USB 4 Channel Relay Out / Photo In Board

SMARTLAB

USB 4 CHANNELS RELAY OUTPUT 4 CHANNELS PHOTO ISOLATOR INPUT BOARD

OPERATION MANUAL

USB 4 Channel Relay **Operations Manual** Out / Photo In Board TABLE OF CONTENTS

CHAPTERS

- 4. Programming under Windows and Linux......9

APPENDICES

A.	Warranty Information	10
В.	Data Sheet	12

Decision Group Inc.

- i -

Decision Group

Decision Group

1

- ii -

USB 4 channels relay output / photo isolator input board provides photo couple digital input and relay output channels. The photo isolator input part provides 4 photo couple digital input channels, which allow the input signals to be completely floated and prevent the ground loop. The relay output part provides 4 relays to drive 4 different output channels. Each relay channel can be used to control ON/ OFF of external devices, to drive external power relays, to activate alarms... etc.

The USB 4 channels relay output / photo isolator input board provides Plug and Play (PnP) features, it is a programmable I/O interface board for PC/486, Pentium, or compatibles. The on board high speed 8051 uC provides USB functions run at 12Mbps full speed or 1.5Mbps low speed.

The features of USB 4 channels relay output / photo isolator input board are:

- USB2.0 with Plug and Play (PnP) features.
- High speed 8051 uC core.
- Support USB ID selection to identify USB device.
- Support 4 photo couple input channels and 4 relay output channels.
- Allow the photo input signals to be completely floated and prevent the ground loops.
- 8 LED correspond to 4 input and 4 output ports activation status.
- By using PC817 photo couple chips.

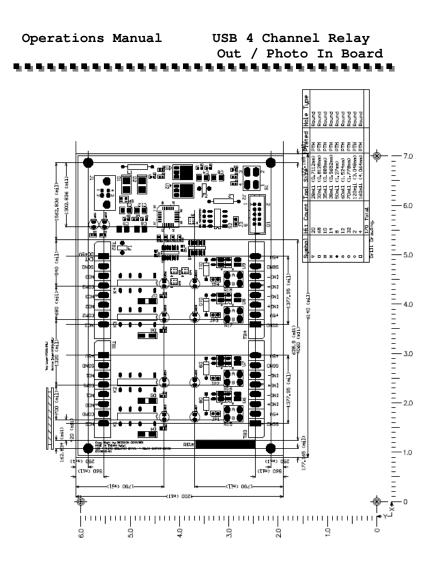
Decision Group

- 1 -

Operations Manual USB 4 Channel Relay Out / Photo In Board

- Power supplied from External DC +5V.
- For photo couple input channel, the isolation voltage is 5000V, maximum load voltage is 30V, maximum input current is 50mA forward.
- Activation voltage of photo input: When short jumpers (input range from 0 to 20V DC) 0 to 3.3V inactive 4.5 to 20V active When open jumpers (input range from 0 to 30V DC) 0 to 17.6V inactive 18 to 30V active
- Maximum contact rating is 220V/AC, 120V/DC 1AMP, minimum response time is 1ms, maximum contact resistance is 0.1 OHM.
- Suitable for Linux, MS/Windows ... etc.
- Operating temperature range from 0 to 55°C.
- Relative humidity rage from 0 to 90%.

* <u>PACKAGE CONTENTS:</u>


- SMARTLAB USB 4 channels relay output / photo isolator input board
- USB cable.
- Decision Studio and User's manual CD.
- Two Different Connecter Types can be selected: Standard: European P.C.B type terminal blocks Professional: Pluggable terminal blocks

Optional

- Extension board with DB9 : RS232 or RS422/485
- PCB Carrier

Decision Group

- 2 -

Operations Manual USB 4 Channel Relay Out / Photo In Board CHAPTER 2 HARDWARE CONFIGURATION

Before you use USB 4 channels relay output board, please ensure that the jumpers and switches setting. The proper jumper and switches settings for the 4 channels relay output board are described in the following.

2.1 Switch Settings

1. S1 Reset

The S1 switch is used to reset 8051, the signal assignments are shown in the following.

Pin	Signals
3,4	Reset SW+
1,2	Reset SW-

2. S2 USB ID

ON 1	2	з	4
	Ц	Ц	

······

......

Decision Group

- 3 -

Decision Group

- 4 -

The S2 switch is used to identify USB board ID. Please set different board ID to each board (do not duplicate ID setting).

1	2	3	4	ID
ON	ON	ON	ON	
OFF	ON	ON	ON	14
ON	OFF	ON	ON	13
OFF	OFF	ON	ON	12
ON	ON	OFF	ON	11
OFF	ON	OFF	ON	10
ON	OFF	OFF	ON	9
OFF	OFF	OFF	ON	8
ON	ON	ON	OFF	7
OFF	ON	ON	OFF	6
ON	OFF	ON	OFF	5
OFF	OFF	ON	OFF	4
ON	ON	OFF	OFF	3
OFF	ON	OFF	OFF	2
ON	OFF	OFF	OFF	1
OFF	OFF	OFF	OFF	0

3. Download revised firmware

When the S2 switch is set to ON ON ON ON status, means down load revised firmware. please follow the steps shown in the following:

1. Set S2 to ON ON ON ON.

2. Run USBBootloader program to down load revised firmware.

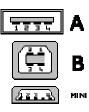
Decision Group

- 5 -

Operations Manual USB 4 Channel Relay Out / Photo In Board

2.2 Jumper Settings

Input Voltage Range Selection (JP1 to JP4)


JP1 to JP4 are used to select input voltage range. The JP1 is used to select photo couple input channel 0, and JP2 is used to select photo couple input channel 1 ... etc. When short the jumper, the input voltage range from 0 to 20V, and the active voltage form 4.5 to 20V. When open the jumper, the input voltage range from 0 to 30V, and the active voltage from 18 to 30V.

