

1

 Eddy DK

Programmer Guide

Ver 2.1.0.2

2009. 6.19

2

Revision History

Revision DateRevision DateRevision DateRevision Date Document VersionDocument VersionDocument VersionDocument Version PagesPagesPagesPages DescriptionDescriptionDescriptionDescription

Feb-5-2009 2.1.0.1 All Initial release by shlee

Feb-5-2009 2.1.0.2 Add DC characteristics

3

Table of Contents

Chapter 1.Chapter 1.Chapter 1.Chapter 1. IntroductionIntroductionIntroductionIntroduction..5555

1.1 About this document ..5

1.2 Who should read this document?..5

1.3 Document organization ..6

1.4 Eddy-DK Related Documents ..7

1.5 Technical Support ..8

Chapter 2.Chapter 2.Chapter 2.Chapter 2. Getting StartedGetting StartedGetting StartedGetting Started..9999

2.1 What can you do with Eddy-DK? ..9

2.2 Eddy-DK Package Contents ..9

2.3 Eddy-CPU v2.1 Board..10

2.4 Eddy-DK v2.1 Board ..31

Chapter 3.Chapter 3.Chapter 3.Chapter 3. Development EnvironmentDevelopment EnvironmentDevelopment EnvironmentDevelopment Environment..47474747

3.1 Source code directory structure ..47

3.2 Language..48

3.3 Development Environment ...48

3.4 Installing on Windows OS ..48

3.5 Installing on Linux...52

3.6 Removing Development Environment..53

Chapter 4.Chapter 4.Chapter 4.Chapter 4. Compiling of Application ProgramCompiling of Application ProgramCompiling of Application ProgramCompiling of Application Program..54545454

4.1 Program Type...54

4.2 Writing Application Program ..56

4.3 Writing Makefile ..56

4.4 Application Program Compile ..57

4.5 Running Application on Eddy...58

Chapter 5.Chapter 5.Chapter 5.Chapter 5. Creating FirmwareCreating FirmwareCreating FirmwareCreating Firmware..60606060

5.1 How to Create a Firmware ...60

5.2 Firmware Upgrade..62

Chapter 6.Chapter 6.Chapter 6.Chapter 6. Library IntroductionLibrary IntroductionLibrary IntroductionLibrary Introduction ..65656565

6.1 Introduction...65

6.2 Makefile ..65

6.3 System functions..65

6.4 Eddy Environment Function ...66

6.5 Serial functions...68

6.6 Ethernet functions ..71

6.7 GPIO Functions ..75

6.8 ADC Function ...81

4

6.9 RTC Function..82

6.10 Debugging Function ...83

Chapter 7.Chapter 7.Chapter 7.Chapter 7. Eddy SoftwareEddy SoftwareEddy SoftwareEddy Software ..84848484

7.1 Software Structure Diagram...84

7.2 Main Applications ...85

ChapChapChapChapter 8.ter 8.ter 8.ter 8. Handling HTML & CGIHandling HTML & CGIHandling HTML & CGIHandling HTML & CGI..86868686

8.1 WEB Configuration...86

8.2 Example of HTML Code...86

8.3 Example CGI Code...87

Chapter 9.Chapter 9.Chapter 9.Chapter 9. AppendixAppendixAppendixAppendix..90909090

9.1 System recovery via Bootloader ..90

9.2 System recovery via USB...95

9.3 product Specification ...101

9.4 Ordering Infomation..103

 Chapter 1. Introduction

5

Chapter 1.Chapter 1.Chapter 1.Chapter 1. IntroductionIntroductionIntroductionIntroduction

This chapter explains about this manual and introduces the related documents and support.

1.11.11.11.1 About this documentAbout this documentAbout this documentAbout this document

This manual explains about how a programmer can develop a customized application for Eddy module and how this

application can be uploaded and executed on the module. To help programmers with this work, information on

Eddy's operating system and API functions for convenient source writing is supplied.

After reading this document, a programmer can write his or her own application and execute it on the module.

1.21.21.21.2 Who Who Who Who sssshould hould hould hould rrrread ead ead ead tttthis his his his ddddocument?ocument?ocument?ocument?

This document is designed for programmers who wish to develop a new application using Eddy-DK. It is strongly

recommended that the programmer read this document before starting any programming work. If you are an

administrator or an end user who just needs to apply the module into practical applications, you do not need to read

this document. User's Guide will be helpful in that case. This manual deals with the complete process of writing

source codes and making a firmware that can be uploaded and executed on Eddy module.

 Chapter 1. Introduction

6

1.31.31.31.3 Document Document Document Document organizationorganizationorganizationorganization

Chapter 1. IntroductionChapter 1. IntroductionChapter 1. IntroductionChapter 1. Introduction is a preface with general information and introductory notices.

Chapter 2. Getting StartedChapter 2. Getting StartedChapter 2. Getting StartedChapter 2. Getting Started gives brief information needed before starting programming work.

Chapter 3. Writing ApplicationChapter 3. Writing ApplicationChapter 3. Writing ApplicationChapter 3. Writing Application explains about the process of writing a customized application and related work..

Chapter 4. CompilChapter 4. CompilChapter 4. CompilChapter 4. Compiling Applicationing Applicationing Applicationing Application deals with the process of compiling your application with Makefile.

Chapter 5. Creating FirmwareChapter 5. Creating FirmwareChapter 5. Creating FirmwareChapter 5. Creating Firmware helps you converting a compiled application into a firmware that can be accepted by

Eddy module.

Chapter 6. Library explainsChapter 6. Library explainsChapter 6. Library explainsChapter 6. Library explains about the library and API functions you can use while programming and application.

Chapter 7. Chapter 7. Chapter 7. Chapter 7. Eddy SoftwareEddy SoftwareEddy SoftwareEddy Software shows how to implement simple TCP/IP and serial routines using example source codes

that are included in the development kit.

Chapter 8. Handling HTML & CGIChapter 8. Handling HTML & CGIChapter 8. Handling HTML & CGIChapter 8. Handling HTML & CGI provides a guide for integrating your own applications with Eddy's web interface.

Chapter 9. AppendixChapter 9. AppendixChapter 9. AppendixChapter 9. Appendix provides programming notes and a list of default utilities.

 Chapter 1. Introduction

7

1.41.41.41.4 EddyEddyEddyEddy----DK Related DocumentsDK Related DocumentsDK Related DocumentsDK Related Documents

The following table summarizes documents included in the Eddy-DK document set.

Document NameDocument NameDocument NameDocument Name DescriptionDescriptionDescriptionDescription

User Guide
Integration, configuration, and management of Eddy for the

administrator

Programmer’s Guide

Programmer’s application development guide, including in-depth

approach to compiling, linking, and creating firmware

API reference is also included with a list of available functions

for customized application programming

LemonIDE Manual
Guide for primary function of each tool contained in LemonIDE on

Windows and Linux.

Portview User Manual
Guide for SystemBase device server management application

Portview

COM Port Redirector User

Manual
Guide for SystemBase COM Port Redirector

TestView User Manual
Guide for TestView application for testing Eddy serial port and lan

port.

If you need brief information on Eddy or embedded device servers in general, please visit our corporate website at

http://www.sysbas.com/. You can view and/or download documents related to Eddy as well as latest software and

firmware updates. Available resources are as follows:

Document NameDocument NameDocument NameDocument Name DescriptionDescriptionDescriptionDescription

Eddy Spec Sheet Specifications for Eddy CPU and DK board.

Eddy White Paper
An introductory reading for anyone new to embedded device server.

Deals with background, history, market environment, and technology

Eddy Application Notes Application instruction of Eddy described with diagram and image.

All documents are updated promptly, so check for the recent document update. The contents in these documents

are subject to change without any notice in advance.

 Chapter 1. Introduction

8

1.51.51.51.5 Technical SupportTechnical SupportTechnical SupportTechnical Support

There are three ways you can get a technical support from SystemBase.

First, visit our website http://www.sysbas.com/ and go to ‘Technical Support’ menu. There you can read FAQ and

ask your own question as well.

Second, you can e-mail our technical support team. The mail address is tech@sysbas.com. Any kind of inquiries,

requests, and comments are welcome.

Finally, you can call us at the customer center for immediate support. Our technical support team will kindly help you

get over with the problem.

The number to call is 82-2-855-0501 (Extension number 225). Do not forget to dial the extension number after getting

a welcome message.

Copyright 2007 SystemBase Co., Ltd. All rights reserved.

Homepage: http://www.sysbas.com/

Tel: +82-2-855-0501

Fax: +82-2-855-0580

1601, DaeRyung Post Tower 1, 212-8, Guro-dong, Guro-gu, Seoul, Korea

 Chapter 2. Getting Started

9

Chapter 2.Chapter 2.Chapter 2.Chapter 2. Getting StartedGetting StartedGetting StartedGetting Started

This chapter explains about packaging and installation, and discusses key features of Eddy-DK.

2.12.12.12.1 What can you do with EddyWhat can you do with EddyWhat can you do with EddyWhat can you do with Eddy----DK?DK?DK?DK?

Eddy-DK is designed to help programmers to develop a customized application that can be applied to Eddy module

easier and faster. It has been a time-consuming and burdensome work to port an operating system and develop an

application on a new hardware. Eddy module and Software Development Kit makes this work easy.

Eddy-DK is different with other device servers in which it can run customized applications. Users can upload most

existing socket/serial communication applications that are running on the Linux environment. This openness allows

users to apply wide variety of functions into the module with relatively less restrictions.

Eddy-DK supports IDE (LemonIDE) and SDK environment to help programmers to execute their own applications on

the module. Programmers can easily write applications using the Linux environment, with the help of SDK and

example source codes. Cross-compiler running on the standard Linux environment helps your applications to run on

the Eddy module. Embedded Linux on Eddy can provide stable and rapid environment for your applications.

2.22.22.22.2 EddyEddyEddyEddy----DK Package ContentsDK Package ContentsDK Package ContentsDK Package Contents

Eddy-DK includes Eddy module.

Eddy-DK package contains as follows. Make sure following contents are included in the Eddy Serial DK Package.

- 1EA, Eddy-CPU V 2.1

- 1EA, Eddy-DK V 2.1 board

- 1EA , Serial cable

- 1EA , LAN cable

- 1EA, USB A to B Cable

- 1EA , Power adaptor

- 1EA , CD (SystemBase SDK, LemonIDE, compile environment, utilities, manuals)

 Chapter 2. Getting Started

10

2.32.32.32.3 EddyEddyEddyEddy----CPU CPU CPU CPU vvvv2.1 2.1 2.1 2.1 BoardBoardBoardBoard

 Chapter 2. Getting Started

11

* Eddy-CPU v2.1 Pin Assignment

J1 J2

Pin Signal Name Pin Signal Name Pin Signal Name Pin Signal Name

1 PA5 2 PA4 1 A15 2 A14

3 PC5 4 PC19 3 A13 4 A12

5 PC21 5 PC23 5 A11 5 A10

7 HDMA 8 NC 7 A9 8 A8

9 HDPA 10 DDM 9 A7 10 A6

11 PC26 12 DDP 11 A5 12 A4

13 PC4 (RDY#) 14
PC16

(nRESET)
 13 A3 14 A2

15 ICE_NTRST 16 RTCK 15 A1 16 A0

17 TDO 18 TMS 17 PC9 18 NWE

19 TDI 20 TCK 19 FPG 20 NRD

21 3.3V 22 GND 21 GND 22 3.3V

23 3.3V 24 GND 23 GND 24 3.3V

25 PB29 (CTS1) 26 PB28 (RTS1) 25 D7 26 D6

27 PB6 (TXD1) 28 PB7 (RXD1) 27 D5 28 D4

29 A20 30 A19 29 D3 30 D2

31 LAN_Speed 32 LAN_lLink 31 D1 32 D0

33 LAN_RX- 34 LAN_RX+ 33 PC12 34 JTAGSEL

35 LAN_TX- 36 LAN_TX+ 35 PC13 36 NC

 Chapter 2. Getting Started

12

J3 J4

Pin Signal Name Pin Signal Name Pin Signal Name Pin Signal Name

1 PID0 2 PID1 1 PB12 2 PB13

3 PID2 4 PID3 3 PB30 4 PB31

5 PID4 5 GND 5 PB0 5 PC22

7 PC14 8 PC17 7 PB1 8 PB16

9 PC18 10 PC8 (RTS3) 9 PB2 10 PB17

11 PC20 12 PC10 (CTS3) 11 PB3 12 PB18

13 PA22 14 PC15 (IRQ1) 13 BHDM 14 PB19

15 PB8 16 PB9 (RXD2) 15 BHDP 16 PB20

17 PB10 18 PB11(RXD3) 17 A16 18 PB21

19 PC0 20 PC1 (AD1) 19 A17 20 A18

21 PC2 22 PC3 (AD3) 21 D8 22 D9

23 PB14 (DRXD) 24 PB15 (DTXD) 23 D10 24 D11

25 GND 26 GND 25 D12 26 D13

27 BMS 28 NRST 27 D14 28 D15

29 PB23 / DCD0 30 PB5 / RXD0 29 TWD 30 TCK

31 PB4 / TXD0 32 PB24 / DTR0 31 NANDOE 32
NAND_CLE /

A22

33 PB22 / DSR0 34 PB26 / RTS0 33 NANDWE 34
NAND_ALE /

A21

35 PB27 / CTS0 36 PB25 / RI0 35 NC 36 NC

J5 J6

Pin Signal Name Pin Signal Name

1 PB0

2 PB1 1 NC

3 PB2 2 NC

4 PB3 3 3.3V

5 3.3V 4 3.3V

6 3.3V 5 PC25 / BT_Factory

7 BHDM 6 PB10 / TXD3

8 BHDP 7 PB11 / RXD3

9 PA31 / TXD4 8 PC8 / RTS3

10 PA30 / RXD4 9 PC10 / CTS3

11 NRST 10 PC24 / BT_MODE

12 GND 11 NRST

13 GND 12 GND

14 PA9 / WPID0 13 GND

15 PC6 / WPID1 14 NC

16 PC7 / WPID2 15 NC

17 NC 16 NC

18 NC

 Chapter 2. Getting Started

13

 Table 2-3-1 Eddy-CPU Specifications

CPU AT91SAM9260B-CU (ARM926EJ-S/210 MHz)

Memory 8MB Data Flash, 32 MB SDRAM

External I/F 19 bit / 16 bit data bus

Ethernet I/F 10/100 Base-T Auto MDI/MDIX

UARTs

4port, support up to 921.6Kbps

- 1 : Full Signal

- 2,3,4, : RxD, TxD, RTS, CTS only

USB 2.0 FS 2 Host /1 Device port, 2.0 FS(12Mbps)

ADC 0ne 4-channel 10 bit ADC

TWI(I2C) Master, Multi-master and slave mode

SPI
8- to 16-bit Programmable Data Length

Four External Peripheral Chip Selects

GPIO Max. 56 Programmable I/O Pins

Power Input 3.3 V (200 mA Max)

Dimensions 25 x 48.5 x 6.2 mm

Weight 8.3 g

Operating Temp -40 ~ 85 ℃

 Table 2-3-2. . . . DC Characteristics

SymbolSymbolSymbolSymbol ParameterParameterParameterParameter ConditionConditionConditionCondition MinMinMinMin TypTypTypTyp MaxMaxMaxMax UnitUnitUnitUnit

VIL Input Low-level Voltage VVDDIO from 3.0V to 3.6V -0.3 0.8 V

VIH Input High-level Voltage VVDDIO from 3.0V to 3.6V V 2.0 VVDDIO+0.3 V

VOL Output Low-level Voltage IO Max, VVDDIO from 3.0V to 3.6V 0.4 V

VOH Output High-level Voltage IO Max, VVDDIO from 3.0V to 3.6V VVDDIO -0.4 V

PA0-PA31 PB0-PB31 PC0-PC3

NTRST and NRST
67 100 180

RPULLUP Pull-up Resistance

PC4 - PC31 in 3.3V range 2 mA 120 350

kOhm

PA0-PA31 PB0-PB31 PC0-PC3 16
IO Output Current

PC4 - PC31 2

mA

 Table 2-3-3 Absolute Maximum Ratings

Operating Temperature(industrial) -40 to +85℃

Voltage on Input Pins

with Respect to Ground -0.3V to VDDIO+0.3V (+4V max)

Maximum Operating Voltage

(VDDIOM and VDDIOP) ... 4.0V

Total DC Output Current on all I/O lines 350 mA

 Chapter 2. Getting Started

14

JJJJ1111 SpecificationsSpecificationsSpecificationsSpecifications

J1

Pin Signal Name Pin Signal Name

1 PA5 2 PA4

3 PC5 4 PC19

5 PC21 5 PC23

7 HDMA 8 NC

9 HDPA 10 DDM

11 PC26 12 DDP

13 PC4 (RDY#) 14 PC16 (nRESET)

15 ICE_NTRST 16 RTCK

17 TDO 18 TMS

19 TDI 20 TCK

21 3.3V 22 GND

23 3.3V 24 GND

25 PB29 (CTS1) 26 PB28 (RTS1)

27 PB6 (TXD1) 28 PB7 (RXD1)

29 A20 30 A19

31 LAN_Speed 32 LAN_lLink

33 LAN_RX- 34 LAN_RX+

35 LAN_TX- 36 LAN_TX+

 Chapter 2. Getting Started

15

J1 Pin DescriptionJ1 Pin DescriptionJ1 Pin DescriptionJ1 Pin Description

Pin NoPin NoPin NoPin No NameNameNameName
DK v2.1DK v2.1DK v2.1DK v2.1

Pin NoPin NoPin NoPin No

Expansion Expansion Expansion Expansion

Header Pin NoHeader Pin NoHeader Pin NoHeader Pin No
DescriptionDescriptionDescriptionDescription

Connects to Parallel IO Controller (Port A:5) pin of AT91SAM9260

Peripheral A : CTS2 UART #2 Clear to Send Signal

1 PA5 J10_1 J4_2

Peripheral B : MCBD1

Disabled.

