o

S,
FKTHY

{% VETENSKAP g?}
&8 OCH KONST 9%

s

KTH Information and
Communication Technology

L2206 (2B1446) Embedded Systems

Laboratory 1
Input/Output and Interrupts in Nios Il Systems

24 augusti 2009

Updated version 24 augusti 2009
New information: Write the pollkey function in tisame file as the timeloc variable and
the main program.

1 Objectives

This laboratory will help you to

* get used to the hardware and software of the largyranvironment

» deepen your understanding of how C- and Assembietibns interact

» deepen your understanding of I/0O-handling withipgliand interrupt

« access embedded peripherals by means of C-Macdahat{AL* System Library
» get used to the Altera documentation

2 Preparation Tasks

Read the entire laboratory manual in detail befgo® start with the preparation tasks.
Complete the preparation tasks before your labieasa order to be allowed to start
the laboratory exercises.

It is very important that students are well-prepaia the labs. Lab rooms (B35 and
B36) and laboratory teachers are expensive anteldmesources, which must be used
efficiently.

Please claim your seat in time. After a specifigtet(such as 20 minutes), laboratory
teachers may re-allocate unused seats to othesrgjdncluding students who have
been unable to book a seat.

For admission nearly all preparation tasks mudirighed, and some tasks ateictly
requiredfor admission.

The laboratory work will be performed by groupswb students. However, each
student must understand all developed source aadlalbpreparation tasks.

! HAL = Hardware Abstraction Layer

Course assistants will check that students arepvepared.
When preparing for the laboratory work:

Whenever you have completegmeparatiortask of the laboratory, mark the
preparatiortask as completed by putting a cross into the spoeding circle.

At the lab session:

Whenever you have completed a laboratory task, shtmathe teacher and answer all
guestions about your program. The teacher will nilaglkdlaboratory task as completed
by writing a signature on the corresponding doliteel

2.1 Literature studies

In order to solve the preparation tasks, a loh@drmation can be found in the Altera
documentation on Nios Il [Alt-HW, Alt-SW, Alt-10] @inted to by the course homepage.
The student is encouraged to get a good overviaweohltera documentation and to be
able to make use of it. Often the given referemreside example code, for instance
how to program the timer to generate “alarm” amajpam the input keys to generate
interrupt. The main focus of the reading shoulabehe following:

* Introduction to the Altera Nios Il Soft ProcessAitfintro]
Read this thoroughly, it is a very good introdauti

* Nios Il processor and programming model. Curremthgpters 2 and 3 of [Alt-HW].

* Nios Il Application Binary Interface and InstruatiGet. Currently, chapters 7 and 8
of [Alt-HW].

Especially parameter passing and size of datatypes

Detailed information of each instruction

» Hardware Abstraction Layer and HAL system libr&wrrently, chapters 2, 5, 6, 8,
and 14 of [Alt-SW].

Here you can find out which macros to use readimgjwriting

registers in 1/0O-circuits: PIO and Timer.

You can also find information of how to use

HAL-functions to initiate and use interrupts.

* Nios Il Assembler and Application Binary Interfacaurrently, chapters 9 and 24
[Alt-10].
Especially I/O-register organization and use i@ Rhd Timer.

Details of the Cyclone Il FPGA board that is usethis laboratory is described in the
* DE2 Development and Education Board User Manudt:-D&2].

You should also have a look on the project templttat are available when you create
a new application in the Nios Il IDE.

Valuable information can also be found in the leetuotes pointed to from the course
homepage.

O 21 completed
2.2 Lab Access and Account

You will perform the lab on your own notebook cortgguAfter you have been
registered for the course in the KTH study systeaddk, make sure that you can log on
to the KTH wireless network. There will be no spepenputers in the course laboratory.

2

O 22 completed

2.3 Laboratory exercise 0O

In laboratory exercise 0 you have developed artddes program, and also run it on the
DE2 Development and Education Board. Use your amgrand your experience from
laboratory exercise 0, and upgrade your progranaspasparation for this laboratory
exercise.