Jumper	Input Voltage	Inactive Voltage	Active Voltage
open	0 to 30V	0 to 17.6V	18 to 30V
short	0 to 20V	0 to 3.3V	4.5 to 20V

2.3 USB Connector

1. USB Connector

The USB connector is connected to computer USB port by using USB cable.

2.4 LED Status

1. LED1

The LED1 is an indicator to show the power is supplied normally.

2. LED2

Decision Group

- 6 -

The LED2 is an indicator to warning the USB link status. When it lights, it means USB connection works normally, otherwise it is fail.

2.5 Connector and Jumper for Serial Communication

1. The connector of serial communication(J2)

To use RS422/RS485/RS232, please connect J2 to extension board by 10 pins flat cable. (Optional)

2. Enable Serial Port (J3)

1 2

J3 is used enable serial port communication, when short the J3, means enable serial port, otherwise, when open the J3, the serial port communication is disable.

2.6 Connector Assignments

The photo isolator input signal and relay output signal pin assignments are shown in the below.

1. Input Signal Assignments

Pin	Signal	Description
1	SGND	Signal Ground
2	+5V	+5V
3	IN0+	Opto-isolator Ch. 00 + Input
4	IN0-	Opto-isolator Ch. 00 - Input
5	IN1+	Opto-isolator Ch. 01 + Input

Decision Group

- 7 -

Operations Manual USB 4 Channel Relay Out / Photo In Board

6	IN1-	Opto-isolator Ch. 01 - Input
7	SGND	Signal Ground
8	+5V	+5V
Pin	Signal	Description
1	SGND	Signal Ground
2	+5V	+5V
3	IN2+	Opto-isolator Ch. 02 + Input
4	IN2-	Opto-isolator Ch. 02 - Input
5	IN3+	Opto-isolator Ch. 03 + Input
6	IN3-	Opto-isolator Ch. 03 - Input
7	SGND	Signal Ground
8	+5V	+5V

2. Output Signal Assignments

Pin	Signal	Description
1	NC0	Relay Ch. 00 - Output
2	COM0	Relay Ch. 00 - Output
3	NO0	Relay Ch. 00 - Output
4	NC1	Relay Ch. 01 - Output
5	COM1	Relay Ch. 01 - Output
6	NO1	Relay Ch. 01 - Output
7	SGND	Signal Ground
8	+5V	+5V
Pin	Signal	Description
1	NC2	Relay Ch. 02 - Output
2	COM2	Relay Ch. 02 - Output
3	NO2	Relay Ch. 02 - Output
		Kelay Cli. 02 - Output
4	NC3	Relay Ch. 03 - Output
4 5		· ·
	NC3	Relay Ch. 03 - Output
5	NC3 COM3	Relay Ch. 03 - Output Relay Ch. 03 - Output

Decision Group

- 8 -

CHAPTER 3 DIAGNOSTIC UNDER WINDOWS

USB Test Program.exe is a diagnostic program to test your USB devices under Windows/XP.

User can get USB Test Program.exe programs from Decision Studio CD.

CHAPTER 4 SOFTWARE PROGRAMMING UNDER WINDOWS AND LINUX

Under Windows, we provide function library and dll file for users to program the device in supported language. You can find manual "USBDII_Manual.pdf" and demo code in VB/VC/Delphi from Decision Studio CD.

Under Linux, we provide C source to allow user directly to access device. You can find manual and example in "dcihid-0.5.2.tgz".

- 9 -

Decision Group

Operations Manual USB 4 Channel Relay Out / Photo In Board

APPENDIX A WARRANTY INFORMATION

A.1 Copyright

Copyright DECISION COMPUTER INTERNATIONAL CO., LTD./DECISION GROUP INC. All rights reserved. No part of SmartLab software and manual may be produced, transmitted, transcribed, or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the prior written permission of DECISION COMPUTER INTERNATIONAL CO., LTD./DECISION GROUP INC.

Each piece of SmartLab package permits user to use SmartLab only on a single computer, a registered user may use he program on a different computer, but may not use the program on more than one computer at the same time.

Corporate licensing agreements allow duplication and distribution of specific number of copies within the licensed institution. Duplication of multiple copies is not allowed except through execution of a licensing agreement. Welcome call for details.

A.2 Warranty Information

SmartLab warrants that for a period of one year from the date of purchase (unless otherwise specified in the warranty card) that the goods supplied will perform according to the specifications defined in the user manual. Furthermore that the SmartLab product will be supplied free from defects

Decision Group

- 10 -

in materials and workmanship and be fully functional under normal usage.