Data Flash connected with SPI0 is used for Eddy-CPU v2.1. For this

reason SPI0 and MCDB0, MCDB3, and MCCDB signals, multiplexing,

cannot be used, thus Multimedia Card Slot B is disabled.

Connects to Parallel IO Controller (Port A:4) pin of AT91SAM9260

Peripheral A : RTS2 UART #2 Request to Send Signal 2 PA4 J10_2 J4_1

Peripheral B : MCDB2 Disabled.

Connects to Parallel IO Controller (Port C:5) pin of AT91SAM9260

Peripheral A : A24 External Address Bus 3 PC5 J10_3 J4_12

Peripheral B : SPI1_NPCS1 SPI1(Serial Peripheral Interface) Peripheral Chip Select 1

Connects to Parallel IO Controller (Port C:19) pin of AT91SAM9260

Peripheral A : A24 Multimedia Card Slot B Data 4 PC19 J10_4 J4_24

Peripheral B : SPI1_NPCS2 SPI1(Serial Peripheral Interface) Peripheral Chip Select 2

Connects to Parallel IO Controller (Port C:21) pin of AT91SAM9260

Peripheral A : D21 External Data bus 5 PC21 J10_5 J4_26

Peripheral B : EF100 Ethernet(WAN) Force 100Mbit/sec.

Connects to Parallel IO Controller (Port C:23) pin of AT91SAM9260
6 PC23 J10_6 J4_28

Peripheral A : D23 External Data Bus

7 HDMA J10_7 J1_27 USB Host Port A Data -

 Chapter 2. Getting Started

16

8 NC J10_8 -- Not Connect

9 HDPA J10_9 J1_29 USB Host Port A Data +

10 DDM J10_10 - USB Device Port Data -

Connects to Parallel IO Controller (Port C:26) pin of AT91SAM9260
11 PC26 J10_11 -

D26 External Data Bus

12 DDP J10_12 - USB Device Port Data +

Connects to Parallel IO Controller (Port C:4) pin of AT91SAM9260

Eddy-DK v2,1 : RDY#(OUT) Ready signal. Output signal for CPU operation status

Peripheral A : A23 External Address Bus
13

PC4

(RDY#)
J10_13 J4_11

Peripheral B : SPI1_NPCS2 SPI1(Serial Peripheral Interface) Peripheral Chip Select 2

Connects to Parallel IO Controller (Port C:16) pin of AT91SAM9260

Eddy-DK v2,1 : nRESET#(IN)

Polling Input signal continually from External Reset key, implement as

below with checking the constant time of "Low."

Less than 5 seconds: General reset function.

More than 5 seconds: Factory Default function.

Peripheral A : D16 External Data Bus

14
PC16

(nRESET)
J10_14 J4_21

Peripheral B : SPI0_NPCS2

Disabled

SPI0_SPCK, SPI0_MISO, and SPI0_MOSI signals for SPI0 are disabled

as they are not connected externally.

ICE and JTAG

15 ICE_NTRST J10_15 J7_3 ICE Test Reset Signal

16 RTCK J10_16 J7_11 Return Test Clock

17 TDO J10_17 J7_13 Test Data Out

18 TMS J10_18 J7_7 Test Mode Select

19 TDI J10_19 J7_5 Test Data In

 Chapter 2. Getting Started

17

20 TCK J10_20 J7_9 Test Clock

21 3.3V 3.0V to 3.6V power input

22 GND Ground

23 3.3V 3.0V to 3.6V power input

24 GND Ground

Connects to Parallel IO Controller (Port B:29) pin of AT91SAM9260

Peripheral A : CTS1 USART1 Clear To Send 25 PB29 J10_25 J2_30

Peripheral B : ISI_VSYNC Image Sensor Vertical Synchronization

Connects to Parallel IO Controller (Port B:28) pin of AT91SAM9260

Peripheral A : RTS1 USART1 Request To Send 26 PB28 J10_26 J2_29

Peripheral B : ISI_PCK (IN) Image Sensor Pixel Clock Provided by the Image Sensor

Connects to Parallel IO Controller (Port B:6) pin of AT91SAM9260

Peripheral A : TXD1 USART1 Transmit Data 27 PB6 J10_27 J2_7

Peripheral B : TCLK1 Timer Counter ch1 External CLK IN

Connects to Parallel IO Controller (Port B:7) pin of AT91SAM9260

Peripheral A : RXD11 USART1 Receive Data 28 PB7 J10_28 J2_8

Peripheral B : TCLK2 Timer Counter ch2 External CLK IN

Address Bus

29 A20 J10-29 J1_31 Address Bus

30 A19 J10_30 J1_32 Address Bus

Ethernet 10/100 with Auto MDI/MDIX

31 LED_Speed J10_31 -

LAN connection speed

Speed Pin State LED Definition

10Base-T H OFF

100Base-TX L ON

 Chapter 2. Getting Started

18

32 LED_Link J10_32 -

LAN connection status

Link/Activity Pin State LED Definition

No Link H OFF

Link L ON

Activity Toggle Blinking

33 LAN_RX- J10_33 - Physical receive or transmit signal (- differential) of Eddy-CPU Internal Ethernet PHY(WAN)

34 LAN_RX+ J10_34 - Physical receive or transmit signal (+ differential) of Eddy-CPU Internal Ethernet PHY(WAN)

35 LAN_TX- J10_35 - Physical transmit or receive signal (- differential) of Eddy-CPU Internal Ethernet PHY(WAN)

36 LAN_TX+ J10_36 - Physical transmit or receive signal (+ differential) of Eddy-CPU Internal Ethernet PHY(WAN)

 Chapter 2. Getting Started

19

J2 J2 J2 J2 SpecificationsSpecificationsSpecificationsSpecifications

Connect USB cable to J1 while the jumper is connected to J2, so that applications can be compiled, linked, created, and uploaded to the Eddy-CPU module. (Please

refer to Programmer Guide for more information.)

J2

Pin Signal Name Pin Signal Name

1 A15 2 A14

3 A13 4 A12

5 A11 5 A10

7 A9 8 A8

9 A7 10 A6

11 A5 12 A4

13 A3 14 A2

15 A1 16 A0

17 PC9 18 NWE

19 FPG 20 NRD

21 GND 22 3.3V

23 GND 24 3.3V

25 D7 26 D6

27 D5 28 D4

29 D3 30 D2

31 D1 32 D0

33 PC12 34 JTAGSEL

35 PC13 36 NC

 Chapter 2. Getting Started

20

J2 Pin DescriptionJ2 Pin DescriptionJ2 Pin DescriptionJ2 Pin Description

Pin NoPin NoPin NoPin No NameNameNameName
DK v2.1DK v2.1DK v2.1DK v2.1

Pin NoPin NoPin NoPin No

Expansion Expansion Expansion Expansion

Header Pin NoHeader Pin NoHeader Pin NoHeader Pin No
DescriptionDescriptionDescriptionDescription

1~16 A[15:0]
J9_1

-J9_16
J3_4-J3_20

External Address Bus 0-15 (0 at reset)

DK is directly connected with CPU and external connecter (J3) is connected by buffer.

Connects to Parallel IO Controller (Port C:9) pin of AT91SAM9260

Peripheral A : NCS5
External device Chip Select 5.

256MB memory area addressable, active low
17 PC9 J9_17 J4_14

Peripheral B : TIOB0 Timer Counter ch0 I/O Line B

18 NWE J9_18 J1_21 External device Write Enable signal, active low

19 FPG J9_19 -
For Flash Programming. You can program Data Flash in Eddy CPU v2.1 via USB. Refer to

2.4.2.3 S6:NAND Flash & Data Flash Chip Select for further information.

20 NRD J9_20 J1_23 External device Read Enable signal, active low

21, 23 GND J9_21, 23 Ground

22, 24 3.3V J9_22, 24 3.0V to 3.6V power input

25~32 D[7:0]
J9_25

- J3_32
J3_29 - J3_36

External Data Bus 0-7. DK is directly connected with CPU and external connecter (J3) is

connected by buffer. You should enable PC13(NCS6 : Chip Select 6) for working buffer, if

you reset, it becomes Pulled-up input.

Connects to Parallel IO Controller (Port C:12) pin of AT91SAM9260

Peripheral A : IRQ0 External Interrupt Input 0
33 PC12 J9_24 J4_17

Peripheral B : NCS7
External device Chip Select 7.

256MB memory area addressable, active low

34 JTAGSEL J9_25 -
JTAG boundary scan can be used by connecting pin34 and 36(J14 connection). This pin

should not be connected when using ICE (In-Circuit Emulator) or in normal operation status.

35 PC13 J9_26 J4_18 Connects to Parallel IO Controller (Port C:13) pin of AT91SAM9260

 Chapter 2. Getting Started

21

Edd-DK v2.1 : NCS6
Data Bus connected with external header can be used when NCS6

is enabled.

Peripheral A : FIQ Fast Interrupt Input

Peripheral B : NCS6
External device Chip Select 6

256MB memory area addressable, active low

36 NC Not Connect

 Chapter 2. Getting Started

22

J3 J3 J3 J3 SpecificationsSpecificationsSpecificationsSpecifications

J3

Pin Signal Name Pin Signal Name

1 PID0 2 PID1

3 PID2 4 PID3

5 PID4 5 GND

7 PC14 8 PC17

9 PC18 10 PC8 (RTS3)

11 PC20 12 PC10 (CTS3)

13 PA22 14 PC15 (IRQ1)

15 PB8 16 PB9 (RXD2)

17 PB10 18 PB11(RXD3)

19 PC0 20 PC1 (AD1)

21 PC2 22 PC3 (AD3)

23 PB14 (DRXD) 24 PB15 (DTXD)

25 GND 26 GND

27 BMS 28 NRST

29 PB23 / DCD0 30 PB5 / RXD0

31 PB4 / TXD0 32 PB24 / DTR0

33 PB22 / DSR0 34 PB26 / RTS0

35 PB27 / CTS0 36 PB25 / RI0

 Chapter 2. Getting Started

23

J3J3J3J3 Pin DescriptionPin DescriptionPin DescriptionPin Description

Pin NoPin NoPin NoPin No NameNameNameName
DK v2.1DK v2.1DK v2.1DK v2.1

Pin NoPin NoPin NoPin No

Expansion Expansion Expansion Expansion

Header Header Header Header

Pin NoPin NoPin NoPin No

DescriptioDescriptioDescriptioDescriptionnnn

Connects to Parallel IO Controller (Port C:31-27) pin of AT91SAM9260

1-5 PID[4:0]
J8_1

~J8_5
- Product ID only used by the manufacturer.

Please do not work on these pins.

6,25,26 GND Ground

Connects to Parallel IO Controller (Port C:14) pin of AT91SAM9260

Peripheral A : NCS3 External Device Chip Select 3 7 PC14 J8_7 J4_19

Peripheral B : IRQ2 External Interrupt Input 2

Connects to Parallel IO Controller (Port C:17) pin of AT91SAM9260

Peripheral A : D17 External Data Bus 8 PC17 J8_8 J4_22

Peripheral B : SPI0_NPCS3 Disabled

Connects to Parallel IO Controller (Port C:18) pin of AT91SAM9260

Peripheral A : D18 External Data Bus 9 PC18 J8_9 J4_23

Peripheral B : SPI1_NPCS1 SPI1(Serial Peripheral Interface) Peripheral Chip Select 1

Connects to Parallel IO Controller (Port C:8) pin of AT91SAM9260

Peripheral A : NCS4 External Device Chip Select 4 10 PC8 J8_10 J4_13

Peripheral B : RTS3 USART3 Request to Send

Connects to Parallel IO Controller (Port C:20) pin of AT91SAM9260

Peripheral A : D20 External Data Bus 11 PC20 J8_11 J4_25

Peripheral B : SPI1_NPCS3 SPI1(Serial Peripheral Interface) Peripheral Chip Select 3

12 PC10 J8_12 J4_15 Connects to Parallel IO Controller (Port C:10) pin of AT91SAM9260

 Chapter 2. Getting Started

24

Peripheral A : A25 External Address Bus

Peripheral B : CTS3 USART3 Clear to Send

Connects to Parallel IO Controller (Port A:22) pin of AT91SAM9260
13 PA22 J8_13 -

Digital I/O Input 4

Connects to Parallel IO Controller (Port C:15) pin of AT91SAM9260

Peripheral A : NWAIT External Wait Signal Input 14 PC15 J8_14 J4_20

Peripheral B : IRQ1 External Interrupt Input 2

Connects to Parallel IO Controller (Port B:8) pin of AT91SAM9260
15 PB8 J8_15 J2_9

Peripheral A : TXD2 UART2 Transmit Data

Connects to Parallel IO Controller (Port B:9) pin of AT91SAM9260
16 PB9 J8_16 J2_10

Peripheral A : RXD2 UART2 Receive Data

Connects to Parallel IO Controller (Port B:10) pin of AT91SAM9260

Peripheral A : TXD3 UART3 Transmit Data 17 PB10 J8_17 J2_11

Peripheral B : ISI_D8 Image Sensor Data 8

Connects to Parallel IO Controller (Port B:11) pin of AT91SAM9260

Peripheral A : RXD3 UART3 Receive Data 18 PB11 J8_18 J2_12

Peripheral B : ISI_D9 Image Sensor Data 9

Connects to Parallel IO Controller (Port C:0) pin of AT91SAM9260

Peripheral A : AD0 Analog to Digital Converter Input Ch0 19 PC0 J8_19 J4_7

Peripheral B : SCK3 USART3 Serial Clock

Connects to Parallel IO Controller (Port C:1) pin of AT91SAM9260

Peripheral A : AD1 Analog to Digital Converter Input Ch1 20 PC1 J8_20 J4_8

Peripheral B : PCK0 Programmable Clock Output 0

Connects to Parallel IO Controller (Port C:2) pin of AT91SAM9260 21 PC2 J8_21 J4_9

Peripheral A : AD2 Analog to Digital Converter Input Ch2

 Chapter 2. Getting Started

25

Peripheral B : PCK1 Programmable Clock Output 1

Connects to Parallel IO Controller (Port C:3) pin of AT91SAM9260

Peripheral A : AD3 Analog to Digital Converter Input Ch3 22 PC3 J8_22 J4_10

Peripheral B : SPI1_NPCS3 SPI1(Serial Peripheral Interface) Peripheral Chip Select 3

Connects to Parallel IO Controller (Port B:14) pin of AT91SAM9260
23 PB14 J8_23 J2_15

Peripheral A : DRXD Debug Receive Data

Connects to Parallel IO Controller (Port B:15) pin of AT91SAM9260
24 PB15 J8_24 J2_16

Peripheral A : DTXD Debug Transmit Data

27 BMS J8_27 -

Boot Mode Select signal

BMS = 1, Boot on Embedded ROM

BMS = 0, Boot on External Memory

28 NRST J8_28 J1_20 External device Reset signal, active low signal

Connects to Parallel IO Controller (Port B:23) pin of AT91SAM9260

Peripheral A : DCD0 USART0 Data Carrier Detection 29 PB23 J8_29 J4_28

Peripheral B : ISI_D3 Image Sensor Data 3

Connects to Parallel IO Controller (Port B:5) pin of AT91SAM9260
30 PB5 J8_30 J2_6

Peripheral A : RXD0 USART0 Receive Data

Connects to Parallel IO Controller (Port B:4) pin of AT91SAM9260
31 PB4 J8_31 J2_5

Peripheral A : TXD0 USART0 Transmit Data

Connects to Parallel IO Controller (Port B:24) pin of AT91SAM9260

Peripheral A : DTR0 USART0 Data Terminal Ready 32 PB24 J8_32 J2_25

Peripheral B : ISI_D4 Image Sensor Data 4

Connects to Parallel IO Controller (Port B:22) pin of AT91SAM9260

Peripheral A : DSR0 USART0 Data Set Ready 33 PB22 J8_33 J2_23

Peripheral B : ISI_D2 Image Sensor Data 2

 Chapter 2. Getting Started

26

Connects to Parallel IO Controller (Port B:26) pin of AT91SAM9260

Peripheral A : RTS0 USART0 Request To Send 34 PB26 J8_34 J2_27

Peripheral B : ISI_D6 Image Sensor Data 6

Connects to Parallel IO Controller (Port B:27) pin of AT91SAM9260

Peripheral A : CTS0 USART0 Clear To Send 35 PB27 J8_35 J2_28

Peripheral B : ISI_D7 Image Sensor Data 7

Connects to Parallel IO Controller (Port B:25) pin of AT91SAM9260

Peripheral A : RI0 USART0 Ring Indicator 36 PB25 J8_36 J2_26

Peripheral B : ISI_D5 Image Sensor Data 5

 Chapter 2. Getting Started

27

JJJJ4444 SpecificationsSpecificationsSpecificationsSpecifications

J4

Pin Signal Name Pin Signal Name

1 PB12 2 PB13

3 PB30 4 PB31

5 PB0 5 PC22

7 PB1 8 PB16

9 PB2 10 PB17

11 PB3 12 PB18

13 BHDM 14 PB19

15 BHDP 16 PB20

17 A16 18 PB21

19 A17 20 A18

21 D8 22 D9

23 D10 24 D11

25 D12 26 D13

27 D14 28 D15

29 TWD 30 TCK

31 NANDOE 32 NAND_CLE / A22

33 NANDWE 34 NAND_ALE / A21

35 NC 36 NC

 Chapter 2. Getting Started

28

JJJJ4444 Pin DescriptionPin DescriptionPin DescriptionPin Description

Pin NoPin NoPin NoPin No NameNameNameName
DK v2.1DK v2.1DK v2.1DK v2.1

Pin NoPin NoPin NoPin No

Expansion Expansion Expansion Expansion

Header Header Header Header

Pin NoPin NoPin NoPin No

DescriptionDescriptionDescriptionDescription

Connects to Parallel IO Controller (Port B:12) pin of AT91SAM9260

Peripheral A : TXD5 USART5 Transmit Data 1 PB12 J11_1 J2_17

Peripheral B : ISI_D10 Image Sensor Data 10

Connects to Parallel IO Controller (Port B:13) pin of AT91SAM9260

Peripheral A : RXD5 USART5 Receive Data 2 PB13 J11_2 J2_18

Peripheral B : ISI_D11 Image Sensor Data 11

Connects to Parallel IO Controller (Port B:30) pin of AT91SAM9260

Peripheral A : PCK0 Programmable Clock Output 0 3 PB30 J11_3 J2_31

Peripheral B : ISI_HSYNC Image Sensor Horizontal Synchronization

Connects to Parallel IO Controller (Port B:31) pin of AT91SAM9260

Peripheral A : PCK1 Programmable Clock Output 1 4 PB31 J11_4 J2_32

Peripheral B : ISI_MCK Image Sensor Reference Clock

Connects to Parallel IO Controller (Port B:0) pin of AT91SAM9260

Peripheral A : SPI1_MISO SPI1(Serial Peripheral Interface) Master In Slave Out 5 PB0 J11_5 J2_2

