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A “meta” (pseudo-) algorithm is described that, for any fixed k, finds a fast
(O(log(a))) algorithm for playing 3-rowed Chomp, starting with the first, second,
and third rows of lengths a, b, and c, respectively, where ¢ < k, but a and b are
arbitrary. © 2001 Academic Press

How to Play CHOMP

David Gale’s famous game of Chomp [Ch] starts out with an M by N
chocolate bar, in which the leftmost-topmost square is poisonous. Players
take turns picking squares. In his or her (or its) turn, a player must pick
one of the remaining squares, and eat it along with all the squares that
are “to its right and below it.” Using matrix-notation with the poisonous
square being entry (1, 1), and the initial position consisting of the whole
bar {(i,j)|]1 <i < M,1 < j < N}, then picking the square (i, j,) means
that one has to eat all the remaining squares (i, j) for which both i > i, and
j = Jjo hold. The player that eats the poisonous (leftmost-topmost) square
loses. Of course picking (1, 1) kills you, so a non-suicidal player will not
play that move unless forced to.

For example, if M = 4 and N = 3, then the initial game-position is
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!'Supported in part by the NSE The Maple package Chomp3Rows is available from
Zeilberger’s website, http://www.math.temple.edu/ ~zeilberg/.
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The first player may choose to play (4, 3), in which case the game-position
becomes

SETES
SECESE
< <

or he may choose to play (2, 2), which shrinks the chocolate bar to

X X X
X
X M
X

and so on.

The Two Cultures of Mathematics: Existential and Constructive

Nineteenth century mathematicians were honest. When they tried to
prove that something existed, they tried to find it, explicitly. Then came
Hilbert, who turned math into theology by “proving” existence using the
“Law” of the Excluded Middle. Of course, 20th-century mathematicians were
forced to cheat, because they ran out of “computing time” and “memory
allocation” in their tiny PC between their shoulders.

Now that we have much more powerful silicon brains to aid us, we can
afford again the luxury of being honest, and actually finding the desired
objects, at least whenever it is theoretically possible.

Of course, in (finite) combinatorics, there is no philosophical objection
to using indirect arguments, but it is still much more satisfying to exhibit
the object rather than just proving its existence.

One of the most gorgeous existence proofs of all times is the following
gem of David Gale [Ch].

THE CHOMP EXISTENCE THEOREM. In a Chomp game that starts with an
M by N chocolate bar (with MN > 1), there exists a winning move for the

first player.

David Gale’s One-Line Proof. Consider the minimal move of only
removing the square at the bottom-rightmost corner, (M, N). If it is a
winning move, then it is a winning move. Otherwise, it is a losing move.
But in the latter case, this means that your opponent has a good counter-
move. It is immediate that any position reachable from the new position
(with MN — 1 squares) is also reachable from the initial position (with
MN squares). Hence the first player could have gotten to that position
right away.
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This famous (but not famous enough!) proof can be used in practice
as follows. I first play with Kasparov, pretending that I am Deep Blue,
and make the above trial move of removing the bottom-right corner. If he
resigns, then it is a good move; otherwise, he would make a good counter-
move, that I can use when I play with you. This idea is called “strategy
stealing” in [WW].

How to Find the Winning Move?

Of course, there exists an algorithm for finding the winning move, and
more generally of deciding whether any given Chomp position is winning
or losing and finding a winning move in the former case. This is true for all
combinatorial games where the number of possible positions is finite, and
the game graph is acyclic. This is part of the lovely theory of combinatorial
games. Readers not familiar with this beautiful theory are strongly advised
to read Aviezri Fraenkel’s lively and very lucid introduction [ST].

First one “draws” the game graph of the game. This is a directed graph
whose vertices are all possible “game positions,” and there is a directed
edge between the vertex corresponding to position P; and the vertex cor-
responding to position P, if P, is reachable from P; in one legal move.

Having “drawn” that graph, you label all the sinks (vertices with out-
degree 0) by 9 (for “Previous player wins”), because if it is your turn to
move and you are there, then you lost, because you can’t go anywhere. Next
label all vertices that have at least one edge leading to a &-vertex, by N (for
“Next player wins”). Then, if you see a vertex all of whose edges lead to
N-labelled vertices, label it 2. Continue to alternately label the vertices
and % until you finish.