O Labo completed

2.3 Show-Time program written in C and Assembler&rictly required
preparation task)

Use programs that are written and simulated in tatiooy exercise 0

The C-functiornvoid puttinme (int* tineloc) readsthe time value stored at
memory address given by the pointer parameter ¢éicnehd prints it to a terminal
window.

The printout must be in the format 42:33 and mespitinted to the left on a new line.

The C-functionvoi d tick (int* tineloc) increments by one the time value
stored at memory address given by the pointer patenm nel oc.

TheNios-Il assembly subroutingel ay (int mnillisec) will delay program execution
by the number of milliseconds given by the parameité | i sec.

The Nios-Il assembler subroutihexasc transforms one 4 bit BCD-coded value (in the range
0 through 9, inclusive) and returns its correspamyiASCII-code. This subroutine is called
from the C-code within the C-functiqrut t i me.

Create a new project called lab1 and copy all progims from lab O to the new project.
Replace the main program written in assembly-code ith the C-code given below.

When executing the main program given in the C-dmelew, each second the actual time is
printed to the console window.
#i ncl ude <stdio. h>

extern void puttine(int* tineloc);
extern void tick(int* tineloc);
extern void delay (int mllisec);
extern int hexasc(int invalue);

#define TRUE 1
int timeloc = 0x5957; /* startval ue given in hexadeci mal / BCD- code */

int min ()

whi | e TRUE

{
puttime (&timeloc);
tick (&ineloc);
del ay (1000);

return O,

}

2.4 Parallel Input/Output. Output using macros

Software accesses the hardware, such as I/O-potteeddE2-board, using macros that "hide"
the memory-mapped low-level interface to the device

Information about these macros can be found inv&wé Developer’s Handbook at the
starting pages of chapter 6: Developing Device &svor the HAL.

In order to write to a parallel I/O-port use theama
| OAR_ALTERA AVALON_PI O DATA.

Example-code: The command
| OAR_ALTERA AVALON Pl O DATA (DE2_ Pl O REDLED18 BASE, Ox3ffff)
writes '1’s to all 18 red leds and thus turns drL&Ds.

In order to read from a parallel 1/O-port use thacno
| ORD_ALTERA AVALON Pl O DATA.

Example-code: The command

| ORD_ALTERA AVALON PI O DATA(DE2_PlI O KEYS4_ BASE)

returns state of the buttons as an integer biepata ‘0’ means that the corresponding
button is pressed.

Symbolic names of I1/0O-ports and 1/O-registers caridund in the system.h file

The system.h file is generated when the systerarljtis built and compiled.
You can find the system.h file in your projects.

It is situated in the system library in folder Dgbt& system_descriptio® system.h.

You have to include some files in your programdtiyare using macros and/or symbolic
names of 10-ports, for instance

#i ncl ude "system h"
#i nclude "al tera_aval on_pi o_regs. h"
Synbol i ¢ nanmes used in our CPU configuration are

« DE2_PI O REDLED18_BASE for the eighteen LEDRs. LEDR17 is MSB (Bit
17) and LEDRO LSB (Bit0).

- DE2_PI O _GREENLED9_BASE for the nine LEDRs. LEDGS is MSB (Bit 8)
and LEDGO LSB (Bit0).

* DE2_PI O KEYS4_ BASE for the four buttons. KEY3 is MSB (Bit 3) and
KEYO LSB (Bit 1).

 DE2_PI O HEX LOW28_BASE for the seven-segment displays.

The seven-segment display has four digits. Thenlast digit is controlled by the seven most
significant bits (HEX3 = bits 27 through 21); tledtimiddle digit is controlled by the next
seven bits (HEX2 = bits 20 through 14); then fokothe right-middle digit (HEX1 = bits 13
through 7), and the rightmost digit by the leaghgicant bits (HEXO = bits 6 through 0).