Peripheral B : TIOA3 Timer Counter ch3 I/O Line A

Connects to Parallel IO Controller (Port C:22) pin of AT91SAM9260

Peripheral A : D22 6 PC22 J11_6 J4_27

Peripheral B : TCLK5 Timer Counter ch5 External CLK IN

Connects to Parallel IO Controller (Port B:1) pin of AT91SAM9260 7 PB1 J11_7 J2_3

Peripheral A : SPI1_MOSI SPI1(Serial Peripheral Interface) Master Out Slave in

 Chapter 2. Getting Started

29

Peripheral B : TIOB3 Timer Counter ch3 I/O Line B

Connects to Parallel IO Controller (Port B:16) pin of AT91SAM9260

Peripheral A : TK0 SSC Transmit Clock 8 PB16 J11_8 J2_17

Peripheral B : TCLK3 Timer Counter ch3 External CLK IN

Connects to Parallel IO Controller (Port B:2) pin of AT91SAM9260

Peripheral A : SPI1_SPCK SPI1(Serial Peripheral Interface) Serial Clock 9 PB2 J11_9 J2_4

Peripheral B : ISI_D3 Image Sensor Data 3

Connects to Parallel IO Controller (Port B:17) pin of AT91SAM9260

Peripheral A : TF0 SSC Transmit Frame Sync 10 PB17 J11_10 J2_18

Peripheral B : TCLK4 Timer Counter ch4 External CLK IN

Connects to Parallel IO Controller (Port B:3) pin of AT91SAM9260

Peripheral A :

SPI1_NPCS0
SPI1(Serial Peripheral Interface) Peripheral Chip Select 0 11 PB3 J11_11 J2_5

Peripheral B : TIOA5 Timer Counter ch5 I/O Line A

Connects to Parallel IO Controller (Port B:18) pin of AT91SAM9260

Peripheral A : TD0 SSC Transmit Data 12 PB18 J11_12 J2_19

Peripheral B : TIOB4 Timer Counter ch4 I/O Line B

13 HDMB J11_13 J1_28 USB Host Port Data -

Connects to Parallel IO Controller (Port B:19) pin of AT91SAM9260

Peripheral A : RD0 SSC Receive Data 14 PB19 J11_14 J2_20

Peripheral B : TIOB5 Timer Counter ch5 I/O Line B

15 HDPB J11_15 J1_30 USB Host Port Data +

Connects to Parallel IO Controller (Port B:20) pin of AT91SAM9260

Peripheral A : RK0 SSC Receive Clock 16 PB20 J11_16 J2_21

Peripheral B : ISI_D0 Image Sensor Data 0

 Chapter 2. Getting Started

30

17 A16 J11_17 J3_3 External Address Bus

Connects to Parallel IO Controller (Port B:21) pin of AT91SAM9260

Peripheral A : RF0 SSC Receive Frame Sync 18 PB21 J11_18 J2_22

Peripheral B : ISI_D1 Image Sensor Data 1

19 A17 J11_19 J3_2

20 A18 J11_20 J3_1
External Address Bus

21-28 D[8:15]
J11_21

~J11_28

J3_28

~J3_21

External Data Bus 8-15

DK is directly connected with CPU and external connecter (J3) is connected by buffer.

PC13(NCS6 : Chip Select 6) should be enabled for working buffer, if it is reset, it work as

Pulled-up input.

29 TWD J11_29 J4_3 Two-wire Serial Data. This pin cannot be used for GPIO.

30 TWCK J11_30 J4_4 Two-wire Serial Data. This pin cannot be used for GPIO.

31 NANDOE J11_31 - NAND Flash Output Enable

32 A22 J11_32 J1_29
Address Bus

DK is directly connected with CPU and external connecter (J3) is connected by buffer.

33 NANDWE J11_33 - NAND Flash Write Enable

34 A21 J11_34 J1_30 Address Bus

35,36 NC J11_35,36 Not Connect

 Chapter 2. Getting Started

31

2.42.42.42.4 EddyEddyEddyEddy----DK DK DK DK v2.1 Boardv2.1 Boardv2.1 Boardv2.1 Board

2.4.1 Modules’Locations

2.4.2 Switch Description

NOTE:

Ensure that the input power supply for Eddy Serial DK is from 9V to 48V with 500 mA (or higher).

 Chapter 2. Getting Started

32

2.4.2.1. S1~S4: Digital In Select

It is possible to select the Distal Input mode with this switch (S1 ~ S4). In order to use VCC Common Mode, switch

down, and to use GNC Common Mode switch up refer to below feature.

This below schematic is just for reference, So you should make you own schematic with the current and voltage

that you want.

Common Input Setting (Switch S1~S4)

MODE Switch 설명

GND

Common

UP

Common GND

COM

(GND)

Isolated Input

Signal(Source)

Eddy DK v2.1

1.1K

4.7K

VCC

Common

Down

Common VCC

EXTERNAL POWER

Isolated Input

Signal(SINK)

Eddy DK v2.1

1.1K

4.7K

 Chapter 2. Getting Started

33

2.4.2.2. S5: ADC Select

You can choice the GPIO and ADC function with this switch. In order to use the ADC device, you should switch off.

And In order to use the GPIO function, you should switch on.

ON

1

ON

PIN name Fuction Discription I/O

PC0 ADC0 Temp. Sensor Input(LM50), RN: U22 IN

PC1 ADC1 Lux. Sensor Input(BH1600), RN: U26 IN

PC2 ADC2 Temp. Sensor Input(TMP300), RN: U24 IN

PC3 ADC3 N/A IN

* RN = Reference Number

2.4.2.3. S6: NAND Flash & Data Flash Chip Select

This switch is Nand Flash & Data Flash Chip select switch. This switch is needed in firmware Programming.

Flash Programming & Booting device Flash Programming & Booting device Flash Programming & Booting device Flash Programming & Booting device SelectionSelectionSelectionSelection

Switch

No 1

Switch

No 2
Operation descriotion

OFF OFF

For Flash Programming

This setting is needed in firmware Programming. refer to 9.2 System

recovery via USB

OFF ON Boot from Data Flash.

ON OFF Boot from Nand Flash

ON ON

Boot from Data Flash or Nand Flash which have bootloader. if Both

devices have the bootloader, algorithm in CPU select the bootloader

of Data Flash.

(Reference : CPU Datasheet 13 장 AT91SAM9260 Boot Program)

SW Off : ADC mode

SW ON : GPIO mode

 Chapter 2. Getting Started

34

2.4.2.4. S7:UART Select

In order to test Serial Port, UART Select Switches are pulled down. It means that UARTs in CPU are connected to

Serial Port. If switches are pulled up, GPIO Ports are enabled and LEDs are controlled by GPIO Ports. And if Switch

No.6 is pulled up, GPIO ports are connected with the Expansion Headers.

Serial Port Serial Port Serial Port Serial Port & LED& LED& LED& LED

Switch

Bank

Switch

No

Down Position(OFF)

Serial Port Test

UP Position(ON)

GPIO TEST (High : LED On)

1

UART#0 TEST

UART#0 의 TXD, RXD, RTS, CTS

signals are connected with UART#0

RS232 driver IC.

GPIO (PB4, PB5, PB26, PB27) ports are

connected with the GPIO LED of DK

board and disconnected with the

UART#0 RS232 driver IC.

2

UART#0 TEST

UART#0 의 DTR, DSR, DCD, RI signals

are connected with UART#0 RS232

driver IC.

GPIO (PB24, PB22, PB23, PB25) ports

are connected with the GPIO LED of DK

board and disconnected with the

UART#0 RS232 driver IC.

3

UART#1 TEST

UART#1 의 TXD, RXD, RTS, CTS

signals are connected with UART#1

RS232 driver IC.

GPIO (PB6, PB7, PB28, PB29) ports are

connected with the GPIO LED of DK

board and disconnected with the

UART#1 RS232 driver IC.

4

UART#2 TEST

UART#2 의 TXD, RXD, RTS, CTS

signals are connected with UART#2

RS422/485 driver IC.

GPIO (PB8, PB9, PA4, PA5) ports are

connected with the GPIO LED of DK

board and disconnected with the

UART#2 RS422/485 driver IC.

5

UART#3 TEST

UART#3 의 TXD, RXD, RTS, CTS

signals are connected with UART#3

RS422/485 driver IC.

GPIO (PB10, PB11, PC8, PC10) ports

are connected with the GPIO LED of DK

board and disconnected with the

UART#3 RS422/485 driver IC.

S7

6

For Serial Port & GPIO Test

Serial Port and GPIO LED of DK board

are enabled.

Connect to Expansion Header

UART#0~#3 and GPIO LEDs are

disconnected with the Eddy-CPU board

and directly connected with the

Expansion Header(J2, J4)

2.4.2.5. S8:COM3 & S9: COM4 Select

COM Port #3 and COM Port #4 set the RS422/RS485 mode.

 Chapter 2. Getting Started

35

COM PORT#3, #4 settingsCOM PORT#3, #4 settingsCOM PORT#3, #4 settingsCOM PORT#3, #4 settings

Switch

Bank

Switch

No
Down Position(OFF) UP Position(ON)

1 RS485 Half-Duplex mode RS422 Full-Duplex mode

2
RS422(RX enabled)

RS485 echo-mode
RS485 non echo-mode

3
RS422 Termination Resistor

not connected

RS422 Termination Resistor

Connected

S8

Port#3

4
RS485 Termination Resistor

not connected

RS422 Termination Resistor

Connected

1 RS485 Half-Duplex mode RS422 Full-Duplex mode

2
RS422(RX enabled)

RS485 echo-mode
RS485 non echo-mode

3
RS422 Termination Resistor

not connected

RS422 Termination Resistor

Connected

S9

Port#4

4
RS485 Termination Resistor

not connected

RS422 Termination Resistor

Connected

2.4.2.6. SW1~SW16: Key Pad

Key Pad of DK board are consisted with the 4x4 matrix. GPIOs are set to Input mode to read the Key value. and Key

2, 4, 6, 8 also have the ▲(UP), ▼(DN), ◀(LEFT), ▶(RIGHT) direction function for LCD menu.

P10-P17 4x4 Key matrix I/O

PB20 First Row line IN

PB21 Second Row line IN

PB30 Third Row line IN

PB31 Forth Row line IN

PC20 First Column line from left IN

PC21 Second Column line from left IN

PC22 Third Column line from left IN

PC23 Fourth Column line from left IN

 Chapter 2. Getting Started

36

2.4.2.7. SW17: Power

In order to power up, pull up this switch.

2.4.2.8. Reset1: Reset

Pin

name

Function Discription I/O

PC16 nRESET

Polling Input signal continually from External Reset

key, implement as below with checking the constant

time of "Low."

Less than 5 seconds: General reset function.

More than 5 seconds: Factory Default function.

IN

 Chapter 2. Getting Started

37

2.4.3 LED Description

2.4.3.1. GPIO LED

Eddy-CPU v2.1 supports Max 56 GPIO ports. DK board has 20 GPIO LEDs of all GPIO to test. This GPIO LEDs are

controlled by UART select switches.(refer to 2.4.2.4 UART Select)

PIN

name

Function Discription I/O

PC10 CTS3 UART #3 Clear to Send I

PC8 RTS3 UART #3 Request to Send O

PB11 RXD3 UART #3 Receive Data I

PB10 TXD3 UART #3 Transmit Data O

PA5 CTS2 UART #2 Cleat to Send I

PA4 RTS2 UART #2 Request to Send O

PB9 RXD2 UART #2 Receive Data I

PB8 TXD2 UART #2 Transmit Data O

PB29 CTS1 UART #1 Cleat to Send I

 Chapter 2. Getting Started

38

PB28 RTS1 UART #1 Request to Send O

PB7 RXD1 UART #1 Receive Data I

PB6 TXD1 UART #1 Transmit Data O

PB25 RI0 UART #0 Ring Indicator I

PB23 DCD0 UART #0 Data Carrier Detection I

PB22 DSR UART #0 Data Set Ready O

PB24 DTR0 UART #0 Data Terminal Ready I

PB27 CTS0 UART #0 Clear to Send I

PB26 RTS0 UART #0 Request to Send O

PB5 RXD0 UART #0 Receive Data I

PB4 TXD0 UART #0 Transmit Data O

44441111....2 DC Characteristics2 DC Characteristics2 DC Characteristics2 DC Characteristics

Symbol Parameter Conditions Min Typ Max Units

PA0-PA31 PB0-PB31 PC0-

PC3

 16

PC4 - PC31 in 3.3V range 2* mA
Io Output Current

PC4 - PC31 in 1.8V range 4

* Eddy DK v2.1 has 3.3V range, so PC4-PC31 PIO is set to 2mA.

(Refer to CPU Datasheet의 41.2 DC characteristics)

2.4.3.2. Power, Ready LED

System Ready (RDY): Indicates that the system is operating normally. (Normal: LED blinks)

Power (PWR): Indicates that the 5 V power is being supplied. (Supplying power: Red LED ON)

2.4.3.3. Debug Port LED

DTXD (Debug Port Transmit Dta LED) : Shows transmission status of the Debug Port.

DRXD (Debug Port Receive Data LED) : Shows reception status of the Debug Port.

2.4.3.4. COM Port 1 LED

COM Port 1 Transmit LED : Shows transmission status of COM1 Port.

COM Port 1 Receive LED : Shows reception status of COM1 Port.

2.4.3.5. COM Port 2 LED

COM Port 2 Transmit LED : Shows transmission status of COM2 Port.

COM Port 2 Receive LED : Shows reception status of COM2 Port.

 Chapter 2. Getting Started

39

2.4.3.6. COM Port 3 LED

COM Port 3 Transmit LED : Shows transmission status of COM3 Port.

COM Port 3 Receive LED : Shows reception status of COM3 Port.

2.4.3.7. COM Port 4 LED

COM Port 4 Transmit LED : Shows transmission status of COM4 Port.

COM Port 4 Receive LED : Shows reception status of COM4 Port.

2.4.4 External Device Interface Description

 Chapter 2. Getting Started

40

2.4.4.1. WAN & LAN Interface

WAN & LAN Port automatically recognizes Cross/ Direct.(auto MDIX)

Pin Signal Description

1 TXD+ Transmit Data +

2 TXD- Transmit Data -

3 RXD+ Receive Data +

6 RXD- Receive Data -

LED Description

Left Green
Upon 100BaseT link, it lights

Upon 10BaseT link, it off

Right Yellow
Default Lights, When the data is sent or

received, it blinks.

 Chapter 2. Getting Started

41

2.4.4.2. COM Port 1 & COM Port 2

RS232RS232RS232RS232

Pin Signal Description

1 DCD Data Carrier Detection (Input) (COM Port 1 only)

2 RXD Receive Data (Input)

3 TXD Transmit Data (Output)

4 DTR Data Terminal Ready (Output) (COM Port 1 only)

5 GND Ground

6 DSR Data Set Ready (input) (COM Port 1 only)

7 RTS Request to Send (Output)

8 CTS Clear to Send (Input)

9 RI Ring Indicator (Input)

2.4.4.3. COM Port 3 & COM Port 4

RS422 Full DuplexRS422 Full DuplexRS422 Full DuplexRS422 Full Duplex

Pin Signal Description

1 TXD+ Transmit differential data positive (Output)

2 TXD- Transmit differential data negative (Output)

3 GND Ground

4 RXD+ Receive differential data positive (Input)

5 RXD- Receive differential data negative (input)

 Chapter 2. Getting Started

42

RS485 Half DuplexRS485 Half DuplexRS485 Half DuplexRS485 Half Duplex

Pin Signal Description

1 TRX+ Transmit/Receive differential data positive

2 TRX- Transmit/Receive differential data negative

2.4.4.4. Debug Port

You can check debug message or status information with debug port.

Environment Setting Environment Setting Environment Setting Environment Setting

Debug port is configured as follows so user has to set his or her PC serial port connected to debug port as follows.

Speed: 115200 bps

Data bit: 8 bit

Parity bit: Non Parity

Stop bit: 1 bit

2.4.4.5. Power Jack

Contact Polarity

Center (D : 2mm) 9-48VDC

Outer (D: 6.5mm) Ground

 Chapter 2. Getting Started

43

2.4.5 Internal Device Description

2.4.5.1. EEPROM

Eddy-DK v2.1 has the AT25160, 2Kx8bit SPI EEPROM.

2.4.5.2. LCD Module

Graphic LCD Module (PowerTIP PG12864LRU-JCNH11Q and I2C-Bus I/O Expander IC PCA9539)

Signal Name Function Description I/O

P[00:07] Data bits
Used for data transfer between the CPU and the LCD

module.
I/O

P10 /CS1 Chip enable for D2 (Segment 1 to 64) IN

P11 /CS2 Chip enable for D3 (Segment 65 to 128) IN

P12 R/W
R/W signal is used to select the read /write mode

High = Read mode, Low = Write mode
IN

P13 D/ I

Register selection input

High = Data register

Low = Instruction register (for write)

 Busy flag address counter (for read)

IN

 P14 E Start enable signal to read or write the data. IN

 Chapter 2. Getting Started

44

2.4.5.3. 16bit I2C Bus GPIO

This 16-bit I2C Bus GPIO (PCA9539) provides general-purpose remote I/O expansion.