If the directed graph of the game is finite and has no cycles, then it is
easy to see that the above procedure always terminates.

Now let’s apply this to Chomp. How many possible positions are there?
The intermediate positions in an M x N Chomp are integer-partitions (non-
increasing sequences of positive integers) Ay > A, > --- > A, with A; < N
and r < M. It is well known and easy to see that their number is ("}").
So, for example, when M = O(N), we have an exponential size graph, and
hence an exponential-time and exponential-memory algorithm for labelling
it (and doubly exponential in bit size!).

When M = N, there is a trivial winning move. Choose to chomp at the
square at location (2, 2), leaving a symmetric L-shaped shape, and then use
the copy-cat strategy of aping your opponent’s move to the other arm of
the L-shape.

Another trivial special case is when we only have 2 rows. We have

PROPOSITION 0. A 2-rowed Chomp position is P iff it is of the form (a, a —
1) (a = 1), i.e., where the top row has one more square than the bottom row.
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If (a,b) (a = b = 0) is a Chomp position that is winning (i.e., b # a — 1),
then if a — b > 2, a winning move is to go to position (b + 1,b), and if
a—b =0, to go to position (b, b — 1).

Proof. We really have two statements here:

Pi(a) (a,a —1) is a & position (for all a > 1).

P,(b) (a, b) is an N position for every a such that a > b > 0, and a —
b # 1. Furthermore the winning move is (a,a — 1) if a = b and (b + 1, b)
ifa—b=>2.

The proof is by joint induction. P;(1) is trivially true. The positions reach-
able from (a,a—1) are (a—1,a—1), and (a, a — 2), (a,a —3), ..., (a,0),
each of which are W positions because of P,(b), for b < a. Hence %, (b)
for b < a imply P;(a).

But also P,(b) is implied by P;(b — 1), if a = b, and by P;(b) ifa — b = 2.

So we have that P;(b — 1) and P;(b) imply P,(b), and P,(i),i =1---
b — 1 imply P;(b). Since P;(1) is true, this completes the induction.

What Is the Computational Complexity of 2-Rowed Chomp?

First note that when we fix the number of rows and play k x n-Chomp,
and only let the number of columns, 7, get larger, then the naive algorithm
is no longer exponential in n, but rather is O(n*). But in order to represent
a position in k-rowed Chomp, we only need O(log ) bits, hence the naive
algorithm is still exponential in the size of the input for any fixed number
of rows, and hence doubly exponential for general Chomp.

On the other hand, the algorithm of Proposition 0, for 2-rowed Chomp,
is clearly linear in the bit-size of the input, both for deciding whether it is
a @ or N position and for finding a winning move in the latter case.

Impossible Dream. Find a polynomial-time algorithm (in the bit-size of
the input) for Chomp.

In particular, such an algorithm would quickly (i.e., in time polynomial in
logn and k) find the winning first move in a k& x n Chomp, whose existence
is guaranteed by Gale’s clever strategy-stealing argument.

Since the above dream is impossible, we have to find more realistic
dreams. We should not be like the fictional Uncle Petros from Apostolos
Doxiadis’s novel, who “wasted” his life trying to prove the Goldbach Con-
jecture, and like the real Paul Cohen, who is rumored to have “wasted” the
second half of his life trying to prove the Riemann Hypothesis.

So let’s be more modest and try to find a fast algorithm (in logn) for
k-rowed Chomp, where k is fixed. Even this is probably impossible. So let’s
be even more modest and try to do it for k = 3, granted that we already
know how to do it for k = 2. Even this seems to be impossible, at least
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for me. So what is a poor mathematician to do? The case k = 2 is known
and trivial, while the case k = 3 is (probably) impossible. This is just one
instance of the human mathematician’s predicament of walking the

TIGHTROPE BETWEEN THE TRIVIAL AND THE IMPOSSIBLE.

One may define the cutting edge of research as that x for which doing x — €
is utterly trivial while doing x + € is impossible.

It is not unlike designing a math exam for my calculus students. If I give
them the kind of tests that I used to take, and even much easier ones,
they will all flunk. On the other hand, if I'll ask them to find 242, 243,
and problems like that, and allow calculators, most of them will get an A.
It is non-trivial to design a test that is of “just right” level of difficulty to
produce a bell-shaped curve.

