile phone
but for some reason must disconnect. The user might want to receive incoming
messages and can do that by activating forwarding to the mobile phone (see FCW4
- Set forwarding).

The option to block messages from users not in the contact list can be set for
all devices. This can relieve the user of interruptive messages from unknown users
(see FC6 - Block messages).



42 System Requirements

4.5 Message routing requirements

When the server receives a message from a user, a number of different factors
influence how and where the message will be delivered to the recipient. These
factors are:

• Forwarding rules

• Simultaneous clients

• Filtering rules

The first factor relates to the forwarding rules which can be set by the user (see
FCD10/FCW4 - Set forwarding). SIGN allows the user to have messages for-
warded by SMS or e-mail regardless of any currently online clients.

The second factor manifests itself because users are allowed to have multiple
clients logged on to the system at the same time. However, messages shall not be
delivered to more than one client. In order to allow the user to decide which client
messages shall be sent to, each client will have a priority. The currently logged on
client with the highest priority receives messages.

Finally, the filtering rules set by the user affect the message delivery. The
filtering can be set up independently for the desktop client and the mobile clients.

The following subsections will describe these factors in detail and give a de-
scription of how messages are delivered based on these factors.

4.5.1 Forwarding

SIGN supports forwarding of messages to SMS or e-mail (see FS10 - E-mail mes-
sage forwarding and FS11 - SMS message forwarding). This allows users to re-
ceive messages even if they are not logged on to the system. Forwarding to SMS
is particularly useful for user connecting to the system from a mobile phone, as
limitations in the J2ME-phones prevent the client application from running during
phone calls. Further on, if the user do not have a J2ME mobile phone, a regular
mobile phone will at least allow to receive message from the SIGN system.

SMS messages cannot be longer than 160 characters. The complete messages
will therefore be sent to the desktop client in order to avoid loss of data.

The forwarding rules will be applied regardless of which, if any, clients the
user is currently logged on with. This allows the user to be online with a desktop
client in the office, but still receive notifications on his mobile phone when new
messages arrive.

Figure 4.2 shows how the forwarding rules are applied in SIGN. When a mes-
sage is received on the server, the forwarding rules for the recipient are retrieved. If
no forwarding rules exist, the message is delivered in accordance with the process
Message delivery, which is described later in this section. If the user has set
a forwarding rule, the message is sent using the chosen delivery method.



4.5 Message routing requirements 43

Forward to

Send SMSSend e-mail

Forward?

yes

Get forwarding
rules

e-mail SMS

Deliver
message

no

Terminate

New message

Figure 4.2: ’Forward message’ flow chart

4.5.2 Simultaneous clients

One important feature of SIGN is that a user can be logged on with multiple clients
at the same time (see FS16 - Multiple active clients). If a user is logged on from
his desktop PC, he can log on using a mobile phone during lunch, without having
to log off the desktop client. However, when one user has multiple clients online,
some mechanism is needed to decide where messages shall be delivered.

Jabber provides this mechanism using the concepts of resources and priorities.
The resource names will be set automatically for the wireless devices – ’pda’

for PersonalJava applications and ’mobile’ for J2ME applications. This implies
that a user cannot be logged on with two mobile phones or two PDA’s at the same
time, but we consider this to be acceptable. For the desktop application, the user
can choose the resource name.

4.5.3 Filtering

The filtering options affect the message delivery in SIGN. Figure 4.3 shows the
decomposition of the process ’Deliver message’ from figure 4.2.

Filtering is done one the server (see FS8 - Message filtering), and the user can



44 System Requirements

set it up according to the following criteria:

• Block based on sender

• Maximum message size

Device

yes

mobile device

Block?

no

Size filter?

Send
message

no

Select
desktop PC

yes

Send
truncated

yes

Online?
Store in offline

database
no

Block?

desktop pc

no

Discard
message

yes

Get highest
priority

Terminate

Figure 4.3: ’Deliver message’ flow chart

Block based on sender

The user can set the option to block messages (see FC 6-Block messages). If this
option is set the user will only receive messages from users on the contact list. This
option can be set up independently for the desktop client and the wireless clients. If
a message destined for a mobile device is blocked it will be sent to the desktop PC
and either delivered or discarded. This filtering mechanism serves two purposes.

For one, access to a packet-switched network, for instance GPRS, is consid-
ered to be a condition for using the wireless clients. The payment model in these
networks is based on the amount of data transferred rather than connection time.
In order to limit the expenses, the user is therefore allowed to put restrictions on
the message length. Secondly, it can be used to prevent spam messages.



4.5 Message routing requirements 45

Maximum message size

The second criteria provides filtering based on the size of a message and can only
be set for wireless clients (FCD9 - Set maximum message length). Maximum
message length is specified by the user and messages exceeding this length will
be truncated before they are sent. The motivation for this filtering option is to
allow the user to reduce data traffic. Further on, the wireless devices generally,
and mobile phones in particular, have small screens. Reading long messages will
therefore be inconvenient on these devices.

In order to prevent information from being lost, the complete messages are sent
to the desktop client as well. If the user is not currently logged on with a desktop
client, the message is stored on the server and sent to the user on next logon from
a desktop client.



46 System Requirements



Chapter 5

Architectural Choices



48 Architectural Choices

5.1 Introduction

One of the prerequisites for this master thesis is to use Jabber to support basic IM
functionality. The two different versions of Jabber are listed below.

• jabberd - the main implementation of Jabber implemented using C

• Jaba - an ongoing project implementing Jabber in Java

We have studied and tested both of these two implementations to be able to
decide upon which one to use in this project. We compared the two versions ac-
cording to criteria important in this project. These criteria are presented below.
Some of them are general criteria that are interesting using any COTS [22] soft-
ware and some are special for this thesis.

Table 5.1: Selection criteria

Criteria Description
Development language Knowledge and prior experience

Code duplication Keeping duplication of existing code to a minimum

Changes in existing code Keeping changes in existing code minimal

Maturity Stability of the server software and its compliance to
Jabber specification

Work effort Effort needed to implement changes

NTNU student sessions Parts of our work shall be used at NTNU in student
sessions on architecture and design

At the end of this chapter we discuss possible approaches for extending Jab-
ber with the functionality of the SIGN prototype. We present the implementation
we chose, with a motivation for our choice based on the aforementioned criteria.
Before presenting the results we start out by presenting the two Jabber versions.

We first introduce the main components of the jabberd. This is the version
that is in accordance with the documentation and written material about Jabber.
Thus this will give insights on how Jabber works and important Jabber concepts.
Subsequently we present the Jaba version, the Java implementation of Jabber.

The documentation of the Jabber project is very limited concerning the archi-
tecture and design of the different server versions. For jabberd, some component
diagrams are available. For Jaba, no documentation exists. The documentation
presented in this chapter is thus mainly based on our study of the source code.



5.2 jabberd server 49

5.2 jabberd server

Jabber is based on a client–server architecture. All data exchanged between clients
is routed through the server. Although client-to-client connections are possible,
dependent on the client implementation, these are initially negotiated through the
server. Jabber has a strong foundation in XML where streams are used for both
client - server and server - server communication.

The jabberd server is designed to be highly modular where different compo-
nents handle logically different functionality. Also internally in the jabberd server
components communicate using XML, thus it is a composition of various XML
processing components. All components serialize or deserialize XML for use by
other components. Some of the most important tasks handled by the jabberd com-
ponents are listed in below:

• Session management

• Client–server communication

• Server– server communication

• User authentication

• User registration

• Database lookups

5.2.1 Base components

The jabberd and the components collectively form a Jabber server. Figure 5.1
shows a high level view of the base components forming the server and the relation-
ship with the jabberd. The jabberd forms the central hub for all the components.
It acts as a central coordinator by routing and delivering XML packets that the dif-
ferent components exchange. The different components handle different types of
packets where each packet is in the form of a distinct, fully formed XML fragment.
It is identified by the outermost element name in the XML fragment.

Below is a short description of the components depicted in figure 5.1.

Session management

Handles all aspects of a user session on the Jabber server. Examples are IM fea-
tures such as sending messages, presence, updating the user’s contact list and basic
session management. The component is called Jabber Session Manager (JSM).

Client to Server connections

This component manages connections between clients and the server.



50 Architectural Choices

Client (to Server)
connections

Logging

Data storage

....

Ja
b

b
er

d
 b

ac
kb

o
n

e

Session
management

Server (to server)
connections

Hostname
resolution

Figure 5.1: jabberd and base components

Server to server connections

To manage sending messages from a client on one Jabber server to a client on
another Jabber server, the servers need a way to communicate with each other.
This task is handled by the component called s2s, which establishes and manages
server-to-server connections.

Logging

The logging component enables logging of error messages, alerts, notices etc.

Data storage

XDB is an acronym for XML Data Base. It is a component of the Jabber server
that provides an interface to any data source used for the storage and retrieval of
server-side data.

Hostname resolution

The dnsrv component provides a way to resolve names of host that the Jabber
server does not recognize as local, as in the server to server context.



5.2 jabberd server 51

5.2.2 Component connection methods

An important concept of jabberd is the use of components and the way they can
be plugged into the server to add or change functionality. The jabberd server’s
internal use of XML makes it possible to route messages based on XML tags. A
component registers what types of tags it wants to receive. Based on the return
value of a component’s method to handle the message or tag, it is decided if the
message shall be routed further to other components or if the processing of this
message is complete. An example is to plug in a component that handles login
differently than the standard component. This new component could be plugged
into the server and register that XML messages of a specific type, e.g. login, shall
be routed to this component.Components can connect to the jabberd backbone by
the methods specified in table 5.2.

Table 5.2: Component connection methods

Method Description
TCP sockets Components connect through a TCP socket and run

as a separate entity. The component can reside on a
different server than the one running jabberd.

Standard I/O(STDIO) STDIO method is a mechanism where the jabberd
process starts the external component itself. The
XML documents are exchanged through standard
I/O

Shared objects/libraries Component sources are compiled into shared objects
(.so) and loaded into the main jabberd process. The
component must be written specially with the jab-
berd backbone in mind and contain certain routines.

The method for component plug in is significant for the development of the
component. The library load method demands that the component can be compiled
into shared object libraries and that specific routines are present in the component.
The STDIO method imposes less restrictions on the component, only that it can be
started and stopped by jabberd.

The TCP socket method imposes virtually no restrictions on the component.
Only the exchange of XML messages binds the jabberd and the component to-
gether. This means that components can be distributed and run on different servers.

The connection method also affects at what detail level the component can be
integrated into the server. As the TCP socket method imposes no restrictions on the
component it also reduces the control this component has on the message flow in
the server. In fact, messages that shall be routed to components connected through
TCP sockets must be specifically addressed to this component by the clients. In



52 Architectural Choices

addition this component can not control the flow of this message further through
the server.

Components connected as shared objects can register to receive messages on
and XML tag level. These components can also specify if the messages should be
processed further by other components or not.

5.3 Jaba server

In this section we present an overview of the design of the Jaba server. The Jaba
server design is strongly affected by the main task of the server, namely the pro-
cessing of XML messages. However the server is not designed to be a generic
framework for processing XML elements, but are on the contrary heavily focused
towards the Jabber XML message protocol and the processing of the three top-level
XML elements <presence/>, <message/> and <iq/>.

5.3.1 Jaba components

Before presenting the design we present the main functional areas for the server.
As a starting point we use the package structure of the Jaba server, treating each
package as a component or main functional area. Figure 5.2 depicts the different
packages where the top-level package is org.novadeck.jabaserver. Each package
will be referred to as a component. The components are described below and
figure 5.3 shows the relations between the most interesting Jaba components.

Figure 5.2: Jaba packages

Core

The core component consists of the basic functionality of the server such as starting
and initializing the server in addition to client connection handling. The class con-
taining the reference to the XML parser is also contained in this component. The



5.3 Jaba server 53

Core

Jabber

Offline

Process

Users

Figure 5.3: Relations between Jaba components

parser used in Jaba is a SAX parser and each new client connection is associated
to a parser responsible for parsing the XML from the particular client.

Jabber

The jabber component contains the realization of the Jabber XML message proto-
col. This component has functionality deserialize XML messages specified in the
message protocol. Examples of classes in this component are Message, Iq and
Presence.

On this area Jaba differs significantly from the jabberd implementation. Whereas
jabberd uses XML internally in the server where the components interchange XML
the Jaba implementation converts the XML messages into Java objects. Thus in
Jaba XML is first converted into objects and then the processing of this message,
e.g. object, can start. In Jaba objects representing the XML messages are passed
to different components or classes for processing.

Offline

The offline component provides functionality for storing and retrieving offline mes-
sages.

Process

This component provides the functionality for the processing of an XML message,
e.g. message object. This component receives messages that have been deseri-



54 Architectural Choices

alized by the Jabber component and performs the tasks associated with the XML
message that is received.

Server

This component manages server-to-server connections, enabling the exchange of
messages with users connected to other servers.

Tools

This component provides basic tools for TCP socket communication that the server
uses for both client-to-server and server-to-server communication.

Users

The server needs to manage user sessions while they are connected to the server.
This includes users data management, roster management and resources or active
client connections. This component is responsible for storage and retrieval of data
from a database or other persistent storage.

5.3.2 Jaba design overview

Figure 5.4 shows an overview of the main classes in the Jaba server. The main el-
ements are the class containing the reference to a XML parser, Streamparser,
the classes realizing the message protocol, Element and its subclasses and the
classes managing the client sessions where User, UserHomeDB and User-
stream are the significant classes. One of the classes responsible for processing
XML messages is also shown in the diagram, the class ProcessIq. In the fol-
lowing we will discuss the classes in figure 5.4 in more detail, splitting the diagram
up in smaller diagrams.

XML message processing

In figure 5.5 main classes for the XML processing is depicted. The classes dis-
cussed in this section reside in the components Core, Jabber, User and
Process described earlier.

The class StreamParser contains the reference to the XML SAX parser.
For each new client connection an instance of StreamParser is created. The
XML SAX parser is registered to receive the data from the client socket and Stream-
Parser register it self to receive the parsed XML from the parser.

When data is received from the XML parser StreamParser checks the type
of the message, e.g. <presence/>,<message/> and <iq/>. An object corre-
sponding to the type of message is created, enabling further parsing of the specific
message type. In the end, a sub class of Element contains all the data from the
XML message.



5.3 Jaba server 55

Message

Message()

Message()

setTo()

getTo()

setToRessource()

getToResource()

setFrom()

setFromResource()

setType()

setBody()

getBody()

setThread()

startElement()

endElement()

toString()

(from jabber)

Presence

Presence()

Presence()

setTo()

getTo()

setFrom()

getFrom()

setType()

getType()

setShow()

setStatus()

setDevice()

getPriority()

startElement()

endElement()

toString()

(from jabber)

Iq

Iq()

Iq()

setId()

getId()

setTo()

getTo()

setToRessource()

getToResource()

setFrom()

setFromResource()

setType()

getType()

setQuery()

getQuery()

startElement()

endElement()

toString()

(from jabber)

UserHomeDB

INITIALIZED : boolean

UserHomeDB()

getConnection()

findUserByUsername()

getRosterListById()

getRosterListById()

findDomainNameById()

addRosterFriend()

configure()

initialize()

removeUser()

findUserInList()

findMaxSize()

(from users)

OfflineMsgHomeDB

INITIALIZED : boolean

OfflineMsgHomeDB()

getInstance()

getConnection()

storeOfflineMsg()

findByUserName()

deleteByUserName()

initialize()

configure()

findByUserName()

(from offline)

ProcessElement

ProcessElement()

emit()

process()

(from process)

Element

elementName : String

child : Element

parent : Element

Element()

setChild()

getChild()

setParent()

getParent()

pullTextNodeValue()

startElement()

endElement()

characters()

(from jabber)

UserStream

output : OutputStream

resource : String

UserStream()

UserStream()

postString()

close()

close()

emit()

getResource()

setResource()

getDevice()

(from users)

User

PASSWORD_TYPE_PLAIN : byte = 1

PASSWORD_TYPE_SHA1HEX : byte = 2

id : long

domainId : long

passwordType : byte

online : boolean

priority : int

(from users)
UserHome

findUserByUsername()

getRosterListById()

getRosterListById()

findDomainNameById()

addRosterFriend()

removeUser()

findUserInList()

findMaxSize()

(from users)

StreamParser

INITIALIZED : boolean

JABBER_EXTENDED : boolean

m_saxParser : SAXParser

m_input : NonBlockingInputStream

m_output : OutputStream

StreamParser()

proceed()

emit()

startDocument()

startElement()

endElement()

characters()

postMessage()

postIq()

enableLogging()

getLogger()

configure()

initialize()

(from core)

OfflineMsgHome

storeOfflineMsg()

findByUserName()

findByUserName()

deleteByUserName()

(from offline)

ProcessIq

HEX[] : char

ProcessIq()

setUserHome()

setOfflineMsgHome()

process()

processGet()

emitAllRoster()

processSet()

isUserPasswordValid()

bytesToHex()

processLogin()

processNewUser()

(from process)

Figure 5.4: Jaba class diagram overview

When a complete XML message is received StreamParser either does the
actions associated with the specific message type, or it forwards the message object
to another class handling the processing. The class ProcessIq, depicted in the
figure, contains the actions associated with <iq/> messages.

A user is realized by the class User. A user who is online has an outgoing
socket connection and this is realized by the class UserStream.

The sequence of actions and method calls on arrival of an <iq/> message are
described in the sequence diagram in figure 5.6. The generation of the Iq object
based on the parsed XML is somewhat simplified in the figure since this is done
by subsequent calls to the methods startelement() and endElement() in
the StreamParser and Iq classes. Further on process() is called to process
the Iq message object when it is fully generated. In this example the Iq mes-
sage triggers an action to send a message to another user. The outgoing message
is generated in the ProcessIq class and sent through the User class and its
UserStream.



56 Architectural Choices

Message

Message()
Message()
setTo()
getTo()
setToRessource()
getToResource()
setFrom()
setFromResource()
setType()
setBody()
getBody()
setThread()
startElement()
endElement()
toString()

(from jabber)
Presence

Presence()
Presence()
setTo()
getTo()
setFrom()
getFrom()
setType()
getType()
setShow()
setStatus()
setDevice()
getPriority()
startElement()
endElement()
toString()

(from jabber)
Iq

Iq()
Iq()
setId()
getId()
setTo()
getTo()
setToRessource()
getToResource()
setFrom()
setFromResource()
setType()
getType()
setQuery()
getQuery()
startElement()
endElement()
toString()

(from jabber)

ProcessIq

HEX[] : char

ProcessIq()
setUserHome()
setOfflineMsgHome()
process()
processGet()
emitAllRoster()
processSet()
isUserPasswordValid()
bytesToHex()
processLogin()
processNewUser()

(from process)

UserStream

output : OutputStream
resource : String

UserStream()
UserStream()
postString()
close()
close()
emit()
getResource()
setResource()
getDevice()

(from users)

User

PASSWORD_TYPE_PLAIN : byte = 1
PASSWORD_TYPE_SHA1HEX : byte = 2
id : long
domainId : long
passwordType : byte
online : boolean
priority : int

(from users)

StreamParser

INITIALIZED : boolean
JABBER_EXTENDED : boolean
m_saxParser : SAXParser
m_input : NonBlockingInputStream
m_output : OutputStream

StreamParser()
proceed()
emit()
startDocument()
startElement()
endElement()
characters()
postMessage()
postIq()
enableLogging()
getLogger()
configure()
initialize()

(from core)

0..n 0..n 0..n

Figure 5.5: Jaba class diagram for XML processing

Message protocol realization

Figure 5.7 shows a detailed view of the realization of the XML message protocol,
classes contained in the Jabber component.

At the top level of the inheritance hierarchy is the class Element. There
are eight subclasses of this class where the three top-level elements of the Jab-
ber message protocol are recognized, namely <presence/>,<message/> and
<iq/>. The Iq class utilizes the class Query to generate sub queries which again
can be of the types depicted in figure 5.7. In this area Jaba differs from jabberd.
Instead of keeping the XML and exchange XML internally in the server Jaba cre-
ates objects of the incoming XML messages and uses these objects for processing
internally. These objects are instances of the classes depicted in the figure.



5.4 Architectural choices 57

 : StreamParser  : Iq  : ProcessIq  : UserHome  : User  : UserStream

new Iq()

startElement()

endElement()

new ProcessIq

findUserByUserName(toUser)

process()

getUserStream()

postString()

Figure 5.6: Jaba sequence diagram for message processing

Jaba user management

Figure 5.8 shows classes realizing the storage and retrieval of user data. These
classes reside in the User component.

UserHomeDB realizes the interface UserHome implementing methods for
access to a database. This class contains the connection to a database and the
different SQL queries. Other classes access these methods through the interface,
such as shown in the figure by the class ProcessIq. The User object is instantiated
by UserHomeDB triggered by a method call from ProcessIqwhen a new logon
message, e.g. Iq message, is received.

5.4 Architectural choices

In this section we discuss alternative ways of incorporating the new functionality
of SIGN into to the Jabber server. We present two approaches, a layered design
and the use of internal components.

5.4.1 Layered design

One approach would be to use a layered design (figure 5.9) by introducing a ser-
vice layer between the Jabber server and the clients, where extensions to the server
could be implemented. In this case the clients do not communicate directly with
the Jabber server, which means that changes in the message protocol can be im-
plemented if desired. Translation between message protocols would then have to



58 Architectural Choices

Presence

Presence()
Presence()
setTo()
getTo()
setFrom()
getFrom()
setType()
getType()
setShow()
setStatus()
setDevice()
getPriority()
startElement()
endElement()
toString()

(from jabber)
Message

Message()
Message()
setTo()
getTo()
setToRessource()
getToResource()
setFrom()
setFromResource()
setType()
setBody()
getBody()
setThread()
startElement()
endElement()
toString()

(from jabber)

Query

Query()
Query()
setNamespace()
getNamespace()
setSubQuery()
getSubQuery()
startElement()
endElement()
toString()

(from jabber)

Element

elementName : String
child : Element
parent : Element

Element()
setChild()
getChild()
setParent()
getParent()
pullTextNodeValue()
startElement()
endElement()
characters()

(from jabber)

subQuery

Iq

Iq()
Iq()
setId()
getId()
setTo()
getTo()
setToRessource()
getToResource()
setFrom()
setFromResource()
setType()
getType()
setQuery()
getQuery()
startElement()
endElement()
toString()

(from jabber)

SQAgents

SQAgents()
SQAgents()
addItem()
startElement()
endElement()
toString()

(from jabber)
SQAgentsAgent

SQAgentsAgent()
SQAgentsAgent()
setJid()
setName()
setDescription()
setService()
setRegister()
setSearch()
startElement()
endElement()
toString()

(from jabber)
SQAuth

SQAuth()
SQAuth()
setUsername()
getUsername()
setPassword()
getPassword()
setDigest()
getDigest()
setRessource()
getRessource()
startElement()
endElement()
toString()

(from jabber)

SQRoster

SQRoster()
SQRoster()
getItems()
addItem()
addAllItem()
startElement()
endElement()
toString()

(from jabber)

Figure 5.7: Jaba class diagram for XML elements

be implemented in the service layer. Language independence is ensured as the
service layer would exchange XML messages with the Jabber server over socket
connections.

One of the drawbacks of this approach is that functionality provided by the
Jabber server, such as connection handling and XML parsing, would have to be
duplicated in the service layer. The work effort to achieve this would be high, and
much of the motivation for using existing components would disappear.

As Jabber does not distinguish between devices, the service layer would also in
some cases have to “undo” actions performed by Jabber. For instance, if a message
should not be delivered to a wireless client due to the message size, the service



5.4 Architectural choices 59

UserHomeDB

INITIALIZED : boolean

UserHomeDB()
getConnection()
findUserByUsername()
getRosterListById()
getRosterListById()
findDomainNameById()
addRosterFriend()
configure()
initialize()
removeUser()
findUserInList()
findMaxSize()

(from users)

StreamParser

INITIALIZED : boolean
JABBER_EXTENDED : boolean
m_saxParser : SAXParser
m_input : NonBlockingInputStream
m_output : OutputStream

StreamParser()
proceed()
emit()
startDocument()
startElement()
endElement()
characters()
postMessage()
postIq()
enableLogging()
getLogger()
configure()
initialize()

(from core)

ProcessIq

HEX[] : char

ProcessIq()
setUserHome()
setOfflineMsgHome()
process()
processGet()
emitAllRoster()
processSet()
isUserPasswordValid()
bytesToHex()
processLogin()
processNewUser()

(from process)

UserHome

findUserByUsername()
getRosterListById()
getRosterListById()

findDomainNameById()
addRosterFriend()

removeUser()
findUserInList()
findMaxSize()

(from users)

Figure 5.8: Jaba user class diagram

layer would have to intercept the message. Then it would have to send it back to
Jabber, addressing the message to the desktop resource or to offline storage.

User information would also have to be stored in the service layer, as the user
can have separate contact lists and preferences for different devices.

One advantage of this approach is that no changes to the Jabber server is nec-
essary. The system will thus be easier to maintain as new versions of the Jabber
software appear, as only changes to the service layer are (possibly) needed.

Assuring that existing Jabber clients can use the system is easy as well, as they
can bypass the service layer entirely.



60 Architectural Choices

Jabber

Service layer

Desktop
Mobile
phone

PDA

Figure 5.9: Layered server

5.4.2 Internal components

Using internal components (see figure 5.10) is another way of implementing the
changes to the Jabber server. In this case the clients communicate directly with the
Jabber server, same as the normal use of Jabber.

Internal communication between the new components and the server is done
by method calls, which means that programming language independence is not
achieved. The components must in some way be inserted into the message pro-
cessing “loop”.

In jabberd, components can be loaded at runtime based on a startup script.
When loaded, components register callback functions for various events, such as
the arrival of messages or presence information. The further internal routing of
data is based on the result of each component in the loop.

Jaba on the other hand does not explicitly consist of components. However,
as mentioned in the previous section some groups of classes can be regarded as
logical components. New components can not be added at runtime as in jabberd,
rather they must be added at compile-time. In addition, it is not possible to set
callback-functions. As a consequence, changes in the source code is necessary to
implement the extensions to the Jaba server.

Using components will give a higher degree of control than the layered ap-
proach. Components that are added can shortcut the use of standard components
replacing functionality. On the other hand components can provide additional func-
tionality by including the component in the message processing sequence without
replacing others. In this way functionality provided by Jabber could be reused and
minimal duplication of functionality would be necessary.



5.5 Jaba vs. jabberd 61

Desktop
Mobile
phonePDA

Component 1 Component 2

Jabber

Figure 5.10: Internal server components

5.5 Jaba vs. jabberd

After an initial study of the two available server versions, our preferred choice of
server was jabberd. But after the detailed study, in the end we chose to use the Jaba.
In this section we present the pros and cons for each implementation starting with
the one with did not choose, jabberd We base our discussion around the selection
criteria we presented in the introduction of this chapter.

5.5.1 jabberd

One of the main reasons for initially wanting to user jabberd is that it complies to
the documentation and written material about Jabber. It implements the message
protocol completely and it is currently in use on the many Jabber server available
on the Internet today.

In addition it realizes the important concepts of Jabber, namely the strong foun-
dation on XML. jabberd uses XML also for internal communication between com-
ponents acting as a framework for routing XML. Changes in the message protocol
can be implemented with little effort adding a new component handling new XML
elements or tags.

However, when studying jabberd we found that it would be difficult to imple-
ment many of the changes needed for the SIGN prototype because of the detailed
level at which changes needed to be made. Some of the new functionality de-
manded either changes in current components or extensive duplication of function-
ality into new components. We concluded that implementing the new functionality
would require extensive reworking of existing jabberd source code.

jabberd is implemented using C, a language in which we have little experience.
Implementing the extended functionality of the SIGN would demand a greater ef-
fort than the case in a programming language in which we have experience. Adding



62 Architectural Choices

components however could be done using STD I/O or TCP sockets enabling the
use of other programming languages, but again reducing the detail level of how we
could change jabberd.

Java is the main programming language taught at NTNU and since this project
should be used in sessions with students using at least an object oriented language
would be preferable.

5.5.2 Jaba

Our choice to use Jaba was very much based on Java being our preferred pro-
gramming language and the fact that using jabberd would still require extensive
duplication, or reworking, of the existing source code.

Java is a programming language we are familiar with and have experience from
in other development projects. This should reduce the work effort compared to C.
In addition using Java would make it more interesting to use the project in student
sessions at NTNU, one of the prerequisites of this project. Further, it will probably
make the work done in this project more accessible to other students wanting to
continue on the work we have started.

However, there are several aspect about Jaba that makes it far from ideal to use.
Jaba does not comply with the main concept of Jabber, namely a generic frame-
work for routing XML. The server is highly focused towards the Jabber message
protocol. In addition the server does not implement the message protocol fully,
lacking a great deal of the functionality provided by jabberd. Thus, using Jaba
makes it necessary to make changes in the source code.

Jaba is an ongoing project very much in it’s infancy. This accounts for the lack
of functionality and not complying to Jabber specification, but it also implies that
many updates of the server software will be released before it could be called a
complete Jabber server.

Further specification of how we utilize Jaba and make changes to implement
SIGN, is given in the next chapter.



Chapter 6

Design



64 Design

6.1 Introduction

In the previous chapter we presented the decision to use Jaba as the Jabber server
in the SIGN prototype. In this chapter the focus will be on how we will use and
extend Jaba to incorporate the SIGN requirements from chapter 4. An obvious goal
is to design the system such that the existing Jaba functionality can be used and at
the same time isolating our changes.

The chapter starts off by presenting the SIGN system architecture. When the
decision to use Jaba was made, restrictions on the system architecture were im-
posed, as Jaba is less flexible than jabberd in terms of how the server interacts with
other components and services.

Then we present the design for the extended Jaba server. In section 5.3 the
various Jaba components were introduced and this section will focus on changes
made to these components and the interaction between them.

The final section of this chapter presents Jabber related parts of the client de-
sign. More specifically, we will show the parts of the client design which are related
to parsing and processing of the Jabber message protocol elements. This is shared
among the three versions of the client application.

6.2 SIGN system architecture

Figure 6.1 shows the SIGN system architecture, a three-tiered architecture with
a client–, server– and data-tier. Many of the server requirements from chapter 4,
particularly the basic IM requirements, are already fulfilled by the Jaba server.
The main decision concerning the system architecture thus relates to where the
remaining server requirements shall be implemented. As the figure shows, these
requirements are implemented in the server-tier, inside Jaba. From this follows that
the SIGN requirements not necessarily lead to changes to the system architecture
as a whole. A short description of the three tiers concludes this section.

Client-tier

The client-tier is comprised of the three versions of the client application. Each
client exchanges XML-messages with the server-tier over TCP/IP socket connec-
tions. Instances of the client application will run on PC’s, PocketPC’s and J2ME
enabled devices such as mobile phones and PalmOS PDAs.

In addition to the SIGN client applications, existing Jabber clients can connect
to the server.

Server-tier

The server-tier consists of the Jaba server, modified to fulfill the SIGN require-
ments which Jaba do not. As shown in figure 6.1, we have chosen to implement
the extended functionality internally in the Jaba server. The changes made to the



6.3 Server design 65

Desktop
Mobile
phone

PDA

Extensions

Jaba

Database

Client-tier

Server-tier

Data-tier

Figure 6.1: SIGN high-level system architecture

server do not affect the use of existing Jabber clients as the new functionality must
explicitly be addressed by the client in the content of the <iq/> and <pres-
ence/> messages.

Data-tier

The data-tier is responsible for storage of persistent data. In SIGN additional data
is stored on the server compared to Jaba. For instance contact lists for the different
devices and user preferences.

How the data is stored is up to the data-tier, but in Jaba a database is used and
we see no reason to change this. The data-tier provides an interface to the server
for storage and retrieval of data, which will be presented in the next section.

6.3 Server design

The Jaba architecture was presented in section 5.3. In this section we will give an
account of how we intend to extend Jaba into a SIGN server.

One of the main goals for this process is to modify existing functionality and
incorporate new functionality, but at the same time minimize the changes to Jaba.



66 Design

We have thus opted to leave the architecture fundamentally unchanged, as we be-
lieve that this will facilitate the process of converting future releases of Jaba into a
SIGN server. When modifications are necessary, we will seek to isolate this from
the existing classes.

Jaba already provides most of the basic IM functionality in SIGN, so the nec-
essary changes by and large consist of adding functionality related to the following
properties of SIGN:

• Extended awareness model

• Use of different devices

• User preferences

Awareness model

To implement the SIGN awareness model from section 3.3, device and context
information, in addition to the users presence, must be sent from the client to the
server and distributed by the server to subscribing clients. This information will be
communicated using the existing Jabber <presence/> message, which implies
that the parsing and processing of these messages must be changed on the server.

Different devices

A fundamental requirement to SIGN is that it shall allow users to connect with
different client devices. The service can be customized by the user depending on
which type of device he is using, for instance by using a smaller contact list when
connected from a mobile phone compared to the contact list on a desktop PC. This
implies that SIGN has different requirements regarding storage of persistent data.

Further on, contact lists and preferences must be set up on the client applica-
tions and sent to the server. For this purpose the ”workhorse” of the Jabber message
protocol – the <iq/>message – will be used. The parsing and processing of these
messages must thus be augmented.

User preferences

Section 4.5 explains how a user can set various preferences determining how and
where messages shall be delivered according to which device(s) he is connected
with. The SIGN server must thus obey different rules for delivering messages than
Jaba.

In addition, SIGN shall allow the user to have messages forwarded to either
SMS or e-mail. This functionality does not exist in Jaba, and we must thus find a
proper place to implement it.



6.3 Server design 67

Design changes

Rather than changing the architecture, we intend to implement the new functional-
ity by modifying the existing design.

Section 5.3.1 described the various components in Jaba, and of these the fol-
lowing components will be modified:

• Jabber

• Process

• Users

In addition to these changes, a new component called Services, used for sending
SMS and e-mail messages will be added.

The following sections describe the changes to each of these components as
they appear in SIGN.

6.3.1 Jabber component

The Jabber component is responsible for the process of converting XML mes-
sages into object representations, which is the unit of exchange between the Jaba
components. Figure 6.2 shows the class diagram for this component in SIGN.

From the figure it can be seen that the Message and Presence classes do
not rely on other classes for converting their corresponding message, which is the
same as in Jaba. Iq on the other hand uses various classes when parsing messages.
This is due to the fact that <iq/>messages can contain various data depending on
the namespace set for the <query/> sub-element. In SIGN two new classes are
used for this purpose in addition to those from Jaba.

Message

No new attributes or sub-elements to <message/> are introduced in SIGN, so
the Message class is consequently left unchanged.

Presence

Due to the extended awareness model in SIGN, <presence/> messages from
mobile phone and PDA client applications may contain a <device/> sub-element.
Jaba discards tags which are not explicitly recognized (in contradiction to jabberd),
therefore the Presence class must be modified to read this tag from the presence
messages.

The same applies to the <priority/> sub-element in the presence mes-
sages, which are discarded by Jaba as well. This is not in accordance with the
Jabber message protocol [20], and must be implemented as SIGN relies on the use
of priorities.



68 Design

Query
(from jabber)

Iq
(from jabber)

SQRosterConfig

SQRosterConfig()
startElement()
endElement()
getMobileContacts()
getPdaContacts()

SQPreferences

SQPreferences()
startElement() : void
endElement() : void
getBlockMobile() : Boolean
getBlockPda() : Boolean
getBlockDesktop() : Boolean
getFilterMobile() : String
getFilterPda() : String
getForward() : String
getAutoReply() : String[]

n

n
n

StreamParser

INITIALIZED : boolean

(from core)

Presence

device : String
priority : String

getDevice()
getPriority()

Message

getBody()

Change to 
recognize new 
namespaces

n
n

n

Figure 6.2: Class diagram of Jabber in SIGN

In figure 6.2 it can be seen that methods to retrieve these values have been
added to the Presence class.

Iq

User preferences and device dependent contact lists are in SIGN sent from clients
to the server contained in <iq/> messages. The Jabber message protocol utilizes
namespaces to distinguish between the various uses of the <iq/>message, so two
new namespaces are introduced in SIGN for user preferences and device dependent
contact list. These are jabber:ext:iq:preferencesand jabber:ext:-
iq:rosterconfig, respectively.



6.3 Server design 69

The top-level <iq/> element itself is not changed, as the namespaces are set
for the <query/> sub elements of the messages. Figure 6.2 shows that the Iq
class is consequently left unchanged.

The Query class must, however, be aware of the two new namespaces above.
In order to create object representations of messages under these namespaces, two
new classes are introduced as shown in the figure:

SQPreferences This class contains methods to get the state of the different pref-
erences which can be set up by the user.

SQRosterConfig This class contains methods to get the contact list for PDAs and
mobile phones.

Instances of these classes are created when the respective namespaces are de-
tected in the <query> element. In figure 6.2 it can be seen that the instances
of SQPreferences and SQRosterConfig are created by the Query class.

6.3.2 Process component

In Jaba the Process component is used for processing Iq objects generated by
the Jabber component. Processing of Message and Presence objects how-
ever, is done by the Core component. We believe that it is better to leave this re-
sponsibility to the Process component for the two latter message types as well, in
order to maintain a clear distinction between the functionality of the different com-
ponents. This is particularly important in SIGN, as the message delivery rules and
the awareness information in <presence/>messages are more complex than in
Jaba.

Figure 6.3 show the class diagram of the Process component in SIGN. All
processing classes extend the class ProcessElement. The two classes at the
top of the diagram are the existing Jaba classes, whereas the classes at the bottom
– ProcessIqExt, ProcessMessageExt and ProcessPresenceExt are
classes specific for SIGN.

The following subsections present each of the latter classes.

ProcessIqExt

As we stated in the previous section, two new namespaces are used in <iq/>
messages. The Process component must thus be changed to handle these names-
paces. Instead of changing or replacing the existing class used for processing Iq
objects (ProcessIq), we introduce the class ProcessIqExt which will han-
dle <iq/> messages in which one of the new namespaces is set. The two classes
will be used in parallel, thereby evading the need to duplicate functionality existent
in the first in the latter.



70 Design

ProcessAuthorization
(from process)

ProcessElement

ProcessElement()
emit()
process()

(from process)

ProcessIq
(from process)

ProcessIqExt

USER_HOME : UserHome

ProcessIqExt()
process()
setUserHome()

ProcessMessageExt

streamParser : StreamParser

MessageHandlerExt()
process()
setUserHome()

ProcessPresenceExt

USER_HOME : UserHome

PresenceHandlerExt()
process()
setUserHome()

Figure 6.3: Class diagram of Process in SIGN

ProcessMessageExt

Message delivery is more complex in SIGN than Jaba, as the user can set up various
rules as to where and how messages shall be delivered. Therefore we decided
that the Process components shall be responsible for this in SIGN. The class
ProcessMessageExt seen in figure 6.3 is used for this purpose and will be
responsible for implementing message delivery according to the scheme which
was described in chapter 4.

This class will replace the message processing which in Jaba is done by the
Core component. Although this violates the goal of avoiding duplication of func-
tionality, the existing message processing would have to modified anyway. We
belive that the advantage of separating the changes in new classes in this case out-
weighs the disadvantages associated with duplication of functionality.

ProcessPresenceExt

The extended awareness in SIGN requires <presence/>messages to be handled
differently than in Jaba.

Analogous to message processing, the responsibility of processing Presence
objects is moved from the Core to the Process component by adding the class
ProcessPresenceExt.

The same policy is applied as with message processing, where the new class
will replace the existing functionality for this in the Core component.



6.3 Server design 71

Message
(from jabber)

Presence
(from jabber)

SQPreferences
(from jabber)

SQRosterConfig
(from jabber)

StreamParser

INITIALIZED : boolean

(from core)

Iq
(from jabber)

Query
(from jabber)

ProcessIqExt

USER_HOME : UserHome

ProcessIqExt()
process()
setUserHome()

n
ProcessMessageExt

streamParser : StreamParser

MessageHandlerExt()
process()
setUserHome()

n ProcessPresenceExt

USER_HOME : UserHome

PresenceHandlerExt()
process()
setUserHome()

n

UserHome
(from users)

Figure 6.4: Interaction between Process and other components

Interaction with other components

Figure 6.4 show the relationship between classes from Process and classes from
other components. Most classes from the Jabber component are used, with
each processing class working with different classes from Jabber. ProcessP-
resenceExt and ProcessMessageExt uses the Presence and Message
classes, respectively. ProcessIqExt uses the various classes representing dif-
ferent parts of <iq/> messages.