In the event of the failure of a SmartLab product within the specified warranty period, SmartLab will, at its option, replace or repair the item at no additional charge. This limited warranty does not cover damage resulting from incorrect use, electrical interference, accident, or modification of the product.

All goods returned for warranty repair must have the serial number intact. Goods without serial numbers attached will not be covered by the warranty.

The purchaser must pay transportation costs for goods returned. Repaired goods will be dispatched at the expense of SmartLab.

To ensure that your SmartLab product is covered by the warranty provisions, it is necessary that you return the Warranty card.

Under this Limited Warranty, SmartLab's obligations will be limited to repair or replacement only, of goods found to be defective a specified above during the warranty period. SmartLab is not liable to the purchaser for any damages or losses of any kind, through the use of, or inability to use, the SmartLab product. SmartLab reserves the right to determine what constitutes warranty repair or replacement.

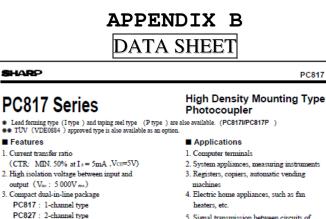
Return Authorization: It is necessary that any returned goods are clearly marked with an RA number that has been issued by SmartLab. Goods returned without this authorization will not be attended to.

......

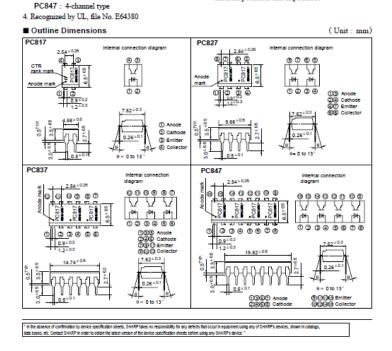
Decision Group

- 11 -

Operations Manual USB 4 Channel Relay


SHARP

Features

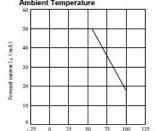

PC837 : 3-channel type

Out / Photo In Board

PC817 Series

5. Signal transmission between circuits of different potentials and impedances

Decision Group

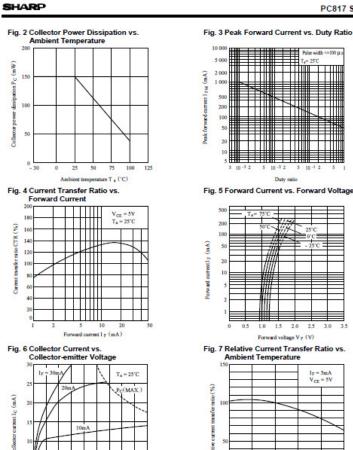

- 12 -

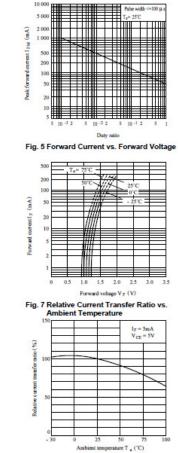
USB 4 Channel Relay Out / Photo In Board