This “trivial for k = 2, impossible for k = 3” curse brings to mind the
“Three Body Problem.” One way out of the impossibility dead-end is to
abandon the quantitative and go to the qualitative, as did Poincaré. This
leads to another cultural divide.

The Two Cultures of Mathematics: Quantitative and Qualitative

But proving existence, uniqueness, and ergodicity will never get us to the
moon, nor will it predict the planetary orbits for the next ten thousand
years. For that, mathematicians took advantage of the fact that planets are
much lighter than the Sun and used perturbation expansion, starting with
the solution of the 2-body problem. This leads to the following.

The Two Cultures of Mathematics: Exact and Approximate

The approximate culture gave rise to numerical analysis and its theo-
retical parent, approximation theory. It is approximate mathematics that
is the most useful in the sciences. The whole edifice of Feynman dia-
grams was designed to find “series expansions” that go from a trivial ¢?
(Gaussian) functional integral to an impossible ¢>-and-beyond functional
integral. Its practical effectiveness and amazing agreement with experiment
is due to the lucky coincidence(?) that the fine structure constant is fairly
small (roughly 1/137). The default in physics is “perturbative,” and when-
ever a “non-perturbative” answer is found, like in Nati Seiberg’s astounding
tour-de-force that lead to the Seiberg—Witten invariants and to much more,
it is a cause of celebration in physics (and in this case also in math, because
of its far-reaching implications in topology).

Speaking of quantum field theory, most of it is non-rigorous, and this
brings to mind another cultural divide, this time involving the broader
community of people who use mathematics, as opposed to full-time
mathematicians.
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The Two Cultures of Doing Mathematics: Rigorous and Non-rigorous

According to Pierre Cartier’s charming and fascinating article [Ma] pro-
fessional mathematicians should pay more attention to the latter, since [Ma,
p. 1], “There is another way of doing mathematics, equally successful, and
the two methods should supplement each other and not fight.” Yet another
way is to compromise and do semi-rigorous math as 1 proposed in my cele-
brated manifesto [SR].

Back to Chomp

But the term “approximation” is not appropriate in this context, since
everything is discrete. A position is either & or V. Perturbation is more
pertinent. An arbitrary 3-row Chomp position can be described as (a, b, ¢)
where a, b, ¢ are the lengths of the top, middle, and bottom rows, respec-
tively, and of course a > b > ¢ > 0. When ¢ = 0, we are back to 2-row
Chomp, so the next thing to try is to characterize the & positions when
¢ = 1. Let’s try and do it. We know that (b + 1, b, 1) is /¥, since chomping
the bottom cell (the sole cell of the bottom row), leads to the % position
(b+1,b,0). We also know that (1, 1, 1) is W, since the & position (1, 0, 0)
is reachable from it. We also know that (a, 0, 0), for a > 1, is W, since we
can get to (1, 0, 0) from it. From the 2-rowed case we know that (a, a, 0),
and (a, b,0) with a — b > 2 are &. What are the “smallest” positions with
¢ <1, that are 2 ? We see that all the four-cell positions (4, 0, 0), (3, 1, 0),
(2,2,0), (2,1, 1) are #. Among the five-cell positions (5, 0, 0), (4, 1, 0) are
N, since the former can be answered by (1, 0, 0) and the latter by (2, 1, 0).
We already know, from the 2-rowed case, that (3, 2, 0) is %, and now we
see that (2, 2, 1), (3, 1, 1) are both 2, since all the positions reachable from
them are & (do it!).

So, now we have two new members of the & club: (2, 2, 1) and (3, 1, 1).
But these two factoids entail an infinite number of new memberships in the
N club, namely 2+ «,2+ B,1) forall @« > B> 1, aswell as (2+ «,2,1)
for @ > 1. Also, from the fact that (3, 1, 1) is 2 we get that (3,2, 1), (3,3, 1)
are N, as well as 3+ «, 1,1) for & > 1. Now it is easy to see (do it!) that
these /' positions exhaust all the possible positions with more than 5 cells
and ¢ < 1. Hence:

PROPOSITION 1. The only % positions (a, b, ¢), with ¢ = 1, are (2, 2, 1)
and (3, 1, 1). Every N position with ¢ = 1, and at least 6 cells, is (at least)
in one of the forms: (3, 2, 1); (3,3, 1); 4+ a,1,1)(e¢ = 0); 2+ o,2 +
B, 1)(a>pB>0,a+ B > 0)where (a > B > 0), and the winning moves are,
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respectively,

3,2,1)— (3,1,1),
3,3,1)—> (3,1,1),
4+4+a,1,1)— (3,1,1),
2+4+a,2+8,1)—(2,2,1).