Update the main loop in your program and includeagro that will cause the time value to
be written in binary form on the 16 red LED’s LEDRthrough LEDROO. Use the natural
BCD encoding with four groups of four bits each.

2.5 The bcd27seg function

Write a C function bcd27seg with the following potyipe:
i nt bcd2seven(int inval)
The purpose of the function is to convert 4-bitanyjncode to 7-bit “seven-segment-code”.

The four least significant bits of the input vakre to be converted into a 7-bit value, such
that this value can be sent directly to a sevemrseg display to produce the appropriate digit.
in a C-function.

Recommended digit patterns are shown in the Figel@w. To light up a segment of a seven-
segment display digit, the corresponding bit shdaxdaero (0). A one (1) will shut the
segment off.

bit index

—
-
—

0
_____'l‘l:hl:_ 5IiI1

13 |2

—_—y
-
|
A
|
]
——
—
]
—
—
]
—
—
]
-
—

2.6 The puthex function

Write a C function puthex with the following proypee:

voi d puthex (int inval)

The purpose of the function is to display the coirtene on the seven-segment digits
HEX3 through HEXO. The puthex function should ¢aitl27seg.

Add a call to the puthex function in your C-codedimloop.

The call to puthex function will be tested on thb bccasion, not in the simulator.

2.7 Parallel Input/Output, polling. Input using macros

The pollkey function
In the text above you can find which macro to ubenvyou want to read values from
KEY3—KEYO.
Create a new project,called lab11O, and copy all files from the pre\squoject to this new
project.
Add a call to gollkey function (see below) in your C-coded main loop.
Write the C-code of the function pollkey in the samefile as the timeloc variable and the
mainprogram. This makes it possible for the pollkey function to reference the timeloc
variable.
Write a C function pollkey with the following prdige:
voi d pol | key()
that polls the keys and affect the behaviour oftitne presentation.
Each time yoypush a button the behavior must change.

It is OK that your program expects you to reledselutton before you push another (or the
same) button and that you never push two buttotiteeagame time. (It is out of the scope of
this lab to take care of all possibilities but yare allowed to do it).

e KEYO. Each time you push the button KEYO the timest'START counting.
e KEYL1. Each time you push the button KEY1 the timest'STOP counting.

e KEY2: Each time you push the button KEY2 the tinadue presented must be
incremented by one second.

e KEY3: Each time you push the button KEY3 the tinadue must be set to 00:00.

You must use a flow chart(as shown in the recitations, and in lab 0) tacdbe the behavior
of the pollkey function.

You can find sample flow-charts in the exercisearat and in the laboratory exercise 0
(del ay is described by a flow chart).

Hints: You can use a variable RUN to indicate & tounting is ON or OFF and use this
variable to decide iick is going to be called or not.

2.8 Response time

If you run the program above you will find that tlesponse time when you push a
button might be disturbingly long. Probably alsongobutton pushes are lost because
the pollkey function is called only once per second

Modify your program so that the pollkey functiorcedled once per millisecond. Make
sure that the time still will be incremented onhce per second.

2.9 Timing by use of hardware timer and HAL-functions

Most processors offer possibilities to use hardviianer circuits. As the timer circuits are
clocked by a crystal oscillator the accuracy ithieorder of 1 per million or even better.
In the Nios-Il processor several timers are avélab

Update your program to use a timer instead of ugrogrammed delay.
It is possible to “order” a timer to “alarm” at sertime in the future.
HAL-functions are supported to handle alarms o tind.

The idea is that when the “alarm” expires, a spdaigction, (alarm-handler) is (called and)
executed.

This function (the alarm handler) shall perform #ations wished (print time value) and
might also order if and when the same functionldietalled again.

This is sometimes named “call-back”.

Create a new projectcalledl ab1ti ner and copy all files from the previous project te th
new project.

Modify the new project to use HAL-functions to or@arm once per second to print actual
time on terminal and hex-display. In the mainloéphe program, still continue to poll the
keys to keep the behaviour of the buttons.

You must write the alarm-handler function and useHAL-function to initiate the system to
use it.