USB 4 Channel Relay **Operations Manual** Out / Photo In Board

Abs	olute Maximun	n Rating	8		(Ta= 25	°C)			
	Parameter	r		Symbol	Rating	Unit				
	Forward current	t		Ir	50	mA	0			
Input	"Peak forward cu	urrent		Im	1	A	200			
шриг	Reverse voltage			VR	6	v	- 22			
	Power dissipation			P	70	mW	2			
	Collector-emitte	er voltage		VCEO	35	v				
	Emitter-collecto	or voltage		VECO	6	v	- 2.2			
output	Collector curren	ıt		I _c	50	mA	2			
	Collector power	dissipation		Pc	150	mW				
	Total power dis	sipation		Ptot	200	mW	8			
	*2Isolation voltage	e		Via	5 000	Vma	8 - ¹			
	Operating temp	erature		T opr	- 30 to + 100	.c				
	Storage tempera	nture		Tag	- 55 to + 125	.c				
	*>Soldering temps	erature		T _{aol}	260	.c	- 83			
										= 25°C
									(14	- 20 0
	Parameter		Symbol		Conditions		MIN.	TYP.	MAX.	Unit
	Forward voltage		VF	I _F = 20m	A		-	TYP. 1.2	MAX. 1.4	Unit V
nput	Forward voltage Peak forward volta	age	V _F V _{FM}	I _{PM} = 0.5	IA 5A		•	1.2	MAX. 1.4 3.0	Unit V V
Input	Forward voltage Peak forward volta Reverse current		V _F V _{PM} I _R	$I_{PM} = 0.5$ $V_R = 4V$	A 5A		-	1.2	MAX. 1.4 3.0 10	Unit V V µA
	Forward voltage Peak forward volta Reverse current Terminal capacitat	nce	V _F V _{FM} I _R C _t	$I_{PM} = 0.5$ $V_R = 4V$ V = 0, f = 0.5	hA 5A 7 = 1kHz		•	1.2	MAX. 1.4 3.0 10 250	Unit V V µA pF
	Forward voltage Peak forward volta Reverse current Terminal capacitat Collector dark cur	nce rent	V _F V _{PM} I _R C _t I _{CED}	$I_{PM} = 0.5$ $V_R = 4V$ V = 0, f = $V_{CE} = 20$	A SA = 1kHz OV			1.2 - - 	MAX. 1.4 3.0 10 250 10 · 7	Unit V V µA pF A
	Forward voltage Peak forward volta Reverse current Terminal capacitan Collector dark curr *4Current transfer ra	nce rent tio	V _F V _M I _R C ₁ I _{CED} CTR	$I_{PM} = 0.5$ $V_R = 4V$ V = 0, f = $V_{CR} = 20$ $I_F = 5m/$	A SA = 1kHz OV A, V _{CE} = 5V		- - - - 50	1.2 - - - -	MAX. 1.4 3.0 10 250 10 ⁻⁷ 600	Unit V V µA pF A %
Dutput	Forward voltage Peak forward volta Reverse current Terminal capacitat Collector dark curr **Current transfer ra Collector-enitte saturatio	nce rent tio n volzge	V _F V _{PM} I _R C _t I _{CED} CTR V _{CE(at)}	$I_{PM} = 0.5$ $V_R = 4V$ V = 0, f = $V_{CR} = 20$ $I_T = 5m/$ $I_T = 20m$	hA 5A V = 1kHz 0V $A, V_{CR} = 5V$ $hA, I_C = 1mA$		· · · · · · ·	1.2 - - - 0.1	MAX. 1.4 3.0 10 250 10 · 7 600 0.2	Unit V V μA pF A % V
Dutput	Forward voltage Peak forward volta Reverse current Terminal capacitat Collector dark cun ""Current transfer ra Collector-eniter satuntio Isolation resistance	nce rent tio n volage e	V _F V _{PM} I _R C ₁ I _{CEO} CTR V _{CE(at)} R _{BO}	$I_{PM} = 0.2$ $V_R = 4V$ V = 0, f = 0.2 $V_{CR} = 20$ $I_F = 5mA$ $I_F = 20m$ DC500V	hA 5A 7 9 9 1kHz 0V 0V A, V _{CR} = 5V hA, I _C = 1mA 7, 40 to 60% RH		- - - - 50	1.2 - - - - 0.1 10 ¹¹	MAX. 1.4 3.0 10 250 10 ⁻⁷ 600 0.2 -	Unit V V μA pF A % V
Dutput Transfer tharac-	Forward voltage Peak forward volt Reverse current Terminal capacitan Collector dark cun Collector enter standis Isolation resistanc Floating capacitan	nce rent tio n volage e cce	V _F V _{PM} I _R C _t I _{CEO} CTR V _{CD(at)} R _{ISO} C _f	$I_{PM} = 0.5$ $V_R = 4V$ V = 0, f = 10 $V_{CI} = 20$ $I_F = 5m/$ $I_F = 20m/$ DC500V V = 0, f = 10	AA SA T = 1 kHz OV OV $A, V_{CR} = 5V$ $A, I_C = 1 mA$ T, 40 to 60% RH = 1 MHz	1.10	- - - - - - - - - - - - - - - - - - -	1.2 - - - - - - - - - - - - - - - - - - -	MAX. 1.4 3.0 10 250 10 · 7 600 0.2 - 1.0	Unit V V μA pF A % V Ω pF
Input Output Iransfer charac- teristics	Forward voltage Peak forward volta Reverse current Terminal capacitat Collector dark cun ""Current transfer ra Collector-eniter satuntio Isolation resistance	nce rent tio m volzge e ice	$\begin{array}{c} V_{F} \\ V_{PM} \\ I_{R} \\ C_{t} \\ I_{CBO} \\ CTR \\ V_{CB(ut)} \\ R_{ISO} \\ C_{r} \\ f_{c} \end{array}$	$I_{PM} = 0.5$ $V_R = 4V$ V = 0, f = 10 $V_{CI} = 20$ $I_F = 5m/$ $I_F = 20m/$ DC500V V = 0, f = 10	hA 5A 7 9 9 1kHz 0V 0V A, V _{CR} = 5V hA, I _C = 1mA 7, 40 to 60% RH	1, - 3dB	- - - 50 - - - -	1.2 - - - - - - - - - - - - - - - - - - -	MAX. 1.4 3.0 10 250 10·7 600 0.2 - 1.0 -	Unit V V μA pF A % V V Ω pF kHz
Dutput Transfer charac-	Forward voltage Peak forward volt Reverse current Terminal capacitan Collector dark cun Collector enter standis Isolation resistanc Floating capacitan	nce rent tio m voltage e cce Rise time	$\begin{array}{c} V_{F} \\ V_{PM} \\ I_{R} \\ C_{t} \\ I_{CBO} \\ CTR \\ V_{CB(ut)} \\ R_{ISO} \\ C_{r} \\ f_{c} \\ t_{r} \end{array}$	$\begin{split} I_{FM} &= 0.1\\ V_R &= 4V\\ V &= 0, f = \\ V_{CR} &= 2(\\ I_F &= 5mA\\ I_F &= 20m\\ DC500V\\ V &= 0, f = \\ V_{CR} &= 5V, \end{split}$	AA SA T = 1 kHz OV OV $A, V_{CR} = 5V$ $A, I_C = 1 mA$ T, 40 to 60% RH = 1 MHz		- - - - - - - - - - - - - - - - - - -	1.2 - - - - 0.1 10 ¹¹ 0.6 80 4	MAX. 1.4 3.0 10 250 250 0.2 - 1.0 - 1.8	Unit V V μA pF A % V V Ω pF kHz μs