Slave address of this chip is set to 0x74 in DK board. and Address can be changed with A1,A0 address input from

0x74 to 0x77.

16-bit I/O is used to Digital Input/Output as below, and this is connected with the Expansion Header also. If you use

for GPIO, it is possible to configure individually.

Function Description I/O

P00-P07 DIO Output, Connected with DO[0:7] OUT

P00 DIO output, DO0

P01 DIO output, DO1

P02 DIO output, DO2

P03 DIO output, DO3

P04 DIO output, DO4

P05 DIO output, DO5

P06 DIO output, DO6

P07 DIO output, DO7

P10-P17 DIO Intput, Connected with DI[0:7] IN

P10 DIO Input, DI0

P11 DIO Input, DI1

P12 DIO Input, DI2

P13 DIO Input, DI3

P14 DIO Input, DI4

P15 DIO Input, DI5

P16 DIO Input, DI6

P17 DIO Input, DI7

/INT Connected with PB16 of Eddy-CPU OUT

2.4.5.4. RTC

- DS1340 (Dallas, I2C interface)

- 12.5pF load capacitance crystal must be used. (Refer to Crystal Spec below)

- Do not use another RTC Chip.

- Backup Battery: CR2032 (235mAh) Lithium Battery.

DS1340 Crystal Specifications

Parameter Symbol MIN TYP MAX Units

Normal Frequency fo 32.768 KHz

 Chapter 2. Getting Started

45

Series Resistance ESR 45,60 KΩ

Load Capacitance CL 12.5 pF

2.4.5.5. Temp Sensor

AD0(PC0)에 National LM50

2.4.5.6. Light Sensor

BH1600FVC (Rohm)

The Output voltage is caculated as below

Viout = 0.6 x10-6 x Ev x R1

 Where, Viout = IOUT output voltage [V]

 Ev = lilluminance of the ALS(Ambient Light Sensor) surface [lx]

 R1 = IOUT output resistor [Ω]

2.4.5.7. NAND Flash

- 256MB, 8bit Flash (Samsung K9F2G08U0A-PCB0)

- Chip Select #3 used, Address range : 0x4000_0000~0x4FFF_FFFF.

Eddy-

CPUv2.1

Signal Name

Function Discription I/O

A22 CLE

COMMAND LATCH ENABLE

The CLE input controls the activating path for

commands sent to the command register.

OUT

A21 ALE

ADDRESS LATCH ENABLE

The ALE input controls the activating path for

address to the internal address registers.

OUT

 Chapter 2. Getting Started

46

NANDOE NANDOE data-out control OUT

NANDWE NANDWE controls writes to the I/O port OUT

PC14(NCS3) NANDCS device selection control OUT

PC17
RDYBSY

(R/B)

READY/BUSY OUTPUT

The R/B output indicates the status of the device

operation. When low, it indicates that a program,

erase or random read operation is in process and

returns to high state upon completion. It is an

open drain output and

does not float to high-z condition when the chip

is deselected or when outputs are disabled.

IN

D[0:7]
DATA

bits

DATA INPUTS/OUTPUTS

The I/O pins are used to input command,

address and data, and to output data during read

operations. The I/O pins float to high-z when the

chip is deselected or when the outputs are

disabled.

I/O

2.4.5.8. Ethernet Controller (WAN Port)

- Davicom DM9000B Ethernet Controller

- 16 bit mode set.

- EECS pin should be connected with pull-up resistor to use link/speed LED.

- RJ45 Transformer Center Tap is powered by DM9000B AVDD18.

Eddy-CPU

v2.1 Signal

Name

DM9000B

Signal Name
Description I/O

PC12/NCS7 CSN
Chip Select #7

Address : 0x8000 0000-0x8FFF FFFF
OUT

PC15/IRQ1 INTRN

Interrupt depend on EECK(pin20) setting.

1 : INT pin low active

0 : INT pin high active

EECK is not connected in DK board, so Interrupt is

acted with active high.

IN

A2 CMD

Command Type

When high, Data port

When low, INDEX port

OUT

D[0:15] Data Bus 16-bit mode I/O

 Chapter 3. Development Environment

47

Chapter 3.Chapter 3.Chapter 3.Chapter 3. Development EnvironmentDevelopment EnvironmentDevelopment EnvironmentDevelopment Environment

This chapter explains the process of application programming and other important notes.

SDK’s directory structures are as follows.

Note

All material related to Eddy including documentation, reference sources and utilities are periodically

updated to www.embeddedmodule.com without prior notice. Please visit and download latest

updates from the site.

3.13.13.13.1 Source coSource coSource coSource code directory structurede directory structurede directory structurede directory structure

FirmwareFirmwareFirmwareFirmware Directory Directory Directory Directory

 Boot Loader, kernel, filesystem, image are stored.

RamdiskRamdiskRamdiskRamdisk Directory Directory Directory Directory

 Filesystem images are created here

 root: Lemonix Filesystem for Filesystem is stored.

ToolsToolsToolsTools Directory Directory Directory Directory

Tools used for creating image files is stored.

Src Src Src Src DirectoryDirectoryDirectoryDirectory

Source codes of applicatons in Eddy are stored.

Please refer Chapter4. Compiling Application for the detail description of src directory.

Eddy-APPs folder contains the source code of the basic application.

Other folders contain open sources for Eddy applications.

Filesystem_2.1.x,Filesystem_2.1.x,Filesystem_2.1.x,Filesystem_2.1.x,

firmwarefirmwarefirmwarefirmware

ramdiskramdiskramdiskramdisk

srcsrcsrcsrc

toolstoolstoolstools

rootrootrootroot

Eddy_APPsEddy_APPsEddy_APPsEddy_APPs

Open SourceOpen SourceOpen SourceOpen Source

BBBBusyboxusyboxusyboxusybox

DropbearDropbearDropbearDropbear

snmpsnmpsnmpsnmp

....

....

vsftpdvsftpdvsftpdvsftpd

includeincludeincludeinclude

SB_APIsSB_APIsSB_APIsSB_APIs

webwebwebweb

htdocshtdocshtdocshtdocs

cgicgicgicgi

 Chapter 3. Development Environment

48

3.23.23.23.2 LanguageLanguageLanguageLanguage

Eddy-DK application should be composed with C language. All example source codes provided are composed in C

language. You can use more than one source file if you are using C programming Language. If you are familiar with

programming with ANSI C, there will be no difficulties creating applications for Eddy.

3.33.33.33.3 Development Environment Development Environment Development Environment Development Environment

Eddy DK requires Windows or Linux host system.

Officially supported OSs are as follows.

WindowsWindowsWindowsWindows LinuxLinuxLinuxLinux

Windows XP SP2

Windows 2000

Windows 2003

Red Hat 9.0

Fedora Core 4, 5, 6

SUSE Linux Enterprise Server 10.2

Ubuntu Linux 6.x, 7.x

Debian Linuv 4.0

CentOS 4.5

Asianux edition 3

3.43.43.43.4 Installing on Windows OSInstalling on Windows OSInstalling on Windows OSInstalling on Windows OS

This chapter will describe how to install Eddy Development Environment on Windows host.

The explanation of this manual based on Windows XP.

To establish Eddy’s integrated development environment, LemonIDE, please refer to “LemonIDE_User_Guide”

for further instructions.

3.4.1 Installation of Cygwin

To execute LemonIDE on Windows hosts, some of libraries from Linux system are required.

Cygwin is the virtual Linux program which enables Linux environment to be compatible on Windows hosts. It needs

to be installed on the system in order to use LemonIDE.

Run “Setup.exe" file from SDK/Windows/Cygwin directory on the CD which is provided with Eddy DK and follow

the instructions below;

 Chapter 3. Development Environment

49

Select “Install from Local Directory” and click

“Next”.

 Chapter 3. Development Environment

50

Select installation directory as “c:\cygwin”.

Select the folder which Cygwin Package is,

which is

“SDK\Windows\cygwin” on provided DK

CD.

Select the package to install.

Only select “Devel” as left picture.

Make sure the option changed to “Install”

from “Default:.

 Chapter 3. Development Environment

51

3.4.2 Configuration of Windows Environment Variables

Path should be added in order to refer required Eddy libraries in Windows environment.

Select “Desktop” � “My Computer” � Right click � “Properties” � select “Advanced” tab � click

“Environment Variables”.

Select Path from System Variable and add the following line on the very beginning.

c:\cygwin\bin;

3.4.3 Installation of Toolchain

Toolchain compiles source codes composed on Windows environment and make it executable on the target, Eddy.

Eddy. Toolchain installation file, “toolchain-windows-arm-411.tgz”, can be found under SDK/Windows folder in

Eddy DK’s CD. Copy the file to the root directory of “C:”, and unzip the file from Windows command line as

below.

Toolchain should be installed to “c:\cygwin\opt\lemonix\cdt”.

Note that the command is case-sensitive.

3.4.4 Installation of Eddy DK Source

Install Eddy DK Source. DK Source file, “filesystem_2.1.x.x.tar.gz”, can be found under SDK folder of Eddy

DK’s CD. Copy the file to the root directory of “C:”, and unzip the file from Windows command line as below.

DK Source should be installed to c:c:c:c:\\\\eddy_DK_2xxeddy_DK_2xxeddy_DK_2xxeddy_DK_2xx”.

 Chapter 3. Development Environment

52

Note that the command is case sensitive.

3.53.53.53.5 InstallingInstallingInstallingInstalling on on on on Linux Linux Linux Linux

This chapter will describe how to install Eddy Development Environment on Linux host.

The explanation of this manual based on Fedora Core 5.

To establish Eddy’s integrated development environment, LemonIDE, please refer to “LemonIDE_User_Guide”

for further instructions.

3.5.1 Installation of Toolchain

Toolchain compiles source codes composed on Linux environment and make it executable on the target, Eddy.

Toolchain install file, “lemonide_linux_10x.tar.gz”, can be found under SDK/linux folder in Eddy DK’s CD.

Toolchain should be installed to /opt/lemonix/opt/lemonix/opt/lemonix/opt/lemonix.

Note that the command is case sensitive.

Note

Carry out all install procedures under the super user privileges.

Example below assumes that CDROM is mounted on /mnt/cdrom

If CDROM is mounted on a different location, path displayed below will bear difference.

cd /

tar -zxvf /mnt/cdrom/SDK/linux/lemonide*.tar.gz -C /

 Chapter 3. Development Environment

53

3.5.2 Installation of Eddy DK Source

Install the entire source of Eddy DK. Eddy DK Source file, “Filesystem_2.1.x.x.tar.gz”, can be found under SDK

folder on Eddy DK’s CD.

Install Eddy DK Source as shown below. The eddy_DK_2xx folder will be created after the installation.

Unzip the file. If Eddy_DK_2xx folder is created, the installation is completed. The below shows the contents of

Eddy_DK_2xx folder.

3.63.63.63.6 Removing Development EnvironmentRemoving Development EnvironmentRemoving Development EnvironmentRemoving Development Environment

Development Environment can be removed by simply deleting the folder where installed files are located.

3.6.1 Removing Windows Development Environment

Delete the folders where DK Source and Cywin are installed.

3.6.2 Removing Linux Development Environment

[root@localhost eddy-DK_2xx]# ls -al

Total 32

drwxr-xr-x 6 shlee work 4096 Nov 26 14:43 .

drwxrwxr-- 26 shlee work 4096 Nov 30 21:25 ..

drwxr-xr-x 4 shlee work 4096 Noc 26 14:46 src

-rwxr-xr-x 1 shlee work 2822 Nov 26 14:43 Env.sh

-rwxr-xr-x 1 shlee work 171 Nov 26 14:43 Make.check

drwxr-xr-x 2 shlee work 4096 Nov 29 17:50 firmware

drwxr-xr-x 5 shlee work 4096 Nov 29 17:50 ramdisk

drwxr-xr-x 4 shlee work 4096 Nov 26 14:47 tool

rm –rf filesystem_2.1.x.x ; Removal of Eddy DK Source

rm -rf /opt/Lemonix ; Removal of Eddy ToolChain

pwd

/home/shlee

tar -zxvf filesystem_2.1.x.x.tar.gz

 Chapter 4. Compiling of Application Program

54

Chapter 4.Chapter 4.Chapter 4.Chapter 4. Compiling of Application ProgramCompiling of Application ProgramCompiling of Application ProgramCompiling of Application Program

4.14.14.14.1 Program TypeProgram TypeProgram TypeProgram Type

This chapter explains how to compose application program, load to Eddy to execute and store it to flash memory of

Eddy as a firmware.

The source codes provided are actual codes containing on the product. Some of codes are not provided due to a

security reason. Program sources can be divided into two categories, Open Source and Application Source.

Open sources can be found under the “scr” folder.

The contents are as follows;

Folder NameFolder NameFolder NameFolder Name DescriptionDescriptionDescriptionDescription

busybox-1.5.0 Linux Utility containing basic commands for the shell

dropbear-0.50 SSH (Secure Shell) Server

gdbserver Remote debugging program for LemonIDE

(Only executable file provided.)

mtd-util Management program for Mtd

openssl-0.9.7c OpenSSL Library (SSL type)

matrixssl-1-8-3 Matrixssl program (SSL type)

thttpd-2.25b HTTP Server

vsftpd-2.0.5/ FTP Server

ddns-1.8 DDNS Server

ethtool-6 Ethernet based network testing program

netkit-ftp-0.18 ftp client

target-agent Program helps to upload, download and execute user’s programs,

linked with LemonIDE. The source code not provided.

net-snmp-5.4.1 SNMP V1/V2/V3 program

Iptables-1.3.7 Bridge program for NAT function of LAN port

 Chapter 4. Compiling of Application Program

55

Please refer various source codes under the Eddy_APPs folder when composing new application programs.

The program sources under the Eddy_APPs folder are the original source codes make Eddy works.

The below is a list of source files located on the Eddy_APPs folder.

File nameFile nameFile nameFile name DescriptionDescriptionDescriptionDescription

def.c Eddy Setting Program

eddy.c Program which is first executed after booting of Eddy. This program

makes Eddy to operate as configured setting.

pinetd.c Highest hierarchy of Eddy program; it executes and monitors the

programs of lower hierarchy.

tcp_client.c Program connects to a server and exchanges data between a serial

port and a socket.

tcp_server.c Stand ready program exchanges data between the serial port and

the socket.

upgrade.c Updating Program for Firmware

ddns_agent.c Program which gives Eddy IP information to DDNS server

detect.c Program linked with the portview detector.

(Refer the portview manual for the details.)

loopback.c Loopback test program for the serial port.

portview.c Agent of Portview, which is a NMS program for windows, provided

by SystemBase.

tcp_broadcast.c Multi TCP server function supports maximum of five client

connections, and broadcast serial data to all client.

tcp_multiplex.c Multi TCP server function supports maximum of five client

connections, and transfer serial data to each client.

udp.c UDP server and client program exchanges data between UDP

socket and a serial port.

rt-test.c Delay Time Testing Program

test_gpio_led.c

test_gpio_pin.c

GPIO LED Testing Program

GPIO Pin Testing Program

test_adc.c ADC (Analog Disgital Converter) Testing Program

test_sio.c Serial Port Testing Program

test_rtc.c RTC (Real Time Clock) Testing Program

test_dio.c

test_keypad.c

test_nand.c

test_mmc.c

test_lcd.c

test_spi_eeprom.c

DIO (Digital Input Output) Testing Program

Key Pad Testing Program

NAND Flash Testing Program

SD Memory Testing Program

LCD Testing Program

EEPROM Testing Program connected to SPI Interface

/include Directory for Header files for applications

/SB_APIs Directory for Exclusive Libraries for Eddy

/web CGI sources and htm codes for Eddy are located

 Chapter 4. Compiling of Application Program

56

4.24.24.24.2 Writing Application ProgramWriting Application ProgramWriting Application ProgramWriting Application Program

This chapter shows how to write an application program for Eddy.

First, create a “hello_world.c” file under the “scr/Eddy_APPs” directody.

4.34.34.34.3 Writing MakefileWriting MakefileWriting MakefileWriting Makefile

To compile an application program, compile information of the application program has to be registered on the

Eddyy_APPs/Makefile directory. The below is description of “Makefile” under directory of src/Eddy_APPs/.

The picture blow shows the environment setting area for an application program compile.

Add a name under the “TARGET” highlighted as red, and register to the compile environment.

 #include <stdio.h>

 int main()

 {

 While (1)

 {

 printf("hello world !!!\n");

 sleep (1);

 }

 }

TARGET = eddy pinetd def ddns_agent \

upgrade portview upgradetftp detect \

tcp_server tcp_client tcp_multiplex tcp_broadcast \

udp rt_test hello_world

udp : udp.o

 rm -f $@

 $(CC) $(CFLAGS) $(LDFLAGS) $(IFLAGS) -o $@ $ $@.o $(LIBS)

 $(STRIP) $@

Hello_World : Hello_World.o

 Rm -f $@

 $(CC) $(CFLAGS) $(LDFLAGS) $(IFLAGS) -o $@ $ $@.o

 $(STRIP) $@

 Chapter 4. Compiling of Application Program

57

4.44.44.44.4 Application Program CompileApplication Program CompileApplication Program CompileApplication Program Compile

Compile the application program to execute on Eddy after registering the compile environment to the “Makefile”.

4.4.1 Compiling on Windows

Enter “make” command through cmd(command prompt) on the directory where “Makefile” is located. As

shown below, if a compile is successfully completed, execution file named “Hello_World” would be created. Of

course, as this file was cross-compiled, it can not run on Windows environment. Upload this file to Eddy using a

FTP to execute the file on Eddy, (Files uploaded with FTPs will not permanently saved on Eddy.).

This will be further explained on the next chapter, Chpater 5 Creating Firmware.

4.4.2 Compiling on Linux

To compile a source file on Linux environment, enter “make” command on the directory where “Makefile” is

located. As shown below, if a compile is successfully completed, execution file named Hello_World would be

created. Of course, as this file was cross-compiled, it can not run on Linux environment. Upload this file to Eddy

using a FTP to execute the file on Eddy, (Files uploaded with FTPs will not permanently saved on Eddy.).