Note that there turned out to be only 2 members of % when ¢ = 1,
so we did not need induction. On the other hand when ¢ = 0 (the 2-
rowed case), there were infinitely many members, so we had to resort to
induction.

Now we are ready to graduate to the case ¢ = 2. From the % positions
for ¢ = 0 we know that (b + 1, b, 2) all belong to & (you chomp-oft the
last row), and from (3,1,1) € 2 we know that (3,2,2) € W, and from
(2,2,1) € 2 we know that (2, 2,2) € N. Hence the smallest (according to
the number of cells) & position is (4, 2, 2), since all the possible moves
lead to W positions. Now this fact implies that (4, 3, 2), (4, 4, 2) are N
positions. The smallest % position is (5, 3, 2), which immediately implies
that (5,4,2) € & and (5 + &, 3,2) € W, for « > 1. The smallest position
that is not covered by the above is (6, 4, 2), and we can directly verify that
all the possible moves from (6, 4, 2) lead to ¥ positions. So (6, 4,2) € %.
Continuing, we get that also (7,5, 3) € J/, and we humans would be soon
led to conjecture the following

PROPOSITION 2. A Chomp position (a, b,2) is P iff a — b = 2.

Now this is a genuine proposition, since it contains infinitely many state-
ments: (4,2,2) € ?, (5,3,2) € &, (6,4,2) € %,.... Nevertheless, we
humans can easily prove it by induction like we did prove Proposition 0
for ¢ = 0 (the two-rowed case). Why won’t you do it right now?

We can continue in this vein, but I doubt that any human can go beyond
¢ = 10, since the number of cases grows larger and larger, as we will see
below, once we let Shalosh B. Ekhad take over. One hope would be that
there would emerge a pattern valid for arbitrary ¢, that a human would be
able to prove by induction or otherwise. However, this miracle is probably
as unlikely as a closed-form solution to the Three Body Problem. Neither
I, nor Shalosh, were able to detect such a pattern, and while Shalosh suc-
ceeded, using the Maple package Chomp3Rows, to be described soon, to
first conjecture, and then (all by itself!) prove Proposition ¢, for ¢, < 115,
characterizing the & positions of the form (a, b, ¢;), no discernible global
pattern emerged (as a function of ¢;), at least not to us.
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So Why Is It Interesting?

Gregory Chaitin, standing on the shoulders of Kurt Godel and Alan
Turing, taught us that most results are either undecidable or uncompressible.
Whenever there is a pattern, it means that the result is compressible, hence
was trivial all along and we just did not know it. So we humans are des-
tined to only prove trivial results, since any result, once proved, is trivial,
for the very reason that we, low-tech humans, were able to prove it.
The only way to transcend this triviality predicament, and to be able to
prove semi-trivial results, is to ask the computer to help us (see [Op36,
Op37)).

In other words, we have this powerful hammer, called the computer, that
can hammer so many different nails. Of course, we should not waste our
time hammering screws, but when we see a screw, rather than look for a
screwdriver, or try to use our mighty hammer to awkwardly hammer it, just
leave it alone! There are so many challenging nails around, where our ham-
mer can be used to advantage, that we should keep a lookout for them,
and try to nail them, thereby hopefully improving our hammering skills.
It would be premature to try and find a computer-proof of the Riemann
Hypothesis, so let’s try first to teach the computer how to do research in,
say, 3-rowed Chomp. Whenever, we have a class of human theorems where
the arguments repeat themselves, it is a good candidate for teaching a com-
puter. So the main justification for developing the package Chomp3Rows
was as an étude in computer-generated research. As we’ll get better and
better at it, very soon we will be able to tackle the Riemann Hypothesis
and other biggies.

I call people like me “mathematical engineers,” and I am sure that this
culture of mathematical (software) engineering will soon be mainstream,
making the following dichotomy obsolete.