Dutput Transfer charac- eristics	Forward voltage Peak forward volta Reverse current Terminal capacitat Collector dark curr "Current transfer ra Collector entite sutmit Isolation resistanc. Floating capacitan Cut-off frequency Response time	nce rent tio n volage e cce Rise time Fall time	$\begin{array}{c} V_{F} \\ V_{FM} \\ I_{R} \\ C_{t} \\ I_{CBO} \\ CTR \\ V_{CB(ut)} \\ R_{BO} \\ C_{r} \\ f_{c} \\ t_{r} \\ t_{r} \\ t_{r} \end{array}$	$\begin{split} I_{PM} &= 0.2 \\ V_R &= 4V \\ V &= 0, \ f = \\ V_{CR} &= 20 \\ I_F &= 5mA \\ I_F &= 20m \\ DC500V \\ V &= 0, \ f = \\ V_{CR} &= 5V \\ V_{CR} &= 5V \\ V_{CR} &= 20 \\ \end{array}$	hA 5A 7 = 1kHz 0V A, V cs = 5V 0A, I c = 1mA 7, 40 to 60% RH = 1MHz 1 c = 2mA, R_1 = 100 fc V, I c = 2mA, R_1 = 100 fc	= 100 Ω	- - - - - - - - - - - - - - -	1.2 - - - - - - - - - - - - - - - - - - -	MAX 1.4 3.0 10 250 10-7 600 0.2 - 1.0 - 1.0 - 1.8 18	Unit V V μA pF A % V V Ω pF kHz
Dutput Transfer Tharac- eristics	Forward voltage Peak forward voltz Reverse current Terminal capacitan Collector dark cun "Current transfer ra Collector-emitter stancis Isolation resistance Floating capacitan Cut-off frequency	nce rent tio n volage e cce Rise time Fall time	$\begin{array}{c} V_{F} \\ V_{FM} \\ I_{R} \\ C_{t} \\ I_{CBO} \\ CTR \\ V_{CB(ut)} \\ R_{BO} \\ C_{r} \\ f_{c} \\ t_{r} \\ t_{r} \\ t_{r} \end{array}$	$\begin{split} I_{PM} &= 0.2 \\ V_R &= 4V \\ V &= 0, \ f = \\ V_{CR} &= 20 \\ I_F &= 5mA \\ I_F &= 20m \\ DC500V \\ V &= 0, \ f = \\ V_{CR} &= 5V \\ V_{CR} &= 5V \\ V_{CR} &= 20 \\ \end{array}$	hA 5A 7 = 1kHz 0V A, V cs = 5V 0A, I c = 1mA 7, 40 to 60% RH = 1MHz 1 c = 2mA, R_1 = 100 fc V, I c = 2mA, R_1 = 100 fc	= 100Ω ig. 1 Fo		1.2 - - - - - - - - - - - - - - - - - - -	MAX. 1.4 3.0 10 250 10 ⁻⁷ 600 0.2 - 1.0 - 18 18 18 5.	Unit V V μA pF A % V V Ω pF kHz μs
Dutput Transfer charac- eristics	Forward voltage Peak forward volta Reverse current Terminal capacitat Collector dark curr "Current transfer ra Collector entite sutmit Isolation resistanc. Floating capacitan Cut-off frequency Response time	nce rent tio n volage e cce Rise time Fall time	$\begin{array}{c} V_{F} \\ V_{FM} \\ I_{R} \\ C_{t} \\ I_{CBO} \\ CTR \\ V_{CB(ut)} \\ R_{BO} \\ C_{r} \\ f_{c} \\ t_{r} \\ t_{r} \\ t_{r} \end{array}$	$\begin{split} I_{PM} &= 0.2 \\ V_R &= 4V \\ V &= 0, \ f = \\ V_{CR} &= 20 \\ I_F &= 5mA \\ I_F &= 20m \\ DC500V \\ V &= 0, \ f = \\ V_{CR} &= 5V \\ V_{CR} &= 5V \\ V_{CR} &= 20 \\ \end{array}$	hA 5A 7 = 1kHz 0V A, V cs = 5V 0A, I c = 1mA 7, 40 to 60% RH = 1MHz 1 c = 2mA, R_1 = 100 fc V, I c = 2mA, R_1 = 100 fc	= 100Ω ig. 1 Fo Amb	- - - - - - - - - - - - - - -	1.2 - - - - - - - - - - - - - - - - - - -	MAX. 1.4 3.0 10 250 10 ⁻⁷ 600 0.2 - 1.0 - 18 18 18 5.	Unit V V μA pF A % V V Ω pF kHz μs
Dutput Transfer charac- eristics Classifi	Forward voltage Peak forward voltage Reverse current Terminal capacitan Collector dark cur "Current transfer to Collector entire stantic Isolation resistanc: Floating capacitan Cut-off frequency Response time cation table of current t	nce rent tio n volage e cce Rise time Fall time	V _F V _{FM} I _R C ₁ I _{CEO} CTR V _{CD(st)} R _{ISO} C _r f _c t _r t _r	$ \begin{array}{l} I_{rot} = 0.5 \\ V_R = 4V \\ V = 0, f^2 \\ V_{cR} = 20 \\ I_T = 5m / \\ I_T = 20m \\ DC500V \\ V = 0, f^2 \\ V_{cR} = 5V \\ V_{cR} = 5V \\ W_{cR} = 20 \\ W_{cR$	hA 5A 7 = 1kHz 0V A, V cs = 5V 0A, I c = 1mA 7, 40 to 60% RH = 1MHz 1 c = 2mA, R_1 = 100 fc V, I c = 2mA, R_1 = 100 fc	= 100Ω ig. 1 Fo		1.2 - - - - - - - - - - - - - - - - - - -	MAX. 1.4 3.0 10 250 10 ⁻⁷ 600 0.2 - 1.0 - 18 18 18 5.	Unit V V μA pF A % V V Ω pF kHz μs
Dutput Transfer charac- eristics Classifi Moo	Forward voltage Peak forward voltage Reverse current Terminal capacitan Collector dark cur "Current transfer ta Collector enter stantic Isolation resistanci Floating capacitan Cut-off frequency Response time cation table of current t	nce rent tito m volage e cce Rise time Fall time transfer ratio in	V _F V _{FM} I _R C _t I _{CDO} CTR V _{CD} (w) C _f f _c t _r t _r t _r	$\begin{split} I_{PM} &= 0.2 \\ V_R &= 4V \\ V &= 0, \ f = \\ V_{CR} &= 20 \\ I_F &= 5mA \\ I_F &= 20m \\ DC500V \\ V &= 0, \ f = \\ V_{CR} &= 5V \\ V_{CR} &= 5V \\ V_{CR} &= 20 \\ \end{array}$	hA 5A 7 = 1kHz 0V A, V cs = 5V 0A, I c = 1mA 7, 40 to 60% RH = 1MHz 1 c = 2mA, R_1 = 100 fc V, I c = 2mA, R_1 = 100 fc	= 100Ω ig. 1 Fo Amb		1.2 - - - - - - - - - - - - - - - - - - -	MAX. 1.4 3.0 10 250 10 ⁻⁷ 600 0.2 - 1.0 - 18 18 18 5.	Unit V V μA pF A % V V Ω pF kHz μs