This will be further explained on the next chapter, Chpater 5 Creating Firmware.

4.4.3 Compiling with LemonIDE

LemonIDE is an IDE(Integrated Development Environment) based on Eclipse platform and provides an intuitive GUI

interface. LemonIDE can be used in both Windows and Linux environments. Source coding, compile, remote

debugging and creating a firmware image can be all carried out with LemonIDE.

Refer to “LemonIDE_User_Guide” for detailed information.

C:\eddy_DK_2xx[\src/Eddy_APPs> make hello_world

/opt/lemonix/cdt/bin/arm-linux-gcc -O2 -g -Wall -Wno-nonnull -c -o Hello_World.o Hello_World.c

/opt/lemonix/cdt/bin/arm-linux-gcc -L/opt/lemonix/cdt/lib -L/opt/lemonix/cdt/bin Hello_World.o -o

Hello_World

C:\eddy_DK_2xx[\src/Eddy_APPs>

C:\eddy_DK_2xx[\src/Eddy_APPs> ls

Hello_world SB_APIs def.c eddy kt.c pinetd portview.o

tcp_client.c tcp_client tcp_multiplex.o . . .

[shlee@localhost Eddy_APPs]$make hello_world

/opt/lemonix/cdt/bin/arm-linux-gcc -O2 -g -Wall -Wno-nonnull -c -o hello_world.o hello_world.c

/opt/lemonix/cdt/bin/arm-linux-gcc -L/opt/lemonix/cdt/lib -L/opt/lemonix/cdt/bin hello_world.o

…………

[shlee@localhost Eddy_APPs]$ ls

Hello_World* SB_APIs/ def.c* eddy* kt.c pinetd* portview.o

server* tcp_client* tcp_multiplex.o tcps* upgrade* . . .

 Chapter 4. Compiling of Application Program

58

4.54.54.54.5 Running Application on Running Application on Running Application on Running Application on EddyEddyEddyEddy

To run an application on Eddy, there are several methods. First method is to convert an application as a firmware

and loads it into the flash memory area and execute. However, this method is not recommended for developing

phase of application, since it is time consuming task. Second method is to load and execution file of an application

to RAM type file system by using the FTP Server on Eddy DK, and execute it from there. This method is suitable for

developing phase of application; however the application loaded to Eddy will be deleted when the power is

disconnected.

The LemonIDE integrated developing environment provides advanced solution. LemonIDE debugging tool supports

the direct transmission of compiled applications to Eddy. By using this tool, the user can execute and check the

result instantly on site.

If you wish to use LemonIDE, please refer to “LemonIDE_User_Guide”.

4.5.1 Uploading and Executing on Eddy

Connect to Eddy by using FTP.

ID and password for FTP server are same as the one using with telnet connection.

The example below shows how to upload an example file, “hello_world”, to /tmp folder of Eddy on Linux using

FTP.

When uploading a file, “bin” command must be entered first for binary mode.

For uploading enter “put <file name> on the command line.

On Windows environment, use FTP program of Windows on the Command Prompt.

When the transmission is completed, a user can check the file using Telnet terminal connected Eddy.

The file is executable using “chmod” command; however the mode has to be switched to executable.

After switching to Executable Mode, execute the file by entering “/hello_world”.

To terminate a program, press “Ctr” and “C” key simultaneously.

[shlee@localhost Eddy_APPs]$ ftp 192.168.0.223

Name (192.168.0.223:shlee): eddy

331 Please specify the password.

Password:

230 Login successful.

ftp> cd /tmp

ftp> bin

ftp> put hello_world

8914 bytes sent in 0.00027 seconds (3.3e+04 Kbytes/s)

ftp> bye

[shlee@localhost Eddy_APPs]$

 Chapter 4. Compiling of Application Program

59

4.5.2 Execute a file on Booting of Eddy

If auto running is not necessary, you can skip this section.

If the application is successfully executed on Eddy, make a firmware image and load to Flash memory of Eddy to

execute on booting.

Register the application to “pinetd.c” on the directory of Eddy_APPS.

If “printed.c” is modified, a user must re-compile it by executing “make pinetd” as above example of section 4.4.

ls

hello_world login.id thttpd.log login.pw

thttpd.pid utmp . . .

chmod 777 hello_world

./hello_world

Welcome to Eddy !

Welcome to Eddy !

Welcome to Eddy !

Welcome to Eddy !

//<===

// Here User Application Launching !!

// ---

//

// ex) Task_Launch ("/sbin/hello", argument);

// | |

// | +---- Integer argument

// +--------------- Application name with path

//

//===>

Task_Launch ("/sbin/hello_world", 0);

signal(SIGCHLD, sig_chld);

 Chapter 5. Creating Firmware

60

Chapter 5.Chapter 5.Chapter 5.Chapter 5. Creating FirmwareCreating FirmwareCreating FirmwareCreating Firmware

On the previous chapter, we explained how to make and compile application program with sample program. This

chapter introduces methods to create a firmware which permanently saves the application into the Eddy module and

apply it to hardware of Eddy.

5.15.15.15.1 How to How to How to How to CCCCreate a reate a reate a reate a FFFFirmwareirmwareirmwareirmware

Firmware image can be created on filesystem_2.1.x.x/ramdisk folder.

Modify “Makefile” on filesystem_2.1.x.x/ramdisk directory to create a firmware image.

Version info, required Ramdisk amount and desired application to copy can be set up on the “Makefile”.

(NOTE)

Provided DK Sources are Linux based. Some commands are not executable on Windows

environment. To prevent this problem, a suffix, “exe”, has to be added for some utilities after file

name as shown below.

../tool/genext2fs � ../tool/genext2fs.exe

../tool/mkimage � ../tool/mkimage.exe

IMAGE=ramdisk

FW_NAME = eddy-fs-2.1.x.x.bin � Name and Version Info of Firmware Image

FIRMWARE_DIR = ../firmware � Directory to store created firmware

install:

#@echo "Making ramdisk image..."

#$(TOOL) -b 8192 -d root -D device_table.txt ramdisk

#../tool/genext2fs -U -b 5110 -d root -D device_table.txt ramdisk

#../tool/genext2fs -U -b 7158 -d root -D device_table.txt ramdisk

#../tool/mkcramfs -q -D device_table.txt root ramdisk

./tool/genext2fs.exe -U -b 10240 -N 1024 -d root -D device_table.txt ramdisk � Make size of

Ramdisk to 10,240 K and register the device of Eddy/dev as indicated on Devide_table.txt.

gzip -vf9 ramdisk

est -f ramdisk.gz

./tool/mkimage.exe -A arm -O linux -T ramdisk -C gzip -a 0 -e 0 -n $(FW_NAME) -d ./ramdisk.gz

$(FW_NAME)

test -f $(FW_NAME)

mv $(FW_NAME) $(FIRMWARE_DIR)/

release: � Register the desired application to the directory for copying to Eddy

cp -f ../src/Eddy_APPs/hello_world root/sbin

cp -f ../src/Eddy_APPs/eddy root/sbin

 Chapter 5. Creating Firmware

61

cp -f ../src/Eddy_APPs/com_redirect root/sbin

cp -f ../src/Eddy_APPs/tcp_server root/sbin

cp -f ../src/Eddy_APPs/tcp_client root/sbin

cp -f ../src/Eddy_APPs/tcp_broadcast root/sbin

cp -f ../src/busybox-1.5.0/busybox root/bin

cp -f ../src/dropbear-0.50/dropbear root/usr/local/sbin

cp -f ../src/dropbear-0.50/dropbearkey root/usr/local/sbin

cp -f ../src/ethtool-6/ethtool root/usr/local/sbin

cp -f ../src/net-snmp-5.4.1/agent/snmpd root/usr/local/sbin

List of task on the “Makefile” options are as follows;

Make release ; Copy modules registered on the release to Ramdisk area.

Make install ; Create a Filesystem to a firmware image for using on Eddy.

If the modification of “Makefile” is completed, execute “make release and “make install” in turns and create a

Firmware image.

Created firmware is stored on the “FIRMWARE_DIR” directory stated on the “Makefile”.

On Windows, use cmd(command prompt) to carry out procedures explained on Linux.

[shlee@localhost ramdisk]$ make release

.

.

[shlee@localhost ramdisk]$ make install

.

.

[shlee@localhost ramdisk]$ ls ../firmware

-rwxr-xr-x ---eddy-bl-2.1.x.x.bin

-rwxr-xr-x ---eddy-bs-2.1.x.x.bin

-rwxr-xr-x ---eddy-os-2.1.x.x.bin

-rwxr-xr-x ---eddy-fs-2.1.x.x.bin

.

.

Makefile options are as follows.

Make release ; copy module in release to ramdisk area

Make cfg ; create firmware image of Eddy enviromental files in ramdisk/flash

Make install ; create a firmware image of Eddy’s Filesystem

If changes to Makefile are complete, use “make install” command to create firmware image.

Firmware will be created in “FIRMWARE_DIR” directory defined in Makefile.

On Windows, use cmd(command prompt) to carry out procedures explained on Linux.

 Chapter 5. Creating Firmware

62

[shlee@localhost ramdisk]$ make release

.

.

[shlee@localhost ramdisk]$ make install

.

.

[shlee@localhost ramdisk]$ ls ../firmware

-rwxr-xr-x ---eddy-bl-2.1.x.x.bin

-rwxr-xr-x ---eddy-bs-2.1.x.x.bin

-rwxr-xr-x ---eddy-os-2.1.x.x.bin

-rwxr-xr-x ---eddy-fs-2.1.x.x.bin

.

.

As shown in the picture above, a new firmware file “eddy-fs-2.1.x.x.bin” has been created. Now you have to

upload the firmware image to Eddy via Web or FTP, save it to Eddy’s flash memory, and reset Eddy. Then Eddy

will run as the loaded firmware settings.

5.25.25.25.2 Firmware Firmware Firmware Firmware UpgradeUpgradeUpgradeUpgrade

Upload created firmware file to Eddy and save on the Flash Memory.

Eddy provides four ways of upgrading method.

FTP
Upload a firmware image using FTP program, and execute the upgrade

command to save it to the Flash memory using Telnet.

Web Browser
Connect to Web server of Eddy and save a firmware to the Flash memory.

Please refer Eddy_User_Guide for detail information.

Boot Loader

Use the boot loader which operates on booting to save a firmware through

the debugging port of Eddy DK board.

Please refer “the chapter 9: System Recovery” for detail.

USB
Use USB client port of Eddy DK board to upload a firmware.

Please refer “the chapter 9: System Recovery” for detail.

This section explains how to upload a firmware using a FTP.

On Windows, FTP can be used in cmd(command prompt) to carry out upload process.

Upload the created firmware, “eddy-fs-2.1.x.x.bin”, to the /tmp directory of Eddy, using an FTP.

[shlee@localhost firmware]$ ftp 192.168.0.223

Connected to 192.168.0.223.

Name (192.168.0.223:shlee): eddy

331 Please specify the password.

Password:

230 Login successful.

ftp> cd /tmp

250 Directory successfully changed.

ftp> bin

200 Switching to Binary mode.

ftp> put eddy-fs-2.1.x.x.bin

 Chapter 5. Creating Firmware

63

local: eddy-fs-2.1.x.x.bin remote: eddy-fs-2.1.x.x.bin

227 Entering Passive Mode (192,168,0,223,195,50)

150 Ok to send data.

226 File receive OK.

2104287 bytes sent in 0.47 seconds (4.3e+03 Kbytes/s)

ftp> bye

221 Goodbye.

[shlee@localhost firmware]$

Use Telnet to check “eddy-fs-2.1.x.x.bin” file is in the /tmp directory.

Use “upgrade eddy-fs-2.1.x.x.bin” command to update the firmware.

In order for the updated firmware to take effect, you need to reboot the module.

After rebooting you can see the sample program running using Telnet program as shown below.

Execution result of application program only output to the console port of Eddy. The console is a debug port of

pwd

/tmp

ls eddy-fs-2.1.x.x.bin

eddy-fs-2.1.x.x.bin

upgrade eddy-fs-2.1.x.x.bin

FileSystem Erase ... 2388341 Bytes

FileSystem Write ... eddy-fs-2.1.x.x.bin, 2388341 Bytes

...

Flash Write OK

...

Flash Verify OK

Update Complete

please reboot the system!

Eddy login: eddy

Password:

cd /sbin

ls

hello_world ifconfig nameif switch_root

com_redirect ifdown pinetd sysctl

…

ps -ef

PID USER COMMAND

1 root init

2 root [posix_cpu_timer]

3 root [softirq-high/0]

.

.

xx root /sbin/hello_world 1

 Chapter 5. Creating Firmware

64

Eddy DK board and only execution result of application program is generated.

The result can be seen on a computer screen using a serial emulator program such as hyper-terminal on Windows

by connecting the debug port to PC and setting communication speed to 115K, None, 8, 1.

Welcome to Eddy !

Welcome to Eddy !

Welcome to Eddy !

Welcome to Eddy !

Welcome to Eddy !

Welcome to Eddy !

Welcome to Eddy !

 Chapter 6. Library Introduction

65

Chapter 6.Chapter 6.Chapter 6.Chapter 6. Library IntroductionLibrary IntroductionLibrary IntroductionLibrary Introduction

This chapter introduces useful libraries and API functions that are applicable with Eddy-Serial DK.

6.16.16.16.1 IntroductionIntroductionIntroductionIntroduction

All the functions introduced in this chapter are all APIs included in SB_APIs.a of /src/Eddy_APPs/SB_APIs directory.

You also need to mention this library in the Makefile. All sample source codes accompanied with Eddy-DK use this

library, and you can see the source codes and Makefile for more information.

6.26.26.26.2 Makefile Makefile Makefile Makefile

Library is in /src/Eddy_APPs/SB_APIs/ directory, as a form of SB_API.a.

You need to specify in the Makefile in order to use this library, so please refer to the Makefile inside /src/Eddy_APPs/

folder.

6.36.36.36.3 System functionsSystem functionsSystem functionsSystem functions

Timer and delay functions needed for making application program.

SSSSB_SetPriority B_SetPriority B_SetPriority B_SetPriority

Function Specifies priority level of task.

Format Void SB_SetPriority (int Priority_Level);

Parameter Priority_level Low (1) ~ High (99)

Returns None

Notice Configures the priority level of task execution to the system.

The lowest level is 1, whereas the highest level is 99.

It is recommended to set level below 50; and when a certain task’s level

is set above 50, that task will be executed prior to others, possibly

affecting other tasks’ operation.

SB_GetTickSB_GetTickSB_GetTickSB_GetTick

Function Returns time measured after Eddy has been booted in msec.

 Chapter 6. Library Introduction

66

Format Unsigned long SB_GetTick (Void);

Parameter None

Returns 0 ~ 4,294,967,295

Notice Returned value is system tick counter in msec unit.

After it reaches the maximum value 0xffffffff of unsigned long type, it

starts from zero again - which is about period of 50 days.

SB_msleepSB_msleepSB_msleepSB_msleep

Function Delays in msec unit.

Format void SB_msleep (int msec);

Parameter msec Configure delay time in msec unit.

Returns none

Notice Delays in exact msec unit.

SB_AliveTimeSB_AliveTimeSB_AliveTimeSB_AliveTime

Function Returns time measured after Eddy has been booted in day, hour,

minute, and second.

Format void SB_AliveTime (int *day, int *hour, int *min, int *sec);

Parameter *day

*hour

*min

*sec

Days Eddy has been operationg (0 ~)

Hour (0 ~ 23)

Minute (0 ~ 59)

Second (0 ~ 59)

Returns None

Notice

6.46.46.46.4 Eddy Environment Eddy Environment Eddy Environment Eddy Environment FunctionFunctionFunctionFunction

Environment functions related with Eddy File System which gives information such as Eddy’s version, environment

configuration, version, etc.

SBSBSBSB_GetVersion_GetVersion_GetVersion_GetVersion

Function Reads version of O/S, file system, and bootloader ported to Eddy in string

type.

Format void SB_GetVersion (int type, char *version);

Parameter type Specifies the version function reads.

‘B’: Eddy’s bootloader version

 Chapter 6. Library Introduction

67

‘K’: Eddy’s O/S version

‘F’: Eddy’s file system version

 Version Pointer where version information string will be stored.

Returns None

Notice Version information will be read like “1.0a.”

BootLoader and O/S will be provided by SystemBase; therefore these

cannot be changed. In case file system is programmed by the user, the

version can be set by the user.

When the parameter type other than ‘B’ ,’K’, ‘F’ are called, the

function will return “0.00” as version information.

SB_ReadConfigSB_ReadConfigSB_ReadConfigSB_ReadConfig

Function Reads Eddy’s operating environment configuration file.

Format void SB_ReadConfig (char *FileName, char *Dest, int Size);

Parameter FileName File name that includes the path of the file to be read.

 *Dest Pointer to the buffer in which the configuration file will be

stored.

 Size The size of the file to be read.

Returns Error Code Returns 1 if succeeded, -1 if failed.

Notice Configuration file in Eddy is stored in /etc, /flash. Configuration changes

made through web or telent is stored here and all Eddy applications

operates with respect to configuration files here.

SB_WriteConfigSB_WriteConfigSB_WriteConfigSB_WriteConfig

Function Saves Eddy’s operating environment configuration information into file.

Format void SB_WriteConfig (char *FileName, char *Source, int Size);

Parameter FileName File name that includes path of the file to be written.

 Source Pointer to the struct buffer in which the configuration

information is saved.

 Size Size of the struct to be written.

Returns Error Code Return 1 if succeeded, -1 if failed.

Notice

SBSBSBSB_GetSharedMemory_GetSharedMemory_GetSharedMemory_GetSharedMemory

Function Reads pointer to registered shared memory.

Format void *SB_GetSharedMemory (int Key_ID, int Buffer_Size);

Parameter Key_ID

Buffer_Size

ID of registered shared menory

Size of shared memory used

 Chapter 6. Library Introduction

68

 *buffer_address Memory address of shared memory

Returns Returns -1 upon failure.