The Two Cultures of Mathematics: Problem Solvers and Theory Builders

W.T. Gowers [TC], in a fascinating, though somewhat defensive, article,
described these two cultures, lamenting that theory builders are still the
topdogs, and problem-solvers the underdogs. Luckily, this is no longer true!
In fact, he himself, a problem-solver by his own avowal, is a living proof of
the respectability of problem-solvers, having won the Fields medal.

Since computers are more suited for problem-solving than theory-
building (at least for some time to come), I believe that problem-solving
will become more and more important, but, with a twist! It would be a total
waste of time for a human to solve a problem directly. The mainstream
activity of late 21st and 22nd century mathematics would be meta-problem-
solving: programming the computer to solve problems, that we humans
would never have a chance to prove by ourselves. So Gowers’s two breeds
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of mathematicians will both die out and give place to the

Mainsteam Culture of Future Mathematics:
Programming Computers to do Math.

Back to 3-Rowed Chomp

Since we are restricting attention to 3-rowed Chomp, it is more conve-
nient, at least for the computer, to look at the conjugate partition, i.e., the
column-lengths, and write down how many 3’s, how many 2’s, and how many
1’s. So from now on position (a, b, ¢) will be denoted by [c, b — ¢, a — b]
if c>0.If c=0 and b > 0, then it will be denoted by [b, a — b], and if
b = ¢ = 0 then we simply write [a]. In order not to confuse these two nota-
tions, we will use circular parentheses for the former, and reserve square
brackets for the latter. For example, (5, 4, 2) is [2, 2, 1] in the new notation,
while (4, 1) is [1, 3], and (6) is [6].

In the sequel « and B will denote general non-negative integers. Let’s
look at two-rowed Chomp once again. In the new notation the % positions
are [a, 1]. These entail that [«, 0] and [«, 2 4+ B] are always N positions,
and we call them symbolic winners. We also have the winning-move function
f([a,0]) = [a —1,1] and f([a, 2+ B]) = ([, 1]).

In order to formally prove the above statement, and its analogs for ¢ =
1,2, ..., we could use induction, like we did in the human ramblings above,
but we can also prove that the defining property is satisfied. The symbolic
winners are disjoint from the symbolic losers (assume that [/, 1] = [, B+
2]; then B = —1, a contradiction), and that their union is the set of all
possible positions.

Using generating functions, this is equivalent to the formal power series

1
waw + xwxw _ < _ 1)
wime T T
having non-negative coefficients. While I don’t have a general algorithm
for deciding this for arbitrary formal power series (and even for arbitrary
rational functions, in fact the general problem is undecidable), the simple
rational functions that show up in this problem all have their denominator
(1 —x)(1 — y) and then one can use Maple’s conversion to partial fractions
and use an obvious necessary condition (and I don’t care whether or not it
is sufficient, it worked fine for me) to prove that this is indeed the case.
The reader is urged to study the source-code of the Maple package
Chomp3Rows to see how it is done in practice. The novelty is that the com-
puter does “general reasoning” for infinitely many cases by using symbol-
crunching rather than mere number-crunching. Another nice thing is that,
for any fixed ¢, the computer finds, iteratively, the & positions. Every time
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it finds a new 2 position it evaluates whether this is it, by checking, using
generating functions, that all positions with ¢ < ¢, are taken care of. If
this is not the case, and it has two consecutive & positions [cy, &y, By] and
[co, g + 1, Bgl, it “conjectures” that [cy, oy + @, By] is a symbolic loser
(representing an infinite sequence of & positions), and then tries to prove
its conjecture. If it is unable to prove it, it just keeps on going. A priori, we
don’t have a (meta-) proof that it would always succeed, so unlike WZ the-
ory, this is only a pseudo-algorithm. But once we succeed, we don’t have
to worry about its pseudoness, since once the pudding has came out, let’s
just enjoy it and eat it, and not worry whether we were justified in trying
out the recipe on a priori grounds.

This is the beauty of human research! It is always a gamble. If you know
beforehand that your ideas are guaranteed to work out, then it is a routine
exercise, not research!