StreamParser from Core creates instances of the different processing classes
for each message received.

The User component is used to store and retrieve various user data such as,
offline messages, user accounts, user preferences and contact lists.

6.3.3 Users component

The Users component is among other things responsible for storage of persistent
data, and is thus the interface to the data-tier. One of the requirements to SIGN
is that users shall be able to set up different contact lists for the various devices.
This implies that the Users component must be changed. This is also the case for
the preferences that users can set up regarding where and how messages shall be
delivered.

Other components access the persistent data through the interface UserHome.
In Jaba, the implementation of this interface is done by the class UserHomeDB.

We have decided not to introduce any new classes in the Users component,
instead including the necessary functionality by augmenting the UserHome inter-
face with the additional methods needed by other components in SIGN. In this way



72 Design

the all access to the data-tier is done trough one interface.

New

Existing

UserHome

findUserByUsername()
getRosterListById()

findDomainNameById()
addRosterFriend()

removeUser()
getDeviceRosterList()
setDeviceRosterList()

setPreferences()
getBlockMessage()

getMaxSize()
getForward()

getAutoReply()

Figure 6.5: UserHome interface

Figure 6.5 shows the extended UserHome interface for SIGN. The methods
above the dotted line are the existing Jaba methods, whereas those below the line
are added for use in SIGN. Table 6.1 summarizes the purpose for each of the new
methods.

6.3.4 Services component

SIGN allows users to have messages forwarded to SMS or e-mail. In contradiction
to jabberd, Jaba does not provide a means to communicate with other processes
or services, so the functionality to send e-mail and SMS must be included in the
modified Jaba server.

We have designed a component called Services for this purpose, shown in
figure 6.6. The idea is that various services can be added to this component. The
services shall be loaded when the server is started according to configuration files.

Other components access the Service component through an interface called
ServicesHome, which is similar to how the data-tier in Jaba is accessed. This
interface provides methods to add and remove services and methods to give other
components access to the existing services.

Classes are provided for each specific service: (SMSService and MailSer-
vice in figure 6.6). All service classes must extends the abstract base class Ser-
vice, and must hence implement the methods sendMessage() and getCon-
straints(). The first method is self-explanatory and the latter is used to get



6.3 Server design 73

Table 6.1: Additional UserHomemethods

Method Description
getDeviceRosterList() This methods returns the roster list for the PDA

or mobile phone client application. The existing
method getRosterListById()will be used to
get the roster list for other client applications.

setDeviceRosterList() This method is used to set the roster list for the PDA
and mobile phone client application.

setPreferences() This method is used to store the various preferences
which can be set up by the user.

getBlockMessage This method is used to check if a message should be
delivered to a user. This will depend on the device
the user is connected with and the sender.

getMaxSize() This method is used to check if the user has set a
maximum size for messages destined for a PDA or
mobile phone.

getForward() This method is used to find out if the user has set
the option to forward a message to either e-mail or
SMS.

getAutoReply() This method is used to find out if the user has set
an auto-reply message, which will automatically be
sent as a reply to incoming messages.

potential constraints, for instance maximum message length for the SMS service
which is 160 characters.

6.3.5 Component dependency

Figure 6.7 shows the dependency between the main components in SIGN. From
the figure it can be seen that the Core component is not directly dependent on the
Offline and Users components as it was in Jaba (see figure 5.3). This is a
result of moving processing of <message/> and <iq/> messages from Core
to Process.

The Service component is used solely by the Process component.

Sequence diagram

Figure 6.8 show a sequence diagram which gives an example of how the compo-
nents interact. The sequence diagram represents a case where a message shall be



74 Design

Service

name

sendMessage()
getConstraints()

SMSService MailService

ServiceHomeImpl

ServiceHome

enumerateServices()
getServiceByName()

addService()
removeService()

Figure 6.6: Class diagram of Service in SIGN

delivered to a client connected with a mobile phone.

When StreamParser detects a <message/> element it creates a new in-
stance of Message. Through subsequent calls to startElement()and char-
acters(), the message object encapsulate the XML message. StreamParser
then creates an instance of ProcessMessageExt and invokes the method pro-
cess().

In process() the User object for the recipient is retrieved from User-
Home and the device type, which in this case is a mobile phone, is retrieved. get-
BlockMessage() is invoked to determine if the user has set any preferences
which would cause the message to be blocked. In this diagram this is not the case
and getMaxSize() is invoked to get the maximum allowed size of messages
destined for a mobile phone. In this case the user has set a limit which is less than
the messages size and the message is consequently truncated.

The UserStream for the mobile phone is retrieved and the message sent to
user.



6.4 Client design 75

Core

JabberProcess

ServicesUsers Offline

Figure 6.7: Dependency between SIGN components

 : 
StreamParser

 : Message  : 
ProcessMessageExt  : UserHome

 : UserStream : User

new Message()

startElement()

endElement()

new ProcessMessageExt()

process()

getMaxSize

reduceMessageSize()

postString()

getDeviceType()

getBlockMessage()

getUserStream()

findUserByUsername()

new User()

Figure 6.8: Sequence diagram of message delivery

6.4 Client design

Jabber’s client–server model is heavily weighted to favour the creation of simple
clients. Most of the processing and IM logic is carried out on the server and the re-



76 Design

sponsibilities for the client are minimal. To create a Jabber IM client the following
main tasks must be addressed:

• Managing the connection to a Jabber server

• Implementing the Jabber XML message protocol

• Providing the IM user interface

Providing means to connect to a Jabber server and handle the XML message
protocol are fundamentals that must be in place for every Jabber client.

In the SIGN prototype we have developed three different clients, namely desk-
top client, PDA client and mobile phone client. In this section we present the
central parts of the client design. We will not distinguish between the three clients
since the central parts presented here apply to them all.

6.4.1 Design overview

Jabber
server

Connection
handling

User interface

XML
parsing

Message
handlers

Event
handling

XML

XML elements

updates

XML

user input

Incomming XML
stream

Outgoing XML
stream

generate
XML

Jabber client

Figure 6.9: Client design overview

Figure 6.9 depicts an overview of the main elements of the client design.
The clients must create and manage a TCP socket connection to the Jabber

server. XML is exchanged with the server over this socket. An XML parser parses
incoming XML messages. Message handlers then handle parsed XML, there are
one handler for each top-level XML element, e.g. <message/>,<presence/>
and <iq/>. These handlers contain the functionality associated to a particular
type of message. Usually the arrival of a message will trigger an update of the user
interface.

The user interacts with the application through the user interface, causing dif-
ferent events. Events can either be handled by the user interface or sent to an event



6.4 Client design 77

handler. If an event triggers the sending of an XML message, the message handlers
generate the XML.

6.4.2 Message exchange and processing

The client design is the similar for all clients, except for the user interface. The
different devices and programming languages used require different realization of
the user interface. There are also some differences in the implementations because
of the difference in the functionality on the clients. For example, the desktop client
contains more functionality than the PDA and mobile phone clients.

Figure 6.10 present the class diagram realizing the communication, XML pars-
ing and message processing on the clients.

The class JabberComm receives the data read from the TCP socket and parses
the XML message. The XML parser is realized by the class XMLElement. A
complete XML message is parsed before it is sent to processing. This is fundamen-
tally different to the XML parsing on the server where data is sent for processing as
soon as only a complete tag is received and not a complete message. Thus on the
clients an XML tree, e.g. a tree of XMLElement objects, containing all attributes
and tags of complete message is generated before further processing is done.

JabberComm

servAdr : String
serverPort : int
socket : Socket

JabberComm()
connect()
disconnect()
send()
receiveMessage()

Runnable

run()

(from lang)

PresenceHandler

PresenceHandler()
getPresenceMessage()

1
IqHandler

IqHandler()
getLogonMessage()
getRosterMessage()

1
MessageHandler

MessageHandler()
getMessage()

1

XMLElement

XMLElement()
parse()
getTagName()
getAttribute()
getChildren()

0..n

0..n

Socket
(from net)

ElementHandler

comm : JabberComm
gui : JabberGui

handleElement(e : XMLElement)

JabberGui
The GUI implementation 
will vary in the different 
client applications.

Figure 6.10: Client message handling

When parsing is complete, JabberComm checks the type of the XML mes-
sage, e.g. <presence/>, <message/> or <iq/>. The message is forwarded



78 Design

to the corresponding handler class for that message type. These classes are Mes-
sageHandler, PresenceHandler and IqHandler. This design is similar
to the design on the server.

Each of these classes contains functionality for extracting the elements and
attributes of the particular type of message. In addition, these classes perform the
actions associated with the arrival of the particular message type. Examples are
updating the user interface or prompting the user for input.

The message handler classes also contain the methods for generating outgoing
XML messages.



Chapter 7

Implementation and Deployment



80 Implementation and Deployment

7.1 Introduction

In this chapter we present details on the implementation of the SIGN prototype and
provide instructions for deploying the server– and client applications.

We start of by presenting the server implementation, with focus on changes
to the different Jaba components. Further on, Jabber related parts of the client
implementations are explained. We conclude this chapter by describing how to
install and run the SIGN server and the client applications.

The complete SIGN installation with source code is provided on a CD.

7.2 Server

In this section we present the changes and additions which we have made to the
various Jaba components. Components not mentioned in this section are left un-
changed. For each component we specify the number of lines of code which were
added to existing classes and the number of lines of the new classes.

7.2.1 Users component

Figure 7.1 shows an ER diagram of the database used in Jaba. Users stores the
basic information about a user – screen name1, username and password. Although
usernames are unique for each server instance, an integer id-number is given to
each user. Domains stores the server’s domain name, i.e. the name which is
appended to the username to form a jid. Messages which cannot be sent to a user
are stored in Offline messages.

To implement the data storage requirements of SIGN this data model has been
extended and is shown in figure 7.2. As can be seen in the figure, Device id
has been added as an attribute to the contact-relation between users. This is to
implement specific contact lists for each device. The device id is an integer with
the representation listed in table 7.1.

Table 7.1: Device id values

Value Device
0 PC

1 Mobile phone

2 PDA

Further on, the table Preferences has been added to store various pref-
erences set up by the user. Users id is a foreign key to the Users table and

1The name that appears in other users’ contact lists



7.2 Server 81

(0,n)

(1,1)

Offline_messages

MESSAGE
TO_USERID

FROM_USERID
TIMESTAMP

(1,1)

Has

Domains

ID
NAME

Belongs to
(0,n)

Users

ID
NAME
LOGIN

PASSWORD
DOMAIN_ID

Contact

(0,n) (0,n)

Figure 7.1: Jaba ER diagram

Device id is one of the values listed in table 7.1. The Item field contains an
option set by the user. Some of the options contain a parameter, which is stored in
the Parameterfield. Table 7.2 lists the possible Item values with corresponding
Parameter values, and gives a description of the interpretation of these values.

In chapter 6 the extensions to the data-tier interface was described. Implemen-
tation of these methods is done in the UserHomeDB class, where existing methods
for database access reside. Figure 7.2.1 shows the implementation of the method
getMaxSize() in UserHomeDB and provides an example of how the Pref-
erences table is accessed. The method retrieves the maximum size, set by the
user, of messages destined to a mobile phone or PDA.

Implementing the changes to the Users component required about 200 lines
of code.

7.2.2 Jabber component

In Jaba, XML element names must explicitly be recognized in the XML messages,
otherwise they are discarded. This is a consequence of Jaba’s policy of convert-
ing XML messages to object representation. As the <presence/> element was
extended to include device information, the following changes was made to the
Presence class:

2Interpreted as an e-mail address if the string contains the ’@’ character, phone number otherwise.



82 Implementation and Deployment

(0,n)

(1,1)

Offline_messages

MESSAGE
TO_USERID

FROM_USERID
TIMESTAMP

(1,1)

Has

Domains

ID
NAME

Belongs to
(0,n)

Users

ID
NAME
LOGIN

PASSWORD
DOMAIN_ID

Contact

(0,n) (0,n)

Device

Preferences

USERS_ID
DEVICE_ID

ITEM
PARAMETER

(1,1)

Has

(0,n)

Figure 7.2: SIGN ER diagram

1. Added a string constant with the new element name: ”device”

2. Added a member variable, device to hold the value

3. Changed the endElement() method to look for the <device/> tag

4. Included the value of device in the toString()method

5. Added get and set method for device

According to the Jabber message protocol [20], presence messages may con-
tain a <priority/> tag. This tag is not handled by Jaba, and as SIGN uses
priorities, we implemented the changes above for the <priority/> tag as for
<presence/>.

The two namespaces used in <iq/> messages led to the addition of two new
classes to the Jabber component. These are SQRosterConfig and SQPref-
erences. These classes were implemented as specified in the design chapter.
The Query class was modified to instantiate either of these classes upon detection
of the corresponding namespace in the startElement()method.

7.2.3 Process component

The main change to this component was the addition of three classes, ProcessMes-
sage,ProcessPresence,ProcessIqExt, responsible for processing <mes-



7.2 Server 83

public int getMaxSize(long userId, int deviceId){
Connection conn;
int result = -1;
try{

conn = getConnection();
String query = "SELECT parameter FROM " +

TABLE_PREFERENCES + " WHERE " +
FIELD_PREF_USERS_ID +"=? AND " +
FIELD_PREF_DEVICE_ID +
"=? AND " + FIELD_PREF_RULE + "=?";

PreparedStatement pst = conn.prepareStatement(query);
pst.setLong(1, userId);
pst.setInt(2, deviceId);
pst.setString(3, "size");

ResultSet rs = pst.executeQuery();
if(rs.next()){

result = rs.getInt("parameter");
}
rs.close();
pst.close();

} catch (Exception e){
System.out.println("Exception in getMaxSize()\n");
System.out.println(e.getMessage());

}
return result;
}

Figure 7.3: getMaxSize() implementation



84 Implementation and Deployment

Table 7.2: Preferences and parameters

Item Parameter Description
’block’ N/A Block messages from people not

in the contact list.

’size’ Max. message size Truncate messages down to the
specified value.

’auto’ Message Send the specified message as
auto-reply.

’forward’ Phone number or
e-mail address2

Forward messages to SMS or e-
mail.

sage/>, <presence/> and <iq/> messages, respectively. The first class im-
plements the message delivery algorithm which was presented in chapter 4. The
second implements routing of presence messages, which was not done correctly in
Jaba. The latter is responsible for handling <iq/> messages for setting user pref-
erences and device dependent contact lists. Together, the classes consist of about
250 lines of code.

Two methods were changed in ProcessIq, the original class for processing
<iq/> messages:

processSet() This method is among other things responsible for handling logon.
The method was changed to check which type of device the user connects
with, and store this for use by other components. Four lines of code were
required to implement the change.

emitAllRoster() This method is called succeeding a successful logon and sends a
<presence/>message to users subscribing to presence information from
the user who has just logged on. In addition it sends the presence state of
the contacts to the user logging on. Changes to this method consisted of
adding device information to the presence messages and retrieving the con-
tact list according to which device the user is logging on with. Changes to
the method amounted to about fifteen lines of code.

7.2.4 Core component

No new classes were introduced in this component. The changes which were made
consisted of delegating the processing of messages to the three new classes in the
Process component. For Iq messages, this requires checking if the namespace is
one of those introduced in SIGN. About 30 lines of code were needed to implement
the changes.



7.3 Client implementations 85

7.3 Client implementations

In this section we describe important aspect of the different client implementations,
e.g. mobile phone client, PDA client and the desktop client.

7.3.1 Mobile phone - J2ME client

The client is implemented as described in chapter 6 where the functionality with
regards to the handling of the Jabber XML message protocol is as show in fig-
ure 6.10.

The class JabberComm handles XML parsing and routing, whereas Mes-
sageHandler, PresenceHandler and IqHandler contains the logic for
how to handle messages.

The J2ME client is implemented using the Model-View-Controller(MVC) de-
sign pattern [10]. The class Model interacts with the different message handlers
on arrival and for sending of messages. The View is realized through the differ-
ent Screen classes. Different screens provide the user with the interface for the
different tasks. The main screen is the class Contactsscreen that displays the
user’s contact list and their awareness information. The class Controller con-
trols what screens that are to be displayed based on different events, e.g. the arrival
of a message or a user event. The screens retrieve the data to be displayed from the
Model.

The source code of the J2ME client application is found in appendix C.1. It
consists of 19 classes and comprises approximately 1500 LOC.

7.3.2 PDA and desktop clients

The PDA client was developed using PersonalJava and the desktop client was de-
veloped with J2SE. Both clients share the same basic design which can be divided
into two logical components – one handles communication with the SIGN server
(Jabber component) and the other implements the user interface (GUI compo-
nent).

Jabber component

The Jabber component is based on the design which was presented in figure 6.10,
with a separate class for processing each of the three top-level Jabber XML mes-
sages. However, the IqHandler for the desktop client has two additional meth-
ods for generating <iq/> messages with device dependent contact lists and user
preferences.

In contradiction to the Jabber component in Jaba, this component does not
create object representation of the XML messages. Instead it extracts the essen-
tial content of the message, which is passed as parameters to methods in the GUI
component. Table 7.3 shows the methods in GUI which are called by the different
message handlers in Jabber.



86 Implementation and Deployment

Table 7.3: GUI-component methods

Method Invoked by Trigger
addContact() IqHandler Invoked when the contact list is

received from the server.

newMessage() MessageHandler Invoked when a message is
received.

setPresence() PresenceHandler Invoked when awareness infor-
mation is received.

GUI component

The GUI implementations varies substantially between the two different version.
This is due to the following factors:

1. Screen-size varies significantly

2. Desktop client contains more functionality

3. Different GUI libraries are used

In the PDA client, the user interface has two main screens – one shows the
contact list and displays awareness information for each of the contacts. From the
other screen, the user can write messages to a contact and view an ongoing message
dialog.

In the desktop client, there is a main window which displays the contact list
and awareness information for each of the contacts. Separate windows are used
for message dialogs with the contacts. However, both client implement the same
interface for access by the Jabber component.

Table 7.4 shows the methods in Jabber used by GUI and gives a description
of each method.

Classes and lines of code

A total of fourteen classes constitute the PDA client, where five belong to Jabber
and five to GUI. Approximately one thousand lines of code is split equally between
the two components.

The desktop client consists of fifteen classes – five in the Jabber component
and ten in the GUI component. The lines of code count for Jabber component is
about the same as for the PDA client – a little short of 500. With about a thousand
lines of code in the GUI component, the total reaches nearly 1500 lines of code.



7.4 XML 87

Table 7.4: Desktop– and PDA client Jabber-component methods.

Method Description
connect() Connects to the SIGN server

on the specified address and
initiates the XML conversation
with the server by sending the
<stream:stream> tag.

disconnect() Ends the XML conversation
with the </stream:stream>
tag and closes the connection.

sendMessage() Sends a message to a user.

sendPresence() Sends a presence message to the
server with device (PDA only),
presence and context informa-
tion.

7.4 XML

7.4.1 Parsers

The NanoXML parser is use in the server and desktop applications. NanoXML is a
small non-validating XML parser for J2SE/J2EE, developed by Marc De Scheemaecker.

kNanoXML is a port of NanoXML, intended to run on J2ME enabled devices.
This parser is used in the mobile phone and PDA client applications. kNanoXML
was ported by Eric Giguere.

Both parsers can be downloaded from [25].

7.4.2 Jabber XML message protocol

The top level XML elements of the Jabber XML message protocol are <pres-
ence/>, <iq/> and <message/>. To provide the extended functionality in
the SIGN prototype additions are made in the <presence/> and <iq/> ele-
ment. They are described below.

<presence/> element

In this element we have added the sub-element <device/>. This element is used
to carry information about the user’s device. An example is given below.

<presence/>
<show>away</show>



88 Implementation and Deployment

<status>I am in a meeting.</status>
<device>mobile</device>

</presence>

In addition, the SIGN prototype uses the element </status> to carry infor-
mation about the context.

<iq/> element

We have introduced two new namespaces for use in the <iq/> message sent from
the desktop client – jabber:ext:iq:rosterconfig and jabber:ext:-
iq:preferences. The first is used for sending contact lists for the mobile
phone and PDA client and the latter is used for sending various preferences set up
by the user.

An example message for the preferences namespace is shown below.

<iq type="set">
<query xmlns="jabber:ext:iq:preferences">
<mobile>
<block/>
<size max="100"/>
<forward type="SMS" address="+4791709927"/>

</mobile>
<pda>
<block/>
<size max="200"/>

</pda>
<desktop>
<block/>

</desktop>
</query>

</iq>

The allowed sub elements of the <query/> element are <mobile/>, <pda/>
and <desktop/>. In turn these can contain different sub elements which specify
options for the different devices:

<block/> Sets the option to block messages from users not in the contact list
for the a specific device.

<size/> Sets a maximum size for messages delivered to mobile phones or PDAs.
The size is specified by the max attribute.

<forward/> Sets the option to forward messages to either SMS or e-mail ac-
cording to the value of the type attribute. address contains an e-mail
address or a phone number depending on the value of type.



7.5 Deployment 89

An example contact list message is:

<iq type="set">
<query xmlns="jabber:ext:iq:rosterconfig">
<mobile>
<item jid="lisa@hauk02.idi.ntnu.no"/>
<item jid="albert@hauk02.idi.ntnu.no"/>

</mobile>
<pda>
<item jid="betty@hauk02.idi.ntnu.no"/>
<item jid="lisa@hauk02.idi.ntnu.no"/>
<item jid="albert@hauk02.idi.ntnu.no"/>

</pda>
</query>

</iq>

For this message, the <query/> element contains the sub elements <mobile/>
and <pda/>, which in turn contain <item/> sub elements with the jids of the
selected contacts as an attribute.

7.5 Deployment

In this section we present how to install and run the different applications in the
SIGN prototype system. Source code and necessary setup files are all provided on
a CD. The directory structure is depicted in figure 7.4 with a short description of
each top-level directory in table 7.5.

Figure 7.4: CD directory structure

In the next sections we will describe the main contents of each of the directories
and describe how to install and run the different applications.



90 Implementation and Deployment

Table 7.5: Directory description

Directory Description
sign Contains files for the SIGN prototype server

application

db Contains the HSQLDB database

clients Contains the different client applications, both
source– and binary files

7.5.1 SIGN server application

The files concerning the server application are placed in the directory sign. The
source code is placed in the directory src and necessary libraries are placed in
lib.

The conf directory contains XML files for configuring different parameters
of the SIGN server. The following files and parameters should be changed:

config.xml

The element <port> defines which port the server listens to for incoming con-
nections. This is set to 5222, which is defined as the standard Jabber port and
implemented by all Jabber clients. This should not be changed unless for testing
or other special reasons.

The element <bind> defines the name or IP address of the machine running
the SIGN prototype server and should be set correctly.

userDB.xml

This file defines the parameters for the server’s access to the database. The el-
ements <driver> and <url> defines the database driver and the URL to the
database. If the database used is the one provided on our CD and it runs on the
same machine as the SIGN prototype server application, these fields does not need
to be changed. If another database is used or it runs on a different machine the
fields must be changed accordingly. The user name and password for database
access is also defined in this file.

The field <login-domain> defines the domain name that is given to new
users. If the domain is jabber.ntnu.no, new users are given Jabber id’s username@-
jabber.ntnu.no.



7.5 Deployment 91

Building and running the SIGN server

To build the application execute the ant.bat file, in the sign directory, by typ-
ing ant sar. Two new catalogues will be created. These are apps and build.

In order to start the server a database must be running. The database provided
on the CD can be used. This is presented in the next section. To start the SIGN
server simply execute the file sign.bat.

SQL for the generation of database tables used by the SIGN prototype server
is provided in the file sql.db.

7.5.2 Database

The database provided on the CD is placed in the directory db and it is the HSQLDB
database. This is a simple small database written in Java and available at [12]. Any
database could be used, but for the sake of completion we provide HSQLDB.

The database is started by executing the file runServer.bat. The tables
used by the SIGN prototype can be created by running the database manager. Ex-
ecute the file runManager.bat and paste the script in db.sql for the table
generation.

7.5.3 Mobile phone client

The source code of the J2ME or mobile phone client is contained in the catalogue
\clients\mobile\src.

The compiled J2ME application, or MIDlet, is contained in the directory
\clients\mobile\bin. MIDlets must be packaged in JAR(Java Archive)
files for distribution, similar to the packaging of applets. Several extra fields must
be included in the manifest file of the JAR file. This includes a new descriptor file
known as a JAD(Java Application Descriptor) file.

The MIDlet JAR file for the mobile client application is named UniChat.-
jar.

Installing the mobile client

When the MIDlet is compiled and packaged it is ready to be installed on a device.
There are several ways MIDlets can be installed on different devices. Using a desk-
top PC the MIDlet can be transferred to the device by a data cable or an infrared
(IR) connection. The MIDlet can also be installed remotely if deployed on a web
site. When the MIDlet is installed it can be started from a menu on the device.

7.5.4 PDA client

The source code of the PersonalJava application can be found in the directory
\clients\pda\source.



92 Implementation and Deployment

A compiled version of the application can be found in \clients\pda\bin,
where there is one single class file – Jabber.class – and a jar file – Jab-
ber.jar – with the remaining classes.

Installing the PDA client

Before the application can be run on a PocketPC device, the PersonalJava runtime
environment must be installed. This can be downloaded from [27].

Jabber.class must be put in the \windows\start menu folder and
Jabber.jar in \Program Files\Jabber. In addition, the images con-
tained in the \bin directory must be placed together with the jar file. To transfer
the files, Microsoft ActiveSync must be used, a program which comes along with
the PocketPC.

The classpath for the virtual machine must be set, which requires a remote
registry editor3

Change the following registry entry:

HKEY_CLASSES_ROOT
Java Class File
Shell
Open

Command
"\Program Files\Java\bin\
pjava.exe" -file "%1"

to

"\Program Files\Java\bin\pjava.exe"
-classpath "\Program Files\Jabber\Jabber.jar"
-setcwd "\Program Files\Jabber" -file "%1"

This completes the setup and the client can be run from the start menu. The
PDA client can also be run from a regular PC. This is done with the following
command:
java -classpath ".;Jabber.jar" Jabber

7.5.5 Desktop client

Desktop client source code is contained in the folder \clients\desktop\src.
An executable jar file – JabberClient.jar– can be found in \clients\desktop\bin.
The application is started by executing the jar file with the command:
java -jar JabberClient.jar.

3One come with Microsoft eMbeddedVisual Tools, available free of charge from [19].



Chapter 8

Evaluation



94 Evaluation

8.1 Scenario

In this section we give a detailed description of the scenario introduced in chapter 1.
This scenario is used to demonstrate the SIGN prototype functionality. First we
present the different actions that occur. Then we present the results from the run of
the scenario and discuss the behaviour of the SIGN prototype.

8.1.1 Scenario description

Figure 8.1 depicts the main movements and devices used by the test user, who we
have named Jill. The scenario describes a day at work, where she starts out at home,
then going to a lunch meeting before ending up at the office. In the following tables
we describe the actions associated to each device and important features they aim
to demonstrate.

Figure 8.1: Evaluation scenario

Table 8.1 describes the beginning of the scenario where the user is at home in
the morning connecting with a mobile phone.

Table 8.2 describes the actions that occur at the lunch meeting using the PDA.
Jill connects to the IM service and set the presence to communicate that she is
occupied in a meeting. After the meeting she communicates with a colleague at
the office.

Back at the office Jill connects with the desktop PC and the subsequent actions
are described in table 8.3.

8.1.2 Scenario run and results

In this section we present and discuss the results from the scenario. We conducted
the test by carrying out the actions of the different users. Prerequisites of the test,
as it is described, were that SIGN clients were installed on the different devices and
that user accounts and contact lists are created. The different devices used during
the test are listed below. The screen shots provided in this section are taken from a
repetition of the scenario using device emulators.

• Mobile phone - Motorola Accompli 008

• PDA - Siemens SX45i



8.1 Scenario 95

Table 8.1: Actions on mobile phone

# Action Description Tested feature
M1 Log on Log on, presence

M2 Receive contact list Device dependent
contact list

M3 Sending message
to secretary, Albert,
about the lunch
meeting

Albert is displayed as
available and using the
desktop PC

Sending messages

M4 Receiving message
from Albert

Receiving
messages

M5 Set presence to “Do
Not Disturb”

Presence

M6 Incoming message on
server from user Si-
mon

Message is blocked by
filtering rules since not
in contact list

Filtering

Table 8.2: Actions on PDA

# Action Description Tested feature
P1 Log on Log on, multiple

resources, presence

P2 Receive contact list Device dependent
contact list

P3 Setting presence and
context

”dnd” and ”I am in a
meeting”

Presence, context

P4 Sending message to
colleague Herman

Herman is displayed
as available

Messaging

P5 Receiving message
from Herman

Multiple resources

P6 Set presence to opaque Transparent/Opaque
communication

P7 Log off Log off, presence

• Desktop PC



96 Evaluation

Table 8.3: Actions on Desktop PC

# Action Description Tested feature
D1 Log on Log on

D2 Receive contact list Device dependent
contact list

D3 Receiving offline mes-
sage

Message sent earlier
by user Simon, but
blocked by filtering
rule

Offline messages,
filtering

D5 Adding Simon to mo-
bile phone contact list

Contact list
administration

D6 Setting preferences Forwarding to SMS Preferences

D7 Log off Multiple resources

Mobile phone client

The screen shot in figure 8.2 shows the mobile phone client after completion of the
4 first actions(M1-M4) in table 8.1. Figure 8.3 shows the user Albert’s view of our
test user Jill, on his desktop client. The screen shot illustrates one of the extensions
made to the awareness information, e.g. awareness of device. The icon illustrates
that Jill is connected with a mobile phone.

Figure 8.2: Mobile phone screen shot

After action M5 the awareness information available about Jill has changed.
The presence is now set to “Do not disturb”

Due to the limited device capabilities client complexity should be reduced.
This is accomplished by limiting wireless clients to only provide basic IM func-
tionality. Messaging is illustrated by the mobile phone screen shot. The indication



8.1 Scenario 97

Figure 8.3: Desktop screen shot(1)

for the message received from Albert (action M4) is shown on the device by the
number in the brackets, e.g. the number of unread messages.

Action M6 occurs at the server. A user, Simon, not in Jill’s contact list, sends
her a message. The handling of this message illustrates two important features
introduced in the SIGN prototype. This is device dependent contact lists and the
concept of pushing the control towards the recipient. The latter is controlled by the
recipient by setting preferences.

Figure 8.4: Desktop screen shot(2)



98 Evaluation

Due to the limited wireless networks the amount of data exchanged should be
reduced. In the SIGN device dependent contact lists let the user control who can
make contact when mobile. It reduces the amount of data exchanged as contact
lists on desktop clients often contain many contacts. When on the move and using
wireless devices the user should be able to limit activity and disruptiveness to only
the most important contacts.

Jill has chosen, by setting preferences, to block messages from users not in
her contact list when connected with a mobile phone. The message from Simon is
therefore forwarded to Jill’s desktop client. Since this is not online, the message is
stored as an offline message. Figure 8.4 show other users’ view of Jill, in this case
Albert, after all actions in table 8.1have occurred.

PDA client

Screen shot 8.5 shows the PDA client after action P5 in table 8.2. Jill has connected
with her PDA, exchanged messages with her colleague Herman and finally set her
awareness information. Screen shot 8.6 shows Herman’s view of Jill.

Figure 8.5: PDA screen shot

Important functionality illustrated is the possibility to have multiple active
clients or resources. In many existing IM services this is not possible and login
causes another active client to be logged off.

Jill is now displayed as online with her PDA, shown by the awareness of device.
When Jill logs off with the PDA client (action P7), she will be displayed as online
with her mobile phone which currently is her other active client. The screen shot
also demonstrates the device dependent contact list since this is different than the
one on the mobile phone. On the PDA Jill has added two other colleagues.

During her session with the PDA Jill also sets her context information, another
extension of the awareness information. However, in the SIGN prototype the con-
text must be written in by the user. On wireless devices with cumbersome input



8.1 Scenario 99

methods the input needed from users should be reduced as far as possible. In most
situations the user is not interested in spending time writing information about the
context.

Figure 8.6: Desktop screen shot(3)

Context is provided in the SIGN prototype because it is regarded as important
information about users online with wireless devices. However, context should be
provided automatically with the aid of other systems. One obvious type of context
information is the geographical position of a user. This can be provided by GPS.
GPRS networks can also provide some degree of positioning. With interfaces to
these systems the SIGN prototype could provide automatic context information
since the system provides the ability to carry and display this information. Context
can also be exceeded beyond the sheer geographical position of a user. Interfaces
to scheduling or calendar systems could provide information about a user’s current
schedule and derive if the user is currently in a meeting or have other appointments.
Further on sensors in buildings could derive if a user is in a meeting if it can sense
more than one person in a room etc.

Desktop client

Back at the office, as Jill connects with the desktop client, the message sent earlier
by Simon (action M6) is now received as an offline message. The desktop client
is displayed in figure 8.7. Notice also that Jill’s contact list on the desktop PC is
much longer than the ones on the wireless devices.

The desktop is the interface to controlling the contact lists, setting the prefer-
ences and filter rules. Figure 8.8 shows the interface to administrate the contact
lists on all the client devices and figure 8.9 show the interface to set preferences
and filtering rules.



100 Evaluation

Figure 8.7: Desktop screen shot(4)

Figure 8.8: Desktop screen shot(5)

When Jill is done for the day she sets the preference to receive all incoming
messages on SMS. She logs off her active clients, the mobile phone and the desk-
top.



8.2 Wireless client development 101

Figure 8.9: Desktop screen shot(6)

8.2 Wireless client development

During the development of the SIGN prototype we have implemented clients for
desktop PCs, PDAs and mobile phones.

Our experiences from working with J2ME and PersonalJava for the wireless
clients are good. With prior knowledge to Java little effort is needed to get ac-
quainted with these Java version. Nevertheless, software development for wireless
devices proved more time consuming than expected. IDEs and device emulators
are available and easy to use but when testing on the actual devices, errors often
occurred, not experienced on the emulators. No possibility for debugging on the
actual device demanded that much time and effort had to be spent to correct errors.
These errors often were due to the mismatch between the specification of the de-
velopment language and the device provider’s actual implementation of the Java
virtual machine. This was specially the case with J2ME. In addition installation
and testing on wireless devices are cumbersome.

Implementing practical and usable GUIs on the wireless devices proved diffi-
cult and time consuming.

8.3 Changes to Jabber

In chapter 6 we described how we intended to change Jaba to support the require-
ments to SIGN. Our focus for the changes was on isolating the changes and avoid
having to implement functionality already provided by Jabber. Further on, we
wanted to minimize the necessary changes to the existing source code in order to
make the process of adapting to new Jabber versions easier.



102 Evaluation

Architecture

We made a decision not to make any fundamental changes to the existing Jabber
system architecture, such as adding a service layer or separate server components.

As for adding the service layer, isolation of changes would have been achieved.
However, a lot of functionality provided by Jabber would have to be duplicated
in the layer, such as connection handling, XML parsing and user data storage.
In addition we were unsure if it would actually be possible to implement all the
requirements in the service layer without having to change Jabber at all.

The option to use separate server components was eliminated when the deci-
sion to use Jaba rather than jabberd was made. But in any case we had the same
doubts, as with the service layer, whether or not we would be able to implement
the SIGN requirements by using this approach. In some cases the need to ”undo”
actions taken by the Jabber server would arise. In other cases we would not be able
to use the existing functionality at all, which would have required duplication of
existing functionality.

As a result, we did not change the architecture.

Design

Jaba is built up of several components which provide different functionality and
we decided to implement the changes by modifying the existing components and
adding a new.

The Jabber component is responsible for converting XML messages into ob-
ject representation for further use by the other components. As changes to the
message protocol was necessary, this component had to be changed. Two new
namespaces are used for <iq/> messages containing device dependent contact
lists and user preferences. This required the addition of two new classes and in turn
changes in the existing class where namespaces are handled. The extended aware-
ness information is carried within the <presence/> messages. Consequently
the corresponding class in Jabber was changed.

The Process component is used for processing messages after they have
been built up by the Jabber component. Changes to this component consisted
of adding three new classes – one for processing each of the three top-level Jabber
messages and some changes in one of the existing classes. The new class for pro-
cessing <iq/>messages was used in parallel with the existing, with the first being
responsible for handling messages under the two new namespaces. The other two
classes replaced functionality which in Jaba was done by the Core component.

The UserHome component is the interface to persistent data stored by Jaba.
With the additional storage requirements of SIGN, this component was changed.
Instead of isolating the changes in a new class, methods for storing and retrieving
data was added to the existing Jaba class.

Table 8.4 summarizes the number of changes made to the Jaba components.



8.3 Changes to Jabber 103

Table 8.4: Changes to Jaba components

Component Modified
classes

New classes

Jabber 2 2

Process 1 3

Core 1 0

Users 1 0



104 Evaluation



Chapter 9

Related Work



106 Related Work

9.1 Similar efforts and related work

Much research and work has been done to make tools or systems supporting collab-
orative work, providing messaging and awareness information. This has resulted
in a number of commercial and research systems. In the resent years, with the pro-
liferation of powerful mobile devices and better networks, some of the efforts also
included support for user and device mobility.

In this chapter we present work related to the SIGN prototype. Among many
systems and tools we have selected some efforts that address the same problems as
we have, although there might be differences in the complexity, size and function-
ality of the different systems. We will compare the efforts to our work on the areas
listed in table 9.1.

Table 9.1: Areas to compare

Area Description
IM support Support for basic IM features

Mobility Support for different service access methods and
devices

Awareness Types of awareness information available

Personalization Possibility to adapt the service to user needs

Technologies Technologies used

Message protocol Open, standard, proprietary or closed

System architecture Architecture and middleware

Each of the efforts that will be discussed is listed in table 9.1 together with a
short summary.

Table 9.2: Comparable work

Effort Domain Project type
MOTION Platform for providing services to build col-

laborative applications
Research

CAMP Modular mobile Internet portal with context
awareness features

Research

PRAVATA System providing awareness support for mo-
bile users

Research

ConNexus System that integrates awareness, IM and
other communication channels

Research



9.2 MOTION 107

9.2 MOTION

The MOTION project [15], MObile Teamwork Infrastructure for Organizations
Networking started in February 2000 and has a duration of 30 months, making it
at the time of writing near completion.

The focus is on supporting collaboration and distributed working methods.
MOTION is a tool providing workers with the ability to locate artefacts, docu-
ments and experts through distributed searches, subscriptions to information and
notifications, messaging and mobile information sharing and access.

Figure 9.1: Overview of the MOTION Architecture

MOTION is a platform for providing services to build collaborative applica-
tions. It provides a basic set of services and an API such that these basic services
can be customized or extended to meet specific organisation needs. The basic
components are user management and access control, messaging, publish and sub-
scribe component, repository, artefact manager and distributed search component.
An overview of the MOTION architecture and its basic services is depicted in fig-
ure 9.11.

Here we will mainly discuss the messaging component of MOTION. This is
one of the components depicted in figure 9.1 and a detailed view of this component
is shown in figure 9.22.

The messaging service is used both for delivering messages based on subscrip-
tion and for communication between users. Messages based on subscription can
be received, for example, when new documents on topics the user subscribes to are
entered in the system. Messages can thereby be of the following types, System-to-
User and System-to-Community (mainly based on subscription), User-to-User and
User-to-Community (similar to mailing lists). In this way MOTION supports basic
IM features very similar to the SIGN prototype.

In MOTION the Presentation Layer provides the user interface to the services

1The figure is taken from [15]
2The figure is taken from [15]



108 Related Work

and are built using the TWS API. In the SIGN prototype the presentation layer
corresponds to the different clients currently available on mobile phones, PDAs and
desktop PCs. MOTION provides access to the services through the same devices as
the SIGN prototype. It is described that a typical configuration of MOTION has a
number of user interfaces for different devices such as desktop computers, laptops,
PDAs, Web browsers and WAP. In the implemented prototype a native Java user
interface and an experimental lightweight Java PDA interface is available, although
it is not specified if the TWS API can be used to build clients on all mobile devices.