Dutput Transfer charac- eristics Classifi Moc PCI	Forward voltage Peak forward volta Reverse current Terminal capacitan Collector dark cun "Current transfer to Collector-eniter standi Collector-eniter	nce rent tio n volage e cce Fall time ransfer ratio in Rank mark	Vr Vr Vr Ia Cr Icmo Cr Cr Cr Cr Riso Cr fc tr tr tr tr Cr	$\begin{array}{c} I_{TM}=0.3\\ V_{R}=4V\\ V=0,f^{\pm}\\ V_{CR}=20\\ I_{F}=5mA\\ I_{F}=20m\\ DC500V\\ V=0,f^{\pm}\\ V_{CR}=5V,\\ V_{CR}=5V,\\ V_{CR}=2V\\ w.\\ \end{array}$	hA 5A 7 = 1kHz 0V A, V cs = 5V 0A, I c = 1mA 7, 40 to 60% RH = 1MHz 1 c = 2mA, R_1 = 100 fc V, I c = 2mA, R_1 = 100 fc	= 100Ω ig. 1 Fo Amb		1.2 - - - - - - - - - - - - - - - - - - -	MAX. 1.4 3.0 10 250 10 ⁻⁷ 600 0.2 - 1.0 - 18 18 18 5.	Unit V V μA pF A % V V Ω pF kHz μs
Dutput Transfer charac- teristics Classifi Moc PCI PCI	Forward voltage Peak forward volta Reverse current Terminal capacitat Collector dark cun **Current transfer ra Collector dark cun **Current transfer ra Collector dark cun **Current transfer ra Collector dark cun **Current transfer ra Solation resistance Floating capacitan Cut-off frequency Response time cation table of current to sel No. I 817A	nce rent tio n volage e Cce Fall time ransfer ratio in Rank mark A	Vr Vr Vr Ia Cr ICED CTR CTR VCE(at) REO Cr fe tr tr tr tr 1	$\begin{array}{c} I_{TM}=0.3\\ V_{R}=4V\\ V=0,f^{\pm}\\ V_{CR}=20\\ I_{F}=5mA\\ I_{F}=20m\\ DC500V\\ V=0,f^{\pm}\\ V_{CR}=5V,\\ V_{CR}=5V,\\ V_{CR}=21\\ w.\\ \end{array}$	sA SA = 1kHz 0V A, V cs = 5V A, I c = 1mA 7, 40 to 60% RH = 1MHz 1 c - 2mA, R t = 100 C V, I c = 2mA, R t = F	= 100 Ω ig. 1 Fo Amb		1.2 - - - - - - - - - - - - - - - - - - -	MAX. 1.4 3.0 10 250 10 ⁻⁷ 600 0.2 - 1.0 - 18 18 18 5.	Unit V V μA pF A % V V Ω pF kHz μs
Dutput Transfer charac- eristics Classifi Moc PCI PCI PCI	Forward voltage Peak forward voltage Reverse current Terminal capacitat Collector dark cur "Current transfer ra Collector dark cur "Current transfer ra Collector entite standi Isolation resistanc. Floating capacitan Cut-off frequency Response time cation table of current to iel No. 1 B17A B17B	nce rent tio m volage e ce Fall time ransfer ratio in Rank mark A B	Vr Vr VrM Ig Cr Icmo CTR Vcn(sc) Cr fc Tr fc tr tr tr 1 1 2	$\begin{array}{c} I_{TM}=0.3\\ V_R=4V\\ V=0,f^{\pm}\\ V_{CR}=2(I_F^{\pm})\\ I_F=20m\\ V=0,f^{\pm}\\ V_{CR}=20m\\ V=0,f^{\pm}\\ V_{CR}=5V,\\ V_{CR}=2V\\ V_{CR}=2V\\ W_{CR}=2V\\ W_{CR}$	sA SA = 1kHz 0V A, V cs = 5V A, I c = 1mA 7, 40 to 60% RH = 1MHz 1 c - 2mA, R t = 100 C V, I c = 2mA, R t = F	= 100 Ω ig. 1 Fo Amb		1.2 - - - - - - - - - - - - - - - - - - -	MAX. 1.4 3.0 10 250 10 ⁻⁷ 600 0.2 - 1.0 - 18 18 18 5.	Unit V V μA pF A % V V Ω pF kHz μs
Classifi Moc PCI PCI PCI	Forward voltage Peak forward voltage Reverse current Terminal capacitan Collector dark cur "Current transfer at Collector enter stanti Isolation resistanc Floating capacitan Cut-off frequency Response time cation table of current t iel No. I B17A B17B B17C	nce rent tio m volage e ce Fall time ransfer ratio in Rank mark A B C	Vr Vr VrM Ia C1 CTR CTR CTR VCE(ac) RISO CTR fc tr tr tr tr tr 1 2 2 3 3	$\begin{array}{c} I_{TM}=0.3\\ V_R=4V\\ V=0,f^{\pm}\\ V_{CR}=20\\ I_F=5mJ\\ I_F=20m\\ DC500V\\ V=0,f,\\ V=0,f,\\ V_{CR}=5V,\\ V_{CR}=2V\\ w.\\ \end{array}$	sA SA = 1kHz 0V A, V cs = 5V A, I c = 1mA 7, 40 to 60% RH = 1MHz 1 c - 2mA, R t = 100 C V, I c = 2mA, R t = F	= 100 Ω ig. 1 Fo Amb		1.2 - - - - - - - - - - - - - - - - - - -	MAX. 1.4 3.0 10 250 10 ⁻⁷ 600 0.2 - 1.0 - 18 18 18 5.	Unit V V μA pF A % V V Ω pF kHz μs
Dutput Iransfer charac- eristics Classifi PCI PCI PCI PCI PCI	Forward voltage Peak forward volta Reverse current Terminal capacitat Collector dark cur "Current transfer ta Collector-eniter saturation Isolation resistance Floating capacitat Cut-off frequency Response time cation table of current t del No. I B17A B17B B17C B17D	nce rent tito m voltage e ce Fall time ransfer ratio in Rank mark A B C D	V _F V _T V _{TM} I _R C _r I _{CTD} CTR V _{Cf(at)} R ₁₅₀ C _r f _c t _r t _r t _r t _r 1 above below	$\begin{array}{c} I_{TM}=0.:\\ V_R=4V\\ V=0,f:\\ V_{CR}=2(\\ I_F=20m\\ I_F=20m\\ V_{CR}=5V,\\ V_{CR}=5V,\\ V_{CR}=5V,\\ V_{CR}=5V,\\ V_{CR}=21\\ v.\\ \end{array}$	1A 5A (1) (1) (1) (1) (1) (1) (1) (1)	= 100 Ω ig. 1 Fo Amb ⁶⁰ 50 (V = 40		1.2 - - - - - - - - - - - - - - - - - - -	MAX. 1.4 3.0 10 250 10 ⁻⁷ 600 0.2 - 1.0 - 18 18 18 5.	Unit V V μA pF A % V V Ω pF kHz μs