A User’s Manual for the Maple Package Chomp3Rows

As with all my packages, it is available from http://www.math.temple.
edu/"zeilberg/. Once you have downloaded it (as Chomp3Rows), go
into Maple, and type: read Chomp3Rows; and follow the instructions given
there. In particular, to get a list of the main procedures, type ezra();,
while to get a list of all procedures, type ezral();. To get help on any
particular procedure, type ezra(ProcedureName) ; . for example, for help
with Losers, type ezra(Losers) ;.

The main procedure is Losers(a, k);. It inputs a symbol, a, and an
integer, k, and outputs the set of all symbolic losers [«, B, y] (in the con-
jugate notation, i.e., the conjugate partition is 3*2817), such that a < k.

For example, if you type Losers(a, 5); you would get [[[1, 0, 2],
(1, 1, ol11, [[2, a, 211, [[3, O, 31, [3, 2, o], [3, 1, 311,
[[4, 0, 4], [4, 1, 4], [4, 3, 0], [4, 2, 4]], [I[5, 0, 5], [5, 1, 3],
(5, 2+a, 4111.

This means that the only losers when « = 1, are [1,0, 2] and [1, 1, 0],
ie.,, (3,1,1) and (2,2, 1); the only losers when a« = 2 are those of the
form [2, a,2] (a > 0), or in the usual notation, (4 + a,2 + a,2), etc. My
computer, Shalosh B. Ekhad, was able to go as far as &k = 115, and in
order to save time, this pre-computed table is built-in in the procedure
T116.

Using the pre-computed data, encoded in T115(a, k), procedure
PTable(k) extends the table given in [WW, p. 599], from £ < 26 to
k < 115. However, note that the table in [WW] is really implicitly sym-
bolic, even though its authors may not have been aware of it, and it looks
numeric. It turns out that whenever the ith column ends with a 0, it means
that there are only finitely many losers with y = i, but whenever it does not
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end with a 0, it always happens to end with a repeated integer. In reality,
as rigorously shown by Chomp3Rows, these two repeated last entries really
repeat ad infinitum, implying a symbolic loser. In addition Ptable(115);
extends this all the way to y < 115.

But in order to play Chomp effectively, it is not enough just to know
what the losing positions are. One should also know what is a winning
move if you are lucky to be at an N position. This information is furnished
by typing WINNERS (a,b,k) ;. Here a and b are symbols (letters), and k is a
positive integer. This will return a table U, where U is the set of symbolic
winners, arranged in the form of pairs [winner, loser], where winner
is a symbolic winner, and loser is the “winning move” to be performed.
For example, typing op (WINNERS(a,b,1)); yields table([ 1 = {[[1, 1,
i1, [1, 0, 211, [[1, 0, 01, [111, [[1, a, 11,[a+ 1, 111, [[1, 2, O],
(1, o, 211, [[1, 0, 3+bl, [1, 0, 211, [[1, 2+a, b], [1, 1, 011,
([1, 1, b+ 11, [1, 1, 011}1), which means, e.g., (the last term), that
[1,1, b+ 1] is a symbolic winner, and the winning move is to make it
into [1, 1, 0].

You can also play (3-Rowed) Chomp fast with the computer, by typing
PlayChomp (POS) ;, where POS is the initial position. For example, try Play-
Chomp ([100000,20000,115]);. This would be hopeless in a brute-force,
numeric program that implements the naive algorithm.

But even if you are a numerical person, and are only interested in,
say, a table of all losers in a 3 x 115 game of Chomp, then find-
ing and storing the losers and winners symbolically is much more
efficient than listing explicitly all (%8) = 266,916 cases. If you are
also willing to start with non-rectangular positions, with arbitrarily
large top two rows, for example, (10000000, 1000000, 115), then the
numeric program would be hopeless. Very often, clever symbolic com-
putations can save lots of numerical efforts. Conversely, symbolic
computation can learn a lot from numerics in efficiency and speed.
Hence, another challenge for the future would be to bring together the
two cultures of computation: numeric and symbolic.

Future Work

It would be worthwhile to extend Chomp3Rows to k-row Chomp, where
the lengths of the last & — 2 rows are fixed, but the top two rows are
arbitrary. Another interesting problem is to find, automatically, the more
refined Sprague—Grundy function, rather than just - status. Finally, it is
hoped that the present methodology might extend to “perturbation expan-
sions” of Wythoff’s game (a.k.a. Fibonacci-Nim) and other combinatorial
games.
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