The MOTION front-end component is the interface to the MOTION messag-
ing component. It provides simple primitives for sending messages. These mes-
sages, as in the SIGN prototype, are transformed to XML events that are published
through the publish/subscribe component.

There is no description of the current user interfaces and nothing is described
about how contacts are handled and what awareness information is available about
these contacts. However, by setting preferences, a user can decide how messages
addressed to her should be delivered. In this way MOTION provides some of the
same functionality as the SIGN prototype regarding personalization allowing a user
to set preferences.

As shown in figure 9.2, MOTION categorises messages based on delivery
mechanism and distinguishes between SMTP, SMS, WAP SI and desktop mes-
sages. The appropriate gateway receives the message, transforms it to the specific
protocol and forwards it to the user. This is similar to the SIGN prototype, which
also provides interfaces to SMS and SMTP. To further support mobility in MO-
TION, a WAP gateway is provided to support access by WAP enabled devices.
The SIGN prototype does not support WAP, but we have instead chosen to provide
clients developed in J2ME and PersonalJava to support PDAs and mobile phones.
This makes it possible to maintain a certain consistency in the user interface across
platforms. This also reduces the number of protocols that the systems needs to
handle and can reduce time and complexity when implementing changes or new
features.

Figure 9.2: The MOTION Messaging Architecture



9.3 CAMP 109

MOTION is a framework for building applications, whereas the SIGN pro-
totype is focused towards instant messaging. Nevertheless, comparing the archi-
tecture of the two systems there are similarities. The functionality in MOTION
is separated in to components more than is the case for Jaba implementation of
Jabber. The functionality provided by Jabber can be compared to the Messaging
component and Publish/Subscribe component in MOTION. Jabber also provides
access control functionality, were in MOTION this is done by DUMAS. Between
these components XML is used as the data format, which also is the case in Jabber.

The presentation layer in the SIGN prototype is the different clients. This layer
is only coupled to the server through the XML message protocol. Thus any device
able to interpret XML can function as a SIGN client. In MOTION the presentation
layer is more tightly coupled to the other layers of the system through the use
of specific MOTION libraries. Whereas SIGN is a client - server architecture,
MOTION can also be a peer-to-peer architecture since some of the clients can host
services.

9.3 CAMP

CAMP [18] is a concept for a modular mobile Internet portal enhanced with con-
text awareness features. The goal is to make Internet services more independent of
different devices, access network technologies and service providers. In addition,
ensuring that services are delivered in ways that best benefit the user needs and sat-
isfying users with small devices and limited input capabilities. CAMP comprises:

• A framework for hosting services

• A middleware for authenticating users, managing and accessing context in-
formation

• An adaptation process that allows various adaptation steps based on context
information.

Since CAMP is a framework for hosting services it does not directly offer IM
functionality. IM could be one of the services built upon the framework. As net-
work services GSM SMS, WAP and WEB are mentioned, but client development
is not thoroughly discussed.

CAMP is heavily focused on the context of the users. The inclusion of context
awareness makes it possible to provide users with access to a variety of services
that are automatically adapted to the sensed user’s context. In CAMP the following
is stated concerning context awareness: ”The environment is modelled as a multi-
dimensional context space, by taking into account any factor that might influence
not only presentation aspects, but also the business logic itself of any user - service
relationship.” Since CAMP is an architecture and a framework for providing ser-
vices, no specific model for this multidimensional context space is provided. For



110 Related Work

the SIGN prototype we have developed the dimensions of the environment for an
instant messaging user. This model was presented in chapter 3.

Figure 9.3: The CAMP adaptation mechanism

In CAMP actions can be triggered by comparing where the users are in this
dimension against preferences set in a user profile. Adaptation of services to de-
vice and user context is discussed in CAMP but with the main focus on the server
side of the system. This adaptation mechanism is presented in figure 9.33 and is
comparable to the SIGN prototype. The user interacts with the system invoking
a service. The result is adapted according to preferences, device capabilities and
other context information. This adaptation mechanism is similar to the handling
of data in the SIGN prototype were the XML data is adapted and sent to the users
based on device and user preferences.

Internally, the system handles information in a terminal and network agnostic
way where XML is used. Furthermore XSLT is used for transformation of XML
documents in combination with adding or removing information based on device
capabilities. XML is the message format used in the SIGN prototype.

CAMP is built upon an underlying object oriented component based Mobile
Multimedia Architecture (M3A). This architecture was built for targeting mobile
computing, enabling context awareness information and supporting device adapta-
tion. M3A is based on the experiences from the MASE architecture (Mobile In-
formation Support Environment) from the ATCS/IST On-The-Move project [16].
The component-based architecture is similar to the Jabber reference architecture
describing a framework for routing XML messages. However CAMP is more
component based and comprises more functionality than our SIGN prototype. As
CAMP is a comprehensive framework for offering services over the Internet to dif-
ferent types of devices using context awareness to provide terminal adaptation, the
SIGN prototype is one service that can fit well in the general framework of CAMP.

3The figure is taken from [18]



9.4 The PRAVATA prototype 111

9.4 The PRAVATA prototype

The PRAVATA prototype [11] is an example implementation of a concept for ubiq-
uitous awareness and context specific support. The prototype is developed in the
context of computer-supported cooperative work, where individuals who are at
different places need to cooperate. The motivation is that it is often difficult to
spontaneously reach the persons that are needed at a current time. In contrast to
the SIGN prototype PRAVATA does not support messaging, only awareness.

The PRAVATA prototype uses an awareness information environment called
NESSIE to support awareness. In NESSIE sensors are associated with actors or
other objects and capture events related to them. Events are then generated and
sent to the NESSIE server that stores these events. Indicators are then used to
present these events to other users. A range of indicators or interfaces are available
in NESSIE. Examples are pop-up windows for computers, ticker tapes, 3D graph-
ical presentation etc. However, all these are for stationary devices and PRAVATA
extends this presentation to mobile devices. The PRAVATA Client realises the in-
terface for mobile devices by the use of WAP and WML and enables remote access
from any device equipped with a WAP browser.

However, the user has to make a query to get new information, since information-
push is not supported. Only supporting WAP limits the ability to make functional
user interfaces especially on more powerful devices such as PDAs and not sup-
porting push makes the service cumbersome to use. In the SIGN prototype the
different client applications act as sensors and indicators. Mobility is supported by
providing Java clients for mobile devices with push support.

The PRAVATA prototype addresses some of the same problems as the SIGN
prototype concerning awareness information and mobility. It is distinguished be-
tween 3 types of awareness; presence awareness, availability awareness and task
awareness. More detailed description of what each of these awareness types should
include is not described, but in the prototype examples of what these can be are de-
scribed though very limited.

In addition, the concept of awareness contexts are described as a tool to struc-
ture and provide the information that is most relevant for a certain situation. Aware-
ness information is structured and pre-selected in different contexts specially con-
structed for a given situation. Especially for mobile users it is important to easily
receive the awareness information and only information that is relevant to the cur-
rent situation or context the user is in. Awareness information is very similar to
that provided by the SIGN prototype.

In the SIGN prototype information concerning device is captured automatically
without interaction from the user. Focus is on making the system easy to use on
cumbersome mobile devices and information is automatically pushed to users when
the state of a contact changes. There is no mention of the user being able to set
preferences in the PRAVATA prototype specifying what information that should be
received.



112 Related Work

Figure 9.4 4 show the PRAVATA software architecture where NESSIE is de-
picted.

Figure 9.4: The PRAVATA architecture

The architecture of the PRAVATA prototype is similar to the SIGN prototype
in many ways. PRAVATA uses NESSIE to support awareness and interfaces to
stationary devices. The PRAVATA Communication Layer translates the data from
NESSIE format to WML and vice versa for mobility support. It is not mentioned
what protocol or data format that is used in NESSIE.

In the same way as NESSIE, Jabber handles awareness information by receiv-
ing awareness events (e.g. XML messages) and notifying other users. In the SIGN
prototype the sensors are the different clients capturing information set by the user
and dependent on device. In addition the clients are also the indicators presenting
information to the users.

9.5 ConNexus and Awarenex

ConNexus and Awarenex [30] is an effort to integrate awareness information, in-
stant messaging and other communication channels facilitating people to contact
each other. ConNexus offers this functionality in an interface for desktop PCs.
Awarenex extends this functionality to mobile devices.

ConNexus/Awarenex provides basic IM functionality similar to the SIGN pro-
totype. In addition to providing awareness information through a contact list and
supporting IM chat, the interface provides a contact toolbar enabling relevant com-
munication resources. In this way users can switch to communication channels
such as phone, e-mail etc. by clinking on a button. Figure 9.5 depicts a screen
shot of the contact list, awareness information and the communication toolbar. In

4The figure is taken from [11]



9.5 ConNexus and Awarenex 113

Figure 9.5: ConNexus screenshot

addition to the desktop interface interfaces for RIM 5 and Palm clients are pro-
vided to support mobility. These clients are written in C++. In this way Con-
Nexus/Awarenex support mobility the same way as the SIGN prototype - by pro-
viding client applications.

ConNexus/Awarenex handles awareness conceptually different than in the SIGN
prototype in that a user is provided with much information and has to deduce the
best way to contact another user. The system provides the user with information
about the local for where other users have been most recently and any communi-
cation they might be engaged in. If a user is active on the desktop computer, it is
displayed that the user is in the office. By selecting one user, a list of all the locals
available is displayed, including if the user is currently active in the local or how
long it has been idle. For each user there will be several such locals where office,
home and mobile are examples. This is similar to the SIGN prototype handling of
multiple active clients or resources.

Based on local information, the user must choose how to make contact. In
ConNexus/Awarenex there are little information provided about the availability of
the user. This is in contrast to the SIGN prototype that provides awareness infor-
mation about the availability or presence of a user. In addition the control of how a
user can be reached is pushed towards the recipient. Based on user preferences and
awareness the system routes communication to the desired communication channel
of the recipient and not the sender.

The ConNexus/Awarenex components are similar to the SIGN prototype. Fig-
ure 9.66 shows the main components. The desktop and mobile device clients con-

5Research in Motion(RIM) Blackberry devices
6The figure is taken from [30]



114 Related Work

Figure 9.6: The Awarenex components

nect to the Awarenex server. This server communicates with the clients and redi-
rect messages and events to appropriate clients. In this way Awarenex is similar to
the Jabber server. There are two additional server-side components to enable the
service for wireless devices, the Server Proxy and Mobitex Transcoder. It is not
specified in detail what these components do. Awarenex also provides an interface
to the telephone service through the Dialer Server. In this way it is possible to place
calls between Awarenex users. The server components are written in Java.

The communication is done by the use of an ASCII message protocol. In the
SIGN prototype XML is used to facilitate easy manipulation of data and conversion
to other message protocols.



Chapter 10

Conclusion



116 Conclusion

10.1 Conclusion

We claim that in order to make IM systems mobile, merely providing clients for
wireless devices is not sufficient. The SIGN prototype is a realization of an IM
system supporting mobility, where Jabber is used to provide the basic IM func-
tionality. Some functionality is extended and new functionality found important
to support mobility is introduced into the system. We have developed clients for
mobile phones, PDAs and desktop PCs.

Extending existing IM functionality

An important extension of basic IM functionality is the implementation of extended
awareness information. The available awareness information in existing IM sys-
tems does not provide users with sufficient information about the contacts to infer
their capability or willingness to communicate.

The SIGN prototype structures the awareness information along three axes.
These are device, presence and location/context. Values on the three different axes
can be set independently of each other. Device is an important extension because
it represents information about a user’s ability to communicate with others.

Context/location is added to capture that users can be in different environments
and settings, which affect the user’s ability and willingness to communicate. Con-
text or location information will however not be truly valuable before the informa-
tion can be deduced automatically from systems such as GPS, calendars or different
types of sensors.

New functionality introduced

An important concept introduced in the SIGN prototype is that it is highly config-
urable by the user. In contrast to existing IM systems SIGN pushes control towards
the recipient rather than the sender. SIGN provides the user with means to con-
trol how he can be reached. The user can set filtering rules for controlling how
incoming messages shall be treated based on different criteria such as which type
of device he is connected with.

For IM systems supporting mobility, we believe it is important to provide dif-
ferentiation of functionality dependent of device. This is due to the highly different
device capabilities and communication networks used. The client applications for
thin wireless devices should be kept simple and the amount of information ex-
changed over limited wireless networks should be kept small. In the SIGN proto-
type the desktop client functions as a fully featured IM client and as the interface to
setting preferences. The mobile phone client, on the other hand, only provides the
basic IM functionality such as messaging and awareness. To reduce information
exchanged the contact list can be set independently for each device.



10.1 Conclusion 117

Wireless client development

The SIGN prototype provides three different client applications. Two for wireless
devices, namely mobile phones and PDAs. One client is available for desktop
PCs. SIGN demonstrates that IM can be extended to mobile device used in every
day life. The use of Java, J2ME and PersonalJava, shows that clients for wireless
devices can be provided using the same technology. This limits the number of
technologies that a user needs to know of and use for wireless access to IM. In
addition it provides consistency in the user interface across different devices and
eases the development effort.

Changing Jaba architecture and design

One of our research questions related to what changes were necessary to extend
the Jabber architecture and design to support mobility. Our options on architec-
tural changes was affected by the decision to use the Jaba implementation of Jab-
ber, a decision which was influenced by factors such as Java being the preferred
programming language and use of the architecture as a case study in the software
architecture course SIF8056.

Having decided on Jaba, we made the decision not to make any fundamental
changes to the architecture, instead incorporating changes to support mobility by
altering the design. This involved extending some of the existing Jaba compo-
nents, moving some functionality between components and the addition of a new
component.

This violated our goal of isolating changes and avoiding duplication of func-
tionality, however we believe the work effort was reduced compared to a more fun-
damental architectural change. A downside of our chosen approach is that adapting
the system to new Jaba versions will require more work.

In our opinion Jaba is currently quite immature. It is not fully in compliance
with the Jabber standard and lacks the ability to communicate with other IM system
as the Jabber transports are not implemented. Until Jaba is further developed, we
conclude that jabberd is the preferred choice.

XML and wireless clients

With regards to whether or not XML is a suitable message format for thin, wireless
devices, our experience with XML in SIGN suggests that XML works very well, at
least for use in an IM system. Due to the limited message size, the low frequency
of messages and the relatively simple structure of the Jabber XML messages, the
process of parsing the messages did not interfere with regular use of the clients.

We used the kNanoXML parser for the wireless clients. This is a DOM parser
which builds an XML tree in memory for each message. Due to the limited memory
budget of the wireless devices, using a SAX parser, which is less memory intensive,
may yield better performance.



118 Conclusion

The XML element– and attribute names used in Jabber favours human readabil-
ity rather than bandwidth efficiency. Together with the inherent overhead in XML
messages, this is a drawback in low-bandwidth networks and packet-switched net-
works where users pay for the amount of data transferred.

Extending the Jabber protocol

The three building blocks of the Jabber message protocol are <message/>,<pres-
ence/> and <iq/>. In this thesis we wanted to find out if the message protocol
could be extended to support mobility.

In SIGN the necessary extensions included information about device and con-
text/location for the wireless clients and the ability to set the various preferences
which were introduced to support mobility.

This required no changes to the <message/> element. The <presence/>
element was extended to include a sub element for carrying device information,
whereas context/location information was conveyed within the existing sub ele-
ments. As the Jabber message protocol makes use of XML namespaces to allow
flexible extensions of the <iq/> message, the remaining information was con-
tained in <iq/> messages under two new namespaces.

Changing the message protocol in itself was easy, but it required changes on
the server.

10.2 Further work

This section presents some possible areas for further work on the SIGN prototype.

Awareness

Little was done in SIGN with regards to awareness of context and location other
than enabling the users to set and view this information. Further work on automat-
ing the extraction of this information is required in order to make the system useful.
If the user is responsible for providing both presence and context/location infor-
mation, it will become a burden on the users to constantly update the information.
Neglecting of this task will lead to discrepancy between the actual state of a user
and the state represented in the system.

By connecting SIGN to various systems, such as GPS, calendar and sensors, the
system can be developed to extract both presence and context/location information.

Usability study/experiment

In this thesis we have made the claim that in order to make IM useful in a mobile
environment, it is not sufficient simply to provide IM clients for wireless devices.
We thus have extended some existing IM concepts and introduced new functional-
ity.



10.2 Further work 119

In order to establish if our claim is legitimate or if our proposed solutions pro-
vide users with the right tools for efficient communication, further studies are re-
quired. This could consist of formal experiments, case studies or user surveys,
where a population of users make use of the system for some period of time. This
could provide feedback on the existing functionality and suggestions for further
improvement.

Jaba and jabberd

As we stated in the previous section Jaba is, at least for the moment, lacking in
terms of functionality and maturity compared to jabberd. We therefore regard tran-
sition to jabberd as a necessity in the process of converting SIGN from its current
status as a prototype to a system in production.

SIGN clients

The client applications in SIGN are implemented using different Java technologies,
with J2ME, PersonalJava and J2SE used for mobile phone, PDA and desktop PC
clients, respectively. Although the clients share the same design for implementing
the Jabber message protocol, we did not implement a generic component for this
purpose.

By implementing this component, compatible with all the different Java ver-
sion, maintaining and extending the clients becomes an easier task. Further on,
developing SIGN clients for emerging, Java-enabled devices will be reduced to ap-
plying this component and implementing a user-interface which can be customized
to the new device.

Internal, corporate messaging

Over the last years, the business community has adopted instant messaging to fa-
cilitate collaboration between employees, and the trend seems to be increasing [5].
Using the publicly available IM systems introduces privacy and security risks as
messages are sent over a public network without encryption. Further on, they do
not provide more than basic messaging and presence functionality, which may not
be sufficient to promote collaboration in itself.

By setting up SIGN for use on internal networks, companies can enforce secu-
rity policies. Security is also one of the focus areas for the jabberd project. Chapter
9 showed that a lot of research has been done on systems for collaborative work,
and further work on extending SIGN with functionality for this purpose can make
SIGN a good alternative for internal messaging systems as the basic framework for
extended awareness in place.



120 Conclusion



Appendix A

Requirements Specification



122 Requirements Specification

A.1 Functional requirements

The functional requirements are numbered and labelled according to table A.1.
Requirements labelled FC are requirements which shall be implemented for all
versions of the client applications. Requirements with the FCD prefix concern the
desktop application only, whereas requirements labelled FCW are for the wireless
device applications.

Requirements to the server are labelled FS. As the Jaba server already contains
most of the basic instant messaging functionality, the requirements listed here are
only those which are specific to the SIGN prototype.

Table A.1: Requirements labelling

Application Label
Client (all versions) FCn

Desktop client FCDn

Wireless client FCWn

Server FSn

A.1.1 Client

The requirements presented in this section applies to all versions of the client ap-
plications.

General IM functionality

The following requirements concerns the basic IM functionality which shall be
available in the client applications.

FC 1 - Log on
The user must enter the address of the server to log on to and must have
created an account on this server beforehand (see FCD1). The user must
enter the user identification (jid) and password. A priority may optionally be
provided.

FC 2 - Log off
The user shall be able to log off the system.

FC 3 - Send message
The user shall be able to send a message to users in the contact list. Only
chat-style messages shall be supported, i.e. messages that have a body but
no subject field. The maximum length of a message shall be 500 characters,



A.1 Functional requirements 123

however limitations may exist on some devices, which will enforce a lower
maximum message length.

FC 4 - Read message
The user shall be able to read incoming messages and shall receive a notifi-
cation when a new message has arrived.

FC 5 - Show available users
The user shall be able to choose whether he wants all contacts displayed in
the contact list or only the available contacts.

FC 6 - Block messages
The user shall be able to set the option to block messages from users not in
the contact list. The filtering shall be done on the server.

Awareness requirements

The following requirements specify how the client applications shall handle aware-
ness.

FC 7 - Set presence
The user shall be able to set the presence state by selecting one of the values
available for each version of the client application. Table A.2 shows which
states are available for the three different client applications. The selected
presence state shall be sent to the server.

Table A.2: Presence states

Desktop
PC

PDA Mobile
phone

Online X X X

Free for chat X X X

Do not disturb X X X

Away X X

Extended away X

FC 8 - Show/hide presence
The user shall be able to show or hide his presence. Show shall be the default
value. In the first case, changes in the presence state shall continuously be
sent to the server. In the latter case, an unavailable presence message shall



124 Requirements Specification

be sent to the server. The user will then appear to be offline to other users,
but shall continue to receive both messages and awareness information from
the contacts.

FC 9 - Display presence
The presence of the contacts shall be displayed in the contact list. When
presence changes are received by the application, the changes shall be re-
flected on the screen.

FC 10 - Display device
The user shall be able to view the device information set by the contacts. If
no device information is available for the contact it shall be interpreted as
if he is using a desktop PC. Separate representations shall be available for
users connected with a mobile phone and users connected with a PDA.

FC 11 - Set context/location
The user shall be able to set the context/location in which he is using the sys-
tem. This shall be done by allowing the user to write textual representation
of the context/location. The maximum length shall be 15 characters. When
entered, the information shall be sent to the server.

FC 12 - Display context/location
The user shall be able to view context/location information set by the con-
tacts.

A.1.2 Desktop client

Requirements FC1 – FC12 apply to the three different client applications. The
requirements presented in this section apply to the desktop application only.

FCD 1 - Create account
User must create an account before they can start using the system. The user
must enter the address of the server on which the account shall be created
and enter a username and password. If the username is not unique for that
server, the user shall be prompted to enter a different username.

FCD 2 - Set personal details
The user shall be able to provide personal details which can be viewed by
other users. The following details can be set: name, nickname, e-mail ad-
dress and phone number.

FCD 3 - View contact details
The user shall be able to view the personal details of users in the contact list.

FCD 4 - Authorize subscription
The user may require to authorize other users before they can add the user to
their contact lists and subscribe to awareness information.



A.1 Functional requirements 125

FCD 5 - Add contact
The user shall be able to add a contact to the contact list by entering the
contact’s jid and optionally a nickname to be shown in the contact list. The
application must then send a subscription request to the contact.

Contact lists may be specific for each device, and if the contact allows the
subscription, the user shall be able to choose which contact lists the contact
shall be added to.

FCD 6 - Remove contact
A user may remove a contact. The contact shall be removed from all contact
lists, and an un-subscription message shall be sent to the server.

FCD 7 - Edit contact lists
The user shall be able to edit the contact lists for all the devices using the
desktop application. For each contact the user has added, he shall be able to
choose if that contact shall be included in the contact list sent to each device
category. Changes in the contact lists are effectuated the next time the user
logs on from each version of the client application.

FCD 8 - Block messages
The user shall be given the option to block messages from users not in the
contact list. This shall be done on a per device basis, for instance all mes-
sages are accepted by the desktop application, but only messages from con-
tacts on the mobile devices. The blocking shall be done on the server.

FCD 9 - Set maximum message length
The user shall be able to specify a maximum length for messages sent to the
mobile client. Messages exceeding the specified shall be truncated on the
server.

FCD 10 - Set forwarding
The user shall be able to set the option to forward messages to SMS or e-
mail. When set, the user must enter the phone number and/or the e-mail
address. The forwarding shall be done based on the following criteria set by
the user:

Forward if not connected with any client

Forward all messages

The user shall be able to put restrictions on the messages that are sent to the mobile
devices, however this can only be done from the desktop client. If the user is
connected only with a mobile device client, filtered messages are treated as offline
messages and sent when the user connects with a desktop client.



126 Requirements Specification

A.1.3 Wireless clients

The following requirements are specific for the J2ME and PersonalJava client ap-
plications.

FCW 1 - Device type
The wireless device client application shall be responsible for notifying the
server of what type of device it is running on. This shall be done immediately
after a successful logon, unless the user has chosen not to show the device
type (see FC2). The PDA application shall use the value ’pda’ and the mobile
phone application shall use the value ’phone’.

FCW 2 - Show/hide device
The user shall be able to show or hide the device with which device he is
connected. The first case is the default value. In the latter case a presence
message with no device information shall be sent to the server.

FCW 3 - Set auto reply message
The user shall be able to specify a message that will be stored on the server
and sent as an automatic reply when new messages are received. For exam-
ple: “I’ve read your message. I’ll get back to you in a few minutes”.

FCW 4 - Set forwarding
The user can set the option to forward incoming messages to SMS to a pre-
defined mobile phone number.

FCW 5 - Automatic presence change
If the user accepts a phone call, the presence shall automatically be set to
busy.

A.1.4 Server

FS 1 - Create account
A username and password must be provided by the user in order to create a
new account. If the username already exists, the account shall not be created
and the user shall be notified of this. The new user information shall be
stored in the database.

FS 2 - Log on
During a logon attempt the following information must be received from the
user:

• User name or Jabber ID

• Password

• Device category



A.1 Functional requirements 127

If the user name and password are valid, the device dependent contact list
shall be sent to the user along with awareness information about the users in
the list.

FS 3 - Authentication
Authentication shall be performed based on the user name and password
provided during log on.

FS 4 - Contacts list storage
Contact lists shall be stored on the server and sent to the client subsequent to
log on.

FS 5 - Device dependent contact lists
The user may have separate contact lists for the different devices. On the
server one global contact list shall be stored in addition to one contact list
per device. The global list will contain all the user’s contacts and the contacts
in the different device dependent lists will come from this list.

FS 6 - Process message
The server shall receive messages from the users and route them to the re-
cipient(s). A message shall be processed according to preferences set by the
users.

FS 7 - Process preferences
The client can set the preferences specified in table A.3.

Table A.3: Preferences

Preference Description
Maximum message size This preference can be set for wireless devices and

set a limit for maximum size of a messages sent to
these clients.

Block messages If this preferences is set messages from other users
than listed in the contact list are blocked.

Forward to e-mail Preference set to enable forwarding of messages to
an e-mail address.

Forward to SMS Preference set to enable forwarding of messages a
mobile phone as SMS.

The preferences shall be stored in the database.

FS 8 - Message filtering
Messages can be filtered on the server according to user preferences. Filter-



128 Requirements Specification

ing is done based on the rules listed in table A.4. Following the table is a
further description of the rules.

Table A.4: Filter rules

Filter rules Description
Message size The size of a message exceeds a certain limit

Block messages Only messages from the users in the current contact
list is sent to the client

Message size
If the message size preference is set and a message exceeds the limit the
following actions shall be performed.

• Reduce message to the specified size

• Send reduced message

• Send complete message to desktop

Block messages
If the sender is not in the contact list and this preference is set the following
actions shall be performed.

• Check other desktop contact lists

• If found, send to desktop

• If not found, discard message

FS 9 - Auto reply
If the user has set the preference for auto-reply message the server shall
automatically send the reply message to the sender of the message.

FS 10 - E-mail message forwarding
The server shall be capable of forwarding messages to an e-mail account.
Based on preferences set by the user messages can be sent to a predefined
e-mail address stored on the server. The server shall provide an interface to
an e-mail gateway.

FS 11 - SMS message forwarding
The server shall be capable of forwarding messages to SMS. Based on pref-
erences set by the user messages can be sent to a predefined mobile phone
number stored on the server. The server shall provide an interface to an SMS
gateway.

FS 12 - Process awareness events
Awareness events received from the users shall be routed to other users. Only



A.1 Functional requirements 129

users who subscribe to awareness information from the sender shall receive
the information. Awareness messages shall be routed according to prefer-
ences set by the recipient.

FS 13 - Preferences stored on the server
Preferences for each user shall be stored on the server.

FS 14 - Device dependent preferences
Preferences can be set up independently for each device category. These
shall be stored on the server and during message processing and filtering the
preferences used shall be according to the currently active device.

FS 15 - Offline messages
A message destined for a user which is not currently online or has not set any
forwarding rules, shall be stored in the database. The offline messages are
sent to the user the next time he logs on to the system, and are then subject
to the same filtering rules as online messages.

FS 16 - Multiple active clients
A user shall be allowed to keep several clients active simultaneously, allow-
ing connections from different devices at the same time. The concept of
resources in Jabber shall be used to make distinctions between simultaneous
connections and decide to which client to route messages. Each client is at-
tached to one resource. In addition each resource has a priority that is used to
determine to which connection or client messages intended to that recipient
should be sent. The connection with the highest priority value is the con-
nection to which the messages are sent. Priority values must be a positive
integer and cannot be 0. The connection with the highest priority value has
the highest priority, thus 1 has lower priority than 5. In the event of a tie
between priorities, messages should be routed to the most recent connection.
In addition preferences set by the user can effect where messages should be
routed, thus overriding the use of priorities.



130 Requirements Specification

A.2 Non-functional requirements

A.2.1 Client

NF 1 - User training
User should be able to use the system without any formal training or need for
reading the user manual, provided that they have basic knowledge of Instant
Messaging systems and concepts.

NF 2 - Consistent user interface
User interfaces on the different client applications shall be similar to a max-
imum possible extend. Menus shall have the same names and consist of the
same choices when similar functionality is available on the different clients.
This shall assure that users familiar with one type of client easily can use
other client applications.

NF 3 - Core client parts
Three different client applications shall be made. These clients will run on
different devices and operating systems. Clients shall be written in Java and
core parts of the client applications shall be identified and tried separated
into components. In this way core components can be reused in all three
client applications.

A.2.2 Server

Reliability

The Jabber technology used in this system is open source. Since no measure con-
cerning the failure rate of Jabber technology is available and extensive testing of
Jabber technology stability is out of the scope for this project, specifying maximum
downtime for the system is difficult.

Security

NF 4 - Authentication
All users of the system must be authenticated by a username and password.

NF 5 - Protection of data
Standard users shall only have the possibility to read, delete, modify or add
data concerning their own user preferences or standard data concerning these
users. Only users granted Administrator access rights shall gain access to
Administrator functionality. Access to the server machine is assumed han-
dled by access restrictions in the operating system.



A.2 Non-functional requirements 131

Maintainability

The system will be made in an educational setting. Time may prevent implemen-
tation of all possible features of a fully functional IM system. However emphasis
shall be placed on making an architecture and code such that changes and addi-
tions easily can be made to the system. This makes it possible for others to use this
system as a basis for further studies on IM systems. The system shall also be used
for an architecture assessment study for 4th grade students at NTNU.

NF 6 - Components
The functionality of the system shall be divided in separate components han-
dling logically different functionality. It should be possible to make changes
in one component without having to make changes in other components.
This shall make it possible to work with and change one part of the system
with limited knowledge of other parts.

NF 7 - Loose coupling
There shall be very loose coupling between the different components in the
system, handling logically separated functionality. Substituting one com-
ponent with another component handling the same functionality shall take
less than one working day provided that the new component are ready for
substitution.

NF 8 - Adding of extensions
Adding of new functionality to the system shall be simple. Functionality nat-
ural in a complete IM service may be left out due to time constraints. How-
ever it should be possible to continue work on this system in other projects
making it into a more complete system.

A.2.3 Implementation

NF 9 - Programming language
The primary programming language of the project is Java. The following
versions shall be used for the different parts of the system:

• Java Development Kit 1.3.1 (JDK 1.3.1) for programming server side
and desktop client.

• J2ME Wireless Toolkit 1.0.3 for programming mobile phone client.

• PersonalJava 1.2a for programming PDA client.

Other programming languages can be used if necessary to change existing
software components or produce necessary glue code. All versions of the
programming environments above are the latest release at the time of writing.

NF 10 - Modelling language
UML shall be used as the standard modelling language. This is a requirement



132 Requirements Specification

because the students who will evaluate the system in the software architec-
ture course use UML.

NF 11 - XML
The system shall be based on exchange of XML messages. XML is the
standard used in Jabber and will ensure interoperability with existing Jabber
clients. In addition is XML a flexible and standard way of exchanging infor-
mation across different platforms. The Jabber XML message protocol shall
be used. In addition other message protocols or changes to Jabber XML pro-
tocol can be made to support thin clients such as mobile phones or PDAs.
Clients using the standard Jabber message protocol shall be able to use the
system.



Appendix B

SIF8056 Presentation



134 SIF8056 Presentation



135



136 SIF8056 Presentation



137



138 SIF8056 Presentation



139



140 SIF8056 Presentation



141



142 SIF8056 Presentation



143



144 SIF8056 Presentation



145



146 SIF8056 Presentation



147



148 SIF8056 Presentation



Appendix C

SIGN Source Code



150 SIGN Source Code

C.1 Mobile phone client

Commands.java

1 /*
2 * Commands.java
3 *
4 */
5 package UniChat;
6
7 import javax . microedition . midlet .*;
8 import javax . microedition . lcdui .*;
9 import javax . microedition . io .*;

10 import java . io .*;
11
12 /**
13 * @version
14 */
15
16 class Commands �
17 public Command exitCommand;
18 public Command goCommand;
19 public Command backCommand;
20 public Command readCommand;
21 public Command writeCommand;
22 public Command sendCommand;
23 public Command viewCommand;
24 public Command addcontactCommand;
25 public Command addCommand;
26 public Command removecontactCommand;
27 public Command logoffCommand;
28 public Command logonCommand;
29 public Command setCommand;
30 public Command settingsCommand;
31 public Command userCommand;
32 public Command userDetailCommand;
33 public Command presenceCommand;
34 public Command setPresenceCommand;
35
36 public Commands() �
37 // General Commands
38 goCommand = new Command(”Go”, Command.OK, 2);
39 backCommand = new Command(”Back”, Command.BACK, 2);
40 exitCommand = new Command(”Exit”, Command.EXIT, 9);
41
42 // Contatcsscreen
43 readCommand = new Command(”Read”, Command.SCREEN, 1);
44 writeCommand = new Command(”Send”, Command.SCREEN, 1);
45 logoffCommand = new Command(”Logoff”, Command.SCREEN, 6);
46 logonCommand = new Command(”Logon”, Command.SCREEN, 5);
47 settingsCommand = new Command(”Settings”, Command.SCREEN, 3);
48 userCommand = new Command(”User”, Command.SCREEN,6);
49 presenceCommand = new Command(”Presence”, Command.SCREEN, 2);
50
51 // Write Message screen
52 sendCommand = new Command(”Send”, Command.SCREEN, 2);
53
54 // Message screen
55 viewCommand = new Command(”Read”, Command.SCREEN, 2);
56
57 // Settingsscreen



C.1 Mobile phone client 151

58 setCommand = new Command(”Set”, Command.SCREEN, 2);
59
60 // Presencescreen
61 setPresenceCommand = new Command(”Set”, Command.SCREEN, 2);
62
63 // Userdetailsscreen
64 userDetailCommand = new Command(”Details”, Command.SCREEN, 2);
65 �
66 �



152 SIGN Source Code

Communication.java

1 /*
2 * Connection.java
3 *
4 */
5
6 package UniChat;
7
8 import javax . microedition . midlet .*;
9 import javax . microedition . lcdui .*;

10 import javax . microedition . io .*;
11 import java . io .*;
12
13 /**
14 * @version
15 */
16 public class Communication implements Runnable �
17
18 private JabberComm adapter;
19 private StreamConnection conn;
20 private InputStream in ;
21 private OutputStream out ;
22 private StringBuffer data ;
23 private ByteArrayInputStream datain ;
24 private String outmsg;
25 private int count ;
26 public boolean read ;
27 private byte sendbuffer [];
28 private byte databuf [];
29 // private byte receivebuffer [];
30 public static final String ENVELOPE = ”# � n”;
31
32
33 public Communication(JabberComm a) �
34 adapter = a;
35 read = true ;
36 count = 0;
37 data = new StringBuffer () ;
38 // receivebuffer = new byte [500];
39 databuf = new byte[1000];
40 // datain = new ByteArrayInputStream(databuf ) ;
41
42 �
43
44 public void connect () �
45 try �
46 conn = (StreamConnection)Connector.open(”socket ://129.241.102.214:5222” ) ;
47 // conn = (StreamConnection)Connector.open(”socket ://129.241.103.179:5222”) ;
48 // conn = (StreamConnection)Connector.open(”socket :// ravn04. idi .ntnu .no:5222”);
49 // conn = (StreamConnection)Connector.open(”socket :// hauk02. idi .ntnu .no:5222”);
50 in = conn.openInputStream() ;
51 out = conn.openOutputStream();
52 // datain = ( ByteArrayInputStream)conn.openInputStream() ;
53
54 � catch(IOException e) �
55 System.err . println (”Connection not established .” ) ;
56 �
57 �
58
59 public void disconnect () �
60 try �



C.1 Mobile phone client 153

61 conn.close () ;
62 in . close () ;
63 out . close () ;
64 � catch(IOException e) �
65 System.err . println (”Error closing connection .” ) ;
66 �
67 �
68
69 public void run () �
70 byte receivebuffer [] = new byte[1000];
71 try �
72 while(read ) �
73 int ch;
74
75 while ((ch = in . read () ) != � 1) �
76 if ( ch != ’

�
’) �

77 data .append((char)ch) ;
78 �
79 else �
80 data .append((char)ch) ;
81 adapter . receiveMsg(data . toString () ) ;
82 data = new StringBuffer () ;
83 �
84 �
85
86
87 // System.out . println (”øFr read”);
88 ch = in . read () ;
89 ch = in . read ( receivebuffer , 0, receivebuffer . length ) ;
90 // ch = datain .read( receivebuffer , 0, receivebuffer . length ) ;
91 // System.out . println (” etter read”);
92 // System.out . println (( char)ch);
93 System.out . println (new String ( receivebuffer , 0, ch)) ;
94 // adapter .receiveMsg(new String ( receivebuffer ) ) ;
95 �
96 � catch(Exception e) �
97 System.err . println (”Error reading from input .” ) ;
98 System.out . println (”Error reading from input .” ) ;
99 disconnect () ;

100 read = false ;
101 �
102 �
103
104 public void send( String str ) �
105
106 try �
107 sendbuffer = str . getBytes () ;
108 out . write ( sendbuffer ) ;
109 out . flush () ;
110 System.out . println (”XML �����

�
: ” + str);

111 � catch(IOException e) �
112 System.err . println (”Error sending to output .” ) ;
113 disconnect () ;
114 read = false ;
115 �
116 �
117 �



154 SIGN Source Code

Contact.java

1 /*
2 * Contact . java
3 *
4 */
5
6 package UniChat;
7
8 import javax . microedition . midlet .*;
9 import java . util .*;

10
11 /**
12 *
13 * @version
14 */
15 public class Contact �
16 public Vector messages;
17 public boolean status ;
18 public String context ;
19 public String show;
20 public int device ;
21 public String name;
22 public String id ;
23 public String subs;
24 public int unread;
25 private Message message;
26 public boolean statuschanged ;
27
28
29
30 public Contact ( String id , String username, String subscr ) �
31 messages = new Vector() ;
32 status = false ;
33 this .name = username;
34 this . id = id ;
35 this . subs = subscr ;
36 this . statuschanged = false ;
37 this . device = 0;
38 unread = 0;
39 �
40
41 public Contact ( String username, boolean status ) �
42 messages = new Vector() ;
43 this . status = status ;
44 this .name = username;
45 this .unread = 0;
46 �
47
48 public void addMessage(String msg) �
49 message = new Message(msg);
50 messages. insertElementAt (message , 0) ;
51 �
52 �



C.1 Mobile phone client 155

Contactsscreen.java

1 /*
2 * ContactsScreen . java
3 *
4 */
5
6 package UniChat;
7
8 import javax . microedition . midlet .*;
9 import javax . microedition . io .*;

10 import javax . microedition . lcdui .*;
11 import java . io .*;
12 import java . util .*;
13 import java . lang .*;
14
15 /**
16 * @version
17 */
18 public class Contactsscreen extends javax . microedition . lcdui . List �
19
20 private Controller controller ;
21 private Model model;
22 private Vector contactlist ;
23 private Contact contact ;
24 private int listindex ;
25 private Image offlineimage ;
26 private Image onlinemobileimg;
27 private Image onlinedesktopimg ;
28 private Image onlinepdaimg;
29 private String s ;
30 private Vector names;
31 private Integer integer ;
32 private int index ;
33 private int notconnected ;
34 private Image[] images;
35
36
37 public Contactsscreen ( Controller c , Model m) �
38 super(”Contacts” , javax . microedition . lcdui . List .IMPLICIT);
39 this . controller = c;
40 this .model = m;
41 names = new Vector() ;
42 images = new Image[4];
43
44 try �
45 images [0] = Image.createImage(”/UniChat/images/ offline .png”);
46 images [1] = Image.createImage(”/UniChat/images/mobile online .png”);
47 images [2] = Image.createImage(”/UniChat/images/pda online .png”);
48 images [3] = Image.createImage(”/UniChat/images/ desktop online .png”);
49
50 � catch(IOException e) �
51 System.out . println (”Error loading images”);
52 �
53
54 addCommand(controller.commands.readCommand);
55 addCommand(controller.commands.writeCommand);
56 addCommand(controller.commands.presenceCommand);
57 addCommand(controller.commands.logonCommand);
58 addCommand(controller.commands.logoffCommand);
59 addCommand(controller.commands.settingsCommand);
60 addCommand(controller.commands.userCommand);