Notice Portview is Windows application developed by SystemBase which can

remotely monitor Eddy’s operating condition. In contrast, SNMP server,

which provides basically same function as Portview, is industry’s standard

monitoring protocol S/W developed by 3Com, Cysco, etc. and sold in

hundreds of thousands of U.S. dollars.

To be compatible with both of the applications, each application in Eddy

uses shared memory to store information and send the information to

Portview and SNMP.

 Note that PortView and SNMP Agent has to be set in the environment

configuration.

SB_SetSharedMemorySB_SetSharedMemorySB_SetSharedMemorySB_SetSharedMemory

Function Requests shared memory to be used and reads memory pointer.

Format void *SB_SetSharedMemory (int Key_ID, int Buffer_Size);

Parameter Key_ID

Buffer_Size

ID of shared memory to be registered

Size of shared memory to be used

Returns *buffer_address Memory address of shared memory

 Returns -1 upon failure.

Notice In Eddy, this function is used for PortView and SNMP agent.

User can use this function to access shared memory for other purpose.

6.56.56.56.5 Serial functionsSerial functionsSerial functionsSerial functions

These functions are used to handle internal serial port and UART.

SB_OpenSerial SB_OpenSerial SB_OpenSerial SB_OpenSerial

Function Opens serial port.

Format int SB_OpenSerial (int Port_No);

Parameter Port_No

Serial port number

0: First serial port

1: Second serial port

(Only available for Eddy-CPU, Eddy-DK)

Returns -1 ~ N Opened serial port handle

-1: Open error

N: Opened serial port handle

Notice Eddy provides maximum two serial ports; however for normal model

where Eddy-CPU is mounted, Eddy only provides one serial port.

 Chapter 6. Library Introduction

69

DK board has two on-board serial ports. User can use both of the serial

ports if the user sets DIP switch on DK board to make it recognized as

Eddy-CPU or Eddy-DK.

SB_InitSerialSB_InitSerialSB_InitSerialSB_InitSerial

Function Initialize data communication configuration of serial port.

Format Void SB_InitSerial (int Handle, char Speed, char LCR, char Flow);

Parameter Handle Serial port handle acquired from OpenSerial

Baud rate Speed

0 : 150 BPS,

2 : 600 BPS

4 : 2400 BPS

6 : 9600 BPS

8 : 38400 BPS

10 : 115200 BPS

12 : 460800 BPS

1 : 300 BPS

3 : 1200 BPS:

5 : 4800 BPS

7 : 19200 BPS

9 : 57600 BPS

11 : 230400 BPS

13 : 921600 BPS

 LCR X X P P S D D (8 bit binary)

P P : Parity Bits

 0 0 : None, 0 1 : Odd, 1 0, 1 1: Even

S : Stop Bits

 0 : 1 bits, 1 : 2 bits

D D : Data Bits

 0 0 : 5 bits, 0 1 : 6 bits

 1 0 : 7 bits, 1 1 : 8 bits

 FlowControl Types of flow control

0: no flow control

1: RTS/CTS flow control

2: Xon/Xoff flow contorl

Returns None

Notice

SB_SendSerialSB_SendSerialSB_SendSerialSB_SendSerial

Function Send data to the serial port.

Format Void SB_SendSerial (int handle, char *data, int length);

Parameter handle Handle to serial port or socket

 data Pointer to the data to be sent

 length Length of the data to be sent

Returns None

Notice When the transmit buffer is full, this function will retry up to 10 time in

20 msec period; it will return after transmission is completed.

 Chapter 6. Library Introduction

70

SB_ReadSB_ReadSB_ReadSB_ReadSerialSerialSerialSerial

Function Reads data from the serial port.

Format int SB_ReadSerial (int handle, char *data, int length, int wait_msec);

Parameter handle Handle to serial port.

 data Buffer pointer where the read data will be saved.

 length Size(length) of the buffer memory

 wait_msec Time the function will wait for next received data after

reading from read buffer.

Returns 0 ~ n Size of the read data

Notice When wait_msec is set to 0 this function will only read data from serial

receive buffer; when set larger than 0, it will read data from serial

receive buffer, wait for time specified in msec unit, and then continue

reading data from serial port as one packet.

The maximum size of the data is same as buffer’s size, i.e. length.

You can use value obtained from SB_GetDelaySerial function or value

manually calculated for wait_msec.

SB_GetMsrSB_GetMsrSB_GetMsrSB_GetMsr

Function Reads MSR register value from serial port

Format Char SB_GetMsr (int handle);

Parameter handle Handle to serial port.

Returns

Value

MSR Register 값

Bit 7 6 5 4 3 2 1 0

Bit0: CTS change

Bit1: DSR change

Bit2: RI change

Bit3: DCD change

Bit4: CTS (0:Low, 1:High)

Bit5: DSR (0:Low, 1:High)

Bit6: RI (0:Low, 1:High)

Bit7: DCD (0:Low, 1:High)

Notice

SB_SetRtsSB_SetRtsSB_SetRtsSB_SetRts

Function Controls RTS signal line of the serial port.

Format Void SB_SetRts (int handle, int value);

Parameter handle Handle to serial port.

 Chapter 6. Library Introduction

71

Value

0: off Set RTS signal to low.

1: on Set RTS signal to high.

Returns None

Notice

SB_SetDtrSB_SetDtrSB_SetDtrSB_SetDtr

Function Controls DTR signal line of the serial port.

Format Void SB_SetDtr (int handle, int value);

handle Handle to serial port.

Parameter Value

0: off Set DTR signal to low.

1: on Set DTR signal to high.

Returns None

Notice

6.66.66.66.6 Ethernet functioEthernet functioEthernet functioEthernet functionsnsnsns

These functions deal with the network-related information of Eddy.

These functions are optimized socket API for Eddy, and user can use other API for development by using his or her

own POSIX compatible standard socket API.

SB_GetIpSB_GetIpSB_GetIpSB_GetIp

Function Reads IP address assigned to Eddy.

Format Unsigned int SB_GetIp (char *interface);

Parameter Interface Network interface name.

“eth0” for WAN port.

“eth1” for LAN port.

Returns Unsigned int returns IP address in unsigned int type.

Notice Note that the function returns operating IP address, not the IP address

configured in Eddy. When Eddy is operating as a DHCP Client, this function

read network IP address assigned from DHCP server.

Please see below for transforming IP address into string type.

struct in_addr addr;

addr.s_addr = SB_GetIp ();

printf ("IP Address : %s ", inet_ntoa(addr));

SB_GetMaskSB_GetMaskSB_GetMaskSB_GetMask

Function Reads subnet mask address assigned to Eddy.

 Chapter 6. Library Introduction

72

Format Unsigned int SB_GetMack (char *interface);

Parameter Interface Interface name to be read

“eth0” for WAN port.

“eth1” for LAN port.

Returns Unsigned int Returns mask address in unsigned int type

Notice Please see SB_GetIp also

SB_GetGateway

Function Reads gate address assigned to Eddy.

Format Unsigned int SB_SetGeteway(void);

Parameter None

Returns Unsinged int Returns gate address in unsigned int type

Notice Please see SB_GetIp also

SB_ConnectTcpSB_ConnectTcpSB_ConnectTcpSB_ConnectTcp

Function Make connection to the server specified as TCP socket.

Format Int SB_ConnectTcp (char *IP_Address, int Socket_No, int Wait_Sec,

int Tx_Size, int Rx_Size);

Parameter IP_Address IP address to connect in string type

 Socket_No

Wait_Sec

Tx_Size

Rx_Size

Socket number of the server to connect

Wait time for connection (in seconds)

Tx buffer size of the socket (in K bytes)

Rx buffer size of the socket (in K bytes)

Returns -1 ~ N Handle number of the connected socket

-1: Connection failure

N: Handle number to the connected socket

Notice If the connection is not made, the function t will try to re-connect for

time specified in wait_sec and return.

Tx,Rx_Size are size of the socket buffer size. These can be set from 1 to

64.

If it is set to number smaller than 1, size will 4kbytes as default; number

larger than 64 will set size of the buffer to 64kbytes as default.

SB_LiSB_LiSB_LiSB_ListenTcpstenTcpstenTcpstenTcp

Function Wait for connection to TCP socket

Format Int SB_ListenTcp (int Socket_No, Int Tx_Size, int Rx_Size);

Parameter Socket_No

Tx_Bytes

TCP socket number to wait for connection

Tx buffer size of the socket (in K bytes)

 Chapter 6. Library Introduction

73

Rx_Bytes Rx buffer size of the socket (in K bytes)

Returns -1 ~ N Handle number of the TCP socket waiting for

connection

-1: Socket connection waiting failure

N: Handle number of the TCP socket waiting for

connection

Notice As a non-blocking function, this function requests connection and

returns without waiting for connection. SB_AcceptTcp will handle waiting

for connection.

Tx,Rx_Size are size of the socket buffer size. These can be set from 1 to

64.

If it is set to number smaller than 1, size will 4kbytes as default; number

larger than 64 will set size of the buffer to 64kbytes as default.

SB_AcceptTcpSB_AcceptTcpSB_AcceptTcpSB_AcceptTcp

Function Waits for network connection of TCP socket handle.

Format Int SB_AcceptTcp (int Socket_No, int wait_msec);

Parameter Socket_No

wait_msec

TCP socket handle number to wait for connection.

(Return value of SB_ListenTcp)

Connection standby time (in msec)

Returns -1 ~ N New handle number of connected TCP socket.

-1: Socket error

0: Waiting for connection

N: New handle number of connected TCP socket.

Notice When new handle number is given after connection is made, previous

handle that has been waiting will be closed inside this function.

SB_AcceptTcpMultiSB_AcceptTcpMultiSB_AcceptTcpMultiSB_AcceptTcpMulti

Function Grants network multiple connection of TCP socket handle waiting for

connection.

Format Int SB_AcceptTcpMulti (int Socket_No, int wait_msec);

Parameter Socket_No

wait_msec

TCP socket handle number waiting for connection.

(Return value of SB_ListenTcp)

Connection standby time (in msec)

Returns -1 ~ N New handle number of connected TCP socket.

-1: Socket error

0: Waiting for connection

N: New handle number of connected TCP socket.

Notice When new handle number is given after connection is made, it will not close

previous handle waiting for connection, granting maximum of 1024 socket

connection.

 Chapter 6. Library Introduction

74

SB_ReadTcpSB_ReadTcpSB_ReadTcpSB_ReadTcp

Function Read data from connected TCP socket.

Format Int SB_ReadTcp (int Handle, char *Buffer, int Buffer_Size);

Parameter Handle

Buffer

Buffer_Size

Handle number of connected TCP socket

Buffer point where packet data to be read will be saved

Size of the buffer to save

Returns -1 ~ N Size of the data read.

-1: Socket error

0: No data was read

N: Length of the data read

Notice When return code is -1, it means the connection is lost with the client so

user has to close TCP socket handle.

SB_CloseTcpSB_CloseTcpSB_CloseTcpSB_CloseTcp

Function Close TCP socket handle.

Format Int SB_CloseTcp (int Handle);

Parameter Handle TCP socket handle number to close

Returns None

Notice This function shuts down socket handle to finish communication and

closes.

SB_BindUdpSB_BindUdpSB_BindUdpSB_BindUdp

Function Binds UDP socket.

Format Int SB_BindUdp (int Socket_No);

Parameter Socket_No UDP socket number to bind

Returns Handle Handle number bound to UDP socket

 -1: Bind failure

N: Handle number bound to UDP socket

Notice

SB_ReadUdpSB_ReadUdpSB_ReadUdpSB_ReadUdp

Function Reads data transmitted to UDP socket bound in network.

Format Int SB_ReadUdp (int Handle, char *Buffer, int Buffer_Size);

Parameter Handle Handle number bound to UDP socket

 Chapter 6. Library Introduction

75

Buffer

Buffer_Size

Buffer point where packet data to be read will be

saved

Size of the buffer to save

Returns -1 ~ N Size of the data read.

-1: Socket error

0: No data was read

N: Length of the data read

Notice When client sends data to bound UDP socket, this function remembers

client’s IP address and socket number for SB_SendUdpServer to use.

SB_SendUdpServerSB_SendUdpServerSB_SendUdpServerSB_SendUdpServer

Function Transmits data to UDP socket. (Server mode)

Format Int SB_SendUdpServer (int Handle, char *Buffer, int Data_Size);

Parameter Handle

Buffer

Data_Size

Handle number bound to UDP socket

Buffer point where packet data to be sent is saved

Size of the buffer to send

Returns None

Notice This function can be called after confirming client’s network

information by sending data to UDP socket bound to Eddy from

network; that is, user has to call SB_ReadUdp first.

When data transmission has to be made first, user has to use

SB_SendUdpClient function.

SB_SendUdpClientSB_SendUdpClientSB_SendUdpClientSB_SendUdpClient

Function Transmit data to UDP socket (Client mode)

Format Int SB_SendUdpClient (int Handle, char *Buffer, int Data_Size,

Char *IP_Address, int Socket_No);

Parameter Handle

Buffer

Data_Size

IP_Address

Socket_No

Handle number bound to UDP socket.

Buffer point where packet data to be sent is saved.

Size of the buffer to send.

IP address to send data to.

Socket number to send data to.

Returns None

Notice This function can be used when user already knows destination network

information to send data to using UDP socket.

When data transmission has to be made first, user has to use

SB_SendUdpClient function..

6.76.76.76.7 GPIO Functions GPIO Functions GPIO Functions GPIO Functions

GPIO functions control up to 56 GPIO ports provided by Eddy.

 Chapter 6. Library Introduction

76

They can spot 3.3V power or control writes with individual GPIO port.

Pins provided by Eddy CPU are public pins that can be used to control other devices and are not used solely for

GPIO.

Eddy CPU provides 32 signal lines as 3 port groups; Port A, B, C.

Each port in Port A, B, C can be configured to be used as device or GPIO. They can be configured in Web.

Please refer to sample source ‘test_gpio.c’ in Eddy_Apps directory for precise usage.

The Yellow parts can all be used as GPIO ports if they are not used as devices.

Section Description Number of Ports

S0 ~ S3S0 ~ S3S0 ~ S3S0 ~ S3 Serial Port 1 ~ 4Serial Port 1 ~ 4Serial Port 1 ~ 4Serial Port 1 ~ 4 20202020

DeDeDeDebugbugbugbug Debug PortDebug PortDebug PortDebug Port 2222

RRRReseteseteseteset Reset Reset Reset Reset 1111

RRRRdydydydy Ready LEDReady LEDReady LEDReady LED 1111

ADCADCADCADC Analog Digital ConAnalog Digital ConAnalog Digital ConAnalog Digital Converterverterverterverter 4444

LANLANLANLAN LAN PortLAN PortLAN PortLAN Port 2222

EEPROMEEPROMEEPROMEEPROM SPI (EEPROM)SPI (EEPROM)SPI (EEPROM)SPI (EEPROM) 4444

NANDNANDNANDNAND NAND FlashNAND FlashNAND FlashNAND Flash 2222

KEYKEYKEYKEY Key PadKey PadKey PadKey Pad 8888

**** GPIO & User PeripheralGPIO & User PeripheralGPIO & User PeripheralGPIO & User Peripheral 12121212

Each port in Port A, B, C can be shown as 32 GPIO ports. So GPIO ports are shown as each bit in 4 byte int variable

in program.

 Chapter 6. Library Introduction

77

struct eddy_gpio {

Unsigned int value [3]; // Read/write value for each GPIO channel in Port A, B, C

Unsigned int mode [3]; // Configure read/write for each GPIO channel in Port A, B, C

 Unsigned int pullup [3]; // Pullup/Pulldown when configuring write

// for each GPIO channel in Port A, B, C

Unsigned int enable [3]; // Whether to use GPIO for each GPIO channel in Port A, B, C

};

enable: 0� disable (Do not use as GPIO), 1 � Enable (use as GPIO)

mode: 0 � Set as input mode,, 1 � Set as output mode

value: 0 � Read/Write status is set to Low, 1 � Read/Write status is set to High

pullup: 0 � pulldown, 1 � pullup

SETGPIOINITSETGPIOINITSETGPIOINITSETGPIOINIT

Function Initializes ports that will be used as GPIO after boot.

Format void ioctl(int fd, SETGPIOINIT, struct *gpio_struct);

Parameter fd Handle to GPIO device(“/dev/eddy_gpio”)

 gpio_struct Pointer to the struct which stores GPIO table value in

/etc/eddy_gpio.cfg with GPIO configuration file

registered in Web configuration.

struct gpio_struct {

 unsigned int value[3];

 unsigned int mode[3];

 unsigned int pullup[3];

unsigned int enable[3]; };

Returns None

Notice Eddy provides maximum GPIO ports of 56.

That is when using only WAN and when devices such as serial ports,

ADC, Rese, RDY LED… are used, number of available GPIO ports

decreases.

This command initializes available GPIO ports leaving the devices that

are registered in configuration in Pinetd.c after boot so users don’t

have use this command. When used, users need to be careful.

For instance, if a serial port is enabled through web configuration and

Eddy is rebooted, the port acts as a serial port, not a GPIO port. But

when this port is forced to be used as GPIO port with this command, the

application that uses this serial port will not operate properly.

 Chapter 6. Library Introduction

78

SETGPIOMOD_LMSETGPIOMOD_LMSETGPIOMOD_LMSETGPIOMOD_LM

Function Sets Read/Write direction for all Port A, B, C

Format void ioctl(int fd, SETGPIOMOD_LM, int *mode[3]);

Parameter fd Handle to GPIO device(“/dev/eddy_gpio”)

 mode Pointer to the buffer that stores “mode” value for

Port A, B, C.

Bit value 0 means input, 1 means output.