Information of these macros can be found in Softi2eveloper’'s Handbook in the starting
pages of chapter 5: Developing Programs Using #k, MUsing Timer Devices”

2.10 1/O. Interrupt using HAL-functions

Refresh your memory concerning how to use intesrupsoftware and hardware, especially
in the Nios Il CPU. Find out which HAL-functions tse to initiate and register interrupts in
Nios-II.

Information on HAL-functions can be found in:

Software Developer’s Handbook, chapter 7: Exceptlandling.

In the previous program most of the CPU-time im$pelling the keys to detect changes.
Most of the (CPU-) time no changes occur and (@& CPU-time is wasted.

It might be smarter to let the CPU work with sonmeghvaluable (in this lab exercise:
calculating primes) instead of waiting for buttdaschange.

The buttons have hardware support for interrupt®rination on this can be found in the
Nios Il Embedded Peripherals Handbook, chapteP1Q:Core with Avalon Interface.

Create a new projectcalledl abli nt and copy all files from the previous project te tiew
project.

Modify the programs in your new project to use iinipt from the keys instead of polling the
keys. The main loop will now do nothing (idle-loop)

This means that you must writd&kay | nt er r upt Handl er for the Button PIO, and that
you must initialize the system so that interruptsrf the Button P1O will cause the
Key_Interrupt_Handler function to be executed.

You must also enable interrupts from the Button BYyQvriting appropriate value(s) to the
appropriate register(s) in the Button P1O usingahpropriate macro(s).

Information of suitable HAL-functions can be found
Nios Il Software Developer’s Handbook, chapter xcé&ption Handling.

The behavior depending on how you push the buttanst be changed a little from the
previous exercises:

e KEYO. Each time you push the button KEYO the tirhalsSTART or STOP counting.

e KEY1: Each time you push the button KEY1 the tinadue presented must be
incremented by one.

KEY2: Each time you push the button KEY2 the timeetivalue must be set to 00:00.
e KEY3: Each time you push the button KEY3 the timeetivalue must be set to 59:57.

2.11 1/0. Valuable background work calculating primes

At the last page of these instructions, you wilbfithe function NextPrime. Its prototype is:
int NextPrime(int inval)

This function will return the smallest prime numibggger than nval . Calling NextPrime
with a value of 17 in inval will return the valu®,Isince this is the next larger prime. Calling
with the value 26 will return the value 29, andoso

Update your program in previous project so thamnerNumbers are calculated by the
background program loop and printed on the consoidow at the “same time” as time is
shown on the HEX-displays (and LEDR:s). Make shet time can still be manipulated by
the Keys, as specified above.

The function NextPrime will work on the DE2-boardlze lab session.
To be able to run the NextPrime function in the\lionstruction Set
Simulator:

* right-click on the project folder,

* choose "System Library Properties”,

* check the box "Emulate multiply and divide insttions”,

* click "Apply"

If you forget to do this, the simulator may giveeamnor message like:
"Break instruction called without debugger attached

2.12 Configuration

In order to study the configuration used for the2E#oard, open thgyst em h file.
Answer the following questions.

1. Which Nios-processor is used in this configuna® Give the number of stages in the
processor pipeline.

2. The configuration contains a number of diffener@mories. Order these memories
after typical access times and give the size df @emory.

3. Which I/O devices and timer devices are usdtertasks of Section 2? Give their
address spaces and IRQ-levels.

3 Laboratory tasks (performed at the laboratory sesion)

3.1 C and Assembler. “Show-time in the console wiav”

You must have passed Laboration 0. Bring up yoaggam from Laboration O.

Run your program from Laboration O on the Nios-#reware. When you connect the
DE2-board with a USB-cable to your laptop compytar may need to install a
USB-driver. This is described (@etting Started with Altera's DE2 Boardnswer all
guestions from the teacher.