156 SIGN Source Code

61 addCommand(controller.commands.exitCommand);
62 addCommand(controller.commands.userDetailCommand);
63
64 setCommandListener( controller ) ;
65 �
66
67 public void updateData () �
68
69 setTitle (” ” + model.getUserName() + ” (” + model.getUserPresence () + ”)”) ;
70
71 int listsize = this . size () ;
72 for ( int num = 0; num � listsize ; num++) �
73 this . delete (0) ;
74 �
75
76 listsize = names.size () ;
77 for ( int p = 0; p � listsize ; p++) �
78 names.removeElementAt(0);
79 �
80
81 contactlist = model.getContacts () ;
82 int size = contactlist . size () ;
83 for ( int i =0; i � size ; i++) �
84 String displaystring = new String () ;
85 contact = ( Contact ) contactlist .elementAt(i ) ;
86 displaystring = contact .name;
87 // Show status
88 String show = contact .show;
89 if (show != null ) �
90 displaystring = displaystring . concat (” (” + show + ”)”) ;
91 �
92 // Show unread messages
93 int unread = contact .unread;
94 if (unread

�
0) �

95 displaystring = displaystring . concat (” (” + new Integer (unread) . toString () + ”)
”) ;

96 // if (model.sound == true) �
97 AlertType .WARNING.playSound(controller.display);
98 // �
99 �

100 if ( contact . status == true) �
101 append( displaystring , images[contact . device ]) ;
102 �
103 else �
104 names.addElement( displaystring ) ;
105 �
106 �
107
108 if (model.showall == true) �
109 listsize = names.size () ;
110 for ( int i =0; i � listsize ; i++) �
111 append(( String )names.elementAt(i) , images[0]) ;
112 �
113 �
114 �
115
116
117 public void deleteData () �
118 int listsize = this . size () ;
119 for ( int num = 0; num � listsize ; num++) �
120 this . delete (0) ;
121 �



C.1 Mobile phone client 157

122 �
123
124 public void updateContact () �
125 int index = getSelectedIndex () ;
126 s = getString (index) ;
127 int i = s . indexOf(’ ’ ) ;
128 if ( i

�
0) �

129 s = s . substring (0, i ) ;
130 �
131 model. setCurrentContact (s) ;
132 �
133
134 public String getContact ( String name) �
135 int i = name.indexOf(’ ’) ;
136 if ( i

�
0) �

137 name = name.substring (0, i ) ;
138 �
139 return name;
140 �
141
142
143 public void test (Contact c) �
144 int size = this . size () ;
145 for ( int i =0; i � size ; i++) �
146 if ( getContact ( this . getString ( i ) ) . startsWith (c .name)) �
147 if (c . statuschanged ) �
148 if (c . status == true) �
149 insert (0, this . getString ( i ) , onlinemobileimg) ;
150 delete ( i ) ;
151 � else if (c . status == false ) �
152 delete ( i ) ;
153 if (model.showall == true) �
154 append(this . getString ( i ) , offlineimage ) ;
155 delete ( i ) ;
156 �
157 �
158 � else �
159 int unread = c.unread;
160 String name = c.name;
161 if (unread

�
0) �

162 name = name.concat(” (” + new Integer (unread) . toString () + ”)”) ;
163 AlertType .WARNING.playSound(controller.display);
164 set ( i , name, onlinemobileimg) ;
165 �
166 �
167 return ;
168 � else �
169 if (c . status == true) �
170 if (c .unread

�
0) �

171 String name = c.name;
172 name = name.concat(” (” + new Integer (c .unread) . toString () + ”)”) ;
173 insert (0, name, onlinemobileimg) ;
174 AlertType .WARNING.playSound(controller.display);
175 � else �
176 insert (0, c .name, onlinemobileimg) ;
177 �
178 �
179 �
180 �
181 �
182 �



158 SIGN Source Code

Controller.java

1 /*
2 * Controller . java
3 *
4 */
5 package UniChat;
6
7 import javax . microedition . midlet .*;
8 import javax . microedition . lcdui .*;
9 import javax . microedition . io .*;

10 import java . io .*;
11
12 /**
13 * @version
14 */
15 class Controller implements CommandListener �
16 private Model model;
17 public UniChat midlet ;
18 public Commands commands;
19 public Display display ;
20
21 // Screens
22 private Logonscreen logonscreen ;
23 private Contactsscreen contactsscreen ;
24 private Sendscreen sendscreen ;
25 private Messagescreen messagescreen;
26 private Settingsscreen settingsscreen ;
27 private UserDetailsscreen userDetailsscreen ;
28 private Presencescreen presencescreen ;
29
30 public Controller (UniChat mid) �
31 midlet = mid;
32 model = new Model(this);
33 commands = new Commands();
34 display = Display . getDisplay (midlet ) ;
35 contactsscreen = new Contactsscreen ( this , model);
36 sendscreen = new Sendscreen(this , model);
37 messagescreen = new Messagescreen(this , model);
38 settingsscreen = new Settingsscreen ( this , model);
39 userDetailsscreen = new UserDetailsscreen ( this , model);
40 presencescreen = new Presencescreen ( this , model);
41 setMainScreen () ;
42 �
43
44 public void commandAction(Command c, Displayable d) �
45 if ( c == commands.exitCommand) �
46 midlet .destroyApp( false ) ;
47 midlet . notifyDestroyed () ;
48 �
49 if ( c == commands.logonCommand) �
50
51 model.logon() ;
52 /*
53 if (model.logon () ) �
54 logonscreen = new Logonscreen( this , model);
55 display . setCurrent ( logonscreen ) ;
56 � else �
57 display . setCurrent ( contactsscreen ) ;
58 �
59 */
60 �



C.1 Mobile phone client 159

61 if (c == commands.userCommand) �
62 logonscreen = new Logonscreen(this , model);
63 display . setCurrent ( logonscreen ) ;
64 �
65 if (c == commands.goCommand) �
66 logonscreen .updateData () ;
67 model.logon() ;
68 �
69 if (c == commands.writeCommand) �
70 contactsscreen . updateContact () ;
71 display . setCurrent (sendscreen ) ;
72 �
73 if (c == commands.sendCommand) �
74 sendscreen .updateData () ;
75 contactsscreen .updateData () ;
76 display . setCurrent ( contactsscreen ) ;
77 �
78 if (c == commands.readCommand) �
79 contactsscreen . updateContact () ;
80 messagescreen.updateData () ;
81 display . setCurrent (messagescreen) ;
82 �
83 if (c == commands.backCommand && (d == messagescreen ��� d == sendscreen ��� d ==

settingsscreen ��� d == logonscreen ��� d == userDetailsscreen ��� d == presencescreen
) ) �

84 contactsscreen .updateData () ;
85 display . setCurrent ( contactsscreen ) ;
86 �
87 if (c == commands.logoffCommand) �
88 model. logoff () ;
89 display . setCurrent ( contactsscreen ) ;
90 contactsscreen .updateData () ;
91 �
92 if (c == commands.setCommand) �
93 settingsscreen .updateData () ;
94 display . setCurrent ( contactsscreen ) ;
95 contactsscreen .updateData () ;
96 �
97 if (c == List .SELECT COMMAND) �
98 contactsscreen . updateContact () ;
99 messagescreen.updateData () ;

100 display . setCurrent (messagescreen) ;
101 �
102 if (c == commands.settingsCommand) �
103 display . setCurrent ( settingsscreen ) ;
104 �
105 if (c == commands.userDetailCommand) �
106 contactsscreen . updateContact () ;
107 userDetailsscreen .updateData () ;
108 display . setCurrent ( userDetailsscreen ) ;
109 �
110 if (c == commands.presenceCommand) �
111 display . setCurrent ( presencescreen ) ;
112 �
113 if (c == commands.setPresenceCommand) �
114 presencescreen .updateData () ;
115 contactsscreen .updateData () ;
116 display . setCurrent ( contactsscreen ) ;
117 �
118 �
119
120 public void setMainScreen () �



160 SIGN Source Code

121 contactsscreen .updateData () ;
122 display . setCurrent ( contactsscreen ) ;
123 �
124
125 public void newContactEvent() �
126 contactsscreen .updateData () ;
127 display . setCurrent ( contactsscreen ) ;
128
129 �
130
131 �



C.1 Mobile phone client 161

ElementHandler.java

1 /*
2 * ElementHandler.java
3 *
4 */
5
6 package UniChat;
7
8 import javax . microedition . midlet .*;
9 import javax . microedition . lcdui .*;

10 import javax . microedition . io .*;
11 import java . util .*;
12 import java . io .*;
13 import nanoxml.*;
14
15 /**
16 * @version
17 */
18 public class ElementHandler �
19
20 protected JabberComm com;
21 protected Model model;
22
23 public ElementHandler(JabberComm c, Model m) �
24
25 this .model = m;
26 this . com = c;
27
28 �
29
30 public void handleElement(kXMLElement node) �
31 �
32
33 �



162 SIGN Source Code

IqHandler.java

1 /*
2 * IqHandler.java
3 *
4 */
5
6 package UniChat;
7
8 import javax . microedition . midlet .*;
9 import javax . microedition . lcdui .*;

10 import javax . microedition . io .*;
11 import javax . microedition .rms.*;
12 import java . io .*;
13 import java . util .*;
14 import nanoxml.*;
15
16 public class IqHandler extends ElementHandler �
17
18 private StringBuffer msg;
19
20 public IqHandler(JabberComm c, Model m) �
21 super(c , m);
22 msg = new StringBuffer () ;
23 �
24
25 public void handleElement(kXMLElement node) �
26 String type = node. getProperty (”type”) ;
27 Enumeration enum = node.enumerateChildren () ;
28 kXMLElement element = null;
29 if (enum.hasMoreElements()) �
30 element = ( kXMLElement)(enum.nextElement());
31 �
32 if ( type . startsWith (” result ”) ) �
33 if (element == null ) �
34 System.out . println (”INFO: Logon successful”);
35 model. setUserStatus (true) ;
36 com.sendRosterQ();
37 � else if (element .getTagName(). startsWith (”query”) ) �
38 com.sendLogonMsg();
39 �
40 � else if ( type . startsWith (” set ”) ) �
41 if (element != null ) �
42 Enumeration children = element .enumerateChildren () ;
43 while( children .hasMoreElements()) �
44 kXMLElement child = (kXMLElement)(children.nextElement());
45 String jid = child . getProperty (” jid ”) ;
46 String name = child . getProperty (”name”);
47 String subs = child . getProperty (” subscription ”) ;
48 Enumeration e = child .enumerateChildren () ;
49 while ( e .hasMoreElements()) �
50 kXMLElement ch = (kXMLElement)(e.nextElement());
51 // String group = ch. getContents () ;
52 �
53 model.newContact(jid , name, subs) ;
54 �
55 model.newContact();
56 com.sendStatus () ;
57 �
58 �
59 �
60 �



C.1 Mobile phone client 163

JabberComm.java

1 /*
2 * JabberComm.java
3 *
4 */
5
6 package UniChat;
7
8 import javax . microedition . midlet .*;
9 import javax . microedition . lcdui .*;

10 import javax . microedition . io .*;
11 import java . util .*;
12 import java . io .*;
13 import nanoxml.*;
14
15 /**
16 * @version
17 */
18 public class JabberComm �
19
20 protected StringBuffer msg;
21 public Communication communication;
22 protected Model model;
23 protected String name;
24 protected String message;
25 protected String outmessage;
26 private MessageHandler messageHandler;
27 private PresenceHandler presenceHandler ;
28 private IqHandler iqHandler ;
29
30 // Receiving messages
31 public static final String TAG CONTACTS = ”contacts”;
32 public static final String PROP USER = ”user”;
33 public static final String PROP STAT = ”status”;
34 public static final String PROP MSG = ”msg”;
35 public static final String PROP FROM = ”fromUser”;
36 // Sending messages
37 public static final String TAG LOGOFF = ”logoff”;
38 public static final String TAG MSG = ”msg”;
39 public static final String TAG MSGBODY = ”body”;
40 public static final String TAG ADDCONTACT = ”addcontact”;
41 public static final String TAG REMOVECONTACT = ”removecontact”;
42 public static final String PROP TOUSER = ”toUser”;
43
44 private String agent ;
45 // private StringBuffer msg;
46
47 public JabberComm(Model m) �
48 this .model = m;
49 agent = ”mobile”;
50 msg = new StringBuffer () ;
51 messageHandler = new MessageHandler(this , model);
52 presenceHandler = new PresenceHandler(this , model);
53 iqHandler = new IqHandler(this , model);
54
55 �
56
57 public void sendMsg(String msg) �
58 communication.send(msg);
59 �
60



164 SIGN Source Code

61 public String generateRosterQ () �
62 kXMLElement node = new kXMLElement();
63 node.setTagName(”iq”);
64 node.addProperty (”type” , ”get”) ;
65 node.addProperty (”id” , ” fullroster 30 ”) ;
66 kXMLElement child = new kXMLElement();
67 child .setTagName(”query”);
68 child . addProperty (”xmlns” , ” jabber : iq : roster ”) ;
69 node.addChild( child ) ;
70 String s = ” � iq type= � ”get � ”

� � query xmlns= � ”jabber:iq:roster � ”/
� � /iq

�
”;

71 // return node. toString () ;
72 return s ;
73 �
74
75 public void sendLogoffMsg() �
76 String logoff = ” � presence type= � ”unavailable � ”/

�
”;

77 sendMsg(logoff) ;
78 logoff = ” � /stream:stream

�
”;

79 sendMsg(logoff) ;
80 �
81
82 public void sendContactsMsg(String contact , String msg) �
83 message = generateContactMsg(contact , msg);
84 sendMsg(message);
85 �
86
87 public void parseContactMsg(kXMLElement node) �
88
89 String from = node. getProperty (PROP FROM);
90 String time = null ;
91 Enumeration enum = node.enumerateChildren () ;
92 kXMLElement element = (kXMLElement)(enum.nextElement());
93 String body = getContent (element . toString () ) ;
94 System.out . println (”From: ” + from);
95 // System.out . println (”time : ” + time) ;
96 System.out . println (”Message: ” + body);
97 // model.newContactMsg(from, body, time) ;
98 �
99

100 public void parseContactsInfo (kXMLElement node) �
101 // node.getTagName();
102 Enumeration enum = node.enumerateChildren () ;
103 while(enum.hasMoreElements()) �
104 kXMLElement element = (kXMLElement)(enum.nextElement());
105 String user = element . getProperty (PROP USER);
106 String status = element . getProperty (PROP STAT);
107 System.out . println ( user + ” ” + status + ” � n”);
108 // model.newContact(user , status ) ;
109 �
110 �
111
112 public void parseErrorMsg(kXMLElement node) �
113 String errormsg = node. getProperty (PROP MSG);
114 System.out . println (”Error : ” + errormsg + ” � n”);
115 �
116
117
118 public void parseInfoMsg(kXMLElement node) �
119 String info = node. getProperty (PROP MSG);
120 // model.newInfo( info ) ;
121 �
122



C.1 Mobile phone client 165

123
124 public String generateContactMsg(String toUser , String msg) �
125 kXMLElement node = new kXMLElement();
126 node.setTagName(”message”);
127 node.addProperty (”to” , toUser) ;
128 kXMLElement child = new kXMLElement();
129 child .setTagName(”body”);
130 child . setContent (msg);
131 node.addChild( child ) ;
132 // System.out . println (node. toString () ) ;
133 // String xml = node. toString () ;
134 // return node. toString () ;
135 String s= ” � message to= � ”” + toUser + ” � ”

� � body
�

”+ msg + ” � /body
� � /message

�
”;

136 return s ;
137 �
138
139 public String generateSubReq() �
140 String s = ” � iq type= � ”set � ”

� � query xmlns= � ”jabber:iq:roster � ”
� � item jid= � ”

audun@jabber.org � ” name= � ”audun � ” subscription= � ”none � ” ask= � ”subscribe � ”
� �

group
�

friends � /group
� � /item

� � /query
� � /iq

�
”;

141 return s ;
142 �
143
144
145 public String getContent ( String node) �
146 int length = node. length () ;
147 int end = length � 8;
148 int size = ( length � 6) � 7;
149 return node. substring (6, end) . trim () ;
150
151 �
152
153 public void sendRosterQ() �
154 String query = generateRosterQ () ;
155 communication.send(query);
156 �
157
158 public void sendStatus () �
159 String query = ” � presence type= � ”available � ”

� � show
�

online � /show
� � status

�
online � /

status
� � device

�
mobile � /device

� � /presence
�

”;
160 communication.send(query);
161 �
162
163 public void sendPresence( String status , String context ) �
164 String presence = ” � presence

�
”;

165 if ( status . length ()
�

0) �
166 presence = presence . concat (” � show

�
” + status +” � /show

�
”);

167 �
168 if ( context . length ()

�
0) �

169 presence = presence . concat (” � status
�

” + context + ” � / status
�

”);
170 �
171 presence = presence . concat (” � /presence

�
”);

172 communication.send(presence) ;
173 �
174
175 public void receiveMsg(String buf) �
176 try �
177
178 int offset =0;
179 // System.out . println (”XML ������� : ”+ buf);
180
181 if (buf .charAt(1)==’?’) �



166 SIGN Source Code

182 if (( offset = buf . indexOf(’
�

’, offset ) ) � buf . length () ) �
183 return ;
184 � else �
185 offset = offset + 1;
186 if ( offset + 6

�
buf . length () ) �

187 sendInitailLogonMsg () ;
188 return;
189 �
190 �
191 � else if (buf . startsWith (” � stream”)) �
192 sendInitailLogonMsg () ;
193 return;
194 � else if (buf . startsWith (” � /stream”)) �
195 communication.read = false ;
196 communication.disconnect () ;
197 communication = null ;
198 return;
199 �
200
201 while( offset � buf . length () ) �
202
203 try �
204 if (msg.length ()

�
0) �

205 msg.append(buf);
206 buf = msg. toString () ;
207 msg.delete (0, ( msg.length () ) ) ;
208 �
209
210 kXMLElement xmltree = new kXMLElement();
211 offset += xmltree . parseString (buf , offset ) ;
212 name = null ;
213 name = xmltree .getTagName();
214
215 if (name != null ) �
216 if (name.equals(”iq”) ) �
217 // parseIqMsg(xmltree) ;
218 iqHandler .handleElement(xmltree ) ;
219
220 � else if (name.equals(”presence”) ) �
221 // parsePresenceMsg(xmltree);
222 presenceHandler .handleElement(xmltree ) ;
223
224 � else if (name.equals(”message”)) �
225 // parseMessageMsg(xmltree);
226 messageHandler.handleElement(xmltree) ;
227 �
228 �
229 � catch(XMLParseException e) �
230 if ( offset == 0) �
231 msg.append(buf);
232 System.out . println (”XML ������� : ”+ msg.toString());
233 return;
234 � else �
235 msg.append(buf. substring ( offset ) ) ;
236 System.out . println (”XML ������� : ”+ msg.toString());
237 return;
238 �
239 �
240 �
241 � catch(Exception e) �
242 System.out . println (e) ;
243 �



C.1 Mobile phone client 167

244 �
245
246 public void createConnection () �
247 this .communication = new Communication(this);
248 communication.connect() ;
249 new Thread(communication). start () ;
250 String str = ” � stream:stream to= � ”129.241.103.179 � ” xmlns= � ”jabber:client � ” xmlns:

stream= � ”http :// etherx . jabber .org / streams � ”
�

”;
251 communication.send( str ) ;
252
253 �
254
255 public void sendLogonMsg() �
256 // String str = ” � iq type= � ”set � ” id= � ”JCOM 5 � ”

� � query xmlns= � ”jabber:iq:auth
� ”
� � username

�
”+ model.getUserName() +” � /username

� � password
�

” + model.
getPassword() + ” � /password

� � resource
�

alag 531 � /resource
� � /query

� � /iq
�

”;
257 String str = ” � iq type= � ”set � ” id= � ”JCOM 5 � ”

� � query xmlns= � ”jabber:iq:auth � ”
� �

username
�

”+ model.getUserName() +” � /username
� � password

�
”+ model.

getPassword() +” � /password
� � resource

�
mobile � /resource

� � /query
� � /iq

�
”;

258 communication.send( str ) ;
259 �
260
261 public void sendInitailLogonMsg () �
262 // String str = ” � iq type= � ”get � ” id= � ”JCOM 40 � ”

� � query xmlns= � ”jabber:iq:auth
� ”
� � username

�
”+ model.getUserName() +” � /username

� � /query
� � /iq

�
”;

263 String str = ” � iq type= � ”get � ” id= � ”JCOM 40 � ”
� � query xmlns= � ”jabber:iq:auth

� ”
� � username

�
”+ model.getUserName() +” � /username

� � /query
� � /iq

�
”;

264 communication.send( str ) ;
265 �
266 �



168 SIGN Source Code

Logonscreen.java

1 /*
2 * LogoScreen.java
3 *
4 */
5
6 package UniChat;
7
8 import javax . microedition . midlet .*;
9 import javax . microedition . lcdui .*;

10 import javax . microedition . io .*;
11 import java . io .*;
12
13
14 /**
15 * @version
16 */
17 public class Logonscreen extends Form �
18
19 private Controller controller ;
20 private Model model;
21 private TextField nameField;
22 private TextField passwordField ;
23 private ChoiceGroup savePasswordField;
24
25 public Logonscreen( Controller c , Model m) �
26 super(”Logon”);
27 this . controller = c;
28 this .model = m;
29 String [] elements = new String [1];
30 elements [0] = ”Save password”;
31 nameField = new TextField (”Username: ”, ”” , 20, TextField .ANY);
32 passwordField = new TextField (”Password: ” , ”” , 20, TextField .PASSWORD);
33 savePasswordField = new ChoiceGroup(null, ChoiceGroup.MULTIPLE, elements, null);
34 append(nameField);
35 append(passwordField) ;
36 append(savePasswordField) ;
37
38 addCommand(controller.commands.backCommand);
39 addCommand(controller.commands.goCommand);
40 setCommandListener( controller ) ;
41 �
42
43 public void updateData () �
44 model.setUserInfo (nameField. getString () , passwordField . getString () , savePasswordField .

isSelected (0) ) ;
45 // model. setUserInfo (”nioto ”, ”password”, savePasswordField . isSelected (0) ) ;
46 �
47
48 �



C.1 Mobile phone client 169

Message.java

1 /*
2 * Message.java
3 *
4 */
5
6 package UniChat;
7
8
9 /**

10 * @version
11 */
12 public class Message �
13
14 public String message;
15
16 public Message(String msg) �
17 this .message = msg;
18 �
19
20 �



170 SIGN Source Code

MessageHandler.java

1 /*
2 * MessageHandler.java
3 *
4 */
5
6 package UniChat;
7
8 import javax . microedition . midlet .*;
9 import javax . microedition . lcdui .*;

10 import javax . microedition . io .*;
11 import javax . microedition .rms.*;
12 import java . io .*;
13 import java . util .*;
14 import nanoxml.*;
15
16 /**
17 * @version
18 */
19 public class MessageHandler extends ElementHandler �
20
21 private StringBuffer msg;
22
23 public MessageHandler(JabberComm c, Model m) �
24 super(c , m);
25 msg = new StringBuffer () ;
26
27 �
28
29 public void handleElement(kXMLElement node) �
30
31 String type = node. getProperty (”type”) ;
32 String from = node. getProperty (”from”);
33 String to = node. getProperty (”to”) ;
34 String body = null ;
35 Enumeration enum = node.enumerateChildren () ;
36 while(enum.hasMoreElements()) �
37 kXMLElement child = (kXMLElement)(enum.nextElement());
38 if ( child .getTagName(). startsWith (”body”)) �
39 body = child . getContent () ;
40 �
41 �
42 model.newContactMsg(from, body);
43 �
44 �



C.1 Mobile phone client 171

Messagescreen.java

1 /*
2 * Messagescreen.java
3 *
4 */
5
6 package UniChat;
7
8 import javax . microedition . midlet .*;
9 import javax . microedition . io .*;

10 import javax . microedition . lcdui .*;
11 import java . io .*;
12 import java . util .*;
13
14 /**
15 * @version
16 */
17 public class Messagescreen extends javax . microedition . lcdui . List �
18 private Controller controller ;
19 private Model model;
20 private Message m;
21 private Vector v;
22
23
24 public Messagescreen( Controller c , Model m) �
25 super(”Messages”, javax . microedition . lcdui . List .IMPLICIT);
26 this . controller = c;
27 this .model = m;
28
29 addCommand(controller.commands.backCommand);
30 addCommand(controller.commands.writeCommand);
31 setCommandListener( controller ) ;
32 �
33
34 public void updateData () �
35
36 int listsize = this . size () ;
37 for ( int num = 0; num � listsize ; num++) �
38 this . delete (0) ;
39 �
40
41 v = model.getMessages();
42 int size = v. size () ;
43 if ( size

�
model.displaynumber) �

44 size = model.displaynumber;
45 �
46 for ( int i =0; i � size ; i++) �
47 m = (Message)v.elementAt(i ) ;
48 append(m.message, null ) ;
49 �
50 model.setMessageRead();
51 �
52 �



172 SIGN Source Code

Model.java

1 /*
2 * Model.java
3 *
4 */
5
6 package UniChat;
7
8 import javax . microedition . midlet .*;
9 import javax . microedition . lcdui .*;

10 import javax . microedition . io .*;
11 import javax . microedition .rms.*;
12 import java . io .*;
13 import java . util .*;
14
15 /**
16 * @version
17 */
18 public class Model �
19
20 private JabberComm adapter;
21 private Vector contacts ;
22 private Contact contact ;
23 private int count ;
24 private String infomsg;
25 private String errormsg;
26 private User theUser ;
27 private Controller controller ;
28 private String currentcontact ;
29 public int displaynumber;
30 public boolean showall ;
31 public boolean sound;
32 private RecordStore recordstore ;
33 private RecordEnumeration enum;
34 private boolean store ;
35 public Hashtable deviceMap;
36
37 public Model(Controller c) �
38 contacts = new Vector() ;
39 adapter = new JabberComm(this);
40 theUser = new User();
41 count = 0;
42 infomsg = null ;
43 this . controller = c;
44 displaynumber = 5;
45 showall = true ;
46 sound = false ;
47 store = false ;
48 deviceMap = new Hashtable(3);
49 deviceMap.put(new Integer (1) , ”Mobile”);
50 deviceMap.put(new Integer (2) , ”PDA”);
51 deviceMap.put(new Integer (3) , ”Desktop”);
52
53 /*
54 try �
55 recordstore = recordstore .openRecordStore(”Store ”, true ) ;
56 � catch(RecordStoreException e) �
57 // return ;
58 �
59
60 try �



C.1 Mobile phone client 173

61 enum = recordstore .enumerateRecords(null , null , false ) ;
62 � catch(RecordStoreNotOpenException e) �
63 // return ;
64 �
65
66 try �
67 theUser .passWord = new String (enum.nextRecord()) ;
68 theUser .userName = new String(enum.nextRecord()) ;
69 store = true ;
70 � catch( InvalidRecordIDException e) �
71 // return ;
72
73 � catch(RecordStoreNotOpenException e) �
74 // return ;
75
76 � catch(RecordStoreException e) �
77 // return ;
78 �
79 */
80
81 theUser .userName = ” jill ” ;
82 theUser .passWord = ” jill ” ;
83 �
84
85
86 public void newContact(String id , String name, String subs) �
87 if ( findContact ( id ) == null ) �
88 Contact c = new Contact(id , name, subs) ;
89 contacts .addElement(c);
90 count++;
91 �
92 �
93
94 public void newContact() �
95 controller .setMainScreen () ;
96 �
97
98 public void newContactMsg(String user , String body) �
99 contact = null ;

100 contact = findContact (user ) ;
101 if ( contact != null ) �
102 contact .addMessage(body);
103 contact .unread++;
104 controller .newContactEvent();
105 �
106 �
107
108
109 private Contact findContact ( String id ) �
110 for ( int i =0; i � contacts . size () ; i++) �
111 if (((( Contact ) contacts .elementAt(i ) ) . id ) . equals ( id ) ) �
112 return ( Contact ) contacts .elementAt(i ) ;
113 �
114 �
115 return null ;
116 �
117
118 private Contact findContactByName(String name) �
119 for ( int i =0; i � contacts . size () ; i++) �
120 if (((( Contact ) contacts .elementAt(i ) ) .name).equals (name)) �
121 return ( Contact ) contacts .elementAt(i ) ;
122 �



174 SIGN Source Code

123 �
124 return null ;
125 �
126
127 public void setUserInfo ( String userName, String passWord, boolean save) �
128 theUser .userName = userName;
129 theUser .passWord = passWord;
130
131 // /*
132 if (save) �
133
134 try �
135 enum = recordstore .enumerateRecords(null , null , false ) ;
136 � catch(RecordStoreNotOpenException e) �
137 return;
138 �
139
140 try �
141 recordstore . deleteRecord (( enum.nextRecordId()) ) ;
142 recordstore . deleteRecord (( enum.nextRecordId()) ) ;
143 � catch(InvalidRecordIDException e) �
144 // return ;
145
146 � catch(RecordStoreNotOpenException e) �
147 // return ;
148
149 � catch(RecordStoreException e) �
150 // return ;
151 �
152
153 try �
154 recordstore .addRecord(userName.getBytes() , 0, userName.length () ) ;
155 recordstore .addRecord(passWord.getBytes() , 0 , passWord.length () ) ;
156 � catch(RecordStoreNotOpenException e) �
157
158 � catch(RecordStoreException e) �
159
160 �
161 store = true ;
162 �
163 //*/
164
165 �
166
167 public void setUserStatus (boolean b) �
168 theUser . status = b;
169 if (b == false ) �
170 setUserPresence (” Offline ”) ;
171 � else �
172 setUserPresence (”Online”) ;
173 �
174 �
175
176 public void setUserPresence ( String presence ) �
177 theUser . presence = presence ;
178 �
179
180 public String getUserPresence () �
181 return theUser . presence ;
182 �
183
184 public String getUserStatus () �



C.1 Mobile phone client 175

185 String s ;
186 if (theUser . status == true) �
187 s = ”Online”;
188 setUserPresence (”Online”) ;
189 � else �
190 s = ” Offline ”;
191 setUserPresence (” Offline ”) ;
192 �
193 return s ;
194 �
195
196 public String getUserName() �
197 return theUser .userName;
198 �
199
200 public String getPassword() �
201 return theUser .passWord;
202 �
203
204 public boolean logon() �
205 // if ( true ) �
206 adapter . createConnection () ;
207 return false ;
208 // � else �
209 // return true ;
210 // �
211 �
212
213 public void logoff () �
214 removeAllContacts () ;
215 adapter .sendLogoffMsg();
216 setUserStatus ( false ) ;
217
218 �
219
220 public Vector getContacts () �
221 return contacts ;
222 �
223
224
225 public void setCurrentContact ( String name) �
226 Contact c = findContactByName(name);
227 currentcontact = c . id ;
228 �
229
230 public String getShow() �
231 Contact c = findContact ( currentcontact ) ;
232 return c .show;
233 �
234
235 public Contact getCurrentContact () �
236 Contact c = findContact ( currentcontact ) ;
237 return c;
238 �
239
240 public void writtenMsg( String msg) �
241 adapter .sendContactsMsg( currentcontact , msg);
242 �
243
244 public Vector getMessages() �
245 Contact c = findContact ( currentcontact ) ;
246 return c .messages;



176 SIGN Source Code

247 �
248
249 public void setMessageRead() �
250 Contact c = findContact ( currentcontact ) ;
251 c.unread = 0;
252 �
253
254 private void removeAllContacts () �
255 int size = contacts . size () ;
256 for ( int i =0; i � size ; i++) �
257 contacts .removeElementAt(0);
258 count = 0;
259 �
260 �
261
262 public void newPresenceMsg(String from, String to , String show, String status , String

device ) �
263 Contact contact = findContact (from);
264 if ( contact != null ) �
265 if ( status . startsWith (”Online”) ) �
266 contact . status = true ;
267 contact .show = null ;
268 �
269
270 if (device != null && device. startsWith (”mobile”)) �
271 contact . device = 1;
272 � else if (device != null && device. startsWith (”pda”)) �
273 contact . device = 2;
274 � else if (device != null && device. startsWith (”desktop”) ) �
275 contact . device = 3;
276 � else �
277 contact . device = 3;
278 �
279
280 if (show != null ) �
281 contact .show = show;
282 �
283 if ( status != null ) �
284 contact . context = status ;
285 �
286
287 controller .newContactEvent();
288 �
289
290 �
291
292 public void contactOffline ( String id ) �
293 Contact contact = findContact ( id ) ;
294 if ( contact != null ) �
295 contact . status = false ;
296 contact .show = null ;
297 contact . context = null ;
298 contact . device = � 1;
299 controller .newContactEvent();
300 �
301 �
302
303 public void sendPresence( String status , String context ) �
304 adapter .sendPresence( status , context ) ;
305 if ( status . length ()

�
0) �

306 setUserPresence ( status ) ;
307 �



C.1 Mobile phone client 177

308 �
309 �



178 SIGN Source Code

PresenceHandler.java

1 /*
2 * PresenceHandler.java
3 *
4 */
5
6 package UniChat;
7
8 import javax . microedition . midlet .*;
9 import javax . microedition . lcdui .*;

10 import javax . microedition . io .*;
11 import javax . microedition .rms.*;
12 import java . io .*;
13 import java . util .*;
14 import nanoxml.*;
15
16 /**
17 * @version
18 */
19 public class PresenceHandler extends ElementHandler �
20
21 private StringBuffer msg;
22
23 public PresenceHandler (JabberComm c, Model m) �
24 super(c , m);
25 msg = new StringBuffer () ;
26
27 �
28
29 public void handleElement(kXMLElement node) �
30
31 String type = node. getProperty (”type”) ;
32 Enumeration enum = node.enumerateChildren () ;
33
34 if ( type != null && type. startsWith (” unavailable ”) ) �
35 String from = node. getProperty (”from”);
36 model. contactOffline (from);
37 � else if ( type != null && type. startsWith (” subscribe ”) ) �
38 String from = node. getProperty (”from”);
39 com.communication.send(” � presence from= � ”nioto@jabber.org � ” to= � ”audun@jabber.org

� ” type= � ”subscribed � ”/
�

”);
40 � else �
41 String show = null ;
42 String device = null ;
43 String status = null ;
44 String from = node. getProperty (”from”);
45 String to = node. getProperty (”to”) ;
46 while(enum.hasMoreElements()) �
47 kXMLElement child = (kXMLElement)(enum.nextElement());
48 if ( child .getTagName(). startsWith (”show”)) �
49 show = child . getContent () ;
50 � else if ( child .getTagName(). startsWith (” status ”) ) �
51 status = child . getContent () ;
52 � else if ( child .getTagName(). startsWith (”device”) ) �
53 device = child . getContent () ;
54 �
55 �
56 model.newPresenceMsg(from, to, show, status , device ) ;
57 �
58 �
59 �



C.1 Mobile phone client 179

Presencescreen.java

1 /*
2 * Presencescreen . java
3 *
4 */
5
6 package UniChat;
7
8 import javax . microedition . midlet .*;
9 import javax . microedition . io .*;

10 import javax . microedition . lcdui .*;
11
12 /**
13 * @version
14 */
15 public class Presencescreen extends Form �
16
17 private Controller controller ;
18 private Model model;
19 private ChoiceGroup presenceChoice;
20 private ChoiceGroup autoReplyBox;
21 private ChoiceGroup opaqueBox;
22 private TextField sizeField ;
23 private TextField autoReplyField ;
24 private TextField contextField ;
25 private String [] displayTypes ;
26 private String [] elements ;
27
28 public Presencescreen ( Controller c , Model m) �
29 super(”Presence”) ;
30 this . controller = c;
31 this .model = m;
32
33 elements = new String [1];
34 elements [0] = ”Opaque”;
35
36 displayTypes = new String [3];
37 displayTypes [0] = ”Online”;
38 displayTypes [1] = ”Do not disturb”;
39 displayTypes [2] = ”Free for chat”;
40 presenceChoice = new ChoiceGroup(”Presence”, Choice.EXCLUSIVE, displayTypes, null);
41
42
43 contextField = new TextField (”Context” , ”” , 20, TextField .ANY);
44
45
46 sizeField = new TextField (”Max size”, ”” , 3, TextField .NUMERIC);
47
48
49 opaqueBox = new ChoiceGroup(null, ChoiceGroup.MULTIPLE, elements, null);
50
51
52 elements [0] = ”Auto reply”;
53 autoReplyBox = new ChoiceGroup(null, ChoiceGroup.MULTIPLE, elements, null);
54
55
56 autoReplyField = new TextField (”” , ”” , 20, TextField .ANY);
57
58
59 this . append(presenceChoice);
60 this . append( contextField ) ;



180 SIGN Source Code

61 this .append( sizeField ) ;
62 this .append(opaqueBox);
63 this .append(autoReplyBox);
64 this .append(autoReplyField ) ;
65
66 addCommand(controller.commands.backCommand);
67 addCommand(controller.commands.setPresenceCommand);
68 setCommandListener( controller ) ;
69 �
70
71
72 public void updateData () �
73 String context = new String ( contextField . getString () ) ;
74 String status = null ;
75 int index = presenceChoice . getSelectedIndex () ;
76 if ( index == 0) �
77 status = ”Online”;
78 � else if (index == 1) �
79 status = ”dnd”;
80 � else if (index == 2) �
81 status = ”chat”;
82 �
83
84 if ( context . length ()

�
0 ��� index != � 1) �

85 model.sendPresence( status , context ) ;
86 �
87
88 String size = sizeField . getString () ;
89 if ( size . length ()

�
0) �

90 // model.sendMaxSizePref( size ) ;
91 �
92
93 if (autoReplyBox. isSelected (0) ) �
94 String reply = autoReplyField . getString () ;
95 // model.sendAutoReplyPref( reply ) ;
96 �
97
98 if (opaqueBox.isSelected (0) ) �
99 // model.sendOpaquePref();

100 �
101
102 �
103
104 �



C.1 Mobile phone client 181

Sendscreen.java

1 /*
2 * Sendscreen . java
3 *
4 */
5
6 package UniChat;
7
8 import javax . microedition . midlet .*;
9 import javax . microedition . io .*;

10 import javax . microedition . lcdui .*;
11 import java . io .*;
12 import java . util .*;
13 /**
14 * @version
15 */
16 public class Sendscreen extends Form �
17
18 private Controller controller ;
19 private Model model;
20 private TextField messagefield ;
21
22 public Sendscreen( Controller c , Model m) �
23 super(”Message”);
24 this . controller = c;
25 this .model = m;
26 messagefield = new TextField (”” , ”” , 100, TextField .ANY);
27 append(messagefield ) ;
28
29 addCommand(controller.commands.backCommand);
30 addCommand(controller.commands.sendCommand);
31 setCommandListener( controller ) ;
32 �
33
34 public void updateData () �
35 model.writtenMsg(messagefield . getString () ) ;
36 �
37 �



182 SIGN Source Code

Settingsscreen.java

1 /*
2 * Settingsscreen . java
3 *
4 */
5
6 package UniChat;
7
8 import javax . microedition . io .*;
9 import javax . microedition . lcdui .*;