PC8 07CD 200 to 600 CorD PC8 #7AC A, B or C 80 to 400 PC8@7BD 130 to 600 B, C or D PC8 #7AD A, B, C or D 80 to 600 PC8 #7 50 to 600 A, B, C, D or No mark : 1 or 2 or 3 or 4




Ambient temperature T. ("C)

Decision Group

- 13 -

PC817 Series

99

Decision Group

3 4 5

Collector-emitter voltage V CE (V)

- 14 -

ual USB 4 Channel Relay Out / Photo In Board

SHARP PC817 Series Fig. 8 Collector-emitter Saturation Voltage vs. Fig. 9 Collector Dark Current vs. Ambient Temperature Ambient Temperature $I_F = 20 m A$ $V_{CE} = 20V$ 0.1 2 $I_C = 1mA$ 0.1 10 0.1 10 -0.0 10 0.0 10 -10 * - 25 25 75 - 25 Ambient temperature T (C) Ambient temperature Ta ('C) Fig.10 Response Time vs. Load Resistance Fig.11 Frequency Response Vcc = 2V $V_{CE} = 2V$ 200 = 2mA $L_{C} = 2mA$ 100 a = 25°C Ta= 25°C 3 Ŵ 0.5 0.2 0.1 0.5 Frequency f (kHz) Load resistance RL (kQ) Fig.12 Collector-emitter Saturation Test Circuit for Response Time Voltage vs. Forward Current T_a = 25°C 5mA Test Circuit for Frepuency Response -0 10 Forward current I F (mA) Please refer to the chapter "Precautions for Use"