O c-code Show-Time completed, signed by Teacher: e.ooovviiiiieiiiiinnnn.
3.2 Parallel 1/0O Output (on the LED and on the HEXdisplay)

Run your program from Section 2.4 on the Nios-baarithe laboratory. Answer all
guestions from the teacher.

O Parallel 10 Output completed, signed by Teacher.............cccoeeieieinnnns
3.3 Parallel 1/0O Input (from the keys affecting thetime value)

Run your programs from Section 2.7 and 2.8 on tios{doard in the laboratory. Show the
flow-chart description of the pollkey function. Amer all questions from the teacher.

3.4 Callback using Timer

Run your program from Section 2.9 on the Nios-boarthe laboratory environment.
Answer all questions from the teacher.

O callback using Timer completed, signed by Teacher....................coooenee.

3.5 Interrupt generated by Keys using HAL-functionsand
Primes

Run your program from Section 2.11 on the Nios-Oaarthe laboratory environment.
Answer all questions from the teacher.

3.6 Surprise modification given by teacher

O Surprise work to do, decided gacher...................coooiiiiin .
@) Surprise work completed, signed Byacher...............ccooiiiiiiiinnnn.

4 Examination
In order to pass the laboratory the student must:

» have completed all preparation tasks of Sectioaf@rk the lab session.
* have answered all questions of Section 2.

* have completed all laboratory tasks of Sectiom8,answered all questions from Teachers.

Name of StUAENT: ..o e e e e,

@) Laboratory exercise 1 completed, signed by Teacher................................

References

[Alt-Intro] Altera Corporation. Introduction to the Altera NibsSoft Processor
[Alt-HW] Altera Corporation.Nios Il Processor Reference Handbook
[Alt-SW] Altera CorporationNios Il Software Developer's Handbook
[Alt-1/O] Altera Corporation.Nios || Embedded Peripherals Handbook

[Alt-DE2] Altera CorporationDE2 Development and Education Board. User Manual

NextPrime C-code

In the main loop, call NextPrime as follows:

next = NextPrime (next); /* Produce a new prinme. */
printf("\nNext Prine is %", next);
The NextPrime function itself:
/*
* Next Prinme
*
* Return the first prine nunber |arger than the integer
* given as a paraneter. The integer nust be positive.
*/
#define PRIME_FALSE O /* Constant to help readability. */
#defi ne PRI ME_TRUE 1 /* Constant to help readability. */
int NextPrime(int inval)

{
*/

i nt perhapspri ne; /* Holds a tentative prine while we check it.

int testfactor; /* Holds various factors for which we test
per hapsprine. */
i nt found; /* Flag, false until we find a prine. */

if (inval < 3) /* Initial sanity check of parameter. */

{
if(inval <= 0) return(1); /* Return 1 for zero or negative input. */
if(inval == 1) return(2); /* Easy special case. */
if(inval == 2) return(3); /* Easy special case. */

}

el se

/* Testing an even nunber for prinmeness is pointless, since

* all even numbers are divisible by 2. Therefore, we nake sure
* that perhapsprine is larger than the paraneter, and odd. */
perhapsprine = (inval + 1) | 1;

/* While prinme not found, |oop. */
for(found = PRIME_FALSE; found != PRI ME_TRUE; perhapsprime += 2)
{
/* Check factors from3 up to perhapsprine/2. */
for(testfactor = 3;
testfactor <= (perhapsprine >> 1);
testfactor += 1)
{
found = PRI ME_TRUE; /* Assume we will find a prine. */
if((perhapsprine %testfactor) ==)

/* 1f testfactor divides perhapsprine... */
found = PRI ME_FALSE; [* ...then, perhapsprinme was non-prinme. */
goto check_next _prime; /* Break the inner |oop

go test a new perhapsprine. */
}
}

check_next _prime:; /* This label is used to break the inner |oop. */
if(found == PRRME_TRUE) /* If the | oop ended normally,

we found a prine. */
{

return(perhapsprine); [/* Return the prinme we found. */

}
}

return(perhapsprine); /* When the | oop ends,
perhapsprine is a real prine. */

10