10
11
12 /**
13 * @version
14 */
15 public class Settingsscreen extends Form �
16
17 private Controller controller ;
18 private Model model;
19 private ChoiceGroup sortChoice;
20 private ChoiceGroup soundChoice;
21 private TextField messages;
22 private String [] displayTypes ;
23 private String [] soundTypes;
24
25
26 public Settingsscreen ( Controller c , Model m) �
27 super(”Display settings ”) ;
28 this . controller = c;
29 this .model = m;
30
31 displayTypes = new String [2];
32 displayTypes [0] = ”Show All”;
33 displayTypes [1]= ”Show Online”;
34 sortChoice = new ChoiceGroup(”Display Types”, Choice.EXCLUSIVE, displayTypes, null);
35
36 soundTypes = new String [2];
37 soundTypes [1] = ”Sound ON”;
38 soundTypes [0] = ”Sound OFF”;
39 soundChoice = new ChoiceGroup(”Sound”, Choice.EXCLUSIVE, soundTypes, null);
40
41 messages = new TextField (”# Messages”, ”” , 2, TextField .NUMERIC);
42
43 this .append(messages);
44 this .append(sortChoice ) ;
45 this .append(soundChoice);
46
47 addCommand(controller.commands.backCommand);
48 addCommand(controller.commands.setCommand);
49 setCommandListener( controller ) ;
50 �
51
52 public void updateData () �
53 Integer integer = new Integer ( Integer . parseInt (messages. getString () ) ) ;
54 model.displaynumber = integer . intValue () ;
55
56 int index = sortChoice . getSelectedIndex () ;
57 if ( index == 0) �
58 model.showall = true ;
59 �
60 else �



C.1 Mobile phone client 183

61 model.showall = false ;
62 �
63
64 index = soundChoice.getSelectedIndex () ;
65 if (index == 0) �
66 model.sound = false ;
67 �
68 else �
69 model.sound = false ;
70 �
71
72 �
73
74 �



184 SIGN Source Code

UniChat.java

1 /*
2 * MobileIMS.java
3 *
4 */
5
6 package UniChat;
7
8 import javax . microedition . midlet .*;
9 import javax . microedition . lcdui .*;

10 import javax . microedition . io .*;
11 import java . io .*;
12
13
14 public class UniChat extends javax . microedition . midlet .MIDlet �
15 public Controller controller ;
16
17 public UniChat() �
18 controller = new Controller ( this ) ;
19 �
20
21 public void startApp () �
22 �
23
24 public void pauseApp() �
25 �
26
27 public void destroyApp(boolean unconditional ) �
28 �
29 �



C.1 Mobile phone client 185

User.java

1 /*
2 * User.java
3 *
4 */
5
6 package UniChat;
7
8 import javax . microedition . midlet .*;
9

10 /**
11 * @version
12 */
13 public class User �
14 public String userName;
15 public String passWord;
16 public boolean status ;
17 public String presence = ” Offline ” ;
18
19 public User() �
20 �
21 �



186 SIGN Source Code

UserDetailsscreen.java

1 /*
2 * UserDetails . java
3 */
4
5 package UniChat;
6
7 import javax . microedition . midlet .*;
8 import javax . microedition . io .*;
9 import javax . microedition . lcdui .*;

10 import java . io .*;
11 import java . util .*;
12 /**
13 * @version
14 */
15 public class UserDetailsscreen extends javax . microedition . lcdui . List �
16
17 private Controller controller ;
18 private Model model;
19
20 public UserDetailsscreen ( Controller c , Model m) �
21 super(”User” , javax . microedition . lcdui . List .IMPLICIT);
22 this . controller = c;
23 this .model = m;
24
25 addCommand(controller.commands.backCommand);
26 addCommand(controller.commands.writeCommand);
27 setCommandListener( controller ) ;
28 �
29
30 public void updateData () �
31
32 Contact c = model.getCurrentContact () ;
33
34 setTitle (”User � ” + c.name);
35
36 int listsize = this . size () ;
37 for ( int num = 0; num � listsize ; num++) �
38 this . delete (0) ;
39 �
40
41 String text = ”Device: ” ;
42 if (c . device � 0) �
43 text = text . concat (( String )model.deviceMap.get(new Integer (c . device ) ) ) ;
44 �
45 append( text , null ) ;
46
47 text = ” Status : ” ;
48 if (c .show != null ) �
49 text = text . concat (c .show);
50 �
51 append( text , null ) ;
52
53 text = ”Context : ” ;
54 if (c . context != null ) �
55 text = text . concat (c . context ) ;
56 �
57 append( text , null ) ;
58 �
59 �



C.2 PDA client 187

C.2 PDA client

Contact.java

1 package jabber ;
2
3 import java . util .*;
4
5 public class Contact �
6
7 public final static int MOBILE = 0;
8 public final static int DESKTOP = 1;
9 public final static int PDA = 2;

10
11 public final static int ONLINE = 0;
12 public final static int OFFLINE = 1;
13 public final static int DND = 2;
14 public final static int AWAY = 3;
15 public final static int XA = 4;
16
17 private String username;
18 private String jid ;
19 private String context = ”” ;
20 int device ;
21 int show;
22 Vector unreadMessages;
23
24 public Contact ( String jid , String name) �
25 this .username = name;
26 this . jid = jid ;
27 show = OFFLINE;
28 device = DESKTOP;
29 unreadMessages = new Vector() ;
30 �
31
32 public void setPresence ( int show, String status , int device ) �
33 this .show = show;
34 this . context = status ;
35 this . device = device ;
36 �
37 public void addMessage(String msg) �
38 unreadMessages.add(msg);
39 �
40 public Enumeration getUnreadMessages() �
41 return unreadMessages.elements() ;
42 �
43 public void removeUnreadMessages() �
44 unreadMessages.removeAllElements();
45 �
46 public String getName() �
47 return username;
48 �
49 public String getJid () �
50 return jid ;
51 �
52 public String getContext () �
53 return context ;
54 �
55 �



188 SIGN Source Code

ContactPanel.java

1 package jabber ;
2
3 import java .awt .*;
4 import java .awt. event .*;
5 import java . util .*;
6
7 public class ContactPanel extends Panel implements ActionListener �
8
9 private final static int TOP = 22;

10 private final static int ROW HEIGHT = 20;
11 private final static int ICON MARGIN = 1;
12 private final static int NAME MARGIN = ICON MARGIN + 18;
13
14 JabberFrame frame;
15 static Font bigFont ;
16 static Font smallFont ;
17 Vector rows = new Vector() ;
18 Row selectedRow = null ;
19 MenuItem popupSend;
20
21
22 final static Image header = Toolkit . getDefaultToolkit () .getImage(”border . gif ”) ;
23 Image icons [][] = new Image[3][3];
24
25 public ContactPanel (JabberFrame frame) �
26 this . frame = frame;
27 popupSend = new MenuItem(”Read/Send message”);
28 popupSend.addActionListener( this ) ;
29
30 MouseListener ml = new MouseAdapter() �
31 public void mouseReleased(MouseEvent e) �
32 Enumeration enum = rows.elements () ;
33 while ( enum.hasMoreElements()) �
34 Row row = (Row)enum.nextElement();
35 if (row. rect . contains (e .getX() , e .getY()) ) �
36 selectedRow = row;
37 showPopupMenu(row, e);
38 �
39 �
40 �
41 � ;
42 addMouseListener(ml);
43
44 bigFont = new Font(”times” , Font .BOLD, 14);
45 smallFont = new Font(”times” , Font .PLAIN, 12);
46
47 icons [Contact .DESKTOP][Contact.ONLINE] = Toolkit.getDefaultToolkit().getImage(”

desktop online . gif ”) ;
48 icons [Contact .DESKTOP][Contact.OFFLINE] = Toolkit.getDefaultToolkit().getImage(”

desktop offline . gif ”) ;
49 icons [Contact .DESKTOP][Contact.DND] = Toolkit.getDefaultToolkit() .getImage(”desktop dnd. gif

”) ;
50 icons [Contact .MOBILE][Contact.ONLINE] = Toolkit.getDefaultToolkit() .getImage(”mobile online .

gif ”) ;
51 icons [Contact .MOBILE][Contact.OFFLINE] = Toolkit.getDefaultToolkit () .getImage(”

mobile offline . gif ”) ;
52 icons [Contact .MOBILE][Contact.DND] = Toolkit.getDefaultToolkit () .getImage(”mobile dnd. gif ”) ;
53 icons [Contact .PDA][Contact.ONLINE] = Toolkit. getDefaultToolkit () .getImage(”pda online . gif ”) ;
54 icons [Contact .PDA][Contact.OFFLINE] = Toolkit. getDefaultToolkit () .getImage(” pda offline . gif

”) ;



C.2 PDA client 189

55 icons [Contact .PDA][Contact.DND] = Toolkit. getDefaultToolkit () .getImage(”pda dnd. gif ”) ;
56 MediaTracker tracker = new MediaTracker(this) ;
57 int id=0;
58 for ( int r =0; r � 3; r++) �
59 for ( int c=0; c � 3; c++) �
60 tracker .addImage(icons[r ][ c ], id ) ;
61 id++;
62 �
63 �
64 try �
65 tracker . waitForAll () ;
66 � catch ( InterruptedException ie ) �
67 �
68 �
69
70 private void showPopupMenu(Row row, MouseEvent e) �
71 PopupMenu pm = new PopupMenu();
72 add(pm);
73 MenuItem jid = new MenuItem(row.contact.getJid () ) ;
74 jid . setEnabled ( false ) ;
75 jid . setFont (new Font(”times” , Font .BOLD, 12));
76 pm.add(jid ) ;
77 pm.add(” � ”);
78 pm.add(popupSend);
79 pm.add(new MenuItem(”Remove ” + row.contact.getName()));
80 pm.show(this , e .getX() , e .getY()) ;
81 �
82
83 public void addContact(Contact c) �
84 rows. insertElementAt (new Row(c), 0) ;
85 validate () ;
86 repaint () ;
87 �
88
89 public void clearContacts () �
90 selectedRow = null ;
91 rows.removeAllElements();
92 validate () ;
93 repaint () ;
94 �
95
96 public void paint (Graphics g) �
97 int y = TOP;
98 int iconHeight = 10; // mobile online . getHeight ( null ) � 2;
99 Image buffer = createImage ( getSize () .width , getSize () . height ) ;

100 Graphics bg = buffer . getGraphics () ;
101 FontMetrics fm = bg. getFontMetrics (bigFont) ;
102
103 Enumeration enum = rows.elements () ;
104 while ( enum.hasMoreElements()) �
105 Row row = (Row)enum.nextElement();
106 Image image = icons [row. contact . device ][ row. contact . show];
107 bg.drawImage(image, ICON MARGIN, y � image.getHeight(null)+3, null);
108 bg. setFont (bigFont) ;
109 bg. setColor (Color .blue ) ;
110 bg.drawString (row. displayString , NAME MARGIN, y);
111 if (row. contact .unreadMessages.size ()

�
0) �

112 bg. setFont (smallFont ) ;
113 bg. setColor (Color .black ) ;
114 bg.drawString (”(” + String .valueOf(row. contact .unreadMessages.size () ) + ”)” ,

NAME MARGIN + fm.stringWidth(row.displayString)+2, y);
115 �



190 SIGN Source Code

116 row. rect = new Rectangle(NAME MARGIN � 2,y � fm.getMaxAscent(),fm.stringWidth(row.
displayString)+5, fm.getMaxAscent()+3);

117 y += ROW HEIGHT;
118 �
119 g.drawImage(buffer , 0, 0, null ) ;
120 bg.dispose () ;
121 buffer . flush () ;
122 �
123
124 public void actionPerformed (ActionEvent e) �
125 Object o = e .getSource () ;
126 if (o == popupSend) �
127 frame.setMessagePanel(selectedRow. contact ) ;
128 �
129 �
130
131 private class Row �
132
133 public Row(Contact c) �
134 contact = c;
135 displayString = c .getName();
136 �
137 public Contact contact ;
138 public Rectangle rect ;
139 public Image icon ;
140 public String displayString ;
141 �
142 �



C.2 PDA client 191

ContextDialog.java

1 package jabber ;
2
3 import java .awt .*;
4 import java .awt. event .*;
5
6 public class ContextDialog extends Dialog implements ActionListener �
7
8 TextField tfContext = new TextField (”” , 10) ;
9 Label labelContext = new Label(”Enter context ” , Label .LEFT);

10 Button ok = new Button(”OK”);
11 Button cancel = new Button(”Cancel”);
12 boolean okPressed = false ;
13
14
15 public ContextDialog(JabberFrame frame) �
16 super(frame , true) ;
17
18 ok. addActionListener ( this ) ;
19 cancel . addActionListener ( this ) ;
20
21 Panel p = new Panel() ;
22 p.add( labelContext ) ;
23 p.add( tfContext ) ;
24 p.add(ok);
25 p.add(cancel ) ;
26 add(p) ;
27 setSize (100, 150) ;
28 �
29
30 public void actionPerformed (ActionEvent e) �
31 if (e .getSource () == ok) �
32 okPressed = true ;
33 dispose () ;
34 � else if (e .getSource () == cancel ) �
35 dispose () ;
36 �
37 �
38 �



192 SIGN Source Code

ElementHandler.java

1 package jabber ;
2
3 import nanoxml.*;
4
5 public abstract class ElementHandler �
6
7 protected JabberFrame gui ;
8 protected JabberComm comm;
9

10 public ElementHandler(JabberFrame gui , JabberComm comm) �
11 this . gui = gui ;
12 this . comm = comm;
13 �
14
15 public abstract void handleElement(XMLElement xml);
16
17 public static String trimJid ( String jid ) �
18 int endIndex = jid .indexOf(’ /’ ) ;
19 if (endIndex

�
0)

20 return jid . substring (0, endIndex);
21 else
22 return jid ;
23 �
24
25 �



C.2 PDA client 193

HeaderPanel.java

1 package jabber ;
2
3 import java .awt .*;
4 import java .awt.image.*;
5
6 public class HeaderPanel extends Panel �
7
8 private Image border ;
9 private String username = null ;

10 private String status = ” Offline ”;
11 private static Font nameFont = new Font(”times” , Font .BOLD, 14);
12 private static Font statusFont = new Font(”times” , Font .PLAIN, 12);
13
14 public HeaderPanel() �
15 border = Toolkit . getDefaultToolkit () .getImage(”border . gif ”) ;
16 MediaTracker mt = new MediaTracker(this) ;
17 mt.addImage(border , 0) ;
18 try �
19 mt.waitForID(0) ;
20 � catch ( InterruptedException ie ) � �
21 �
22
23 public void setUsername(String username) �
24 this .username = username;
25 �
26
27 public void setStatus ( String status ) �
28 this . status = status ;
29 repaint () ;
30 �
31
32 public void paint (Graphics g) �
33 int fontBaseline = 15;
34 if (username != null ) �
35 int statusX = g. getFontMetrics (nameFont).stringWidth (username);
36 Dimension dim = getSize () ;
37 g. setFont (nameFont);
38 g.drawString (username , 2, fontBaseline ) ;
39 g. setFont ( statusFont ) ;
40 g.drawString (” (” + status + ”)” , statusX , fontBaseline ) ;
41 � else �
42 g. setFont (nameFont);
43 g.drawString (” � No User

�
”, 2, fontBaseline) ;

44 �
45 g.drawImage(border , 0, 22, null ) ;
46 �
47 �



194 SIGN Source Code

IqHandler.java

1 package jabber ;
2
3 import java . util .*;
4
5 import nanoxml.*;
6
7 public class IqHandler extends ElementHandler �
8
9 private final static String ONLINE MESSAGE = ” � presence

� � status
�

Online � /status
� � /

presence
�

”;
10
11 public IqHandler(JabberFrame gui , JabberComm comm) �
12 super(gui , comm);
13 �
14
15 public void handleElement(XMLElement xml) �
16 String type ;
17 String id ;
18
19 type = xml. getProperty (”type”) ;
20 id = xml. getProperty (”id”) ;
21
22 if ( type . equalsIgnoreCase (” result ”) ��� type . equalsIgnoreCase (” set ”) ) �
23 if ( id . equalsIgnoreCase (”logon”) ) �
24 gui . println (”Logon OK”);
25 // gui .connected( true ) ;
26 // gui . setTitle () ;
27 comm.send(ONLINE MESSAGE);
28 comm.send(comm.ROSTER);
29 � else if ( id . equalsIgnoreCase (” roster ”) ) �
30 XMLElement child = (XMLElement)xml.getChildren().elementAt(0);
31 for (Enumeration e = child .enumerateChildren () ; e .hasMoreElements() ; ) �
32 XMLElement contact = (XMLElement)e.nextElement();
33 String nick = contact . getProperty (”name”);
34 String jid = contact . getProperty (” jid ”) ;
35 gui .addContact(new Contact( jid , nick) ) ;
36 �
37 �
38 � else if ( type . equalsIgnoreCase (” error ”) ) �
39 gui .setConnected ( false , ”Logon failed”) ;
40 � else �
41 gui . println (”Handle me: � n” + xml.toString () ) ;
42 �
43 �
44 �



C.2 PDA client 195

Jabber.java

1 import jabber .*;
2
3 public class Jabber �
4
5 public static void main(String [] args ) �
6 new JabberFrame();
7 �
8 �



196 SIGN Source Code

JabberComm.java

1 package jabber ;
2
3 import java . io .*;
4 import java . net .*;
5 import nanoxml.*;
6
7 public class JabberComm implements Runnable �
8
9 private final static int PORT = 5222;

10 private final static String DEVICE = ”pda”;
11
12 private JabberUser user ;
13 private JabberFrame frame;
14 private Socket socket ;
15 private InputStream in ;
16 private OutputStream out ;
17 private boolean doRead = true;
18 private ElementHandler iqHandler ;
19 private ElementHandler presenceHandler ;
20 private ElementHandler messageHandler;
21
22 final static String ROSTER = ” � iq id= � ”roster � ” type= � ”get � ”

�
” +

23 ” � query xmlns= � ”jabber:iq: roster � ”/
�

” +
24 ” � /iq

�
”;

25 final static String UNAVAILABLE = ” � presence type= � ”unavailable � ”/
�

”;
26 final static String DISCONNECT = ” � /stream:stream

�
”;

27
28 public JabberComm(JabberFrame frame, JabberUser user) �
29 this . frame = frame;
30 this . user = user ;
31 iqHandler = new IqHandler(this . frame , this ) ;
32 presenceHandler = new PresenceHandler(this . frame , this ) ;
33 messageHandler = new MessageHandler(this.frame , this ) ;
34 �
35
36 public void connect ( String adr) throws Exception �
37 try �
38 socket = new Socket(adr , PORT);
39 in = socket . getInputStream () ;
40 out = socket .getOutputStream() ;
41 (new Thread(this) ) . start () ;
42 send(getConnectMessage(adr)) ;
43 � catch ( Exception e) �
44 doRead = false ;
45 throw e;
46 �
47 �
48
49 public void disconnect () �
50 send(UNAVAILABLE);
51 send(DISCONNECT);
52 try �
53 Thread. sleep (500) ;
54 � catch ( InterruptedException ie ) � �
55 doRead = false ;
56 �
57
58 public void processMessage(String s) �
59 System.out . println (s) ;
60 int offset = 0;



C.2 PDA client 197

61 int pos;
62 XMLElement m;
63 if (s .charAt(1) == ’?’ ) � // begin document
64 offset = s .indexOf(’

�
’, offset ) ;

65 offset +=1;
66 if ( offset + 6

�
= s . length () )

67 return ;
68 �
69 String temp = s . substring ( offset +1, offset +7);
70 if (temp.equals (”stream”) ) �
71 offset = s .indexOf(’

�
’, offset ) ;

72 send(getLogonMessage(user.username, user .password)) ;
73 frame.setConnected (true , ”Connected to server ”) ;
74 return;
75 �
76
77 while( offset � s . length () ) �
78 try �
79 m = new XMLElement();
80 offset += m.parseString (s , offset ) ;
81 String elementName = m.getTagName();
82 if (elementName.equals(”iq”) ) �
83 iqHandler .handleElement(m);
84 � else if (elementName.equals(”presence”) ) �
85 presenceHandler .handleElement(m);
86 � else if (elementName.equalsIgnoreCase(”message”)) �
87 messageHandler.handleElement(m);
88 � else �
89 frame. println (m. toString () ) ;
90 �
91 � catch(XMLParseException xmle) �
92 frame. println (xmle.getMessage()) ;
93 break;
94 �
95 �
96 �
97
98 public void send( String s) �
99 try �

100 out . write (s . getBytes () ) ;
101 out . flush () ;
102 � catch ( IOException ioe ) �
103 doRead = false ;
104 frame. println (”Disconnected”) ;
105 �
106 �
107
108 public void sendPresence( String context , int show) �
109 if ( context . equals (”hide”) ) �
110 send(” � presence type= � ”unavailable � ”/

�
”);

111 return;
112 �
113 StringBuffer buf = new StringBuffer () ;
114 buf .append(” � presence from= � ”” + user.getJid () + ” � ” type= � ” available � ”

� � show
�

”);
115 switch(show) �
116 case Contact .ONLINE:
117 buf .append(”online”) ;
118 break;
119 case Contact .AWAY:
120 buf .append(”away”);
121 break;
122 case Contact .DND:



198 SIGN Source Code

123 buf .append(”dnd”);
124 break;
125 �
126 buf .append(” � /show

�
”);

127 buf .append(” � status
�

” + context + ” � / status
�

”);
128 buf .append(” � device

�
” + DEVICE + ” � /device

�
”);

129 buf .append(” � /presence
�

”);
130 send(buf . toString () ) ;
131 �
132
133 public void sendMessage(String toUserJid , String text ) �
134 String msg = ” � message id= � ”12 � ” to= � ”” + toUserJid + ” � ”

�
” +

135 ” � body
�

” + text + ” � /body
�

” +
136 ” � /message

�
”;

137 send(msg);
138 �
139
140 private String getConnectMessage(String server ) �
141 String temp = ” � stream:stream to= � ”” + server + ” � ” ” +
142 ”xmlns= � ”jabber: client � ” ” +
143 ”xmlns:stream= � ”http :// etherx . jabber .org / streams � ”

�
”;

144 return temp;
145 �
146
147 private String getLogonMessage(String username, String pwd) �
148 String temp = ” � iq type= � ”set � ” id= � ”logon � ”

� � query xmlns= � ”jabber:iq:auth � ”
�

” +
149 ” � username

�
” + username + ” � /username

�
” +

150 ” � password
�

” + pwd + ” � /password
�

” +
151 ” � resource

�
pda � /resource

� � /query
� � /iq

�
”;

152 return temp;
153 �
154
155 public void run () �
156 byte [] buf = new byte[1000];
157 int bytesRead = 0;
158
159 while(doRead) �
160 try �
161 bytesRead = in . read (buf) ;
162 if (!doRead)
163 return;
164 if (bytesRead == � 1) �
165 frame.setConnected ( false , ”Connection closed by peer”) ;
166 return;
167 �
168 processMessage(new String(buf) . substring (0, bytesRead)) ;
169 � catch ( IOException ioe ) �
170 frame.setConnected ( false , ”Connection closed” + ioe .getMessage()) ;
171 doRead = false ;
172 �
173 �
174 �
175 �



C.2 PDA client 199

JabberFrame.java

1 package jabber ;
2
3 import java .awt .*;
4 import java .awt. event .*;
5 import java . util .*;
6
7 public class JabberFrame extends Frame implements ActionListener �
8
9 private MenuBar menubar;

10 private MenuItem exit ;
11 private MenuItem connect;
12 private MenuItem disconnect;
13 private MenuItem setup;
14
15 private Menu presence;
16 private MenuItem online;
17 private MenuItem busy;
18 private MenuItem away;
19 private MenuItem presenceShow;
20 private MenuItem presenceHide;
21
22 private MenuItem presenceContext;
23
24 TextArea output ;
25 ContactPanel contactPanel ;
26 MessagePanel sendPanel;
27 HeaderPanel header ;
28 JabberComm comm;
29 private Hashtable contacts ;
30
31 JabberUser user = null ;
32 String server = null ;
33 boolean connected = false ;
34
35 public JabberFrame() �
36 super(”Jabber”) ;
37 contacts = new Hashtable() ;
38 initGUI () ;
39 show();
40
41 // Closable window
42 addWindowListener(new WindowAdapter() �
43 public void windowClosing(WindowEvent e) �
44 if (connected)
45 comm.disconnect();
46 System.exit (0) ;
47 �
48 � ) ;
49 �
50
51 private void initGUI () �
52 setSize (240, 320) ;
53 setResizable ( false ) ;
54
55 menubar = new MenuBar();
56 Menu file = new Menu(”File”);
57 connect = new MenuItem(”Connect”);
58 connect . addActionListener ( this ) ;
59 file .add(connect ) ;
60 setup = new MenuItem(”Setup”);



200 SIGN Source Code

61 setup . addActionListener ( this ) ;
62 file .add(setup ) ;
63 file .add(new MenuItem(” � ”));
64 exit = new MenuItem(”Exit”);
65 exit . addActionListener ( this ) ;
66 file .add( exit ) ;
67 menubar.add( file ) ;
68
69 presence = new Menu(”Presence”);
70 online = new MenuItem(”Online”);
71 online . addActionListener ( this ) ;
72 presence .add(online ) ;
73 busy = new MenuItem(”Do not disturb”);
74 busy. addActionListener ( this ) ;
75 presence .add(busy) ;
76 away = new MenuItem(”Away”);
77 away.addActionListener ( this ) ;
78 presence .add(away);
79 presence .add(new MenuItem(” � ”));
80 presenceContext = new MenuItem(”Context...”) ;
81 presence .add(presenceContext ) ;
82 presenceContext . addActionListener ( this ) ;
83 presence .add(new MenuItem(” � ”));
84 presenceShow = new MenuItem(”Show presence”);
85 presenceShow.addActionListener ( this ) ;
86 presenceHide = new MenuItem(”Hide presence”);
87 presenceHide . addActionListener ( this ) ;
88 presence .add(presenceHide) ;
89 menubar.add(presence) ;
90
91 setMenuBar(menubar);
92
93 header = new HeaderPanel();
94 header . setSize (100, 30) ;
95 contactPanel = new ContactPanel( this ) ;
96 contactPanel . setSize (100, 100) ;
97 sendPanel = new MessagePanel(this) ;
98 output = new TextArea(”” , 4, 1) ;
99 output . setEditable ( false ) ;

100 output .setBackground(Color.white) ;
101
102 setLayout (new GridBagLayout());
103 addComponents(contactPanel);
104 �
105
106 private void addComponents(Panel panel) �
107 removeAll() ;
108 setLayout (new GridBagLayout());
109 GridBagConstraints gc = new GridBagConstraints () ;
110 gc. fill = GridBagConstraints .BOTH;
111 gc. gridx = 0;
112 gc. gridy = 0;
113 gc. gridwidth = 1;
114 gc. gridheight = 1;
115 gc.weightx = 100;
116
117 if (panel == contactPanel )
118 gc.weighty = 1;
119 else
120 gc.weighty = 4;
121 add(header , gc) ;
122



C.2 PDA client 201

123 gc. gridy = 1;
124 gc. gridheight = 2;
125 gc.weighty = 10;
126 add(panel , gc) ;
127
128 gc. gridy = 3;
129 gc. gridheight = 1;
130 gc.weighty = 0;
131 add(output , gc) ;
132 doLayout();
133 header . invalidate () ;
134 header . repaint () ;
135 �
136
137 public void println ( String s) �
138 output .append(s +” � n”);
139 �
140
141 public void setConnected (boolean connected , String message) �
142 this .connected = connected ;
143 if (connected) �
144 header . setStatus (”Online”) ;
145 � else �
146 header . setStatus (” Offline ”) ;
147 println (message);
148 �
149 �
150
151 public void addContact(Contact c) �
152 contacts . put (c . getJid () , c) ;
153 contactPanel .addContact(c) ;
154 �
155
156 public void clearContacts () �
157 contacts . clear () ;
158 contactPanel . clearContacts () ;
159 �
160
161 public void setPresence ( String jid , int show, String status , int device ) �
162 Contact c = ( Contact ) contacts . get ( jid ) ;
163 if (c == null )
164 return ;
165 c. setPresence (show, status , device ) ;
166 contactPanel . repaint () ; /* @todo repaint region only */
167 �
168
169 public void newMessage(String jid , String header , String body) �
170 Contact c = ( Contact ) contacts . get ( jid ) ;
171 if (c != null ) �
172 if (sendPanel . isShowing() && c == sendPanel . contact ) �
173 sendPanel .displayMessage(c .getName(), header+body);
174 � else �
175 c .addMessage(header + body);
176 contactPanel . repaint () ; /* @todo repaint region only */
177 �
178 �
179 �
180
181 public void setContactPanel () �
182 addComponents(contactPanel);
183 contactPanel . invalidate () ;
184 contactPanel . repaint () ;



202 SIGN Source Code

185 �
186
187 public void setMessagePanel(Contact c) �
188 addComponents(sendPanel);
189 sendPanel .doLayout();
190 sendPanel . setContact (c) ;
191 // sendPanel . invalidate () ;
192 // sendPanel . repaint () ;
193 �
194
195 private boolean showSetupDialog() �
196 SetupDialog dlg = new SetupDialog(this ) ;
197 dlg .show();
198 if (dlg .okPressed) �
199 String name = dlg .tfUsername.getText () ;
200 header .setUsername(name);
201 server = dlg . tfServer . getText () ;
202 user = new JabberUser(name, dlg . tfPassword . getText () , name + ”@” + server) ;
203 header . repaint () ;
204 return true ;
205 �
206 return false ;
207 �
208
209 public JabberUser getUser () �
210 return user ;
211 �
212
213 public void connect () �
214 clearContacts () ;
215 try �
216 if (user == null ) �
217 if (! showSetupDialog())
218 return;
219 �
220 println (”Connecting ...” ) ;
221 comm = new JabberComm(this, user);
222 comm.connect(server) ;
223 � catch(Exception e) �
224 output . setText (”Connection failed : � n” + e.getMessage()) ;
225 �
226 �
227
228 public void actionPerformed (ActionEvent e) �
229 Object source = e.getSource () ;
230 if (source == exit ) �
231 if (connected)
232 comm.disconnect();
233 System.exit (0) ;
234 � else if (source == connect ) �
235 connect () ;
236 � else if (source == setup ) �
237 showSetupDialog();
238 � else if (source == online ) �
239 user . presence = Contact .ONLINE;
240 if (comm != null) �
241 header . setStatus (”Online”) ;
242 comm.sendPresence(”Online”, Contact .ONLINE);
243 �
244 � else if (source == away) �
245 user . presence = Contact .AWAY;
246 if (comm != null) �



C.2 PDA client 203

247 header . setStatus (”Away”);
248 comm.sendPresence(”Away”, Contact.AWAY);
249 �
250 � else if (source == busy) �
251 user . presence = Contact .DND;
252 if (comm != null) �
253 header . setStatus (”Busy”);
254 comm.sendPresence(”Busy”, Contact.DND);
255 �
256 � else if (source == presenceHide) �
257 presence .remove(presenceHide);
258 presence .add(presenceShow);
259 comm.sendPresence(”hide” , 0) ;
260 � else if (source == presenceShow) �
261 presence .remove(presenceShow);
262 presence .add(presenceHide) ;
263 comm.sendPresence(”Online”, Contact .ONLINE);
264 � else if (source == presenceContext ) �
265 ContextDialog dlg = new ContextDialog(this ) ;
266 dlg .show();
267 if (dlg .okPressed) �
268 String context = dlg . tfContext . getText () ;
269 comm.sendPresence(context , user . presence ) ;
270 �
271
272 �
273
274 �
275 �



204 SIGN Source Code

JabberUser.java

1 package jabber ;
2
3 public class JabberUser �
4
5 String username;
6 String jid ;
7 String password;
8 int presence = Contact .ONLINE;
9

10 public JabberUser( String name, String pwd, String jid ) �
11 this .username = name;
12 this .password = pwd;
13 this . jid = jid ;
14 �
15
16 public void setUsername(String username) �
17 this .username = username;
18 �
19
20 public void setPassword( String pwd) �
21 this .password = pwd;
22 �
23
24 public void setJid ( String jid ) �
25 this . jid = jid ;
26 �
27
28 public String getJid () �
29 return jid ;
30 �
31
32 public String toString () �
33 return username;
34 �
35 �



C.2 PDA client 205

MessagePanel.java

1 package jabber ;
2
3 import java .awt .*;
4 import java .awt. event .*;
5 import java . util .Enumeration;
6
7 public class MessagePanel extends Panel implements ActionListener �
8
9 JabberFrame frame;

10 TextArea output ;
11 TextArea write ;
12 Button send;
13 Button cancel ;
14 Contact contact = null ;
15
16 public MessagePanel(JabberFrame parent) �
17 frame = parent ;
18 initGui () ;
19 �
20
21 public void initGui () �
22 output = new TextArea(”” , 4, 10, TextArea.SCROLLBARS VERTICAL ONLY);
23 output . setEditable ( false ) ;
24 output .setBackground(Color.white) ;
25 write = new TextArea(”” , 2, 10, TextArea.SCROLLBARS NONE);
26 write . requestFocus () ;
27 send = new Button(”Send”);
28 send. addActionListener ( this ) ;
29 cancel = new Button(”Cancel”);
30 cancel . addActionListener ( this ) ;
31
32 setLayout (new GridBagLayout());
33 GridBagConstraints gc = new GridBagConstraints () ;
34 gc. fill = GridBagConstraints .BOTH;
35 gc. gridx = 0;
36 gc. gridy = 0;
37 gc. gridwidth = 4;
38 gc. gridheight = 4;
39 gc.weightx = 100;
40 gc.weighty = 10;
41 add(output , gc) ;
42
43 gc. gridy = 4;
44 gc. gridwidth = 3;
45 gc. gridheight = 2;
46 gc.weightx = 100;
47 gc.weighty = 0;
48 add(write , gc) ;
49
50 gc. fill = GridBagConstraints .BOTH;
51 // gc.anchor = GridBagConstraints .CENTER;
52 gc. gridx = 3;
53 gc. gridy = 4;
54 gc. gridwidth = 1;
55 gc. gridheight = 1;
56 gc.weightx = 0;
57 gc.weighty = 0;
58 add(send , gc) ;
59 gc. gridy = 5;
60 add(cancel , gc) ;



206 SIGN Source Code

61
62 �
63
64 public void setContact (Contact c) �
65 if ( contact != c) �
66 output . setText (””) ;
67 contact = c;
68 �
69 Enumeration enum = c.getUnreadMessages();
70 while ( enum.hasMoreElements()) �
71 displayMessage(c .getName() , ( String )enum.nextElement()) ;
72 �
73 c .removeUnreadMessages();
74 �
75
76 public void displayMessage( String author , String msg) �
77 output . setForeground (Color .blue ) ;
78 output .append(author + ”: � n”) ;
79 output . setForeground (Color .black ) ;
80 output .append(msg + ” � n”);
81 �
82
83 public void actionPerformed (ActionEvent e) �
84 Object o = e .getSource () ;
85 if (o == send) �
86 if ( write . getText () . length () == 0)
87 return;
88 displayMessage(frame.getUser () . toString () , write . getText () ) ;
89 frame.comm.sendMessage(contact.getJid () , write . getText () ) ;
90 write . setText (””) ;
91 � else if (o == cancel ) �
92 frame. setContactPanel () ;
93 �
94 �
95 �



C.2 PDA client 207

PresenceHandler.java

1 package jabber ;
2
3 import nanoxml.*;
4 import java . util .Enumeration;
5
6 public class PresenceHandler extends ElementHandler �
7
8 public PresenceHandler (JabberFrame gui , JabberComm comm) �
9 super(gui , comm);

10 �
11 public void handleElement(XMLElement xml) �
12 String temp;
13 String status = ””;
14 String jid = null ;
15 int device = Contact .DESKTOP;
16 String type = null ;
17 int show = Contact .ONLINE;
18
19 jid = trimJid (xml.getProperty (”from”)) ;
20 type = xml. getProperty (”type”) ;
21 if ( type != null && type.equalsIgnoreCase (” unavailable ”) )
22 show = Contact .OFFLINE;
23 if ( type != null && type.equalsIgnoreCase (” available ”) )
24 show = Contact .ONLINE;
25
26 for (Enumeration children = ( Enumeration)xml.enumerateChildren () ; children .hasMoreElements()

; ) �
27 XMLElement node = (XMLElement)children.nextElement();
28 String tagName = node.getTagName();
29 if (tagName.equals(” status ”) ) �
30 status = node.getContents () ;
31 if ( status . equalsIgnoreCase (”online ”) )
32 show = Contact .ONLINE;
33 � else if (tagName.equals(”show”)) �
34 temp = node.getContents () ;
35 if (temp != null ) �
36 if (temp.equalsIgnoreCase (”dnd”))
37 show = Contact .DND;
38 else if (temp.equalsIgnoreCase (”away”))
39 show = Contact .AWAY;
40 else if (temp.equalsIgnoreCase (”xa”) )
41 show = Contact .XA;
42 else if (temp.equalsIgnoreCase (”online ”) )
43 show = Contact .ONLINE;
44 �
45 � else if (tagName.equals(”device”) ) �
46 temp = node.getContents () ;
47 if (temp != null ) �
48 if (temp.equals (”mobile”))
49 device = Contact .MOBILE;
50 else if (temp.equals (”pda”))
51 device = Contact .PDA;
52 else if (temp.equals (”desktop”) ) �
53 device = Contact .DESKTOP;
54 �
55 �
56 �
57 �
58 gui . setPresence ( jid , show, status , device ) ;
59 � �



208 SIGN Source Code

SetupDialog.java

1 package jabber ;
2
3 import java .awt .*;
4 import java .awt. event .*;
5
6 public class SetupDialog extends Dialog implements ActionListener �
7
8 public final static String SERVER = ”hauk02.idi.ntnu.no”;
9

10 TextField tfUsername = new TextField (10) ;
11 Label lUsername = new Label(”Username:”);
12 TextField tfPassword = new TextField (10) ;
13 Label labelPassword = new Label(”Password:”);
14 Checkbox storePwd = new Checkbox(”Store password”, false ) ;
15 TextField tfServer = new TextField (SERVER, 10);
16 Label labelServer = new Label(”Server :” ) ;
17 Button cancel = new Button(”Cancel”);
18 Button ok = new Button(”OK”);
19 boolean okPressed = false ;
20
21 public SetupDialog(JabberFrame frame) �
22 super(frame , ”Setup” , true) ;
23 // setSize ( Toolkit . getDefaultToolkit () . getScreenSize () ) ;
24 setSize (240, 320) ;
25
26 ok. addActionListener ( this ) ;
27 ok. setSize ( cancel . getSize () ) ;
28 cancel . addActionListener ( this ) ;
29
30 addWindowListener(new WindowAdapter() �
31 public void windowClosing(WindowEvent e) �
32 dispose () ;
33 �
34 � ) ;
35 initGui () ;
36 �
37
38 private void initGui () �
39 Panel p = new Panel() ;
40 p. setLayout (new GridBagLayout());
41 GridBagConstraints gc = new GridBagConstraints () ;
42 gc. fill = GridBagConstraints .HORIZONTAL;
43 gc. gridheight = 1;
44 gc. gridwidth = 1;
45 gc.weightx = 100;
46 gc.weighty = 0;
47 gc. gridx = 0;
48 gc. gridy = 0;
49 gc.anchor = GridBagConstraints .EAST;
50 p.add(lUsername, gc) ;
51
52 gc. gridx = 1;
53 gc. gridy = 0;
54 gc. gridwidth = 2;
55 gc.anchor = GridBagConstraints .WEST;
56 p.add(tfUsername , gc) ;
57
58 gc. gridx = 0;
59 gc. gridy = 1;
60 gc. gridwidth = 1;