Decision Group

- 15 -

Operations Manual USB 4 Channel Relay Out / Photo In Board

FEATURES

- 2 Form C Contact
- DIL Pitch Terminals
- · High Reliability Bifurcated Contact
- Conforms to FCC Part 68 1500V Surge and Dielectric Strength 1000VAC
- Fully sealed
- UL File No. E147052

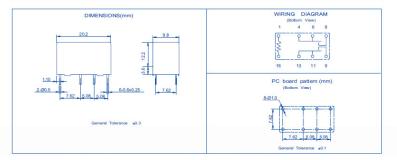
COIL RATING (at 20 °C)

Nominal Voltage (VDC)	Coil Resistance (Ω±10%)	Nominal Current (mA)	Pick-Up Voltage (VDC)	Drop-Out Voltage (VDC)	Maximum Allowable Voltage(VDC)	Power Consumption (mW)
5	167	30	3.5	0.5	6.0	150
6	240	25	4.2	0.6	7.2	150
9	540	16.6	6.3	0.9	10.8	150
12	960	12.5	8.4	1.2	14.4	150
24	2880	8.3	16.8	2.4	28.8	200
48	7680	6.25	33.6	4.8	57.6	300

ORDERING INFORMATION

BT-12 S	
Coil Voltage	Coil Sensitivity
See Coil Rating	S: 150~300mW low consumption type

*Nil : Power Consumption up to 560mW available upon request


Decision Group

- 16 -

USB 4 Channel Relay Out / Photo In Board

SPECIFICATIONS

Model No.		BT		
Contact Arrangemen	t	2 Form C		
Contact Type		Bifurcated		
Contact Material		AgPd+Au Clad		
Contact Resistance		Max. 60mQ (initial)		
Contact Rating Max. Switching Voltage		220VAC, 150VDC		
(at Resistive Load)	Max. Switching Current	2A		
	Max. Switching Power	30W(DC), 50VA(AC)		
	Rated Load	1.25A 24VDC 0.5A 100VAC		
Dielectric Strength				
Between Coil & Cont	acts	1000VAC(1 minute)		
Between Contacts		1000VAC(1 minute)		
Surge Strength		1500V		
Operate Time		Max. 6m Sec		
Release Time		Max. 4m Sec		
Ambient Temperatur	e	-30°C~+80 °C		
Insulation Resistance	,	Min. 1000MΩ at 500VDC		
Vibration Resistance	8	1.5mm D.A. 10-55HZ		
Shock	Functional	10G		
	Destruction	100G		
Mechanical Life		2 x 107 operations (at no load)		
		2 x 106 operations at 1 mA 20m VAC		
Electrical Life (Resis	tive Load)	2 x 106 operations at 20mA 20 VDC		
		1 x 10 ⁵ operations at 1.25A 24 VDC		
		1 x 10 ⁵ operations at 0.5A 100 VAC		
Weight		Approx. 6g		

Operations Manual USB 4 Channel Relay Out / Photo In Board

APPENDIX C

External Power Installation

**Optional for Decision Group USB I/O series of items ** The materials of the external power for Decision Group USB I/O series items are customer-self-supplied or optional purchase, they are not covered in the standard package of Decision Group USB I/O series items.

1. The Materials of the external power (*customer-self-supplied*)

* 5V / 1A AC adapter (*Power plug type is subject to the different varieties in different country.*).

Decision Group

- 17 -

~~~~~~

Decision Group

- 18 -

* AC power cord

Operations Manual USB 4 Channel Relay Out / Photo In Board

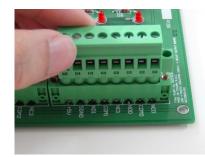
2. Terminal blocks built-in on Decision Group USB I/O series of Items:

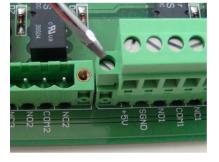
e.g. PCB pluggable terminal blocks. (for PRO type only)

3. External Power Installation procedure:

To tight / loose the terminal with a minus screwdriver.

Decision Group


- 19 -


Decision Group

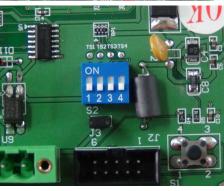
- 20 -

USB 4 Channel Relay Out / Photo In Board

Plug the terminal blocks into the socket. (PRO type only)

Fasten both sides of the screws (PRO type only)

Attach the black cord to the SGND and the red cord to the EXT DC+5V., as well as the signals cords


Decision Group

- 21 -

Operations Manual USB 4 Channel Relay Out / Photo In Board

Connect your device to the computer with a USB cable

To confirm all the switches and jumper setting are correct in compliance

~~~~~~

Decision Group

- 22 -