Returns None

Notice Any value is ok for bits that are not set to be used GPIO

GETGPIOMOD_LMGETGPIOMOD_LMGETGPIOMOD_LMGETGPIOMOD_LM

Function Reads Read/Write direction for all Port A, B, C

Format void ioctl(int fd, GETGPIOMOD_LM, int *mode[3]);

Parameter fd Handle to GPIO device(“/dev/eddy_gpio”)

 mode Pointer to the buffer that will store the “mode”

value of Port A, B, C

Returns None

Notice

SETGPIOVAL_LMSETGPIOVAL_LMSETGPIOVAL_LMSETGPIOVAL_LM

Function Sets output value when Port A, B, C are all in output mode.

Format void ioctl(int fd, SETGPIOVAL_LM, int *value[3]);

Parameter fd Handle to GPIO device(“/dev/eddy_gpio”)

 mode Pointer to the buffer that stores the “value” value of

Port A, B, C.

Bit value 0 means Low, 1 means High.

Returns None

Notice Any value is ok for bits that are not set to be used GPIO

GETGPIOVAL_LMGETGPIOVAL_LMGETGPIOVAL_LMGETGPIOVAL_LM

Function Reads Read/Write status value for Port A, B, C

Format void ioctl(int fd, GETGPIOVAL_LM, int *mode[3]);

Parameter fd Handle to GPIO device(“/dev/eddy_gpio”)

 mode Pointer to the buffer that will store the “value” value

 Chapter 6. Library Introduction

79

of Port A, B, C

Returns None

Notice

SETGPIOPUL_LMSETGPIOPUL_LMSETGPIOPUL_LMSETGPIOPUL_LM

Function Sets pullup value when Port A, B, C are all in input mode.

Format void ioctl(int fd, SETGPIOVAL_LM, int *value[3]);

Parameter fd Handle to GPIO device(“/dev/eddy_gpio”)

 mode Pointer to the buffer that stores the “pullup” value

of Port A, B, C.

Bit value 0 means Pulldown, 1 means Pullup.

Returns None

Notice Any value is ok for bits that are not set to be used GPIO

GETGPIOPUL_LMGETGPIOPUL_LMGETGPIOPUL_LMGETGPIOPUL_LM

Function Reads Read/Write status value for Port A, B, C

Format void ioctl(int fd, GETGPIOVAL_LM, int *mode[3]);

Parameter fd Handle to GPIO device(“/dev/eddy_gpio”)

 mode Pointer to the buffer that will store the “pullup”

value of Port A, B, C

Returns None

Notice

SETGPIOMOD_LASETGPIOMOD_LASETGPIOMOD_LASETGPIOMOD_LA

SETGPIOMOD_LBSETGPIOMOD_LBSETGPIOMOD_LBSETGPIOMOD_LB

SETGPIOMOD_LCSETGPIOMOD_LCSETGPIOMOD_LCSETGPIOMOD_LC

Function Sets Read/Write direction for one of Port A, B, C

Format void ioctl(int fd, SETGPIOMOD_L?, int *mode[3]);

Parameter fd Handle to GPIO device(“/dev/eddy_gpio”)

 mode Pointer to the buffer that stores “mode” value.

Bit value 0 means input, 1 means output.

Returns None

Notice Any value is ok for bits that are not set to be used GPIO

GETGPIOMOD_LAGETGPIOMOD_LAGETGPIOMOD_LAGETGPIOMOD_LA

GETGPIOMOD_LBGETGPIOMOD_LBGETGPIOMOD_LBGETGPIOMOD_LB

GETGPIOMOD_LGETGPIOMOD_LGETGPIOMOD_LGETGPIOMOD_LCCCC

 Chapter 6. Library Introduction

80

Function Reads Read/Write direction for one of Port A, B, C

Format void ioctl(int fd, GETGPIOMOD_L?, int *mode[3]);

Parameter fd Handle to GPIO device(“/dev/eddy_gpio”)

 mode Pointer to the buffer that will store the “mode”

value.

Returns None

Notice

SETGPIOVAL_LASETGPIOVAL_LASETGPIOVAL_LASETGPIOVAL_LA

SETGPIOVAL_LBSETGPIOVAL_LBSETGPIOVAL_LBSETGPIOVAL_LB

SETGPIOVAL_LCSETGPIOVAL_LCSETGPIOVAL_LCSETGPIOVAL_LC

Function Sets output value when Port is in output mode.

Format void ioctl(int fd, SETGPIOVAL_L?, int *value[3]);

Parameter fd Handle to GPIO device(“/dev/eddy_gpio”)

 mode Pointer to the buffer that stores the “value” value.

Bit value 0 means Low, 1 means High.

Returns None

Notice Any value is ok for bits that are not set to be used GPIO

GETGPIOVAL_LAGETGPIOVAL_LAGETGPIOVAL_LAGETGPIOVAL_LA

GETGPIOVAL_LBGETGPIOVAL_LBGETGPIOVAL_LBGETGPIOVAL_LB

GETGPIOVAL_LCGETGPIOVAL_LCGETGPIOVAL_LCGETGPIOVAL_LC

Function Reads Read/Write status value for one of Port A, B, C

Format void ioctl(int fd, GETGPIOVAL_L?, int *mode[3]);

Parameter fd Handle to GPIO device(“/dev/eddy_gpio”)

 mode Pointer to the buffer that will store the “value”

value.

Returns None

Notice

SETGPIOPUL_LASETGPIOPUL_LASETGPIOPUL_LASETGPIOPUL_LA

SETGPIOPUL_LBSETGPIOPUL_LBSETGPIOPUL_LBSETGPIOPUL_LB

SESESESETGPIOPUL_LCTGPIOPUL_LCTGPIOPUL_LCTGPIOPUL_LC

Function Sets pullup value when Port is in input mode.

Format void ioctl(int fd, SETGPIOVAL_L?, int *value[3]);

Parameter fd Handle to GPIO device(“/dev/eddy_gpio”)

 mode Pointer to the buffer that stores the “pullup” value.

Bit value 0 means Pulldown, 1 means Pullup.

 Chapter 6. Library Introduction

81

Returns None

Notice Any value is ok for bits that are not set to be used GPIO

GETGPIOPUL_LAGETGPIOPUL_LAGETGPIOPUL_LAGETGPIOPUL_LA

GETGPIOPUL_LBGETGPIOPUL_LBGETGPIOPUL_LBGETGPIOPUL_LB

GETGPIOPUL_LCGETGPIOPUL_LCGETGPIOPUL_LCGETGPIOPUL_LC

Function Reads Read/Write status value for one of Port A, B, C

Format void ioctl(int fd, GETGPIOVAL_L?, int *mode[3]);

Parameter fd Handle to GPIO device(“/dev/eddy_gpio”)

 mode Pointer to the buffer that will store the “pullup”

value.

Returns None

Notice

6.86.86.86.8 ADC FunctionADC FunctionADC FunctionADC Function

Eddy CPU provides 4 channels of ADC(Analog Digital Converter).

Eddy DK board has temperature and illumination sensor for testing and the status of the sensors can be checked in

real time with ADC.

Sample program “Eddy_Apps/test_adc.c” uses ADC interface so users can refer to this source for developing

programs.

ADCSETCHANNELADCSETCHANNELADCSETCHANNELADCSETCHANNEL

Function Configures whether to use 4 channels of ADC device or not.

Format void ioctl(int fd, ADCSETCHANNEL, int *channel);

Parameter fd Handle to ADC device(“/dev/adc”)

 mode Pointer to the buffer that stores channel configuration

Returns None

Notice X X X X X X X X (bits)

 | | | |----- channel 1 (temperature sensor)

 | | |--------- channel 2 (illumination sensor)

 | |------------- channel 3 (future use)

 |----------------- channel 4 (future use)

ADCGETVALUEADCGETVALUEADCGETVALUEADCGETVALUE

Function Reads operation status of 4channels of ADC device

Format void ioctl(int fd, ADCGETVALUE, struct adc_struct *channels);

 Chapter 6. Library Introduction

82

Parameter fd Handle to ADC device(“/dev/adc”)

 mode Pointer to the buffer that will store channel operation

status

Returns None

Notice Struct adc_value {

 int ch1_value;

 int ch2_value;

 int ch3_value;

 int ch4_value;

};

6.96.96.96.9 RTC FunctionRTC FunctionRTC FunctionRTC Function

Eddy CPU provides separate RTC(Real Time Clock) in DK.

Date and time can be configured through program or with Date and rdate provided by Busybox.

Sample program “Eddy_Apps/test_rtc.c” uses RTC device so users can refer to this source for developing

programs.

RTC_SET_TIMERTC_SET_TIMERTC_SET_TIMERTC_SET_TIME

Function Configures date and time in RTC device

Format void ioctl(int fd, RTC_SET_TIME, struct tm *tm);

Parameter fd Handle to RTC device(“/dev/rtc0”)

 tm Pointer to struct that stores date and time to be

configured. Compatible with struct tm for Linux

standard time interface.

Returns None

Notice

RTC_RD_TIMERTC_RD_TIMERTC_RD_TIMERTC_RD_TIME

Function Reads date and time from RTC device

Format void ioctl(int fd, RTC_RD_TIME, struct tm *tm);

Parameter fd Handle to RTC device(“/dev/rtc0”)

 tm Pointer to struct that will store date and time read.

Compatible with struct tm for Linux standard time

interface.

Returns None

Notice

 Chapter 6. Library Introduction

83

6.106.106.106.10 Debugging Function Debugging Function Debugging Function Debugging Function

Eddy can debug operating condition of each application via Telnet in real time.

The following functions are used to print debug log message to Telnet window when SB_DEBUG of each application

is set ON.

SB_LogDataPrintSB_LogDataPrintSB_LogDataPrintSB_LogDataPrint

Function Print each byte of data in hex or ascii code.

Format void SB_LogDataPrint (char *RTx, char *buff, int data_len);

Parameter *RTx Description message of data

 *Buff

Data_len

Buffer address of data to be printed is saved/

Size of data.

Returns None

Notice Prints messages to telnet which logged in first.

The message include Eddy’s tick counter of 1msec unit and printed in

following form.

SB_LogDataPrint (“Send”, “\t12345\n”, 8);

[191020202] Send 8 = 08,1,2,3,4,5,0d,0a

-------------- ------- ------ -----------------------

Tick Counter RTx data_Len buff

Debugging of each application in Eddy can be configured as follows by

using Def command. (Please see def.c)

def po <1/2/all> debug <on/off>

SB_LogMsgPrintSB_LogMsgPrintSB_LogMsgPrintSB_LogMsgPrint

Function Prints in the same format as Printf.

Format void SB_LogMsgPrint (const char *Format, . . .);

Parameter *Format Format of Printf

Returns None

Notice Prints messages to telnet which logged in first.

The message include Eddy’s tick counter of 1msec unit and printed in

following form.

SB_LogMsgPrint (“%s means Real-Time\n”, “Eddy”);

[191020202] Eddy means Real-Tile

Debugging of each application in Eddy can be configured as follows by

using Def command. (Please see def.c)

def po <1/2/all> debug <on/off>

 Chapter 7. Eddy Software

84

Chapter 7.Chapter 7.Chapter 7.Chapter 7. Eddy Software Eddy Software Eddy Software Eddy Software

This chapter explains software structure ported to Eddy-DK.

Source codes for all application except Com_redirect, gdbserver, tae, SB_APIs library are disclosed. All disclosed

source codes may be used as development guide when programming a firmware.

7.17.17.17.1 SoftwaSoftwaSoftwaSoftwarrrre Structure Diagrame Structure Diagrame Structure Diagrame Structure Diagram

Eddy.c is the first program to be executed upon the booting. Environment Configure Information configured either by

web or def.c is loaded next.

All provided Eddy applications developed by using libraries explained on Chapter 6.

 Chapter 7. Eddy Software

85

7.27.27.27.2 Main ApplicationsMain ApplicationsMain ApplicationsMain Applications

This section explains the most important aspects of Eddy, eddy.c and pinetd.c.

Applications other than these two can be divided into monitoring applications executed by pinetd.c and user

applications manually executed by users. Please refer “4.1 Source Code” for brief explanation of functions of

each application.

7.2.1 eddy.c Application

Program runs the first after Eddy is booted, it reads the environment configuration saved under /flash folder.

This initializes network with configuration information , and runs various daemon program.

If environment file is not present on /flash, it will reset the environment configuration to factory setting.

7.2.2 Pinetd.c Application

It is a daemon program with the highest hierarchy of Eddy run by Eddy.c, which monitors lower processor.

It periodically monitors the Reset Switch to detect a factory reset request.

7.2.3 Other Applications

The list of applications runs according to the defined protocol of each serial port:

 tcp_server, tcp_client, com_redirect, tcp_broadcast, tcp_multiplex, udp (udp_server/client)

The list of applications runs to handle external network service independently to serial ports:

 portview, detect, ddns_agent

The list of applications can be manually run using telnet.

 Def, upgrade, loopback,

The list of applications to test Eddy DK v2.1 board and a device:

 test_sio, test_dio, test_lcd, test_keypad, test_spi_eeprom, test_nand, test_sd, test_adc,

test_gpio_pin, test_gpio_led

 Chapter 8. Handling HTML & CGI

86

Chapter 8.Chapter 8.Chapter 8.Chapter 8. Handling HTML & CGIHandling HTML & CGIHandling HTML & CGIHandling HTML & CGI

This chapter describes the CGI module for the environment configuration used by HTML files and HTML codes.

Provided CGI source and HTML documents are used as Eddy’s default firmware, and it is modifiable as needed.

8.18.18.18.1 WEB ConfigurationWEB ConfigurationWEB ConfigurationWEB Configuration

HTML sources for Eddy are located on src/Eddy_APPs/web/htdocs.

CGI sources containing information for HTML is located on src/Eddy_APPs/web/cgi.

getagent.c

It reads environment configuration file of /etc folder and transfers configuration value to the HTML page to show the

information on the web browser.

setagent.c

It reads configuration value modified by a user on the HTML page and saves the value to a temporary environment

configuration file on /etc.

8.28.28.28.2 ExamExamExamExample ple ple ple of of of of HTML HTML HTML HTML CCCCode ode ode ode

The following example shows a part of main.html source.

Coding is executed with values handed over from the CGI and linked symbols, due to the coding cannot be done on

a HTML using variables like on the C language.

Shown in red below are symbol link which transfers value from getagent.c.

 (network.html 소스 요약)

<tr bgcolor="#FFFFFF">

<td class="content">IP Address</td>

<td class="content"><input type="text" size="16" maxlength="16" name="N_IP" value="[v,n_ip]" >

<tr bgcolor="#FFFFFF">

<td class="content">Subnet Mask</td>

<td class="content"><input type="text" size="16" maxlength="16" name="N_MASK" value="[v,n_mask]" >

<tr bgcolor="#FFFFFF">

<td class="content">Gateway</td>

<td class="content"><input type="text" size="16" maxlength="16" name="N_GW" value="[v,n_gw]" >

<tr bgcolor="#FFFFFF">

<td class="content">DNS</td>

<td class="content"><input type="text" size="16" maxlength="16" name="N_DNS" value="[v,n_dns]" >

 Chapter 8. Handling HTML & CGI

87

<tr bgcolor="#FFFFFF">

<td class="content">Telnet Service</td>

<td class="content"><select name="N_TELNET">

<option [v, n_telnet_di] value="0">Disable</option>

<option [v, n_telnet_en] value="1">Enable</option>

</select>

<tr bgcolor="#FFFFFF">

<td class="content">Telnet Service</td>

<td class="content"><select name="N_WEB">

<option [v, n_web_di] value="0">Disable</option>

<option [v, n_web_en] value="1">Enable</option>

</select>

As shown above there are name and value parts for each record to link with CGI.

Name stores information modified by user in HTML, so that it can save modified value when a user click on the

submit button on the lower part of HTML page. Value reads value to getagent.c to display on HTML page and let

user to modify the value as needed.

8.38.38.38.3 ExampleExampleExampleExample CGI CGI CGI CGI CodeCodeCodeCode

Eddy-Serial DK has two CGI programs: getagent.cgi and setagent.cgi.

“getagent.c” reads an environment configuration file on /etc/ folder to HTML document , and “setagent.c” saves

user-modified information on the HTML document back the environment file on /etc/folder and saves it to flash/, so

the user-modified environment configuration is stored.

The following example shows processing part of getagent.c to display configuration value to HTML page as the

example above.

[Source Summary]

 if (cgiFormStringNoNewlines("N_IP", buff, 16) == cgiFormNotFound)

 {

 sprintf(buff, "%d.%d.%d.%d",cfg.system.ip[0], cfg.system.ip[1],cfg.system.ip[2],cfg.system.ip[3]);

listPutf(list, "n_ip", buff);

 }

 else

 listPutf(list, "n_ip", buff);

 if (cgiFormStringNoNewlines("N_MASK", buff, 16) == cgiFormNotFound)

 {

sprintf(buff, "%d.%d.%d.%d",cfg.system.mask[0], cfg.system.mask[1],

cfg.system.mask[2],cfg.system.mask[3]);

 listPutf(list, "n_mask", buff);

 }

 else

 listPutf(list, "n_mask", buff);

 Chapter 8. Handling HTML & CGI

88

 if (cgiFormStringNoNewlines("N_GW", buff, 16) == cgiFormNotFound)

 {

 sprintf(buff, "%d.%d.%d.%d", cfg.system.gateway[0], cfg.system.gateway[1],

cfg.system.gateway[2],cfg.system.gateway[3]);

 listPutf(list, "n_gw", buff);

 }

 else

 listPutf(list, "n_gw", buff);

if (cgiFormStringNoNewlines("N_DNS", buff, 16) == cgiFormNotFound)

{

sprintf(buff, "%d.%d.%d.%d",cfg.system.dns[0], cfg.system.dns[1],

cfg.system.dns[2],cfg.system.dns[3]);

listPutf(list, "n_dns", buff);

}

else

listPutf(list, "n_dns", buff);

cgiFormInteger("N_TELNET", &value, cfg.system.telnet_server);

if (value == 1)

{

listPutf(list, "n_telnet_di", "");

 listPutf(list, "n_telnet_en", "selected");

}

else

{

listPutf(list, "n_telnet_di", "selected");

listPutf(list, "n_telnet_en", "");

}

cgiFormInteger("N_WEB", &value, cfg.system.web_server);

if (value == 1)

{

listPutf(list, "n_web_di", "");

listPutf(list, "n_web_en", "selected");

 }

 else

 {

listPutf(list, "n_web_di", "selected");

listPutf(list, "n_web_en", "");

 }

The following shows processing part of setagent.c to save user-modified configuration value.