C.2 PDA client 209

61 gc.anchor = GridBagConstraints .EAST;
62 p.add(labelPassword , gc) ;
63
64 gc. gridx = 1;
65 gc. gridy = 1;
66 gc. gridwidth = 2;
67 gc.anchor = GridBagConstraints .WEST;
68 p.add(tfPassword , gc) ;
69
70 gc. gridx = 1;
71 gc. gridy = 2;
72 gc. gridwidth = 1;
73 gc.anchor = GridBagConstraints .CENTER;
74 p.add(storePwd , gc) ;
75
76 gc. gridwidth = 1;
77 gc. gridx = 0;
78 gc. gridy = 3;
79 gc.anchor = GridBagConstraints .EAST;
80 p.add( labelServer , gc) ;
81
82 gc. gridx = 1;
83 gc. gridy = 3;
84 gc. gridwidth = 2;
85 gc.anchor = GridBagConstraints .WEST;
86 p.add( tfServer , gc) ;
87
88 gc. fill = GridBagConstraints .NONE;
89 gc. gridx = 0;
90 gc. gridy = 4;
91 gc. gridwidth = 1;
92 gc.anchor = GridBagConstraints .EAST;
93 p.add(ok , gc) ;
94
95 gc. gridx = 1;
96 gc. gridy = 4;
97 gc.anchor = GridBagConstraints .WEST;
98 p.add(cancel , gc) ;
99

100 add(p , BorderLayout.NORTH);
101 �
102
103 public void actionPerformed (ActionEvent e) �
104 Object o = e.getSource () ;
105 if (o == cancel ) �
106 dispose () ;
107 � else if (o == ok) �
108 okPressed = true ;
109 dispose () ;
110 �
111 �
112 �



210 SIGN Source Code

MessageHandler.java

1 package jabber ;
2
3 import nanoxml.*;
4 import java . util .Enumeration;
5
6 public class MessageHandler extends ElementHandler �
7
8 public MessageHandler(JabberFrame gui, JabberComm comm) �
9 super(gui , comm);

10 �
11
12 public void handleElement(XMLElement xml) �
13 String jid = trimJid (xml. getProperty (”from”)) ;
14 String id = xml. getProperty (”id”) ;
15 String subject = ”” ;
16 String body = ””;
17
18 for (Enumeration e = xml.enumerateChildren () ; e .hasMoreElements() ; ) �
19 XMLElement child = (XMLElement)e.nextElement();
20 String tagName = child .getTagName();
21 if (tagName.equals(” subject ”) ) �
22 subject = child . getContents () ;
23 � else if (tagName.equals(”body”)) �
24 body = child . getContents () ;
25 �
26 �
27 gui .newMessage(jid , subject , body);
28 �
29 �



C.3 Desktop client 211

C.3 Desktop client

ConnectDialog.java

1 package jabberclient ;
2
3 import javax .swing.*;
4 import java .awt .*;
5 import java .awt. event .*;
6
7 public class ConnectDialog extends JDialog implements ActionListener �
8
9 public ConnectDialog() �

10 �
11
12 public final static String SERVER = ”hauk02.idi.ntnu.no”;
13
14 TextField tfUsername = new TextField (10) ;
15 Label lUsername = new Label(”Username:”);
16 TextField tfPassword = new TextField (10) ;
17 Label labelPassword = new Label(”Password:”);
18 Checkbox storePwd = new Checkbox(”Store password”, false ) ;
19 TextField tfServer = new TextField (SERVER, 10);
20 Label labelServer = new Label(”Server :” ) ;
21 Button cancel = new Button(”Cancel”);
22 Button ok = new Button(”OK”);
23 boolean okPressed = false ;
24
25 public ConnectDialog(JabberFrame frame) �
26 super(frame , ”Connect” , true) ;
27 // setSize ( Toolkit . getDefaultToolkit () . getScreenSize () ) ;
28 setSize (240, 240) ;
29
30 ok. addActionListener ( this ) ;
31 ok. setSize ( cancel . getSize () ) ;
32 cancel . addActionListener ( this ) ;
33
34 addWindowListener(new WindowAdapter() �
35 public void windowClosing(WindowEvent e) �
36 dispose () ;
37 �
38 � ) ;
39 initGui () ;
40 �
41
42 private void initGui () �
43 JPanel p = new JPanel () ;
44 p. setLayout (new GridBagLayout());
45 GridBagConstraints gc = new GridBagConstraints () ;
46 gc. fill = GridBagConstraints .HORIZONTAL;
47 gc. gridheight = 1;
48 gc. gridwidth = 1;
49 gc.weightx = 100;
50 gc.weighty = 0;
51 gc. gridx = 0;
52 gc. gridy = 0;
53 gc.anchor = GridBagConstraints .EAST;
54 p.add(lUsername, gc) ;
55
56 gc. gridx = 1;
57 gc. gridy = 0;



212 SIGN Source Code

58 gc. gridwidth = 2;
59 gc.anchor = GridBagConstraints .WEST;
60 p.add(tfUsername , gc) ;
61
62 gc. gridx = 0;
63 gc. gridy = 1;
64 gc. gridwidth = 1;
65 gc.anchor = GridBagConstraints .EAST;
66 p.add(labelPassword , gc) ;
67
68 gc. gridx = 1;
69 gc. gridy = 1;
70 gc. gridwidth = 2;
71 gc.anchor = GridBagConstraints .WEST;
72 p.add(tfPassword , gc) ;
73
74 gc. gridx = 1;
75 gc. gridy = 2;
76 gc. gridwidth = 1;
77 gc.anchor = GridBagConstraints .CENTER;
78 p.add(storePwd , gc) ;
79
80 gc. gridwidth = 1;
81 gc. gridx = 0;
82 gc. gridy = 3;
83 gc.anchor = GridBagConstraints .EAST;
84 p.add( labelServer , gc) ;
85
86 gc. gridx = 1;
87 gc. gridy = 3;
88 gc. gridwidth = 2;
89 gc.anchor = GridBagConstraints .WEST;
90 p.add( tfServer , gc) ;
91
92 gc. fill = GridBagConstraints .NONE;
93 gc. gridx = 0;
94 gc. gridy = 4;
95 gc. gridwidth = 1;
96 gc.anchor = GridBagConstraints .EAST;
97 p.add(ok , gc) ;
98
99 gc. gridx = 1;

100 gc. gridy = 4;
101 gc.anchor = GridBagConstraints .WEST;
102 p.add(cancel , gc) ;
103
104 getContentPane () .add(p , BorderLayout.NORTH);
105 �
106
107 public void actionPerformed (ActionEvent e) �
108 Object o = e .getSource () ;
109 if (o == cancel ) �
110 dispose () ;
111 � else if (o == ok) �
112 okPressed = true ;
113 dispose () ;
114 �
115 �
116 �



C.3 Desktop client 213

Contact.java

1 package jabberclient ;
2
3 import java . util .Enumeration;
4 import java . util . Vector ;
5
6 public class Contact �
7
8 public final static int MOBILE = 0;
9 public final static int DESKTOP = 1;

10 public final static int PDA = 2;
11
12 public final static int ONLINE = 0;
13 public final static int OFFLINE = 1;
14 public final static int DND = 2;
15 public final static int AWAY = 3;
16 public final static int XA = 4;
17
18 private String username;
19 private String jid ;
20 private String status = ” Offline ”;
21 int device ;
22 int show;
23 Vector unreadMessages;
24
25 public Contact ( String jid , String name) �
26 this .username = name;
27 this . jid = jid ;
28 show = OFFLINE;
29 device = DESKTOP;
30 unreadMessages = new Vector() ;
31 �
32
33 public void setPresence ( int show, String status , int device ) �
34 this .show = show;
35 this . status = status ;
36 this . device = device ;
37 �
38
39 public void addMessage(String msg) �
40 int end = unreadMessages.size () ;
41 unreadMessages.insertElementAt (msg, end) ;
42 �
43
44 public Enumeration getUnreadMessages() �
45 return unreadMessages.elements() ;
46 �
47
48 public void removeUnreadMessages() �
49 unreadMessages.removeAllElements();
50 �
51
52 public String getName() �
53 return username;
54 �
55
56 public String getJid () �
57 return jid ;
58 �
59
60 public int getShow() �



214 SIGN Source Code

61 return show;
62 �
63
64 public int getDevice () �
65 return device ;
66 �
67
68 public String getStatus () �
69 return status ;
70 �
71
72 public String toString () �
73 return username;
74 �
75 �



C.3 Desktop client 215

ContactDialog.java

1 package jabberclient ;
2
3 import javax .swing.*;
4 import java .awt .*;
5 import javax .swing.border .*;
6 import java . util . Vector ;
7 import java . util .Enumeration;
8 import java .awt. event .*;
9

10 public class ContactDialog extends JDialog �
11 // Gui
12 GridBagLayout gridBagLayout1 = new GridBagLayout();
13 JButton buttonOk = new JButton() ;
14 JButton buttonCancel = new JButton() ;
15 TitledBorder titledBorder1 ;
16 JTabbedPane jTabbedPane1 = new JTabbedPane();
17 JPanel panelMobile = new JPanel () ;
18 GridBagLayout gridBagLayout2 = new GridBagLayout();
19 JList listAllMobile = new JList () ;
20 JList listSelectedMobile = new JList () ;
21 DefaultListModel lmAllMobile = new DefaultListModel () ;
22 DefaultListModel lmSelectedMobile = new DefaultListModel () ;
23 TitledBorder titledBorder2 ;
24 TitledBorder titledBorder3 ;
25 JButton buttonAddMobile = new JButton();
26 JButton buttonRemoveMobile = new JButton();
27 JList listSelectedPda = new JList () ;
28 JList listAllPda = new JList () ;
29 DefaultListModel lmAllPda = new DefaultListModel () ;
30 DefaultListModel lmSelectedPda = new DefaultListModel () ;
31 JButton buttonAddPda = new JButton() ;
32 JPanel panelPDA = new JPanel();
33 GridBagLayout gridBagLayout3 = new GridBagLayout();
34 JButton buttonRemovePda = new JButton();
35
36 // Member variables
37 JabberFrame frame;
38 Vector contacts = new Vector() ;
39 boolean okPressed = false ;
40
41 public ContactDialog (JabberFrame frame) �
42 this . frame = frame;
43 try �
44 jbInit () ;
45 �
46 catch(Exception e) �
47 e. printStackTrace () ;
48 �
49 Enumeration enum = frame.contactsHash . elements () ;
50 while ( enum.hasMoreElements()) �
51 Object o = enum.nextElement();
52 lmAllMobile.addElement(o);
53 lmAllPda.addElement(o);
54 �
55 �
56
57 public ContactDialog () �
58 try �
59 jbInit () ;
60 �



216 SIGN Source Code

61 catch(Exception e) �
62 e . printStackTrace () ;
63 �
64
65 �
66 private void jbInit () throws Exception �
67 titledBorder1 = new TitledBorder (BorderFactory . createEtchedBorder (Color .white ,new Color

(178, 178, 178) ) , ”Contacts”) ;
68 titledBorder2 = new TitledBorder (BorderFactory . createEtchedBorder (Color .white ,new Color

(178, 178, 178) ) , ”Selected ”) ;
69 titledBorder3 = new TitledBorder (BorderFactory . createEtchedBorder (Color .white ,new Color

(178, 178, 178) ) , ” Available ”) ;
70 this .getContentPane () . setLayout (gridBagLayout1);
71 buttonOk. setText (”OK”);
72 buttonOk.addActionListener (new java .awt. event . ActionListener () �
73 public void actionPerformed (ActionEvent e) �
74 buttonOk actionPerformed(e) ;
75 �
76 � ) ;
77 buttonCancel . setText (”Cancel”) ;
78 buttonCancel . addActionListener (new java .awt.event . ActionListener () �
79 public void actionPerformed (ActionEvent e) �
80 buttonCancel actionPerformed (e) ;
81 �
82 � ) ;
83 panelMobile .setLayout (gridBagLayout2);
84 listSelectedMobile . setBorder ( titledBorder2 ) ;
85 listSelectedMobile .setModel(lmSelectedMobile);
86 listAllMobile . setBorder ( titledBorder3 ) ;
87 listAllMobile .setModel(lmAllMobile);
88 buttonAddMobile.setText (” ���

�
”);

89 buttonAddMobile.addActionListener (new java .awt. event . ActionListener () �
90 public void actionPerformed (ActionEvent e) �
91 buttonAddMobile actionPerformed(e) ;
92 �
93 � ) ;
94 buttonRemoveMobile.setText(” ����� ”);
95 buttonRemoveMobile.addActionListener(new java.awt. event . ActionListener () �
96 public void actionPerformed (ActionEvent e) �
97 buttonRemoveMobile actionPerformed(e);
98 �
99 � ) ;

100 listSelectedPda . setBorder ( titledBorder2 ) ;
101 listSelectedPda .setModel(lmSelectedPda) ;
102 listAllPda . setBorder ( titledBorder3 ) ;
103 listAllPda .setModel(lmAllPda);
104 buttonAddPda.setText (” ���

�
”);

105 buttonAddPda.addActionListener (new java .awt.event . ActionListener () �
106 public void actionPerformed (ActionEvent e) �
107 buttonAddPda actionPerformed(e) ;
108 �
109 � ) ;
110 panelPDA.setLayout(gridBagLayout3);
111 buttonRemovePda.setText(” ����� ”);
112 buttonRemovePda.addActionListener(new java.awt. event . ActionListener () �
113 public void actionPerformed (ActionEvent e) �
114 buttonRemovePda actionPerformed(e);
115 �
116 � ) ;
117 this .getContentPane () .add(buttonOk , new GridBagConstraints

(0, 4, 1, 1, 0.0, 0.0
118 , GridBagConstraints .EAST, GridBagConstraints.NONE, new Insets (0, 50, 0, 0) , 0, 0) ) ;



C.3 Desktop client 217

119 this .getContentPane () .add(buttonCancel , new GridBagConstraints
(2, 4, 1, 1, 0.0, 0.0

120 , GridBagConstraints .EAST, GridBagConstraints.NONE, new Insets (0, 0, 0, 50) , 0, 0) ) ;
121 this .getContentPane () .add(jTabbedPane1 , new GridBagConstraints (0, 0, 3, 3, 1.0, 1.0
122 , GridBagConstraints .CENTER, GridBagConstraints.BOTH, new Insets (0, 0, 0, 0) , 0, 0) ) ;
123 jTabbedPane1.add(panelMobile , ”Mobile phone”);
124 panelMobile .add( listAllMobile , new GridBagConstraints (0, 0, 2, 4, 1.0, 1.0
125 , GridBagConstraints .CENTER, GridBagConstraints.BOTH, new Insets (0, 0, 0, 0) , 0, 0) ) ;
126 panelMobile .add( listSelectedMobile , new GridBagConstraints (3, 0, 2, 4, 1.0, 1.0
127 , GridBagConstraints .CENTER, GridBagConstraints.BOTH, new Insets (0, 0, 0, 0) , 0, 0) ) ;
128 panelMobile .add(buttonAddMobile, new GridBagConstraints (2, 0, 1, 1, 0.0, 0.0
129 , GridBagConstraints .SOUTH, GridBagConstraints.BOTH, new Insets (0, 0, 0, 0) , 0, 0) ) ;
130 panelMobile .add(buttonRemoveMobile, new GridBagConstraints (2, 3, 1, 1, 0.0, 0.0
131 , GridBagConstraints .NORTH, GridBagConstraints.NONE, new Insets (0, 0, 0, 0) , 0, 0) ) ;
132 jTabbedPane1.add(panelPDA, ”PDA”);
133 panelPDA.add( listAllPda , new GridBagConstraints (0, 0, 2, 4, 1.0, 1.0
134 , GridBagConstraints .CENTER, GridBagConstraints.BOTH, new Insets (0, 0, 0, 0) , 0, 0) ) ;
135 panelPDA.add( listSelectedPda , new GridBagConstraints (3, 0, 2, 4, 1.0, 1.0
136 , GridBagConstraints .CENTER, GridBagConstraints.BOTH, new Insets (0, 0, 0, 0) , 0, 0) ) ;
137 panelPDA.add(buttonAddPda, new GridBagConstraints (2, 2, 1, 1, 0.0, 0.0
138 , GridBagConstraints .SOUTH, GridBagConstraints.BOTH, new Insets (0, 0, 0, 0) , 0, 0) ) ;
139 panelPDA.add(buttonRemovePda, new GridBagConstraints (2, 3, 1, 1, 0.0, 0.0
140 , GridBagConstraints .NORTH, GridBagConstraints.NONE, new Insets (0, 0, 0, 0) , 0, 0) ) ;
141 �
142
143 void buttonAddMobile actionPerformed(ActionEvent e) �
144 Object item = listAllMobile . getSelectedValue () ;
145 if (item == null )
146 return;
147 lmAllMobile.removeElement(item);
148 lmSelectedMobile .addElement(item);
149 �
150
151 void buttonRemoveMobile actionPerformed(ActionEvent e) �
152 Object item = listSelectedMobile . getSelectedValue () ;
153 if (item == null )
154 return;
155 lmAllMobile.addElement(item);
156 lmSelectedMobile .removeElement(item);
157 �
158
159 void buttonAddPda actionPerformed(ActionEvent e) �
160 Object item = listAllPda . getSelectedValue () ;
161 if (item == null )
162 return;
163 lmSelectedPda.addElement(item);
164 lmAllPda.removeElement(item);
165 �
166
167 void buttonRemovePda actionPerformed(ActionEvent e) �
168 Object item = listSelectedPda . getSelectedValue () ;
169 if (item == null )
170 return;
171 lmAllPda.addElement(item);
172 lmSelectedPda.removeElement(item);
173 �
174
175 void buttonOk actionPerformed (ActionEvent e) �
176 okPressed = true ;
177 dispose () ;
178 �
179



218 SIGN Source Code

180 void buttonCancel actionPerformed (ActionEvent e) �
181 dispose () ;
182 �
183 �



C.3 Desktop client 219

ElementHandler.java

1 package jabberclient ;
2
3 import nanoxml.*;
4
5 public abstract class ElementHandler �
6
7 protected JabberFrame gui ;
8 protected JabberComm comm;
9

10 public ElementHandler(JabberFrame gui , JabberComm comm) �
11 this . gui = gui ;
12 this .comm = comm;
13 �
14
15 public abstract void handleElement(XMLElement xml);
16
17 public static String trimJid ( String jid ) �
18 int endIndex = jid . indexOf(’ /’ ) ;
19 if (endIndex

�
0)

20 return jid . substring (0, endIndex) ;
21 else
22 return jid ;
23 �
24 �



220 SIGN Source Code

IqHandler.java

1 package jabberclient ;
2
3 import java . util . Vector ;
4 import java . util .Enumeration;
5 import nanoxml.*;
6
7 public class IqHandler extends ElementHandler �
8
9 private final static String onlineMessage = ” � presence

� � status
�

Online � /status
� � /presence

�
”

;
10 private final static String CONTACT LIST NAMESPACE = ” � ”jabber:ext:iq:rosterconfig � ””;
11 private final static String PREFERENCES NAMESPACE = ” � ”jabber:ext:iq:preferences � ””;
12
13 public IqHandler(JabberFrame gui , JabberComm comm) �
14 super(gui , comm);
15 �
16
17 public void handleElement(XMLElement xml) �
18 String type ;
19 String id ;
20
21 type = xml. getProperty (”type”) ;
22 id = xml. getProperty (”id”) ;
23
24 if ( type . equalsIgnoreCase (” result ”) ��� type . equalsIgnoreCase (” set ”) ) �
25 if ( id . equalsIgnoreCase (”logon”) ) �
26 gui . println (”Logon OK”);
27 gui .connected(true) ;
28 gui . setTitle () ;
29 comm.send(onlineMessage);
30 comm.sendRoster();
31 � else if ( id . equalsIgnoreCase (” roster ”) ) �
32 XMLElement child = (XMLElement)xml.getChildren().elementAt(0);
33 for (Enumeration e = child .enumerateChildren () ; e .hasMoreElements() ; ) �
34 XMLElement contact = (XMLElement)e.nextElement();
35 String nick = contact . getProperty (”name”);
36 String jid = contact . getProperty (” jid ”) ;
37 gui .addContact(new Contact( jid , nick) ) ;
38 �
39 �
40
41 � else if ( type . equalsIgnoreCase (” error ”) ) �
42 gui . println (”Logon failed”) ;
43 � else �
44 gui . println (”Handle me: � n” + xml.toString () ) ;
45 �
46 �
47
48 public static String getContactListMsg(Enumeration mobileContacts , Enumeration pdaContacts ) �
49 StringBuffer buf = new StringBuffer () ;
50
51 buf .append(” � iq type= � ”set � ”

�
”);

52 buf .append(” � query xmlns=” + CONTACT LIST NAMESPACE + ”
�

”);
53
54 buf .append(” � mobile

�
”);

55 while(mobileContacts .hasMoreElements()) �
56 String jid = (( Contact )mobileContacts .nextElement() ) . getJid () ;
57 buf .append(” � item jid= � ”” + jid + ” � ” /

�
”);

58 �
59 buf .append(” � /mobile

�
”);



C.3 Desktop client 221

60
61 buf .append(” � pda

�
”);

62 while(pdaContacts .hasMoreElements()) �
63 String jid = (( Contact )pdaContacts .nextElement () ) . getJid () ;
64 buf .append(” � item jid= � ”” + jid + ” � ” /

�
”);

65 �
66 buf .append(” � /pda

�
”);

67
68 buf .append(” � /query

�
”);

69 buf .append(” � /iq
�

”);
70 return buf . toString () ;
71 �
72
73 public static String getPreferencesMessage ( PreferencesInterface pref ) �
74 StringBuffer buf = new StringBuffer () ;
75
76 buf .append(” � iq type= � ”set � ”

�
”);

77 buf .append(” � query xmlns=” + PREFERENCES NAMESPACE + ”
�

”);
78
79 buf .append(” � mobile

�
”);

80 if ( pref .getMobileBlock())
81 buf .append(” � block/

�
”);

82 String size = pref .getMobileMaxSize();
83 if ( size != null ) �
84 buf .append(” � size max= � ””);
85 buf .append(size ) ;
86 buf .append(” � ”/

�
”);

87 �
88 buf .append(” � /mobile

�
”);

89
90 buf .append(” � pda

�
”);

91 if ( pref .getPdaBlock())
92 buf .append(” � block/

�
”);

93 size = pref .getPdaMaxSize();
94 if ( size != null ) �
95 buf .append(” � size max= � ””);
96 buf .append(size ) ;
97 buf .append(” � ”/

�
”);

98 �
99 buf .append(” � /pda

�
”);

100
101 if ( pref .getDesktopBlock()) �
102 buf .append(” � desktop

�
”);

103 buf .append(” � block/
�

”);
104 buf .append(” � /desktop

�
”);

105 � else �
106 buf .append(” � desktop/

�
”);

107 �
108
109 buf .append(” � /query

�
”);

110 buf .append(” � /iq
�

”);
111 return buf . toString () ;
112 �
113 �



222 SIGN Source Code

JabberClient.java

1 package jabberclient ;
2
3 import javax .swing.UIManager;
4
5 public class JabberClient �
6
7 public JabberClient () �
8 �
9

10 public static void main(String [] args ) �
11 try �
12 UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
13 �
14 catch(Exception e) �
15 e . printStackTrace () ;
16 �
17 JabberFrame frame = new JabberFrame();
18 frame. setVisible (true) ;
19 �
20 �



C.3 Desktop client 223

JabberComm.java

1 package jabberclient ;
2
3 import java . net .*;
4 import java . io .*;
5 import nanoxml.*;
6 import tools .NonBlockingInputStream;
7
8 public class JabberComm implements Runnable �
9

10 // Socket variables
11 int serverPort = 5222;
12 String serverAddress ;
13 Socket socket ;
14 OutputStream out ;
15 InputStream in ;
16 boolean read = true ;
17
18 // Member variables
19 JabberFrame gui ;
20 JabberUser user ;
21
22 // Element handlers
23 ElementHandler iqHandler ;
24 ElementHandler messageHandler;
25 ElementHandler presenceHandler ;
26
27 // XML strings
28 String connectString = ” � stream:stream to= � ”hauk02.idi .ntnu .no � ” ” +
29 ”xmlns= � ”jabber: client � ” ” +
30 ”xmlns:stream= � ”http :// etherx . jabber .org / streams � ”

�
”;

31
32 String rosterString = ” � iq id= � ”roster � ” type= � ”get � ”

�
” +

33 ” � query xmlns= � ”jabber:iq: roster � ”/
�

” +
34 ” � /iq

�
”;

35
36 public JabberComm(JabberFrame gui, JabberUser user) throws Exception �
37 this . gui = gui ;
38 this . user = user ;
39 iqHandler = new IqHandler(gui , this ) ;
40 messageHandler = new MessageHandler(gui, this ) ;
41 presenceHandler = new PresenceHandler(gui , this ) ;
42 // createParser () ;
43 �
44
45 public void connect ( String adr) throws Exception �
46 try �
47 socket = new Socket(adr , serverPort ) ;
48 out = socket .getOutputStream () ;
49 in = socket . getInputStream () ;
50 (new Thread(this ) ) . start () ;
51 send(getConnectMessage(adr));
52 � catch ( Exception e) �
53 read = false ;
54 throw e;
55 �
56 �
57
58 public void disconnect () �
59 send(” � presence type= � ”unavailable � ”/

�
”);

60 send(” � /stream:stream
�

”);



224 SIGN Source Code

61 gui . clearContacts () ;
62 gui .connected( false ) ;
63 �
64
65 public void sendPresence( String context , int show) �
66 if ( context . equals (”hide”) ) �
67 send(” � presence type= � ”unavailable � ”/

�
”);

68 return ;
69 �
70 StringBuffer buf = new StringBuffer () ;
71 buf .append(” � presence from= � ”” + user.getJid () + ” � ” type= � ” available � ”

� � show
�

”);
72 switch(show) �
73 case Contact .ONLINE:
74 buf .append(”online”) ;
75 break;
76 case Contact .XA:
77 buf .append(”xa”);
78 break;
79 case Contact .AWAY:
80 buf .append(”away”);
81 break;
82 case Contact .DND:
83 buf .append(”dnd”);
84 break;
85 �
86 buf .append(” � /show

�
”);

87 buf .append(” � status
�

” + context + ” � / status
�

”);
88 buf .append(” � /presence

�
”);

89 send(buf . toString () ) ;
90 � /
91
92 public void sendMessage(String toUserJid , String msg) �
93 String xml = ” � message id= � ”12 � ” to= � ”” + toUserJid + ” � ”

�
” +

94 ” � body
�

” + msg + ” � /body
�

” +
95 ” � /message

�
”;

96 send(xml);
97 �
98
99 public void run () �

100 String s ;
101 byte [] buf ;
102 int bytesRead = 0;
103 while(read )
104 try �
105 int available = in . available () ;
106 if ( available

�
0) �

107 buf = new byte[ available ];
108 bytesRead = in . read (buf , 0, available ) ;
109 String temp = new String (buf) ;
110 // System.out . println (” ����� ” + temp.substring(0, bytesRead)) ;
111 processMessage(temp. substring (0, bytesRead)) ;
112 � else �
113 try �
114 Thread. sleep (200) ;
115 � catch ( InterruptedException ie ) � �
116 �
117
118 � catch(IOException ioe ) �
119 gui . println (”Error reading”) ;
120 read = false ;
121 �
122 �



C.3 Desktop client 225

123
124 private void processMessage(String s) �
125 int offset = 0;
126 int pos;
127 XMLElement m;
128 System.out . println (” ����� ” + s);
129 if (s .charAt(1) == ’?’ ) � // begin document
130 offset = s .indexOf(’

�
’, offset ) ;

131 offset +=1;
132 if ( offset + 6

�
= s . length () )

133 return ;
134 �
135 String temp = s . substring ( offset +1, offset +7);
136 if (temp.equals (”stream”) ) �
137 offset += s .indexOf(’

�
’, offset ) ;

138 sendLogon();
139 gui .connected(true) ;
140 return;
141 �
142
143
144 while( offset � s . length () ) �
145 try �
146 m = new XMLElement();
147 offset += m.parseString (s , offset ) ;
148 String elementName = m.getTagName();
149 if (elementName.equals(”iq”) ) �
150 iqHandler .handleElement(m);
151 � else if (elementName.equals(”presence”) ) �
152 presenceHandler .handleElement(m);
153 � else if (elementName.equalsIgnoreCase(”message”)) �
154 messageHandler.handleElement(m);
155 �
156 � catch(XMLParseException xmle) �
157 gui . println (xmle.getMessage()) ;
158 break;
159 �
160 �
161 �
162
163 public void send( String s) �
164 try �
165 out . write (s . getBytes () ) ;
166 out . flush () ;
167 System.out . println (” ���

�
” + s);

168 � catch ( IOException ioe ) �
169 gui . println (”Error sending: � n” + ioe .getMessage()) ;
170 ioe . printStackTrace (System.err ) ;
171 �
172 �
173
174 private String getConnectMessage(String server ) �
175 String temp = ” � stream:stream to= � ”” + server + ” � ” ” +
176 ”xmlns= � ”jabber: client � ” ” +
177 ”xmlns:stream= � ”http :// etherx . jabber .org/ streams � ”

�
”;

178 return temp;
179 �
180
181 private String getLogonMessage() �
182 return ” � iq type= � ”set � ” id= � ”logon � ”

�
” +

183 ” � query xmlns= � ”jabber:iq:auth � ”
�

” +
184 ” � username

�
” + user.toString () + ” � /username

�
” +



226 SIGN Source Code

185 ” � password
�

” + user.password + ” � /password
�

” +
186 ” � resource

�
test � /resource

�
” +

187 ” � /query
�

” +
188 ” � /iq

�
”;

189 �
190
191 public void sendLogon() �
192 send(getLogonMessage());
193 �
194
195 public void sendRoster () �
196 send( rosterString ) ;
197 �
198 �



C.3 Desktop client 227

JabberFrame.java

1 package jabberclient ;
2
3 import java .awt. event .*;
4 import java .awt .*;
5 import javax .swing.*;
6 import javax .swing. tree .*;
7 import javax .swing.border .*;
8 import javax .swing.event .*;
9 import java . util .Enumeration;

10 import java . util .Hashtable ;
11
12 import nanoxml.*;
13 import java .awt.Font;
14
15 public class JabberFrame extends JFrame implements ActionListener , TreeSelectionListener �
16
17 // GUI elements
18 JPanel contentPane ;
19 JTextArea output ;
20 JSplitPane splitPane ;
21 JTree tree ;
22 DefaultTreeModel treeModel ;
23 DefaultMutableTreeNode rootNode;
24
25 // Menues
26 JMenuBar menuBar = new JMenuBar();
27 JMenu menuFile = new JMenu();
28 JMenuItem menuFileConnect = new JMenuItem(”Connect”, ’c’);
29 JMenuItem menuFileDisconnect = new JMenuItem(”Disconnect”, ’d’);
30 JMenuItem menuFilePreferences = new JMenuItem(”Preferences”, ’p’ ) ;
31 JMenuItem menuFileExit = new JMenuItem(”Exit”, ’e’ ) ;
32
33 JMenu menuPresence = new JMenu();
34 JMenuItem menuPresenceOnline = new JMenuItem(”Online”, ’o’);
35 JMenuItem menuPresenceDnd = new JMenuItem(”Do not disturb”, ’b’);
36 JMenuItem menuPresenceAway = new JMenuItem(”Away”, ’a’);
37 JMenuItem menuPresenceXA = new JMenuItem(”Extended away”, ’x’);
38 JMenuItem menuPresenceHide = new JMenuItem(”Hide presence”);
39 JMenuItem menuPresenceShow = new JMenuItem(”Show presence”);
40
41 JMenu menuContacts = new JMenu(”Contacts”);
42 JMenuItem menuContactsAdd = new JMenuItem(”Add contact”);
43 JMenuItem menuContactsRemove = new JMenuItem(”Remove contact”);
44 JMenuItem menuContactsAdm = new JMenuItem(”Edit contact lists”);
45
46 // Popup menu
47 JMenuItem popupSend = new JMenuItem(”Send message”);
48 JMenuItem popupRemove = new JMenuItem();
49
50 // Member variables
51 JabberComm comm;
52 Hashtable contactsHash = new Hashtable() ;
53 Hashtable contactWindowHash = new Hashtable();
54 JabberUser user ;
55 Contact selectedContact = null ;
56 String serverAddress ;
57 String context ;
58
59 public JabberFrame() �
60 super(”Jabber”) ;



228 SIGN Source Code

61 try �
62 jbInit () ;
63 � catch ( Exception e) �
64 �
65 addWindowListener(new WindowAdapter() �
66 public void windowClosing(WindowEvent e) �
67 System. exit (0) ;
68 � � );
69
70 ImageIcon icon = new ImageIcon(”bulb online . gif ”) ;
71
72 setIconImage(icon .getImage() ) ;
73 setSize (250,350) ;
74 �
75
76 private void jbInit () throws Exception �
77 Border etched = BorderFactory . createEtchedBorder () ;
78 Border border = BorderFactory . createTitledBorder (etched , ”Output”) ;
79 JScrollPane scrollOutput ;
80 JScrollPane scrollTree ;
81
82 // Output area
83 output = new JTextArea() ;
84 output .setLineWrap(true) ;
85 output . setBorder (border ) ;
86 scrollOutput = new JScrollPane ( output ) ;
87 scrollOutput . setVerticalScrollBarPolicy ( JScrollPane .VERTICAL SCROLLBAR ALWAYS);
88
89 // Tree area
90 rootNode = new DefaultMutableTreeNode(”Contacts”);
91 treeModel = new DefaultTreeModel(rootNode);
92 treeModel .setAsksAllowsChildren(true) ;
93 tree = new JTree(treeModel) ;
94 tree . putClientProperty (”JTree . lineStyle ” , ”Angled”);
95 tree . addTreeSelectionListener ( this ) ;
96 tree . setCellRenderer (new TreeRenderer()) ;
97 ToolTipManager.sharedInstance () . registerComponent ( tree ) ;
98 scrollTree = new JScrollPane ( tree ) ;
99

100 MouseListener ml = new MouseAdapter() �
101 public void mousePressed(MouseEvent e) �
102 TreePath path = tree . getPathForLocation (e .getX() , e .getY()) ;
103 if (path == null )
104 return;
105 DefaultMutableTreeNode selectedNode = (DefaultMutableTreeNode)path.getLastPathComponent()

;
106 if (selectedNode == rootNode)
107 return;
108 Contact c = ( Contact )selectedNode . getUserObject () ;
109 selectedContact = c;
110 showPopupMenu(c, e);
111 � � ;
112 tree .addMouseListener(ml);
113
114 splitPane = new JSplitPane ( JSplitPane .VERTICAL SPLIT, scrollTree, scrollOutput ) ;
115 splitPane . setDividerLocation (200) ;
116
117 contentPane = ( JPanel )getContentPane () ;
118 contentPane .add( splitPane ) ;
119
120 // Menus
121 setJMenuBar(menuBar);



C.3 Desktop client 229

122
123 menuFile. setText (” File ”) ;
124 menuFile.setMnemonic(’f’) ;
125 menuFileConnect.addActionListener ( this ) ;
126 menuFile.add(menuFileConnect);
127 menuFileDisconnect.addActionListener ( this ) ;
128 menuFileDisconnect.setEnabled ( false ) ;
129 menuFile.add(menuFileDisconnect);
130 menuFilePreferences . addActionListener ( this ) ;
131 menuFile.add(menuFilePreferences ) ;
132 menuFile.addSeparator () ;
133 menuFileExit . addActionListener ( this ) ;
134 menuFile.add(menuFileExit) ;
135 menuBar.add(menuFile);
136
137 menuPresence.setText (”Presence”) ;
138 menuPresence.setMnemonic(’p’);
139 menuPresenceOnline.addActionListener ( this ) ;
140 menuPresence.add(menuPresenceOnline);
141 menuPresenceDnd.addActionListener(this) ;
142 menuPresence.add(menuPresenceDnd);
143 menuPresenceAway.addActionListener(this) ;
144 menuPresence.add(menuPresenceAway);
145 menuPresenceXA.addActionListener(this);
146 menuPresence.add(menuPresenceXA);
147 menuPresence.add(new JSeparator () ) ;
148 menuPresenceShow.addActionListener(this) ;
149 menuPresenceHide.addActionListener( this ) ;
150 menuPresence.add(menuPresenceHide);
151 menuBar.add(menuPresence);
152
153 menuContacts.setMnemonic(’c’);
154 menuContactsAdd.addActionListener(this) ;
155 menuContacts.add(menuContactsAdd);
156 menuContactsRemove.addActionListener(this);
157 menuContacts.add(menuContactsRemove);
158 menuContacts.addSeparator () ;
159 menuContactsAdm.addActionListener(this);
160 menuContacts.add(menuContactsAdm);
161 menuBar.add(menuContacts);
162
163 // Popup menu
164 popupSend.addActionListener( this ) ;
165 popupRemove.addActionListener(this) ;
166 �
167
168 public void newMessage(String jid , String subject , String body) �
169 Contact c = ( Contact )contactsHash . get ( jid ) ;
170 if (c == null )
171 return ; // Do something !!!
172 MessageFrame frame = showMessageDialog(c);
173 frame.displayMessage(c .getName(), body);
174 �
175
176 public void setPresence ( String jid , int show, String status , int device ) �
177 Contact contact = ( Contact )contactsHash . get ( jid ) ;
178 if ( contact != null ) �
179 contact . setPresence (show, status , device ) ;
180 �
181 treeModel .nodeChanged(rootNode);
182 �
183



230 SIGN Source Code

184 public void addContact(Contact contact ) �
185 contactsHash .put ( contact . getJid () , contact ) ;
186 DefaultMutableTreeNode node = new DefaultMutableTreeNode(contact , false ) ;
187 treeModel . insertNodeInto (node , rootNode , rootNode.getChildCount () ) ;
188 �
189
190 public void removeContact(String name) �
191
192 �
193
194 public void clearContacts () �
195 rootNode.removeAllChildren () ;
196 treeModel . reload () ;
197 �
198
199
200
201 public void print (char c) �
202 output .append((new Character(c) ) . toString () ) ;
203 �
204
205 public void print ( String s) �
206 output .append(s) ;
207 �
208
209 public void println ( String s) �
210 output .append(s + ” � n”);
211 �
212
213 public void setTitle () �
214 setTitle (”Jabber � ” + user . getJid () ) ;
215 �
216
217 private boolean showConnectDialog() �
218 ConnectDialog dlg = new ConnectDialog(this) ;
219 dlg .show();
220 if (dlg .okPressed) �
221 String userName = dlg.tfUsername.getText () ;
222 serverAddress = dlg . tfServer . getText () ;
223 user = new JabberUser(userName, dlg. tfPassword . getText () , userName + ”@” + serverAddress)

;
224 return true ;
225 �
226 return false ;
227 �
228
229 private MessageFrame showMessageDialog(Contact contact) �
230 if ( contact == null )
231 return null ; // Notify user
232 MessageFrame currentFrame = (MessageFrame)contactWindowHash.get(contact.getJid () ) ;
233 if (currentFrame == null ) �
234 currentFrame = new MessageFrame(contact, this ) ;
235 currentFrame . setSize (250,350) ;
236 currentFrame . setVisible (true) ;
237 contactWindowHash.put(contact . getJid () , currentFrame) ;
238 � else �
239 currentFrame . setVisible (true) ;
240 �
241 return currentFrame ;
242 �
243
244 private void showContactsDialog() �



C.3 Desktop client 231

245 ContactDialog dlg = new ContactDialog( this ) ;
246 dlg . setSize (300,300) ;
247 dlg .setModal(true) ;
248 dlg .show();
249 if (dlg .okPressed) �
250 String msg = IqHandler .getContactListMsg(dlg .lmSelectedMobile .elements () , dlg .

lmSelectedPda.elements () ) ;
251 comm.send(msg);
252 System.out . println (” ���

�
” + msg);

253 �
254 �
255
256 private void showPreferencesDialog () �
257 PreferencesDialog dlg = new PreferencesDialog () ;
258 dlg . setSize (300, 400) ;
259 dlg .setModal(true) ;
260 dlg .show();
261 if (dlg .okPressed) �
262 String msg = IqHandler .getPreferencesMessage (dlg) ;
263 System.out . println (msg);
264 if (comm != null && msg != null)
265 comm.send(msg);
266 �
267 �
268
269 private void connect () �
270 try �
271 if ( user == null ) �
272 if (! showConnectDialog())
273 return ;
274 �
275 println (”Connecting ...” ) ;
276 comm = new JabberComm(this, user);
277 comm.connect(serverAddress);
278 � catch(Exception e) �
279 output . setText (”Connection failed : � n” + e .getMessage()) ;
280 �
281 �
282
283 private void showPopupMenu(Contact c, MouseEvent e) �
284 JPopupMenu pm = new JPopupMenu();
285 JMenuItem jid = new JMenuItem(c.getJid () ) ;
286 jid . setEnabled ( false ) ;
287 pm.add(jid ) ;
288 pm.addSeparator () ;
289 pm.add(popupSend);
290 popupRemove.setText(c.getName());
291 pm.add(popupRemove);
292 pm.show(tree , e .getX() , e .getY()) ;
293 �
294
295 public void actionPerformed (ActionEvent event ) �
296 JMenuItem item = (JMenuItem)event.getSource () ;
297 if (item == menuFileExit) �
298 System. exit (0) ;
299 � else if (item == menuFileConnect) �
300 connect () ;
301 � else if (item == menuFileDisconnect) � /** @todo check that comm != null*/
302 comm.disconnect();
303 � else if (item == menuPresenceDnd) �
304 if ( context == null )
305 comm.sendPresence(”dnd”, Contact .DND);



232 SIGN Source Code

306 else
307 comm.sendPresence(context , Contact .DND);
308 � else if (item == menuPresenceOnline) �
309 if ( context == null )
310 comm.sendPresence(”online” , Contact .ONLINE);
311 else
312 comm.sendPresence(context , Contact .ONLINE);
313 � else if (item == menuPresenceAway) �
314 if ( context == null )
315 comm.sendPresence(”away”, Contact.AWAY);
316 else
317 comm.sendPresence(context , Contact .AWAY);
318 � else if (item == menuPresenceXA) �
319 if ( context == null )
320 comm.sendPresence(”xa”, Contact .XA);
321 else
322 comm.sendPresence(context , Contact .XA);
323 � else if (item == popupSend) �
324 showMessageDialog(selectedContact);
325 � else if (item == menuContactsAdm) �
326 showContactsDialog();
327 � else if (item == menuFilePreferences ) �
328 showPreferencesDialog () ;
329 � else if (item == menuPresenceHide) �
330 comm.sendPresence(”hide” , 0) ;
331 menuPresence.remove(menuPresenceHide);
332 menuPresence.add(menuPresenceShow);
333 menuPresence. validate () ;
334 � else if (item == menuPresenceShow) �
335 comm.sendPresence(”online” , Contact .ONLINE);
336 menuPresence.remove(menuPresenceShow);
337 menuPresence.add(menuPresenceHide);
338 menuPresence. validate () ;
339 �
340 �
341
342 public void valueChanged(TreeSelectionEvent e) �
343 TreePath path = tree . getSelectionPath () ;
344 if (path == null )
345 return;
346 �
347
348 public void connected(boolean b) �
349 menuFileConnect.setEnabled (!b) ;
350 menuFileDisconnect.setEnabled (b) ;
351 menuFile. validate () ;
352 �
353 �



C.3 Desktop client 233

JabberUser.java

1 package jabberclient ;
2
3 public class JabberUser �
4
5 String username;
6 String jid ;
7 String password;
8
9 public JabberUser( String name, String pwd, String jid ) �

10 this .username = name;
11 this .password = pwd;
12 this . jid = jid ;
13 �
14
15 public void setUsername(String username) �
16 this .username = username;
17 �
18
19 public void setPassword( String pwd) �
20 this .password = pwd;
21 �
22
23 public void setJid ( String jid ) �
24 this . jid = jid ;
25 �
26
27 public String getJid () �
28 return jid ;
29 �
30
31 public String toString () �
32 return username;
33 �
34 �



234 SIGN Source Code

MessageFrame.java

1 package jabberclient ;
2
3 import javax .swing.*;
4 import java .awt .*;
5 import javax .swing.border .*;
6 import java .awt. event .*;
7
8 public class MessageFrame extends JFrame �
9

10 // GUI elements
11 TitledBorder titledBorder1 ;
12 JTextArea inputArea = new JTextArea() ;
13 GridBagLayout gridBagLayout1 = new GridBagLayout();
14 JLabel headerPanel = new JLabel() ;
15 JButton buttonSend = new JButton() ;
16
17 // Member variables
18 Contact contact ;
19 JabberFrame frame;
20 JTextArea otuputArea = new JTextArea() ;
21
22 public MessageFrame(Contact contact , JabberFrame frame) �
23 super( contact .getName());
24 this . contact = contact ;
25 this . frame = frame;
26 try �
27 jbInit () ;
28 �
29 catch(Exception e) �
30 e . printStackTrace () ;
31 �
32 �
33 private void jbInit () throws Exception �
34 headerPanel . setFont (new Font(”Times”, Font .BOLD, 14));
35 headerPanel . setForeground (Color .blue ) ;
36 headerPanel . setText (” Til : ” + contact .getName() + ” ” + contact . getStatus () ) ;
37 titledBorder1 = new TitledBorder (””) ;
38 JScrollPane scroll = new JScrollPane (otuputArea) ;
39 scroll . setVerticalScrollBarPolicy ( JScrollPane .VERTICAL SCROLLBAR AS NEEDED);
40 scroll . setAutoscrolls (true) ;
41
42 inputArea .setMaximumSize(new Dimension(10, 10));
43 inputArea .setMinimumSize(new Dimension(10, 10));
44 inputArea .setLineWrap(true) ;
45 inputArea .setRows(4);
46
47 this .getContentPane () . setLayout (gridBagLayout1);
48
49 buttonSend . setToolTipText (”Send message to ” + contact .getName());
50 buttonSend . setText (”Send”);
51 buttonSend . addActionListener (new java .awt. event . ActionListener () �
52 public void actionPerformed (ActionEvent e) �
53 buttonSend actionPerformed (e) ;
54 �
55 � ) ;
56 otuputArea . setBorder (BorderFactory . createEtchedBorder () ) ;
57 otuputArea . setPreferredSize (new Dimension(40, 20)) ;
58 otuputArea . setCaretPosition (0) ;
59 otuputArea . setEditable ( false ) ;
60 otuputArea .setColumns(20);



C.3 Desktop client 235

61 otuputArea .setLineWrap(true) ;
62 otuputArea .setRows(500);
63 this .getContentPane () .add( scroll , new GridBagConstraints (0, 1, 5, 3, 1.0, 1.0
64 , GridBagConstraints .CENTER, GridBagConstraints.BOTH, new Insets (0, 0, 1, 0) , 92, 36)

) ;
65 scroll .getViewport () .add(otuputArea , null ) ;
66 this .getContentPane () .add(inputArea , new GridBagConstraints (0, 4, 3, 2, 1.0, 0.0
67 , GridBagConstraints .CENTER, GridBagConstraints.HORIZONTAL, new Insets(1, 0, 2, 0)

, 162, 40) ) ;
68 this .getContentPane () .add(headerPanel , new GridBagConstraints (0, 0, 2, 1, 0.0, 0.0
69 , GridBagConstraints .CENTER, GridBagConstraints.NONE, new Insets (0, 0, 13, 0) , 0, 0)

) ;
70 this .getContentPane () .add(buttonSend , new GridBagConstraints (4, 4, 1, 2, 0.0, 0.0
71 , GridBagConstraints .CENTER, GridBagConstraints.BOTH, new Insets (0, 0, 0, 0) , 6, 0) ) ;
72 �
73
74 public void displayMessage( String user , String msg) �
75 otuputArea . setForeground (Color .blue ) ;
76 otuputArea .append(user + ”: � n”) ;
77 otuputArea . setForeground (Color .black ) ;
78 otuputArea .append(msg + ” � n”);
79 �
80
81 void buttonSend actionPerformed (ActionEvent e) �
82 String s = inputArea . getText () ;
83 if (s . length () == 0)
84 return ;
85 inputArea . setText (””) ;
86 displayMessage(frame.user . toString () , s) ;
87 if (frame.comm != null)
88 frame.comm.sendMessage(contact.getJid () , s) ;
89 �
90 �



236 SIGN Source Code

MessageHandler.java

1 package jabberclient ;
2
3 import nanoxml.*;
4 import java . util .Enumeration;
5
6 public class MessageHandler extends ElementHandler �
7
8 public MessageHandler(JabberFrame gui, JabberComm comm) �
9 super(gui , comm);

10 �
11
12 public void handleElement(XMLElement xml) �
13 String jid = trimJid (xml. getProperty (”from”)) ;
14 String id = xml. getProperty (”id”) ;
15 String subject = ”” ;
16 String body = ””;
17
18 for (Enumeration e = xml.enumerateChildren () ; e .hasMoreElements() ; ) �
19 XMLElement child = (XMLElement)e.nextElement();
20 String tagName = child .getTagName();
21 if (tagName.equals(” subject ”) ) �
22 subject = child . getContents () ;
23 � else if (tagName.equals(”body”)) �
24 body = child . getContents () ;
25 �
26 �
27 gui .newMessage(jid , subject , body);
28 �
29 �



C.3 Desktop client 237

PreferencesDialog.java

1 package jabberclient ;
2
3 import java .awt .*;
4 import javax .swing.*;
5 import javax .swing.border .*;
6 import com.borland. jbcl . layout .*;
7 import java .awt. event .*;
8 import javax .swing.event .*;
9

10 public class PreferencesDialog extends JDialog implements PreferencesInterface �
11
12 // Member variables
13 boolean okPressed = false ;
14 JabberFrame frame;
15
16 boolean blockDesktop = false ;
17 boolean blockMobile = false ;
18 boolean blockPda = false ;
19 boolean filterMobile = false ;
20 String filterMobileValue = null ;
21 boolean filterPda = false ;
22 String filterPdaValue = null ;
23
24 boolean forwardSMS = false;
25 boolean forwardEmail = false ;
26 String forwardParameter = null ;
27
28
29 // Gui elements
30 IntegerVerifier iv = new IntegerVerifier ( this ) ;
31 JTabbedPane tabPane = new JTabbedPane();
32 JPanel tabPaneFilter = new JPanel () ;
33 JPanel blockPanel = new JPanel () ;
34 JPanel sizePanel = new JPanel () ;
35 TitledBorder borderBlock;
36 TitledBorder borderSize ;
37 JCheckBox cbBlockMobile = new JCheckBox();
38 JCheckBox cbBlockDesktop = new JCheckBox();
39 JCheckBox cbBlockPda = new JCheckBox();
40 VerticalFlowLayout verticalFlowLayout1 = new VerticalFlowLayout () ;
41 JCheckBox cbFilterMobile = new JCheckBox();
42 GridBagLayout sizeGridBagLayout = new GridBagLayout();
43 JTextField tfFilterMobile = new JTextField () ;
44 JCheckBox cbFilterPda = new JCheckBox();
45 JTextField tfFilterPda = new JTextField () ;
46 VerticalFlowLayout verticalFlowLayout2 = new VerticalFlowLayout () ;
47 JPanel buttonPanel = new JPanel () ;
48 JButton buttonOK = new JButton();
49 JButton buttonCancel = new JButton() ;
50 JPanel tabPaneForward = new JPanel () ;
51 ButtonGroup buttonGroupForward = new ButtonGroup();
52 JPanel jPanel1 = new JPanel () ;
53 JTextField tfSMS = new JTextField () ;
54 JRadioButton rbEmail = new JRadioButton();
55 JTextField tfEmail = new JTextField () ;
56 JRadioButton rbForwardSms = new JRadioButton();
57 BorderLayout borderLayout1 = new BorderLayout();
58 GridBagLayout gridBagLayout1 = new GridBagLayout();
59 TitledBorder titledBorder1 ;
60 Component component1;



238 SIGN Source Code

61 JCheckBox jCheckBox1 = new JCheckBox();
62
63 public PreferencesDialog () �
64 try �
65 jbInit () ;
66 �
67 catch(Exception e) �
68 e. printStackTrace () ;
69 �
70 setTitle (” Preferences ”) ;
71 �
72 private void jbInit () throws Exception �
73 borderBlock = new TitledBorder (BorderFactory . createEtchedBorder (Color .white ,new Color

(148, 145, 140) ) ,”Blocking rules ”) ;
74 borderSize = new TitledBorder (BorderFactory . createEtchedBorder (Color .white ,new Color

(148, 145, 140) ) ,”Size filter ”) ;
75 titledBorder1 = new TitledBorder (BorderFactory . createEtchedBorder (Color .white ,new Color

(148, 145, 140) ) , ”Forward to”) ;
76 component1 = Box. createVerticalStrut (8) ;
77 tabPaneFilter . setLayout ( verticalFlowLayout2 ) ;
78 blockPanel . setBorder (borderBlock) ;
79 blockPanel . setLayout ( verticalFlowLayout1 ) ;
80 sizePanel . setBorder ( borderSize ) ;
81 sizePanel . setLayout (sizeGridBagLayout);
82 cbBlockMobile.setText (”Mobile phone”);
83 cbBlockMobile.addItemListener (new java .awt. event . ItemListener () �
84 public void itemStateChanged(ItemEvent e) �
85 cbBlockMobile itemStateChanged(e);
86 �
87 � ) ;
88 cbBlockDesktop.setMnemonic(’0’);
89 cbBlockDesktop.setText (”Desktop”);
90 cbBlockDesktop.addItemListener (new java .awt. event . ItemListener () �
91 public void itemStateChanged(ItemEvent e) �
92 cbBlockDesktop itemStateChanged(e);
93 �
94 � ) ;
95 cbBlockPda.setText (”PDA”);
96 cbBlockPda.addItemListener (new java .awt.event . ItemListener () �
97 public void itemStateChanged(ItemEvent e) �
98 cbBlockPda itemStateChanged(e);
99 �

100 � ) ;
101 cbFilterMobile . setToolTipText (””) ;
102 cbFilterMobile . setText (”Mobile Phone”);
103 cbFilterMobile . addItemListener (new java .awt. event . ItemListener () �
104 public void itemStateChanged(ItemEvent e) �
105 cbFilterMobile itemStateChanged (e) ;
106 �
107 � ) ;
108 tfFilterMobile .setBackground(Color. lightGray ) ;
109 tfFilterMobile . setEnabled ( false ) ;
110 tfFilterMobile . setToolTipText (”Truncate message to this size ”) ;
111 tfFilterMobile . setInputVerifier ( iv ) ;
112 cbFilterPda . setText (”PDA”);
113 cbFilterPda . addItemListener (new java .awt.event . ItemListener () �
114 public void itemStateChanged(ItemEvent e) �
115 cbFilterPda itemStateChanged (e) ;
116 �
117 � ) ;
118 tfFilterPda .setBackground(Color. lightGray ) ;
119 tfFilterPda . setEnabled ( false ) ;



C.3 Desktop client 239

120 tfFilterPda . setToolTipText (”Truncate message to this size ”) ;
121 tfFilterPda . setInputVerifier ( iv ) ;
122 buttonOK.setText (”OK”);
123 buttonOK.addActionListener (new java .awt. event . ActionListener () �
124 public void actionPerformed (ActionEvent e) �
125 buttonOK actionPerformed(e) ;
126 �
127 � ) ;
128 buttonCancel . setText (”Cancel”) ;
129 buttonCancel . addActionListener (new java .awt.event . ActionListener () �
130 public void actionPerformed (ActionEvent e) �
131 buttonCancel actionPerformed (e) ;
132 �
133 � ) ;
134 borderSize . setTitle (”Maximum message size”);
135 rbEmail. setText (”E � mail”);
136 tfEmail .setMaximumSize(new Dimension(60, 21));
137 tfEmail . setToolTipText (”E � mail address”);
138 rbForwardSms.setText(”SMS”);
139 jPanel1 . setLayout (gridBagLayout1);
140 tabPaneForward.setLayout (borderLayout1) ;
141 tfSMS.setMaximumSize(new Dimension(40, 21));
142 tfSMS.setToolTipText (”Mobile phone numer”);
143 tfSMS.setColumns(20);
144 jPanel1 . setBorder ( titledBorder1 ) ;
145 jCheckBox1.setText(”Send copy to desktop client ”) ;
146 this .getContentPane () .add(tabPane , BorderLayout.CENTER);
147 tabPane .add( tabPaneFilter , ” Filter ”) ;
148 tabPaneFilter .add(blockPanel , null ) ;
149 blockPanel .add(cbBlockDesktop, null ) ;
150 blockPanel .add(cbBlockMobile, null ) ;
151 blockPanel .add(cbBlockPda, null ) ;
152 tabPaneFilter .add( sizePanel , null ) ;
153 sizePanel .add( cbFilterMobile , new GridBagConstraints (0, 0, 1, 1, 0.0, 0.0
154 , GridBagConstraints .EAST, GridBagConstraints.NONE, new Insets (5, 5, 0, 5) , 99, 0) ) ;
155 sizePanel .add( tfFilterMobile , new GridBagConstraints (0, 1, 1, 1, 0.0, 0.0
156 , GridBagConstraints .WEST, GridBagConstraints.NONE, new Insets (0, 30, 0, 0) , 50, 0) ) ;
157 sizePanel .add( cbFilterPda , new GridBagConstraints (0, 2, 1, 1, 0.0, 0.0
158 , GridBagConstraints .WEST, GridBagConstraints.NONE, new Insets (5, 5, 0, 0) , 0, 0) ) ;
159 sizePanel .add( tfFilterPda , new GridBagConstraints (0, 3, 1, 1, 0.0, 0.0
160 , GridBagConstraints .WEST, GridBagConstraints.NONE, new Insets (0, 30, 0, 0) , 50, 0) ) ;
161 tabPaneFilter .add(buttonPanel , null ) ;
162 buttonPanel .add(buttonOK, null ) ;
163 buttonPanel .add(buttonCancel , null ) ;
164 tabPane .add(tabPaneForward , ”Forward”);
165 tabPaneForward.add(jPanel1 , BorderLayout.NORTH);
166 jPanel1 .add(rbForwardSms, new GridBagConstraints (0, 0, 1, 1, 0.0, 0.0
167 , GridBagConstraints .WEST, GridBagConstraints.NONE, new Insets (5, 10, 0, 5) , 0, 0) ) ;
168 jPanel1 .add(tfSMS, new GridBagConstraints (0, 1, 1, 1, 1.0, 0.0
169 , GridBagConstraints .WEST, GridBagConstraints.NONE, new Insets (0, 20, 0, 5) , 100, 0)

) ;
170 jPanel1 .add(rbEmail , new GridBagConstraints (0, 2, 1, 1, 0.0, 0.0
171 , GridBagConstraints .WEST, GridBagConstraints.NONE, new Insets (0, 10, 0, 5) , 0, 0) ) ;
172 jPanel1 .add(tfEmail , new GridBagConstraints (0, 3, 1, 1, 1.0, 0.0
173 , GridBagConstraints .WEST, GridBagConstraints.NONE, new Insets (0, 20, 0, 5) , 100, 0)

) ;
174 buttonGroupForward.add(rbForwardSms);
175 buttonGroupForward.add(rbEmail);
176 jPanel1 .add(component1, new GridBagConstraints (0, 4, 1, 1, 0.0, 0.0
177 , GridBagConstraints .CENTER, GridBagConstraints.NONE, new Insets (0, 0, 0, 0) , 0, 0) ) ;
178 jPanel1 .add(jCheckBox1, new GridBagConstraints (0, 5, 1, 1, 0.0, 0.0
179 , GridBagConstraints .WEST, GridBagConstraints.NONE, new Insets (0, 10, 0, 0) , 0, 0) ) ;



240 SIGN Source Code

180 �
181
182 void cbBlockDesktop itemStateChanged(ItemEvent e) �
183 blockDesktop = (e .getStateChange () == ItemEvent.SELECTED);
184 �
185
186 void cbBlockMobile itemStateChanged(ItemEvent e) �
187 blockMobile = ( e .getStateChange () == ItemEvent.SELECTED);
188 �
189
190 void cbBlockPda itemStateChanged(ItemEvent e) �
191 blockPda = ( e .getStateChange () == ItemEvent.SELECTED);
192 �
193
194 void cbFilterMobile itemStateChanged (ItemEvent e) �
195 boolean selected = ( e .getStateChange () == ItemEvent.SELECTED);
196 filterMobile = selected ;
197 tfFilterMobile . setEnabled ( selected ) ;
198 if ( selected ) �
199 tfFilterMobile .setBackground(Color.white) ;
200 � else �
201 tfFilterMobile .setBackground(Color. lightGray ) ;
202 �
203 �
204
205 void cbFilterPda itemStateChanged (ItemEvent e) �
206 boolean selected = ( e .getStateChange () == ItemEvent.SELECTED);
207 filterPda = selected ;
208 tfFilterPda . setEnabled ( selected ) ;
209 if ( selected ) �
210 tfFilterPda .setBackground(Color.white) ;
211 � else �
212 tfFilterPda .setBackground(Color. lightGray ) ;
213 �
214 �
215
216 void buttonOK actionPerformed(ActionEvent e) �
217 // Get input
218 if ( filterMobile )
219 filterMobileValue = tfFilterMobile . getText () ;
220 if ( filterPda )
221 filterPdaValue = tfFilterPda . getText () ;
222
223 okPressed = true ;
224 dispose () ;
225 �
226
227 void buttonCancel actionPerformed (ActionEvent e) �
228 dispose () ;
229 �
230
231 // PreferenceInterface implementations
232 public boolean getMobileBlock() �
233 return blockMobile;
234 �
235
236 public boolean getPdaBlock() �
237 return blockPda;
238 �
239
240 public boolean getDesktopBlock() �
241 return blockDesktop;



C.3 Desktop client 241

242 �
243
244 public String getMobileMaxSize() �
245 if ( filterMobile )
246 return filterMobileValue ;
247 else
248 return null ;
249 �
250
251 public String getPdaMaxSize() �
252 if ( filterPda )
253 return filterPdaValue ;
254 else
255 return null ;
256 �
257
258
259 // Verifies that input values are integers .
260 private class IntegerVerifier extends InputVerifier �
261
262 private Component parent;
263
264 public IntegerVerifier (Component parent) �
265 this . parent = parent ;
266 �
267 public boolean verify (JComponent input) �
268 if (!( input instanceof JTextField ) )
269 return true ;
270 JTextField tf = ( JTextField ) input ;
271 String text = tf . getText () ;
272 if ( text . length () == 0)
273 return true ;
274 try �
275 int i = Integer . parseInt ( text ) ;
276 return true ;
277 � catch ( NumberFormatException nfe) �
278 JOptionPane.showMessageDialog(parent, ”Input must be an integer value .” ) ;
279 return false ;
280 �
281 �
282 �
283
284 �



242 SIGN Source Code

PreferencesInterface.java

1 package jabberclient ;
2
3 public interface PreferencesInterface �
4
5 public boolean getMobileBlock() ;
6 public boolean getPdaBlock() ;
7 public boolean getDesktopBlock() ;
8 public String getMobileMaxSize();
9 public String getPdaMaxSize();

10 �



C.3 Desktop client 243

PresenceHandler.java

1 package jabberclient ;
2
3 import nanoxml.*;
4 import java . util .Enumeration;
5
6 public class PresenceHandler extends ElementHandler �
7
8 public PresenceHandler (JabberFrame gui , JabberComm comm) �
9 super(gui , comm);

10 �
11 public void handleElement(XMLElement xml) �
12 String status = ””;
13 String jid = null ;
14 String type = null ;
15 int device = Contact .DESKTOP;
16 int show = Contact .ONLINE;
17 jid = trimJid (xml.getProperty (”from”)) ;
18 type = xml. getProperty (”type”) ;
19 if ( type != null && type.equalsIgnoreCase (” unavailable ”) )
20 show = Contact .OFFLINE;
21 if ( type != null && type.equalsIgnoreCase (” available ”) )
22 show = Contact .ONLINE;
23
24 for (Enumeration children = ( Enumeration)xml.enumerateChildren () ; children .hasMoreElements()

; ) �
25 XMLElement node = (XMLElement)children.nextElement();
26 String tagName = node.getTagName();
27 if (tagName.equals(” status ”) ) �
28 status = node.getContents () ;
29 if ( status . equalsIgnoreCase (”online ”) )
30 show = Contact .ONLINE;
31 � else if (tagName.equals(”show”)) �
32 String temp = node.getContents () ;
33 if (temp != null ) �
34 if (temp.equalsIgnoreCase (”dnd”)) �
35 show = Contact .DND;
36 � else if (temp.equalsIgnoreCase (”away”)) �
37 show = Contact .AWAY;
38 � else if (temp.equalsIgnoreCase (”xa”) ) �
39 show = Contact .XA;
40 � else if (temp.equalsIgnoreCase (”online ”) ) �
41 show = Contact .ONLINE;
42 �
43 �
44 � else if (tagName.equals(”device”) ) �
45 String temp = node.getContents () ;
46 if (temp != null ) �
47 if (temp.equals (”mobile”))
48 device = Contact .MOBILE;
49 else if (temp.equals (”pda”))
50 device = Contact .PDA;
51 else if (temp.equals (”desktop”) ) �
52 device = Contact .DESKTOP;
53 �
54 �
55 �
56 �
57 gui . setPresence ( jid , show, status , device ) ;
58 �
59 �



244 SIGN Source Code

TreeRenderer.java

1 package jabberclient ;
2
3 import javax .swing. tree .*;
4 import javax .swing.*;
5 import java .awt.Component;
6
7 public class TreeRenderer extends DefaultTreeCellRenderer �
8
9 ImageIcon [][] icons = new ImageIcon[3][3];

10
11 public TreeRenderer () �
12 icons [Contact .DESKTOP][Contact.ONLINE] = new ImageIcon(”desktop online.gif”);
13 icons [Contact .DESKTOP][Contact.OFFLINE] = new ImageIcon(”desktop offline.gif”);
14 icons [Contact .DESKTOP][Contact.DND] = new ImageIcon(”desktop dnd.gif”);
15
16 icons [Contact .MOBILE][Contact.ONLINE] = new ImageIcon(”mobile online.gif”);
17 icons [Contact .MOBILE][Contact.OFFLINE] = new ImageIcon(”mobile offline.gif”);
18 icons [Contact .MOBILE][Contact.DND] = new ImageIcon(”mobile dnd.gif”);
19
20 icons [Contact .PDA][Contact.ONLINE] = new ImageIcon(”pda online.gif”);
21 icons [Contact .PDA][Contact.OFFLINE] = new ImageIcon(”pda offline.gif”) ;
22 icons [Contact .PDA][Contact.DND] = new ImageIcon(”pda dnd.gif”);
23 �
24
25 public Component getTreeCellRendererComponent(
26 JTree tree ,
27 Object value ,
28 boolean sel ,
29 boolean expanded,
30 boolean leaf ,
31 int row,
32 boolean hasFocus) �
33
34 super.getTreeCellRendererComponent(
35 tree , value , sel ,
36 expanded , leaf , row,
37 hasFocus);
38 if (! leaf )
39 return super.getTreeCellRendererComponent(
40 tree , value , sel ,
41 expanded , leaf , row,
42 hasFocus);
43
44 DefaultMutableTreeNode node = (DefaultMutableTreeNode)value;
45 Contact contact = ( Contact )node.getUserObject () ;
46 setIcon ( icons [ contact .getDevice () ][ contact .getShow()]) ;
47
48 setToolTipText ( contact . getJid () + contact . getStatus () ) ;
49
50 return this ;
51 �
52 �



C.4 Server 245

C.4 Server

C.4.1 New classes

ProcessMessage.java

1 package org.ntnu . jabaext . process ;
2
3 import org.novadeck. jabaserver . jabber .*;
4 import org.novadeck. jabaserver . users .*;
5 import org.novadeck. jabaserver . offline . *;
6 import org.novadeck. jabaserver . core .*;
7 import java . util .*;
8
9 public class ProcessMessage �

10
11 private StreamParser streamparser ;
12
13 public ProcessMessage(StreamParser streamparser ) �
14 this . streamparser = streamparser ;
15 �
16
17 // Added by Audun
18
19
20 public void handleMessage(Message message) �
21 // Check forwarding rules and forward
22 // Get ”best ” userstream
23 // Check if in contact list
24 // Check filter rules
25 // If not send to desktop
26
27 String username = ( String ) streamparser . parameters . get ( streamparser .USERNAME PARAM);
28 String to = message.getTo() ;
29 User toUser = streamparser .USER HOME.findUserByUsername(to);
30 User fromUser = streamparser .USER HOME.findUserByUsername(username);
31 message.setTo ( null ) ;
32 message.setFrom(username);
33
34 if (toUser != null ) �
35 // Check forwarding rules
36 /*
37 if (toUser .getForwarding () ) �
38 // forward() ;
39 return ;
40 �
41 */
42 if (! toUser . getOnline () ) �
43 sendOfflineMessage(fromUser, to , message);
44 return;
45 �
46
47 // Deliver
48 // Get best stream
49 String toResource = message.getToResource() ;
50 UserStream us = toUser .getUserStream(toResource) ;
51 int device = � 1;
52 if (us .getResource () . equalsIgnoreCase (”mobile”)) �
53 device = 1;
54 � else if (us .getResource () . equalsIgnoreCase (”pda”)) �
55 device = 2;



246 SIGN Source Code

56 �
57
58 if (device == 1 ��� device == 2) �
59 // Check if filter on contacts and user is in contact list
60
61 // Is user in contactlist ?
62 if (! streamparser .USER HOME.getBlockMessage(toUser.getId(), fromUser.getId(), device

) ) �
63 System.out . println (”User in contact list :” ) ;
64 int maxSize = streamparser .USER HOME.getMaxSize(toUser.getId(), device);
65 // If filter , filter send to mobile and dekstop
66 if (maxSize != � 1 && message.getBody().length()

�
maxSize)

67 �
68 sendToDesktop(fromUser, to , message);
69 message = reduceMessageSize(message, maxSize);
70 �
71 // send to mobile
72 // Check autoreply message
73 String autoreply = null ;
74 if ( streamparser .USER HOME.getAutoReply(toUser.getId(), device) != null ) �
75 UserStream fromstream = fromUser.getUserStream(null ) ;
76 if (fromstream != null ) �
77 Message outmessage = new Message();
78 outmessage.setBody( autoreply ) ;
79 outmessage.setFrom(username);
80 fromstream. postString (outmessage. toString () ) ;
81 �
82 �
83 // send to mobile
84 if (us != null ) �
85 us . postString (message. toString () ) ;
86 �
87 � else �
88 // No � Send to dekstop
89 System.out . println (”Send to desktop:” ) ;
90 sendToDesktop(fromUser, to , message);
91 �
92
93 � else � // not mobile
94 if (! streamparser .USER HOME.getBlockMessage(toUser.getId(), fromUser.getId(), 0)

) �
95 if (us != null ) �
96 us . postString (message. toString () ) ;
97 �
98 � else � // Discard message
99 �

100 �
101 �
102
103 � // end handle Message
104
105 public void sendToDesktop(User fromUser, String to , Message message) �
106 UserStream userstream = getDesktopResource(to) ;
107 if ( userstream != null ) �
108 System.out . println (”Hoyest prioritet : ” + userstream .getResource () ) ;
109 userstream . postString (message. toString () ) ;
110 � else � // Ingen desktop online
111 // Send offline
112 System.out . println (”Send offfline :” ) ;
113 sendOfflineMessage(fromUser, to , message);
114 �
115 �



C.4 Server 247

116
117 public Message reduceMessageSize(Message message, int maxSize) �
118 String body = message.getBody();
119 message.setBody(body. substring (0, maxSize));
120 return message;
121 �
122
123 public void sendOfflineMessage(User fromUser, String to , Message message) �
124 User toUser = streamparser .USER HOME.findUserByUsername(to);
125 OfflineMsg offMsg = new OfflineMsg();
126 offMsg.setMsg(message. toString () ) ;
127 offMsg.setToUserId (( int )toUser . getId () ) ;
128 offMsg.setFromUserId(( int )fromUser.getId () ) ;
129 streamparser .OFFLINE MSG HOME.storeOfflineMsg(offMsg);
130 �
131
132 public UserStream getDesktopResource(String username) �
133
134 UserStream us = null ;
135 User user = streamparser .USER HOME.findUserByUsername(username);
136 Integer pri = new Integer( � 1);
137 Enumeration enum = user . resource .keys () ;
138 while(enum.hasMoreElements()) �
139 Integer priority = ( Integer )enum.nextElement();
140 us = user .getUserStream( priority . intValue () ) ;
141 if (!( us .getResource () . equalsIgnoreCase (”mobile”) ��� us .getResource () .

equalsIgnoreCase (”pda”)) ) �
142 if ( pri .compareTo( priority ) � 0) �
143 pri = priority ;
144 �
145 �
146 �
147
148 if ( pri .compareTo(new Integer( � 1))

�
0) �

149 us = user .getUserStream( pri . intValue () ) ;
150 return us;
151 � else �
152 return null ;
153 �
154 � // end getDesktopResource
155 �



248 SIGN Source Code

ProcessPresence.java

1 package org.ntnu . jabaext . process ;
2
3 import java . util .*;
4 import org.novadeck. jabaserver . core .*;
5 import org.novadeck. jabaserver . jabber .*;
6 import org.novadeck. jabaserver . users .*;
7
8
9 public class ProcessPresence �

10
11 private StreamParser streamparser ;
12
13 public ProcessPresence (StreamParser streamparser ) �
14
15 this . streamparser = streamparser ;
16 �
17
18 public void handlePresence (Presence presence ) �
19
20 System.out . println (”handlePresence”) ;
21
22
23 if (presence . getPriority () != null ) � // Added by Audun
24
25 String username = ( String ) streamparser . parameters . get ( streamparser .USERNAME PARAM

);
26 System.out . print (username);
27 UserStream stream = ( UserStream)streamparser . parameters . get ( streamparser .

USERSTREAM PARAM);
28 String resource = stream .getResource () ;
29 System.out . print ( resource ) ;
30 User userObj = streamparser .USER HOME.findUserByUsername(username);
31 Integer pri = new Integer (presence . getPriority () ) ;
32 // userObj.replaceUserStream(stream , pri . intValue () ) ;
33 �
34
35 if (presence .getTo() != null ) �
36 return;
37 �
38
39 // For each friend
40 // Get stream
41 // If in contactlist
42 // Post message
43 User user = ( User) streamparser . parameters . get ( streamparser .USER PARAM );
44 List onlineFriend = user . getOnlineFriends () ;
45 Iterator iter = onlineFriend . iterator () ;
46
47 for ( int i = 0; i � onlineFriend. size () ; i ++ ) �
48 User friend = ( User) iter . next () ;
49 String username = ( String ) streamparser . parameters . get ( streamparser .