[Source abstract]

value2 = cgiFormStringNoNewlines("N_IP", buff, 16);

if (value2 != cgiFormEmpty) convert_address (buff, cfg.system.ip);

 Chapter 8. Handling HTML & CGI

89

value2 = cgiFormStringNoNewlines("N_MASK", buff, 16);

if (value2 != cgiFormEmpty) convert_address (buff, cfg.system.mask);

value2 = cgiFormStringNoNewlines("N_GW", buff, 16);

if (value2 != cgiFormEmpty) convert_address (buff, cfg.system.gateway);

value2 = cgiFormStringNoNewlines("N_DNS", buff, 16);

if (value2 != cgiFormEmpty) convert_address (buff, cfg.system.dns);

cgiFormInteger("N_TELNET", &value, cfg.system.telnet_server);

cfg.system.telnet_server = value;

cgiFormInteger("N_WEB", &value, cfg.system.web_server);

cfg.system.web_server = value;

 Chapter 9. Appendix

90

Chapter 9.Chapter 9.Chapter 9.Chapter 9. AppendixAppendixAppendixAppendix

This chapter explains how to recover Eddy when flash of Eddy is damaged and it cannot be booted.

9.19.19.19.1 System recoverySystem recoverySystem recoverySystem recovery via Bootloader via Bootloader via Bootloader via Bootloader

Even if the flash in the user area has been damaged, it does not affect system booting. But if the system

continuously reboots due to user program failure, or if the system is inaccessible as a result of wrong IP setting, you

have to change the system to factory default status.

You can reload firmware from bootloader to change the system to default status. In order to do this, TFTP server has

to be installed at the computer with Linux environment.

Note:

Once the bootloader is damaged, it cannot be recovered. Therefore user should not use command

other than ones provided from manual.

9.1.1 Installing TFTP in Linux environment

The following explains how to recover system with bootloader in Fedora core 5 operating system.

If you are using other operating system, you will need tftp-server and xinetd daemon compatible with that operating

system.

First check to make sure tftp-server is installed.

If you don’t install tftp-server, you should install.

After install tftp-server, move provided firmware (firmware folder in SDK folder) to tftpboot folder (usually /tftpboot

folder in Fedora core 5).

 Chapter 9. Appendix

91

9.1.2 Hardware Install and Recovery

Connect LAN port of computer and that of DK board using LAN cable.

Connect debug port and computer’s serial cable using serial cross cable and use minicom to connect to

computer’s serial port. Configure computer’s serial port setting to 115200 bps, 8 data bit, No parity, 1 stop

bit and power on Eddy DK.

After power on the following messages will be printed to minicom.

When these are printed, press enter to enter into bootloader. The below image shows status after entering

bootloader.

You can recover by copying OS, firmware, and config image to flash memory in bootloader.

To upgrade OS, firmware, and config image file, you have to configure Eddy’s virtual IP address and TFTP

server’s IP address in bootloader.

You can use “printenv” command to check the current configuration of Eddy and TFTP server’s IP address

configured in bootloader.

NAND: 256 MB

Macb0: Autonegotiation complete

Macb0: link up, 100 Mbps full-duplex (lpa: 0x45e1)

Hit any key to stop autoboot: 0

U-Boot>

U-Boot>

 Chapter 9. Appendix

92

To change Eddy’s temporary IP address and TFTP server’s IP address proceed as follows.

Once the IP information is confirmed start recovery.

install bootloader <name of bootloader firmware> ; When recovering bootloader area

(Note: If the bootloader was damaged, it could not be recovered.)

install os <name of OS firmware> ; When recovering OS area

install fs <name of File System firmware> ; When recovering File System area

U-Boot> printenv

.

.

ethaddr=00:05:F4:11:22:33

Config_Size=10000

stdin=serial

stdout=serial

stderr=serial

OS_Size==20000000

filesize=1f0f07

fileaddr=20000000

netmask=255.255.255.0

ipaddr=192.168.0.223  IP Address of Eddy

serverip=192.168.0.220  IP Address of TFTP server

FileSystem_Size=0

.

.

U-Boot>

U-Boot> setenv serverip <TFTP server IP address>

U-Boot> setenv ipaddr <Eddy IP address>

U-Boot>

 Chapter 9. Appendix

93

Proceed as follows and it will recover by downloading image file from TFTP server configured.

The next shows OS recovery procedure.

The next shows file system recovery procedure.

Once the recovery is done, use “boot” command start booting.

9.1.3 Solving problems during recovery

When recovery is not proceeded with message shown above, check WAN connection and confirm the IP address of

tftp-server PC is configured as 192.168.0.220. (This server IP address is just example, so it can be differ with user

U-Boot> install os eddy-os-2.1.x.x.bin

TFTP from server 192.168.0.220; our IP address is 192.168.0.223

Filename 'eddy-os-2.1.x.x.bin'.

Load address: 0x20000000

Loading:##

done

Bytes transferred = 1112284 (10f8dc hex)

 .

 .

 .

U-Boot>

U-Boot> install fs eddy-fs-2.1.x.x.bin

TFTP from server 192.168.0.220; our IP address is 192.168.0.223

Filename 'eddy-fs-2.1.x.x.bin'.

Load address: 0x20000000

Loading:##

###

##don

e

Bytes transferred = 2035463 (1f0f07 hex)

 .

 .

 .

U-Boot>

U-Boot> install os eddy-os-21.1.x.x.bin

TFTP from server 192.168.0.220; our IP address is 192.168.0.223

Filename 'eddy-os-21.1.x.x.bin'.

Load address: 0x20000000

Loading: ………………

U-Boot> boot

 Chapter 9. Appendix

94

tftp-server PC IP address)

When recovery is not proceeded with message shown above, check firmware version information or name is correct.

The red name above has to be same with firmware name of PC with tftp-server installed.

When recovery is not proceeded with message shown above, it means there is product with same MAC address or

IP in the network. Check whether there are other Eddy products in the same network.

U-Boot> install fs eddy-fs-2.1.x.x.bin

TFTP from server 192.168.0.220; our IP address is 192.168.0.223

Filename 'eddy-fs-2.1.x.x.bin'.

Load address: 0x20000000

Loading

TFTP error: 'File not found' (1)

Starting again

U-Boot> install os eddy-os-21.x.x.bin

TFTP from server 192.168.0.220; our IP address is 192.168.0.223

Filename 'eddy-os-2.1.x.x.bin'.

Load address: 0x20000000

Loading: TT#TTT#

 Chapter 9. Appendix

95

9.29.29.29.2 System recovery via USBSystem recovery via USBSystem recovery via USBSystem recovery via USB

Even if the flash in the user area has been damaged, it does not affect system booting. But if the system

continuously reboots due to user program failure, or if the system is inaccessible as a result of wrong IP setting, you

have to change the system to factory default status.

You can reload firmware via USB to change the system to default status.

9.2.1 Firmware Upgrade Utility Program

The AT91 ISP can be downloaded from the ATMEL Web site at the following URL:

http://www.atmel.com/dyn/resources/prod_documents/Install%20AT91-ISP%20v1.12.exe

If the URL does not work properly,

Go to the ATMEL homepage www.atmel.com

Click Product > Microcontrollers > AT91SAM 32-bit ARM-based Microcontrollers > Tools & Software > Evaluation Kit

> AT91SAM9260-EK > AT91-ISP.exe (v1.12 current release)

9.2.2 Installing Upgrade Utility Program

The AT91 ISP can be downloaded from the ATMEL Web site at the following URL:

http://www.atmel.com/dyn/resources/prod_documents/Install%20AT91-ISP%20v1.12.exe

If the URL does not work properly,

On the splash screen, click I Agree.

Double-click “AT91-ISP.exe” file and

begin the installation process,

then click Next.

 Chapter 9. Appendix

96

Click Next.

Click Install.

Browse to the following directory,

then click Next.

C:\Program Files\

ATMEL Corporation\AT91-ISP v1.12

On the splash screen, click Next.

 Chapter 9. Appendix

97

9.2.3 Installing Eddy DK2 Board Driver

To detect the Eddy DK2 board via USB you need to install the DK2 board driver for Windows as follows.

1) Turn off Eddy DK v2.1 board.

2) Connect USB cable to both the Eddy DK v2.1 board and PC.

3) Set USB as a standby mode by pulling the right side switch down from the S6 dip switch on the

Eddy DK v2.1 board.

4) Turn on Eddy DK v2.1 board.

5) If Eddy DK v2.1 board is recognize on your PC, maybe a dialogue box will be pop-up for installing

new hardware. Choose the recommended mode install the software automatically then click Next.

6) Click Continue Anyway to proceed with installation.

7) Complete the found task. Click Finish to successfully install the driver.

8) Pull up both of S6 Dip switch on Eddy DK v2.1 board.

Check Reboot now then click Finish.

After system reboot,

copy the“isp-extram-at91sam9260.bin” file

from CD to the following directory:

C:\Program Files\ATMEL Corporation\

AT91-ISP v1.12\SAM-BA v2.8\lib\

AT91SAM9260-EK

After installing the “AT91-ISP.exe” file,

prepare to install the Eddy DK v2.1 board driver.

If you want to create Shortcuts,

check Desktop or Quick Launch Bar,

then click Next

 Chapter 9. Appendix

98

9.2.4 Preparing Firmware Files & Utilities

Prepare firmware files and flash writing utility programs as follows.

1) Copy usb_recovery_xxx.zip file to any directory (e.g. C:\SystemBase\USB_recovery) from

SDK\Windows\USB_recovery directory in Eddy DK v2.1 CD. (Refer to the Eddy official community

site http://www.embeddedmodule.com)

2) Among files extracted copy isp-extram-at91sam9260.bin file to the below directory.

C:/Program Files/ATMEL Corporation/AT91-ISP v1.12/SAM-BA v2.8/lib/AT91SAM9260-EK

3) Among files extracted copy below listed files to the firmware directory in DK source code directory.

eddy-bl-2.1.x.x.bin (Boot Loader)

eddy-bs-2.1.x.x.bin (Boot Strap File Name)

eddy-os-2.1.x.x.bin (Kernel File Name)

eddy-fs-2.1.x.x.bin (File System File Name)

4) Among files extracted Eddy_burning_DataFlash.bat file performs transferring firmware to Eddy DK

v2.1 board by executing a TCL file then creates a log file. In this file eddy-bl-2.1.x.x.bin file name

should be same with the name of the file copied.

5) Among files extracted Eddy_burning_DataFlash.tcl file performs transferring firmware to Eddy DK

v2.1 board. In this file eddy-bs-2.1.x.x.bin, eddy-os-2.1.x.x.bin, and eddy-fs-2.1.x.x.bin file names

should be same with the names of the files copied.

sam-ba.exe \usb\ARM0 AT91SAM9260-EK Eddy_burning_DataFlash.tcl ./ eddy-

bl-2.1.x.x.bin > logfile.log

notepad logfile.log

…

###

Main script: Load the linux demo in DataFlash,

Update the environment variables

###

array set df_mapping {

 bootstrapFileName "eddy-bs-X.X.X.X.bin"

 kernelFileName "eddy-os-X.X.X.X.bin"

 filesystemFileName "eddy-fs-X.X.X.X.bin"

 Chapter 9. Appendix

99

9.2.5 Firmware Upgrade

1) Turn off Eddy DK v2.1 board.

2) Connect USB cable to both the Eddy DK v2.1 board and PC.

3) Set USB as a standby mode by pulling the right side switch down from the S6 dip switch on the

Eddy DK v2.1 board.

4) Turn on Eddy DK vv2.1 board.

5) After 5 seconds change flash writing mode by pulling up both of S6 Dip switch on Eddy DK v2.1

board.

6) Start upgrade by double-clicking Eddy_burning_DataFlash.bat file. You need to wait some time for

seeing the log file after executing the batch file.

7) With the successful log message as below you can check the result of the upgrade. If you cannot

see the successful log message, you can refer to next chapter to fix the problem.

8) With the successful log message, confirm whether the new firmware works properly or not by

rebooting Eddy DK v2.1 board.

…

u-boot file: eddy-bl-2.1.0.1.bin

…

GENERIC::SendFile ./eddy-bs-2.1.0.1.bin at address 0x0

…

GENERIC::SendFile eddy-os-2.1.0.1.bin at address 0x3FF00

…

-I- === Load the linux file system ===

-I- Send File eddy-fs-2.1.0.1.bin at address 0x0025D580

GENERIC::SendFile eddy-fs-2.1.0.1.bin at address 0x25D580

 Chapter 9. Appendix

100

9.2.6 Solving problems during Firmware Upgrade

1) If you use firmware file name wrongly, log file will pop up as below.In this case, you should check

whether the file names of firmware copied is same with the firmware names in

Eddy_burning_DataFlash.bat or Eddy_burning_DataFlash.tcl files.

2) If your PC connects to Eddy DK v2.1 board wrongly, log file will pop up as below. In this case, you

need to check the connection.

3) If you get as below log file, you need to check the S6 dip switch. It should be pulled up.

…

script file : Eddy_burning_DataFlash.tcl

u-boot file: eddy-bl-2.1.0.1.bin

-E- Script File Eddy_burning_DataFlash.tcl returned error : could not read "eddy-bl-

2.1.0.1.bin": no such file or directory - could not read "eddy-bl-2.1.0.1.bin": no such file

or directory

 while executing

"file size $ubootFileName"

 invoked from within

-I- Waiting ...

-E- Connection \usb\ARM0 not found

-E- Connection list : COM2 COM3 COM4 COM5

…

-I- Loading applet isp-dataflash-at91sam9260.bin at address 0x20000000

-E- Script File Eddy_burning_DataFlash.tcl returned error : Error Initializing DataFlash

Applet (Can't detect known device) - Error Initializing DataFlash Applet (Can't detect

known device)

 while executing

"error "Error Initializing DataFlash Applet ($dummy_err)""

 (procedure "DATAFLASH::Init" line 13)

 invoked from within

"DATAFLASH::Init 1 "

 Chapter 9. Appendix

101

9.39.39.39.3 product Specificationproduct Specificationproduct Specificationproduct Specification

9.3.1 Eddy CPU v2.1 Specifications

ItemItemItemItem ClassificationClassificationClassificationClassification SpecificationSpecificationSpecificationSpecification

CPU ARM926EJ-S (210 MHz)

Memory 8MB Data Flash, 32 MB SDRAM

External I/F 19 Bit / 16 Bit Data Bus

Ethernet I/F 10/100 Base-T Auto MDI/MDIX

UARTs
4 Port, Support up to 921.6 Kbps

(1 : Full Signal, 2,3,4, : RxD, TxD, RTS, CTS only)

USB 2.0 FS 2 Host /1 Device Port, 2.0 FS (12Mbps)

ADC 4-Channel 10 Bit ADC

TWI(I2C) Master, Multi-Master and Slave Mode

SPI
8- to 16-bit Programmable Data Length

Four External Peripheral Chip Selects

GPIO Max. 56 Programmable I/O Pins

Power Input 3.3 V (200 mA Max)

Dimensions 25 x 48.5 x 6.2 mm

Hwrdware

Weight 8.3 g

Protocol TCP, UDP, Telnet, ICMP, DHCP, TFTP, HTTP, SNMP 1&2, SSH, SSL

Ethernet 10/100Mbps MAC / PHY Network
Network

Connection
Static IP, DHCP

O/S Lemonix Real Time Linux

Mgt Tools SNMP, Web, PortView

Uploads TFTP, FTP, Web
Software

Dev Tools LemonIDE & SDK

Operating Temp -40 ~ 85 ℃

Storage Temp -60 ~ 150 ℃ Environmental

Humidity 5 ~ 95% Non-Condensing

Approvals

CE Class A,

FCC Class A,

RoHS

compliant

 Chapter 9. Appendix

102

9.3.2 Eddy DK v2.1 Specificatons

ClassificationClassificationClassificationClassification SpecificationSpecificationSpecificationSpecification

NAND Flash 256MB, 8bit I/F

SD Card

Connector

Push Type, Up to 16 GB

MMC / SD Card / MC supported

USB Connector
1 x Device

2 x HOST, Dual-Port

LCD Module 128 x 64 Dots Matrix Structure

KEY 4 x 4 Matrix

Battery Holder 3V Lithium Battery, 235 mAh

LED Power, Ready, 20 Programmable IO, Console & Serial TxD, RxD

I2C Interface 16bit I2C BUS GPIO

SPI Interface 2 Kbit EEPROM

MCI Interface SD Card, MMC Socket

ADC Interface Temp / Light Sensor

Digital I/O 8 Port Input, 8 Port Output

Switch

- Serial or GPIO Select

- RS422/485 Select

- DIO : Common VCC or GND Select

- Programming

Jumper Switch Boot Mode Select, JTAG Select

Serial Port

2 x RS232 DB9 Male

2 x RS422/485 Terminal Block

(RS422 & RS485 Selected by S/W)

Console Port DB9 Male

LAN Port 2 x RJ45

ICE Port Used for Flash Programming

Reset Button Factory Default & Warm Boot

Input Power 9-48VDC

Dimensions 240 x 180 mm

CE Class A,

FCC Class A,

RoHS

compliant

 Chapter 9. Appendix

103

9.49.49.49.4 Ordering InfomationOrdering InfomationOrdering InfomationOrdering Infomation

Product NameProduct NameProduct NameProduct Name DiscriptionDiscriptionDiscriptionDiscription

Eddy CPU v2.1Eddy CPU v2.1Eddy CPU v2.1Eddy CPU v2.1 Embedded CPU Module v2.1

Eddy DK v2.1Eddy DK v2.1Eddy DK v2.1Eddy DK v2.1 Eddy V2.1 Development Kit