USERNAME PARAM );
50 presence .setFrom( username ) ;
51 UserStream [] us = friend .getUserStreams () ;
52 if ( us != null ) �
53 for ( int j = 0; j � us.length ; j++) �
54 String r = us[ j ]. getResource () ;
55 // if in contactlist
56 us[ j ]. postString (presence . toString () ) ;
57 �



C.4 Server 249

58 �
59 �
60 � // end handle presence
61
62
63 �



250 SIGN Source Code

SQPreferences.java

1 package org.ntnu . jabaext . jabber ;
2
3 import org.novadeck. jabaserver . jabber .Element;
4 import org.xml.sax .*;
5
6 public class SQPreferences extends Element �
7
8 public static final String ELEMENT NAME = ””;
9

10 private static final String MOBILE ELEMENT = ”mobile”;
11 private static final String PDA ELEMENT = ”pda”;
12 private static final String DESKTOP ELEMENT = ”desktop”;
13 private static final String BLOCK ELEMENT = ”block”;
14 private static final String SIZE ELEMENT = ”size”;
15 private static final String MAX SIZE ATTRIBUTE = ”max”;
16
17 private String currentDeviceElement = null ;
18
19 private boolean blockMobile = false ;
20 private boolean blockDesktop = false ;
21 private boolean blockPda = false ;
22
23 private boolean filterMobile = false ;
24 private String filterMobileValue = null ;
25 private boolean filterPda = false ;
26 private String filterPdaValue = null ;
27
28 public SQPreferences() �
29 super(””) ;
30 �
31
32 public boolean getBlockMobile() �
33 return blockMobile;
34 �
35
36 public boolean getBlockPda() �
37 return blockPda;
38 �
39
40 public boolean getBlockDesktop() �
41 return blockDesktop;
42 �
43
44 public String getFilterMobile () �
45 if ( filterMobile )
46 return filterMobileValue ;
47 else
48 return null ;
49 �
50
51 public String getFilterPda () �
52 if ( filterPda )
53 return filterPdaValue ;
54 else
55 return null ;
56 �
57
58 public void startElement ( String namespaceURI, String elementName, String qName, Attributes

attributes ) throws SAXException �
59 if (elementName.equals(DESKTOP ELEMENT)) �



C.4 Server 251

60 currentDeviceElement = DESKTOP ELEMENT;
61 � else if (elementName.equals(MOBILE ELEMENT)) �
62 currentDeviceElement = MOBILE ELEMENT;
63 � else if (elementName.equals(PDA ELEMENT)) �
64 currentDeviceElement = PDA ELEMENT;
65 �
66
67 if (elementName.equals(BLOCK ELEMENT)) �
68 if (currentDeviceElement . equals (DESKTOP ELEMENT))
69 blockDesktop = true ;
70 else if ( currentDeviceElement . equals (PDA ELEMENT))
71 blockPda = true ;
72 else if ( currentDeviceElement . equals (MOBILE ELEMENT))
73 blockMobile = true ;
74 � else if (elementName.equals(SIZE ELEMENT)) �
75 if ( currentDeviceElement . equals (PDA ELEMENT)) �
76 filterPda = true ;
77 filterPdaValue = attributes . getValue (MAX SIZE ATTRIBUTE);
78 � else if ( currentDeviceElement . equals (MOBILE ELEMENT)) �
79 filterMobile = true ;
80 filterMobileValue = attributes . getValue (MAX SIZE ATTRIBUTE);
81 �
82 �
83 �
84
85 public void endElement( String namespaceURI, String elementName, String qName ) throws

SAXException �
86 if (elementName.equals(DESKTOP ELEMENT)) �
87 currentDeviceElement = null ;
88 � else if (elementName.equals(MOBILE ELEMENT)) �
89 currentDeviceElement = null ;
90 � else if (elementName.equals(PDA ELEMENT)) �
91 currentDeviceElement = null ;
92 �
93 �
94 �



252 SIGN Source Code

SQRosterConfig.java

1 package org.ntnu . jabaext . jabber ;
2
3 import org.novadeck. jabaserver . jabber .Element;
4 import org.novadeck. jabaserver . jabber .SQRosterItem;
5 import org.xml.sax .*;
6
7 import java . util . Vector ;
8 import java . util . List ;
9

10 public class SQRosterConfig extends Element �
11
12 public static final String ELEMENT NAME = ””;
13 private static final String ITEM ELEMENT = ”item”;
14
15 private static final String MOBILE ELEMENT = ”mobile”;
16 private static final String PDA ELEMENT = ”pda”;
17
18 private String currentDeviceElement = null ;
19
20 private Vector pdaContacts = new Vector() ;
21 private Vector mobileContacts = new Vector() ;
22
23 public SQRosterConfig() �
24 this (ELEMENT NAME);
25 �
26
27 public SQRosterConfig(String elementName) �
28 super(elementName);
29 �
30
31 public void startElement ( String namespaceURI, String elementName, String qName, Attributes

attributes ) throws SAXException �
32 if ( child != null ) �
33 child . startElement ( namespaceURI, elementName, qName, attributes ) ;
34 return;
35 �
36
37 if ( elementName.equals( ITEM ELEMENT )) �
38 SQRosterItem sqRosterItem = new SQRosterItem();
39 child = sqRosterItem ;
40 setupLogger ( child ) ;
41 sqRosterItem . startElement ( namespaceURI, elementName, qName, attributes ) ;
42 � else if (elementName.equals(MOBILE ELEMENT)) �
43 currentDeviceElement = MOBILE ELEMENT;
44 � else if (elementName.equals(PDA ELEMENT)) �
45 currentDeviceElement = PDA ELEMENT;
46 �
47 �
48
49 public void endElement( String namespaceURI, String elementName, String qName ) throws

SAXException �
50 if ( child != null ) �
51 child .endElement( namespaceURI, elementName, qName );
52 �
53 if (elementName.equals(ITEM ELEMENT)) �
54 addItem(child ) ;
55 child = null ;
56 return ;
57 � else if (elementName.equals(MOBILE ELEMENT)) �
58 currentDeviceElement = null ;



C.4 Server 253

59 � else if (elementName.equals(PDA ELEMENT)) �
60 currentDeviceElement = null ;
61 �
62 �
63
64 private void addItem(Element e) �
65 SQRosterItem item = ( SQRosterItem)e;
66 if (currentDeviceElement . equals (MOBILE ELEMENT)) �
67 mobileContacts .add(item . getJid () ) ;
68 � else if (currentDeviceElement . equals (PDA ELEMENT)) �
69 pdaContacts .add(item. getJid () ) ;
70 �
71 �
72
73 public List getMobileContacts () �
74 return ( List )mobileContacts ;
75 �
76
77 public List getPdaContacts () �
78 return ( List )pdaContacts ;
79 �
80 �



254 SIGN Source Code

C.4.2 Modified classes

UserHomeDB.java

1 /*
2 * Copyright � JabaServer Project 2001 � Alexis Agahi
3 */
4
5 package org.novadeck. jabaserver . users ;
6
7 import org.novadeck. jabaserver . jabber .SQRosterItem;
8 import java . util .*;
9 import java . sql .*;

10 import org.apache.avalon .framework.logger .*;
11 import org.apache.avalon .framework. configuration .*;
12 import org.apache.avalon .framework. activity .*;
13
14 public class UserHomeDB extends AbstractLogEnabled implements UserHome, Configurable,

Initializable �
15
16 /* SIGN change */
17 private static String FIELD ROSTER DEVICE ID;
18 private static String TABLE PREFERENCES;
19 private static String FIELD PREF USERS ID;
20 private static String FIELD PREF DEVICE ID;
21 private static String FIELD PREF RULE;
22 private static String FIELD PREF PARAM;
23 /* End SIGN change */
24
25 /* SIGN change (˜25 LOC)*/
26 /**
27 * A method to retreice device � specific rosters . The device id is 1 for
28 * mobile phones and 2 for PDAs
29 *
30 * @param userId The users id in the datatbase
31 * @param deviceId Device id to indicate which roster to retreive
32 * @return List containing SQRosterItem objects
33 */
34 public List getRosterListById (long userId , int deviceId ) �
35 List list = new ArrayList () ;
36 Connection connection = null ;
37
38 try �
39 connection = getConnection () ;
40 String query = ”SELECT ”+TABLE USERS+”. * FROM ” + TABLE USERS+’,’+

TABLE ROSTER +
41 ” WHERE ” + TABLE ROSTER+’.’+FIELD ROSTER USERS ID + ”=? ” +
42 ” AND ” + TABLE ROSTER+’.’+FIELD ROSTER FRIEND ID +’=’+

TABLE USERS+’.’+FIELD USER ID +
43 ” AND ” + TABLE ROSTER+’.’ + FIELD ROSTER DEVICE ID + ”=?”;
44 PreparedStatement pst = connection . prepareStatement (query) ;
45 pst .setLong (1, userId ) ;
46 pst . setInt (2, deviceId ) ;
47
48 ResultSet rs = pst .executeQuery () ;
49 while( rs . next () ) �
50 SQRosterItem roster = new SQRosterItem();
51 String domain = findDomainNameById( rs.getLong( FIELD USER DOMAIN ID ));
52 roster . setJid ( rs . getString ( FIELD USER LOGIN )+’@’+ domain );
53 roster .setName( rs . getString ( FIELD USER NAME ));
54 roster . setSubscription ( ”both” ) ;
55 roster .setGroup ( ” friends ” ) ;



C.4 Server 255

56 list .add ( roster ) ;
57 �
58 rs . close () ;
59 pst . close () ;
60
61 � catch(SQLException e) �
62 e . printStackTrace () ;
63 �
64 return list ;
65 �
66 /* End SIGN change */
67
68 /** SIGN change (˜30 LOC)
69 * A method to store a device specific contact list . The list does not contain
70 * any new roster items .
71 *
72 * The method uses a delete and insert policy : All roster items with the
73 * specified user � and device id are deleted . Then roster items from the
74 * list are inserted .
75 *
76 * @author Svein
77 * @param userId The id of the user
78 * @param roster List of jids
79 * @param deviceId The id of the device to store the list for
80 */
81 public void setRosterList (long userId , int deviceId , List roster ) �
82 Connection connection = null ;
83
84 String deleteQuery = ”DELETE FROM ” + TABLE ROSTER + ” WHERE ” +
85 FIELD ROSTER USERS ID + ”=? AND ” +
86 FIELD ROSTER DEVICE ID + ”=?”;
87
88 String insertQuery = ”INSERT INTO ” + TABLE ROSTER + ” VALUES(?,?,?)”;
89
90 try �
91 connection = getConnection () ;
92
93 // Delete current roster
94 PreparedStatement pst = connection . prepareStatement (deleteQuery ) ;
95 pst .setLong (1, userId ) ;
96 pst . setInt (2, deviceId ) ;
97 ResultSet rs = pst .executeQuery() ;
98 pst . close () ;
99 rs . close () ;

100
101 // Insert new items
102 long friendId = 0;
103 Iterator iter = roster . iterator () ;
104 while ( iter .hasNext() ) �
105 String jid = ( String ) iter . next () ;
106 User friend = findUserByUsername(jid);
107 if ( friend != null ) �
108 friendId = friend . getId () ;
109 pst = connection . prepareStatement ( insertQuery ) ;
110 pst .setLong (1, userId ) ;
111 pst .setLong (2, friendId ) ;
112 pst . setInt (3, deviceId ) ;
113
114 rs = pst .executeQuery() ;
115 pst . close () ;
116 rs . close () ;
117



256 SIGN Source Code

118 �
119 �
120 � catch(Exception e) �
121 System.out . println (”DB exception in store UserHomeDB::storeRosterList()”) ;
122 �
123 �
124
125 /** SIGN change (˜20 LOC)
126 *
127 * @param userId The user id
128 * @param deviceId The device id 0=desktop, 1=mobile, 2=pda
129 * @param preference Either ’ filter ’ or ’ block ’ or ’ forward’
130 * @param value Max msg. lengt for ’ filter ’, ’ sms’ or ’ mail ’ for forward
131 * null otherwise
132 */
133 public void setPreference (long userId , int deviceId , String preference , String value ) �
134 Connection connection = null ;
135 try �
136 connection = getConnection () ;
137
138 String insertQuery = ”INSERT INTO ” + TABLE PREFERENCES + ” VALUES(?,?,?,?)”;
139 PreparedStatement pst = connection . prepareStatement ( insertQuery ) ;
140 pst .setLong(1, userId ) ;
141 pst . setInt (2, deviceId ) ;
142 pst . setString (3, preference ) ;
143 if (value == null )
144 pst . setString (4, ”( null )”) ;
145 else
146 pst . setString (4, value ) ;
147 ResultSet rs = pst .executeQuery() ;
148 rs . close () ;
149 pst . close () ;
150 � catch(Exception e) �
151 System.out . println (”DB exception in store UserHomeDB::storeRosterList() � n”);
152 System.out . println (e .getMessage()) ;
153 �
154 �
155 /* End SIGN change */
156
157
158 /* SIGN change (˜10 LOC) */
159 public void deletePreferences (long userId ) �
160 Connection connection = null ;
161 try �
162 connection = getConnection () ;
163 String query = ”DELETE FROM ” + TABLE PREFERENCES + ” WHERE ” +
164 FIELD ROSTER USERS ID+”=?”;
165 PreparedStatement pst = connection . prepareStatement (query) ;
166 pst .setLong (1, userId ) ;
167 ResultSet rs = pst .executeQuery() ;
168 rs . close () ;
169 pst . close () ;
170 � catch(Exception e) �
171 System.out . println (”Exception in deletePreferences () : � n”) ;
172 System.out . println (e .getMessage()) ;
173 �
174 �
175 /* End SIGN change */
176
177 /* SIGN change (˜15 LOC) */
178 private boolean isUserInContactList (long userId , int deviceId ) �
179 System.out . println (”Userid : ” + userId + ” Device: ” + deviceId ) ;



C.4 Server 257

180 Connection connection = null ;
181 boolean result = false ;
182 try �
183 connection = getConnection () ;
184
185 String query = ”SELECT * FROM ” + TABLE ROSTER + ” WHERE ” +
186 FIELD ROSTER USERS ID + ”=? AND ” +

FIELD ROSTER DEVICE ID +
187 ”=?”;
188 PreparedStatement pst = connection . prepareStatement (query) ;
189 pst .setLong (1, userId ) ;
190 pst . setInt (2, deviceId ) ;
191
192 ResultSet rs = pst .executeQuery() ;
193 result = rs . next () ;
194 rs . close () ;
195 pst . close () ;
196 System.out . println (”isUser ... ” + result ) ;
197 return result ;
198 � catch ( Exception e) �
199 System.out . println (”Exception in isUserInContactList () � n”);
200 System.out . println (e .getMessage()) ;
201 return false ;
202 �
203 �
204 /* End SIGN change */
205
206 /* SIGN change (˜20 LOC) */
207 public boolean getBlockMessage(long userId , long friendId , int deviceId ) �
208 Connection connection = null ;
209 boolean doFilter = false ;
210 try �
211 connection = getConnection () ;
212 String query = ”SELECT * FROM ” + TABLE PREFERENCES + ” WHERE ” +
213 FIELD PREF USERS ID + ”=? AND ” + FIELD PREF DEVICE ID +
214 ”=? AND ” + FIELD PREF RULE + ”=’block’”;
215 PreparedStatement pst = connection . prepareStatement (query) ;
216 pst . setLong(1, userId ) ;
217 pst . setInt (2, deviceId ) ;
218 ResultSet rs = pst .executeQuery() ;
219
220 doFilter = rs . next () ;
221 rs . close () ;
222 pst . close () ;
223
224 if ( doFilter )
225 return ! isUserInContactList ( friendId , deviceId ) ;
226
227 � catch ( Exception e) �
228 System.out . println (”Exception in doBlockMessage() � n”);
229 System.out . println (e .getMessage()) ;
230 �
231 System.out . println (”Block not set : ” + userId + ” ” + deviceId ) ;
232 return false ;
233 �
234 /* SIGN change */
235
236 /* SIGN change (˜20 LOC) */
237 public int getMaxSize(long userId , int deviceId ) �
238 Connection conn;
239 int result = � 1;
240 try �



258 SIGN Source Code

241 conn = getConnection () ;
242 String query = ”SELECT parameter FROM ” + TABLE PREFERENCES + ” WHERE ”

+
243 FIELD PREF USERS ID +”=? AND ” + FIELD PREF DEVICE ID +
244 ”=? AND ” + FIELD PREF RULE + ”=?”;
245 PreparedStatement pst = conn.prepareStatement (query) ;
246 pst .setLong (1, userId ) ;
247 pst . setInt (2, deviceId ) ;
248 pst . setString (3, ” size ”) ;
249
250 ResultSet rs = pst .executeQuery () ;
251 if ( rs . next () ) �
252 result = rs . getInt (”parameter”) ;
253 �
254 rs . close () ;
255 pst . close () ;
256 � catch ( Exception e) �
257 System.out . println (”Exception in getMaxSize() � n”);
258 System.out . println (e .getMessage()) ;
259 �
260 return result ;
261 �
262 /* End SIGN change */
263
264 /* SIGN change (˜20 LOC)*/
265 public String getForward(long userId ) �
266 Connection conn = null ;
267 String result = null ;
268 try �
269 conn = getConnection () ;
270 String query = ”SELECT parameter FROM ” + TABLE PREFERENCES + ” WHERE ”

+
271 FIELD PREF USERS ID + ”=? AND ” + FIELD PREF RULE + ”=?”;
272 PreparedStatement pst = conn.prepareStatement (query) ;
273 pst .setLong (1, userId ) ;
274 pst . setString (2, ”forward”) ;
275
276 ResultSet rs = pst .executeQuery () ;
277 if ( rs . next () ) �
278 result = rs . getString (”parameter”) ;
279 �
280 rs . close () ;
281 pst . close () ;
282
283 � catch(Exception e) �
284 System.out . println (”Exception in getForward() � n”);
285 System.out . println (e .getMessage()) ;
286 �
287 return result ;
288 �
289
290 /* SIGN change (˜20 LOC) */
291 public String getAutoReply(long userId , int deviceId ) �
292 Connection conn = null ;
293 String result = null ;
294 try �
295 conn = getConnection () ;
296 String query = ”SELECT parameter FROM ” + TABLE PREFERENCES + ” WHERE ” +
297 FIELD PREF USERS ID + ”=? AND ” + FIELD PREF DEVICE ID + ”=?” +
298 ” AND ” + FIELD PREF RULE + ”=?”;
299 PreparedStatement pst = conn.prepareStatement (query) ;
300 pst .setLong (1, userId ) ;



C.4 Server 259

301 pst . setInt (2, deviceId ) ;
302 pst . setString (3, ”forward”) ;
303
304 ResultSet rs = pst .executeQuery () ;
305 if ( rs . next () ) �
306 result = rs . getString (”parameter”) ;
307 �
308 rs . close () ;
309 pst . close () ;
310
311 � catch ( Exception e) �
312 System.out . println (”Exception in getAutoReply() � n”);
313 System.out . println (e .getMessage()) ;
314 �
315 return result ;
316 �
317 /* End SIGN */
318
319
320 public void initialize () �
321
322 if ( ! INITIALIZED ) �
323
324 try �
325 Configuration conf = CONFIGURATION.getChild(”user � db”);
326 DATABASE DRIVER = conf.getChild (” driver ”) . getValue () ;
327 DATABASE URL = conf . getChild (”url ”) . getValue () ;
328 DATABASE LOGIN = conf . getChild (” login ”) . getValue () ;
329 DATABASE PASSWORD = conf.getChild(”password”).getValue( ”” );
330 LOGIN DOMAIN = conf . getChild (” login � domain”).getValue();
331
332 Configuration confUsers = conf . getChild (” tables ”) . getChild (”users ”) ;
333 TABLE USERS = confUsers . getChild (”name”).getValue () ;
334 FIELD USER ID = confUsers . getChild (” fields ”) . getChild (”id”) . getValue () ;
335 FIELD USER NAME = confUsers.getChild (” fields ”) . getChild (”name”).getValue () ;
336 FIELD USER LOGIN = confUsers.getChild(” fields ”) . getChild (” login ”) . getValue () ;
337 FIELD USER PASSWORD = confUsers.getChild(”fields”).getChild(”password”).

getValue();
338 FIELD USER DOMAIN ID = confUsers.getChild(”fields”).getChild(”domain � id”).

getValue();
339
340 Configuration confDomains = conf.getChild (” tables ”) . getChild (”domains”);
341 TABLE DOMAINS = confDomains.getChild(”name”).getValue () ;
342 FIELD DOMAIN ID = confDomains.getChild(” fields ”) . getChild (”id”) . getValue () ;
343 FIELD DOMAIN NAME = confDomains.getChild(”fields”).getChild(”name”).getValue

();
344
345 Configuration confRoster = conf . getChild (” tables ”) . getChild (” roster ”) ;
346 TABLE ROSTER = confRoster . getChild (”name”).getValue () ;
347 FIELD ROSTER USERS ID = confRoster.getChild(”fields”).getChild(”user � id”).

getValue() ;
348 FIELD ROSTER FRIEND ID = confRoster.getChild(”fields”).getChild(”friend � id”).

getValue () ;
349
350 /* SIGN Change (˜10 LOC) */
351 FIELD ROSTER DEVICE ID = confRoster.getChild(”fields”).getChild(”device � id”).

getValue();
352
353 Configuration confPreferences = conf . getChild (” tables ”) . getChild (” preferences ”) ;
354 TABLE PREFERENCES = confPreferences.getChild(”name”).getValue();
355 FIELD PREF USERS ID = confPreferences.getChild(”fields”).getChild (”user � id”).

getValue () ;



260 SIGN Source Code

356 FIELD PREF DEVICE ID = confPreferences.getChild(”fields”).getChild (”device � id”)
.getValue () ;

357 FIELD PREF RULE = confPreferences.getChild(”fields”) . getChild (” rule ”) . getValue ()
;

358 FIELD PREF PARAM = confPreferences.getChild(”fields”).getChild(”parameter”) .
getValue () ;

359 /* End SIGN Change */
360
361 � catch ( ConfigurationException ce ) �
362 ce . printStackTrace () ;
363 �
364
365 INITIALIZED = true;
366 �
367 �
368
369 �



C.4 Server 261

StreamParser.java

1 /*
2 * Copyright � JabaServer Project 2001 � Alexis Agahi
3 */
4
5 package org.novadeck. jabaserver . users ;
6
7 import org.novadeck. jabaserver . jabber .SQRosterItem;
8 import java . util .*;
9 import java . sql .*;

10 import org.apache.avalon .framework.logger .*;
11 import org.apache.avalon .framework. configuration .*;
12 import org.apache.avalon .framework. activity .*;
13
14 public class UserHomeDB extends AbstractLogEnabled implements UserHome, Configurable,

Initializable �
15
16 /* SIGN change */
17 private static String FIELD ROSTER DEVICE ID;
18 private static String TABLE PREFERENCES;
19 private static String FIELD PREF USERS ID;
20 private static String FIELD PREF DEVICE ID;
21 private static String FIELD PREF RULE;
22 private static String FIELD PREF PARAM;
23 /* End SIGN change */
24
25 /* SIGN change (˜25 LOC)*/
26 /**
27 * A method to retreice device � specific rosters . The device id is 1 for
28 * mobile phones and 2 for PDAs
29 *
30 * @param userId The users id in the datatbase
31 * @param deviceId Device id to indicate which roster to retreive
32 * @return List containing SQRosterItem objects
33 */
34 public List getRosterListById (long userId , int deviceId ) �
35 List list = new ArrayList () ;
36 Connection connection = null ;
37
38 try �
39 connection = getConnection () ;
40 String query = ”SELECT ”+TABLE USERS+”. * FROM ” + TABLE USERS+’,’+

TABLE ROSTER +
41 ” WHERE ” + TABLE ROSTER+’.’+FIELD ROSTER USERS ID + ”=? ” +
42 ” AND ” + TABLE ROSTER+’.’+FIELD ROSTER FRIEND ID +’=’+

TABLE USERS+’.’+FIELD USER ID +
43 ” AND ” + TABLE ROSTER+’.’ + FIELD ROSTER DEVICE ID + ”=?”;
44 PreparedStatement pst = connection . prepareStatement (query) ;
45 pst . setLong (1, userId ) ;
46 pst . setInt (2, deviceId ) ;
47
48 ResultSet rs = pst .executeQuery() ;
49 while( rs . next () ) �
50 SQRosterItem roster = new SQRosterItem();
51 String domain = findDomainNameById( rs.getLong( FIELD USER DOMAIN ID ));
52 roster . setJid ( rs . getString ( FIELD USER LOGIN )+’@’+ domain );
53 roster .setName( rs . getString ( FIELD USER NAME ));
54 roster . setSubscription ( ”both” ) ;
55 roster .setGroup ( ” friends ” ) ;
56 list .add ( roster ) ;
57 �



262 SIGN Source Code

58 rs . close () ;
59 pst . close () ;
60
61 � catch(SQLException e) �
62 e. printStackTrace () ;
63 �
64 return list ;
65 �
66 /* End SIGN change */
67
68 /** SIGN change (˜30 LOC)
69 * A method to store a device specific contact list . The list does not contain
70 * any new roster items .
71 *
72 * The method uses a delete and insert policy : All roster items with the
73 * specified user � and device id are deleted . Then roster items from the
74 * list are inserted .
75 *
76 * @author Svein
77 * @param userId The id of the user
78 * @param roster List of jids
79 * @param deviceId The id of the device to store the list for
80 */
81 public void setRosterList (long userId , int deviceId , List roster ) �
82 Connection connection = null ;
83
84 String deleteQuery = ”DELETE FROM ” + TABLE ROSTER + ” WHERE ” +
85 FIELD ROSTER USERS ID + ”=? AND ” +
86 FIELD ROSTER DEVICE ID + ”=?”;
87
88 String insertQuery = ”INSERT INTO ” + TABLE ROSTER + ” VALUES(?,?,?)”;
89
90 try �
91 connection = getConnection () ;
92
93 // Delete current roster
94 PreparedStatement pst = connection . prepareStatement (deleteQuery ) ;
95 pst .setLong (1, userId ) ;
96 pst . setInt (2, deviceId ) ;
97 ResultSet rs = pst .executeQuery () ;
98 pst . close () ;
99 rs . close () ;

100
101 // Insert new items
102 long friendId = 0;
103 Iterator iter = roster . iterator () ;
104 while ( iter .hasNext() ) �
105 String jid = ( String ) iter . next () ;
106 User friend = findUserByUsername(jid);
107 if ( friend != null ) �
108 friendId = friend . getId () ;
109 pst = connection . prepareStatement ( insertQuery ) ;
110 pst .setLong (1, userId ) ;
111 pst .setLong (2, friendId ) ;
112 pst . setInt (3, deviceId ) ;
113
114 rs = pst .executeQuery () ;
115 pst . close () ;
116 rs . close () ;
117
118 �
119 �



C.4 Server 263

120 � catch(Exception e) �
121 System.out . println (”DB exception in store UserHomeDB::storeRosterList()”) ;
122 �
123 �
124
125 /** SIGN change (˜20 LOC)
126 *
127 * @param userId The user id
128 * @param deviceId The device id 0=desktop, 1=mobile, 2=pda
129 * @param preference Either ’ filter ’ or ’ block ’ or ’ forward’
130 * @param value Max msg. lengt for ’ filter ’, ’ sms’ or ’ mail ’ for forward
131 * null otherwise
132 */
133 public void setPreference (long userId , int deviceId , String preference , String value ) �
134 Connection connection = null ;
135 try �
136 connection = getConnection () ;
137
138 String insertQuery = ”INSERT INTO ” + TABLE PREFERENCES + ” VALUES(?,?,?,?)”;
139 PreparedStatement pst = connection . prepareStatement ( insertQuery ) ;
140 pst .setLong(1, userId ) ;
141 pst . setInt (2, deviceId ) ;
142 pst . setString (3, preference ) ;
143 if (value == null )
144 pst . setString (4, ”( null )”) ;
145 else
146 pst . setString (4, value ) ;
147 ResultSet rs = pst .executeQuery () ;
148 rs . close () ;
149 pst . close () ;
150 � catch(Exception e) �
151 System.out . println (”DB exception in store UserHomeDB::storeRosterList() � n”);
152 System.out . println (e .getMessage()) ;
153 �
154 �
155 /* End SIGN change */
156
157
158 /* SIGN change (˜10 LOC) */
159 public void deletePreferences (long userId ) �
160 Connection connection = null ;
161 try �
162 connection = getConnection () ;
163 String query = ”DELETE FROM ” + TABLE PREFERENCES + ” WHERE ” +
164 FIELD ROSTER USERS ID+”=?”;
165 PreparedStatement pst = connection . prepareStatement (query) ;
166 pst .setLong (1, userId ) ;
167 ResultSet rs = pst .executeQuery () ;
168 rs . close () ;
169 pst . close () ;
170 � catch(Exception e) �
171 System.out . println (”Exception in deletePreferences () : � n”) ;
172 System.out . println (e .getMessage()) ;
173 �
174 �
175 /* End SIGN change */
176
177 /* SIGN change (˜15 LOC) */
178 private boolean isUserInContactList (long userId , int deviceId ) �
179 System.out . println (”Userid : ” + userId + ” Device: ” + deviceId ) ;
180 Connection connection = null ;
181 boolean result = false ;



264 SIGN Source Code

182 try �
183 connection = getConnection () ;
184
185 String query = ”SELECT * FROM ” + TABLE ROSTER + ” WHERE ” +
186 FIELD ROSTER USERS ID + ”=? AND ” +

FIELD ROSTER DEVICE ID +
187 ”=?”;
188 PreparedStatement pst = connection . prepareStatement (query) ;
189 pst .setLong (1, userId ) ;
190 pst . setInt (2, deviceId ) ;
191
192 ResultSet rs = pst .executeQuery () ;
193 result = rs . next () ;
194 rs . close () ;
195 pst . close () ;
196 System.out . println (”isUser ... ” + result ) ;
197 return result ;
198 � catch ( Exception e) �
199 System.out . println (”Exception in isUserInContactList () � n”);
200 System.out . println (e .getMessage()) ;
201 return false ;
202 �
203 �
204 /* End SIGN change */
205
206 /* SIGN change (˜20 LOC) */
207 public boolean getBlockMessage(long userId , long friendId , int deviceId ) �
208 Connection connection = null ;
209 boolean doFilter = false ;
210 try �
211 connection = getConnection () ;
212 String query = ”SELECT * FROM ” + TABLE PREFERENCES + ” WHERE ” +
213 FIELD PREF USERS ID + ”=? AND ” + FIELD PREF DEVICE ID +
214 ”=? AND ” + FIELD PREF RULE + ”=’block’”;
215 PreparedStatement pst = connection . prepareStatement (query) ;
216 pst .setLong(1, userId ) ;
217 pst . setInt (2, deviceId ) ;
218 ResultSet rs = pst .executeQuery () ;
219
220 doFilter = rs . next () ;
221 rs . close () ;
222 pst . close () ;
223
224 if ( doFilter )
225 return ! isUserInContactList ( friendId , deviceId ) ;
226
227 � catch ( Exception e) �
228 System.out . println (”Exception in doBlockMessage() � n”);
229 System.out . println (e .getMessage()) ;
230 �
231 System.out . println (”Block not set : ” + userId + ” ” + deviceId ) ;
232 return false ;
233 �
234 /* SIGN change */
235
236 /* SIGN change (˜20 LOC) */
237 public int getMaxSize(long userId , int deviceId ) �
238 Connection conn;
239 int result = � 1;
240 try �
241 conn = getConnection () ;



C.4 Server 265

242 String query = ”SELECT parameter FROM ” + TABLE PREFERENCES + ” WHERE ”
+

243 FIELD PREF USERS ID +”=? AND ” + FIELD PREF DEVICE ID +
244 ”=? AND ” + FIELD PREF RULE + ”=?”;
245 PreparedStatement pst = conn.prepareStatement (query) ;
246 pst .setLong (1, userId ) ;
247 pst . setInt (2, deviceId ) ;
248 pst . setString (3, ” size ”) ;
249
250 ResultSet rs = pst .executeQuery() ;
251 if ( rs . next () ) �
252 result = rs . getInt (”parameter”) ;
253 �
254 rs . close () ;
255 pst . close () ;
256 � catch ( Exception e) �
257 System.out . println (”Exception in getMaxSize() � n”);
258 System.out . println (e .getMessage()) ;
259 �
260 return result ;
261 �
262 /* End SIGN change */
263
264 /* SIGN change (˜20 LOC)*/
265 public String getForward(long userId ) �
266 Connection conn = null ;
267 String result = null ;
268 try �
269 conn = getConnection () ;
270 String query = ”SELECT parameter FROM ” + TABLE PREFERENCES + ” WHERE ”

+
271 FIELD PREF USERS ID + ”=? AND ” + FIELD PREF RULE + ”=?”;
272 PreparedStatement pst = conn.prepareStatement (query) ;
273 pst .setLong (1, userId ) ;
274 pst . setString (2, ”forward”) ;
275
276 ResultSet rs = pst .executeQuery() ;
277 if ( rs . next () ) �
278 result = rs . getString (”parameter”) ;
279 �
280 rs . close () ;
281 pst . close () ;
282
283 � catch(Exception e) �
284 System.out . println (”Exception in getForward() � n”);
285 System.out . println (e .getMessage()) ;
286 �
287 return result ;
288 �
289
290 /* SIGN change (˜20 LOC) */
291 public String getAutoReply(long userId , int deviceId ) �
292 Connection conn = null ;
293 String result = null ;
294 try �
295 conn = getConnection () ;
296 String query = ”SELECT parameter FROM ” + TABLE PREFERENCES + ” WHERE ” +
297 FIELD PREF USERS ID + ”=? AND ” + FIELD PREF DEVICE ID + ”=?” +
298 ” AND ” + FIELD PREF RULE + ”=?”;
299 PreparedStatement pst = conn.prepareStatement (query) ;
300 pst .setLong (1, userId ) ;
301 pst . setInt (2, deviceId ) ;



266 SIGN Source Code

302 pst . setString (3, ”forward”) ;
303
304 ResultSet rs = pst .executeQuery() ;
305 if ( rs . next () ) �
306 result = rs . getString (”parameter”) ;
307 �
308 rs . close () ;
309 pst . close () ;
310
311 � catch ( Exception e) �
312 System.out . println (”Exception in getAutoReply() � n”);
313 System.out . println (e .getMessage()) ;
314 �
315 return result ;
316 �
317 /* End SIGN */
318
319
320 public void initialize () �
321
322 if ( ! INITIALIZED ) �
323
324 try �
325 Configuration conf = CONFIGURATION.getChild(”user � db”);
326 DATABASE DRIVER = conf.getChild (” driver ”) . getValue () ;
327 DATABASE URL = conf . getChild (” url ”) . getValue () ;
328 DATABASE LOGIN = conf . getChild (” login ”) . getValue () ;
329 DATABASE PASSWORD = conf.getChild(”password”).getValue( ”” );
330 LOGIN DOMAIN = conf . getChild (” login � domain”).getValue();
331
332 Configuration confUsers = conf . getChild (” tables ”) . getChild (”users ”) ;
333 TABLE USERS = confUsers . getChild (”name”).getValue () ;
334 FIELD USER ID = confUsers . getChild (” fields ”) . getChild (”id”) . getValue () ;
335 FIELD USER NAME = confUsers.getChild (” fields ”) . getChild (”name”).getValue () ;
336 FIELD USER LOGIN = confUsers.getChild(” fields ”) . getChild (” login ”) . getValue () ;
337 FIELD USER PASSWORD = confUsers.getChild(”fields”).getChild(”password”).

getValue();
338 FIELD USER DOMAIN ID = confUsers.getChild(”fields”).getChild(”domain � id”).

getValue();
339
340 Configuration confDomains = conf.getChild (” tables ”) . getChild (”domains”);
341 TABLE DOMAINS = confDomains.getChild(”name”).getValue () ;
342 FIELD DOMAIN ID = confDomains.getChild(” fields ”) . getChild (”id”) . getValue () ;
343 FIELD DOMAIN NAME = confDomains.getChild(”fields”).getChild(”name”).getValue

();
344
345 Configuration confRoster = conf . getChild (” tables ”) . getChild (” roster ”) ;
346 TABLE ROSTER = confRoster . getChild (”name”).getValue () ;
347 FIELD ROSTER USERS ID = confRoster.getChild(”fields”).getChild(”user � id”).

getValue() ;
348 FIELD ROSTER FRIEND ID = confRoster.getChild(”fields”).getChild(”friend � id”).

getValue () ;
349
350 /* SIGN Change (˜10 LOC) */
351 FIELD ROSTER DEVICE ID = confRoster.getChild(”fields”).getChild(”device � id”).

getValue();
352
353 Configuration confPreferences = conf . getChild (” tables ”) . getChild (” preferences ”) ;
354 TABLE PREFERENCES = confPreferences.getChild(”name”).getValue();
355 FIELD PREF USERS ID = confPreferences.getChild(”fields”).getChild (”user � id”).

getValue () ;



C.4 Server 267

356 FIELD PREF DEVICE ID = confPreferences.getChild(”fields”).getChild (”device � id”)
.getValue () ;

357 FIELD PREF RULE = confPreferences.getChild(”fields”). getChild (” rule ”) . getValue ()
;

358 FIELD PREF PARAM = confPreferences.getChild(”fields”).getChild(”parameter”) .
getValue () ;

359 /* End SIGN Change */
360
361 � catch ( ConfigurationException ce ) �
362 ce . printStackTrace () ;
363 �
364
365 INITIALIZED = true;
366 �
367 �
368
369 �



268 SIGN Source Code

Query.java

1 /*
2 * Copyright � JabaServer Project 2001 � Alexis Agahi
3 */
4
5 package org.novadeck. jabaserver . jabber ;
6
7 import org.xml.sax .*;
8 import org.apache.avalon .framework.logger .*;
9

10 /* SIGN change */
11 import org.ntnu . jabaext . jabber .SQRosterConfig;
12 import org.ntnu . jabaext . jabber .SQPreferences;
13 import org.ntnu . jabaext . process . ProcessIqExt ;
14 /* End SIGN change */
15
16 public class Query extends Element �
17
18 public static final String ELEMENT NAME = ”query”;
19 public static final String NAMESPACE ATTRIB = ”xmlns”;
20 public static String NAMESPACE AUTH = ”jabber:iq:auth”;
21 public static String NAMESPACE AGENTS = ”jabber:iq:agents”;
22 public static String NAMESPACE ROSTER = ”jabber:iq:roster”;
23 public static String NAMESPACE OOB = ”jabber:iq:oob”;
24
25
26 String namespace;
27 Element subQuery;
28
29 public Query() �
30 this ( ELEMENT NAME );
31 �
32
33 public Query( String elementName ) �
34 super( elementName );
35 �
36
37 public void setNamespace( String s ) �
38 namespace = s;
39 �
40
41 public String getNamespace() �
42 return namespace;
43 �
44
45 public void setSubQuery( Element e ) �
46 subQuery = e;
47 �
48
49 public Element getSubQuery() �
50 return subQuery;
51 �
52
53 // processing
54 public void startElement ( String namespaceURI, String elementName, String qName, Attributes

attributes ) throws SAXException �
55 if ( child != null ) �
56 child . startElement ( namespaceURI, elementName, qName, attributes ) ;
57 return ;
58 �
59



C.4 Server 269

60 if ( elementName.equals( ELEMENT NAME )&& namespaceURI != null ) �
61 setNamespace( namespaceURI );
62 // Auth
63 if ( namespaceURI.equals( NAMESPACE AUTH )) �
64 SQAuth sqAuth = new SQAuth();
65
66 child = sqAuth;
67 setupLogger ( child ) ;
68 sqAuth. startElement ( namespaceURI, elementName, qName, attributes ) ;
69 � // Agents
70 else if ( namespaceURI.equals( NAMESPACE AGENTS )) �
71 SQAgents sqAgents = new SQAgents();
72
73 child = sqAgents;
74 setupLogger ( child ) ;
75 sqAgents. startElement ( namespaceURI, elementName, qName, attributes ) ;
76 � // Roster
77 else if ( namespaceURI.equals( NAMESPACE ROSTER )) �
78 SQRoster sqRoster = new SQRoster();
79
80 child = sqRoster ;
81 setupLogger ( child ) ;
82 sqRoster . startElement ( namespaceURI, elementName, qName, attributes ) ;
83 � // OOB
84 else if ( namespaceURI.equals( NAMESPACE OOB )) �
85 SQOob sqOob = new SQOob();
86
87 child = sqOob;
88 setupLogger ( child ) ;
89 sqOob.startElement ( namespaceURI, elementName, qName, attributes ) ;
90 �
91 /* SIGN change */
92 else if (namespaceURI.equals(ProcessIqExt.NAMESPACE ROSTERCONFIG)) �
93 SQRosterConfig sqRosterConf = new SQRosterConfig();
94 child = sqRosterConf;
95 sqRosterConf. startElement (namespaceURI, elementName, qName, attributes ) ;
96 � else if (namespaceURI.equals(ProcessIqExt.NAMESPACE PREFERENCES)) �
97 SQPreferences sqPreferences = new SQPreferences();
98 child = sqPreferences ;
99 sqPreferences . startElement (namespaceURI, elementName, qName, attributes ) ;

100 �
101 /* End SIGN change*/
102
103 �
104 �
105
106 public void endElement( String namespaceURI, String elementName, String qName ) throws

SAXException �
107 if ( child != null ) �
108 child .endElement( namespaceURI, elementName, qName );
109 �
110 if ( elementName.equals( ELEMENT NAME )&& namespaceURI != null ) �
111 if ( namespaceURI.equals(NAMESPACE AUTH)
112 ��� namespaceURI.equals(NAMESPACE ROSTER)
113 ��� namespaceURI.equals(NAMESPACE OOB)
114 ��� namespaceURI.equals(ProcessIqExt.NAMESPACE ROSTERCONFIG)
115 ��� namespaceURI.equals(ProcessIqExt.NAMESPACE PREFERENCES) ) �
116 subQuery = child ;
117 child = null ;
118 return ;
119 �
120 �



270 SIGN Source Code

121 �
122
123 public String toString () �
124 String s = new String () ;
125
126 s += ” � query”;
127 // Attributes
128 if ( namespace != null )
129 s += ” xmlns= � ”” + namespace + ” � ””;
130 s += ”

�
”;

131 if ( subQuery != null )
132 s += subQuery. toString () ;
133 s += ” � /query

�
”;

134 return s ;
135 �
136 �



References

[1] DJ Adams. Programming Jabber. O’Reilly, 2002.

[2] AOL Instant Messenger Web Page. http://www.aim.com/.

[3] AIM Wireless Web Page. http://www.aol.com/aim/wireless/index.htm.

[4] Donald Baker et al. Providing Customized Process and Situation Awareness
in the Collaboration Management Infrastructure. CoopIS, 1999.

[5] Chediak, Mark. Instant messaging gets serious. Red Herring, 103, Septemper
2001.

[6] M. Day, S. Aggarwal, G. Mohr, and J. Vincent. Instant Messaging/Presence
Protocol Requirements. RFC 2779, IETF, Feb 2000.

[7] M. Day, J. Rosenberg, and H. Sugano. A Model for Presence and Instant
Messaging. RFC 2778, IETF, Feb 2000.

[8] P. Dourish and V. Bellotti. Awareness and Coordination in Shared
Workspaces. ACM CHI’92, pages 107–114, 1992.

[9] Federal Communications Commision. Conditoned Approval of AOL - Time
Warner Merger, January 2001.

[10] Fran Bushmann and others. Pattern-oriented Software Architecture, vol-
ume 1. November 1995.

[11] Tom Gross. Towards Ubiquitous Awareness: The PRAVATA Prototype. Par-
allel and Distributed Processing, 2001 Proceedings, Ninth Euro Workshop,
Febuary 2001.

[12] HSQLDB. http://sourceforge.net/projects/hsqldb/.

[13] ICQ Web Page. http://www.icq.com.

[14] Jabber Central Web Page. http://www.jabbercentral.com/.

[15] Engin Kirda, Pascal Fenkamp, Gerald Reif, and Harald Gall. A service Ar-
chitecture for Mobile Teamwork, 2002.



272 REFERENCES

[16] Birgit Kreller et al. UMTS:A Middleware Architecture and Mobile API Ap-
proach, April 1998.

[17] Svein Løvland and Audun Mathisen. Java 2 Micro Edition - Technolgy driven
architecture work. NTNU, Nov 2001.

[18] David Mandato et al. CAMP: A context-Aware Mobile Portal. IEEE Com-
munications Magazine, January 2002.

[19] eMbedded Visual Tools Web Page. http://www.microsoft.com/mobile/developer/.

[20] J. Miller et al. Jabber RFC. http://www.ietf.org/internet-drafts/draft-miller-
jabber-00.txt, Feb 2002.

[21] Madoka Mitsuoka et al. Instant Messaging with Mobil Phones to Support
Awareness. IEEE, 2001.

[22] Morisio, Maurizi and Torchiano, Marco. Definition and classification of
COTS: a proposal. In 1st International Conference on COTS Based Software
Systems, pages 165–175, February 2002.

[23] MSN Messenger Web Page. http://messenger.msn.no/.

[24] Microsoft Press Release, April 2001. http://www.microsoft.com/PressPass-
/press/2001/Mar01/03-16MSNMessengerPR.asp.

[25] NanoXml and kNanoXml. http://nanoxml.sourceforge.net/index.html.

[26] Bonnie A. Nardi, Steve Whittaker, and Erin Bradner. Interaction and Outer-
action: Instant Messaging in Action. CSCW, 2000.

[27] PersonalJava Runtime Environment. http://java.sun.com/products/personaljava/.

[28] B. Raman, R.H. Katz, and A.D. Joseph. Universal Inbox. IEEE, 2000.

[29] Recinto, Ronald. Shooting the messenger? Red Herring, 93, March 2001.

[30] J.C. Tang, N. Yankelovic, J. Begole, M.V. Kleek, F. Li, and J. Bhalodia. Con-
Nexus to Awarenex. SIGCHI, April 2001.

[31] Yahoo! Messenger Web Page. http://messenger.yahoo.com/.


